WO2011121912A1 - 非水電解質およびそれを用いた非水電解質二次電池 - Google Patents

非水電解質およびそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2011121912A1
WO2011121912A1 PCT/JP2011/001492 JP2011001492W WO2011121912A1 WO 2011121912 A1 WO2011121912 A1 WO 2011121912A1 JP 2011001492 W JP2011001492 W JP 2011001492W WO 2011121912 A1 WO2011121912 A1 WO 2011121912A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
weight ratio
aqueous electrolyte
nonaqueous electrolyte
carbonate
Prior art date
Application number
PCT/JP2011/001492
Other languages
English (en)
French (fr)
Inventor
出口 正樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180002422.7A priority Critical patent/CN102473962B/zh
Priority to US13/381,288 priority patent/US8623558B2/en
Priority to JP2012508050A priority patent/JP5525599B2/ja
Publication of WO2011121912A1 publication Critical patent/WO2011121912A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of the non-aqueous electrolyte.
  • a secondary battery that outputs a high voltage typified by a lithium ion secondary battery includes a non-aqueous electrolyte.
  • the non-aqueous electrolyte includes a non-aqueous solvent and a solute dissolved in the non-aqueous solvent.
  • As the solute lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like is used.
  • Nonaqueous solvents include linear carbonates having low polarity but low viscosity, cyclic carbonates having high polarity but relatively high viscosity, cyclic carboxylic acid esters, chain ethers, cyclic ethers and the like.
  • chain carbonate include diethyl carbonate (DEC).
  • DEC diethyl carbonate
  • cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), and the like.
  • Patent Document 1 proposes a nonaqueous electrolyte containing EC, PC, and DEC at a volume ratio of 1: 2: 7. When low viscosity DEC is used as a main component, good low temperature characteristics can be obtained.
  • Patent Document 2 proposes a nonaqueous electrolyte containing a fluorine-containing aromatic compound. Addition of the fluorine-containing aromatic compound suppresses a decrease in rate characteristics accompanying the charge / discharge cycle.
  • Chain carbonates such as DEC are more easily decomposed and more easily generate gas than cyclic carbonates. Since the nonaqueous electrolyte described in Patent Document 1 has a large proportion of DEC, a large amount of gas is generated with DEC decomposition during high-temperature storage and charge / discharge cycles. Therefore, the high temperature storage characteristics and charge / discharge cycle characteristics of the battery are likely to deteriorate. Since the non-aqueous electrolyte of Patent Document 2 also uses DEC as a main solvent, a large amount of gas is generated as DEC is decomposed during high-temperature storage and charge / discharge cycles.
  • the present invention provides a non-aqueous electrolyte with a reduced DEC amount ratio and safety using the same from the viewpoint of suppressing gas generation during high-temperature storage and charge / discharge cycles while ensuring good low-temperature characteristics.
  • a nonaqueous electrolyte secondary battery excellent in performance is provided.
  • the present invention is a nonaqueous electrolyte comprising a nonaqueous solvent and a solute dissolved in the nonaqueous solvent
  • the non-aqueous solvent includes ethylene carbonate, propylene carbonate, diethyl carbonate, and an additive
  • the additive is at least one of a fluorinated aromatic compound having a molecular weight of 90 to 200 and a fatty acid alkyl ester having a molecular weight of 80 to 240,
  • the weight percentage W EC of the ethylene carbonate in the whole non-aqueous electrolyte is 5 to 30% by weight
  • Weight ratio W PC of the propylene carbonate to the total the nonaqueous electrolyte is 15 to 60 wt%
  • the weight ratio W DEC of the diethyl carbonate in the whole non-aqueous electrolyte is 10 to 50% by weight
  • the additive may have a weight ratio WLV of 5 to 35% by weight based on the total amount of the non-aqueous electrolyt
  • the present invention also relates to a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte secondary battery including the non-aqueous electrolyte described above.
  • the present invention in a non-aqueous electrolyte secondary battery, while maintaining good low temperature characteristics, it is possible to suppress gas generation during storage and charge / discharge cycles in a high temperature environment, and to obtain excellent safety. Is possible.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • the nonaqueous electrolyte of the present invention includes a nonaqueous solvent and a solute dissolved in the nonaqueous solvent.
  • the non-aqueous solvent includes a mixed solvent A of ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC), and a low viscosity solvent B having a viscosity adjusting action as an additive.
  • the weight ratio W PC of PC in the whole non-aqueous electrolyte and 15 to 60 wt% are relatively large.
  • the PC weight ratio W PC is preferably 25 to 60% by weight, more preferably 30 to 50% by weight.
  • PC melting point: ⁇ 49 ° C.
  • EC melting point: 37 ° C.
  • the non-aqueous electrolyte of the present invention contains a low-viscosity solvent B as an additive that can eliminate the above problems.
  • the generation of gas derived from EC and DEC can be suppressed, the low temperature characteristics of the nonaqueous electrolyte secondary battery can be improved, and the occurrence of problems due to the large amount of PC can be suppressed.
  • safety standards required for nonaqueous electrolyte secondary batteries have become extremely high.
  • the low-viscosity solvent B is a fluorinated aromatic compound having a molecular weight of 90 to 200 (fluorine-containing aromatic compound) or a fatty acid alkyl ester having a molecular weight of 80 to 240. These may be used alone or in combination of two.
  • the viscosity of the non-aqueous electrolyte with a large amount of PC can be significantly reduced. Therefore, the rate characteristic at low temperature is improved. Li deposition on the negative electrode surface that occurs during charging at a low temperature is also suppressed.
  • the low viscosity solvent B is a solvent having a viscosity (25 ° C.) of 1 mPa ⁇ s or less.
  • the viscosity (25 ° C.) of the fluorinated aromatic compound having a molecular weight of 90 to 200 is 0.3 to 1 mPa ⁇ s.
  • the viscosity (at 25 ° C.) of the fatty acid alkyl ester having a molecular weight of 80 to 240 is 0.3 to 1 mPa ⁇ s.
  • the fluorinated aromatic compound By setting the molecular weight of the fluorinated aromatic compound to 90 or more (viscosity of 0.3 mPa ⁇ s or more), the fluorinated aromatic compound becomes difficult to be decomposed, and the stability of the nonaqueous electrolyte can be sufficiently secured. .
  • the molecular weight of the fatty acid alkyl ester By setting the molecular weight of the fatty acid alkyl ester to 240 or less (viscosity is 1 mPa ⁇ s or less), the viscosity of the non-aqueous electrolyte can be sufficiently reduced.
  • the molecular weight of the fatty acid alkyl ester By setting the molecular weight of the fatty acid alkyl ester to 80 or more (viscosity is 0.3 mPa ⁇ s or more), the fatty acid alkyl ester becomes difficult to be decomposed, and the stability of the nonaqueous electrolyte can be sufficiently ensured.
  • the viscosity (25 ° C.) of the nonaqueous electrolyte is preferably 3 to 7 mPa ⁇ s. Thereby, the fall of the rate characteristic at low temperature can be suppressed. Li precipitation during charging in a low temperature environment can also be suppressed.
  • the viscosity is measured using a rotary viscometer and a cone plate type spindle.
  • the above fluorinated aromatic compound and fatty acid alkyl ester are considered to form a stable compound with Li. Therefore, even when Li is deposited on the negative electrode surface due to overcharge in a low temperature environment, abnormal heat generation of the battery in a high temperature environment is suppressed. That is, by using the low-viscosity solvent B, not only the precipitation of Li can be suppressed, but even if Li is precipitated, abnormal heat generation of the battery hardly occurs, and the safety of the battery is improved.
