WO2015133097A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2015133097A1
WO2015133097A1 PCT/JP2015/000998 JP2015000998W WO2015133097A1 WO 2015133097 A1 WO2015133097 A1 WO 2015133097A1 JP 2015000998 W JP2015000998 W JP 2015000998W WO 2015133097 A1 WO2015133097 A1 WO 2015133097A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonaqueous electrolyte
mass
secondary battery
electrolyte secondary
general formula
Prior art date
Application number
PCT/JP2015/000998
Other languages
English (en)
French (fr)
Inventor
西江 勝志
雄大 川副
剛志 八田
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2016506121A priority Critical patent/JP6536563B2/ja
Priority to CN201580010886.0A priority patent/CN106063019B/zh
Priority to DE112015001082.3T priority patent/DE112015001082T5/de
Priority to US15/122,534 priority patent/US10141607B2/en
Publication of WO2015133097A1 publication Critical patent/WO2015133097A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing monofluorotoluene.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density and are widely used in mobile phones, notebook PC power supplies, etc., and in recent years, they are used as power sources for automobiles such as electric vehicles. Has also been considered.
  • the nonaqueous electrolyte secondary battery includes a positive electrode plate in which a positive electrode mixture layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode mixture layer containing a negative electrode active material on the surface of the negative electrode current collector It is possible to charge / discharge by making the negative electrode plate formed with the electrode face each other through an electrically separating separator and transferring ions between the positive electrode and the negative electrode through a non-aqueous electrolyte in which a supporting salt is dissolved in a non-aqueous solvent. Designed to be
  • the non-aqueous electrolyte secondary battery is normally controlled so that the voltage does not exceed a predetermined region, but if the current is forcibly supplied to the battery for some reason, the battery has exceeded the storage capacity of the battery. There may be an overcharge condition with voltage. In such an overcharged state, the nonaqueous solvent may undergo an oxidative decomposition reaction on the surface of the positive electrode, or lithium metal may be deposited in a dendritic form on the negative electrode, causing a short circuit. This is an important issue for non-aqueous electrolyte secondary batteries.
  • Overcharge inhibitors include compounds that form a film with high resistance on the surface of the active material by oxidative polymerization in an overcharged state, compounds that cause self-discharge and internal short circuit by oxidation-reduction reactions, or internal pressure-operated Compounds that actuate shut-off valves are known.
  • Patent Document 1 discloses that aromatic compounds such as toluene, ethylbenzene, cyclohexylbenzene, 4-t-butyltoluene, and biphenyl can be used as an overcharge inhibitor.
  • monofluorotoluene has a function as an overcharge inhibitor. And when the battery containing monofluorotoluene becomes an overcharged state, it is desired that the effect of preventing the overcharge of monofluorotoluene appears more quickly.
  • An object of this invention is to provide the nonaqueous electrolyte secondary battery which improved the overcharge prevention effect of the nonaqueous electrolyte containing monofluorotoluene.
  • the present inventor has improved the overcharge prevention effect of monofluorotoluene by incorporating a specific fluorophosphate compound in a nonaqueous electrolyte containing monofluorotoluene. I found out that I can do it.
  • a first aspect of the present invention is a nonaqueous electrolyte secondary battery including a nonaqueous electrolyte, wherein the nonaqueous electrolyte is monofluorotoluene and a fluorophosphate compound represented by the following general formula (1) And the content of the monofluorotoluene is 10% by mass or less based on the mass of the nonaqueous electrolyte, and the content of the fluorophosphate compound represented by the general formula (1) is the nonaqueous electrolyte. It is a nonaqueous electrolyte secondary battery which is 6 mass% or less with respect to the mass of.
  • R 1 represents an alkali metal element or an alkyl group having 1 to 3 carbon atoms
  • R 2 represents fluorine
  • 1 carbon atom Represents an alkoxy group of ⁇ 3.
  • the nonaqueous electrolyte secondary battery which improved the overcharge prevention effect of the nonaqueous electrolyte containing monofluorotoluene can be provided.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of the nonaqueous electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic diagram showing a power storage device provided with the nonaqueous electrolyte secondary battery of the present invention.
  • FIG. 3 is a schematic view showing an automobile provided with a power storage device provided with the nonaqueous electrolyte secondary battery of the present invention.
  • the fluorophosphate compound represented by the general formula (1) is lithium difluorophosphate and lithium monofluorophosphate. It is 1 or more types.
  • the fluorophosphate compound represented by the general formula (1) is lithium difluorophosphate.
  • the monofluorotoluene is 2-fluorotoluene.
  • the content of monofluorotoluene is 8 mass relative to the mass of the nonaqueous electrolyte. % Or less.
  • the content of the fluorophosphate compound represented by the general formula (1) is: It is 4 mass% or less with respect to the mass of a nonaqueous electrolyte.
  • the positive electrode, the negative electrode, the separator, and the insulating layer are provided. And the negative electrode.
  • the insulating layer is a porous layer containing an inorganic oxide.
  • the insulating layer is formed on a surface of the separator that faces the positive electrode.
  • a tenth aspect of the present invention is an assembled battery in which a plurality of nonaqueous electrolyte secondary batteries according to any one of the first to ninth aspects are provided.
  • An eleventh aspect of the present invention is a power storage device including the assembled battery according to the tenth aspect.
  • a twelfth aspect of the present invention is an automobile provided with the power storage device according to the eleventh aspect.
  • a thirteenth aspect of the present invention is a plug-in hybrid vehicle provided with the power storage device according to the eleventh aspect.
  • a fourteenth aspect of the present invention is a method for manufacturing a nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte, comprising monofluorotoluene and a fluorophosphate compound represented by the general formula (1).
  • a non-aqueous electrolyte the content of monofluorotoluene is 10% by mass or less based on the mass of the non-aqueous electrolyte, and the content of the fluorophosphate compound represented by the general formula (1) is the mass of the non-aqueous electrolyte.
  • It is a manufacturing method of the nonaqueous electrolyte secondary battery which is 6 mass% or less with respect to this. Such a manufacturing method makes it possible to manufacture a nonaqueous electrolyte secondary battery in which the effect of preventing overcharge of a nonaqueous electrolyte containing monofluorotoluene is improved.
  • the nonaqueous electrolyte secondary battery of the present invention is a nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte having a specific composition.
  • the nonaqueous electrolyte secondary battery of the present invention may include a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode in addition to the nonaqueous electrolyte.
  • members constituting the nonaqueous electrolyte secondary battery of the present invention will be described in detail.
  • the nonaqueous electrolyte used for the nonaqueous electrolyte secondary battery of the present invention contains monofluorotoluene and a specific fluorophosphate compound.
  • monofluorotoluene and a specific fluorophosphoric acid compound coexist in the nonaqueous electrolyte, it becomes possible to improve the overcharge prevention effect by monofluorotoluene.
  • the film derived from the fluorophosphate compound represented by the general formula (1) is formed at the positive electrode-nonaqueous electrolyte interface, so that the monofluorotoluene becomes positive-nonaqueous in the overcharged state of the battery. It is conceivable that a selective oxidation reaction is performed at the electrolyte interface and the oxidative decomposition reaction of the nonaqueous solvent is suppressed.
  • the viscosity of the non-aqueous electrolyte is reduced to increase the permeability, and the battery performance such as cycle characteristics is not impaired when the battery is not in an overcharged state. It is possible.
  • Monofluorotoluene is not particularly limited with respect to the bonding site of the fluorine atom, and may be any of the ortho, meta, and para positions, or a mixture thereof.
  • monofluorotoluene metalfluorotoluene or orthofluorotoluene in which the binding site of the fluorine atom is in the meta position or ortho position is preferable because the reaction initiation potential is high.
  • monofluorotoluene in which the binding site of the fluorine atom is para-positioned has a high reaction speed, but has a low reaction initiation potential, so that the battery reacts in a normal operating voltage range where the battery is not overcharged. Therefore, the battery characteristics may be adversely affected.
  • the nonaqueous electrolyte of the present invention contains 10% by mass or less of monofluorotoluene with respect to the total mass of the nonaqueous electrolyte.
  • the content of monofluorotoluene is not particularly limited as long as it is 10% by mass or less with respect to the mass of the nonaqueous electrolyte, but it is preferably 8% by mass or less.
  • the content of monofluorotoluene is preferably 0.5% by mass or more, more preferably 2% by mass or more, and still more preferably 4% by mass or more, based on the mass of the nonaqueous electrolyte.
  • the overcharge preventing effect can be sufficiently exhibited, which is preferable.
  • the content of monofluorotoluene exceeds 10% by mass with respect to the mass of the nonaqueous electrolyte, the ionic conductivity of the nonaqueous electrolyte is lowered and the input / output characteristics of the battery are lowered, which is not preferable.
  • the fluorophosphate compound used in the present invention is a compound represented by the following general formula (1).
  • R 1 represents an alkali metal element or an alkyl group having 1 to 3 carbon atoms.
  • R 1 is preferably a lithium atom or an alkyl group having 1 to 3 carbon atoms, more preferably lithium or an alkyl group having 1 or 2 carbon atoms, still more preferably lithium.
  • R 2 represents fluorine, a group —OA (A represents an alkali metal), or an alkoxy group having 1 to 3 carbon atoms.
  • R 2 is preferably fluorine, a group —O—Li, or an alkoxy group having 1 to 3 carbon atoms, more preferably fluorine, a group —O—Li, or an alkoxy group having 1 or 2 carbon atoms, still more preferably fluorine. Or the group -O-Li.
  • fluorophosphate compound represented by the general formula (1) include lithium difluorophosphate [in the general formula (1), R 1 is lithium, R 2 is fluorine], lithium monofluorophosphate [general In formula (1), R 1 is lithium, R 2 is a group —O—Li], methyl difluorophosphate [in general formula (1), R 1 is a methyl group, R 2 is fluorine], ethyl difluorophosphate [
  • R 1 is an ethyl group
  • R 2 is fluorine
  • propyl difluorophosphate in general formula (1), R 1 is a propyl group
  • R 2 is fluorine] dimethyl monofluorophosphate [general In formula (1), R 1 is a methyl group, R 2 is a methoxy group], diethyl monofluorophosphate [in general formula (1), R 1 is an ethyl group, R 2 is an ethoxy group], ethyl monofluorophosphate -
  • fluorophosphate compounds represented by the general formula (1) may be used singly or in combination of two or more.
  • the non-aqueous electrolyte of the present invention contains the fluorophosphate compound represented by the general formula (1) in an amount of 6% by mass or less based on the total mass of the non-aqueous electrolyte.
