WO2017111096A1 - 二次電池用非水電解液及びそれを備えた二次電池 - Google Patents

二次電池用非水電解液及びそれを備えた二次電池 Download PDF

Info

Publication number
WO2017111096A1
WO2017111096A1 PCT/JP2016/088508 JP2016088508W WO2017111096A1 WO 2017111096 A1 WO2017111096 A1 WO 2017111096A1 JP 2016088508 W JP2016088508 W JP 2016088508W WO 2017111096 A1 WO2017111096 A1 WO 2017111096A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
lithium
ion
halogen atom
Prior art date
Application number
PCT/JP2016/088508
Other languages
English (en)
French (fr)
Inventor
紀敬 坂口
静郁 桂
壮二郎 近
雅士 山本
西田 哲郎
Original Assignee
ステラケミファ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ステラケミファ株式会社 filed Critical ステラケミファ株式会社
Priority to PL16878982T priority Critical patent/PL3396768T3/pl
Priority to EP16878982.4A priority patent/EP3396768B1/en
Priority to KR1020187020963A priority patent/KR20180089525A/ko
Priority to US16/065,721 priority patent/US20210202991A1/en
Priority to CN201680076242.6A priority patent/CN108475822B/zh
Publication of WO2017111096A1 publication Critical patent/WO2017111096A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a secondary battery that exhibits excellent cycle characteristics even in a high-temperature environment, and a secondary battery including the same.
  • a conventional general lithium secondary battery uses a material capable of reversibly inserting Li ions into a positive electrode active material and a negative electrode active material.
  • a compound such as LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , or LiFePO 4 is used for the positive electrode active material.
  • the negative electrode active material lithium metal, an alloy thereof, a carbon material, a graphite material, or the like is used.
  • an electrolytic solution used for a lithium secondary battery a solution obtained by dissolving an electrolyte such as LiPF 6 or LiBF 4 in a mixed solvent such as ethylene carbonate, diethyl carbonate, or propylene carbonate is used.
  • a film can be formed on the positive electrode and the negative electrode of a lithium secondary battery by using a nonaqueous electrolytic solution containing a monofluorophosphate or a difluorophosphate as an additive. It is disclosed that it is possible to suppress decomposition of the electrolytic solution due to contact between the non-aqueous electrolytic solution and the positive electrode active material and the negative electrode active material, thereby suppressing self-discharge, improving storage performance, and improving output characteristics. However, improvement of cycle characteristics under high temperature environment is required.
  • fluoroethylene carbonate as an additive for non-aqueous electrolyte is widely known as a compound that can form good SEI. It is understood that the battery can be stably charged by suppressing the reductive decomposition of the non-aqueous electrolyte with fluoroethylene carbonate.
  • Patent Document 2 discloses that good cycle characteristics can be obtained by using an electrolytic solution to which this fluoroethylene carbonate is added. However, the improvement of the cycle characteristics under a high temperature environment is not shown, and further improvement is demanded.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a non-aqueous electrolyte for a secondary battery exhibiting excellent cycle characteristics even in a high-temperature environment, and a secondary battery using the same. There is.
  • the non-aqueous electrolyte for secondary batteries of the present invention is a non-aqueous electrolyte for secondary batteries used for secondary batteries in order to solve the above-mentioned problems, and is a component represented by the following chemical formula (1) (A) includes at least one or more types.
  • Mn + represents any one selected from the group consisting of hydrogen ions, alkali metal ions, alkaline earth metal ions, aluminum ions, transition metal ions, and onium ions.
  • X represents a halogen atom.
  • R 1 represents a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 20 carbon atoms and having at least one of a halogen atom, a hetero atom, and an unsaturated bond. (Wherein n represents a valence)
  • component (B) Boron complex salt represented by the following chemical formula (2), or boric acid ester, acid anhydride, cyclic carbonate having an unsaturated bond, cyclic carbonate having a halogen atom, cyclic sulfonic acid ester, the following chemical formula ( 3) at least one compound selected from the group consisting of amines having an acetoacetyl group and a phosphorus compound represented by any of the following chemical formulas (4) to (6)
  • X 1 to X 4 are each independently selected 1 Or a combination of the two forms a cyclic structure of —OOC—Y—COO—, —O—Y—O—, or —OOC—Y—O—, in which case the Y has a carbon number of 0 to Or a hydrocarbon group having a carbon number of 0 to 20 and having a hetero atom, an unsaturated bond, or a cyclic structure, or X 1 to X 4 are each independently , A halogen atom, an alkyl group having 0 to 20 carbon atoms, an alkoxy group having 0 to 20 carbon atoms, a carbon number in the range of 0 to 20, and at least one of a halogen atom, a hetero atom and an unsaturated bond.
  • R 2 and R 3 are each independently a hydrocarbon group having 1 to 20 carbon atoms, or a carbon group having 1 to 20 carbon atoms and having a halogen atom, a hetero atom or an unsaturated bond. Represents a hydrogen group.
  • M n + represents a hydrogen ion, an alkali metal ion, an alkaline earth metal ion, an aluminum ion, a transition metal ion, or an onium ion.
  • Each of A 1 and A 2 independently represents an oxygen atom
  • Each of X 5 and X 6 independently represents a halogen atom, an alkyl group having 1 to 20 carbon atoms, or a carbon atom having 1 to 20 carbon atoms, Represents an alkyl group having at least one of a heteroatom and an unsaturated bond, or X 5 and X 6 represent the alkyl group having 1 to 20 carbon atoms, or the range having 1 to 20 carbon atoms. Any one of a halogen atom, a hetero atom and an alkyl group having at least one of unsaturated bonds, which are bonded to each other to form a cyclic structure, wherein n is Represents valence
  • X 7 to X 12 are each independently a halogen atom, An alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, a range of 1 to 20 carbon atoms, a halogen atom, a hetero atom or unsaturated An alkyl group having at least one of bonds, an alkylthio group having 1 to 20 carbon atoms, a range of 1 to 20 carbon atoms, and at least one of a halogen atom, a hetero atom and an unsaturated bond; Having an alkoxy group having 1 to 20 carbon atoms, or having 1 to 20 carbon atoms and having a halogen atom, hetero atom or unsaturated
  • a cyclic structure of —O—Z—O— wherein Z is a hydrocarbon group having 0 to 20 carbon atoms, or a range of 0 to 20 carbon atoms, and a halogen atom Represents a hydrocarbon group having at least one of a heteroatom, an unsaturated bond and a cyclic structure, wherein n represents a valence.
  • M n + is a hydrogen ion, an alkali metal ion, alkaline earth metal ions, aluminum ions,. It represents a transition metal ion or onium ion wherein R 4 and R 5 are each independently 1 to 20 carbons Or a hydrocarbon group having 1 to 20 carbon atoms and having at least one of a halogen atom, a hetero atom and an unsaturated bond, or R 4 and R 5 are Any one of the hydrocarbon group having 1 to 20 carbon atoms or the hydrocarbon group having the carbon number in the range of 1 to 20 and having at least one of a halogen atom, a hetero atom and an unsaturated bond; And n represents a valence, which are bonded to each other to form a cyclic structure.
  • the amount of the component (A) added is preferably 0.05% by mass to 5% by mass with respect to the total mass of the non-aqueous electrolyte for secondary battery.
  • the amount of component (B) added is preferably 0.05% by mass to 5% by mass with respect to the total mass of the non-aqueous electrolyte for secondary battery.
  • the component (A) is preferably ethyl lithium monofluorophosphate.
  • the secondary battery of the present invention is characterized by comprising at least the non-aqueous electrolyte for a secondary battery described above, a positive electrode, and a negative electrode.
  • a non-aqueous electrolyte for a secondary battery that can exhibit excellent cycle characteristics even in a high temperature environment, and a secondary battery including the same.
  • a film is formed on the surface of the electrode active material by containing at least one component (A) represented by the chemical formula (1). It is presumed that the cycle characteristics under a high temperature environment are improved by characteristics such as thermal stability and film quality.
  • non-aqueous electrolyte for secondary battery includes at least one component (described later) in an organic solvent (non-aqueous solvent) in which an electrolyte is dissolved. A) is included as an additive.
  • Electrode active material type of non-aqueous solvent, electrolyte and additive in non-aqueous electrolyte, properties of film formed according to charge / discharge conditions, such as thermal stability, ionic conductivity, morphology, and denseness Is thought to change significantly.
  • a film is formed on the surface of the electrode active material by adding the component (A) to the non-aqueous electrolyte, and the properties of the film, that is, the effects such as thermal stability and film quality. Therefore, it is considered that the cycle characteristics of the secondary battery in a high temperature environment (for example, 40 ° C. to 80 ° C.) can be improved.
  • the component (A) is contained in at least one kind in the nonaqueous electrolytic solution, and specifically, is a compound represented by the following chemical formula (1).
  • the M n + represents any one selected from the group consisting of hydrogen ions, alkali metal ions, alkaline earth metal ions, aluminum ions, transition metal ions, and onium ions.
  • the alkali metal ion is not particularly limited and includes lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion and the like. These can be used alone or in combination of two or more.
  • alkaline earth metal ions examples include magnesium ions, calcium ions, strontium ions, barium ions and the like. These can be used alone or in combination of two or more.
  • the transition metal ion is not particularly limited, and examples thereof include manganese ions, cobalt ions, nickel ions, chromium ions, copper ions, silver ions, molybdenum ions, tungsten ions, vanadium ions, and the like. These can be used alone or in combination of two or more.
  • onium ions examples include ammonium ions (NH 4+ ), primary ammonium ions, secondary ammonium ions, tertiary ammonium ions, quaternary ammonium ions, quaternary phosphonium ions, sulfonium ions, and the like.
  • the primary ammonium ion is not particularly limited, and examples thereof include methylammonium ion, ethylammonium ion, propylammonium ion, and isopropylammonium ion. These can be used alone or in combination of two or more.
  • the secondary ammonium ion is not particularly limited, and for example, dimethylammonium ion, diethylammonium ion, dipropylammonium ion, dibutylammonium ion, ethylmethylammonium ion, methylpropylammonium ion, methylbutylammonium ion, propylbutylammonium Ion, diisopropylammonium ion and the like. These can be used alone or in combination of two or more.
  • the tertiary ammonium ion is not particularly limited, and examples thereof include trimethylammonium ion, triethylammonium ion, tripropylammonium ammonium ion, tributylammonium ion, ethyldimethylammonium ion, diethylmethylammonium ion, triisopropylammonium ion, dimethylisopropyl.
  • the quaternary ammonium forming the quaternary ammonium ion is not particularly limited, and examples thereof include aliphatic quaternary ammoniums, imidazoliums, pyridiniums, pyrazoliums, and pyridaziniums. These can be used alone or in combination of two or more.
  • the aliphatic quaternary ammoniums are not particularly limited, and examples thereof include tetraethylammonium, tetrapropylammonium, tetraisopropylammonium, trimethylethylammonium, dimethyldiethylammonium, methyltriethylammonium, trimethylpropylammonium, trimethylisopropylammonium, tetra Butylammonium, trimethylbutylammonium, trimethylpentylammonium, trimethylhexylammonium, 1-ethyl-1-methyl-pyrrolidinium, 1-butyl-1-methylpyrrolidinium, 1-ethyl-1-methyl-piperidinium, 1-butyl- Examples include 1-methylpiperidinium. These can be used alone or in combination of two or more.
  • the imidazoliums are not particularly limited. For example, 1.3 dimethyl-imidazolium, 1-ethyl-3-methylimidazolium, 1-n-propyl-3-methylimidazolium, 1-n-butyl-3 -Methylimidazolium, 1-n-hexyl-3-methylimidazolium and the like. These can be used alone or in combination of two or more.
  • the pyridiniums are not particularly limited, and examples thereof include 1-methylpyridinium, 1-ethylpyridinium, 1-n-propylpyridinium and the like. These can be used alone or in combination of two or more.
  • the pyrazoliums are not particularly limited. For example, 1,2-dimethylpyrazolium, 1-methyl-2-ethylpyrazolium, 1-propyl-2-methylpyrazolium, 1-methyl-2-butyl Pyrazolium, 1-methylpyrazolium, 3-methylpyrazolium, 4-methylpyrazolium, 4-iodopyrazolium, 4-bromopyrazolium, 4-iodo3-methylpyrazolium, 4 -Bromo-3-methylpyrazolium, 3-trifluoromethylpyrazolium. These can be used alone or in combination of two or more.
  • the pyridaziniums are not particularly limited, and for example, 1-methylpyridazinium, 1-ethylpyridazinium, 1-propylpyridazinium, 1-butylpyridazinium, 3-methylpyridazinium Ni, 4-methylpyridazinium, 3-methoxypyridazinium, 3,6-dichloropyridazinium, 3,6-dichloro-4-methylpyridazinium, 3-chloro-6-methylpyri Examples include dazinium and 3-chloro-6-methoxypyridazinium. These can be used alone or in combination of two or more.
  • the quaternary phosphonium forming the quaternary phosphonium ion is not particularly limited, and examples thereof include benzyltriphenylphosphonium, tetraethylphosphonium, and tetraphenylphosphonium. These can be used alone or in combination of two or more.
  • the sulfonium ion is not particularly limited, and examples thereof include trimethylsulfonium, triphenylsulfonium, triethylsulfonium, and the like. These can be used alone or in combination of two or more.
  • lithium, sodium ion, potassium, magnesium, calcium, tetraalkylammonium ion, alkylimidazolium ion, alkylpyrrolidinium ion, and alkylpyridinium ion are preferable from the viewpoint of availability. .
  • X represents a halogen atom.
  • the halogen atom is any one of iodine, bromine, chlorine, and fluorine. Of these halogen atoms, fluorine is particularly preferred from the viewpoint of hydrolysis and thermal stability of the compound represented by the chemical formula (1).
  • R 1 represents a hydrocarbon group or a hydrocarbon group having at least one of a halogen atom, a hetero atom, or an unsaturated bond (hereinafter referred to as “hydrocarbon group having a halogen atom”). .)
  • the hydrocarbon group has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the hydrocarbon group having a halogen atom or the like has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the number of unsaturated bonds is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and particularly preferably in the range of 1 to 3.
  • the hydrocarbon group or a hydrocarbon group having a halogen atom or the like is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group.
  • Cyclic alkyl groups such as cyclopentyl group, cyclohexyl group, 2-iodoethyl group, 2-bromoethyl group, 2-chloroethyl group, 2-fluoroethyl group, 1,2-diiodoethyl group, 1,2-dibromoethyl Group, 1,2-dichloroethyl group, 1,2-difluoroethyl group, 2,2-diiodoethyl group, 2,2-dibromoethyl group, 2,2-dichloroethyl group, 2,2-difluoroethyl group, 2 , 2,2-tribromoethyl group, 2,2,2-trichloroethyl group, 2,2,2-trifluoroethyl group, hexafluoro A chain-containing halogen-containing alkyl group such as -2-propyl group, a 2-io
  • the halogen atom means a fluorine, chlorine, bromine or iodine atom.
  • the hydrocarbon group having a halogen atom means that part or all of the hydrogen in the hydrocarbon group may be substituted with any of these halogen atoms.
  • a hetero atom means atoms, such as oxygen, nitrogen, or sulfur.
  • the hydrocarbon group having a hetero atom means that part or all of hydrogen and carbon in the hydrocarbon group may be substituted with any of these hetero atoms.
  • hydrocarbon group having a hetero atom examples include a 2-methoxyethyl group, a 2- (2-methoxyethoxy) ethyl group, and a 2- (2- (2-methoxyethoxy) ethoxy) ethyl group.
  • n a valence.
  • M is a monovalent cation
  • n 1, when it is a divalent cation
  • n 2
  • n 3
  • monofluorophosphate ester salt represented by the chemical formula (1) examples include, for example, ethyl monofluorophosphate, methyl lithium monofluorophosphate, ethyl lithium monofluorophosphate, isopropyl lithium monofluorophosphate, Butyl lithium monofluorophosphate, lithium (2-ethoxyethyl) monofluorophosphate, lithium (2,2,2-trichloroethyl) monofluorophosphate, (1,1,1,3,3, monofluorophosphate) 3-hexachloroisopropyl) lithium, monofluorophosphoric acid (2,2,2-trifluoroethyl) lithium, monofluorophosphoric acid (1,1,1,3,3,3-hexafluoroisopropyl) lithium, monofluorophosphoric acid Acid (2-methoxyethyl) lithium, monofluorophosphoric acid (2- (2-methyl Xyloxy) ethyl) lithium, monofluorophosphate (2- (2-(-
  • ethyl lithium monofluorophosphate is preferred from the viewpoint of availability.
  • the amount of the component (A) added is preferably in the range of 0.05 to 5% by mass, more preferably in the range of 0.1 to 3% by mass with respect to the total mass of the non-aqueous electrolyte. Preferably, it is in the range of 0.5 to 2% by mass.
  • the addition amount 0.05% by mass or more, cycle characteristics of the secondary battery in a high temperature environment can be further improved.
  • the said addition amount 5 mass% or less it can suppress that the solubility with respect to the nonaqueous electrolyte solvent of the electrolyte in a nonaqueous electrolyte solution falls.
  • At least one component (A) may be contained in the non-aqueous electrolyte, but the number of types of component (A) to be contained is preferably 1 to There are 5 types, more preferably 1 to 3 types, and particularly preferably 1 to 2 types. By reducing the type of the component (A), it is possible to suppress complication of the process in the production of the nonaqueous electrolytic solution.
  • component (A) is a monofluorophosphate ester salt (that is, the case where X in chemical formula (1) is a fluorine atom) is described below as an example.
  • X in chemical formula (1) is a fluorine atom
  • a method for producing a monofluorophosphoric acid ester salt includes a step A in which a monohalophosphoric acid diester is fluorinated to produce a monofluorophosphoric acid diester, and the monofluorophosphoric acid diester is reacted with a halide to produce a monofluorophosphoric acid. And at least Step B of producing an ester salt.
  • the monohalophosphate diester used as a raw material in the step A is represented by the following chemical formula (7).
  • R 1 is the same as R 1 in Formula (1), it is as previously described.
  • R 6 in the chemical formula (7) is the same as R 1 in the chemical formula (1). Therefore, R 6 is selected from the functional group group listed in the description of R 1 . However, R 1 and R 6 may be the same type or different from each other.
  • X 13 represents a halogen atom other than the fluorine atom F.
  • Fluorination of the monohalophosphoric acid diester by fluorination treatment can be performed, for example, by contacting potassium fluoride or the like as a fluorinating agent in an organic solvent. Thereby, the reaction shown by the following chemical reaction formula (8) occurs, and a monofluorophosphoric acid diester can be generated.
  • the reaction start temperature when the monohalophosphate diester and the fluorinating agent start the reaction in a non-aqueous solvent (in an organic solvent) is not particularly limited as long as the reaction proceeds, and is appropriately set according to the reaction species. do it. Usually, it is in the range of 0 ° C. to 200 ° C., and is preferably 20 to 150 ° C., more preferably 40 ° C. to 120 ° C. from the viewpoint of reactivity. By setting the reaction start temperature to 0 ° C. or higher, it is possible to prevent the reaction rate from being significantly attenuated. Moreover, the energy loss by using excess energy can be suppressed by making reaction start temperature into 200 degrees C or less.
  • the method for adjusting the reaction start temperature is not particularly limited, and when cooling and controlling so as to be within the temperature range, the reaction vessel charged with the monohalophosphate diester and the fluorinating agent may be ice-cooled or the like. Can be performed. Moreover, when heating and controlling so that reaction start temperature may be in the said temperature range, it can carry out by using the oil bath etc. which were set to arbitrary temperature.
  • an aprotic solvent is preferable as the solvent used when the monohalophosphoric acid diester and the fluorinating agent are reacted in a non-aqueous solvent.
  • an aprotic solvent By using an aprotic solvent, inhibition of the fluorination reaction can be prevented.
  • the monohalophosphate diester and the protic solvent may cause a halogen exchange reaction.
  • the hydrogen element in the protic solvent and the fluorine anion of the fluorinating agent significantly reduce the fluorination ability due to the influence of hydrogen bonding.
  • monohalo phosphoric acid diester can also be used as a solvent.
  • the aprotic solvent is not particularly limited, and examples thereof include nitriles, esters, ketones, ethers, and halogenated hydrocarbons.
  • the nitriles are not particularly limited, and examples thereof include acetonitrile and propionitrile.
  • the esters are not particularly limited, and examples thereof include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, ethyl acetate, methyl acetate, and butyl acetate.
  • the ketones are not particularly limited, and examples thereof include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • the ethers are not particularly limited, and examples thereof include diethyl ether, tetrahydrofuran, and ethylene glycol.
  • the halogenated hydrocarbon is not particularly limited, and examples thereof include dichloromethane and chloroform.
  • Still other aprotic solvents include, for example, nitromethane, nitroethane, dimethylformamide and the like. These aprotic solvents can be used alone or in combination of two or more.
  • the fluorinating agent used in the reaction between the monohalophosphate diester and the fluorinating agent is not particularly limited, and examples thereof include alkali metal fluorides, alkaline earth metal fluorides, onium fluorides and the like.
  • the alkali metal fluoride is not particularly limited, and examples thereof include lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, and cesium fluoride.
  • the alkaline earth metal fluoride is not particularly limited, and examples thereof include beryllium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, and barium fluoride.
  • the onium fluoride is not particularly limited, and examples thereof include triethylamine trihydrofluoride, triethylamine pentahydrofluoride, viridine hydrofluoride, and tetrabutylammonium fluoride. These fluorinating agents can be used alone or in combination of two or more.
  • the step B is a step of producing a monofluorophosphate ester salt by reacting the monofluorophosphate diester with the halide.
  • the halide has the chemical formula M n + X 14 n (where M n + is an alkali metal ion, alkaline earth metal ion, transition metal ion, rare earth element ion, zinc ion, aluminum ion, gallium ion, indium ion, germanium ion, It represents any one selected from the group consisting of tin ion, lead ion and onium ion, X 14 represents a halogen atom of F, Cl, Br or I.
  • the n represents a valence. It is represented by
  • n + in the halide is as described above, detailed description thereof is omitted.
  • said n in a halide represents a valence similarly to the case of the said General formula (1).