  • the weight ratio W LV of the low-viscosity solvent B in the entire nonaqueous electrolyte is 5 to 35% by weight.
  • the weight ratio W LV of the low-viscosity solvent B in the entire nonaqueous electrolyte is preferably 15 to 35% by weight.
  • the fluorinated aromatic compound having a molecular weight of 90 to 200 is preferably a compound represented by the following formula (1).
  • R 1 to R 6 are each independently a hydrogen atom, a fluorine atom, or a methyl group, and at least one of R 1 to R 6 is a fluorine atom.
  • Fluorinated aromatic compounds having a molecular weight of 90 to 200 are fluorobenzene, 1,2-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,3,4-tetrafluorobenzene, pentafluorobenzene, hexa Fluorobenzene, 2-fluorotoluene, or trifluorotoluene is preferred. These may be used alone or in combination of two or more. Of these, fluorobenzene is particularly preferred because the effect of reducing the viscosity of the nonaqueous electrolyte and improving the thermal stability during low-temperature charging can be obtained remarkably.
  • the fatty acid alkyl ester having a molecular weight of 80 to 240 is preferably a compound represented by the following formula (2).
  • R 7 and R 8 are each independently an alkyl group having 1 to 5 carbon atoms. Since the viscosity of the non-aqueous electrolyte can be sufficiently reduced, the alkyl group preferably has 1 to 4 carbon atoms.
  • Fatty acid alkyl esters having a molecular weight of 80 to 240 are ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, pentyl propionate, methyl butyrate, butyric acid Ethyl, propyl butyrate, butyl butyrate, pentyl butyrate, methyl pentanoate, ethyl pentanoate, propyl pentanoate, butyl pentanoate, pentyl pentanoate, methyl hexanoate, ethyl hexanoate, propyl hexanoate, butyl hexanoate, or hexanoic acid Pentyl is preferred.
  • ethyl propionate, methyl butyrate, ethyl butyrate, methyl pentanoate, or ethyl pentanoate is particularly preferable because the effect of improving the low-temperature rate characteristics is remarkably obtained.
  • the weight ratio W FA of the fluorinated aromatic compound in the entire non-aqueous electrolyte is 5 to 15% by weight, and the entire non-aqueous electrolyte It is preferable that the weight ratio W ES of the fatty acid alkyl ester is 5 to 25% by weight.
  • the ratio of the weight ratio W FA of the fluorinated aromatic compound to the weight ratio W ES of the fatty acid alkyl ester: W FA / W ES is preferably 0.2 to 1.
  • the weight ratio W EC of EC in the whole non-aqueous electrolyte is 5 to 30% by weight, preferably 5 to 20% by weight.
  • the amount of gas generated due to the oxidative decomposition of EC is reduced, and an appropriate film is formed on the negative electrode, so that the charge / discharge capacity and rate characteristics of the nonaqueous electrolyte secondary battery are greatly improved.
  • a coating SEI: solid electrolyte interface
  • lithium ions are easily occluded or released from the negative electrode.
  • the weight ratio W EC of EC in the entire non-aqueous electrolyte is particularly preferably 10 to 15% by weight.
  • the weight ratio W DEC of DEC in the entire non-aqueous electrolyte is 10 to 50% by weight.
  • the weight ratio W DEC of DEC in the whole non-aqueous electrolyte is preferably 10 to 40 wt%.
  • the weight ratio W DEC of DEC in the whole non-aqueous electrolyte is more preferably 30-40 wt%.
  • the ratio of PC weight ratio W PC to the weight fraction W EC of EC in the whole non-aqueous electrolyte: W PC / W EC is preferably from 2.25 to 6.
  • W PC / W EC By setting W PC / W EC to 2.25 or more, it is possible to reduce the gas generation amount derived from the oxidative decomposition of EC particularly in the positive electrode.
  • W PC / W EC By setting W PC / W EC to 6 or less, it is possible to reduce the gas generation amount derived from the reductive decomposition of PC, particularly at the negative electrode.
  • the ratio of EC weight ratio W PC of PC with respect to the weight fraction W EC of: W PC / W EC is more preferably 3-5.
  • a non-aqueous electrolyte in which the weight ratio of EC, PC, and DEC is in the above range has a large weight ratio of PC and a relatively small weight ratio of EC and DEC. Therefore, the amount of gas generated from the oxidation reaction or reduction reaction of EC and DEC can be greatly reduced.
  • the non-aqueous electrolyte preferably contains at least one of a sultone compound and a cyclic carbonate having a C ⁇ C unsaturated bond as the additive C in addition to the fluorinated aromatic compound and the fatty acid alkyl ester.
  • the amount of the additive C that is, the total amount of the sultone compound and the cyclic carbonate having a C ⁇ C unsaturated bond preferably accounts for 1.5 to 5% by weight of the whole nonaqueous electrolyte, and is 2 to 4% by weight. It is more preferable.
  • the total amount of the sultone compound and the cyclic carbonate having a C ⁇ C unsaturated bond By making the total amount of the sultone compound and the cyclic carbonate having a C ⁇ C unsaturated bond to be 1.5% by weight or more of the whole nonaqueous electrolyte, reductive decomposition of PC in nonaqueous electrolytes including EC, PC and DEC The effect which suppresses is fully acquired.
  • the coating on the negative electrode surface is moderate in the non-aqueous electrolyte including EC, PC, and DEC.
  • the lithium ion insertion reaction and the elimination reaction occur smoothly, and excellent charge acceptability can be obtained.
  • the ratio of the weight ratio W C of the cyclic carbonate having a C ⁇ C unsaturated bond and the weight ratio W SL of the sultone compound: W C / W SL is preferably 0.75 to 3.
  • W C / W SL is more preferably 0.75 to 2, and particularly preferably W C / W SL is 1 to 1.5.
  • the additive C contains a cyclic carbonate having a C ⁇ C unsaturated bond, a film is mainly formed on the negative electrode, and the decomposition of the nonaqueous electrolyte is suppressed.
  • cyclic carbonate having a C ⁇ C unsaturated bond examples include vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and divinyl ethylene carbonate (DVEC). These may be used alone or in combination of two or more. Especially, it is preferable that the additive C contains vinylene carbonate in that a thin and dense film can be formed on the negative electrode and the film resistance is low.
  • the additive C contains a sultone compound
  • a film is formed on the positive electrode and the negative electrode.
  • a film on the positive electrode it is possible to suppress oxidative decomposition of the nonaqueous solvent at the positive electrode in a high temperature environment.
  • a film on the negative electrode it is possible to suppress reductive decomposition of the non-aqueous solvent, particularly PC negative electrode.
  • sultone compounds include 1,3-propane sultone (PS), 1,4-butane sultone, 1,3-propene sultone (PRS), and the like. These may be used alone or in combination of two or more.
  • the additive C preferably contains 1,3-propane sultone because it has a high effect of suppressing the reductive decomposition of PC.
  • the additive C contains both vinylene carbonate and 1,3-propane sultone.
  • a coating film derived from 1,3-propane sultone is formed on the positive electrode, and a coating film derived from vinylene carbonate and a coating derived from 1,3-propane sultone are formed on the negative electrode. Since the coating derived from vinylene carbonate can suppress an increase in coating resistance, the charge acceptability is improved. Therefore, deterioration of cycle characteristics can be suppressed.