  • the content of the fluorophosphate compound represented by the general formula (1) is not particularly limited as long as it is 6% by mass or less, preferably 4% by mass or less, based on the mass of the nonaqueous electrolyte. More preferably, it is 2% by mass or less, and still more preferably 2% by mass or less.
  • the content of the fluorophosphate compound represented by the general formula (1) is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and even more based on the mass of the non-aqueous electrolyte. Preferably it is 0.5 mass% or more. By satisfying such a content, the overcharge prevention effect can be improved. Moreover, when the content of the fluorophosphate compound represented by the general formula (1) is 4% by mass or less with respect to the mass of the nonaqueous electrolyte, it is preferable that the nonaqueous electrolyte is hardly colored.
  • the non-aqueous electrolyte includes a supporting salt.
  • the supporting salt used for the non-aqueous electrolyte is not particularly limited, and lithium salts that are stable in a wide potential region generally used for non-aqueous electrolyte secondary batteries can be used.
  • Examples of the supporting salt include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiB (C 2 O 4) 2, LiC (C 2 F 5 SO 2) 3 and the like.
  • These supporting salts may be used alone or in combination of two or more.
  • the content of the supporting salt in the non-aqueous electrolyte is not particularly limited, and may be appropriately set according to the type of the supporting salt to be used, the type of the non-aqueous solvent, etc., preferably 5.0 mol / L or less, more preferably Is desirably 2.0 mol / L or less. Further, the content of the supporting salt in the nonaqueous electrolyte is preferably 0.1 mol / L or more, more preferably 0.8 mol / L or more.
  • the non-aqueous electrolyte includes a non-aqueous solvent in order to dissolve the above-described components.
  • the nonaqueous solvent used for the nonaqueous electrolyte is not particularly limited, and an organic solvent generally used as the nonaqueous solvent for the nonaqueous electrolyte can be used.
  • Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. These non-aqueous solvents may be used alone or in combination of two or more.
  • the nonaqueous electrolyte includes a negative electrode film forming agent and a positive electrode protective agent as necessary.
  • a negative electrode film forming agent include vinylene carbonate and vinyl ethylene carbonate.
  • a positive electrode protective agent include propane sultone.
  • the content of these additives in the non-aqueous electrolyte is not particularly limited and may be appropriately set according to the type of the additive, etc., but preferably 5 mass with respect to the mass of the non-aqueous electrolyte. % Or less is desirable. Further, the content of the additive is preferably 0.01% by mass or more, more preferably 0.2% by mass with respect to the mass of the nonaqueous electrolyte.
  • a positive electrode plate in which a positive electrode mixture layer is formed on a positive electrode current collector is used.
  • the positive electrode mixture layer contains a positive electrode active material.
  • the positive electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions, and may be an inorganic compound or an organic compound.
  • Specific examples of the inorganic compound used as the positive electrode active material include lithium nickel composite oxide (eg, Li x NiO 2 ), lithium cobalt composite oxide (eg, Li x CoO 2 ), lithium nickel cobalt composite oxide.
  • LiNi 1-y Co y O 2 lithium nickel cobalt manganese composite oxide (for example, LiNi x Co y Mn 1-xy O 2 ), spinel type lithium manganese composite oxide (Li x Mn 2 O 4, etc.) ), lithium phosphates having an olivine structure (e.g., Li x FePO 4, Li x Fe 1-y Mn y PO 4 and the like) and the like.
  • the organic compound used as the positive electrode active material include conductive polymer materials such as polyaniline and polypyrrole, disulfide polymer materials, and carbon fluoride. These positive electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the positive electrode mixture layer may contain additives such as a conductive agent, a binder, and a filler as necessary.
  • Examples of the conductive agent include conductive materials such as carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material. Is mentioned. These electrically conductive agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber (SBR), polyacrylonitrile, fluorine rubber, and the like. It is done. These binders may be used individually by 1 type, and may be used in combination of 2 or more type. When styrene-butadiene rubber is used as the binder, it is preferable to add carboxymethyl cellulose (CMC) as a thickener.
  • CMC carboxymethyl cellulose
  • metal materials such as aluminum, a tantalum, niobium, titanium, hafnium, a zirconium, zinc, tungsten, bismuth, and an alloy containing these metals; carbon Examples thereof include carbonaceous materials such as cloth and carbon paper. Among these, aluminum is preferable.
  • the positive electrode used in the present invention is prepared by coating the positive electrode mixture on the positive electrode current collector so as to have a predetermined shape, and adjusting the density and thickness of the positive electrode mixture layer by drying, roll pressing, or the like. Is done. Known methods and conditions such as coating and drying may be employed.
  • a negative electrode plate having a negative electrode mixture layer formed on a negative electrode current collector is used.
  • the negative electrode mixture layer includes a negative electrode active material.
  • the negative electrode active material is not particularly limited as long as it can reversibly store and release lithium ions.
  • Specific examples of the negative electrode active material include amorphous carbon such as non-graphitizable carbon (hard carbon) and graphitizable carbon (soft carbon); graphite; Al, Si, Pb, Sn, Zn, Cd, etc. Alloys of these metals and lithium; tungsten oxide; molybdenum oxide; iron sulfide; titanium sulfide; lithium titanate and the like.
  • These negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the negative electrode mixture layer may contain additives such as a conductive agent, a binder, and a filler as necessary. About the kind of these additives, it is the same as that of what is mix
  • a negative electrode collector used for a negative electrode For example, metal materials, such as copper, nickel, stainless steel, nickel plating steel, chromium plating steel, are mentioned. Among these, copper is preferable from the viewpoint of ease of processing and cost.
  • the negative electrode used in the present invention is prepared by coating the negative electrode mixture on the negative electrode current collector so as to have a predetermined shape, and adjusting the density and thickness of the negative electrode mixture layer by drying, roll pressing, etc. Is done. Known methods and conditions such as coating and drying may be employed.
  • the separator used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited as long as it has insulating properties, and a microporous film, a nonwoven fabric, or the like is used.
  • the material constituting the separator include polyolefin resins such as polyethylene and polypropylene. These materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the separator can be disposed between the positive electrode and the negative electrode.
  • an insulating layer may be disposed between the positive electrode and the negative electrode, separately from the separator.
  • the insulating layer can be an insulating porous layer, for example, a porous layer containing an inorganic oxide, a porous layer containing resin beads, or a porous layer containing a heat resistant resin such as an aramid resin. Etc. can be adopted.
  • the insulating layer is preferably a porous layer containing an inorganic oxide.
  • the porous layer containing the inorganic oxide as the insulating layer may contain a binder or a thickener as necessary.
  • the binder and the thickener contained in the porous layer are not particularly limited, and for example, the same one used for the mixture layer (positive electrode mixture layer or negative electrode mixture layer) should be used. Can do.
  • the inorganic oxide known ones can be used, but inorganic oxides excellent in chemical stability are preferred. Examples of such inorganic oxides include alumina, titania, zirconia, magnesia, silica, boehmite and the like. It is preferable to use a powdered inorganic oxide.
  • the average particle size of the inorganic oxide is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, even more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the average particle size of the inorganic oxide is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and still more preferably 0.1 ⁇ m or more.
  • An inorganic oxide can be used individually or in combination of 2 or more types.
  • the insulating layer can be formed at any one or more of the surfaces of one side of the separator, both surfaces of the separator, the surface of the positive electrode mixture layer, and the surface of the negative electrode mixture layer. Further, when an insulating layer is formed on the surface of the mixture layer, it is sufficient that at least a part of the mixture layer is covered with the insulating layer, and the entire surface of the mixture layer may be covered with the insulating layer.
  • a known method for forming the insulating layer a known method can be employed.
  • a mixture for forming an insulating layer containing an inorganic oxide and a binder is used on one surface of the separator and both surfaces of the separator. It can form by apply
  • the content of the binder is not particularly limited, but is preferably 20 with respect to the total amount of the inorganic oxide and the binder. It is desirable that the content be 10% by mass or less, more preferably 10% by mass or less. Further, the content of the binder is preferably 1% by mass or more, more preferably 2% by mass or more with respect to the total amount of the inorganic oxide and the binder. By satisfying such a range, the mechanical strength and lithium ion conductivity of the insulating layer can be achieved in a balanced manner.
  • the thickness of the insulating layer is not particularly limited, but is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less. Further, the thickness of the insulating layer is preferably 2 ⁇ m or more, more preferably 4 ⁇ m or more.
  • the form in which the insulating layer is formed on the surface (one surface or both surfaces) of the separator is compared with the form in which the insulating layer is formed on the surface of the mixture layer (positive electrode mixture layer or negative electrode mixture layer). Since a layer in which the mixture layer and the insulating layer are mixed is not formed at the interface between the mixture layer and the insulating layer, the conductive path in the mixture layer is favorably maintained, which is preferable.
  • the form in which the insulating layer is formed on the surface of the separator facing the positive electrode is a porous layer compared to the form of the insulating layer formed on the surface of the separator facing the negative electrode Since an insulating layer that can hold the electrolyte satisfactorily exists near the positive electrode surface, a large amount of the fluorophosphate compound represented by the general formula (1) is present at the positive electrode-non-aqueous electrolyte interface, and is represented by the general formula (1). The formation of a low-resistance film derived from a fluorophosphate compound is promoted, which is preferable.
  • Other battery components include terminals, insulating plates, battery cases, etc. In the nonaqueous electrolyte secondary battery of the present invention, these components may be used as they are. There is no problem.
  • the configuration of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll separator, a square battery, a flat battery, and the like.