  • the halogen of the halide nucleophilically attacks R 6 of the monofluorophosphate ester, whereby the monofluorophosphate ester anion containing R 1 is eliminated, and the alkyl halide represented by R 6 X 14 becomes Generate. Further, it is presumed that the monofluorophosphate ester salt is formed by the elimination of the monofluorophosphate ester anion to form a salt with a halide counter cation.
  • the R 1 represents a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 20 carbon atoms and having at least one of a halogen atom, a hetero atom and an unsaturated bond. To express.) (Wherein R 6 is in the range hydrocarbon group, or a carbon number of 1 to 20 1 to 20 carbons, a halogen atom, a hydrocarbon group having at least one of hetero atoms or unsaturated bonds To express.)
  • the leaving ability of the monofluorophosphate ester anion represented by the chemical formula (11) or (12), which is a leaving group, is roughly estimated from the pKa value of each proton body, for example.
  • the monofluorophosphate ester anion represented by the chemical formula (11) is represented by the proton form of the monofluorophosphate ester anion, that is, the pKa value of the monofluorophosphate ester is represented by the chemical formula (12). It is preferably smaller than the proton body.
  • the pKa value can be estimated from, for example, Bordwell pKa Table. Alternatively, it can be presumed that those having an electron withdrawing group in the leaving group have high leaving ability.
  • the amount of the halide and monofluorophosphate diester used as long as the desired compound is obtained.
  • the monofluorophosphoric diester is 0.5 to 5 equivalents, preferably 0.9 to 4 equivalents, more preferably 0.95 to 3.3 equivalents per 1 equivalent of halide. is there.
  • the reaction start temperature when the halide and monofluorophosphoric acid diester start the reaction in another non-aqueous solvent is not particularly limited as long as the reaction proceeds, and may be appropriately set according to the reaction species. Good. Usually, it is in the range of 0 ° C. to 200 ° C., and is preferably 20 to 150 ° C., more preferably 40 ° C. to 120 ° C. from the viewpoint of reactivity.
  • the method for adjusting the reaction start temperature is not particularly limited, and when cooling and controlling so as to be within the temperature range, the reaction vessel charged with the halide and monofluorophosphoric acid diester is cooled with ice or the like. Can be done. Moreover, when heating and controlling so that reaction start temperature may be in the said temperature range, it can carry out by using the oil bath etc. which were set to arbitrary temperature.
  • the reaction time when the halide and monofluorophosphoric diester are reacted in another non-aqueous solvent is not particularly limited, and may be set as appropriate according to the reaction species. Usually, it is within the range of 30 minutes to 20 hours, and from the viewpoint of industrial production, 30 minutes to 15 hours is preferable, and 30 minutes to 10 hours is more preferable.
  • the monofluorophosphoric diester can be used as a reaction solvent in addition to the other non-aqueous solvent.
  • the reaction start temperature at which the halide and monofluorophosphoric acid diester start the reaction is not particularly limited as long as the reaction proceeds, and may be appropriately set according to the reaction species. Usually, it is in the range of 0 ° C. to 200 ° C., and from the viewpoint of reactivity, 20 ° C. to 150 ° C. is preferable, and 40 ° C. to 120 ° C. is more preferable.
  • the reaction time is not particularly limited, and may be appropriately set according to the reaction species. Usually, it is within the range of 30 minutes to 20 hours, and from the viewpoint of industrial production, 30 minutes to 15 hours is preferable, and 30 minutes to 10 hours is more preferable.
  • the other non-aqueous solvent is not particularly limited as long as it does not hinder the reaction with other reactants and products.
  • Specific examples include alcohols, nitriles, esters, ketones, ethers, halogenated hydrocarbons and the like. These can be used alone or in combination of two or more.
  • the alcohols are not particularly limited, and examples thereof include methanol, ethanol, propanol, butanol, isopropyl alcohol, pentanol, hexanol, heptanol, octanol, 2-iodoethanol, 2-bromoethanol, 2-chloroethanol, 2- Fluoroethanol, 1,2-diiodoethanol, 1,2-dibromoethanol, 1,2-dichloroethanol, 1,2-difluoroethanol, 2,2-diiodoethanol, 2,2-dibromoethanol, 2,2 -Dichloroethanol, 2,2-difluoroethanol, 2,2,2-tribromoethanol, 2,2,2-trichloroethanol, 2,2,2-trifluoroethanol, 1,1,1,3,3 3-hexafluoro-2-propanol etc. It is below. These can be used alone or in combination of two or more.
  • nitriles are not particularly limited, and examples thereof include acetonitrile and propionitryl. These can be used alone or in combination of two or more.
  • esters are not particularly limited, and examples thereof include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, ethyl acetate, methyl acetate, and butyl acetate. These can be used alone or in combination of two or more.
  • the ketones are not particularly limited, and examples thereof include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. These can be used alone or in combination of two or more.
  • the ethers are not particularly limited, and examples include diethyl ether, tetrahydrofuran, dimethoxyethane, and the like. These can be used alone or in combination of two or more.
  • the halogenated hydrocarbon is not particularly limited, and examples thereof include dichloromethane and chloroform. These can be used alone or in combination of two or more.
  • non-aqueous solvent examples include nitromethane, nitroethane, dimethylformamide and the like.
  • the amount of the other non-aqueous solvent (organic solvent) to be used is preferably 1 or more times, more preferably 1 to 200 times, and more preferably 1 to 100 times based on the weight of the monofluorophosphoric acid diester. A double amount is more preferable, and a 1-fold to 50-fold amount is particularly preferable.
  • the upper limit of the amount of the organic solvent used is not particularly limited, but excessive use of the organic solvent relative to the monofluorophosphoric acid diester requires more energy when distilling it off, which is industrially disadvantageous. It may become. Accordingly, the upper limit of the amount of the organic solvent used is preferably set as appropriate according to the reaction species.
  • the order of addition of the halide and monofluorophosphoric acid diester is not particularly limited. Moreover, when using monofluorophosphoric diester as a reaction solvent, the addition order of a halide and monofluorophosphoric diester is not specifically limited.
  • the monofluorophosphoric acid ester salt obtained by the method of the present embodiment is obtained by performing cation exchange using solubility or cation exchange using an ion exchange resin or the like to obtain a monofluorophosphorus having a desired different cation. Acid ester salts can also be produced.
  • the monofluorophosphate ester can also be produced by reacting the monofluorophosphate ester salt obtained by the method of the present embodiment with Arrhenius acid such as sulfuric acid or hydrochloric acid.
  • a monofluorophosphate ester can also be obtained by performing proton exchange using an ion exchange resin.
  • a monofluorophosphate ester salt can also be produced by reacting the monofluorophosphate obtained by these methods with a halide or hydroxide.
  • a step of purifying the monofluorophosphate ester salt may be performed immediately after the step of generating the monofluorophosphate ester salt. Further, immediately after the step of producing a monofluorophosphate ester salt having another kind of cation, purification can be performed by cation exchange with respect to the monofluorophosphate ester salt. Furthermore, the purification can be performed immediately after the monofluorophosphate ester is reacted with the halide to produce a monofluorophosphate ester salt. It does not specifically limit as a purification method, For example, the method by operation, such as distillation and drying, The method using adsorption agents, such as activated carbon or an ion exchange resin, etc. are employable. By performing these purifications, the purity of the monofluorophosphate ester salt can be increased.
  • non-aqueous electrolyte containing the component (A) can contain the following component (B).
  • the component (B) includes either the following component (b1) or component (b2).
  • Component (b1) 1 type of boron complex salt.
  • boron complex salt The boron complex salt of the component (b1) is specifically represented by the following chemical formula (2).
  • M n + is as described above, and any one selected from the group consisting of hydrogen ions, alkali metal ions, alkaline earth metal ions, aluminum ions, transition metal ions, and onium ions. To express. Therefore, detailed description thereof will be omitted.
  • X 1 to X 4 are independent of each other, and one or two arbitrarily selected combinations can be represented by —OOC—Y—COO—, —O—Y—O—, or —OOC.
  • Y is a hydrocarbon group having 0 to 20, preferably 0 to 10, more preferably 0 to 10 carbon atoms, or 0 to 20, preferably 0 to 10, more preferably 0 to 10 carbon atoms.
  • 5 represents a hydrocarbon group having a hetero atom, an unsaturated bond, or a cyclic structure.
  • each Y is different It may be.
  • the hetero atom means an oxygen atom, a nitrogen atom or a sulfur atom.
  • the Y is not particularly limited, and examples thereof include a linear alkylene group such as a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group and a nonylene group, an iodomethylene group, and a diiodo group.
  • a linear alkylene group such as a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group and a nonylene group, an iodomethylene group, and a diiodo group.
  • Methylene group bromomethylene group, dibromomethylene group, fluoromethylene group, difluoromethylene group, iodoethylene group, 1,1-diiodoethylene group, 1,2-diiodoethylene group, triiodoethylene group, tetraiodoethylene group Chloroethylene group, 1,1-dichloroethylene group, 1,2-dichloroethylene group, trichloroethylene group, tetrachloroethylene group, fluoroethylene group, 1,1-difluoroethylene group, 1,2-difluoroethylene group, trifluoroethylene group, Tetrafluoroethylene group, etc.
  • a halogen-containing linear alkylene group, a cyclohexylene group, a phenylene group, a benzylene group, a naphthylene group, an anthracylene group, a naphthacylene group, a pentasilene group, etc. Can be mentioned.
  • —OOC—Y—COO— is —OOC—COO—, which represents an oxalate group.
  • Y is a 1,2-phenylene group
  • —O—Y—O— represents a benzenediolate group
  • —O—Y—COO— represents a salicylate group.
  • X 1 to X 4 are each independently a halogen atom, an alkyl group having 0 to 20 carbon atoms, preferably 0 to 10, more preferably 0 to 5 carbon atoms, and 0 to 20 carbon atoms, preferably 0 to 0 carbon atoms.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • a hetero atom means an oxygen atom, a nitrogen atom, or a sulfur atom.
  • X 1 to X 4 include a chain alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group, and a cyclopentyl group.
  • Cycloalkyl group such as cyclohexyl group, iodomethyl group, bromomethyl group, chloromethyl group, fluoromethyl group, diiodomethyl group, dibromomethyl group, dichloromethyl group, difluoromethyl group, triiodomethyl group, tribromomethyl group, trichloromethyl Group, trifluoromethyl group, 2-iodoethyl group, 2-bromoethyl group, 2-chloroethyl group, 2-fluoroethyl group, 1,2-diiodoethyl group, 1,2-dibromoethyl group, 1,2-dichloroethyl group 1,2-difluoroethyl group, 2,2-diiodoethyl group, 2,2-dibu Moethyl group, 2,2-dichloroethyl group, 2,2-difluoroethyl group, 2,2,2-tribromoethyl
  • X 1 to X 4 are independent of each other and may be the same or different. Moreover, the functional group group illustrated above is only an illustration, and is not limited to these.
  • boron complex salt represented by the chemical formula (2) include, for example, lithium bisoxalatoborate, lithium bismalonate borate, lithium bissalicylate borate, lithium bis [1,2'-benziolate (2) -O, O '] borate, lithium oxalatomalonatoborate, lithium oxalate salicylate borate, lithium oxalate [1,2'-benziolate (2) -O, O'] borate, lithium diiodooxalatoborate, lithium Dibromooxalatoborate, lithium dichlorooxalatoborate, lithium difluorooxalatoborate, lithium iodochlorooxalatoborate, lithium iodobromooxalateborate, lithium iodofluorooxalatoborate, lithium bromochloroo Saratoborate, lithium bromofluorooxalate, lithium chlorofluorooxalate, lithium chlor
  • boron complex salt represented by the chemical formula (2) include, for example, sodium bisoxalatoborate, sodium bismalonate borate, sodium bissalicylate borate, sodium bis [1,2'-benziolate ( 2) —O, O ′] borate, sodium oxalate malonatoborate, sodium oxalate salicylate borate, sodium oxalate [1,2′-benziolate (2) —O, O ′] borate, sodium diiodooxalatoborate Sodium dibromooxalatoborate, sodium dichlorooxalatoborate, sodium difluorooxalatoborate, sodium iodochlorooxalatoborate, sodium iodobromooxalatoborate, sodium iodofluorooxara Borate, sodium bromochlorooxalate borate, sodium bromofluorooxalatoborate, sodium chlorofluor
  • boron complex salt represented by the chemical formula (2) include, for example, triethylmethylammonium bisoxalatoborate, triethylmethylammonium bismalonatoborate, triethylmethylammonium bissalicylate borate, triethylmethylammonium bis [1,2'-Benziolate (2) -O, O '] borate, triethylmethylammonium oxalate malonatoborate, triethylmethylammonium oxalate salicylate borate, triethylmethylammonium oxalate [1,2'-benzylate (2) -O, O '] borate, triethylmethylammonium diiodooxalatoborate, triethylmethylammonium dibromooxalatoborate, triethylmethylammonium di Lolooxalatoborate, triethylmethylammonium diflu
  • the boron complex salt is lithium bisoxalatoborate, triethylmethylammonium bisoxalatoborate, lithium bissalicylate borate or lithium bis [1,2'-benziolate (2). -O, O '] borate is preferred.
  • n represents a valence as in the chemical formula (1).
  • the borate ester in the component (b2) is not particularly limited as long as it does not impair the characteristics of the nonaqueous electrolytic solution of the present embodiment and the secondary battery using the boric acid ester. You can choose. Specifically, for example, trimethyl borate, triethyl borate, triisopropyl borate, tributyl borate, tripentyl borate, trihexyl borate, triheptyl borate, triphenyl borate, tris borate (2, 2,2-iodoethyl), tris (2,2,2-tribromoethyl) borate, tris (2,2,2-trichloroethyl) borate, tris (2,2,2-trifluoroethyl) borate Examples include tris (4-iodophenyl) acid, tris (4-bromophenyl) borate, tris (4-chlorophenyl) borate, tris (4-fluorophenyl) borate,
  • the acid anhydride in component (b2) is not particularly limited as long as it does not impair the characteristics of the nonaqueous electrolytic solution of the present embodiment and the secondary battery using the nonaqueous electrolytic solution. You can choose. Specifically, for example, acetic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, hexanoic anhydride, heptanoic anhydride, octanoic anhydride, nonanoic anhydride, decanoic anhydride Eicosanoic anhydride, docosanoic anhydride, benzoic anhydride, 4-methoxybenzoic anhydride, diphenylacetic anhydride, crotonic anhydride, cyclohexanecarboxylic anhydride, elaidic anhydride, isobutyric anhydride, Isovaleric anhydride, lauric anhydride, linoleic anhydride
  • acid anhydrides in the present embodiment, those having a cyclic structure are preferred, and those having an unsaturated bond in the molecule are preferred.
  • the acid anhydride is particularly preferably maleic anhydride from the viewpoint of availability and the viewpoint of having a cyclic structure and an unsaturated bond in the molecule.
  • the cyclic carbonate having an unsaturated bond in the component (b2) is not particularly limited in type as long as it does not impair the characteristics of the nonaqueous electrolytic solution of the present embodiment and the secondary battery using the same. Various things can be selected.
  • the number of unsaturated bonds is preferably 1 to 10, more preferably 1 to 5, and particularly preferably 1 to 3.
  • Specific examples of the cyclic carbonate having an unsaturated bond include vinylene carbonate, iodovinylene carbonate, bromovinylene carbonate, chlorovinylene carbonate, fluorovinylene carbonate, 1,2-diiodovinylene carbonate, 1,2-dibromo.
  • the cyclic carbonate having an unsaturated bond is preferably vinylene carbonate from the viewpoint
  • the cyclic carbonate having a halogen atom in the component (b2) is not particularly limited as long as it does not impair the characteristics of the nonaqueous electrolytic solution of the present embodiment and the secondary battery using the same.
  • the halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • cyclic carbonate having a halogen atom examples include iodoethylene carbonate, bromoethylene carbonate, chloroethylene carbonate, fluoroethylene carbonate, 1,2-diiodoethylene carbonate, 1,2-dibromoethylene carbonate, 1 2,2-dichloroethylene carbonate, 1,2-difluoroethylene carbonate, and the like.
  • the cyclic carbonate having an unsaturated bond is preferably chloroethylene carbonate or fluoroethylene carbonate from the viewpoint of availability.
  • the cyclic sulfonate ester in the component (b2) is not particularly limited as long as it does not impair the characteristics of the nonaqueous electrolytic solution of the present embodiment and the secondary battery using the cyclic sulfonic acid ester. Can be selected. Specific examples of the cyclic sulfonic acid ester include 1,3-propane sultone, 2,4-butane sultone, 1,4-butane sultone, ethylene sulfite, and the like. The cyclic sulfonic acid ester is preferably 1,3-propane sultone or ethylene sulfite from the viewpoint of availability.
  • Amines having an acetoacetyl group Specifically, the amine having an acetoacetyl group in the component (b2) is represented by the following chemical formula (3).
  • R 2 and R 3 are each independently a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, or 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. More preferably, it is in the range of 1 to 5 and represents a halogen atom, a hetero atom or a hydrocarbon group having an unsaturated bond.
  • the halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • a hetero atom means an oxygen atom, a nitrogen atom, or a sulfur atom.
  • the R 2 and R 3 are not particularly limited, and examples thereof include a chain alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group, and a cyclopentyl group.
  • a chain alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group, and a cyclopentyl group.
  • Cyclic alkyl groups such as cyclohexyl group, 2-iodoethyl group, 2-bromoethyl group, 2-chloroethyl group, 2-fluoroethyl group, 1,2-diiodoethyl group, 1,2-dibromoethyl group, 1,2-dichloro Ethyl group, 1,2-difluoroethyl group, 2,2-diiodoethyl group, 2,2-dibromoethyl group, 2,2-dichloroethyl group, 2,2-difluoroethyl group, 2,2,2-tribromo Chain-containing halogens such as ethyl group, 2,2,2-trichloroethyl group, 2,2,2-trifluoroethyl group, hexafluoro-2-propyl group, etc.
  • Cyclic halogen-containing alkyl groups such as alkyl group, 2-iodocyclohexyl group, 2-bromocyclohexyl group, 2-chlorocyclohexyl group, 2-fluorocyclohexyl group, 2-propenyl group, isopropenyl group, 2-butenyl group, 3- Chain alkenyl groups such as butenyl group, cyclic alkenyl groups such as 2-cyclopentenyl group, 2-cyclohexenyl group, 3-cyclohexenyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl Groups, chain alkynyl groups such as 1-pentynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl group, phenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 3,5-dimethoxyphenyl group
  • R 2 and R 3 are independent of each other and may be the same or different.
  • the specific examples of the functional group described above are merely examples, and the present embodiment is not limited thereto.
  • Specific examples of the compound represented by the chemical formula (3) include N, N-dimethylacetoacetamide, N, N-diethylacetoacetamide, N, N-dipropylacetoacetamide, N, N-dibutylacetoacetamide, N , N-ethylmethylacetoacetamide, N, N-methylpropylacetoacetamide, N, N-butylmethylacetoacetamide and the like.
  • specific examples of these compounds are merely examples, and the present embodiment is not limited to these.
  • M n + is as described above and represents an alkali metal ion, an alkaline earth metal ion, an aluminum ion, a transition metal ion, or an onium ion. Moreover, said n represents a valence similarly to the case of the said Chemical formula (1). Therefore, detailed description thereof will be omitted.
  • a 1 and A 2 each independently represent an oxygen atom, a sulfur atom or a selenium atom.
  • X 5 and X 6 are each independently a halogen atom, an alkyl group, or an alkyl group having at least one of a halogen atom, a hetero atom, or an unsaturated bond (hereinafter referred to as “a halogen atom”).
  • a halogen atom a halogen atom
  • alkyl group having a halogen atom The carbon number of the alkyl group and the alkyl group having a halogen atom or the like is in the range of 1 to 20, preferably 1 to 10, and more preferably 1 to 4.
  • the number of unsaturated bonds is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and particularly preferably in the range of 1 to 3.
  • alkyl group or the alkyl group having a halogen atom include chains such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group.
  • Examples thereof include a naphthyl group such as a halogenphenyl group, a 1-naphthyl group, a 2-naphthyl group, and a 3-amino-2-naphthyl group.
  • a naphthyl group such as a halogenphenyl group, a 1-naphthyl group, a 2-naphthyl group, and a 3-amino-2-naphthyl group.
  • halogen atom and the hetero atom are the same as described in the chemical formula (1).
  • the halogen atom and heteroatom may be such that part or all of the hydrogen in the alkyl group is substituted with any of these halogen atoms and / or heteroatoms. Good.
  • any of an alkyl group having an alkyl group, or a halogen atom or the like may be configured to form a cyclic structure bonded to each other.
  • the alkyl group or the alkyl group having a halogen atom or the like in X 5 and X 6 is, for example, a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, or a nonylene group.
  • Linear alkylene group such as iodomethylene group, diiodomethylene group, bromomethylene group, dibromomethylene group, fluoromethylene group, difluoromethylene group, iodoethylene group, 1,1-diiodoethylene group, 1,2-di Iodoethylene group, triiodoethylene group, tetraiodoethylene group, chloroethylene group, 1,1-dichloroethylene group, 1,2-dichloroethylene group, trichloroethylene group, tetrachloroethylene group, fluoroethylene group, 1,1-difluoroethylene group, 1,2-difluoroethylene Halogen-containing linear alkylene groups such as trifluoroethylene groups and tetrafluoroethylene groups, cyclohexylene groups, phenylene groups, benzylene groups, naphthylene groups, anthracylene groups, naphthacylene groups, pentasilene groups, and the like A part or all of them
  • X 5 and X 6 may be the same or different from each other in the functional group group exemplified above.
  • the functional group group illustrated above is only an illustration, and is not limited to these.
  • Specific examples of the phosphorus compound represented by the chemical formula (4) include, for example, lithium diiodophosphate, lithium dibromophosphate, lithium dichlorophosphate, lithium difluorophosphate, sodium diiodophosphate, sodium dibromophosphate, sodium dichlorophosphate, sodium.
  • Examples include difluorophosphate, potassium diiodophosphate, potassium dibromophosphate, potassium dichlorophosphate, potassium difluorophosphate, and the like.
  • X 7 ⁇ X 12 are each independently a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, at least one of hetero atoms or unsaturated bonds
  • An alkyl group having at least one of a halogen atom, a hetero atom or an unsaturated bond hereinafter referred to as “an alkoxy group having a halogen atom”).
  • an alkylthio group having at least one of a halogen atom, a heteroatom and an unsaturated bond hereinafter referred to as “alkylthio group having a halogen atom”).