  • the coating film derived from 1,3-propane sultone can suppress the reductive decomposition of PC and suppress gas such as CH 4 , C 3 H 6 , and C 3 H 8 .
  • vinylene carbonate When only vinylene carbonate is added, since vinylene carbonate has low oxidation resistance, it may be oxidatively decomposed at the positive electrode to increase CO 2 gas generation.
  • 1,3-propane sultone By adding 1,3-propane sultone together with vinylene carbonate, 1,3-propane sultone forms a film on the surface of the positive electrode, and oxidative decomposition of vinylene carbonate as well as a non-aqueous solvent can be suppressed. This makes it possible to greatly suppressed the generation of gas such as CO 2.
  • Other compounds are not particularly limited, and examples thereof include cyclic sulfones such as sulfolane, fluorine-containing compounds such as fluorinated ethers, and cyclic carboxylic acid esters such as ⁇ -butyrolactone.
  • the weight ratio of these other additives is preferably 10% by weight or less. These other additives may be used alone or in combination of two or more.
  • the solute of the nonaqueous electrolyte is not particularly limited. Examples thereof include inorganic lithium salts such as LiPF 6 and LiBF 4 and lithium imide compounds such as LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 .
  • the concentration of the solute in the nonaqueous electrolyte is preferably 1 to 1.5 mol / L, more preferably 1 to 1.2 mol / L.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte described above. Since the non-aqueous electrolyte is excellent in lithium conductivity, the rate characteristics of the battery can be improved. Even if Li is deposited on the negative electrode surface, an abnormal increase in battery temperature due to Li deposited on the negative electrode surface is suppressed during high-temperature storage, so that the safety of the battery is improved.
  • a method of manufacturing the above battery is as follows. (1) configuring an electrode group including a positive electrode, a negative electrode, and a separator; (2) After housing the electrode group in a battery case, injecting the non-aqueous electrolyte into the battery case; (3) After the step (2), sealing the battery case; (4) After the step (3), a step of performing preliminary charge / discharge once or more; including.
  • a positive electrode will not be specifically limited if it can be used as a positive electrode of a nonaqueous electrolyte secondary battery.
  • a positive electrode mixture slurry containing a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride is applied to a positive electrode core material such as an aluminum foil, dried, and rolled.
  • a positive electrode active material a lithium-containing transition metal composite oxide is preferable.
  • Representative examples of the lithium-containing transition metal composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 and the like.
  • a positive electrode contains the complex oxide containing lithium and nickel from the point from which the effect which suppresses gas generation
  • capacitance is acquired more notably.
  • the molar ratio of nickel to lithium contained in the composite oxide is preferably 30 to 100 mol%.
  • the composite oxide further preferably contains at least one selected from the group consisting of manganese and cobalt, and the total molar ratio of manganese and cobalt to lithium is preferably 70 mol% or less.
  • the composite oxide containing lithium and nickel has, for example, a general formula: Li x Ni y M z Me 1- (y + z) O 2 + d (Wherein M is at least one element selected from the group consisting of Co and Mn, and Me is at least one element selected from the group consisting of Al, Cr, Fe, Mg, and Zn) 0.98 ⁇ x ⁇ 1.1, 0.3 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 0.7, 0.9 ⁇ y + z ⁇ 1, ⁇ 0.01 ⁇ d ⁇ 0.01) .
  • the negative electrode is not particularly limited as long as it can be used as a negative electrode of a nonaqueous electrolyte secondary battery.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder such as styrene butadiene rubber (SBR), and a thickener such as carboxymethyl cellulose (CMC) is used as a negative electrode core material such as copper foil. It is obtained by applying, drying and rolling.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the negative electrode active material carbon materials such as natural graphite and artificial graphite are preferable.
  • a microporous film made of polyethylene, polypropylene or the like is generally used as the separator.
  • the thickness of the separator is, for example, 10 to 30 ⁇ m.
  • the present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited.
  • Example 1 Production of negative electrode Carboxymethylcellulose (hereinafter, CMC, molecular weight 400,000), which is a water-soluble polymer, was dissolved in water to obtain an aqueous solution having a CMC concentration of 1% by weight. 100 parts by weight of natural graphite particles (average particle size 20 ⁇ m) and 100 parts by weight of CMC aqueous solution were mixed and stirred while controlling the temperature of the mixture at 25 ° C. Thereafter, the mixture was dried at 150 ° C. for 5 hours to obtain a dry mixture. In the dry mixture, the amount of CMC per 100 parts by weight of graphite particles was 1 part by weight.
  • CMC negative electrode Carboxymethylcellulose
  • a dry mixture 100 parts by weight of a dry mixture, a powder having an average particle size of 0.12 ⁇ m, containing styrene units and butadiene units, 0.6 parts by weight of a binder having rubber elasticity (hereinafter referred to as SBR), and carboxymethylcellulose 0.9 Part by weight and an appropriate amount of water were mixed to prepare a negative electrode mixture slurry.
  • SBR was mixed with other components in an emulsion using water as a dispersion medium (BM-400B (trade name) manufactured by Nippon Zeon Co., Ltd., SBR weight ratio: 40% by weight).
  • the obtained negative electrode mixture slurry was applied to both surfaces of an electrolytic copper foil (thickness 12 ⁇ m) as a negative electrode core material using a die coat, and the coating film was dried at 120 ° C. Thereafter, the dried coating film was rolled with a rolling roller at a linear pressure of 0.25 ton / cm to form a negative electrode mixture layer having a thickness of 160 ⁇ m and a graphite density of 1.65 g / cm 3 .
  • the negative electrode mixture layer was cut into a predetermined shape together with the negative electrode core material to obtain a negative electrode.
  • the non-aqueous electrolyte contained 2 wt% vinylene carbonate (VC) and 1 wt% 1,3-propane sultone. The concentration of LiPF 6 in the nonaqueous electrolyte was 1 mol / L.
  • FIG. 1 A square lithium ion secondary battery as shown in FIG. 1 was produced.
  • the negative electrode and the positive electrode were wound with a separator interposed between the negative electrode and the positive electrode to form an electrode group 21 having a substantially elliptical cross section.
  • As the separator a 20 ⁇ m thick polyethylene microporous film (A089 (trade name) manufactured by Celgard Co., Ltd.) was used.
  • An electrode group 21 was accommodated in a rectangular battery can 20 made of aluminum.
  • the battery can 20 has a bottom part and a side wall, the top part is opened, and the shape is substantially rectangular.
  • the thickness of the main flat part of the side wall was 80 ⁇ m.
  • an insulator 24 for preventing the positive electrode lead 22 and the negative electrode lead 23 from coming into contact with the battery can 20 was disposed on the electrode group 21.
  • a rectangular sealing plate 25 having a negative electrode terminal 27 surrounded by an insulating gasket 26 at the center was disposed in the opening of the battery can 20.
  • the negative electrode lead 23 was connected to the negative electrode terminal 27.
  • the positive electrode lead 22 was connected to the lower surface of the sealing plate 25.
  • the end of the opening of the battery can 20 and the sealing plate 25 were welded with a laser to seal the opening of the battery can 20.
  • 2.5 g of nonaqueous electrolyte was injected into the battery can 20 from the injection hole of the sealing plate 25.
  • the injection hole was closed by welding with a plug 29 to complete a prismatic lithium ion secondary battery having a height of 50 mm, a width of 34 mm, an inner space thickness of about 5.2 mm, and a design capacity of 850 mAh.