  • the nonaqueous electrolyte secondary battery of the present invention is produced by using a nonaqueous electrolyte containing monofluorotoluene and the fluorophosphate compound represented by the general formula (1).
  • the nonaqueous electrolyte secondary battery of the present invention is manufactured by assembling a nonaqueous electrolyte secondary battery using a nonaqueous electrolyte, a positive electrode, a negative electrode, and a separator.
  • the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 is composed of an assembled battery including a plurality of nonaqueous electrolyte secondary batteries 1.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • the power storage device 30 in which the nonaqueous electrolyte secondary battery of the present invention is used can be mounted on the automobile 100 as a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).
  • PHEV plug-in hybrid vehicle
  • Batteries mounted as a power source for plug-in hybrid vehicles (PHEV) tend to be overcharged when using batteries, compared to batteries mounted as a power source for electric vehicles (EV) or hybrid vehicles (HEV). Therefore, the usefulness of applying the present invention is great. That is, the nonaqueous electrolyte secondary battery of the present invention is preferable when used as a power source for a plug-in hybrid vehicle (PHEV) because the effects of the present invention can be used more effectively.
  • the charging mode of the power source used for the plug-in hybrid vehicle includes the charging mode of the power source used for the electric vehicle (EV) (the mode in which the power source is charged at the charging stand) and the power source used for the hybrid vehicle (HEV). Therefore, the power source of the plug-in hybrid vehicle (PHEV) is compared with the power source of the electric vehicle (EV) or the hybrid vehicle (HEV). It becomes easy to become an overcharge state.
  • batteries mounted as power sources for plug-in hybrid vehicles (PHEVs) tend to set a wider range of SOC (State Of Charge) than batteries mounted as power sources for hybrid vehicles (HEV). Therefore, it becomes easy to be in an overcharge state.
  • FIG. 1 A schematic cross-sectional view of the nonaqueous electrolyte secondary battery of this example is shown in FIG.
  • This non-aqueous electrolyte secondary battery 1 includes a positive electrode 3 formed by applying a positive electrode mixture to an aluminum current collector, and a negative electrode 4 formed by applying a negative electrode mixture to a copper current collector via a separator 5.
  • the rotated power generation element 2 and the nonaqueous electrolyte are housed in a battery case 6, and the battery has a size of 34 mm width ⁇ 48 mm height ⁇ 5.0 mm thickness.
  • a battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, a negative electrode terminal 9 is connected to the negative electrode 4 via a negative electrode lead 11, and a positive electrode 3 is connected to the battery lid via a positive electrode lead 10. Has been.
  • the nonaqueous electrolyte secondary battery shown in FIG. 1 was manufactured as follows. 1. Production of Nonaqueous Electrolyte Secondary Battery of Example 1 (1) Production of Positive Electrode Plate LiNi 1/3 Mn 1/3 Co 1/3 O 2 as a positive electrode active material, acetylene black as a conductive additive, and polyfluoride as a binder Viscosity was obtained by adding an appropriate amount of NMP (N-methyl-2-pyrrolidone) to a mixture in which the ratio of the positive electrode active material, the conductive additive and the binder was 90% by mass, 5% by mass and 5% by mass, respectively, using vinylidene fluoride. The paste-like positive electrode mixture was prepared.
  • NMP N-methyl-2-pyrrolidone
  • This positive electrode mixture was applied to both sides of an aluminum foil having a thickness of 20 ⁇ m and dried to prepare a positive electrode plate.
  • the positive electrode plate was provided with a portion where the aluminum foil not coated with the positive electrode mixture was exposed, and the portion where the aluminum foil was exposed and the positive electrode lead were joined.
  • a separator made of a polyethylene microporous film is interposed between the positive electrode plate and the negative electrode plate, and the positive electrode plate and the negative electrode plate are wound to produce a power generation element.
  • the power generation element is housed in the battery case from the opening of the battery case, the positive electrode plate lead is joined to the battery lid, the negative electrode plate lead is joined to the negative electrode terminal, and then the battery lid is fitted into the opening of the battery case.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the nonaqueous electrolyte secondary of Example 1 having a nominal capacity of 800 mAh is obtained by injecting the nonaqueous electrolyte into the battery case from the injection port provided on the side surface of the battery case and then sealing the injection port with a stopper.
  • a battery (hereinafter sometimes simply referred to as “battery”) was produced.
  • Example 2 Production of Nonaqueous Electrolyte Secondary Batteries of Examples 2 to 4 and Example 17
  • the lithium monofluorophosphate in Example 1 was replaced with lithium monofluorophosphate, and the inclusion of lithium monofluorophosphate with respect to the total mass of the nonaqueous electrolyte
  • a battery of Example 2 was produced in the same manner as the battery of Example 1, except that the amount was 1.0% by mass.
  • Example 3 The same method as the battery of Example 1 except that the lithium difluorophosphate of Example 1 was replaced with methyl difluorophosphate and the content of methyl difluorophosphate with respect to the total mass of the nonaqueous electrolyte was 1.0% by mass. A battery of Example 3 was produced.
  • Example 4 The same method as the battery of Example 1 except that lithium difluorophosphate of Example 1 was replaced with ethyl difluorophosphate and the content of ethyl difluorophosphate with respect to the total mass of the nonaqueous electrolyte was 1.0 mass%. A battery of Example 4 was produced.
  • Example 17 The same method as the battery of Example 1 except that the lithium difluorophosphate of Example 1 was replaced with sodium difluorophosphate and the content of sodium difluorophosphate with respect to the total mass of the nonaqueous electrolyte was 1.0% by mass. A battery of Example 17 was produced.
  • Example 1 except that 2-fluorotoluene in Example 1 was replaced with 4-fluorotoluene (parafluorotoluene) and the content of 4-fluorotoluene was 5.0% by mass relative to the total mass of the nonaqueous electrolyte.
  • a battery of Example 16 was produced in the same manner as the battery.
  • Example 1 except that 2-fluorotoluene in Example 1 was replaced with fluorobenzene so that the content of fluorobenzene was 5.0% by mass with respect to the total mass of the nonaqueous electrolyte and no lithium difluorophosphate was contained.
  • a battery of Comparative Example 3 was produced in the same manner as the battery of.
  • a comparative example was made in the same manner as the battery of Example 1, except that 2-fluorotoluene in Example 1 was replaced with fluorobenzene and the content of fluorobenzene was 5.0% by mass relative to the total mass of the nonaqueous electrolyte. 4 batteries were produced.
  • Evaluation Test 1 An initial discharge capacity confirmation test was conducted by using the batteries of Examples 1 to 17 and Comparative Examples 1 to 4 by the following method. Each battery was initially charged at a constant current of 800 mA up to 4.2 V at a constant current of 800 mA and further at a constant voltage of 4.2 V for 3 hours, and then discharged at a constant current of 800 mA and a final voltage of 2.5 V. The capacity was measured.
  • the overcharge test at 25 degreeC was done with the following method.
  • Each battery after the initial discharge capacity measurement was charged at a constant current of 800 mA up to 4.2 V at 25 ° C., and further charged at a constant voltage of 4.2 V for a total of 3 hours, so that the batteries were fully charged. Then, after charging for 1 hour (overcharge) at a constant current of 800 mA at 25 ° C., the surface temperature of the side surface portion of the battery case of the battery was measured.
  • the present invention by measuring the surface temperature (battery surface temperature) of the battery case side surface portion of the battery, it was evaluated whether or not the effect of preventing overcharge of the nonaqueous electrolyte containing monofluorotoluene was improved.
  • the surface temperature of the battery is low, monofluorotoluene is selectively oxidized at the positive electrode-nonaqueous electrolyte interface in the overcharged state of the battery, and the oxidative decomposition reaction of the nonaqueous solvent is suppressed.
  • the amount of heat generated in the secondary battery is considered to have decreased. That is, if the battery surface temperature is low, it can be determined that the overcharge prevention effect of the nonaqueous electrolyte containing monofluorotoluene has been improved.
  • Table 1 shows the overcharge test results of the batteries (Examples 1 to 17 and Comparative Examples 1 to 4) measured as described above.
  • a battery (Example 1) containing 5.0% by mass of 2-fluorotoluene and 1.0% by mass of lithium difluorophosphate with respect to the total mass of the nonaqueous electrolyte contains 2-fluorotoluene.
  • the battery surface temperature is low, so that the oxidative decomposition reaction of the nonaqueous solvent in the overcharged state of the battery is suppressed, and nonaqueous containing monofluorotoluene It was found that the electrolyte overcharge prevention effect was improved.
  • R 1 is lithium or an alkyl group having 1 to 3 carbon atoms
  • R 2 is fluorine, a group —O—Li, or 1 to 3 carbon atoms.
  • the batteries (Examples 1 to 16) containing the fluorophosphate compound which is an alkoxy group had a battery surface temperature of 70 ° C. or lower.
  • a battery (Example 17) containing a compound (sodium difluorophosphate) in which R 1 is sodium and R 2 is fluorine is a battery.
  • the surface temperature was 71.7 ° C.
  • R 1 is lithium or an alkyl group having 1 to 3 carbon atoms
  • R 2 is fluorine, a group —O—Li, or 1 to 3 carbon atoms.
  • a fluorophosphate compound that is an alkoxy group is preferable because the effect of preventing overcharge of a nonaqueous electrolyte containing monofluorotoluene can be further improved.
  • lithium difluorophosphate, methyl difluorophosphate and difluorophosphorus which are difluorophosphate compounds which are fluorophosphate compounds represented by the general formula (1)
  • the surface temperature of the battery of Example 1 using lithium difluorophosphate was the lowest. That is, it was found that lithium difluorophosphate is preferably used in order to improve the overcharge prevention effect of the nonaqueous electrolyte containing monofluorotoluene.
  • lithium monofluorophosphate containing lithium in the compound like lithium difluorophosphate, lithium monofluorophosphate containing lithium in the compound [general In formula (1), R 1 is preferably lithium and R 2 is preferably a group —O—Li].
  • the non-aqueous electrolyte secondary battery according to the present invention improves the effect of preventing overcharge of a non-aqueous electrolyte containing monofluoroo-toluene, suppresses temperature rise in the overcharged state of the battery, and can reduce the influence on adjacent devices. Therefore, it can be effectively used for power sources for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices, and power storage power sources.
  • EV electric vehicles
  • HEV hybrid vehicles
  • PHEV plug-in hybrid vehicles
  • Nonaqueous electrolyte secondary battery 2 Power generation element 3 Positive electrode plate (positive electrode) 4 Negative electrode plate (negative electrode) DESCRIPTION OF SYMBOLS 5 Separator 6 Battery case 7 Battery cover 8 Safety valve 9 Negative electrode terminal 10 Positive electrode lead 11 Negative electrode lead 20 Power storage unit 30 Power storage device 40 Car body 100 Car