  • the alkyl group, alkoxy group, alkylthio group, alkyl group having a halogen atom and the like, the alkoxy group having a halogen atom and the like, and the alkylthio group having a halogen atom and the like have a carbon number in the range of 1 to 20, preferably 1 to 10 More preferably, it is 1 to 4. Further, the number of unsaturated bonds is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and particularly preferably in the range of 1 to 3.
  • the halogen atom and the hetero atom are the same as described in the chemical formula (1).
  • the alkyl group having a halogen atom or the like, the alkoxy group having a halogen atom or the like, and the alkylthio group having a halogen atom or the like the halogen atom or the heteroatom is such that a part or all of hydrogen in these functional groups It may be substituted with any of the halogen atoms and / or heteroatoms.
  • X 7 to X 12 are, for example, a chain alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, or a cyclopentyl group.
  • Cycloalkyl group such as cyclohexyl group, iodomethyl group, bromomethyl group, chloromethyl group, fluoromethyl group, diiodomethyl group, dibromomethyl group, dichloromethyl group, difluoromethyl group, triiodomethyl group, tribromomethyl group, trichloromethyl Group, trifluoromethyl group, 2-iodoethyl group, 2-bromoethyl group, 2-chloroethyl group, 2-fluoroethyl group, 1,2-diiodoethyl group, 1,2-dibromoethyl group, 1,2-dichloroethyl group 1,2-difluoroethyl group, 2,2-diiodoethyl group, 2,2-di Lomoethyl group, 2,2-dichloroethyl group, 2,2-difluoroethyl group, 2,2,2-tribromoethy
  • X 7 to X 12 are any combination of any one of the cyclic structures of —OOC—Z—COO—, —OOC—Z—O—, and —O—Z—O—. May be formed.
  • the cyclic structures may be the same or different from each other.
  • Z is a hydrocarbon group having 0 to 20 carbon atoms or a range of 0 to 20 carbon atoms and having at least one of a halogen atom, a hetero atom, an unsaturated bond, or a cyclic structure. Represents a hydrocarbon group.
  • the number of unsaturated bonds is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and particularly preferably in the range of 1 to 3.
  • the Z is not particularly limited, and specific examples include, for example, a linear alkylene group such as a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, and a nonylene group; Methylene group, diiodomethylene group, bromomethylene group, dibromomethylene group, fluoromethylene group, difluoromethylene group, iodoethylene group, 1,1-diiodoethylene group, 1,2-diiodoethylene group, triiodoethylene group Tetraiodoethylene group, chloroethylene group, 1,1-dichloroethylene group, 1,2-dichloroethylene group, trichloroethylene group, tetrachloroethylene group, fluoroethylene group, 1,1-difluoroethylene group, 1,2-difluoroethylene group, Trifluoroethylene group
  • -OOC-Z-COO- is -OOC-COO- and represents an oxalate group.
  • Z is a 1,2-phenylene group
  • —O—Z—O— represents a benzenediolate group
  • —O—Z—COO— represents a salicylate group.
  • Specific examples of the phosphorus compound represented by the chemical formula (5) include lithium difluorobisoxalate phosphate, sodium difluorobisoxalate phosphate, lithium tetrafluorooxalate phosphate, sodium tetrafluorooxalate phosphate, and the like. Can be mentioned.
  • R 4 and R 5 are each independently a hydrocarbon group or a hydrocarbon group having at least one of a halogen atom, a hetero atom and an unsaturated bond (hereinafter, "Hydrocarbon group having a halogen atom or the like").
  • the hydrocarbon group has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the hydrocarbon group having a halogen atom or the like has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the number of unsaturated bonds is preferably in the range of 1 to 10, more preferably in the range of 1 to 5, and particularly preferably in the range of 1 to 3.
  • hydrocarbon group or the hydrocarbon group having a halogen atom include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and the like.
  • a cyclic alkyl group such as cyclopentyl group, cyclohexyl group, 2-iodoethyl group, 2-bromoethyl group, 2-chloroethyl group, 2-fluoroethyl group, 1,2-diiodoethyl group, 1,2-dibromo Ethyl group, 1,2-dichloroethyl group, 1,2-difluoroethyl group, 2,2-diiodoethyl group, 2,2-dibromoethyl group, 2,2-dichloroethyl group, 2,2-difluoroethyl group, 2,2,2-tribromoethyl group, 2,2,2-trifluoroethyl group, 1,1,1,3 Chain halogen-containing alkyl groups such as 3,3-hexafluoro-2-propyl group, cyclopentyl group, cyclohexyl group, 2-iodoeth
  • halogen atom and the hetero atom are the same as described in the chemical formula (1).
  • the halogen atom and heteroatom may be such that part or all of the hydrogen in the hydrocarbon group is substituted with any of these halogen atoms and / or heteroatoms. Good.
  • R 4 and R 5 may be the same or different from each other in the functional group group exemplified above. Moreover, the functional group group illustrated above is only an illustration, and is not limited to these.
  • R 4 and R 5 are either the hydrocarbon group or a hydrocarbon group having the halogen atom or the like, and may be bonded to each other to form a cyclic structure.
  • specific examples of the hydrocarbon group or the hydrocarbon group having a halogen atom include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, and a nonylene group.
  • Linear alkylene group such as iodomethylene group, diiodomethylene group, bromomethylene group, dibromomethylene group, fluoromethylene group, difluoromethylene group, iodoethylene group, 1,1-diiodoethylene group, 1,2-di Iodoethylene group, triiodoethylene group, tetraiodoethylene group, chloroethylene group, 1,1-dichloroethylene group, 1,2-dichloroethylene group, trichloroethylene group, tetrachloroethylene group, fluoroethylene group, 1,1-difluoroethylene group, 1,2-difluoroethylene group, triflu
  • a halogen-containing linear alkylene group such as a loethylene group and a tetrafluoroethylene group, a cyclohexylene group, a phenylene group, a benzylene group, a naphthylene group, an anthracylene group, a naphthacy
  • phosphorus compound represented by the chemical formula (6) examples include, for example, lithium diethyl phosphate, lithium bis (2,2,2-trifluoroethyl) phosphate, and the like.
  • the amount of component (B) added is preferably in the range of 0.05% by mass to 5% by mass, and in the range of 0.1% by mass to 3% by mass with respect to the total mass of the non-aqueous electrolyte. More preferably, it is particularly preferably in the range of 0.5% by mass to 2% by mass.
  • At least one kind of the component (B) may be contained in the nonaqueous electrolytic solution, but the number of kinds of the component (B) to be contained is preferably 1 ⁇ 5 types, more preferably 1 to 3 types, and particularly preferably 1 to 2 types.
  • the component (B) can be produced by a conventionally known method.
  • ⁇ Electrolyte> A conventionally well-known thing can be employ
  • a lithium salt is used for a lithium ion battery
  • a sodium salt is used for a sodium ion battery. Therefore, what is necessary is just to select the kind of electrolyte suitably according to the kind of secondary battery.
  • fluorine-containing anions include, for example, BF 4 ⁇ , PF 6 ⁇ , BF 3 CF 3 ⁇ , BF 3 C 2 F 5 ⁇ , CF 3 SO 3 ⁇ , C 2 F 5 SO 3 ⁇ , C 3 F 7 SO 3 ⁇ , C 4 F 9 SO 3 ⁇ , N (SO 2 F) 2 ⁇ , N (CF 3 SO 2 ) 2 ⁇ , N (C 2 F 5 SO 2 ) 2 ⁇ , N (CF 3 SO 2 ) (CF 3 CO) ⁇ , N (CF 3 SO 2 ) (C 2 F 5 SO 2 ) ⁇ , C (CF 3 SO 2 ) 3 — and the like.
  • BF 4 ⁇ , PF 6 ⁇ , and N (CF 3 SO 2 ) 2 ⁇ are preferable from the viewpoint of improving the safety and stability of the non-aqueous electrolyte, electrical conductivity, and cycle characteristics.
  • BF 4 ⁇ and PF 6 ⁇ are particularly preferable.
  • the concentration of the electrolyte with respect to the organic solvent is not particularly limited, and is usually 0.1 to 2M, preferably 0.15 to 1.8M, more preferably 0.2 to 1.5M, particularly preferably 0.3 to. 1.2M.
  • concentration 0.1 M or more it is possible to prevent the electrical conductivity of the non-aqueous electrolyte from becoming insufficient.
  • concentration 2M or less it is possible to suppress a decrease in electrical conductivity due to an increase in the viscosity of the non-aqueous electrolyte and to prevent a secondary battery performance from being deteriorated.
  • the organic solvent (nonaqueous solvent) used in the nonaqueous electrolytic solution is not particularly limited.
  • a cyclic carbonate, a chain carbonate, a phosphate ester, a cyclic ether, a chain ether, a lactone compound, a chain examples thereof include esters, nitrile compounds, amide compounds, and sulfone compounds.
  • carbonates are preferred from the point of being generally used as an organic solvent for a lithium secondary battery.
  • the cyclic carbonate is not particularly limited, and examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Among these, cyclic carbonates such as ethylene carbonate and propylene carbonate are preferable from the viewpoint of improving the charging efficiency of the lithium secondary battery.
  • the chain carbonate is not particularly limited, and examples thereof include dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. Among these, dimethyl carbonate and ethyl methyl carbonate are preferable from the viewpoint of improving the charging efficiency of the lithium secondary battery.
  • the phosphate ester is not particularly limited, and examples thereof include trimethyl phosphate, triethyl phosphate, ethyldimethyl phosphate, and diethylmethyl phosphate.
  • the cyclic ether is not particularly limited, and examples thereof include tetrahydrofuran and 2-methyltetrahydrofuran.
  • the chain ether is not particularly limited, and examples thereof include dimethoxyethane.
  • the lactone compound is not particularly limited, and examples thereof include ⁇ -butyrolactone.
  • the chain ester is not particularly limited, and examples thereof include methyl propionate, methyl acetate, ethyl acetate, and methyl formate.
  • the nitrile compound is not particularly limited, and examples thereof include acetonitrile.
  • the amide compound is not particularly limited, and examples thereof include dimethylformamide.
  • the sulfone compound is not particularly limited, and examples thereof include sulfolane and methyl sulfolane.
  • numerator with the fluorine can be used suitably.
  • These organic solvents may be used alone or in combination of two or more.
  • organic solvent it is preferable to use a carbonate ester from the viewpoint of availability and performance.
  • nonaqueous electrolytic solution of the present embodiment for example, after adding the electrolyte salt to the organic solvent (nonaqueous solvent), at least one component (A) is added. Furthermore, you may add a component (B). At this time, as the organic solvent, the electrolyte salt, the component (A), and the component (B), it is preferable to use one having as few impurities as possible by purifying in advance within a range that does not reduce the production efficiency. In addition, when using multiple types of the said component (A) or the compound of a component (B), those addition orders can be suitably set as needed.
  • FIG. 1 is a schematic cross-sectional view showing an outline of a lithium ion secondary battery provided with the non-aqueous electrolyte.
  • the lithium ion secondary battery according to the present embodiment has a positive electrode 1, a separator 3, a negative electrode 2, an internal space formed by a positive electrode can 4 and a negative electrode can 5, from the positive electrode can 4 side. It has a structure in which a laminated body laminated in the order of the spacers 7 is accommodated. By interposing a spring 8 between the negative electrode can 5 and the spacer 7, the positive electrode 1 and the negative electrode 2 are appropriately pressed and fixed.
  • the nonaqueous electrolytic solution containing the compound of component (A) or the compound group of component (A) and component (B) in this embodiment is impregnated between positive electrode 1, separator 3, and negative electrode 2. In a state where the gasket 6 is interposed between the positive electrode can 4 and the negative electrode can 5, the positive electrode can 4 and the negative electrode can 5 are sandwiched to bond them together, and the laminate is sealed.
  • the material of the positive electrode active material layer in the positive electrode 1 is not particularly limited, and examples thereof include a transition metal compound having a structure capable of diffusing lithium ions, or an oxide of the transition metal compound and lithium.
  • a transition metal compound having a structure capable of diffusing lithium ions or an oxide of the transition metal compound and lithium.
  • LiCoO 2, LiNiO 2, LiMn 2 O 4, Li 2 MnO 3 + LiMeO 2 (Me Mn, Co, Ni) solid solution
  • oxides such as LiFeF
  • the positive electrode 1 is formed by press molding the positive electrode active materials listed above together with known conductive aids and binders, or the positive electrode active material together with known conductive aids and binders and organic solvents such as pyrrolidone. It can be obtained by applying a paste obtained by mixing to a current collector such as an aluminum foil and then drying.
  • the material of the negative electrode active material layer in the negative electrode 2 is not particularly limited as long as it is a material capable of occluding and releasing lithium.
  • the metal composite oxide is not particularly limited.
  • the not particularly restricted but includes metal oxides, for example SnO, SnO 2, SiO x ( 0 ⁇ x ⁇ 2), PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 and the like.
  • metal oxides for example SnO, SnO 2, SiO x ( 0 ⁇ x ⁇ 2), PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 and the like.
  • the carbon material is not particularly limited, and examples thereof include natural graphite, artificial graphite, borated graphite, fluorinated graphite, mesocarbon microbeads, pitch-based carbon fiber graphitized material, carbon nanotube, hard carbon, fullerene and the like.
  • the negative electrode 2 may be a foil or powder of the electrode material.
  • copper paste is formed by pressure molding with a known conductive aid and binder, or mixed with pyrrolidone and other organic solvents together with a known conductive aid and binder. It can be obtained by coating a current collector such as a foil and then drying.
  • a separator 3 is usually interposed between the positive electrode 1 and the negative electrode 2 in order to prevent a short circuit.
  • the material and shape of the separator 3 are not particularly limited, it is preferable that the above-described non-aqueous electrolyte is easy to pass through, is an insulator, and is a chemically stable material. Examples thereof include microporous films and sheets made of various polymer materials. Specific examples of the polymer material include polyolefin polymers such as nylon (registered trademark), nitrocellulose, polyacrylonitrile, polyvinylidene fluoride, polyethylene, and polypropylene. From the viewpoints of electrochemical stability and chemical stability, polyolefin polymers are preferred.
  • the optimum working voltage of the lithium ion secondary battery of the present embodiment varies depending on the combination of the positive electrode 1 and the negative electrode 2, and can usually be used within the range of 2.4 to 4.6V.
  • the shape of the lithium ion secondary battery of the present embodiment is not particularly limited, but examples thereof include a cylindrical type, a square type, and a laminated type in addition to the coin type cell shown in FIG.
  • the secondary battery according to the present embodiment can exhibit excellent cycle characteristics even in a high temperature environment, and the nonaqueous electrolytic solution of the present embodiment is preferably used for, for example, a lithium ion secondary battery. Can do.
  • the lithium ion secondary battery shown in FIG. 1 is an example of one embodiment of the secondary battery of the present invention, and the secondary battery of the present invention is not limited to this.
  • the obtained colorless and transparent liquid was subjected to anion analysis by ion chromatography (manufactured by Metrohm, model number: IC-850), and one peak was detected at the same detection time as that of the lithium ethylfluorophosphate. In addition, sulfate ions were not detected. This confirmed that the obtained colorless and transparent liquid was ethyl monofluorophosphate.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • Example 2 lithium bisoxalate borate was further added as an additive to the mixed solvent so that the addition concentration was 0.5% by mass with respect to the total mass of the nonaqueous electrolytic solution.
  • Example 2 lithium bisoxalate borate was further added as an additive to the mixed solvent so that the addition concentration was 0.5% by mass with respect to the total mass of the nonaqueous electrolytic solution.
  • Example 2 lithium bisoxalate borate was further added as an additive to the mixed solvent so that the addition concentration was 0.5% by mass with respect to the total mass of the nonaqueous electrolytic solution.
  • Example 3 Vinylene carbonate was added so that the addition concentration was 0.5 mass% instead of lithium bisoxalatoborate in Example 2. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 4 In this example, in place of the lithium bisoxalatoborate of Example 2, fluoroethylene carbonate was added so that the addition concentration was 0.5% by mass. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 5 In this example, trimethyl borate was added in place of the lithium bisoxalatoborate of Example 2 so that the addition concentration was 0.5 mass%. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 6 lithium bis (2,2,2, -trifluoroethyl) phosphate was added in place of the lithium bisoxalatoborate of Example 2 so that the addition concentration was 0.5% by mass. .
  • Example 6 lithium bis (2,2,2, -trifluoroethyl) phosphate was added in place of the lithium bisoxalatoborate of Example 2 so that the addition concentration was 0.5% by mass.
  • Example 6 Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 7 In this example, instead of lithium bisoxalatoborate in Example 2, N, N-dimethylacetoacetamide was added so that the addition concentration was 0.5 mass%. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 8 In this example, maleic anhydride was added instead of the lithium bisoxalatoborate of Example 2 so that the addition concentration was 0.5% by mass. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 9 In this example, instead of lithium bisoxalatoborate in Example 2, 1,3-propane sultone was added so that the addition concentration was 0.5 mass%. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 10 Maleic anhydride was further added as an additive so that the addition concentration was 0.5% by mass with respect to the total mass of the nonaqueous electrolytic solution.
  • Example 10 Maleic anhydride was further added as an additive so that the addition concentration was 0.5% by mass with respect to the total mass of the nonaqueous electrolytic solution.
  • Example 10 Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 11 In this example, instead of ethyl lithium monofluorophosphate of Example 2, methyl lithium monofluorophosphate was added so that the addition concentration was 0.5 mass%. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 12 In this example, isopropyl lithium monofluorophosphate was added in place of ethyl lithium monofluorophosphate of Example 2 so that the addition concentration was 0.5% by mass. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 13 In this example, instead of ethyl lithium monofluorophosphate of Example 2, butyl lithium monofluorophosphate was added so that the addition concentration was 0.5 mass%. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 14 lithium monofluorophosphate (2-ethoxyethyl) was added in place of ethyl lithium monofluorophosphate of Example 2 so that the addition concentration was 0.5 mass%. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 15 In this example, instead of ethyl lithium monofluorophosphate of Example 3, methyl lithium monofluorophosphate was added so that the addition concentration was 0.5 mass%. Other than that was carried out similarly to Example 3, and prepared the non-aqueous electrolyte of a present Example.
  • Example 16 In this example, isopropyl lithium monofluorophosphate was added in place of ethyl lithium monofluorophosphate of Example 3 so that the addition concentration was 0.5 mass%. Other than that was carried out similarly to Example 3, and prepared the non-aqueous electrolyte of a present Example.
  • Example 17 In this example, instead of ethyl lithium monofluorophosphate of Example 3, butyl lithium monofluorophosphate was added so that the addition concentration was 0.5 mass%. Other than that was carried out similarly to Example 3, and prepared the non-aqueous electrolyte of a present Example.
  • Example 18 lithium monofluorophosphate (2-ethoxyethyl) was added in place of the ethyl lithium monofluorophosphate of Example 3 so that the addition concentration was 0.5% by mass. Other than that was carried out similarly to Example 3, and prepared the non-aqueous electrolyte of a present Example.
  • Example 19 In this example, instead of the lithium lithium monofluorophosphate of Example 1, ethyl monofluorophosphate was added so that the addition concentration was 0.5% by mass. Other than that was carried out similarly to Example 1, and prepared the non-aqueous electrolyte of a present Example.
  • Example 20 In this example, the addition concentration of ethyl lithium monofluorophosphate of Example 1 was added to 0.05 mass%. Other than that was carried out similarly to Example 1, and prepared the non-aqueous electrolyte of a present Example.
  • Example 21 In this example, the addition concentration of the lithium lithium monofluorophosphate of Example 1 was added to 2.5% by mass. Other than that was carried out similarly to Example 1, and prepared the non-aqueous electrolyte of a present Example.
  • Example 22 In this example, the addition concentration of lithium bisoxalatoborate in Example 2 was added to 0.05 mass%. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • Example 23 In this example, the addition concentration of lithium bisoxalatoborate in Example 2 was added to 5 mass%. Other than that was carried out similarly to Example 2, and prepared the non-aqueous electrolyte of a present Example.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • Comparative Example 2 a nonaqueous electrolytic solution of this comparative example was prepared in the same manner as in Example 2 except that the ethyl lithium monofluorophosphate of Example 2 was not added.
  • a coin-type lithium secondary battery as shown in FIG. 1 was prepared, and the electrochemical characteristics of the non-aqueous electrolytes of the examples and comparative examples were evaluated. That is, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Piotrek Co., Ltd.) cut to 9 mm ⁇ in diameter was used for the positive electrode, polyethylene separator was used for the separator, and 10 mm ⁇ was cut for the negative electrode. Natural graphite sheet (manufactured by Piotrek Co., Ltd.) was used.
  • a positive electrode, a separator, and a negative electrode were laminated in this order to form a laminate, impregnated with the nonaqueous electrolyte prepared in each example or comparative example, and then the laminate was sealed to prepare coin cells. All the coin cells were assembled in an argon glove box having a dew point of ⁇ 70 ° C. or lower.
  • the produced coin cell is a constant current having a charge end voltage of 4.2 V, a discharge end voltage of 3.0 V, and 0.2 C (the current value for charging or discharging the rated capacity in one hour is 1 C) in a thermostatic chamber at 25 ° C.
  • the battery was charged and discharged for 5 cycles by the constant voltage method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】高温環境下においても優れたサイクル特性を示す二次電池用非水電解液及びそれを備えた用いた二次電池を提供する。 【解決手段】本発明に係る二次電池用非水電解液は、二次電池に用いられる二次電池用非水電解液であって、下記化学式(1)で表される成分(A)を少なくとも一種以上を含むことを特徴とする。(但し、前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記Xはハロゲン原子を表す。前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。前記nは価数を表す。)