  • the weight ratio W FA of the fluorinated aromatic compound in the entire nonaqueous electrolyte was changed to the values shown in Table 1.
  • the viscosity of each non-aqueous electrolyte at 25 ° C. was measured with a rotational viscometer (cone plate type, cone plate radius: 24 mm). The measurement results are shown in Table 2.
  • Batteries 3 to 6 showed excellent cycle characteristics, low temperature characteristics, and safety.
  • the mixing weight ratio of EC, PC, and DEC was 1: 5: 4. If the weight ratio of EC, PC, and DEC in the entire non-aqueous electrolyte is 5 to 30% by weight, 15 to 60% by weight, and 10 to 50% by weight at other mixing weight ratios as described above, The effects of the present invention can be obtained.
  • Example 2 At the time of preparing the non-aqueous electrolyte, the weight ratio W EC of EC in the entire non-aqueous electrolyte was changed to the values shown in Table 3.
  • batteries 11 to 18 were produced and evaluated in the same manner as in Example 1, respectively. Batteries 11, 12 and 18 are comparative examples. The evaluation results are shown in Table 3.
  • Batteries 13 to 17 showed excellent cycle characteristics, low temperature characteristics, and safety.
  • the mixing weight ratio of PC, DEC, and FB was 5: 4: 1. If the weight ratio of PC, DEC, and FB in the entire non-aqueous electrolyte is 15 to 60% by weight, 10 to 50% by weight, and 5 to 35% by weight at other mixing weight ratios, The effects of the present invention can be obtained.
  • a film (SEI) was not sufficiently formed on the negative electrode, and it was difficult for the negative electrode to occlude and release lithium ions. For this reason, charging / discharging could not be performed under predetermined conditions.
  • Example 3 In the non-aqueous electrolyte during the production, the weight ratio W PC of PC in the whole non-aqueous electrolyte was changed to the values shown in Table 4.
  • batteries 21 to 29 were produced and evaluated in the same manner as in Example 1, respectively. Batteries 21, 22 and 29 are comparative examples. The evaluation results are shown in Table 4.
  • Batteries 23 to 28 exhibited excellent cycle characteristics, low temperature characteristics, and safety.
  • the mixing weight ratio of EC, DEC, and FB was 1: 3: 1. If the weight ratio of EC, DEC, and FB in the total amount of the nonaqueous electrolyte is 5 to 30% by weight, 10 to 50% by weight, and 5 to 35% by weight at other mixing weight ratios as described above, The effects of the present invention can be obtained.
  • Example 4 In the non-aqueous electrolyte during the production, the weight ratio W DEC of DEC in the whole non-aqueous electrolyte was changed to the values shown in Table 5.
  • batteries 31 to 37 were prepared and evaluated in the same manner as in Example 1, respectively. Batteries 31, 32 and 37 are comparative examples. The evaluation results are shown in Table 5.
  • Batteries 33 to 36 showed excellent cycle characteristics, low temperature characteristics, and safety.
  • the mixing weight ratio of EC, PC, and FB was 1: 3: 1. If the weight ratio of EC, PC, and FB in the entire nonaqueous electrolyte is 5 to 30% by weight, 15 to 60% by weight, and 5 to 35% by weight at other mixing weight ratios, The effects of the present invention can be obtained.
  • Example 5 As the non-aqueous solvent, a mixed solvent obtained by adding a fluorinated aromatic compound and a fatty acid alkyl ester as the low-viscosity solvent B to EC, PC, and DEC was used. Fluorobenzene (FB) was used as the fluorinated aromatic compound. As the fatty acid alkyl ester, ethyl propionate (EP) was used. The weight ratio W FA of the fluorinated aromatic compound in the entire non-aqueous electrolyte and the weight ratio W ES of the fatty acid alkyl ester in the entire non-aqueous electrolyte were changed to the values shown in Table 6. The EC, PC, and DEC mixing weight ratio was 1: 5: 4. Except for the above, batteries 41 to 50 were produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 6.
  • the batteries 42 to 44 and the batteries 47 to 50 having an FB amount of 5 to 15% by weight and an EP amount of 5 to 25% by weight showed excellent characteristics.
  • Example 6 As the low viscosity solvent B, the fluorinated aromatic compound shown in Table 7 was used instead of FB, and the weight ratio of the low viscosity solvent B in the entire non-aqueous electrolyte was 10% by weight.
  • a battery was prepared and evaluated by the same method as in Example 1 except for the above. Table 7 shows the evaluation results.
  • Example 7 The fatty acid alkyl ester shown in Table 8 was used as the low viscosity solvent B instead of FB, and the weight ratio of the low viscosity solvent B in the entire nonaqueous electrolyte was 10% by weight.
  • a battery was prepared and evaluated by the same method as in Example 1 except for the above. The evaluation results are shown in Table 8.
  • Example 8 As the non-aqueous solvent, a mixed solvent in which a cyclic carbonate having a C ⁇ C unsaturated bond and a sultone compound were added as an additive C to EC, PC, DEC, and FB was used.
  • the mixing weight ratio of EC, PC, DEC, FB, and additive C was 1: 5: 4: 1: 0.5.
  • Vinylene carbonate (VC) was used as the cyclic carbonate having a C ⁇ C unsaturated bond.
  • 1,3-propane sultone (PS) was used as the sultone compound.
  • All the batteries exhibited good cycle characteristics, low temperature characteristics, and safety.
  • the batteries 72 to 76 having W C / W SL of 0.75 to 3 showed excellent characteristics.
  • the non-aqueous electrolyte of the present invention By using the non-aqueous electrolyte of the present invention, the effect of suppressing the decrease in charge / discharge capacity of the non-aqueous electrolyte secondary battery during storage in a high temperature environment and during the charge / discharge cycle is compatible with excellent low-temperature characteristics. be able to.