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本発明の目的は、モノフルオロオロトルエンを含む非水電解質の過充電防止効果を向上させた非水電解質二次電池を提供することである。モノフルオロトルエンを含む非水電解質において、特定のフルオロリン酸化合物を含有させることによって、モノフルオロトルエンの過充電防止効が向上され、モノフルオロトルエンを含む非水電解質を備える非水電解質二次電池の過充電状態における電池表面温度が上昇することを抑制させることができる。

Description

非水電解質二次電池
本発明は、モノフルオロトルエンを含む非水電解質を用いた非水電解質二次電池に関する。
リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度が高く、携帯電話、ノート型パソコン電源等に多用されており、近年では電気自動車等の自動車用電源に使用されることも検討されている。
通常、非水電解質二次電池は、正極集電体の表面に正極活物質を含む正極合剤層が形成された正極板と、負極集電体の表面に負極活物質を含む負極合剤層が形成された負極板とを、電気的に隔離するセパレータを介して対向させ、支持塩を非水溶媒に溶解した非水電解質を介して正極負極間でイオンの受け渡しを行うことで充放電できるように設計されている。
一方、非水電解質二次電池は、通常、電圧が所定の領域を超えないように制御されているが、何らかの原因によって電流が強制的に電池に供給されると、電池の蓄電能力を超えた電圧を有する過充電状態になる場合がある。このような過充電状態になると、非水溶媒が正極表面で酸化分解反応したり、負極上にリチウム金属がデンドライト状に析出して短絡を起したりする虞があり、これらを抑制することは、非水電解質二次電池において重要な課題になっている。
従来、非水電解質二次電池の過充電状態になった際の対策として、非水電解質に、過充電防止剤が添加されている。過充電防止剤には、過充電状態で酸化重合することにより活物質表面に抵抗が高い被膜を形成させる化合物、酸化還元反応によって自己放電や内部短絡を起こさせる化合物、又はガス発生により内圧作動電気遮断弁を作動させる化合物等が知られている。例えば、特許文献1には、過充電防止剤として、トルエン、エチルベンゼン、シクロヘキシルベンゼン、4-t-ブチルトルエン、ビフェニル等の芳香族化合物を使用できることが開示されている。
特開2001-015158号公報
従来、モノフルオロトルエンは過充電防止剤としての機能を有していることが知られている。そして、モノフルオロトルエンを含む電池が過充電状態になった際、モノフルオロトルエンの過充電防止効果がより早く発現することが望まれている。
本発明は、モノフルオロトルエンを含む非水電解質の過充電防止効果を向上させた非水電解質二次電池を提供することを目的とする。
本発明者は、前記課題を解決すべく鋭意検討を行ったところ、モノフルオロトルエンを含む非水電解質において、特定のフルオロリン酸化合物を含有させることによって、モノフルオロトルエンの過充電防止効果を向上できることを見出した。
本発明の第一の一態様は、非水電解質を備える非水電解質二次電池であって、前記非水電解質が、モノフルオロトルエンと、下記一般式(1)で表されるフルオロリン酸化合物とを含み、前記モノフルオロトルエンの含有量が、前記非水電解質の質量に対して10質量%以下、前記一般式(1)で表されるフルオロリン酸化合物の含有量が、前記非水電解質の質量に対して6質量%以下である、非水電解質二次電池である。
Figure JPOXMLDOC01-appb-C000001
[一般式(1)中、R1はアルカリ金属元素又は炭素数1~3のアルキル基を示し、R2はフッ素、基-O-A(Aはアルカリ金属元素を示す)、又は炭素数1~3のアルコキシ基を示す。]
このように、非水電解質中でモノフルオロトルエンと特定のフルオロリン酸化合物とを共存させることによって、モノフルオロトルエンの過充電防止効果を向上させることができる。
本発明によれば、モノフルオロトルエンを含む非水電解質の過充電防止効果を向上させた非水電解質二次電池を提供することができる。
図1は、本発明の非水電解質二次電池の一態様の概略断面図である。 図2は、本発明の非水電解質二次電池が備えられる蓄電装置を示す概略図である。 図3は、本発明の非水電解質二次電池が備えられる蓄電装置が備えられる自動車を示す概略図である。
本発明の第二の一態様は、第一の一態様に係る非水電解質二次電池において、一般式(1)で表されるフルオロリン酸化合物が、ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムの1種以上である。このようなフルオロリン酸化合物を使用することによって、より一層効果的に過充電防止効果を向上させることができる。
本発明の第三の一態様は、第一の一態様に係る非水電解質二次電池において、一般式(1)で表されるフルオロリン酸化合物が、ジフルオロリン酸リチウムである。このようなフルオロリン酸化合物を使用することによって、より一層効果的に過充電防止効果を向上させることができる。
本発明の第四の一態様は、第一乃至第三のいずれか1つの一態様に係る非水電解質二次電池において、モノフルオロトルエンが、2-フルオロトルエンである。
本発明の第五の一態様は、第一乃至第四のいずれか1つの一態様に係る非水電解質二次電池において、モノフルオロトルエンの含有量が、非水電解質の質量に対して8質量%以下である。
本発明の第六の一態様は、第一乃至第五のいずれか1つの一態様に係る非水電解質二次電池において、一般式(1)で表されるフルオロリン酸化合物の含有量が、非水電解質の質量に対して4質量%以下である。
本発明の第七の一態様は、第一乃至第六のいずれか1つの一態様に係る非水電解質二次電池において、正極、負極、セパレータ及び絶縁層を備え、セパレータ及び絶縁層は、正極と負極との間に配置される。
本発明の第八の一態様は、第七の一態様に係る非水電解質二次電池において、絶縁層は、無機酸化物を含有する多孔質層である。
本発明の第九の一態様は、第七又は第八の一態様に係る非水電解質二次電池において、絶縁層は、セパレータの表面のうち、正極と対向する表面に形成される。
本発明の第十の一態様は、第一乃至第九のいずれか1つの一態様に係る非水電解質二次電池が、複数備えられる、組電池である。
本発明の第十一の一態様は、第十の一態様に係る組電池が、備えられる、蓄電装置である。
本発明の第十二の一態様は、第十一の一態様に係る蓄電装置が、備えられる、自動車である。
本発明の第十三の一態様は、第十一の一態様に係る蓄電装置が、備えられる、プラグインハイブリッド自動車である。
本発明の第十四の一態様は、非水電解質を備える非水電解質二次電池の製造方法であって、モノフルオロトルエンと、一般式(1)で表されるフルオロリン酸化合物とを含む非水電解質を用い、モノフルオロトルエンの含有量が、非水電解質の質量に対して10質量%以下、一般式(1)で表されるフルオロリン酸化合物の含有量が、非水電解質の質量に対して6質量%以下である、非水電解質二次電池の製造方法である。このような製造方法によって、モノフルオロトルエンを含む非水電解質の過充電防止効果を向上させた非水電解質二次電池を製造することが可能になる。
本発明の非水電解質二次電池は、特定組成の非水電解質を備える非水電解質二次電池である。本発明の非水電解質二次電池は、前記非水電解質以外に、正極と、負極と、前記正極と前記負極との間に配置されるセパレータとを備えてもよい。以下、本発明の非水電解質二次電池を構成する部材について詳細に説明する。
[非水電解質]
本発明の非水電解質二次電池に用いられる非水電解質は、モノフルオロトルエンと、特定のフルオロリン酸化合物とを含む。このように非水電解質中に、モノフルオロトルエンと特定のフルオロリン酸化合物とを共存させることによって、モノフルオロトルエンによる過充電防止効果を向上させることが可能になる。この要因としては、正極-非水電解質界面に、一般式(1)で表されるフルオロリン酸化合物由来の被膜が形成されることにより、電池の過充電状態においてモノフルオロトルエンが正極-非水電解質界面において選択的に酸化反応して、非水溶媒の酸化分解反応が抑制されることが考えられる。
また、モノフルオロトルエンは、非水電解質に含有させることにより、非水電解質の粘度を低下させて浸透性を高め、電池が過充電状態ではない場合に、サイクル特性等の電池性能が損なわれなくなることが考えられる。
モノフルオロトルエンは、フッ素原子の結合部位については特に制限されず、オルト位、メタ位、パラ位のいずれであってもよく、またこれらの混合物であってもよい。これらの中でも、フッ素原子の結合部位がメタ位又はオルト位であるモノフルオロトルエン(メタフルオロトルエン又はオルトフルオロトルエン)は、反応開始電位が高いため、好ましい。一方、フッ素原子の結合部位がパラ位であるモノフルオロトルエン(パラフルオロトルエン)は、反応速度が速い反面、反応開始電位が低いことにより、電池が過充電状態ではない通常使用電圧領域で反応して、電池特性に悪影響を及ぼす虞がある。
本発明の非水電解質には、モノフルオロトルエンが非水電解質の総質量に対して10質量%以下含まれる。モノフルオロトルエンの含有量としては、非水電解質の質量に対して、10質量%以下であることを限度に特に制限されないが、好ましくは8質量%以下であることが望ましい。また、モノフルオロトルエンの含有量は、非水電解質の質量に対して、好ましくは0.5質量%以上、より好ましくは2質量%以上、さらにより好ましくは4質量%以上であることが望ましい。このような含有量を充足させることによって、過充電防止効果を有効に発現させることができる。モノフルオロトルエンの含有量が非水電解質の質量に対して0.5質量%以上であると過充電防止効果を十分に発現させることができ、好ましい。モノフルオロトルエンの含有量が非水電解質の質量に対して10質量%を超えると、非水電解質のイオン伝導度が下がり、電池の入出力特性が低下するため好ましくない。
本発明で使用されるフルオロリン酸化合物は、下記一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000002
一般式(1)中、R1はアルカリ金属元素又は炭素数1~3のアルキル基を示す。R1として、好ましくはリチウム原子或いは炭素数1~3のアルキル基、更に好ましくはリチウム或いは炭素数1又は2のアルキル基、更により好ましくはリチウムである。
また、R2はフッ素、基-O-A(Aはアルカリ金属を示す)、又は炭素数1~3のアルコキシ基を示す。R2として、好ましくはフッ素、基-O-Li、或いは炭素数1~3のアルコキシ基、更に好ましくはフッ素、基-O-Li、或いは炭素数1又は2のアルコキシ基、更により好ましくはフッ素又は基-O-Liである。
一般式(1)で表されるフルオロリン酸化合物として、具体的には、ジフルオロリン酸リチウム[一般式(1)中、R1はリチウム、R2はフッ素]、モノフルオロリン酸リチウム[一般式(1)中、R1はリチウム、R2は基-O-Li]、ジフルオロリン酸メチル[一般式(1)中、R1はメチル基、R2はフッ素]、ジフルオロリン酸エチル[一般式(1)中、R1はエチル基、R2はフッ素]、ジフルオロリン酸プロピル[一般式(1)中、R1はプロピル基、R2はフッ素]、モノフルオロリン酸ジメチル[一般式(1)中、R1はメチル基、R2はメトキシ基]、モノフルオロリン酸ジエチル[一般式(1)中、R1はエチル基、R2はエトキシ基]、モノフルオロリン酸エチル・メチル[一般式(1)中、R1はメチル基、R2はエトキシ基]、モノフルオロリン酸メチル・リチウム[一般式(1)中、R1はリチウム、R2はメトキシ基]、ジフルオロリン酸ナトリウム[一般式(1)中、R1はナトリウム、R2はフッ素]、モノフルオロリン酸リチウム[一般式(1)中、R1はナトリウム、R2は基-O-Na]等が挙げられる。これらのフルオロリン酸化合物の中でも、過充電防止効果をより一層高めるという観点から、好ましくは、ジフルオロリン酸リチウム、モノフルオロリン酸リチウム、更に好ましくはジフルオロリン酸リチウムが挙げられる。
これらの一般式(1)で表されるフルオロリン酸化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
本発明の非水電解質には、一般式(1)で表されるフルオロリン酸化合物が非水電解質の総質量に対して6質量%以下含まれる。一般式(1)で表されるフルオロリン酸化合物の含有量としては、非水電解質の質量に対して、6質量%以下であることを限度に特に制限されないが、好ましくは4質量%以下、より好ましくは2質量%以下、さらにより好ましくは2質量%以下であることが望ましい。また、一般式(1)で表されるフルオロリン酸化合物の含有量は、非水電解質の質量に対して、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、さらにより好ましくは0.5質量%以上であることが望ましい。このような含有量を充足させることによって、過充電防止効果を向上させることが可能になる。また、一般式(1)で表されるフルオロリン酸化合物の含有量が非水電解質の質量に対して、4質量%以下の場合、非水電解質に着色が生じにくく、好ましい。