Description

二次電池用非水電解液及びそれを備えた二次電池
 本発明は、高温環境下でも優れたサイクル特性を示す二次電池用非水電解液及びそれを備えた二次電池に関するものである。
 近年の電子技術の発展及び環境技術への関心の高まりに伴い、様々な電気化学デバイスが開発されている。特に、省エネルギー化に貢献できる電気化学デバイスに対する期待はますます高くなっている。このような電気化学デバイスとしては、例えば、発電デバイスとして燃料電池や太陽電池が挙げられ、蓄電デバイスとして二次電池、キャパシタ及びコンデンサ等が挙げられる。蓄電デバイスの代表例であるリチウム二次電池の応用分野は、携帯電話やパソコン、デジタルカメラ等の電子機器から車載への用途拡大に伴い、出力密度やエネルギー密度の向上ならびに容量損失の抑制等、さらなる高性能化が進められている。車載用途では使用環境温度が高温側、低温側ともに従来以上の耐久性が求められている。特に高温環境については、セルが大型化されると、使用環境のみならず自己発熱によって定常的に比較的高い温度にさらされることになり、高温耐久性の向上は非常に重要である。
 従来の一般的なリチウム二次電池には、正極活物質及び負極活物質にLiイオンを可逆的に挿入できる材料が用いられている。例えば、正極活物質には、LiNiO、LiCoO、LiMn、又はLiFePO等の化合物が使用されている。また、負極活物質には、リチウム金属、その合金、炭素材料、又は黒鉛材料等が使用されている。更に、リチウム二次電池に用いられる電解液には、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート等の混合溶媒にLiPF、LiBF等の電解質を溶解させたものが使用されている。
 電極活物質と電解液の界面では、リチウムイオン伝導性はあるが電子導電性のない安定な皮膜(SEI:Solid Electrolyte Interface)が形成されるという解釈が一般的になされている。電極活物質へのリチウムイオンの挿入脱離過程は可逆性に優れているが、高温環境下で充放電を繰り返すと、その安定界面に亀裂や溶解・分解が生じ、充放電特性が低下したり、インピーダンスが増加したりする傾向がある。
 特許文献1には、モノフルオロリン酸塩またはジフルオロリン酸塩を添加剤として含有する非水電解液を用いることによって、リチウム二次電池の正極及び負極に皮膜を形成することができ、これによって非水電解液と正極活物質及び負極活物質との接触に起因する電解液の分解を抑制し、自己放電の抑制、保存性能の向上、および出力特性の改善が可能になることが開示されているが、高温環境下でのサイクル特性の改善が要求されている。
 また、例えば、非水電解液の添加剤としてのフルオロエチレンカーボネートは、良好なSEIを形成しうる化合物として広く知られている。フルオロエチレンカーボネートが非水電解液の還元分解を抑制することで、電池の充電を安定して行うことができると理解されている。特許文献2には、このフルオロエチレンカーボネートを添加した電解液を用いることによって良好なサイクル特性を得られることが開示されている。しかしながら、高温環境下でのサイクル特性の改善は示されておらず、さらなる改善が求められている。
特開2004-31079号公報 特開2008-97954号公報
 本発明は前記問題点に鑑みなされたものであり、その目的は、高温環境下においても優れたサイクル特性を示す二次電池用非水電解液及びそれを備えた用いた二次電池を提供することにある。
 本発明の二次電池用非水電解液は、前記の課題を解決する為に、二次電池に用いられる二次電池用非水電解液であって、下記化学式(1)で表される成分(A)を少なくとも一種以上を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000007
(但し、前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記Xはハロゲン原子を表す。前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。前記nは価数を表す。)
 前記の構成においては、少なくとも1種の下記成分(B)を含んでもよい。
 成分(B):下記化学式(2)で表されるホウ素錯体塩、又はホウ酸エステル、酸無水物、不飽和結合を有する環状カーボネート、ハロゲン原子を有する環状カーボネート、環状スルホン酸エステル、下記化学式(3)で表されるアセトアセチル基を有するアミン類及び下記化学式(4)~(6)の何れかで表されるリン化合物からなる群より選ばれる少なくとも1種の化合物
Figure JPOXMLDOC01-appb-C000008
(前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン又はオニウムイオンを表す。前記X~Xはそれぞれ独立しており、任意に選択される1又は2つの組合せが、-OOC-Y-COO-、-O-Y-O-又は-OOC-Y-O-の環状構造を形成しており、その場合の前記Yは、炭素数が0~20の炭化水素基、又は炭素数が0~20の範囲であって、ヘテロ原子、不飽和結合若しくは環状構造を有する炭化水素基を表す。あるいは、前記X~Xは、それぞれ独立して、ハロゲン原子、炭素数0~20のアルキル基、炭素数0~20のアルコキシ基、炭素数が0~20の範囲内であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有するアルキル基、又は炭素数が0~20の範囲内であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有するアルコキシ基を表す。前記nは価数を表す。)
Figure JPOXMLDOC01-appb-C000009
(前記R及びRは、それぞれ独立して、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合を有する炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000010
(式中、前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン又はオニウムイオンを表す。前記A及びAは、それぞれ独立して、酸素原子、硫黄原子又はセレン原子を表す。前記XとXは、それぞれ独立して、ハロゲン原子、炭素数が1~20のアルキル基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキル基を表す。あるいは、前記XとXは、前記炭素数が1~20のアルキル基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキル基の何れかであって、相互に結合して環状構造を形成する。前記nは価数を表す。)
Figure JPOXMLDOC01-appb-C000011
(式中、前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン又はオニウムイオンを表す。前記X~X12は、それぞれ独立して、ハロゲン原子、炭素数が1~20のアルキル基、炭素数が1~20のアルコキシ基、炭素数が1~20のアルキルチオ基、炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキル基、炭素数が1~20のアルキルチオ基、炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルコキシ基、炭素数が1~20のアルキルチオ基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキルチオ基を表す。あるいは、前記X~X12は、任意に選択される少なくとも1つの組合せが、-OOC-Z-COO-、-OOC-Z-O-又は-O-Z-O-の環状構造を形成しており、その場合の前記Zは、炭素数が0~20の炭化水素基、又は炭素数が0~20の範囲であって、ハロゲン原子、ヘテロ原子、不飽和結合若しくは環状構造の少なくとも何れか1つを有する炭化水素基を表す。前記nは価数を表す。)
Figure JPOXMLDOC01-appb-C000012
(前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン又はオニウムイオンを表す。前記R及びRは、それぞれ独立して、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。あるいは、前記R及びRは、前記炭素数が1~20の炭化水素基、又は前記炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基の何れかであって、相互に結合して環状構造を形成するものを表す。前記nは価数を表す。)
 前記の構成において、前記成分(A)の添加量は、前記二次電池用非水電解液の全質量に対し、0.05質量%~5質量%であることが好ましい。
 また、前記の構成において、前記成分(B)の添加量は、前記二次電池用非水電解液の全質量に対し、0.05質量%~5質量%であることが好ましい。
 前記の構成においては、前記成分(A)が、モノフルオロリン酸エチルリチウムであることが好ましい。
 また、本発明の二次電池は、前記の課題を解決する為に、前記に記載の二次電池用非水電解液、正極および負極を少なくとも備えたことを特徴とする。
 本発明によれば、高温環境下においても優れたサイクル特性を示すことが可能な二次電池用非水電解液及びそれを備えた二次電池を提供することができる。そのメカニズムについては明らかではないが、少なくとも1種の前記化学式(1)で表される成分(A)を含有することにより、電極活物質の表面に皮膜が形成され、当該皮膜の性質、すなわち、熱安定性や膜質等の特性により、高温環境下でのサイクル特性が改善されるものと推測される。
本発明の実施の一形態に係る二次電池用非水電解液を備えたリチウムイオン二次電池の概略を示す断面模式図である。
(二次電池用非水電解液)
 本実施の形態に係る二次電池用非水電解液(以下、「非水電解液」という。)は、電解質を溶解させた有機溶媒(非水溶媒)に、少なくとも1種の後述の成分(A)を添加剤として含むものである。
 初期の充電の際に非水電解液の分解という不可逆反応が、電極と非水電解液の界面で生じる。電極活物質、非水電解液中の非水溶媒や電解質および添加剤の種類、充放電条件に応じて形成される皮膜の性質、例えば熱安定性やイオン伝導性、モフォロジー、緻密さなどの性質は大きく変化すると考えられる。本実施の形態に於いても、非水電解液に成分(A)を添加することで、電極活物質の表面に皮膜が形成され、この皮膜の性質、すなわち、熱安定性や膜質等の効能に起因して、二次電池の高温環境下(例えば、40℃~80℃)でのサイクル特性の改善が図られると考えられる。
 <成分(A)>
 前記成分(A)は、非水電解液中に少なくとも1種含まれており、具体的には、下記化学式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000013
 前記化学式(1)において、前記Mn+は水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。
 前記アルカリ金属イオンとしては特に限定されず、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記アルカリ土類金属イオンとしては、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記遷移金属イオンとしては特に限定されず、例えば、マンガンイオン、コバルトイオン、ニッケルイオン、クロムイオン、銅イオン、銀イオン、モリブデンイオン、タングステンイオン、バナジウムイオン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記オニウムイオンとしては、アンモニウムイオン(NH4+)、第1級アンモニウムイオン、第2級アンモニウムイオン、第3級アンモニウムイオン、第4級アンモニウムイオン、第4級ホスホニウムイオン、スルホニウムイオン等が挙げられる。
 前記第1級アンモニウムイオンとしては特に限定されず、例えば、メチルアンモニウムイオン、エチルアンモニウムイオン、プロピルアンモニウムイオン、イソプロピルアンモニウムイオン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記第2級アンモニウムイオンとしては特に限定されず、例えば、ジメチルアンモニウムイオン、ジエチルアンモニウムイオン、ジプロピルアンモニウムイオン、ジブチルアンモニウムイオン、エチルメチルアンモニウムイオン、メチルプロピルアンモニウムイオン、メチルブチルアンモニウムイオン、プロピルブチルアンモニウムイオン、ジイソプロピルアンモニウムイオン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記第3級アンモニウムイオンとしては特に限定されず、例えば、トリメチルアンモニウムイオン、トリエチルアンモニウムイオン、トリプロピルアンモニウムアンモニウムイオン、トリブチルアンモニウムイオン、エチルジメチルアンモニウムイオン、ジエチルメチルアンモニウムイオン、トリイソプロピルアンモニウムイオン、ジメチルイソプロピルアンモニウムイオン、ジエチルイソプロピルアンモニウムイオン、ジメチルプロピルアンモニウムイオン、ブチルジメチルアンモニウムイオン、1-メチルピロリジニウムイオン、1-エチルピロリジニウムイオン、1-プロピルピロリジニウムイオン、1-ブチルプロピルピロリジニウムイオン、1-メチルイミダゾリウムイオン、1-エチルイミダゾリウムイオン、1-プロピルイミダゾリウムイオン、1-ブチルイミダゾリウムイオン、ピラゾリウムイオン、1-メチルピラゾリウムイオン、1-エチルピラゾリウムイオン、1-プロピルピラゾリウムイオン、1-ブチルピラゾリウムイオン、ピリジニウムイオン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記第4級アンモニウムイオンをなす第4級アンモニウムとしては特に限定されず、例えば、脂肪族4級アンモニウム類、イミダゾリウム類、ピリジニウム類、ピラゾリウム類、ピリダジニウム類等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 さらに、前記脂肪族4級アンモニウム類としては特に限定されず、例えば、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトライソプロピルアンモニウム、トリメチルエチルアンモニウム、ジメチルジエチルアンモニウム、メチルトリエチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルイソプロピルアンモニウム、テトラブチルアンモニウム、トリメチルブチルアンモニウム、トリメチルペンチルアンモニウム、トリメチルヘキシルアンモニウム、1-エチル-1-メチル-ピロリジニウム、1-ブチル-1-メチルピロリジニウム、1-エチル-1-メチル-ピペリジニウム、1-ブチル-1-メチルピペリジニウム等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記イミダゾリウム類としては特に限定されず、例えば、1.3ジメチル-イミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-n-プロピル-3-メチルイミダゾリウム、1-n-ブチル-3-メチルイミダゾリウム、1-n-ヘキシル-3-メチルイミダゾリウム等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記ピリジニウム類としては特に限定されず、例えば、1-メチルピリジニウム、1-エチルピリジニウム、1-n-プロピルピリジニウム等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記ピラゾリウム類としては特に限定されず、例えば、1,2-ジメチルピラゾリウム、1-メチル-2-エチルピラゾリウム、1-プロピル-2-メチルピラゾリウム、1-メチル-2-ブチルピラゾリウム、1-メチルピラゾリウム、3-メチルピラゾリウム、4-メチルピラゾリウム、4-ヨードピラゾリウム、4-ブロモピラゾリウム、4-ヨードー3-メチルピラゾリウム、4-ブロモー3-メチルピラゾリウム、3-トリフルオロメチルピラゾリウムが挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記ピリダジニウム類としては特に限定されず、例えば、1-メチルピリダジニウム、1-エチルピリダジニウム、1-プロピルピリダジニウム、1-ブチルピリダジニウム、3-メチルピリダジニウム、4-メチルピリダジニウム、3-メトキシピリダジニウム、3,6-ジクロロピリダジニウム、3,6-ジクロ-4-メチルピリダジニウム、3-クロロ-6-メチルピリダジニウム、3-クロロー6-メトキシピリダジニウムが挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記第4級ホスホニウムイオンをなす第4級ホスホニウムとしては特に限定されず、例えば、ベンジルトリフェニルホスホニウム、テトラエチルホスホニウム、テトラフェニルホスホニウム等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記スルホニウムイオンとしては特に限定されず、例えば、トリメチルスルホニウム、トリフェニルスルホニウム、トリエチルスルホニウム等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記Mn+の例示として列挙したもののうち、入手容易性の観点からは、リチウム、ナトリウムイオン、カリウム、マグネシウム、カルシウム、テトラアルキルアンモニウムイオン、アルキルイミダゾリウムイオン、アルキルピロリジニウムイオン、アルキルピリジニウムイオンが好ましい。
 前記Xはハロゲン原子を表す。ハロゲン原子とは、ヨウ素、臭素、塩素、フッ素のいずれかである。これらのハロゲン原子のうち、化学式(1)で表される化合物の加水分解および熱安定性の観点からは、フッ素が特に好ましい。
 前記化学式(1)において、前記Rは、炭化水素基、又はハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基(以下、「ハロゲン原子等を有する炭化水素基」という。)を表す。前記炭化水素基の炭素数は1~20であり、好ましくは1~10、より好ましくは1~4である。また、ハロゲン原子等を有する炭化水素基の炭素数は1~20であり、好ましくは1~10、より好ましくは1~4である。また、不飽和結合の数は1~10の範囲が好ましく、1~5の範囲がより好ましく1~3の範囲が特に好ましい。
 前記炭化水素基又はハロゲン原子等を有する炭化水素基としては特に限定されず、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基、ヘキサフルオロ-2-プロピル基等の鎖状含ハロゲンアルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基、2-フルオロシクロヘキシル基等の環状含ハロゲンアルキル基、2-プロペニル基、イソプロペニル基、2-ブテニル基、3-ブテニル基等の鎖状アルケニル基、2-シクロペンテニル基、2-シクロヘキセニル基、3-シクロヘキセニル基等の環状アルケニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基等の鎖状アルキニル基、フェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3,5-ジメトキシフェニル基、4-フェノキシフェニル基等のフェニル基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基等の含ハロゲンフェニル基、1-ナフチル基、2-ナフチル基、3-アミノ-2-ナフチル基等のナフチル基等が挙げられる。
 尚、前記ハロゲン原子とは、フッ素、塩素、臭素又はヨウ素の原子を意味する。ハロゲン原子を有する炭化水素基とは、当該炭化水素基中の水素の一部又は全部がこれらのハロゲン原子の何れかで置換されていてもよいことを意味する。また、ヘテロ原子とは、酸素、窒素又は硫黄等の原子を意味する。ヘテロ原子を有する炭化水素基とは、当該炭化水素基中の水素及び炭素の一部又は全部がこれらのヘテロ原子の何れかで置換されていてもよいことを意味する。
 前記ヘテロ原子を有する炭化水素基としては、具体的には、例えば、2-メトキシエチル基、2-(2-メトキシエトキシ)エチル基、2-(2-(2-メトキシエトキシ)エトキシ)エチル基、2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル基等が挙げられる。
 尚、前記化学式(1)に於いて、前記nは価数を表す。例えば、前記Mが1価のカチオンである場合はn=1であり、2価のカチオンである場合はn=2であり、3価のカチオンである場合はn=3である。
 前記化学式(1)で表されるモノフルオロリン酸エステル塩の具体例としては、例えば、モノフルオロリン酸エチル、モノフルオロリン酸メチルリチウム、モノフルオロリン酸エチルリチウム、モノフルオロリン酸イソプロピルリチウム、モノフルオロリン酸ブチルリチウム、モノフルオロリン酸(2-エトキシエチル)リチウム、モノフルオロリン酸(2,2,2-トリクロロエチル)リチウム、モノフルオロリン酸(1,1,1,3,3,3-ヘキサクロロイソプロピル)リチウム、モノフルオロリン酸(2,2,2-トリフルオロエチル)リチウム、モノフルオロリン酸(1,1,1,3,3,3-ヘキサフルオロイソプロピル)リチウム、モノフルオロリン酸(2-メトキシエチル)リチウム、モノフルオロリン酸(2-(2-メトキシエトキシ)エチル)リチウム、モノフルオロリン酸(2-(2-(2-メトキシエトキシ)エトキシ)エチル)リチウム、モノフルオロリン酸(2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル)リチウム、モノフルオロリン酸メチルナトリウム、モノフルオロリン酸エチルナトリウム、モノフルオロリン酸プロピルナトリウム、モノフルオロリン酸(2,2,2-トリクロロエチル)リン酸ナトリウム、モノフルオロリン酸(2,2,2-トリクロロエチル)ナトリウム、モノフルオロリン酸(1,1,1,3,3,3-ヘキサクロロイソプロピル)ナトリウム、モノフルオロリン酸(2,2,2-トリフルオロエチル)ナトリウム、モノフルオロリン酸(2,2,2-トリフルオロエチル)ナトリウム、モノフルオロリン酸(2,2,2-トリフルオロエチル)ナトリウム、モノフルオロリン酸(1,1,1,3,3,3-ヘキサフルオロイソプロピル)ナトリウム、モノフルオロリン酸(2-メトキシエチル)ナトリウム、モノフルオロリン酸(2-(2-メトキシエトキシ)エチル)ナトリウム、モノフルオロリン酸(2-(2-(2-メトキシエトキシ)エトキシ)エチル)ナトリウム、モノフルオロリン酸(2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル)ナトリウム、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸メチル、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸メチル、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2,2,2-トリクロロエチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(1,1,1,3,3,3-ヘキサクロロイソプロピル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2,2,2-トリフルオロエチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(1,1,1,3,3,3-ヘキサフルオロイソプロピル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2-メトキシエチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2-(2-メトキシエトキシ)エチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2-(2-(2-メトキシエトキシ)エトキシ)エチル)、1-エチル-3-メチルイミダゾリウムモノフルオロリン酸(2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル)、トリエチルメチルアンモニウムモノフルオロリン酸メチル、トリエチルメチルアンモニウムモノフルオロリン酸エチル、トリエチルメチルアンモニウムモノフルオロリン酸プロピル、トリエチルメチルアンモニウムモノフルオロリン酸(2,2,2-トリクロロエチル)、トリエチルメチルアンモニウムモノフルオロリン酸(1,1,1,3,3,3-ヘキサクロロイソプロピル)、トリエチルメチルアンモニウムモノフルオロリン酸(2,2,2-トリフルオロエチル)、トリエチルメチルアンモニウムモノフルオロリン酸(1,1,1,3,3,3-ヘキサフルオロイソプロピル)、トリエチルメチルアンモニウムモノフルオロリン酸(2-メトキシエチル)、トリエチルメチルアンモニウムモノフルオロリン酸(2-(2-メトキシエトキシ)エチル)、トリエチルメチルアンモニウムモノフルオロリン酸(2-(2-(2-メトキシエトキシ)エトキシ)エチル)、トリエチルメチルアンモニウムモノフルオロリン酸(2-(2-(2-(2-メトキシエトキシ)エトキシ)エトキシ)エチル)等が挙げられる。但し、前記モノフルオロリン酸エステル塩は、これらの化合物群に限定されない。
 尚、前記に例示したモノフルオロリン酸エステル塩のうち、入手しやすさの観点からは、モノフルオロリン酸エチルリチウムが好ましい。
 前記成分(A)の添加量は、非水電解液の全質量に対し0.05~5質量%の範囲内であることが好ましく、0.1~3質量%の範囲内であることがより好ましく、0.5~2質量%の範囲内であることがさらに好ましい。前記添加量を0.05質量%以上にすることにより、二次電池の高温環境下でのサイクル特性を一層改善することができる。一方、前記添加量を5質量%以下にすることにより、非水電解液中の電解質の非水電解液溶媒に対する溶解性が低下するのを抑制することができる。
 また、本実施の形態に於いて、成分(A)は、少なくとも1種類が非水電解液中に含まれていればよいが、含有させる成分(A)の種類の数は、好ましくは1~5種類であり、より好ましくは1~3種類であり、特に好ましくは1~2種類である。成分(A)の種類を低減することにより、非水電解液の製造の際における工程の複雑化を抑制することができる。
 <成分(A)の製造方法>
 次に、成分(A)の製造方法について、成分(A)がモノフルオロリン酸エステル塩である場合(すなわち、前記化学式(1)中のXがフッ素原子である場合)を例にして、以下に説明する。
 モノフルオロリン酸エステル塩の製造方法は、モノハロリン酸ジエステルをフッ素化処理して、モノフルオロリン酸ジエステルを生成する工程Aと、当該モノフルオロリン酸ジエステルとハロゲン化物を反応させ、モノフルオロリン酸エステル塩を生成する工程Bとを少なくとも含む。
 前記工程Aで原料として使用するモノハロリン酸ジエステルは、下記化学式(7)で表されるものである。
Figure JPOXMLDOC01-appb-C000014
 前記化学式(7)において、前記Rは、前記化学式(1)中のRと同様であり、すでに説明した通りである。さらに、前記化学式(7)における前記Rは、前記化学式(1)中のRと同様である。従って、前記Rとしては、前記Rの説明で列挙した官能基群から選ばれる。但し、RとRは同種でもよく、相互に異なっていてもよい。前記X13は、フッ素原子F以外のハロゲン原子を表す。
 前記モノハロリン酸ジエステルのフッ素化処理によるフッ素化は、例えば、フッ素化剤としてフッ化カリウム等を有機溶媒中で接触させることにより行うことができる。これにより、下記化学反応式(8)で示されるような反応が起こり、モノフルオロリン酸ジエステルを生成することができる。
Figure JPOXMLDOC01-appb-C000015
 前記モノハロリン酸ジエステルとフッ素化剤が、非水溶媒下(有機溶媒中)で反応を開始する際の反応開始温度は、当該反応が進行する限りにおいて特に限定されず、反応種に応じて適宜設定すればよい。通常は、0℃~200℃の範囲内であり、反応性の観点からは20~150℃が好ましく、40℃~120℃がより好ましい。反応開始温度を0℃以上にすることにより、反応速度が著しく減衰するのを防止することができる。また、反応開始温度を200℃以下にすることにより、過剰なエネルギーを使用することによるエネルギーロスを抑制することができる。反応開始温度の調整方法としては特に限定されず、前記温度範囲内となる様に冷却して制御する場合には、前記モノハロリン酸ジエステルとフッ素化剤が投入された反応容器を氷冷等することにより行うことができる。また、反応開始温度を前記温度範囲内となる様に加熱して制御する場合には、任意の温度に設定された油浴等することにより行うことができる。
 前記モノハロリン酸ジエステルとフッ素化剤を非水溶媒下で反応させる際に用いられる溶媒としては、非プロトン性溶媒が好ましい。非プロトン性溶媒を用いることで当該フッ素化反応の阻害を防ぐことができる。プロトン性溶媒を用いた場合、モノハロリン酸ジエステルとプロトン性溶媒がハロゲン交換反応を引き起こしてしまう場合がある。また、このような求核フッ素化反応を行う場合、プロトン性溶媒中の水素元素とフッ素化剤のフッ素アニオンが水素結合による影響で著しくフッ素化能を低下させる。また、モノハロリン酸ジエステルを溶媒として用いることもできる。
 前記非プロトン性溶媒としては特に限定されず、例えば、ニトリル類、エステル類、ケトン類、エーテル類、ハロゲン化炭化水素類等が挙げられる。
 前記ニトリル類としては特に限定されず、例えば、アセトニトリル、プロピオニトリル等が挙げられる。前記エステル類としては特に限定されず、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、酢酸エチル、酢酸メチル、酢酸ブチル等が挙げられる。前記ケトン類としては特に限定されず、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。前記エーテル類としては特に限定されず、例えば、ジエチルエーテル、テトラヒドロフラン、エチレングリコール等が挙げられる。前記ハロゲン化炭化水素としては特に限定されず、例えば、ジクロロメタン、クロロホルム等が挙げられる。さらにその他の非プロトン性溶媒としては、例えば、ニトロメタン、ニトロエタン、ジメチルホルムアミド等が挙げられる。これらの非プロトン性溶媒は一種単独で、又は二種以上を併用することができる。
 前記モノハロリン酸ジエステルとフッ素化剤との反応で用いられるフッ素化剤としては特に限定されず、例えば、アルカリ金属フッ化物、アルカリ土類金属フッ化物、オニウムフルオロライド等が挙げられる。
 前記アルカリ金属フッ化物としては特に限定されず、例えば、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム、フッ化セシウム等が挙げられる。また、前記アルカリ土類金属フッ化物としては特に限定されず、例えば、フッ化ベリリウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウム等が挙げられる。オニウムフルオロライドとしては特に限定されず、例えば、トリエチルアミン三フッ化水素酸塩、トリエチルアミン五フッ化水素酸塩、ビリジンフッ化水素酸塩、テトラブチルアンモニウムフルオライド等が挙げられる。これらのフッ素化剤は、一種単独で、又は二種類以上を併用することができる。