  • the nonaqueous electrolyte secondary battery of the present invention is useful for a mobile phone, a personal computer, a digital still camera, a game device, a portable audio device, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、良好な低温特性を確保しつつ、高温保存時および充放電サイクル時のガス発生を抑制する観点から、ジエチルカーボネート量の割合を低減した非水電解質及びそれを用いた安全性に優れた非水電解質二次電池を提供することを目的とする。 本発明の、二次電池に用いられる非水電解質は、非水溶媒として、エチレンカーボネートと、プロピレンカーボネートと、ジエチルカーボネートと、添加剤とを含む。添加剤は、分子量90~200のフッ素化芳香族化合物および分子量80~240の脂肪酸アルキルエステルの少なくとも一方である。非水電解質全体に占めるエチレンカーボネートの重量割合WEC、プロピレンカーボネートの重量割合WPC、ジエチルカーボネートの重量割合WDEC、および添加剤の重量割合WLV は、それぞれ5~30重量%、15~60重量%、10~50重量%、および5~35重量%である。

Description

非水電解質およびそれを用いた非水電解質二次電池
 本発明は、非水電解質二次電池に関し、特にその非水電解質の改良に関する。
 リチウムイオン二次電池に代表される高電圧を出力する二次電池は、非水電解質を含む。非水電解質は、非水溶媒と、非水溶媒に溶解された溶質とを含む。溶質としては、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)等が用いられている。
 非水溶媒は、極性は低いが低粘度である鎖状カーボネート、極性は高いが比較的高粘度である環状カーボネート、環状カルボン酸エステル、鎖状エーテル、環状エーテル等を含む。鎖状カーボネートとしては、ジエチルカーボネート(DEC)等が挙げられる。環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等が挙げられる。
 非水電解質の組成について様々な検討が行われている。
 特許文献1では、ECと、PCと、DECとを、体積比1:2:7で含む非水電解質が提案されている。低粘度のDECを主成分として用いると、良好な低温特性が得られる。
 特許文献2では、フッ素含有芳香族化合物を含む非水電解質が提案されている。フッ素含有芳香族化合物の添加により、充放電サイクルに伴うレート特性の低下が抑制される。
特開2004-355974号公報 特開2003-132950号公報
 DECなどの鎖状カーボネートは、環状カーボネートに比べ、分解し易く、ガス発生が起こり易い。特許文献1記載の非水電解質はDEC量の割合が大きいため、高温保存時および充放電サイクル時に、DECの分解に伴い多量のガスが発生する。よって、電池の高温保存特性および充放電サイクル特性が低下し易い。特許文献2の非水電解質も、主溶媒としてDECが用いられるため、高温保存時および充放電サイクル時に、DECの分解に伴い多量のガスが発生する。
 そこで、本発明は、良好な低温特性を確保しつつ、高温保存時および充放電サイクル時のガス発生を抑制する観点から、DEC量の割合を低減した非水電解質、およびそれを用いた、安全性に優れた非水電解質二次電池を提供する。
 本発明は、非水溶媒と、前記非水溶媒に溶解した溶質とを含む非水電解質であって、
 前記非水溶媒が、エチレンカーボネートと、プロピレンカーボネートと、ジエチルカーボネートと、添加剤とを含み、
 前記添加剤は、分子量90~200のフッ素化芳香族化合物および分子量80~240の脂肪酸アルキルエステルの少なくとも一方であり、
 前記非水電解質全体に占める前記エチレンカーボネートの重量割合WECが5~30重量%であり、
 前記非水電解質全体に占める前記プロピレンカーボネートの重量割合WPCが15~60重量%であり、
 前記非水電解質全体に占める前記ジエチルカーボネートの重量割合WDECが10~50重量%であり、
 前記非水電解質全体に占める前記添加剤の重量割合WLVが5~35重量%である、ことを特徴とする。
 また、本発明は、正極、負極、前記正極と前記負極との間に配されるセパレータ、および上記に記載の非水電解質を備えた非水電解質二次電池に関する。
 本発明によれば、非水電解質二次電池において、良好な低温特性を確保しつつ、高温環境下での保存時および充放電サイクル時のガス発生を抑制し、優れた安全性を得ることが可能である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の一実施形態に係る非水電解質二次電池の構成を概略的に示す縦断面図である。
 本発明の非水電解質は、非水溶媒と、非水溶媒に溶解した溶質とを含む。非水溶媒は、エチレンカーボネート(EC)と、プロピレンカーボネート(PC)と、ジエチルカーボネート(DEC)との混合溶媒A、および添加剤として粘度調整作用を有する低粘度溶媒Bを含む。
 DECを主溶媒とする従来の非水電解質では、良好な低温特性が得られる。その反面、非水溶媒中に占めるDECの含有割合が大きいため、高温環境下での保存時および充放電サイクル時に、正極および負極において、DECの酸化分解および還元分解が起こり、CO、CO2、CH4、C26等のガス発生量が多くなる場合がある。
 本発明では、上記の不具合を解消するため、DEC等の鎖状カーボネートに比べて、酸化電位が高く、酸化分解し難いPCおよびECの環状カーボネートを加え、DECの非水溶媒に占める含有割合を相対的に小さくしている。
 一方、EC、PCおよびDECを含む非水溶媒において、ECの重量割合が相対的に大きい場合、特に正極においてECの酸化分解が起こり、CO、CO2等のガス発生量が多くなる。さらに、ECの重量割合が大き過ぎると負極に過剰な被膜が形成されるため、充電受入性が低下し、Liが析出し易い。
 そこで、本発明では、非水電解質全体に占めるPCの重量割合WPCを15~60重量%と相対的に大きくしている。PCの重量割合WPCを相対的に大きくすることで、DECの酸化分解および還元分解、ならびにECの酸化分解を顕著に抑制できる。PCの重量割合WPCは、好ましくは25~60重量%、より好ましくは30~50重量%である。
 更に、PC(融点:-49℃)はEC(融点:37℃)に比べて融点が低いため、一局面においては、非水電解質二次電池の低温特性の面で有利である。すなわち、PCの重量割合WPCを相対的に大きくすることで、DECやECに由来するガス発生を良好に抑制しつつ、非水電解質二次電池の低温特性を向上させることができる。
 しかし、PCの粘度は、ECおよびDECの粘度よりも高いため、PC量が多くなると、非水電解質の粘度が高くなる。
 PC量の多い非水電解質を用い、低温環境下で充電すると、Liが負極に析出する場合がある。負極の表面にLiが析出した電池を高温環境下で保存すると、析出したLiが原因で、電池が異常に発熱するという不具合を生じる場合がある。
 また、非水電解質の粘度が高くなると、低温でリチウムイオン伝導性が低下し、電池の低温でのレート特性が低下するという不具合を生じる場合がある。
 そこで、本発明の非水電解質には、上記の不具合を解消することが可能な添加剤として低粘度溶媒Bを含ませている。これにより、ECおよびDECに由来するガス発生を抑制し、非水電解質二次電池の低温特性を向上させるとともに、PC量が多いことによる不具合の発生を抑制することができる。
 近年、非水電解質二次電池に求められる安全性基準は極めて高くなっている。例えば、-5℃程度の低温で過充電した電池を130℃程度まで故意に加熱する試験がある。本発明の非水電解質を用いることにより、このような試験においても高い安全性が得られる。
 低粘度溶媒Bは、分子量90~200のフッ素化芳香族化合物(フッ素含有芳香族化合物)、または分子量80~240の脂肪酸アルキルエステルである。これらを単独で用いてもよく、2種を組み合わせて用いてもよい。低粘度溶媒Bを用いることにより、PC量の多い非水電解質の粘度を顕著に低下させることができる。よって、低温でのレート特性が改善する。低温での充電時に生じる負極表面へのLiの析出も抑制される。