非水電解質には、支持塩が含まれる。非水電解質に使用される支持塩としては、特に制限されるものではなく、一般に非水電解質二次電池に使用される広電位領域において安定であるリチウム塩が使用できる。当該支持塩として、例えば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiB(C242、LiC(C25SO23等が挙げられる。これらの支持塩は1種単独で用いてもよく、2種以上を混合して用いてもよい。非水電解質における支持塩の含有量については、特に制限されず、使用する支持塩の種類や非水溶媒種類等に応じて適宜設定すればよいが、好ましくは5.0mol/L以下、より好ましくは2.0mol/L以下であることが望ましい。また、非水電解質における支持塩の含有量は、好ましくは0.1mol/L以上、より好ましくは0.8mol/L以上であることが望ましい。
非水電解質には、前述する成分を溶解させるために、非水溶媒が含まれる。非水電解質に使用される非水溶媒としては、特に制限されるものではなく、一般に非水電解質の当該非水溶媒として使用される有機溶媒が使用できる。当該非水溶媒として、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が挙げられる。これらの非水溶媒は1種単独で用いてもよく、2種以上を混合して用いてもよい。
更に、非水電解質には、モノフルオロトルエン、前記一般式(1)で表されるフルオロリン酸化合物、支持塩及び非水溶媒の他に、必要に応じて、負極被膜形成剤、正極保護剤等の添加剤が含まれていてもよい。負極被膜形成剤としては、具体的には、ビニレンカーボネート、ビニルエチレンカーボネート等が挙げられる。また、正極保護剤としては、具体的には、プロパンスルトン等が挙げられる。これらの添加剤は1種単独で用いてもよく、2種以上を混合して用いてもよい。また、非水電解質におけるこれらの添加剤の含有量については、特に制限されず、当該添加剤の種類等に応じて適宜設定すればよいが、非水電解質の質量に対して、好ましくは5質量%以下であることが望ましい。また、添加剤の含有量は、非水電解質の質量に対して、好ましくは0.01質量%以上、より好ましくは0.2質量%であることが望ましい。
[正極]
本発明の非水電解質二次電池の正極には、正極集電体上に正極合剤層が形成された正極板が使用される。
正極合剤層には、正極活物質が含まれる。正極活物質としては、リチウムイオンを可逆的に吸蔵及び放出できることを限度として、特に制限されず、無機化合物であってもよく、また有機化合物であってもよい。正極活物質として使用される無機化合物として、具体的には、リチウムニッケル複合酸化物(例えばLixNiO2等)、リチウムコバルト複合酸化物(例えばLixCoO2等)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoy2等)、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNixCoyMn1-x-y2等)、スピネル型リチウムマンガン複合酸化物(LixMn24等)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4、LixFe1-yMnyPO4等)等が挙げられる。また、正極活物質として使用される有機化合物として、具体的には、ポリアニリン、ポリピロール等の導電性ポリマー材料、ジスルフィド系ポリマー材料、フッ化カーボン等が挙げられる。これらの正極活物質は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
また、正極合剤層には、前記正極活物質の他に、必要に応じて、導電剤、結着剤、フィラー等の添加剤が含まれていてもよい。
導電剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金等)粉、金属繊維、導電性セラミックス材料等の導電性材料が挙げられる。これらの導電剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル、フッ素ゴム等が挙げられる。これらの結着剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。また、結着剤としてスチレン-ブタジエンゴムを使用する場合、増粘剤としてカルボキシメチルセルロース(CMC)を添加することが好ましい。
正極に使用される正極集電体としては、特に制限されないが、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、及びこれらの金属を含む合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料等が挙げられる。これらの中でも、アルミニウムが好ましい。
本発明で使用される正極は、正極集電体上に所定の形状となるように正極合剤を塗工し、乾燥、ロールプレス等で正極合剤層の密度及び厚みを調整することによって調製される。塗布、乾燥等の方法や条件については周知のものを採用すればよい。
[負極]
本発明の非水電解質二次電池の負極には、負極集電体上に負極合剤層が形成された負極板が使用される。
負極合剤層には、負極活物質が含まれる。負極活物質としては、リチウムイオンを可逆的に吸蔵及び放出できることを限度として、特に制限されない。負極活物質として、具体的には、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の非晶質炭素;黒鉛;Al、Si、Pb、Sn、Zn、Cd等の金属とリチウムとの合金;酸化タングステン;酸化モリブデン;硫化鉄;硫化チタン;チタン酸リチウム等が挙げられる。これらの負極活物質は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
また、負極合剤層には、前記負極活物質の他に、必要に応じて、導電剤、結着剤、フィラー等の添加剤が含まれていてもよい。これらの添加剤の種類については、正極合剤層に配合されるものと同様である。
負極に使用される負極集電体としては、特に制限されないが、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、クロムメッキ鋼等の金属材料が挙げられる。これらの中でも、加工し易さとコストの点から、銅が好ましい。
本発明で使用される負極は、負極集電体上に所定の形状となるように負極合剤を塗工し、乾燥、ロールプレス等で負極合剤層の密度及び厚みを調整することによって調製される。塗布、乾燥等の方法や条件については周知のものを採用すればよい。
[セパレータ]
本発明の非水電解質二次電池に用いられるセパレータは、絶縁性を備えるものであることを限度として特に制限されず、微多孔性膜や不織布等が使用される。セパレータを構成する材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂が挙げられる。これらの材料は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。セパレータは、正極と負極との間に配置することができる。
本発明の非水電解質二次電池は、セパレータとは別に、正極と負極との間に絶縁層が配置されてもよい。セパレータとは別に、正極と負極との間に絶縁層が配置されることにより、非水電解質二次電池の使用形態が通常予見される使用形態の範囲から外れることによって、非水電解質二次電池が異常発熱してセパレータが熱収縮する場合であっても、絶縁層が残存し、正極と負極とが電気的に接触することを抑制することができる。
絶縁層は、絶縁性の多孔質層とすることができ、例えば、無機酸化物を含有する多孔質層、樹脂ビーズを含有する多孔質層、アラミド樹脂等の耐熱性樹脂を含有する多孔質層等を採用することができる。本発明の非水電解質二次電池においては、絶縁層として、無機酸化物を含有する多孔質層であることが好ましい。絶縁層としての無機酸化物を含有する多孔質層は、必要に応じて結着材や増粘剤を含有してもよい。
多孔質層に含有される結着剤や増粘剤としては、それぞれ特に制限されず、例えば、合剤層(正極合剤層或いは負極合剤層)に用いられるものと同様のものを用いることができる。
無機酸化物としては、公知のものを使用できるが、化学的安定性に優れている無機酸化物が好ましい。このような無機酸化物としては、例えば、アルミナ、チタニア、ジルコニア、マグネシア、シリカ、ベーマイト等が挙げられる。無機酸化物は粉末状のものを使用することが好ましい。無機酸化物の平均粒子径は、特に制限されないが、好ましくは10μm以下、より好ましくは8μm以下、さらにより好ましくは5μm以下、なおさらにより好ましくは3μm以下であることが望ましい。また、無機酸化物の平均粒子径は、特に制限されないが、好ましくは0.01μm以上、より好ましくは0.05μm以上、よりさらに好ましくは0.1μm以上であることが望ましい。無機酸化物は、単独又は二種以上を組み合わせて使用することができる。
絶縁層は、セパレータの片方の表面、セパレータの両方の表面、正極合剤層の表面、及び負極合剤層の表面のうち、いずれか1つ以上の箇所に形成することができる。また、合剤層の表面に絶縁層が形成される場合、合剤層の少なくとも一部が絶縁層によって覆われていればよく、合剤層の全面が絶縁層によって覆われていてもよい。
絶縁層を形成する方法としては、公知のものを採用することができ、例えば、無機酸化物及び結着剤を含有する絶縁層形成用合剤を、セパレータの片方の表面、セパレータの両方の表面、正極合剤層の表面、及び負極合剤層の表面のうち、いずれか1つ以上の箇所に塗布して乾燥することにより、形成することができる。
無機酸化物及び結着剤が絶縁層形成用合剤に含有される場合、結着剤の含有量は、特に制限されないが、無機酸化物及び結着剤の合計量に対して、好ましくは20質量%以下、より好ましくは10質量%以下であることが望ましい。また、結着剤の含有量は、無機酸化物及び結着剤の合計量に対して、好ましくは1質量%以上、より好ましくは2質量%以上であることが望ましい。このような範囲を充足することにより、絶縁層の機械的強度とリチウムイオン伝導性とをバランスよく両立することができる。
絶縁層の厚みは、特に制限されないが、好ましくは20μm以下、より好ましくは15μm以下であることが望ましい。また、絶縁層の厚みは、好ましくは2μm以上、より好ましくは4μm以上であることが望ましい。
絶縁層がセパレータの表面(片面の表面或いは両方の表面)に形成される形態は、絶縁層が合剤層(正極合剤層或いは負極合剤層)の表面に形成される形態と比較して、合剤層-絶縁層界面において合剤層と絶縁層とが混じり合う層が形成されることがないため、合剤層中の導電パスが良好に保持されるため、好ましい。
絶縁層がセパレータの表面のうち正極と対向する表面に形成される形態は、絶縁層がセパレータの表面のうち負極と対向する表面に形成される形態と比較して、多孔質層であるために電解質を良好に保持できる絶縁層が正極表面付近に存在するために、一般式(1)で表されるフルオロリン酸化合物が正極-非水電解質界面に多く存在し、一般式(1)で表されるフルオロリン酸化合物由来の低抵抗な被膜の形成が促進され、好ましい。
[他の構成部材]
また、その他の電池の構成部材としては、端子、絶縁板、電池ケース等があるが、本発明の非水電解質二次電池において、これらの構成要素は従来用いられているものをそのまま用いても差し支えない。
[非水電解質二次電池の構成]
本発明の非水電解質二次電池の構成については、特に制限されず、例えば、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が挙げられる。
[製造方法]
本発明の非水電解質二次電池は、モノフルオロトルエンと、前記一般式(1)で表されるフルオロリン酸化合物とを含む非水電解質を用いることにより製造される。具体的には、本発明の非水電解質二次電池は、非水電解質、正極、負極、及びセパレータを用いて非水電解質二次電池を組み立てることによって製造される。
[蓄電装置]
本発明の非水電解質二次電池を複数組み合わせた組電池を用いた蓄電装置を構成することができ、その一実施形態を図2に示す。蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えた組電池から構成される。蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
[自動車]