 前記工程Bは、モノフルオロリン酸ジエステルと前記ハロゲン化物とを反応させることにより、モノフルオロリン酸エステル塩を生成する工程である。
 前記ハロゲン化物は、化学式Mn+14n(前記Mn+は、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、希土類元素イオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、インジウムイオン、ゲルマニウムイオン、スズイオン、鉛イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記X14は、F、Cl、Br又はIの何れかのハロゲン原子を表す。前記nは価数を表す。)で表される。
 ここで、ハロゲン化物における前記Mn+は、すでに説明した通りであるので、詳細な説明は省略する。また、ハロゲン化物における前記nは、前記一般式(1)の場合と同様、価数を表す。
 工程Bにおけるモノフルオロリン酸ジエステルとハロゲン化物との反応は、下記化学反応式(9)及び(10)で表される通りである。
Figure JPOXMLDOC01-appb-C000016
 すなわち、ハロゲン化物のハロゲンがモノフルオロリン酸エステルのRに求核攻撃し、これにより、Rを含むモノフルオロリン酸エステルアニオンが脱離し、R14で表されるハロゲン化アルキルが生成する。さらに、脱離したモノフルオロリン酸エステルアニオンがハロゲン化物の対カチオンと塩を形成することにより、モノフルオロリン酸エステル塩が生成すると推測される。
 ここで、前記ハロゲン化物とモノフルオロリン酸ジエステルを反応させる際には、以下の化学式でそれぞれ表される、2つの脱離基が生じ得る。
Figure JPOXMLDOC01-appb-C000017
(前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であり、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000018
(前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であり、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。)
 そして、前記ハロゲン化物とモノフルオロリン酸ジエステルを反応させ、モノフルオロリン酸エステル塩を製造する場合、RとRが異種のときには、化学式(11)で表されるモノフルオロリン酸エステルアニオンの脱離能が、化学式(12)で表されるモノフルオロリン酸エステルアニオンの脱離能よりも高いことを要する。これにより、Rを含む、本実施の形態のモノフルオロリン酸エステル塩を得ることができる。
 脱離基であり、かつ、前記化学式(11)又は(12)で表されるモノフルオロリン酸エステルアニオンの脱離能は、例えば、それぞれのプロトン体のpKa値により、おおよそ推測される。具体的には、前記化学式(11)で表されるモノフルオロリン酸エステルアニオンのプロトン体、すなわちモノフルオロリン酸エステルのpKa値が、前記化学式(12)で表されるモノフルオロリン酸エステルアニオンのプロトン体よりも小さい方が好ましい。pKa値は、例えば、Bordwell pKa Table等から見積もることができる。あるいは、脱離基に電子求引基を含むようなものは脱離能が高いと推定することができる。
 前記ハロゲン化物とモノフルオロリン酸ジエステルを他の非水溶媒下で反応させ、モノフルオロリン酸エステル塩を製造する場合、当該所望の化合物が得られる限りハロゲン化物とモノフルオロリン酸ジエステルの使用量は、特に限定されない。通常は、ハロゲン化物1当量に対してモノフルオロリン酸ジエステルが、0.5当量~5当量であり、好ましくは0.9当量~4当量、より好ましくは0.95当量~3.3当量である。モノフルオロリン酸ジエステルの使用量を0.5当量以上にすることにより、ハロゲン化物とモノフルオロリン酸ジエステルとの反応性が悪化するのを防止し、未反応の水酸化物が残存するのを抑制することができる。その結果、モノフルオロリン酸エステル塩の純度の低下を抑制することができる。尚、当該モノフルオロリン酸ジエステルの使用量が5等量より大きいと、これを留去する際に必要以上の製造時間とエネルギーが必要となり、工業的に不利となる場合がある。
 前記ハロゲン化物とモノフルオロリン酸ジエステルが、他の非水溶媒下で反応を開始する際の反応開始温度は、当該反応が進行する限りにおいて特に限定されず、反応種に応じて適宜設定すればよい。通常は、0℃~200℃の範囲内であり、反応性の観点からは20~150℃が好ましく、40℃~120℃がより好ましい。反応開始温度を0℃以上にすることにより、反応速度が著しく減衰するのを防止することができる。また、反応開始温度を200℃以下にすることにより、過剰なエネルギーを使用することによるエネルギーロスを抑制することができる。反応開始温度の調整方法としては特に限定されず、前記温度範囲内となる様に冷却して制御する場合には、前記ハロゲン化物とモノフルオロリン酸ジエステルが投入された反応容器を氷冷等することにより行うことができる。また、反応開始温度を前記温度範囲内となる様に加熱して制御する場合には、任意の温度に設定された油浴等することにより行うことができる。
 前記ハロゲン化物とモノフルオロリン酸ジエステルを、他の非水溶媒下で反応させる際の反応時間は特に限定されず、反応種に応じて適宜設定すればよい。通常は、30分~20時間の範囲内であり、工業的生産の観点からは30分~15時間が好ましく、30分~10時間がより好ましい。
 前記ハロゲン化物とモノフルオロリン酸ジエステルとの反応においては、反応溶媒として、前記他の非水溶媒のほかに当該モノフルオロリン酸ジエステルを用いることができる。この場合、前記ハロゲン化物とモノフルオロリン酸ジエステルが反応を開始する反応開始温度は、当該反応が進行する限りにおいて特に限定されず、反応種に応じて適宜設定すればよい。通常は、0℃~200℃の範囲内であり、反応性の観点からは20℃~150℃が好ましく、40℃~120℃がより好ましい。また、反応時間も特に限定されず、反応種に応じて適宜設定すればよい。通常は、30分~20時間の範囲内であり、工業的生産の観点からは30分~15時間が好ましく、30分~10時間がより好ましい。
 前記他の非水溶媒(有機溶媒)としては、他の反応物や生成物と反応するような支障が生じない限り、特に限定されない。具体的には、例えば、アルコール類、ニトリル類、エステル類、ケトン類、エーテル類、ハロゲン化炭化水素類等が挙げられる。これらは、一種単独で、又は二種類以上を使用することができる。
 前記アルコール類としては、特に限定されず、例えば、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、2-ヨードエタノール、2-ブロモエタノール、2-クロロエタノール、2-フルオロエタノール、1,2-ジヨードエタノール、1,2-ジブロモエタノール、1,2-ジクロロエタノール、1,2-ジフルオロエタノール、2,2-ジヨードエタノール、2,2-ジブロモエタノール、2,2-ジクロロエタノール、2,2-ジフルオロエタノール、2,2,2-トリブロモエタノール、2,2,2-トリクロロエタノール、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールなどが挙げられる。これらは、一種単独で、又は二種類以上を使用することができる。
 前記ニトリル類としては特に限定されず、例えば、アセトニトリル、プロピオ二トリル等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記エステル類としては特に限定されず、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、酢酸エチル、酢酸メチル、酢酸ブチル等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記ケトン類としては特に限定されず、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記エーテル類としては特に限定されず、例えば、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 前記ハロゲン化炭化水素としは特に限定されず、例えば、ジクロロメタン、クロロホルム等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。
 また、前記他の非水溶媒(有機溶媒)のその他の例として、ニトロメタン、ニトロエタン、ジメチルホルムアミド等も挙げられる。
 前記他の非水溶媒(有機溶媒)の使用量は、前記モノフルオロリン酸ジエステルに対し、質量基準で1倍量以上が好ましく、1倍量~200倍量がより好ましく、1倍量~100倍量がさらに好ましく、1倍量~50倍量が特に好ましい。有機溶媒の使用量を1倍量以上にすることにより、リン酸トリエステルと水酸化物との反応性が悪化するのを防止し、リン酸ジエステル塩の収率やその純度の低下を抑制することができる。尚、有機溶媒の使用量の上限については特に限定されないが、モノフルオロリン酸ジエステルに対し過剰に有機溶媒を用いると、これを留去する際に必要以上のエネルギーが必要となり、工業的に不利となる場合がある。従って、有機溶媒の使用量の上限については、反応種に応じて適宜設定するのが好ましい。
 反応溶媒として有機溶媒を用いる場合、ハロゲン化物及びモノフルオロリン酸ジエステルの添加順序は、特に限定されない。また、反応溶媒としてモノフルオロリン酸ジエステルを用いる場合、ハロゲン化物及びモノフルオロリン酸ジエステルの添加順序は、特に限定されない。
 本実施の形態の方法で得られたモノフルオロリン酸エステル塩は、溶解度を利用したカチオン交換、又はイオン交換樹脂等を用いたカチオン交換を行うことにより、所望の別種のカチオンを有するモノフルオロリン酸エステル塩を製造することもできる。
 また、本実施の形態の方法で得られたモノフルオロリン酸エステル塩を、硫酸又は塩酸等のアレニウス酸と反応させることで、モノフルオロリン酸エステルを製造することもできる。また、イオン交換樹脂を用いてプロトン交換を行うことでも、モノフルオロリン酸エステルを得ることができる。さらに、これらの方法で得られたモノフルオロリン酸エステルを、ハロゲン化物又は水酸化物と反応させることで、モノフルオロリン酸エステル塩を製造することもできる。
 尚、本実施の形態においては、モノフルオロリン酸エステル塩を生成する工程の直後に、当該モノフルオロリン酸エステル塩を精製する工程を行ってもよい。また、別種のカチオンを有するモノフルオロリン酸エステル塩を製造する工程の直後においても、モノフルオロリン酸エステル塩に対しカチオン交換を行うことにより、精製を行うことができる。さらに、前記モノフルオロリン酸エステルを前記ハロゲン化物と反応させてモノフルオロリン酸エステル塩を生成した直後においても、精製を行うことができる。精製方法としては特に限定されず、例えば、蒸留、乾燥等の操作による方法や、活性炭又はイオン交換樹脂等の吸着剤等を使用する方法を採用することができる。これらの精製を行うことにより、モノフルオロリン酸エステル塩の純度を高めることができる。
 <成分(B)>
 本実施の形態の非水電解液においては、少なくとも1種の後述の成分(B)を、さらに添加剤として含有してもよい。これにより、さらに一層高温環境下でのサイクル特性を改善することができる。
 また、前記成分(A)を含む非水電解液に以下に示す成分(B)を含むことができる。
 前記成分(B)は、下記成分(b1)又は成分(b2)の何れかを含む。
 成分(b1):1種のホウ素錯体塩。
 成分(b2):ホウ酸エステル、酸無水物、不飽和結合を有する環状カーボネート、ハロゲン原子を有する環状カーボネート、環状スルホン酸エステル、アセトアセチル基を有するアミン類及びリン化合物からなる群より選ばれる少なくとも1種の化合物。
 [ホウ素錯体塩]
 前記成分(b1)のホウ素錯体塩は、具体的には、下記化学式(2)で表されるものである。
Figure JPOXMLDOC01-appb-C000019
 前記化学式(2)において、Mn+については、すでに説明した通りであり、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン及びオニウムイオンからなる群より選ばれる何れかを表す。従って、これらの詳細な説明は省略する。
 前記化学式(2)において、前記X~Xはそれぞれ独立しており、任意に選択される1又は2つの組合せが、-OOC-Y-COO-、-O-Y-O-又は-OOC-Y-O-の環状構造を形成したものを表す。その場合の前記Yは、炭素数が0~20、好ましくは0~10、より好ましくは0~10の炭化水素基、又は炭素数が0~20、好ましくは0~10、より好ましくは0~5の範囲であって、ヘテロ原子、不飽和結合若しくは環状構造を有する炭化水素基を表す。前記X~Xが前記-OOC-Y-COO-、-O-Y-O-又は-OOC-Y-O-の環状構造の何れか1つを2組有する場合、それぞれのYは異なっていてもよい。ここで、ヘテロ原子とは、酸素原子、窒素原子又は硫黄原子を意味する。
 前記Yとしては特に限定されず、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基等の直鎖アルキレン基、ヨードメチレン基、ジヨードメチレン基、ブロモメチレン基、ジブロモメチレン基、フルオロメチレン基、ジフルオロメチレン基、ヨードエチレン基、1,1-ジヨードエチレン基、1,2-ジヨードエチレン基、トリヨードエチレン基、テトラヨードエチレン基、クロロエチレン基、1,1-ジクロロエチレン基、1,2-ジクロロエチレン基、トリクロロエチレン基、テトラクロロエチレン基、フルオロエチレン基、1,1-ジフルオロエチレン基、1,2-ジフルオロエチレン基、トリフルオロエチレン基、テトラフルオロエチレン基等の含ハロゲン直鎖アルキレン基、シクロヘキシレン基、フェニレン基、ベンジレン基、ナフチレン基、アントラシレン基、ナフタシレン基、ペンタシレン基のような環状炭化水素基及びその一部または全部をハロゲンに置き換えたもの等が挙げられる。
 さらに、前記Yの炭素数が0の場合、-OOC-Y-COO-は-OOC-COO-であり、オキサレート基を表す。また、前記Yが1,2-フェニレン基である場合、-O-Y-O-はベンゼンジオラート基を表し、-O-Y-COO-はサリチラート基を表す。
 また、前記X~Xは、それぞれ独立して、ハロゲン原子、炭素数0~20、好ましくは0~10、より好ましくは0~5のアルキル基、炭素数0~20、好ましくは0~10、より好ましくは0~5のアルコキシ基、炭素数が0~20、好ましくは0~10、より好ましくは0~5の範囲内であって、ハロゲン原子、ヘテロ原子、不飽和結合若しくは環状構造の少なくとも何れか1つを有するアルキル基、又は炭素数が0~20、好ましくは0~10、より好ましくは0~5の範囲内であって、ハロゲン原子、ヘテロ原子、不飽和結合若しくは環状構造の少なくとも何れか1つを有するアルコキシ基であってもよい。ここで、前記ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。また、ヘテロ原子とは、酸素原子、窒素原子又は硫黄原子を意味する。
 前記X~Xは、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、ヨードメチル基、ブロモメチル基、クロロメチル基、フルオロメチル基、ジヨードメチル基、ジブロモメチル基、ジクロロメチル基、ジフルオロメチル基、トリヨードメチル基、トリブロモメチル基、トリクロロメチル基、トリフルオロメチル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基等の鎖状含ハロゲンアルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基、2-フルオロシクロヘキシル基等の環状含ハロゲンアルキル基、2-プロペニル基、イソプロペニル基、2-ブテニル基、3-ブテニル基等の鎖状アルケニル基、2-シクロペンテニル基、2-シクロヘキセニル基、3-シクロヘキセニル基等の環状アルケニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基等の鎖状アルキニル基、フェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3,5-ジメトキシフェニル基、4-フェノキシフェニル基等のフェニル基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基等の含ハロゲンフェニル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基等の鎖状アルコキシ基、シクロペントキシ基、シクロヘキソキシ基等の環状アルコキシ基、2-ヨードエトキシ基、2-ブロモエトキシ基、2-クロロエトキシ基、2-フルオロエトキシ基、1,2-ジヨードエトキシ基、1,2-ジブロモエトキシ基、1,2-ジクロロトキシ基、1,2-ジフルオロエトキシ基、2,2-ジヨードエトキシ基、2,2-ジブロモエトキシ基、2,2-ジクロロエトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリブロモエトキシ基、2,2,2-トリクロロエトキシ基、2,2,2-トリフルオロエトキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基等の鎖状含ハロゲンアルキル基、2-ヨードシクロヘキソキシ基、2-ブロモシクロヘキソキシ基、2-クロロシクロヘキソキシ基、2-フルオロシクロヘキソキシ基等の環状含ハロゲンアルキル基、2-プロペノキシ基、イソプロペノキシ基、2-ブテノキシ基、3-ブテノキシ基等の鎖状アルケニルアルコキシ基、2-シクロペンテノキシ基、2-シクロヘキセノキシ基、3-シクロヘキセノキシ基等の環状アルケニルアルコキシ基、2-プロピノキシ基、1-ブチノキシ基、2-ブチノキシ基、3-ブチノキシ基、1-ペンチノキシ基、2-ペンチノキシ基、3-ペンチノキシ基、4-ペンチノキシ基等の鎖状アルキニルアルコキシ基、フェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、3,5-ジメチルフェノキシ基等のフェノキシ基、2-ヨードフェノキシ基、2-ブロモフェノキシ基、2-クロロフェノキシ基、2-フルオロフェノキシ基、3-ヨードフェノキシ基、3-ブロモフェノキシ基、3-クロロフェノキシ基、3-フルオロフェノキシ基、4-ヨードフェノキシ基、4-ブロモフェノキシ基、4-クロロフェノキシ基、4-フルオロフェノキシ基、3,5-ジヨードフェノキシ基、3,5-ジブロフェノキシ基、3,5-ジクロロフェノキシ基、3,5-ジフルオロフェノキシ基等の含ハロゲンフェノキシ基等が挙げられる。
 前記X~Xは、相互に独立しており、同種でもよく異種であってもよい。また前記に例示した官能基群は単なる例示に過ぎず、これらに限定されるものではない。
 前記化学式(2)で表されるホウ素錯体塩の具体例としては、例えば、リチウムビスオキサラトボレート、リチウムビスマロナトボレート、リチウムビスサリチラートボレート、リチウムビス[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムオキサラトマロナトボレート、リチウムオキサラトサリチラートボレート、リチウムオキサラト[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムジヨードオキサラトボレート、リチウムジブロモオキサラトボレート、リチウムジクロロオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムヨードクロロオキサラトボレート、リチウムヨードブロモオキサラトボレート、リチウムヨードフルオロオキサラトボレート、リチウムブロモクロロオキサラトボレート、リチウムブロモフルオロオキサラトボレート、リチウムクロロフルオロオキサラトボレート、リチウムジヨードマロナトボレート、リチウムジブロモマロナトボレート、リチウムジクロロマロナトボレート、リチウムジフルオロマロナトボレート、リチウムヨードクロロマロナトボレート、リチウムヨードブロモマロナトボレート、リチウムヨードフルオロマロナトボレート、リチウムブロモクロロマロナトボレート、リチウムブロモフルオロマロナトボレート、リチウムクロロフルオロマロナトボレート、リチウムジヨードサリチラートボレート、リチウムジブロモサリチラートボレート、リチウムジクロロサリチラートボレート、リチウムジフルオロサリチラートボレート、リチウムヨードクロロサリチラートボレート、リチウムヨードブロモサリチラートボレート、リチウムヨードフルオロサリチラートボレート、リチウムブロモクロロサリチラートボレート、リチウムブロモフルオロサリチラートボレート、リチウムクロロフルオロサリチラートボレート、リチウムジヨード[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムジブロモ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムジクロロ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムジフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムヨードクロロ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムヨードブロモ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムヨードフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムブロモクロロ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムブロモフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムクロロフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムテトラヨードボレート、リチウムテトラブロモボレート、リチウムテトラクロロボレート、リチウムテトラフルオロボレート、リチウムヨードトリブロモボレート、リチウムヨードトリクロロボレート、リチウムヨードトリフルオロボレート、リチウムジヨードジブロモボレート、リチウムジヨードジクロロボレート、リチウムジヨードジフルオロボレート、リチウムトリヨードブロモボレート、リチウムトリヨードクロロボレート、リチウムトリヨードフルオロボレート、リチウムブロモトリクロロボレート、リチウムブロモトリフルオロボレート、リチウムジブロモジクロロボレート、リチウムジブロモジフルオロボレート、リチウムトリブロモクロロボレート、リチウムトリブロモフルオロボレート、リチウムクロロトリフルオロボレート、リチウムジクロロジフルオロボレート、リチウムクロロトリフルオロボレート、リチウムヨードブロモクロロフルオロボレート、リチウムテトラメチルボレート、リチウムテトラエチルボレート、リチウムテトラフェニルボレート、リチウムテトラメトキシボレート、リチウムテトラエトキシボレート、リチウムテトラフェノキシボレート、リチウムエチルジメチルフェニルボレート、リチウムブチルエチルメチルフェニルボレート、リチウムエトキシジメトキシフェノキシボレート、リチウムジメチルオキサラトボレート、リチウムジメチルマロナトボレート、リチウムジメチルサリチラートボレート、リチウムジメチル[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムエチルメチルオキサラトボレート、リチウムフェニルメチルオキサラトボレート、リチウムヨードメチルオキサラトボレート、リチウムブロモメチルオキサラトボレート、リチウムクロロメチルオキサラトボレート、リチウムフルオロメチルオキサラトボレート、リチウムヨードエチルオキサラトボレート、リチウムブロモエチルオキサラトボレート、リチウムクロロエチルオキサラトボレート、リチウムフルオロエチルオキサラトボレート、リチウムエトキシメトキシオキサラトボレート、リチウムヨードメトキシオキサラトボレート、リチウムブロモメトキシオキサラトボレート、リチウムクロロメトキシオキサラトボレート、リチウムフルオロメトキシオキサラトボレート等が挙げられる。
 また、前記化学式(2)で表されるホウ素錯体塩の具体例としては、例えば、ナトリウムビスオキサラトボレート、ナトリウムビスマロナトボレート、ナトリウムビスサリチラートボレート、ナトリウムビス[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムオキサラトマロナトボレート、ナトリウムオキサラトサリチラートボレート、ナトリウムオキサラト[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムジヨードオキサラトボレート、ナトリウムジブロモオキサラトボレート、ナトリウムジクロロオキサラトボレート、ナトリウムジフルオロオキサラトボレート、ナトリウムヨードクロロオキサラトボレート、ナトリウムヨードブロモオキサラトボレート、ナトリウムヨードフルオロオキサラトボレート、ナトリウムブロモクロロオキサラトボレート、ナトリウムブロモフルオロオキサラトボレート、ナトリウムクロロフルオロオキサラトボレート、ナトリウムジヨードマロナトボレート、ナトリウムジブロモマロナトボレート、ナトリウムジクロロマロナトボレート、ナトリウムジフルオロマロナトボレート、ナトリウムヨードクロロマロナトボレート、ナトリウムヨードブロモマロナトボレート、ナトリウムヨードフルオロマロナトボレート、ナトリウムブロモクロロマロナトボレート、ナトリウムブロモフルオロマロナトボレート、ナトリウムクロロフルオロマロナトボレート、ナトリウムジヨードサリチラートボレート、ナトリウムジブロモサリチラートボレート、ナトリウムジクロロサリチラートボレート、ナトリウムジフルオロサリチラートボレート、ナトリウムヨードクロロサリチラートボレート、ナトリウムヨードブロモサリチラートボレート、ナトリウムヨードフルオロサリチラートボレート、ナトリウムブロモクロロサリチラートボレート、ナトリウムブロモフルオロサリチラートボレート、ナトリウムクロロフルオロサリチラートボレート、ナトリウムジヨード[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムジブロモ[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムジクロロ[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムジフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムヨードクロロ[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムヨードブロモ[1,2’-ベンジオラート(2)-O,O’]ボレート、リチウムヨードフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムブロモクロロ[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムブロモフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムクロロフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムテトラヨードボレート、ナトリウムテトラブロモボレート、ナトリウムテトラクロロボレート、ナトリウムテトラフルオロボレート、ナトリウムヨードトリブロモボレート、ナトリウムヨードトリクロロボレート、ナトリウムヨードトリフルオロボレート、ナトリウムジヨードジブロモボレート、ナトリウムジヨードジクロロボレート、ナトリウムジヨードジフルオロボレート、ナトリウムトリヨードブロモボレート、ナトリウムトリヨードクロロボレート、ナトリウムトリヨードフルオロボレート、ナトリウムブロモトリクロロボレート、ナトリウムブロモトリフルオロボレート、ナトリウムジブロモジクロロボレート、ナトリウムジブロモジフルオロボレート、ナトリウムトリブロモクロロボレート、ナトリウムトリブロモフルオロボレート、ナトリウムクロロトリフルオロボレート、ナトリウムジクロロジフルオロボレート、ナトリウムクロロトリフルオロボレート、ナトリウムヨードブロモクロロフルオロボレート、ナトリウムテトラメチルボレート、ナトリウムテトラエチルボレート、ナトリウムテトラフェニルボレート、ナトリウムテトラメトキシボレート、ナトリウムテトラエトキシボレート、ナトリウムテトラフェノキシボレート、ナトリウムエチルジメチルフェニルボレート、ナトリウムブチルエチルメチルフェニルボレート、ナトリウムエトキシジメトキシフェノキシボレート、ナトリウムジメチルオキサラトボレート、ナトリウムジメチルマロナトボレート、ナトリウムジメチルサリチラートボレート、ナトリウムジメチル[1,2’-ベンジオラート(2)-O,O’]ボレート、ナトリウムエチルメチルオキサラトボレート、ナトリウムフェニルメチルオキサラトボレート、ナトリウムヨードメチルオキサラトボレート、ナトリウムブロモメチルオキサラトボレート、ナトリウムクロロメチルオキサラトボレート、ナトリウムフルオロメチルオキサラトボレート、ナトリウムヨードエチルオキサラトボレート、ナトリウムブロモエチルオキサラトボレート、ナトリウムクロロエチルオキサラトボレート、ナトリウムフルオロエチルオキサラトボレート、ナトリウムエトキシメトキシオキサラトボレート、ナトリウムヨードメトキシオキサラトボレート、ナトリウムブロモメトキシオキサラトボレート、ナトリウムクロロメトキシオキサラトボレート、ナトリウムフルオロメトキシオキサラトボレート