 低粘度溶媒Bは、粘度(25℃)が1mPa・s以下の溶媒である。分子量が90~200のフッ素化芳香族化合物の粘度(25℃)は、0.3~1mPa・sである。分子量が80~240の脂肪酸アルキルエステルの粘度(25℃)は、0.3~1mPa・sである。
 フッ素化芳香族化合物の分子量を200以下(粘度を1mPa・s以下)とすることで、非水電解質の粘度を十分に低減することができる。フッ素化芳香族化合物の分子量を90以上(粘度を0.3mPa・s以上)とすることで、フッ素化芳香族化合物は分解され難くなり、非水電解質の安定性を十分に確保することができる。
 脂肪酸アルキルエステルの分子量を240以下(粘度を1mPa・s以下)とすることで、非水電解質の粘度を十分に低減することができる。脂肪酸アルキルエステルの分子量を80以上(粘度を0.3mPa・s以上)とすることで、脂肪酸アルキルエステルは分解され難くなり、非水電解質の安定性を十分に確保することができる。
 非水電解質の粘度(25℃)は、3~7mPa・sが好ましい。これにより、低温でのレート特性の低下を抑制できる。低温環境下での充電時のLi析出も抑制することができる。粘度は、回転型粘度計と、コーンプレートタイプのスピンドルとを用いて測定する。
 上記のフッ素化芳香族化合物および脂肪酸アルキルエステルは、Liと安定な化合物を形成すると考えられる。よって、低温環境下での過充電などによって、負極表面にLiが析出した場合でも、高温環境下における電池の異常な発熱が抑制される。すなわち、低粘度溶媒Bを用いることにより、Liの析出を抑制することができるだけでなく、Liが析出したとしても、電池の異常な発熱が極めて起こり難くなり、電池の安全性が向上する。
 非水電解質全体に占める低粘度溶媒Bの重量割合WLVは、5~35重量%である。低粘度溶媒Bの重量割合を5重量%以上とすることで、低粘度溶媒Bの添加による効果が十分に得られる。低粘度溶媒Bの重量割合を35重量%以下とすることで、EC、PC、およびDECの混合溶媒Aの重量割合が過度に小さくなることによる混合溶媒Aの効果の減少が抑制される。非水電解質全体に占める低粘度溶媒Bの重量割合WLVは、15~35重量%であるのが好ましい。
 分子量が90~200のフッ素化芳香族化合物は、以下の式(1)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R1~R6は、それぞれ独立に、水素原子、フッ素原子、またはメチル基であり、かつ、R1~R6の少なくとも一つは、フッ素原子である。
 分子量が90~200のフッ素化芳香族化合物は、フルオロベンゼン、1,2-ジフルオロベンゼン、1,2,3-トリフルオロベンゼン、1,2,3,4-テトラフルオロベンゼン、ペンタフルオロベンゼン、ヘキサフルオロベンゼン、2-フルオロトルエン、またはトリフルオロトルエンが好ましい。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。非水電解質の低粘度化および低温充電時の熱安定性向上の効果が顕著に得られるため、これらの中でも、フルオロベンゼンが特に好ましい。
 分子量が80~240の脂肪酸アルキルエステルは、以下の式(2)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R7およびR8は、それぞれ独立に、炭素数1~5のアルキル基である。非水電解質の粘度を十分に低減することができるため、アルキル基の炭素数は1~4が好ましい。
 分子量が80~240の脂肪酸アルキルエステルは、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、プロピオン酸ペンチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、酪酸ペンチル、ペンタン酸メチル、ペンタン酸エチル、ペンタン酸プロピル、ペンタン酸ブチル、ペンタン酸ペンチル、ヘキサン酸メチル、ヘキサン酸エチル、ヘキサン酸プロピル、ヘキサン酸ブチル、またはヘキサン酸ペンチルが好ましい。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 低温レート特性向上の効果が顕著に得られるため、これらの中でも、プロピオン酸エチル、酪酸メチル、酪酸エチル、ペンタン酸メチル、またはペンタン酸エチルが特に好ましい。
 フッ素化芳香族化合物では、熱安定性の向上効果が顕著に得られ、脂肪酸アルキルエステルでは、低温レート特性の向上効果が顕著に得られるため、フッ素化芳香族化合物および脂肪酸アルキルエステルの両方を用いるのが好ましい。
 低粘度溶媒Bが、フッ素化芳香族化合物および脂肪酸アルキルエステルの両方を含む場合、非水電解質全体に占めるフッ素化芳香族化合物の重量割合WFAが5~15重量%であり、非水電解質全体に占める脂肪酸アルキルエステルの重量割合WESが5~25重量%であるのが好ましい。
 フッ素化芳香族化合物による効果と、脂肪酸アルキルエステルによる効果とをバランス良く得るためには、フッ素化芳香族化合物の重量割合WFAと、脂肪酸アルキルエステルの重量割合WESとの比:WFA/WESは、0.2~1が好ましい。
 非水電解質全体に占めるECの重量割合WECは5~30重量%、好ましくは5~20重量%である。これにより、ECの酸化分解に由来するガス発生量が小さくなり、かつ負極に適度な被膜が形成されるため、非水電解質二次電池の充放電容量およびレート特性が大きく向上する。ECの重量割合を5重量%以上とすることで、負極に被膜(SEI:solid electrolyte interface)を十分に形成することができ、リチウムイオンが負極に吸蔵もしくは負極から放出され易くなる。ECの重量割合を30重量%以下とすることで、特に正極におけるECの酸化分解が抑制され、それによるガス発生量を低減することができる。また、ECの重量割合を30重量%以下とすることで、負極に被膜が過剰に形成されることによる充電受入性の低下やLiの析出を抑制することができる。
 非水電解質二次電池の充放電容量およびレート特性の観点から、非水電解質全体に占めるECの重量割合WECは10~15重量%が特に好ましい。
 非水電解質全体に占めるDECの重量割合WDECは、10~50重量%である。DECの重量割合を10重量%以上とすることで、低温での良好な放電特性が得られる。DECの重量割合を50重量%以下とすることで、ガス発生量を低減することができる。非水電解質二次電池の低温特性を大幅に向上させるためには、非水電解質全体に占めるDECの重量割合WDECは10~40重量%が好ましい。非水電解質二次電池のサイクル特性および低温特性の観点から、非水電解質全体に占めるDECの重量割合WDECは30~40重量%がより好ましい。
 非水電解質全体に占めるECの重量割合WECに対するPCの重量割合WPCの比:WPC/WECは、2.25~6が好ましい。WPC/WECを2.25以上とすることで、特に正極でECの酸化分解に由来するガス発生量を低減することができる。一方、WPC/WECを6以下とすることで、特に負極でPCの還元分解に由来するガス発生量を低減することができる。ECの重量割合WECに対するPCの重量割合WPCの比:WPC/WECは、3~5がより好ましい。
 EC、PCおよびDECの重量割合は、WEC:WPC:WDEC=1:3~6:1~4であることが好ましく、1:3~5:1~4であることがより好ましい。低粘度溶媒Bを加えることにより、WEC:WPC:WDEC=1:5:1まで、DECの重量割合を、低減することが可能である。
 EC、PCおよびDECの重量割合が上記の範囲である非水電解質は、PCの重量割合が大きく、ECおよびDECの重量割合が相対的に小さい。そのため、ECおよびDECの酸化反応や還元反応に由来するガス発生量を非常に少なくすることができる。
 非水電解質は、上記のフッ素化芳香族化合物および脂肪酸アルキルエステルに加えて、添加剤Cとして、サルトン化合物およびC=C不飽和結合を有する環状カーボネートの少なくとも一方を含むのが好ましい。