本発明の非水電解質二次電池が用いられる蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として、自動車100に搭載することができ、その一実施形態を図3に示す。プラグインハイブリッド自動車(PHEV)の電源として搭載される電池は、電気自動車(EV)又はハイブリッド自動車(HEV)の電源として搭載される電池と比較して、電池使用時に過充電状態になり易い傾向にあるため、本発明を適用することによる有用性が大きい。すなわち、本発明の非水電解質二次電池は、プラグインハイブリッド自動車(PHEV)の電源として用いられる場合、本発明の効果をより有用に利用できるため、好ましい。
プラグインハイブリッド自動車(PHEV)に用いられる電源の充電形態は、電気自動車(EV)に用いられる電源の充電形態(充電スタンドにて電源を充電する形態)と、ハイブリッド自動車(HEV)に用いられる電源の充電形態(回生エネルギーにより電源を充電する形態)とが組み合わされるものであるため、プラグインハイブリッド自動車(PHEV)の電源は、電気自動車(EV)又はハイブリッド自動車(HEV)の電源と比較して、過充電状態になり易くなる。また、プラグインハイブリッド自動車(PHEV)の電源として搭載される電池は、ハイブリッド自動車(HEV)の電源として搭載される電池と比較して、SOC(State Of Charge)の範囲を広く設定する傾向にあるため、過充電状態になり易くなる。
以下、実施例を用いて本発明を具体的に説明するが、本発明はこれらの実施例に限定して解釈されるものではない。
本実施例の非水電解質二次電池の概略断面図を図1に示す。
この非水電解質二次電池1は、アルミニウム集電体に正極合剤を塗布してなる正極3と、銅集電体に負極合剤を塗布してなる負極4とがセパレータ5を介して巻回された発電要素2と、非水電解質とを電池ケース6に収納してなり、寸法が幅34mm×高さ48mm×厚さ5.0mmの電池である。
電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極端子9は負極リード11を介して負極4と接続され、正極3は正極リード10を介して電池蓋と接続されている。
図1に示す非水電解質二次電池を以下により製造した。
1.実施例1の非水電解質二次電池の作製
(1)正極板の製造
正極活物質としてLiNi1/3Mn1/3Co1/32、導電助剤としてアセチレンブラック及び結着剤としてポリフッ化ビニリデンを用い、正極活物質、導電助剤及び結着剤の比率をそれぞれ90質量%、5質量%及び5質量%とした混合物にNMP(N-メチル-2-ピロリドン)を適量加えて粘度を調整し、ペースト状の正極合剤を作製した。この正極合剤を厚み20μmのアルミニウム箔の両面に塗布して乾燥させることにより正極板を作製した。正極板には正極合剤が塗布されていないアルミニウム箔が露出した部位を設け、アルミニウム箔が露出した部位と正極リードとを接合した。
(2)負極板の製造
負極活物質としてグラファイト(黒鉛)、結着剤としてスチレン-ブタジエンゴム(SBR)及び増粘剤としてカルボキシメチルセルロース(CMC)用い、負極活物質、結着剤及び増粘剤をそれぞれ95質量%、3質量%及び2質量%とした混合物に水を適量加えて粘度を調整し、ペースト状の負極合剤を作製した。この負極合剤を厚み10μmの銅箔の両面に塗布して乾燥させることにより負極板を作製した。負極板には負極合剤が塗布されていない銅箔が露出した部位を設け、銅箔が露出した部位と負極板リードとを接合した。
(3)未注液二次電池の作製
前記正極板と前記負極板との間にポリエチレン製微多孔膜からなるセパレータを介在させて、正極板と負極板とを巻回することにより発電要素を作製した。発電要素を電池ケースの開口部から電池ケース内に収納して、正極板リードを電池蓋に接合し、負極板リードを負極端子に接合した後に、電池蓋を電池ケースの開口部に勘合させてレーザー溶接で電池ケースと電池蓋とを接合することによって非水電解質が電池ケース内に注液されていない未注液状態の二次電池を作製した。
(4)非水電解質の調製及び注液
エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=30:70(体積比)の混合溶媒にLiPF6を1mol/Lの濃度で溶解させ、2-フルオロトルエン(オルトフルオロトルエン)及びジフルオロリン酸リチウムをそれぞれ非水電解質の総質量に対して、5.0質量%及び1.0質量%含有させて非水電解質を調整した。この非水電解質を電池ケースの側面に設けた注液口から電池ケース内部に注液した後に、注液口を栓で封口することで公称容量が800mAhである実施例1の非水電解質二次電池(以下、単に「電池」と記載することがある)を作製した。
2.実施例2~4及び実施例17の非水電解質二次電池の作製
実施例1のジフルオロリン酸リチウムをモノフルオロリン酸リチウムに代えて、非水電解質の総質量に対するモノフルオロリン酸リチウムの含有量を1.0質量%にしたこと以外は実施例1の電池と同じ方法にて実施例2の電池を作製した。
実施例1のジフルオロリン酸リチウムをジフルオロリン酸メチルに代えて、非水電解質の総質量に対するジフルオロリン酸メチルの含有量を1.0質量%にしたこと以外は実施例1の電池と同じ方法にて実施例3の電池を作製した。
実施例1のジフルオロリン酸リチウムをジフルオロリン酸エチルに代えて、非水電解質の総質量に対するジフルオロリン酸エチルの含有量を1.0質量%にしたこと以外は実施例1の電池と同じ方法にて実施例4の電池を作製した。
実施例1のジフルオロリン酸リチウムをジフルオロリン酸ナトリウムに代えて、非水電解質の総質量に対するジフルオロリン酸ナトリウムの含有量を1.0質量%にしたこと以外は実施例1の電池と同じ方法にて実施例17の電池を作製した。
3.実施例5~10及び比較例1の非水電解質二次電池の作製
非水電解質の総質量に対するジフルオロリン酸リチウムの含有量をそれぞれ0.05質量%、0.5質量%、1.5質量%、2.0質量%、4.0質量%、6.0質量%及び0.00質量%(ジフルオロリン酸リチウムを含有しない)にしたこと以外は実施例1の電池と同じ方法にて実施例5~10及び比較例1の電池を作製した。
4.実施例11~14及び比較例2の非水電解質二次電池の作製
非水電解質の総質量に対する2-フルオロトルエンの含有量をそれぞれ2.0質量%、4.0質量%、8.0質量%、10.0質量%及び0.00質量%(2-フルオロトルエンを含有しない)にしたこと以外は実施例1の電池と同じ方法にて実施例11~14及び比較例2の電池を作製した。
5.実施例15~16及び比較例3~4の非水電解質二次電池の作製
実施例1の2-フルオロトルエンを3-フルオロトルエン(メタフルオロトルエン)に代えて、非水電解質の総質量に対する3-フルオロトルエンの含有量を5.0質量%にしたこと以外は実施例1の電池と同じ方法にて実施例15の電池を作製した。
実施例1の2-フルオロトルエンを4-フルオロトルエン(パラフルオロトルエン)に代えて、非水電解質の総質量に対する4-フルオロトルエンの含有量を5.0質量%にしたこと以外は実施例1の電池と同じ方法にて実施例16の電池を作製した。
実施例1の2-フルオロトルエンをフルオロベンゼンに代えて、非水電解質の総質量に対するフルオロベンゼンの含有量を5.0質量%にし、ジフルオロリン酸リチウムを含有しなかったこと以外は実施例1の電池と同じ方法にて比較例3の電池を作製した。
実施例1の2-フルオロトルエンをフルオロベンゼンに代えて、非水電解質の総質量に対するフルオロベンゼンの含有量を5.0質量%にしたこと以外は実施例1の電池と同じ方法にて比較例4の電池を作製した。
6.評価試験
(1)過充電試験
実施例1~17及び比較例1~4の各電池を用いて、以下の方法により初期放電容量確認試験をおこなった。各電池を、25℃において800mA定電流で4.2Vまで、さらに4.2V定電圧で、合計3時間充電した後、800mA定電流で終止電圧2.5Vの条件で放電をおこなうことにより初期放電容量を測定した。
初期放電容量測定後の各電池について、25℃での過充電試験を以下の方法によりおこなった。初期放電容量測定後の各電池を、25℃において800mA定電流で4.2Vまで、さらに4.2V定電圧で合計3時間充電して、電池を満充電状態とした。その後、25℃において800mA定電流で1時間充電(過充電)をおこなった後、電池の電池ケース側面部分の表面温度を測定した。
本発明においては、電池の電池ケース側面部分の表面温度(電池表面温度)を測定することにより、モノフルオロトルエンを含む非水電解質の過充電防止効果が向上しているか否かを評価した。電池表面温度が低い場合は、電池の過充電状態においてモノフルオロトルエンが正極-非水電解質界面において選択的に酸化反応して、非水溶媒の酸化分解反応が抑制されることにより、非水電解質二次電池における発熱量が減少したと考えられる。すなわち、電池表面温度が低ければ、モノフルオロトルエンを含む非水電解質の過充電防止効果は向上したと判断できる。
以上のようにして測定した各電池(実施例1~17及び比較例1~4)の過充電試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
7.考察
非水電解質の質量に対して、モノフルオロトルエンを10.0質量%以下及び一般式(1)で表されるフルオロリン酸化合物を6.0質量%以下含有する電池(実施例1~17)は、電池表面温度が70℃以下となった。一方、モノフルオロトルエンを10.0質量%以下含有して一般式(1)で表されるフルオロリン酸化合物を含有しない電池(比較例1)は、電池表面温度が71.7℃を超える値となった。これは、実施例1~17の電池では、正極-非水電解質界面に一般式(1)で表されるフルオロリン酸化合物由来の低抵抗な被膜が形成され、電池の過充電状態においてモノフルオロトルエンが正極-非水電解質界面において選択的に酸化反応することで、当該正極-非水電解質界面における非水溶媒の酸化分解反応が抑制され、非水溶媒の酸化反応に伴う発熱が抑制されたためであると考えられる。即ち、例えば、非水電解質の総質量に対して、2-フルオロトルエンを5.0質量%及びジフルオロリン酸リチウムを1.0質量%含有する電池(実施例1)は、2-フルオロトルエンを5.0質量%含有する電池(比較例1)と比較して、電池表面温度が低いことから、電池の過充電状態における非水溶媒の酸化分解反応が抑制され、モノフルオロトルエンを含む非水電解質の過充電防止効果が向上していることがわかった。
一般式(1)で表されるフルオロリン酸化合物のうち、R1がリチウム又は炭素数1~3のアルキル基であり、R2がフッ素、基-O-Li、又は炭素数1~3のアルコキシ基であるフルオロリン酸化合物を含有する電池(実施例1~16)は、電池表面温度が70℃以下であった。一方、一般式(1)で表されるフルオロリン酸化合物のうち、R1がナトリウムであり、R2がフッ素である化合物(ジフルオロリン酸ナトリウム)を含有する電池(実施例17)は、電池表面温度が71.7℃であった。すなわち、一般式(1)で表されるフルオロリン酸化合物は、R1がリチウム又は炭素数1~3のアルキル基であり、R2がフッ素、基-O-Li、又は炭素数1~3のアルコキシ基であるフルオロリン酸化合物である場合、モノフルオロトルエンを含む非水電解質の過充電防止効果をより向上できるため、好ましい。
また、実施例1、実施例3及び実施例4の電池から、一般式(1)で表されるフルオロリン酸化合物であるジフルオロリン酸化合物であるジフルオロリン酸リチウム、ジフルオロリン酸メチル及びジフルオロリン酸エチルの中でも、ジフルオロリン酸リチウムを用いた実施例1の電池の表面温度が最も低くなることがわかった。即ち、モノフルオロトルエンを含む非水電解質の過充電防止効果を向上させるには、ジフルオロリン酸リチウムを用いることが好ましいことがわかった。これと同様に、一般式(1)で表されるフルオロリン酸化合物であるモノフルオロリン酸化合物の中では、ジフルオロリン酸リチウムのように、化合物中にリチウムを含むモノフルオロリン酸リチウム[一般式(1)中、R1はリチウム、R2は基-O-Li]が好ましいと考えられる。
また、比較例3及び比較例4の電池の電池表面温度を比較すると、過充電防止剤としてフルオロベンゼンを用いる場合は、一般式(1)で表されるフルオロリン酸化合物を共存させても、過充電防止効果が向上する傾向はみられないことがわかった。
本発明に係る非水電解質二次電池は、モノフルオロオロトルエンを含む非水電解質の過充電防止効果が向上し、電池の過充電状態における温度上昇を抑制し、隣接機器への影響を軽減できるため、電気自動車(EV)やハイブリッド自動車(HEV)やプラグインハイブリッド自動車(PHEV)等の自動車用電源、電子機器用電源、及び電力貯蔵用電源等に有効に利用できる。
1       非水電解質二次電池
2       発電要素
3       正極板(正極)
4       負極板(負極)
5       セパレータ
6       電池ケース
7       電池蓋
8       安全弁
9       負極端子
10     正極リード
11     負極リード
20     蓄電ユニット
30     蓄電装置
40     車体本体
100   自動車