 さらに、前記化学式(2)で表されるホウ素錯体塩の具体例としては、例えば、トリエチルメチルアンモニウムビスオキサラトボレート、トリエチルメチルアンモニウムビスマロナトボレート、トリエチルメチルアンモニウムビスサリチラートボレート、トリエチルメチルアンモニウムビス[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムオキサラトマロナトボレート、トリエチルメチルアンモニウムオキサラトサリチラートボレート、トリエチルメチルアンモニウムオキサラト[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムジヨードオキサラトボレート、トリエチルメチルアンモニウムジブロモオキサラトボレート、トリエチルメチルアンモニウムジクロロオキサラトボレート、トリエチルメチルアンモニウムジフルオロオキサラトボレート、トリエチルメチルアンモニウムヨードクロロオキサラトボレート、トリエチルメチルアンモニウムヨードブロモオキサラトボレート、トリエチルメチルアンモニウムヨードフルオロオキサラトボレート、トリエチルメチルアンモニウムブロモクロロオキサラトボレート、トリエチルメチルアンモニウムブロモフルオロオキサラトボレート、トリエチルメチルアンモニウムクロロフルオロオキサラトボレート、トリエチルメチルアンモニウムジヨードマロナトボレート、トリエチルメチルアンモニウムジブロモマロナトボレート、トリエチルメチルアンモニウムジクロロマロナトボレート、トリエチルメチルアンモニウムジフルオロマロナトボレート、トリエチルメチルアンモニウムヨードクロロマロナトボレート、トリエチルメチルアンモニウムヨードブロモマロナトボレート、トリエチルメチルアンモニウムヨードフルオロマロナトボレート、トリエチルメチルアンモニウムブロモクロロマロナトボレート、トリエチルメチルアンモニウムブロモフルオロマロナトボレート、トリエチルメチルアンモニウムクロロフルオロマロナトボレート、トリエチルメチルアンモニウムジヨードサリチラートボレート、トリエチルメチルアンモニウムジブロモサリチラートボレート、トリエチルメチルアンモニウムジクロロサリチラートボレート、トリエチルメチルアンモニウムジフルオロサリチラートボレート、トリエチルメチルアンモニウムヨードクロロサリチラートボレート、トリエチルメチルアンモニウムヨードブロモサリチラートボレート、トリエチルメチルアンモニウムヨードフルオロサリチラートボレート、トリエチルメチルアンモニウムブロモクロロサリチラートボレート、トリエチルメチルアンモニウムブロモフルオロサリチラートボレート、トリエチルメチルアンモニウムクロロフルオロサリチラートボレート、トリエチルメチルアンモニウムジヨード[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムジブロモ[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムジクロロ[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムジフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムヨードクロロ[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムヨードブロモ[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムヨードフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムブロモクロロ[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムブロモフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムクロロフルオロ[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムテトラヨードボレート、トリエチルメチルアンモニウムテトラブロモボレート、トリエチルメチルアンモニウムテトラクロロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムヨードトリブロモボレート、トリエチルメチルアンモニウムヨードトリクロロボレート、トリエチルメチルアンモニウムヨードトリフルオロボレート、トリエチルメチルアンモニウムジヨードジブロモボレート、トリエチルメチルアンモニウムジヨードジクロロボレート、トリエチルメチルアンモニウムジヨードジフルオロボレート、トリエチルメチルアンモニウムトリヨードブロモボレート、トリエチルメチルアンモニウムトリヨードクロロボレート、トリエチルメチルアンモニウムトリヨードフルオロボレート、トリエチルメチルアンモニウムブロモトリクロロボレート、トリエチルメチルアンモニウムブロモトリフルオロボレート、トリエチルメチルアンモニウムジブロモジクロロボレート、トリエチルメチルアンモニウムジブロモジフルオロボレート、トリエチルメチルアンモニウムトリブロモクロロボレート、トリエチルメチルアンモニウムトリブロモフルオロボレート、トリエチルメチルアンモニウムクロロトリフルオロボレート、トリエチルメチルアンモニウムジクロロジフルオロボレート、トリエチルメチルアンモニウムクロロトリフルオロボレート、トリエチルメチルアンモニウムヨードブロモクロロフルオロボレート、トリエチルメチルアンモニウムテトラメチルボレート、トリエチルメチルアンモニウムテトラエチルボレート、トリエチルメチルアンモニウムテトラフェニルボレート、トリエチルメチルアンモニウムテトラメトキシボレート、トリエチルメチルアンモニウムテトラエトキシボレート、トリエチルメチルアンモニウムテトラフェノキシボレート、トリエチルメチルエチルアンモニウムジメチルフェニルボレート、トリエチルメチルアンモニウムブチルエチルメチルフェニルボレート、トリエチルメチルアンモニウムエトキシジメトキシフェノキシボレート、トリエチルメチルアンモニウムジメチルオキサラトボレート、トリエチルメチルアンモニウムジメチルマロナトボレート、トリエチルメチルアンモニウムジメチルサリチラートボレート、トリエチルメチルアンモニウムジメチル[1,2’-ベンジオラート(2)-O,O’]ボレート、トリエチルメチルアンモニウムエチルメチルオキサラトボレート、トリエチルメチルアンモニウムフェニルメチルオキサラトボレート、トリエチルメチルアンモニウムヨードメチルオキサラトボレート、トリエチルメチルアンモニウムブロモメチルオキサラトボレート、トリエチルメチルアンモニウムクロロメチルオキサラトボレート、トリエチルメチルアンモニウムフルオロメチルオキサラトボレート、トリエチルメチルアンモニウムヨードエチルオキサラトボレート、トリエチルメチルアンモニウムブロモエチルオキサラトボレート、トリエチルメチルアンモニウムクロロエチルオキサラトボレート、トリエチルメチルアンモニウムフルオロエチルオキサラトボレート、トリエチルメチルアンモニウムエトキシメトキシオキサラトボレート、トリエチルメチルアンモニウムヨードメトキシオキサラトボレート、トリエチルメチルアンモニウムブロモメトキシオキサラトボレート、トリエチルメチルアンモニウムクロロメトキシオキサラトボレート、トリエチルメチルアンモニウムフルオロメトキシオキサラトボレート等が挙げられる。
 尚、前記に示した化学式(2)で表されるホウ素錯体塩の具体例は単なる例示であり、本実施の形態はこれらに限定されるものではない。
 尚、前記ホウ素錯体塩は、入手しやすさの観点からは、リチウムビスオキサラトボレート、トリエチルメチルアンモニウムビスオキサラトボレート、リチウムビスサリチラートボレート又はリチウムビス[1,2’-ベンジオラート(2)-O,O’]ボレートが好ましい。
 尚、前記化学式(2)における前記nは、前記化学式(1)の場合と同様、価数を表す。
 [ホウ酸エステル]
 前記成分(b2)におけるホウ酸エステルとしては、本実施の形態の非水電解液及びそれを用いた二次電池の特性を損なうものでなければ、その種類に特に制限はなく、種々のものを選択することができる。具体的には、例えば、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリイソプロピル、ホウ酸トリブチル、ホウ酸トリペンチル、ホウ酸トリヘキシル、ホウ酸トリへプチル、ホウ酸トリフェニル、2ホウ酸トリス(2,2,2-ヨードエチル)、ホウ酸トリス(2,2,2-トリブロモエチル)、ホウ酸トリス(2,2,2-トリクロロエチル)ホウ酸トリス(2,2,2-トリフルオロエチル)ホウ酸トリス(4-ヨードフェニル)、ホウ酸トリス(4-ブロモフェニル)、ホウ酸トリス(4-クロロフェニル)、ホウ酸トリス(4-フルオロフェニル)、ホウ酸ジエチルメチル、ホウ酸エチルジメチル等が挙げられる。
 [酸無水物]
 前記成分(b2)における酸無水物としては、本実施の形態の非水電解液及びそれを用いた二次電池の特性を損なうものでなければ、その種類に特に制限はなく、種々のものを選択することができる。具体的には、例えば、酢酸無水物、プロピオン酸無水物、酪酸無水物、吉草酸無水物、ヘキサン酸無水物、へプタン酸無水物、オクタン酸無水物、ノナン酸無水物、デカン酸無水物、エイコサン酸無水物、ドコサン酸無水物、安息香酸無水物、4-メトキシ安息香酸無水物、ジフェニル酢酸無水物、クロトン酸無水物、シクロヘキサンカルボン酸無水物、エライジン酸無水物、イソ酪酸無水物、イソ吉草酸無水物、ラウリン酸無水物、リノール酸無水物、ミリスチン酸無水物、アンゲリカ酸無水物、クロロジフルオロ酢酸無水物、トリクロロ酢酸無水物、ジフルオロ酢酸無水物、トリフルオロ酢酸無水物、4-トリフルオロメチル安息香酸無水物などの直鎖カルボン酸無水物、フタル酸無水物、3-アセトアミドフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-ビフタル酸無水物、3-ヨードフタル酸無水物、3-ブロモフタル酸無水物、3-クロロフタル酸無水物、3-フルオロフタル酸無水物、4-ヨードフタル酸無水物、4-ブロモフタル酸無水物、4-クロロフタル酸無水物、4-クロロフタル酸無水物、4,5-ジヨードフタル酸無水物、4,5-ジブロモフタル酸無水物、4,5-ジクロロフタル酸無水物、4,5-ジフルオロフタル酸無水物、4,4’-スルホニルジフタル酸無水物、3-ニトロフタル酸無水物、4-ニトロフタル酸無水物、exo-3,6-エポキシヘキサヒドロフタル酸無水物、exo-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、テトラヨードフタル酸無水物、テトラクロロフタル酸無水物、テトラフルオロフタル酸無水物、4-tert-ブチルフタル酸無水物、4-エチニルフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、コハク酸無水物、(R)-(+)-2-アセトキシコハク酸無水物、(S)-(-)-2-アセトキシコハク酸無水物、2-ブテン-1-イルコハク酸無水物、ブチルコハク酸無水物、デシルコハク酸無水物、2,3-ジメチルコハク酸無水物、2-ドデセン-1-イルコハク酸無水物、ドデシルコハク酸無水物、オクタデセニコハク酸無水物、(2,7-オクタジエン-1-イル)コハク酸無水物、n-オクチルコハク酸無水物、ヘキサデシルコハク酸無水物、マレイン酸無水物、2,3-ビス(2,4,5-トリメチル-3-チエニル)マレイン酸無水物、2-(-2-カルボキシエチル)-3-メチル-マレイン酸無水物、2,3-ジメチルマレイン酸無水物、2,3-ジフェニルマレイン酸無水物、フェニルマレイン酸無水物、4-ペンテン-1,2-ジカルボン酸無水物、2,3-アントラセンジカルボン酸無水物、ビシクロ[2,2,2]オクト-5-エン-2,3-ジカルボン酸無水物、4-ブロモ-1,8-ナフタレンジカルボン酸無水物、(±)-trans-1,2-シクロヘキサンジカルボン酸無水物、cis-4-シクロヘキセン-1,2-ジカルボン酸無水物、2,5-ジブロモ-3,4-チオフェンジカルボン酸無水物、5,6-ジヒドロ-1,4-ジチイン-2,3-ジカルボン酸無水物、2,2’-ビフェニルジカルボン酸無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、4-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、3,4-チオフェンジカルボン酸無水物、1,8-ナフタレンジカルボン酸無水物、5-ノルボネン-2,3-ジカルボン酸無水物、1,2-シクロプロパンジカルボン酸無水物、グルタル酸無水物、3,3-ペンタメチレングルタル酸無水物、2,2-ジメチルグルタル酸無水物、3,3-ジメチルグルタル酸無水物、3-メチルグルタル酸無水物、2-フタルイミドグルタル酸無水物、3,3-テトラメチレングルタル酸無水物、N-メチルイサト酸無水物、4-ヨードイサト酸無水物、4-ブロモイサト酸無水物、4-クロロイサト酸無水物、4-フルオロイサト酸無水物、5-ヨードイサト酸無水物、5-ブロモイサト酸無水物、5-クロロイサト酸無水物、5-フルオロイサト酸無水物、イタコン酸無水物、カロン酸無水物、シトラコン酸無水物、ジグリコール酸無水物、1,2-ナフタル酸無水物、ピロメリット酸無水物、ヘット酸無水物、2,2,3,3,4,4-ヘキサフルオロペンタン二酸無水物などの環状カルボンサン無水物、トリフルオロメタンスルホン酸無水物、p-トルエンスルホン酸無水物などの直鎖スルホン酸無水物、2-スルホ安息香酸無水物、テトラヨード-O-スルホ安息香酸無水物、テトラブロモ-O-スルホ安息香酸無水物、テトラクロロ-O-スルホ安息香酸無水物、テトラフルオロ-O-スルホ安息香酸無水物などの環状スルホン酸無水物、ジフェニルホスフィン酸などの鎖状ホスフィン酸無水物、1-プロパンホスホン酸無水物などの環状ホスホン酸無水物、3.4-ジヨードフェニルボロン酸無水物、3,4-ジブロモフェニルボロン酸無水物、3,4-ジクロロフェニルボロン酸無水物、3,4-ジフルオロフェニルボロン酸無水物、4-ヨードフェニルボロン酸無水物、4-ブロモフェニルボロン酸無水物、4-クロロフェニルボロン酸無水物、4-フルオロフェニルボロン酸無水物、(m-ターフェニルボロン酸無水物、3,4,5-トリヨードフェニルボロン酸無水物、3,4,5-トリブロモフェニルボロン酸無水物、3,4,5-トリクロロフェニルボロン酸無水物、3,4,5-トリフルオロフェニルボロン酸無水物等が挙げられる。これらの酸無水物のうち、本実施の形態においては、環状構造を有しているものが好ましく、更に分子内に不飽和結合を有しているものが好ましい。尚、酸無水物は、入手しやすさの観点と、環状構造及び分子内に不飽和結合を有しているとの観点からは、無水マレイン酸が特に好ましい。
 [不飽和結合を有する環状カーボネート]
 前記成分(b2)における不飽和結合を有する環状カーボネートとしては、本実施の形態の非水電解液及びそれを用いた二次電池の特性を損なうものでなければ、その種類に特に制限はなく、種々のものを選択することができる。前記不飽和結合の数は1~10が好ましく、1~5がより好ましく、1~3が特に好ましい。不飽和結合を有する環状カーボネートとしては、具体的には、例えば、ビニレンカーボネート、ヨードビニレンカーボネート、ブロモビニレンカーボネート、クロロビニレンカーボネート、フルオロビニレンカーボネート、1,2-ジヨードビニレンカーボネート、1,2-ジブロモビニレンカーボネート、1,2-ジクロロビニレンカーボネート、1,2-ジフルオロビニレンカーボネート、メチルビニレンカーボネート、ヨードメチルビニレンカーボネート、ブロモメチルビニレンカーボネート、クロロメチルビニレンカーボネート、フルオロメチルビニレンカーボネート、ジクロロメチルビニレンカーボネート、ジブロモメチルビニレンカーボネート、ジクロロメチルビニレンカーボネート、ジフルオロメチルビニレンカーボネート、トリヨードメチルビニレンカーボネート、トリブロモメチルビニレンカーボネート、トリクロロメチルビニレンカーボネート、トリフルオロメチルビニレンカーボネート、エチルビニレンカーボネート、プロピルビニレンカーボネート、ブチルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネート、ビニルエチレンカーボネート等が挙げられる。尚、前記不飽和結合を有する環状カーボネートとしては、入手しやすさの観点から、ビニレンカーボネートが好ましい。
 [ハロゲン原子を有する環状カーボネート]
 前記成分(b2)におけるハロゲン原子を有する環状カーボネートとしては、本実施の形態の非水電解液及びそれを用いた二次電池の特性を損なうものでなければ、その種類に特に制限はなく、種々のものを選択することができる。ここで、ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。ハロゲン原子を有する環状カーボネートとしては、具体的には、例えば、ヨードエチレンカーボネート、ブロモエチレンカーボネート、クロロエチレンカーボネート、フルオロエチレンカーボネート、1,2-ジヨードエチレンカーボネート、1,2-ジブロモエチレンカーボネート、1,2-ジクロロエチレンカーボネート、1,2-ジフルオロエチレンカーボネート等が挙げられる。尚、前記不飽和結合を有する環状カーボネートとしては、入手しやすさの観点から、クロロエチレンカーボネート、フルオロエチレンカーボネートが好ましい。
 [環状スルホン酸エステル]
 前記成分(b2)における環状スルホン酸エステルとしては、本実施の形態の非水電解液及びそれを用いた二次電池の特性を損なうものでなければ、その種類に特に制限はなく、種々のものを選択することができる。環状スルホン酸エステルとしては、具体的には、例えば、1,3-プロパンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、エチレンサルファイト等が挙げられる。尚、前記環状スルホン酸エステルとしては、入手しやすさの観点から、1,3-プロパンスルトン、エチレンサルファイトが好ましい。
 [アセトアセチル基を有するアミン類]
 前記成分(b2)におけるアセトアセチル基を有するアミン類は、具体的には、下記化学式(3)で表されるものである。
Figure JPOXMLDOC01-appb-C000020
 前記R及びRは、それぞれ独立して、炭素数が1~20、好ましくは1~10、より好ましくは1~5の炭化水素基、又は炭素数が1~20、好ましくは1~10、より好ましくは1~5の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合を有する炭化水素基を表す。ここで、前記ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。また、ヘテロ原子とは、酸素原子、窒素原子又は硫黄原子を意味する。
 前記R及びRとしては特に限定されず、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基、ヘキサフルオロ-2-プロピル基等の鎖状含ハロゲンアルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基、2-フルオロシクロヘキシル基等の環状含ハロゲンアルキル基、2-プロペニル基、イソプロペニル基、2-ブテニル基、3-ブテニル基等の鎖状アルケニル基、2-シクロペンテニル基、2-シクロヘキセニル基、3-シクロヘキセニル基等の環状アルケニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基等の鎖状アルキニル基、フェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3,5-ジメトキシフェニル基、4-フェノキシフェニル基等のフェニル基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基等の含ハロゲンフェニル基、1-ナフチル基、2-ナフチル基、3-アミノ-2-ナフチル基等のナフチル基等が挙げられる。
 前記R及びRは、相互に独立しており、同種でもよく異種であってもよい。また、前記に示した官能基群の具体例は、単なる例示であり、本実施の形態はこれらに限定されるものではない。
 前記化学式(3)で表される化合物の具体例としては、N,N-ジメチルアセトアセトアミド、N,N-ジエチルアセトアセトアミド、N,N-ジプロピルアセトアセトアミド、N,N-ジブチルアセトアセトアミド、N,N-エチルメチルアセトアセトアミド、N,N-メチルプルピルアセトアセトアミド、N,N-ブチルメチルアセトアセトアミド等が挙げられる。但し、これらの化合物の具体例は単なる例示に過ぎず、本実施の形態はこれらに限定されるものではない。
 [化学式(4)で表されるリン化合物]
 前記成分(b2)におけるリン化合物としては、下記化学式(4)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000021
 前記化学式(4)において、前記Mn+については、すでに説明した通りであり、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン又はオニウムイオンを表す。また、前記nは、前記化学式(1)の場合と同様、価数を表す。従って、これらの詳細な説明は省略する。
 前記A及びAは、それぞれ独立して、酸素原子、硫黄原子又はセレン原子を表す。
 前記化学式(4)に於いて、前記X及びXは、それぞれ独立して、ハロゲン原子、アルキル基、又はハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキル基(以下、「ハロゲン原子等を有するアルキル基」という。)を表す。アルキル基、及びハロゲン原子等を有するアルキル基の炭素数は1~20の範囲であり、好ましくは1~10、より好ましくは1~4である。また、前記不飽和結合の数は1~10の範囲が好ましく、1~5の範囲がより好ましく、1~3の範囲が特に好ましい。
 前記アルキル基又はハロゲン原子等を有するアルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基、ヘキサフルオロー2-プロピル基等の鎖状含ハロゲンアルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基、2-フルオロシクロヘキシル基等の環状含ハロゲンアルキル基、2-プロペニル基、イソプロペニル基、2-ブテニル基、3-ブテニル基等の鎖状アルケニル基、2-シクロペンテニル基、2-シクロヘキセニル基、3-シクロヘキセニル基等の環状アルケニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基等の鎖状アルキニル基、フェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3,5-ジメトキシフェニル基、4-フェノキシフェニル基等のフェニル基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基等の含ハロゲンフェニル基、1-ナフチル基、2-ナフチル基、3-アミノ-2-ナフチル基等のナフチル基等が挙げられる。
 尚、前記ハロゲン原子及びヘテロ原子は、前記化学式(1)で述べたのと同様である。また、前記ハロゲン原子等を有するアルキル基において、前記ハロゲン原子及びヘテロ原子は、当該アルキル基中の水素の一部又は全部がこれらのハロゲン原子及び/又はヘテロ原子の何れかで置換されていてもよい。
 また、前記X及びXは、前記アルキル基、又はハロゲン原子等を有するアルキル基の何れかが、相互に結合して環状構造を形成するものであってもよい。この場合、前記X及びXにおけるアルキル基又はハロゲン原子等を有するアルキル基は、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基等の直鎖アルキレン基、ヨードメチレン基、ジヨードメチレン基、ブロモメチレン基、ジブロモメチレン基、フルオロメチレン基、ジフルオロメチレン基、ヨードエチレン基、1,1-ジヨードエチレン基、1,2-ジヨードエチレン基、トリヨードエチレン基、テトラヨードエチレン基、クロロエチレン基、1,1-ジクロロエチレン基、1,2-ジクロロエチレン基、トリクロロエチレン基、テトラクロロエチレン基、フルオロエチレン基、1,1-ジフルオロエチレン基、1,2-ジフルオロエチレン基、トリフルオロエチレン基、テトラフルオロエチレン基等の含ハロゲン直鎖アルキレン基、シクロヘキシレン基、フェニレン基、ベンジレン基、ナフチレン基、アントラシレン基、ナフタシレン基、ペンタシレン基のような環状炭化水素基及びその一部又は全部をハロゲン原子等に置き換えたものとなる。
 前記X及びXは、前記に例示した官能基群に於いて、同種でもよく相互に異なっていてもよい。また前記に例示した官能基群は単なる例示に過ぎず、これらに限定されるものではない。
 前記化学式(4)で表されるリン化合物の具体例としては、例えば、リチウムジヨードホスフェート、リチウムジブロモホスフェート、リチウムジクロロホスフェート、リチウムジフルオロホスフェート、ナトリウムジヨードホスフェート、ナトリウムジブロモホスフェート、ナトリウムジクロロホスフェート、ナトリウムジフルオロホスフェート、カリウムジヨードホスフェート、カリウムジブロモホスフェート、カリウムジクロロホスフェート、カリウムジフルオロホスフェート等が挙げられる。
 [化学式(5)で表されるリン化合物]
 次に、下記化学式(5)で表されるリン化合物について説明する。但し、前記化学式(4)で表されるリン化合物において説明したものと同一のものについては、その説明を省略する。
Figure JPOXMLDOC01-appb-C000022
 前記化学式(5)に於いて、前記Mn+及び価数nは、前記化学式(4)で述べたのと同様である。
 前記化学式(5)に於いて、前記X~X12は、それぞれ独立して、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキル基(以下、「ハロゲン原子等を有するアルキル基」という。)、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルコキシ基(以下、「ハロゲン原子等を有するアルコキシ基」という。)、又はハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキルチオ基(以下、「ハロゲン原子等を有するアルキルチオ基」という。)を表す。前記アルキル基、アルコキシ基、アルキルチオ基、ハロゲン原子等を有するアルキル基、ハロゲン原子等を有するアルコキシ基及びハロゲン原子等を有するアルキルチオ基の炭素数は1~20の範囲であり、好ましくは1~10、より好ましくは1~4である。また、不飽和結合の数は1~10の範囲が好ましく、1~5の範囲がより好ましく、1~3の範囲が特に好ましい。
 前記ハロゲン原子及びヘテロ原子は、前記化学式(1)で述べたのと同様である。また、前記ハロゲン原子等を有するアルキル基、ハロゲン原子等を有するアルコキシ基及びハロゲン原子等を有するアルキルチオ基において、前記ハロゲン原子及びヘテロ原子は、これらの官能基中の水素の一部又は全部がこれらのハロゲン原子及び/又はヘテロ原子の何れかで置換されていてもよい。
 前記X~X12は、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、ヨードメチル基、ブロモメチル基、クロロメチル基、フルオロメチル基、ジヨードメチル基、ジブロモメチル基、ジクロロメチル基、ジフルオロメチル基、トリヨードメチル基、トリブロモメチル基、トリクロロメチル基、トリフルオロメチル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基等の鎖状含ハロゲンアルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基、2-フルオロシクロヘキシル基等の環状含ハロゲンアルキル基、2-プロペニル基、イソプロペニル基、2-ブテニル基、3-ブテニル基等の鎖状アルケニル基、2-シクロペンテニル基、2-シクロヘキセニル基、3-シクロヘキセニル基等の環状アルケニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基等の鎖状アルキニル基、フェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3,5-ジメトキシフェニル基、4-フェノキシフェニル基等のフェニル基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基等の含ハロゲンフェニル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基等の鎖状アルコキシ基、シクロペントキシ基、シクロヘキソキシ基等の環状アルコキシ基、2-ヨードエトキシ基、2-ブロモエトキシ基、2-クロロエトキシ基、2-フルオロエトキシ基、1,2-ジヨードエトキシ基、1,2-ジブロモエトキシ基、1,2-ジクロロトキシ基、1,2-ジフルオロエトキシ基、2,2-ジヨードエトキシ基、2,2-ジブロモエトキシ基、2,2-ジクロロエトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリブロモエトキシ基、2,2,2-トリクロロエトキシ基、2,2,2-トリフルオロエトキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基等の鎖状含ハロゲンアルキル基、2-ヨードシクロヘキソキシ基、2-ブロモシクロヘキソキシ基、2-クロロシクロヘキソキシ基、2-フルオロシクロヘキソキシ基等の環状含ハロゲンアルキル基、2-プロペノキシ基、イソプロペノキシ基、2-ブテノキシ基、3-ブテノキシ基等の鎖状アルケニルアルコキシ基、2-シクロペンテノキシ基、2-シクロヘキセノキシ基、3-シクロヘキセノキシ基等の環状アルケニルアルコキシ基、2-プロピノキシ基、1-ブチノキシ基、2-ブチノキシ基、3-ブチノキシ基、1-ペンチノキシ基、2-ペンチノキシ基、3-ペンチノキシ基、4-ペンチノキシ基等の鎖状アルキニルアルコキシ基、フェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、3,5-ジメチルフェノキシ基等のフェノキシ基、2-ヨードフェノキシ基、2-ブロモフェノキシ基、2-クロロフェノキシ基、2-フルオロフェノキシ基、3-ヨードフェノキシ基、3-ブロモフェノキシ基、3-クロロフェノキシ基、3-フルオロフェノキシ基、4-ヨードフェノキシ基、4-ブロモフェノキシ基、4-クロロフェノキシ基、4-フルオロフェノキシ基、3,5-ジヨードフェノキシ基、3,5-ジブロフェノキシ基、3,5-ジクロロフェノキシ基、3,5-ジフルオロフェノキシ基等の含ハロゲンフェノキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、イオプロピルチオ基、ペンチルチオ基、ヘキシルチオ基等のアルキルチオ基等が挙げられる。
 また、前記X~X12は、任意に選択される少なくとも1つの組合せが、-OOC-Z-COO-、-OOC-Z-O-又は-O-Z-O-の環状構造の何れかを形成していてもよい。前記X~X12が2以上の環状構造を形成する場合、当該環状構造は相互に同一でもよく、異なっていてもよい。また、前記Zは、炭素数が0~20の炭化水素基、又は炭素数が0~20の範囲であって、ハロゲン原子、ヘテロ原子、不飽和結合若しくは環状構造の少なくとも何れか1つを有する炭化水素基を表す。また、不飽和結合の数は1~10の範囲が好ましく、1~5の範囲がより好ましく、1~3の範囲が特に好ましい。
 前記Zとしては特に限定されず、具体的には、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基等の直鎖アルキレン基、ヨードメチレン基、ジヨードメチレン基、ブロモメチレン基、ジブロモメチレン基、フルオロメチレン基、ジフルオロメチレン基、ヨードエチレン基、1,1-ジヨードエチレン基、1,2-ジヨードエチレン基、トリヨードエチレン基、テトラヨードエチレン基、クロロエチレン基、1,1-ジクロロエチレン基、1,2-ジクロロエチレン基、トリクロロエチレン基、テトラクロロエチレン基、フルオロエチレン基、1,1-ジフルオロエチレン基、1,2-ジフルオロエチレン基、トリフルオロエチレン基、テトラフルオロエチレン基等の含ハロゲン直鎖アルキレン基、シクロヘキシレン基、フェニレン基、ベンジレン基、ナフチレン基、アントラシレン基、ナフタシレン基、ペンタシレン基のような環状炭化水素基及びその一部又は全部をハロゲンに置き換えたもの等が挙げられる。
 例えばZの炭素数が0の場合、-OOC-Z-COO-は-OOC-COO-であり、オキサレート基を表す。また、前記Zが1,2-フェニレン基である場合、-O-Z-O-はベンゼンジオラート基を表し、-O-Z-COO-はサリチラート基を表す。
 尚、前記化学式(5)で表されるリン化合物の具体例としては、例えば、リチウムジフルオロビスオキサレートホスフェート、ナトリウムジフルオロビスオキサレートホスフェート、リチウムテトラフルオロオキサレートホスフェート、ナトリウムテトラフルオロオキサレートホスフェート等が挙げられる。
 [化学式(6)で表されるリン化合物]
 次に、下記化学式(6)で表されるリン化合物について説明する。但し、前記化学式(4)で表されるリン化合物において説明したものと同一のものについては、その説明を省略する。
Figure JPOXMLDOC01-appb-C000023
 前記化学式(6)に於いて、前記Mn+及び価数nは、前記化学式(4)で述べたのと同様である。
 前記化学式(6)に於いて、前記R及びRは、それぞれ独立して、炭化水素基、又はハロゲン原子、ヘテロ原子又は不飽和結合の少なくとも何れか1つを有する炭化水素基(以下、「ハロゲン原子等を有する炭化水素基」という。)を表す。前記炭化水素基の炭素数は1~20であり、好ましくは1~10、より好ましくは1~4である。また、ハロゲン原子等を有する炭化水素基の炭素数は1~20であり、好ましくは1~10、より好ましくは1~4である。また、不飽和結合の数は1~10の範囲が好ましく、1~5の範囲がより好ましく、1~3の範囲が特に好ましい。