 添加剤Cの量、すなわちサルトン化合物およびC=C不飽和結合を有する環状カーボネートの合計量は、非水電解質全体の1.5~5重量%を占めることが好ましく、2~4重量%であることがより好ましい。サルトン化合物およびC=C不飽和結合を有する環状カーボネートの合計量を、非水電解質全体の1.5重量%以上とすることで、EC、PCおよびDECを含む非水電解質において、PCの還元分解を抑制する効果が十分に得られる。サルトン化合物およびC=C不飽和結合を有する環状カーボネートの合計量を、非水電解質全体の5重量%以下とすることで、EC、PCおよびDECを含む非水電解質において、負極表面に被膜が適度に形成され、リチウムイオンの挿入反応および脱離反応がスムーズに起こり、優れた充電受入性が得られる。
 C=C不飽和結合を有する環状カーボネートの重量割合WCと、サルトン化合物の重量割合WSLとの比:WC/WSLは、0.75~3が好ましい。WC/WSLを0.75以上とすることで、充電受入性が向上し、優れたサイクル特性が得られる。また、負極の被膜抵抗を低減することができ、低温の放電特性が向上する。一方、WC/WSLを3以下とすることで、C=C不飽和結合を有する環状カーボネートの量が過剰になることによるその酸化分解によるガス発生量の増大が抑制される。WC/WSLは0.75~2がより好ましく、特に好ましくは、WC/WSLは1~1.5である。
 添加剤CがC=C不飽和結合を有する環状カーボネートを含むことで、主に負極に被膜が形成され、非水電解質の分解が抑制される。
 具体的なC=C不飽和結合を有する環状カーボネートとしては、例えばビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート(DVEC)等が挙げられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、負極に薄くて緻密な被膜を形成することができ、被膜抵抗が低い点で、添加剤Cはビニレンカーボネートを含むことが好ましい。
 添加剤Cがサルトン化合物を含むことで、正極および負極に被膜が形成される。正極に被膜が形成されることで、高温環境下における非水溶媒の正極での酸化分解を抑制することができる。また、負極に被膜が形成されることで、非水溶媒、特にPCの負極での還元分解を抑制することができる。
 具体的なサルトン化合物としては、例えば1,3-プロパンサルトン(PS)、1,4-ブタンサルトン、1,3-プロペンサルトン(PRS)等が挙げられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、PCの還元分解を抑制する効果が高い点で、添加剤Cは1,3-プロパンサルトンを含むことが好ましい。
 なかでも、添加剤Cは、ビニレンカーボネートおよび1,3-プロパンサルトンの両方を含むことが特に好ましい。これにより、正極には、1,3-プロパンサルトン由来の被膜が形成され、負極には、ビニレンカーボネート由来の被膜と、1,3-プロパンサルトン由来の被膜とが形成される。ビニレンカーボネート由来の被膜は、被膜抵抗の増加を抑えることができるため、充電受入性が向上する。そのため、サイクル特性の劣化を抑制することができる。1,3-プロパンサルトン由来の被膜は、PCの還元分解を抑制してCH4、C36、C38等のガスを抑制できる。
 ビニレンカーボネートのみを添加した場合、ビニレンカーボネートは耐酸化性が低いため、正極で酸化分解されてCO2ガス発生が多くなる場合がある。ビニレンカーボネートとともに1,3-プロパンサルトンを添加することにより、1,3-プロパンサルトンが正極表面上にも被膜を形成し、非水溶媒だけではなくビニレンカーボネートの酸化分解も抑制できる。これにより、CO2等のガス発生を大きく抑制することができる。
 なお、添加剤Cは上記のサルトン化合物およびC=C不飽和結合を有する環状カーボネートに限定されるものではなく、さらに他の化合物を含んでもよい。他の化合物は特に限定されないが、例えば、スルホラン等の環状スルホン、フッ素化エーテル等の含フッ素化合物、γ-ブチロラクトン等の環状カルボン酸エステル等が挙げられる。非水電解質全体において、これらの他の添加剤の重量割合は、10重量%以下であることが好ましい。これらの他の添加剤を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水電解質の溶質は特に限定されない。例えば、LiPF6、LiBF4等の無機リチウム塩や、LiN(CF3SO22、LiN(C25SO22等のリチウムイミド化合物等が挙げられる。非水電解質中の溶質の濃度は、好ましくは1~1.5mol/L、より好ましくは1~1.2mol/Lである。
 本発明の非水電解質二次電池は、正極、負極、正極と負極との間に配されるセパレータ、および上記の非水電解質を備える。上記の非水電解質はリチウム伝導性に優れているため、電池のレート特性を改善することができる。負極表面にLiが析出しても、高温保存時において、負極表面に析出したLiによる電池温度の異常な上昇が抑制されるため、電池の安全性が向上する。
 上記の電池の作製方法は、例えば、
(1)正極、負極、およびセパレータを含む電極群を構成する工程と、
(2)前記電極群を電池ケースに収納した後、前記電池ケースに、上記の非水電解液を注入する工程と、
(3)前記工程(2)の後、前記電池ケースを封口する工程と、
(4)前記工程(3)の後、予備の充放電を1回以上実施する工程と、
を含む。
 正極は、非水電解質二次電池の正極として用いることのできるものであれば、特に限定されない。正極は、例えば、正極活物質と、カーボンブラック等の導電剤と、ポリフッ化ビニリデン等の結着剤とを含む正極合剤スラリーを、アルミニウム箔等の正極芯材に塗布し、乾燥し、圧延することにより得られる。正極活物質としては、リチウム含有遷移金属複合酸化物が好ましい。リチウム含有遷移金属複合酸化物の代表的な例としては、LiCoO2、LiNiO2、LiMn24、LiMnO2等を挙げることができる。
 なかでも、高容量を確保しつつ、ガス発生を抑制する効果がより顕著に得られる点から、正極は、リチウムおよびニッケルを含む複合酸化物を含むことが好ましい。この場合、複合酸化物に含まれるニッケルのリチウムに対するモル比が、30~100モル%であることが好ましい。
 複合酸化物は、更に、マンガンおよびコバルトよりなる群から選ばれる少なくとも1種を含むことが好ましく、マンガンおよびコバルトの合計のリチウムに対するモル比は70モル%以下であることが好ましい。
 リチウムおよびニッケルを含む複合酸化物は、例えば、一般式:
 LixNiyzMe1-(y+z)2+d
(式中、Mは、CoおよびMnよりなる群から選ばれる少なくとも1種の元素であり、Meは、Al、Cr、Fe、Mg、およびZnよりなる群から選ばれる少なくとも1種の元素であり、0.98≦x≦1.1、0.3≦y≦1、0≦z≦0.7、0.9≦y+z≦1、-0.01≦d≦0.01)で表される。
 負極は、非水電解質二次電池の負極として用いることのできるものであれば、特に限定されない。負極は、例えば、負極活物質と、スチレンブタジエンゴム(SBR)等の結着剤と、カルボキシメチルセルロース(CMC)等の増粘剤とを含む負極合剤スラリーを、銅箔等の負極芯材に塗布し、乾燥し、圧延することにより得られる。負極活物質としては、天然黒鉛、人造黒鉛等の炭素材料が好ましい。
 セパレータとしては、ポリエチレン、ポリプロピレン等からなる微多孔性フィルムが一般に用いられている。セパレータの厚みは、例えば、10~30μmである。
 本発明は、円筒型、扁平型、コイン型、角型など、様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。
 次に、本発明を実施例および比較例に基づいて具体的に説明する。ただし、本発明は、以下の実施例に限定されるものではない。
《実施例1》
(1)負極の作製
 水溶性高分子であるカルボキシメチルセルロース(以下、CMC、分子量40万)を水に溶解し、CMC濃度1重量%の水溶液を得た。天然黒鉛粒子(平均粒径20μm)100重量部と、CMC水溶液100重量部とを混合し、混合物の温度を25℃に制御しながら攪拌した。その後、混合物を150℃で5時間乾燥させ、乾燥混合物を得た。乾燥混合物において、黒鉛粒子100重量部あたりのCMC量は1重量部であった。