Claims (14)

  1. 非水電解質を備える非水電解質二次電池であって、
    前記非水電解質が、モノフルオロトルエンと、下記一般式(1)で表されるフルオロリン酸化合物とを含み、
    前記モノフルオロトルエンの含有量が、前記非水電解質の質量に対して10質量%以下、
    前記一般式(1)で表されるフルオロリン酸化合物の含有量が、前記非水電解質の質量に対して6質量%以下である、非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(1)中、R1はアルカリ金属元素又は炭素数1~3のアルキル基を示し、R2はフッ素、基-O-A(Aはアルカリ金属元素を示す)、又は炭素数1~3のアルコキシ基を示す。]
  2. 前記一般式(1)で表されるフルオロリン酸化合物が、ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムの1種以上である、請求項1に記載の非水電解質二次電池。
  3. 前記一般式(1)で表されるフルオロリン酸化合物が、ジフルオロリン酸リチウムである、請求項1に記載の非水電解質二次電池。
  4. 前記モノフルオロトルエンが、2-フルオロトルエンである、請求項1乃至請求項3のいずれか一項に記載の非水電解質二次電池。
  5. 前記モノフルオロトルエンの含有量が、前記非水電解質の質量に対して8質量%以下である、請求項1乃至請求項4のいずれか一項に記載の非水電解質二次電池。
  6. 前記一般式(1)で表されるフルオロリン酸化合物の含有量が、前記非水電解質の質量に対して4質量%以下である、請求項1乃至請求項5のいずれか一項に記載の非水電解質二次電池。
  7. 正極、負極、セパレータ及び絶縁層を備え、
    前記セパレータ及び前記絶縁層は、前記正極と前記負極との間に配置される、請求項1乃至請求項6に記載の非水電解質二次電池。
  8. 前記絶縁層は、無機酸化物を含有する多孔質層である、請求項7に記載の非水電解質二次電池。
  9. 前記絶縁層は、前記セパレータの表面のうち、前記正極と対向する表面に形成される、請求項7又は請求項8に記載の非水電解質二次電池。
  10. 請求項1乃至請求項9のいずれか一項に記載の非水電解質二次電池が、複数備えられる、組電池。
  11. 請求項10に記載の組電池が、備えられる、蓄電装置。
  12. 請求項11に記載の蓄電装置が、備えられる、自動車。
  13. 請求項11に記載の蓄電装置が、備えられる、プラグインハイブリッド自動車。
  14. 非水電解質を備える非水電解質二次電池の製造方法であって、
    モノフルオロトルエンと、下記一般式(1)で表されるフルオロリン酸化合物とを含む非水電解質を用い、
    前記モノフルオロトルエンの含有量が、前記非水電解質の質量に対して10質量%以下、
    前記一般式(1)で表されるフルオロリン酸化合物の含有量が、前記非水電解質の質量に対して6質量%以下である、非水電解質二次電池の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(1)中、R1はアルカリ金属元素又は炭素数1~3のアルキル基を示し、R2はフッ素、基-O-A(Aはアルカリ金属元素を示す)、又は炭素数1~3のアルコキシ基を示す。]
PCT/JP2015/000998 2014-03-03 2015-02-26 非水電解質二次電池 WO2015133097A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016506121A JP6536563B2 (ja) 2014-03-03 2015-02-26 非水電解質二次電池
CN201580010886.0A CN106063019B (zh) 2014-03-03 2015-02-26 非水电解质二次电池
DE112015001082.3T DE112015001082T5 (de) 2014-03-03 2015-02-26 Sekundärbatterie mit nicht-wässrigem Elektrolyten
US15/122,534 US10141607B2 (en) 2014-03-03 2015-02-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-040745 2014-03-03
JP2014040745 2014-03-03