 前記炭化水素基又はハロゲン原子等を有する炭化水素基としては、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の鎖状アルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、2-ヨードエチル基、2-ブロモエチル基、2-クロロエチル基、2-フルオロエチル基、1,2-ジヨードエチル基、1,2-ジブロモエチル基、1,2-ジクロロエチル基、1,2-ジフルオロエチル基、2,2-ジヨードエチル基、2,2-ジブロモエチル基、2,2-ジクロロエチル基、2,2-ジフルオロエチル基、2,2,2-トリブロモエチル基、2,2,2-トリクロロエチル基、2,2,2-トリフルオロエチル基、1,1,1,3,3,3-ヘキサフルオロー2-プロピル基等の鎖状含ハロゲンアルキル基、2-ヨードシクロヘキシル基、2-ブロモシクロヘキシル基、2-クロロシクロヘキシル基、2-フルオロシクロヘキシル基等の環状含ハロゲンアルキル基、2-プロペニル基、イソプロペニル基、2-ブテニル基、3-ブテニル基等の鎖状アルケニル基、2-シクロペンテニル基、2-シクロヘキセニル基、3-シクロヘキセニル基等の環状アルケニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基等の鎖状アルキニル基、フェニル基、3-メトキシフェニル基、4-メトキシフェニル基、3,5-ジメトキシフェニル基、4-フェノキシフェニル基等のフェニル基、2-ヨードフェニル基、2-ブロモフェニル基、2-クロロフェニル基、2-フルオロフェニル基、3-ヨードフェニル基、3-ブロモフェニル基、3-クロロフェニル基、3-フルオロフェニル基、4-ヨードフェニル基、4-ブロモフェニル基、4-クロロフェニル基、4-フルオロフェニル基、3,5-ジヨードフェニル基、3,5-ジブロモフェニル基、3,5-ジクロロフェニル基、3,5-ジフルオロフェニル基等の含ハロゲンフェニル基、1-ナフチル基、2-ナフチル基、3-アミノ-2-ナフチル基等のナフチル基等が挙げられる。
 尚、前記ハロゲン原子及びヘテロ原子は、前記化学式(1)で述べたのと同様である。前記ハロゲン原子等を有する炭化水素基において、前記ハロゲン原子及びヘテロ原子は、前記炭化水素基中の水素の一部又は全部がこれらのハロゲン原子及び/又はヘテロ原子の何れかで置換されていてもよい。
 前記R及びRは、前記に例示した官能基群に於いて、同種でもよく相互に異なっていてもよい。また前記に例示した官能基群は単なる例示に過ぎず、これらに限定されるものではない。
 更に、前記R及びRは、前記炭化水素基、又は前記ハロゲン原子等を有する炭化水素基の何れかであって、相互に結合して環状構造を形成していてもよい。この場合、前記炭化水素基又はハロゲン原子等を有する炭化水素基としては、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基等の直鎖アルキレン基、ヨードメチレン基、ジヨードメチレン基、ブロモメチレン基、ジブロモメチレン基、フルオロメチレン基、ジフルオロメチレン基、ヨードエチレン基、1,1-ジヨードエチレン基、1,2-ジヨードエチレン基、トリヨードエチレン基、テトラヨードエチレン基、クロロエチレン基、1,1-ジクロロエチレン基、1,2-ジクロロエチレン基、トリクロロエチレン基、テトラクロロエチレン基、フルオロエチレン基、1,1-ジフルオロエチレン基、1,2-ジフルオロエチレン基、トリフルオロエチレン基、テトラフルオロエチレン基等の含ハロゲン直鎖アルキレン基、シクロヘキシレン基、フェニレン基、ベンジレン基、ナフチレン基、アントラシレン基、ナフタシレン基、ペンタシレン基のような環状炭化水素基及びその一部又は全部をハロゲン原子等に置き換えたもの等が挙げられる。
 前記化学式(6)で表されるリン化合物の具体例としては、例えば、ジエチルリン酸リチウム、ビス(2,2,2-トリフルオロエチル)リン酸リチウム等が挙げられる。
 前記成分(B)の添加量は、非水電解液の全質量に対し0.05質量%~5質量%の範囲内であることが好ましく、0.1質量%~3質量%の範囲内であることがより好ましく、0.5質量%~2質量%の範囲あることが特に好ましい。前記添加量を0.05質量%以上にすることにより、添加剤としての効果、即ち、電極表面に安定した皮膜を形成することができる。一方、前記添加量を5質量%以下にすることにより、非水電解液中の電解質の非水電解液溶媒に対する溶解性が低下するのを抑制することができる。
 また、本実施の形態に於いて、前記成分(B)は、少なくとも1種類が非水電解液中に含まれていればよいが、含有させる成分(B)の種類の数は、好ましくは1~5種類であり、より好ましくは1~3種類であり、特に好ましくは1~2種類である。成分(B)の種類を低減することにより、非水電解液の製造の際における工程の複雑化を抑制することができる。尚、前記成分(B)は従来公知の方法により製造可能である。
 <電解質>
 前記電解質としては、従来公知のものを採用することができる。例えば、リチウムイオン電池用の場合はリチウム塩が用いられ、ナトリウムイオン電池用の場合はナトリウム塩が用いられる。従って、二次電池の種類に応じて電解質の種類は適宜選択すればよい。
 また、前記電解質としては、フッ素を含有するアニオンを含有するものが好ましい。その様なフッ素含有のアニオンの具体例としては、例えばBF 、PF 、BFCF 、BF 、CFSO 、CSO 、CSO 、CSO 、N(SOF) 、N(CFSO 、N(CSO 、N(CFSO)(CFCO)、N(CFSO)(CSO、C(CFSO 等が挙げられる。これらは一種単独で、又は二種以上を併用することができる。フッ素含有アニオンのうち、非水電解液の安全性・安定性、電気伝導率やサイクル特性の向上の観点からは、BF 、PF 、N(CFSO が好ましく、BF 、PF が特に好ましい。
 前記電解質の前記有機溶媒に対する濃度は特に限定されず、通常は0.1~2M、好ましくは0.15~1.8M、より好ましくは0.2~1.5M、特に好ましくは0.3~1.2Mである。濃度を0.1M以上にすることにより、非水電解液の電気伝導率が不十分となるのを防止することができる。その一方、濃度を2M以下にすることにより、非水電解液の粘度上昇により電気伝導率が低下するのを抑制し、二次電池性能が低下するのを防止することができる。
 <有機溶媒>
 前記非水電解液に用いられる前記有機溶媒(非水溶媒)としては特に限定されず、例えば、環状炭酸エステル、鎖状炭酸エステル、リン酸エステル、環状エーテル、鎖状エーテル、ラクトン化合物、鎖状エステル、ニトリル化合物、アミド化合物、スルホン化合物等が挙げられる。これらの有機溶媒のうち、リチウム二次電池用有機溶媒として一般的に使用される点からは、炭酸エステルが好ましい。
 前記環状炭酸エステルとしては特に限定されず、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。これらのうち、リチウム二次電池の充電効率を向上させる点からは、エチレンカーボネート、プロピレンカーボネート等の環状カーボネートが好ましい。前記鎖状炭酸エステルとしては特に限定されず、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が挙げられる。これらのうち、リチウム二次電池の充電効率を向上させる点からは、ジメチルカーボネート、エチルメチルカーボネートが好ましい。前記リン酸エステルとしては特に限定されず、例えば、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル等が挙げられる。前記環状エーテルとしては特に限定されず、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン等が挙げられる。前記鎖状エーテルとしては特に限定されず、例えば、ジメトキシエタン等が挙げられる。前記ラクトン化合物としては特に限定されず、例えば、γ-ブチロラクトン等が挙げられる。前記鎖状エステルとしては特に限定されず、例えば、メチルプロピオネート、メチルアセテート、エチルアセテート、メチルホルメート等が挙げられる。前記ニトリル化合物としては特に限定されず、例えば、アセトニトリル等が挙げられる。前記アミド化合物としては特に限定されず、例えば、ジメチルホルムアミド等が挙げられる。前記スルホン化合物としては特に限定されず、例えば、スルホラン、メチルスルホラン等が挙げられる。また、前記有機溶媒分子中に含まれる炭化水素基の水素を少なくとも一部フッ素で置換したものも好適に用いることができる。これらの有機溶媒は一種単独で又は二種以上を混合して用いてもよい。
 また、前記有機溶媒としては、入手の容易さや性能の観点から、炭酸エステルを用いるのが好ましい。
 <非水電解液の製造>
 本実施の形態の非水電解液は、例えば、前記の有機溶媒(非水溶媒)に前記電解質の塩を加えた後に、少なくとも1種の前記成分(A)を添加する。さらに、成分(B)を添加してもよい。この際、前記有機溶媒や電解質の塩、成分(A)及び成分(B)としては、製造効率を低下させない範囲内で予め精製等して、不純物が極力少ないものを用いることが好ましい。尚、前記成分(A)、又は成分(B)の化合物を複数種用いる場合、それらの添加の順序は適宜必要に応じて設定することができる。
 <その他>
 本実施の形態に係る非水電解液には、従来公知のその他の添加剤が添加されていてもよい。この場合、その他の添加剤の添加量は、適宜必要に応じて設定することができる。
(二次電池)
 次に、本発明の二次電池として、リチウムイオン二次電池を例にして以下に説明する。図1は、前記非水電解液を備えたリチウムイオン二次電池の概略を示す断面模式図である。
 本実施の形態に係るリチウムイオン二次電池は、図1に示すように、正極缶4と負極缶5とで形成される内部空間に、正極缶4側から正極1、セパレータ3、負極2、スペーサー7の順に積層された積層体が収納された構造を有している。負極缶5とスペーサー7との間にスプリング8を介在させることによって、正極1と負極2を適度に圧着固定している。本実施の形態の成分(A)の化合物、もしくは成分(A)と成分(B)の化合物群を含有する非水電解液は、正極1、セパレータ3及び負極2の間に含浸されている。正極缶4及び負極缶5の間にガスケット6を介在させた状態で、正極缶4及び負極缶5を挟持させることによって両者を結合し、前記積層体を密閉状態にしている。
 前記正極1における正極活物質層の材料としては特に限定されず、例えば、リチウムイオンが拡散可能な構造を持つ遷移金属化合物、又はその遷移金属化合物とリチウムの酸化物が挙げられる。具体的には、LiCoO、LiNiO、LiMn、LiMnO+LiMeO(Me=Mn、Co、Ni)固溶体、LiFePO、LiCoPO、LiMnPO4、LiFePOLiNiCoMn(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)、LiNiCoyAl(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)LiFeF、TiO、V、MoO等の酸化物、TiS、FeS等の硫化物、又はポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
 正極1は、前記に列挙した正極活物質を、公知の導電助剤や結着剤と共に加圧成型することにより、又は正極活物質を公知の導電助剤や結着剤と共にピロリドン等の有機溶剤に混合し、ペースト状にしたものをアルミニウム箔等の集電体に塗工後、乾燥することにより得ることができる。
 前記負極2における負極活物質層の材料としては、リチウムを吸蔵、放出することが可能な材料であれば特に限定されず、例えば、金属複合酸化物、リチウム金属、リチウム合金、ケイ素、ケイ素系合金、スズ系合金、金属酸化物、ポリアセチレン等の導電性重合体、Li-Co-Ni系材料、炭素材料等が挙げられる。
 前記金属複合酸化物としては特に限定されず、例えば、LiFe(0≦x≦1)、LiWO(0≦x≦1)、SnMe 1-xMe (Me=Mn、Fe、Pb、Geであり、Me=Al、B、P、Si、周期律表の1~3族の元素、ハロゲンであり、0<x≦1、1≦y≦3、1≦z≦8)等が挙げられる。
 前記金属酸化物としては特に限定されず、例えばSnO、SnO、SiO(0<x<2)、PbO、PbO、Pb、Pb、Sb、Sb、Sb、GeO、GeO、Bi、Bi、Bi等が挙げられる。
 前記炭素材料としては特に限定されず、例えば天然黒鉛、人造黒鉛、ホウ素化黒鉛、フッ化黒鉛、メソカーボンマイクロビーズ、ピッチ系炭素繊維黒鉛化物、カーボンナノチューブ、ハードカーボン、フラーレン等が挙げられる。
 負極2は、前記電極材料の箔状のものや粉末状のものを使用できる。粉末状の場合は、公知の導電助剤及び結着剤と共に加圧成型することにより、又は公知の導電助剤及び結着剤と共にピロリドン等の有機溶剤に混合し、ペースト状にしたものを銅箔等の集電体に塗工後、乾燥することにより得ることができる。 
 本実施の形態に係るリチウムイオン二次電池には、正極1と負極2の短絡を防止するために、両者の間に通常、セパレータ3が介在される。セパレータ3の材質や形状は特に制限されないが、上述の非水電解液が通過しやすく、絶縁体で、化学的に安定な材質であるものが好ましい。例えば、各種の高分子材料からなる微多孔性のフィルム、シート等が挙げられる。高分子材料の具体例としては、ナイロン(登録商標)、ニトロセルロース、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン等のポリオレフィン系高分子が用いられる。電気化学的な安定性・化学的安定性の観点からは、ポリオレフィン系高分子が好ましい。
 本実施の形態のリチウムイオン二次電池の最適な使用電圧は、正極1と負極2の組み合わせによって異なり、通常は、2.4~4.6Vの範囲内で使用可能である。
 本実施の形態のリチウムイオン二次電池の形状については特に制限はないが、図1に示すコイン型セルの他に、例えば、円筒型、角型、ラミネート型等が挙げられる。
 本実施の形態に係る二次電池であると、高温環境下においても優れたサイクル特性を示すことができ、本実施の形態の非水電解液は、例えばリチウムイオン二次電池に好適に用いることができる。但し、図1に示すリチウムイオン二次電池は、本発明の二次電池の一態様を例示的に示したものであり、本発明の二次電池はこれに限定されるものではない。
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 (モノフルオロリン酸エチルリチウム)
 <モノフルオロリン酸ジエチルの合成>
 撹拌子を入れた300mLのナスフラスコにフッ化カリウム33.7gとアセトニトリル150gを入れ、さらにクロロリン酸ジエチル〈東京化成工業(株)製〉50.3gを加えた。続いて、ナスフラスコ中の溶液を撹拌しながら、窒素気流下、100℃で7時間加熱還流を行った。前記溶液を室温まで放冷後、吸引ろ過により過剰のフッ化カリウムおよび析出した塩化カリウムを除去した。エバポレーターにより得られたろ液中の溶媒を留去し、目的物である淡黄色透明液体のモノフルオロリン酸ジエチル42gを得た。
 <モノフルオロリン酸エチルリチウムの合成>
 撹拌子を入れた100mLのナスフラスコに塩化リチウム1.1gと、前記のモノフルオロリン酸ジエチル20.0gを加えた。窒素気流下、120℃で1.5時間加熱還流を行った。反応溶液を室温まで放冷後、反応溶液中の析出物を吸引ろ過によりろ別し、白色固体を得た。窒素気流下、130℃で乾燥を行い、目的物であるモノフルオロリン酸エチルリチウム3.0gを得た。
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。また、イオンクロマトグラフィー〈ダイオネクス社製、型番:ICS-1500〉にてカチオン分析を行ったところ、リチウムイオンのピークが検出された。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=126.9にマスピークが見られた。これは、モノフルオロリン酸エチルアニオンの分子量とほぼ一致し、得られた白色固体がモノフルオロリン酸エチルであることを確認した。
 (モノフルオロリン酸メチルリチウム)
 <モノフルオロリン酸ジメチルの合成>
 撹拌子を入れた100mLのナスフラスコにフッ化カリウム3.9gとアセトニトリル20gを投入し、さらにクロロリン酸ジメチル6.5gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、80℃~100℃で2時間加熱還流を行った。さらに、前記溶液を室温まで放冷後、溶液の減圧濾過を行うことにより、白色固体とろ液とに分離した。これにより、微黄色透明の液体であるモノフルオロリン酸ジメチルのアセトニトリル溶液を得た。
 <モノフルオロリン酸メチルリチウムの合成>
 撹拌子を入れた50mLのナスフラスコに塩化リチウム無水1.0gを投入し、さらに前記フルオロリン酸ジメチルのアセトニトリル溶液を投入した。その後、ナスフラスコ中の溶液を撹拌しながら、110℃~120℃で4時間加熱還流を行った。前記溶液を室温まで放冷後、減圧下、40℃で当該溶液中の溶媒を留去することにより、白色固体2.1gを得た。
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=112.9にマスピークが見られた。これは、モノフルオロリン酸メチルアニオンの分子量とほぼ一致しており、得られた白色固体が、モノフルオロリン酸メチルリチウムであることを確認した。
 (モノフルオロリン酸イソプロピルリチウム)
 <フルオロリン酸ジイソプロピルの合成>
 撹拌子を入れた100mLのナスフラスコにフッ化カリウム5.2gとアセトニトリル20gを投入し、さらにクロロリン酸ジイソプロピル12.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、窒素気流下、80℃~100℃で2時間加熱還流を行った。前記溶液を室温まで放冷後、減圧濾過により過剰のフッ化カリウム及び析出した塩化カリウムを除去した。エバポレーターにより得られたろ液中の溶媒を40℃で留去し、目的物である微黄色透明液体のフルオロリン酸ジイソプロピル10.0gを得た。
 <モノフルオロリン酸イソプロピルリチウムの合成>
 撹拌子を入れた100mLのナスフラスコに臭化リチウム無水1.2gとアセトニトリル20gを投入し、さらに前記フルオロリン酸ジイソプロピル5.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、110℃~120℃で5時間加熱還流を行った。前記溶液を室温まで放冷後、溶液中の析出物を減圧濾過により濾別した。その後、析出物を窒素気流下、130℃で乾燥し、白色固体1.6gを得た。
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=140.9にマスピークが見られた。これは、モノフルオロリン酸イソプロピルアニオンの分子量とほぼ一致しており、得られた白色固体がモノフルオロリン酸イソプロピルリチウムであることを確認した。
 (モノフルオロリン酸ブチルリチウム)
 <フルオロリン酸ジブチルの合成>
 撹拌子を入れた100mLのナスフラスコにフッ化カリウム4.4gとアセトニトリル20gを投入し、さらにクロロリン酸ジブチル11.5gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、80℃~100℃で2時間加熱還流を行った。前記溶液を室温まで放冷後、減圧濾過を行うことにより白色固体とろ液とを分離した。続いて、減圧下、40℃で濾液中の溶媒を留去することにより、微黄色透明の液体であるフルオロリン酸ジブチル6.8gを得た。
 <モノフルオロリン酸ブチルリチウムの合成>
 撹拌子を入れた100mLのナスフラスコに臭化リチウム無水1.0gとアセトニトリル20gを投入し、さらに前記フルオロリン酸ジブチル5.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、110℃~120℃で3時間加熱還流を行った。前記溶液を室温まで放冷後、溶液中の析出物を減圧濾過により濾別した。その後、析出物を窒素気流下、130℃で乾燥し、白色固体1.6gを得た。
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=155.0にマスピークが見られた。これは、モノフルオロリン酸ブチルアニオンの分子量とほぼ一致し、得られた白色固体がモノフルオロリン酸ブチルリチウムであることを確認した。
 (モノフルオロリン酸(2-エトキシエチル)リチウム)
 <フルオロリン酸ビス(2-エトキシエチル)の合成>
 撹拌子を入れた50mLのナスフラスコにフッ化カリウム1.5gとアセトニトリル16gを投入し、さらに前記クロロリン酸ビス(2-エトキシエチル)4.6gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、50℃~60℃で2時間加熱した。さらに、溶液にシリカゲルを投入して撹拌を行い、減圧下、40℃で当該溶液中の溶媒を留去し、目的物を含む白色固体混合物を得た。
 続いて、ガラスフィルタ付のカラム管にシリカゲルを少量積み、得られた白色固体混合物を投入し、酢酸エチルで抽出(フラッシュカラム)を行った。減圧下、40℃で溶液中の溶媒を留去することにより、無色透明の液体であるフルオロリン酸ビス(2-エトキシエチル)1.5gを得た。
 <モノフルオロリン酸(2-エトキシエチル)リチウムの合成>
 撹拌子を入れた50mLのナスフラスコに臭化リチウム無水0.2gとアセトニトリル10gを投入し、続いて前記フルオロリン酸ビス(2-エトキシエチル)1.0gを投入した。その後、ナスフラスコ中の溶液を撹拌しながら、50℃~60℃で4.5時間加熱した。前記溶液を室温まで放冷後、溶液中の析出物を減圧濾過により濾別した。その後、析出物を窒素気流下、130℃で乾燥し、白色固体0.4gを得た。
 得られた白色固体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、新規のピークが一本検出された。これにより、新規アニオンが生成していることを確認した。さらに、得られた白色固体をLC/MS(Waters社製)にて負イオン分析を行ったところ、m/z=170.9にマスピークが見られた。これは、モノフルオロリン酸(2-エトキシエチル)アニオンの分子量とほぼ一致し、得られた白色固体がモノフルオロリン酸(エトキシエチル)リチウムであることを確認した。
 <モノフルオロリン酸エチルの合成>
 <モノフルオロリン酸エチルの合成>
 撹拌子を入れた50mLのナスフラスコに前記エチルフルオロリン酸リチウム13.7gとジエチルエーテル50gを投入した。続いて、ナスフラスコ中の溶液を撹拌しながら、硫酸4.0gを少しずつ投入した。その後、常温で1時間撹拌を行った。さらに、減圧濾過を行い、白色沈殿物とろ液を分離した。続いて、減圧下でろ液中の溶媒を留去することにより、無色透明の液体であるモノフルオロリン酸エチル9.6gを得た。
 得られた無色透明の液体を、イオンクロマトグラフィー〈メトローム社製、型番:IC-850〉にてアニオン分析を行ったところ、前記エチルフルオロリン酸リチウムと同様の検出時間でピークが一本検出され、また、硫酸イオンは検出されなかった。これにより、得られた無色透明の液体がモノフルオロリン酸エチルであることを確認した。
 (実施例1)
 <非水電解液の作製>
 露点が-70℃以下のアルゴン雰囲気ドライボックス内で、エチレンカーボネート(EC)及びジメチルカーボネート(DMC)からなる混合溶媒(体積比率でEC:DMC=1:1、キシダ化学株式会社製、リチウムバッテリーグレード)に対し、LiPFの濃度が1.0モル/リットルとなる様に調製した。
 次に、前記モノフルオロリン酸エチルリチウムを、非水電解液の全質量に対し、添加濃度が0.5質量%となる様に、前記混合溶媒に添加した。これにより、本実施例に係る非水電解液を調製した。
 (実施例2)
 本実施例においては、添加剤として、さらに、非水電解液の全質量に対し添加濃度が0.5質量%となるように、リチウムビスオキサレートボレートを前記混合溶媒に加えた。それ以外は、前記実施例1と同様にして、本実施例に係る非水電解液を調製した。
 (実施例3)
 本実施例においては、実施例2のリチウムビスオキサラトボレートに代えて、ビニレンカーボネートを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例4)
 本実施例においては、実施例2のリチウムビスオキサラトボレートに代えて、フルオロエチレンカーボネートを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例5)
 本実施例においては、実施例2のリチウムビスオキサラトボレートに代えて、ホウ酸トリメチルを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例6)
 本実施例においては、実施例2のリチウムビスオキサラトボレートに代えて、ビス(2,2,2、-トリフルオロエチル)リン酸リチウムを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例7)
 本実施例においては、実施例2のリチウムビスオキサラトボレートに代えて、N,N-ジメチルアセトアセトアミドを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例8)
 本実施例においては、実施例2のリチウムビスオキサラトボレートに代えて、マレイン酸無水物を添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例9)
 本実施例においては、実施例2のリチウムビスオキサラトボレートに代えて、1,3-プロパンスルトンを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例10)
 本実施例においては、添加剤として、さらに、非水電解液の全質量に対し添加濃度が0.5質量%となるように、マレイン酸無水物を添加した。それ以外は、実施例2と同様にして、本実施例の非水電解液を調製した。
 (実施例11)
 本実施例においては、実施例2のモノフルオロリン酸エチルリチウムに代えて、モノフルオロリン酸メチルリチウムを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例12)
 本実施例においては、実施例2のモノフルオロリン酸エチルリチウムに代えて、モノフルオロリン酸イソプロピルリチウムを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例13)
 本実施例においては、実施例2のモノフルオロリン酸エチルリチウムに代えて、モノフルオロリン酸ブチルリチウムを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例14)
 本実施例においては、実施例2のモノフルオロリン酸エチルリチウムに代えて、モノフルオロリン酸(2-エトキシエチル)リチウムを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例15)
 本実施例においては、実施例3のモノフルオロリン酸エチルリチウムに代えて、モノフルオロリン酸メチルリチウムを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例3と同様にして本実施例の非水電解液を調製した。
 (実施例16)
 本実施例においては、実施例3のモノフルオロリン酸エチルリチウムに代えて、モノフルオロリン酸イソプロピルリチウムを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例3と同様にして本実施例の非水電解液を調製した。
 (実施例17)
 本実施例においては、実施例3のモノフルオロリン酸エチルリチウムに代えて、モノフルオロリン酸ブチルリチウムを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例3と同様にして本実施例の非水電解液を調製した。
 (実施例18)
 本実施例においては、実施例3のモノフルオロリン酸エチルリチウムに代えて、モノフルオロリン酸(2-エトキシエチル)リチウムを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例3と同様にして本実施例の非水電解液を調製した。
 (実施例19)
 本実施例においては、実施例1のモノフルオロリン酸エチルリチウムに代えて、モノフルオロリン酸エチルを添加濃度が0.5質量%となる様に添加した。それ以外は、実施例1と同様にして本実施例の非水電解液を調製した。
 (実施例20)
 本実施例においては、実施例1のモノフルオロリン酸エチルリチウムの添加濃度を0.05質量%となる様に添加した。それ以外は、実施例1と同様にして本実施例の非水電解液を調製した。
 (実施例21)
 本実施例においては、実施例1のモノフルオロリン酸エチルリチウムの添加濃度を2.5質量%となる様に添加した。それ以外は、実施例1と同様にして本実施例の非水電解液を調製した。
 (実施例22)
 本実施例においては、実施例2のリチウムビスオキサラトボレートの添加濃度を0.05質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (実施例23)
 本実施例においては、実施例2のリチウムビスオキサラトボレートの添加濃度を5質量%となる様に添加した。それ以外は、実施例2と同様にして本実施例の非水電解液を調製した。
 (比較例1)
 露点が-70℃以下のアルゴン雰囲気ドライボックス内で、エチレンカーボネート(EC)及びジメチルカーボネート(DMC)からなる混合溶媒(体積比率でEC:DMC=1:1、キシダ化学株式会社製、リチウムバッテリーグレード)に対し、LiPFの濃度が1.0モル/リットルとなる様に調製した。これにより、本比較例に係る非水電解液を調製した。
 (比較例2)
 本比較例においては、実施例2のモノフルオロリン酸エチルリチウムを添加しなかったこと以外は、実施例2と同様にして本比較例の非水電解液を調製した。
 (サイクル特性の評価)
 <コインセルの作製>
 図1に示すようなコイン型のリチウム二次電池を作製し、各実施例及び比較例の非水電解液の電気化学特性を評価した。
 即ち、正極に、直径9mmφに切り出したLiNi1/3Co1/3Mn1/3(パイオトレック(株)製)を用い、セパレータにポリエチレン製セパレータを用い、負極に、直径10mmφに切り出した天然黒鉛シート(パイオトレック株式会社製)を用いた。さらに、正極、セパレータ及び負極の順に積層して積層体とし、各実施例又は比較例で調製した非水電解液を含浸させた後、当該積層体を密閉して、コインセルをそれぞれ作製した。コインセルの組み立ては、全て露点-70℃以下のアルゴングローブボックス内で行った。
 <慣らし充放電>
 作製したコインセルは、25℃の恒温槽内で充電終止電圧4.2V、放電終止電圧3.0V、0.2C(定格容量を1時間で充電もしくは放電する電流値を1Cとする)の定電流定電圧法にて5サイクルの慣らし充放電をした。
 <高温サイクル特性の評価>
 慣らし充放電の終了したコインセルを、60℃の恒温槽内で充電終止電圧4.2V、放電終止電圧3.0V、0.2Cの定電流定電圧法にて50サイクル充放電した。50サイクル後の放電容量を比較評価した。下記表1及び表2に、比較例1を100としたときの、実施例1~23及び比較例2の放電容量の比率を示す。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 前記表1及び表2から明らかなように、実施例1~23の非水電解液を用いたコインセルでは、比較例1及び2に比べ、60℃の高温環境下においても容量維持率が高く、サイクル特性に優れていることが確認された。
1 正極
2 負極
3 セパレータ
4 正極缶
5 負極缶
6 ガスケット
7 スペーサー