Publications (1)

Publication Number Publication Date
WO2015133097A1 true WO2015133097A1 (ja) 2015-09-11

Family

ID=54054914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000998 WO2015133097A1 (ja) 2014-03-03 2015-02-26 非水電解質二次電池

Country Status (5)

Country Link
US (1) US10141607B2 (ja)
JP (1) JP6536563B2 (ja)
CN (2) CN111640980A (ja)
DE (1) DE112015001082T5 (ja)
WO (1) WO2015133097A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024496A1 (ja) * 2014-08-11 2016-02-18 関東電化工業株式会社 モノフルオロリン酸エステル塩を含む非水電解液、及びそれを用いた非水電解液電池
JP2016170858A (ja) * 2015-03-11 2016-09-23 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2017111096A1 (ja) * 2015-12-25 2017-06-29 ステラケミファ株式会社 二次電池用非水電解液及びそれを備えた二次電池
CN107408666A (zh) * 2015-09-25 2017-11-28 株式会社东芝 非水电解质电池用电极、非水电解质电池及电池包
EP3477758A4 (en) * 2016-07-22 2019-12-25 GS Yuasa International Ltd. WATER-FREE ELECTROLYTE, ENERGY STORAGE ELEMENT AND METHOD FOR PRODUCING AN ENERGY STORAGE ELEMENT

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6880453B2 (ja) * 2017-09-11 2021-06-02 トヨタ自動車株式会社 非水電解液二次電池
JP6883262B2 (ja) * 2017-09-11 2021-06-09 トヨタ自動車株式会社 非水電解液二次電池
JP6883263B2 (ja) 2017-09-11 2021-06-09 トヨタ自動車株式会社 非水電解液二次電池
CN112448034A (zh) * 2019-09-05 2021-03-05 东莞市杉杉电池材料有限公司 一种高电压锂离子电池用非水电解液及锂离子电池
CN112448033A (zh) * 2019-09-05 2021-03-05 杉杉新材料(衢州)有限公司 高电压锂离子电池电解液及长循环寿命高电压锂离子电池
CN111430781A (zh) * 2020-05-06 2020-07-17 杉杉新材料(衢州)有限公司 一种三元高电压锂离子电池电解液及其锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015158A (ja) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池および非水電解液二次電池の充電制御システムおよびこれを用いた機器
WO2011121912A1 (ja) * 2010-03-29 2011-10-06 パナソニック株式会社 非水電解質およびそれを用いた非水電解質二次電池
JP2012190700A (ja) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920880B2 (ja) * 2003-09-26 2012-04-18 三星エスディアイ株式会社 リチウムイオン二次電池
JP4728647B2 (ja) 2004-01-15 2011-07-20 パナソニック株式会社 非水電解液を含む電気二重層コンデンサもしくは二次電池
DE602005017837D1 (de) * 2004-01-15 2010-01-07 Panasonic Corp Nichtwässriger Elektrolyt für elektrochemische Vorrichtungen
BRPI0511211B8 (pt) * 2004-05-28 2023-01-10 Lg Chemical Ltd Bateria secundária de lítio
WO2007083975A1 (en) 2006-01-23 2007-07-26 Lg Chem, Ltd. Non-aqueous-electrolyte and lithium secondary battery using the same
JP5374825B2 (ja) * 2007-04-16 2013-12-25 トヨタ自動車株式会社 燃料電池セルの製造装置
CN104966849B (zh) * 2007-04-20 2019-06-07 三菱化学株式会社 非水电解液以及使用该非水电解液的非水电解质二次电池
JP5374828B2 (ja) * 2007-04-20 2013-12-25 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5401765B2 (ja) 2007-04-20 2014-01-29 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
EP2357154B1 (en) 2008-12-02 2014-04-23 Mitsubishi Chemical Corporation Production process of a nonaqueous electrolytic solution comprising a production process of difluorophosphate
JP5549438B2 (ja) 2009-07-30 2014-07-16 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP2011154936A (ja) * 2010-01-28 2011-08-11 Hitachi Maxell Ltd 電池用セパレータおよびリチウム二次電池
JP5988134B2 (ja) * 2011-05-11 2016-09-07 株式会社Gsユアサ 蓄電素子
JP5748108B2 (ja) * 2011-11-17 2015-07-15 トヨタ自動車株式会社 リチウム二次電池
JP6184200B2 (ja) 2012-07-04 2017-08-23 株式会社東芝 非水電解質二次電池及びその製造方法
CN105474452B (zh) * 2013-09-25 2018-07-27 三井化学株式会社 电池用非水电解液及锂二次电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015158A (ja) * 1999-06-30 2001-01-19 Matsushita Electric Ind Co Ltd 非水電解液二次電池および非水電解液二次電池の充電制御システムおよびこれを用いた機器
WO2011121912A1 (ja) * 2010-03-29 2011-10-06 パナソニック株式会社 非水電解質およびそれを用いた非水電解質二次電池
JP2012190700A (ja) * 2011-03-11 2012-10-04 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893381B2 (en) 2014-08-11 2018-02-13 Kanto Denka Kogyo Co., Ltd. Nonaqueous electrolyte containing monofluorophosphoric ester salt and nonaqueous secondary battery using same
JPWO2016024496A1 (ja) * 2014-08-11 2017-05-25 関東電化工業株式会社 モノフルオロリン酸エステル塩を含む非水電解液、及びそれを用いた非水電解液電池
WO2016024496A1 (ja) * 2014-08-11 2016-02-18 関東電化工業株式会社 モノフルオロリン酸エステル塩を含む非水電解液、及びそれを用いた非水電解液電池
JP2016170858A (ja) * 2015-03-11 2016-09-23 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
EP3355386A4 (en) * 2015-09-25 2019-03-20 Kabushiki Kaisha Toshiba ELECTRODE FOR NONAQUEOUS ELECTROLYTE BATTERY, NONAQUEOUS ELECTROLYTE BATTERY, AND BATTERY PACK
CN107408666A (zh) * 2015-09-25 2017-11-28 株式会社东芝 非水电解质电池用电极、非水电解质电池及电池包
US20170365842A1 (en) * 2015-09-25 2017-12-21 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery electrode, nonaqueous electrolyte battery, and battery pack
US10505177B2 (en) 2015-09-25 2019-12-10 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery electrode, nonaqueous electrolyte battery, and battery pack
CN107408666B (zh) * 2015-09-25 2021-01-15 株式会社东芝 非水电解质电池用电极、非水电解质电池及电池包
JP2017120780A (ja) * 2015-12-25 2017-07-06 ステラケミファ株式会社 二次電池用非水電解液及びそれを備えた二次電池
CN108475822A (zh) * 2015-12-25 2018-08-31 斯泰拉化工公司 二次电池用非水电解液及具备其的二次电池
WO2017111096A1 (ja) * 2015-12-25 2017-06-29 ステラケミファ株式会社 二次電池用非水電解液及びそれを備えた二次電池
JP2019220474A (ja) * 2015-12-25 2019-12-26 ステラケミファ株式会社 二次電池用非水電解液及びそれを備えた二次電池
CN108475822B (zh) * 2015-12-25 2022-03-11 斯泰拉化工公司 二次电池用非水电解液及具备其的二次电池
EP3477758A4 (en) * 2016-07-22 2019-12-25 GS Yuasa International Ltd. WATER-FREE ELECTROLYTE, ENERGY STORAGE ELEMENT AND METHOD FOR PRODUCING AN ENERGY STORAGE ELEMENT

Also Published As

Publication number Publication date
JPWO2015133097A1 (ja) 2017-04-06
CN106063019B (zh) 2020-06-16
CN106063019A (zh) 2016-10-26
US10141607B2 (en) 2018-11-27
DE112015001082T5 (de) 2016-12-08
CN111640980A (zh) 2020-09-08
JP6536563B2 (ja) 2019-07-03
US20170077550A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015133097A1 (ja) 非水電解質二次電池
JP5861894B2 (ja) 非水電解質二次電池
JP6260619B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
EP2160788B1 (en) Non-aqueous electrolyte and lithium secondary battery comprising the same
WO2017061102A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
KR101159100B1 (ko) 리튬 이차전지용 양극 활물질
JP6016038B2 (ja) 非水電解質二次電池
KR102012626B1 (ko) 비수 전해액 이차 전지
JP5614597B2 (ja) 非水電解質二次電池
JP2008166207A (ja) 正極合剤、ならびに非水電解質二次電池およびその製造方法
KR20140085337A (ko) 리튬 이차 전지
US10199689B2 (en) Nonaqueous electrolyte secondary battery
JP4843848B2 (ja) 非水電解液二次電池
JP6966586B2 (ja) リチウム電池
WO2014156094A1 (ja) 非水電解質二次電池
JP6398326B2 (ja) 非水電解質二次電池
JP6295888B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2014156069A1 (ja) 非水電解質二次電池
JP7032221B2 (ja) 非水電解液二次電池
JP6572565B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP7092096B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP7331994B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
US20230028401A1 (en) Nonaqueous electrolyte energy storage device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506121

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122534

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001082

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758034

Country of ref document: EP

Kind code of ref document: A1