Claims (6)

  1.  二次電池に用いられる二次電池用非水電解液であって、
     下記化学式(1)で表される成分(A)を少なくとも一種以上を含む二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    (但し、前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン及びオニウムイオンからなる群より選ばれる何れか1種を表す。前記Xはハロゲン原子を表す。前記Rは、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。前記nは価数を表す。)
  2.  さらに、少なくとも1種の下記成分(B)を含む請求項1に記載の二次電池用非水電解液。
     成分(B):下記化学式(2)で表されるホウ素錯体塩、又はホウ酸エステル、酸無水物、不飽和結合を有する環状カーボネート、ハロゲン原子を有する環状カーボネート、環状スルホン酸エステル、下記化学式(3)で表されるアセトアセチル基を有するアミン類及び下記化学式(4)~(6)の何れかで表されるリン化合物からなる群より選ばれる少なくとも1種の化合物
    Figure JPOXMLDOC01-appb-C000002
    (前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン又はオニウムイオンを表す。前記X~Xはそれぞれ独立しており、任意に選択される1又は2つの組合せが、-OOC-Y-COO-、-O-Y-O-又は-OOC-Y-O-の環状構造を形成しており、その場合の前記Yは、炭素数が0~20の炭化水素基、又は炭素数が0~20の範囲であって、ヘテロ原子、不飽和結合若しくは環状構造を有する炭化水素基を表す。あるいは、前記X~Xは、それぞれ独立して、ハロゲン原子、炭素数0~20のアルキル基、炭素数0~20のアルコキシ基、炭素数が0~20の範囲内であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有するアルキル基、又は炭素数が0~20の範囲内であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有するアルコキシ基を表す。前記nは価数を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (前記R及びRは、それぞれ独立して、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合を有する炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン又はオニウムイオンを表す。前記A及びAは、それぞれ独立して、酸素原子、硫黄原子又はセレン原子を表す。前記XとXは、それぞれ独立して、ハロゲン原子、炭素数が1~20のアルキル基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキル基を表す。あるいは、前記XとXは、前記炭素数が1~20のアルキル基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキル基の何れかであって、相互に結合して環状構造を形成する。前記nは価数を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン又はオニウムイオンを表す。前記X~X12は、それぞれ独立して、ハロゲン原子、炭素数が1~20のアルキル基、炭素数が1~20のアルコキシ基、炭素数が1~20のアルキルチオ基、炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキル基、炭素数が1~20のアルキルチオ基、炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルコキシ基、炭素数が1~20のアルキルチオ基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか一つを有するアルキルチオ基を表す。あるいは、前記X~X12は、任意に選択される少なくとも1つの組合せが、-OOC-Z-COO-、-OOC-Z-O-又は-O-Z-O-の環状構造を形成しており、その場合の前記Zは、炭素数が0~20の炭化水素基、又は炭素数が0~20の範囲であって、ハロゲン原子、ヘテロ原子、不飽和結合若しくは環状構造の少なくとも何れか1つを有する炭化水素基を表す。前記nは価数を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (前記Mn+は、水素イオン、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、遷移金属イオン又はオニウムイオンを表す。前記R及びRは、それぞれ独立して、炭素数が1~20の炭化水素基、又は炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基を表す。あるいは、前記R及びRは、前記炭素数が1~20の炭化水素基、又は前記炭素数が1~20の範囲であって、ハロゲン原子、ヘテロ原子若しくは不飽和結合の少なくとも何れか1つを有する炭化水素基の何れかであって、相互に結合して環状構造を形成するものを表す。前記nは価数を表す。)
  3.  前記成分(A)の添加量は、前記二次電池用非水電解液の全質量に対し、0.05質量%~5質量%である請求項1記載の二次電池用非水電解液。
  4.  前記成分(B)の添加量は、前記二次電池用非水電解液の全質量に対し、0.05質量%~5質量%である請求項1に記載の二次電池用非水電解液。
  5.  前記成分(A)が、モノフルオロリン酸エチルリチウムである請求項1~4に記載の二次電池用非水電解液。
  6.  請求項1~5の何れか1項に記載の二次電池用非水電解液、正極および負極を少なくとも備えた二次電池。
     
PCT/JP2016/088508 2015-12-25 2016-12-22 二次電池用非水電解液及びそれを備えた二次電池 WO2017111096A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16878982T PL3396768T3 (pl) 2015-12-25 2016-12-22 Niewodny roztwór elektrolitu dla akumulatora i akumulator zawierający ten roztwór
EP16878982.4A EP3396768B1 (en) 2015-12-25 2016-12-22 Non-aqueous electrolyte solution for secondary battery, and secondary battery provided therewith
KR1020187020963A KR20180089525A (ko) 2015-12-25 2016-12-22 이차 전지용 비수전해액 및 그것을 구비한 이차 전지
US16/065,721 US20210202991A1 (en) 2015-12-25 2016-12-22 Nonaqueous electrolyte solution for secondary battery, and secondary battery provided with said solution
CN201680076242.6A CN108475822B (zh) 2015-12-25 2016-12-22 二次电池用非水电解液及具备其的二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-252847 2015-12-25
JP2015252847 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111096A1 true WO2017111096A1 (ja) 2017-06-29

Family

ID=59090664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088508 WO2017111096A1 (ja) 2015-12-25 2016-12-22 二次電池用非水電解液及びそれを備えた二次電池

Country Status (7)

Country Link
US (1) US20210202991A1 (ja)
EP (1) EP3396768B1 (ja)
JP (2) JP6607842B2 (ja)
KR (1) KR20180089525A (ja)
CN (1) CN108475822B (ja)
PL (1) PL3396768T3 (ja)
WO (1) WO2017111096A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893381B2 (en) * 2014-08-11 2018-02-13 Kanto Denka Kogyo Co., Ltd. Nonaqueous electrolyte containing monofluorophosphoric ester salt and nonaqueous secondary battery using same
CN109687026A (zh) * 2019-03-04 2019-04-26 杉杉新材料(衢州)有限公司 一种高压三元锂离子电池电解液及含该电解液的锂离子电池
US10396399B2 (en) * 2014-07-07 2019-08-27 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
JP2020194638A (ja) * 2019-05-24 2020-12-03 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044055A (ja) * 2017-12-25 2021-03-18 昭和電工株式会社 リチウムイオン二次電池
WO2020203148A1 (ja) * 2019-03-29 2020-10-08 株式会社村田製作所 二次電池用電解液および二次電池
US20200388885A1 (en) * 2019-06-05 2020-12-10 Enevate Corporation Silicon-based energy storage devices with lipo2f2 salt-containing electrolyte formulations
CN113130996B (zh) * 2019-12-31 2022-12-13 北京卫蓝新能源科技有限公司 一种锂电池电解液添加剂及其制备方法和应用
CN114079083A (zh) * 2020-08-19 2022-02-22 广汽埃安新能源汽车有限公司 锂离子电池电解液及其添加剂、锂离子电芯、锂离子电池包及其应用
EP4237473A4 (en) * 2020-11-05 2024-04-10 1S1 Energy Inc POROUS BORON-CONTAINING MEMBRANES AND ASSOCIATED METHODS OF USE
CN116568693A (zh) * 2020-11-05 2023-08-08 1S1能源有限公司 含四价硼的质子交换固体载体以及制备和使用含四价硼的质子交换固体载体的方法
EP4237424A4 (en) 2020-11-05 2024-04-17 1S1 Energy Inc TETRAVALENT BORON-CONTAINING SOLID PROTON EXCHANGE CARRIERS AND METHODS FOR THE PRODUCTION AND USE OF TETRAVALENT BORON-CONTAINING SOLID PROTON EXCHANGE CARRIERS
CN112510260B (zh) * 2020-11-27 2022-11-04 珠海市赛纬电子材料股份有限公司 电解液添加剂、非水电解液和锂离子电池
CN114006035A (zh) * 2021-11-02 2022-02-01 宁德新能源科技有限公司 电解液以及使用其的电化学装置和电子装置
CN114497744A (zh) * 2022-03-07 2022-05-13 天津市捷威动力工业有限公司 钠离子电解液及其应用、钠离子电池及其制备方法
CN114709478A (zh) * 2022-03-30 2022-07-05 厦门大学 含Se=P双键有机化合物在制备二次电池电解液中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173180A (ja) * 2005-12-26 2007-07-05 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2010045341A (ja) * 2008-07-16 2010-02-25 Japan Pionics Co Ltd 電極シート及びそれを用いた電気二重層キャパシタ、リチウムイオンキャパシタ
WO2011121912A1 (ja) * 2010-03-29 2011-10-06 パナソニック株式会社 非水電解質およびそれを用いた非水電解質二次電池
JP2012190700A (ja) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
WO2015122512A1 (ja) * 2014-02-14 2015-08-20 ステラケミファ株式会社 二次電池用非水電解液及びそれを備えた二次電池
WO2015133097A1 (ja) * 2014-03-03 2015-09-11 株式会社Gsユアサ 非水電解質二次電池
WO2016024496A1 (ja) * 2014-08-11 2016-02-18 関東電化工業株式会社 モノフルオロリン酸エステル塩を含む非水電解液、及びそれを用いた非水電解液電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3294446B2 (ja) * 1994-11-07 2002-06-24 三井化学株式会社 非水電解液
JP4233819B2 (ja) 2002-06-25 2009-03-04 三菱化学株式会社 非水電解液二次電池
WO2006038614A1 (ja) * 2004-10-05 2006-04-13 Bridgestone Corporation 非水電解液及びそれを備えた非水電解液電池
JP2006286277A (ja) * 2005-03-31 2006-10-19 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液二次電池
JP4952080B2 (ja) 2005-06-20 2012-06-13 三菱化学株式会社 二次電池用非水系電解液及び非水系電解液二次電池
WO2007052742A1 (ja) * 2005-11-04 2007-05-10 Stella Chemifa Corporation 蓄電素子
JP2008097954A (ja) 2006-10-11 2008-04-24 Sony Corp 電解液および電池
JP2010282836A (ja) * 2009-06-04 2010-12-16 Nissan Motor Co Ltd リチウムイオン二次電池
JP5154590B2 (ja) * 2010-02-03 2013-02-27 株式会社日立製作所 過充電抑制剤並びにこれを用いた非水電解液及び二次電池
TWI455388B (zh) * 2011-12-20 2014-10-01 Ind Tech Res Inst 電解質、電解質溶液之製造方法及鋰離子電池
KR20130104088A (ko) * 2012-03-12 2013-09-25 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 리튬 이차전지
JP5846040B2 (ja) * 2012-05-14 2016-01-20 株式会社豊田自動織機 電解液およびそれを備えるリチウムイオン二次電池
JP2014022333A (ja) * 2012-07-23 2014-02-03 Asahi Kasei Corp 非水蓄電デバイス用電解液
JP2015035378A (ja) * 2013-08-09 2015-02-19 トヨタ自動車株式会社 非水電解液二次電池
US10074873B2 (en) * 2014-02-26 2018-09-11 Basf Se Inorganic coordination polymers as gelling agents
JP6398326B2 (ja) 2014-05-27 2018-10-03 株式会社Gsユアサ 非水電解質二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173180A (ja) * 2005-12-26 2007-07-05 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2010045341A (ja) * 2008-07-16 2010-02-25 Japan Pionics Co Ltd 電極シート及びそれを用いた電気二重層キャパシタ、リチウムイオンキャパシタ
WO2011121912A1 (ja) * 2010-03-29 2011-10-06 パナソニック株式会社 非水電解質およびそれを用いた非水電解質二次電池
JP2012190700A (ja) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
WO2015122512A1 (ja) * 2014-02-14 2015-08-20 ステラケミファ株式会社 二次電池用非水電解液及びそれを備えた二次電池
WO2015133097A1 (ja) * 2014-03-03 2015-09-11 株式会社Gsユアサ 非水電解質二次電池
WO2016024496A1 (ja) * 2014-08-11 2016-02-18 関東電化工業株式会社 モノフルオロリン酸エステル塩を含む非水電解液、及びそれを用いた非水電解液電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396768A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396399B2 (en) * 2014-07-07 2019-08-27 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
US10686222B2 (en) 2014-07-07 2020-06-16 Daikin Industries, Ltd. Liquid electrolyte, and method for manufacturing phosphate
US9893381B2 (en) * 2014-08-11 2018-02-13 Kanto Denka Kogyo Co., Ltd. Nonaqueous electrolyte containing monofluorophosphoric ester salt and nonaqueous secondary battery using same
CN109687026A (zh) * 2019-03-04 2019-04-26 杉杉新材料(衢州)有限公司 一种高压三元锂离子电池电解液及含该电解液的锂离子电池
JP2020194638A (ja) * 2019-05-24 2020-12-03 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス

Also Published As

Publication number Publication date
JP6607842B2 (ja) 2019-11-20
CN108475822B (zh) 2022-03-11
JP7242048B2 (ja) 2023-03-20
JP2019220474A (ja) 2019-12-26
EP3396768A4 (en) 2018-12-05
CN108475822A (zh) 2018-08-31
US20210202991A1 (en) 2021-07-01
EP3396768A1 (en) 2018-10-31
JP2017120780A (ja) 2017-07-06
EP3396768B1 (en) 2020-04-22
KR20180089525A (ko) 2018-08-08
PL3396768T3 (pl) 2020-11-16

Similar Documents

Publication Publication Date Title
JP6607842B2 (ja) 二次電池用非水電解液及びそれを備えた二次電池
WO2016199823A1 (ja) 二次電池用非水電解液及びそれを備えた二次電池
JP6989169B2 (ja) 二次電池用非水電解液及びそれを備えた二次電池
JP6780938B2 (ja) 二次電池用非水電解液及びそれを備えた二次電池
WO2017006977A1 (ja) 二次電池用非水電解液、その製造方法及びそれを備えた二次電池
JP6781548B2 (ja) 二次電池用非水電解液及びそれを備えた二次電池
KR102440841B1 (ko) 2차 전지용 비수 전해액 및 그것을 구비한 2차 전지
WO2023079988A1 (ja) 難燃性非水電解液及びそれを用いた二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020963

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020963

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016878982

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016878982

Country of ref document: EP

Effective date: 20180725