 乾燥混合物100重量部と、平均粒径0.12μmの粉末であり、スチレン単位およびブタジエン単位を含み、ゴム弾性を有する結着剤(以下、SBR)0.6重量部と、カルボキシメチルセルロース0.9重量部と、適量の水とを混合し、負極合剤スラリーを調製した。なお、SBRは水を分散媒とするエマルジョン(日本ゼオン(株)製のBM-400B(商品名)、SBR重量割合40重量%)の状態で他の成分と混合した。
 得られた負極合剤スラリーを、負極芯材である電解銅箔(厚み12μm)の両面にダイコートを用いて塗布し、塗膜を120℃で乾燥させた。その後、乾燥塗膜を圧延ローラで線圧0.25トン/cmで圧延して、厚み160μm、黒鉛密度1.65g/cm3の負極合剤層を形成した。負極合剤層を負極芯材とともに所定形状に裁断することにより、負極を得た。
(2)正極の作製
 正極活物質である100重量部のLiNi0.80Co0.15Al0.052に対し、結着剤であるポリフッ化ビニリデン(PVDF)を4重量部と、導電剤であるアセチレンブラック8重量部とを添加し、適量のN-メチル-2-ピロリドン(NMP)とともに混合し、正極合剤スラリーを調製した。得られた正極合剤スラリーを、正極芯材である厚み20μmのアルミニウム箔の両面に、ダイコートを用いて塗布し、塗膜を乾燥させ、更に、圧延して、正極合剤層を形成した。正極合剤層を正極芯材とともに所定形状に裁断することにより、正極を得た。
(3)非水電解質の調製
 エチレンカーボネート(EC)と、プロピレンカーボネート(PC)と、ジエチルカーボネート(DEC)との混合溶媒Aに、低粘度溶媒Bとしてフルオロベンゼン(FB)を加えた非水溶媒に、LiPF6を溶解させ、非水電解質を調製した。非水電解質には2重量%のビニレンカーボネート(VC)および1重量%の1,3-プロパンサルトンを含ませた。非水電解質中のLiPF6の濃度を1mol/Lとした。
(4)電池の組み立て
 図1に示すような角型リチウムイオン二次電池を作製した。
 負極と正極とを、負極と正極との間にセパレータを介在させて捲回し、断面が略楕円形の電極群21を構成した。セパレータには、厚さ20μmのポリエチレン製の微多孔性フィルム(セルガード(株)製のA089(商品名))を用いた。アルミニウム製の角型の電池缶20内に電極群21を収容した。電池缶20は、底部と、側壁とを有し、上部は開口しており、その形状は略矩形である。側壁の主要平坦部の厚みは80μmとした。その後、正極リード22および負極リード23が電池缶20に接触するのを防ぐための絶縁体24を、電極群21の上部に配置した。絶縁ガスケット26で囲まれた負極端子27を中央に有する矩形の封口板25を、電池缶20の開口に配置した。負極リード23を、負極端子27に接続した。正極リード22を、封口板25の下面に接続した。電池缶20の開口の端部と封口板25とをレーザで溶接し、電池缶20の開口を封口した。その後、封口板25の注液孔から2.5gの非水電解質を電池缶20に注入した。最後に、注液孔を封栓29で溶接により塞ぎ、高さ50mm、幅34mm、内空間の厚み約5.2mm、設計容量850mAhの角型リチウムイオン二次電池を完成させた。
 上記電池作製時において、非水電解質全体に占めるフッ素化芳香族化合物の重量割合WFAを、表1に示す値に変更した。FB以外の非水溶媒であるEC、PC、およびDECの混合重量比は、1:5:4とした。このようにして、それぞれ電池1~7を得た。電池1、2および7は比較例である。
 また、回転粘度計(コーンプレート型、コーンプレートの半径:24mm)によって25℃における各非水電解質の粘度を測定した。その測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 各電池について、以下の評価を行った。
[評価]
(1)サイクル特性の評価
 各電池に対して、45℃の環境下で、以下の充放電サイクル試験を実施した。
 電池を、電池電圧が4.2Vに達するまで600mAの定電流で充電した後、4.2Vの定電圧で充電した。定電流充電と定電圧充電とを合わせた充電時間は、2時間30分とした。充電後の休止時間は、10分間とした。その後、電池電圧が2.5Vに達するまで850mAの定電流で電池を放電した。放電後の休止時間は、10分間とした。
 上記の充放電を繰り返した。3サイクル目の放電容量を100%とみなし、500サイクル目の放電容量を百分率で表し、これをサイクル容量維持率(%)とした。
(2)電池膨れの評価
 各電池に対して、上記(1)の充放電サイクル試験における3サイクル目の充電後および501サイクル目の充電後に、電池の最大平面(縦50mm、横34mm)に垂直な中央部の厚みを測定した。その電池厚みの差から、45℃の環境下での充放電サイクルに伴う電池膨れの量(mm)を求めた。
(3)低温放電特性の評価
 各電池に対して、25℃の環境下において上記(1)と同じ条件で充放電を3サイクル実施した。次に、25℃の環境下で4サイクル目の充電を行った後、0℃の環境下で3時間放置した後、そのまま0℃の環境下で放電を行った。3サイクル目(25℃)の放電容量を100%とみなし、4サイクル目(0℃)の放電容量を百分率で表し、これを低温放電容量維持率(%)とした。なお、4サイクル目の充放電条件は、充電後の休止時間、ならびに充電後の休止時および放電時の環境温度以外は、上記の(1)と同じ条件とした。
(4)電池の安全性の評価
 各電池に対して、25℃の環境下において上記(1)と同じ条件で充放電を3サイクル実施した。
 次に、4サイクル目の充電を以下の条件で行った。-5℃の環境下で、電池を、電池電圧が4.25Vに達するまで600mAの定電流で充電した後、4.25Vの定電圧で充電した。定電流充電と定電圧充電とを合わせた充電時間は、2時間30分とした。
 その後、5℃/分で130℃まで電池を昇温させた後、130℃にて3時間保持した。この時の電池表面の温度を、熱電対を用いて測定し、その最大値を求めた。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 電池3~6は、優れたサイクル特性、低温特性、および安全性を示した。
 本実施例では、EC、PC、およびDECの混合重量比を、1:5:4とした。これ以外の混合重量比でも、非水電解質全体に占めるEC、PC、およびDECの重量割合が5~30重量%、15~60重量%、および10~50重量%であれば、上記のような本発明の効果を得ることができる。
《実施例2》
 上記非水電解質作製時において、非水電解質全体に占めるECの重量割合WECを、表3に示す値に変更した。EC以外の非水溶媒であるPC、DEC、およびFBの混合重量比を5:4:1とした。
 上記以外、実施例1と同様の方法により、それぞれ電池11~18を作製し、評価した。電池11、12および18は比較例である。
 評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 電池13~17は、優れたサイクル特性、低温特性、および安全性を示した。
 本実施例では、PC、DEC、およびFBの混合重量比を、5:4:1とした。これ以外の混合重量比でも、非水電解質全体に占めるPC、DEC、およびFBの重量割合が15~60重量%、10~50重量%、および5~35重量%であれば、上記のような本発明の効果を得ることができる。
 EC量が過度に少ない電池11および12では、負極に皮膜(SEI)が十分に形成されず、負極がリチウムイオンを吸蔵および放出するのが困難となった。このため、所定の条件で充放電を行うことができなかった。
《実施例3》
 上記非水電解質作製時において、非水電解質全体に占めるPCの重量割合WPCを、表4に示す値に変更した。PC以外の非水溶媒であるEC、DEC、およびFBの混合重量比を1:3:1とした。
 上記以外、実施例1と同様の方法により、それぞれ電池21~29を作製し、評価した。電池21、22および29は比較例である。
 評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 電池23~28は、優れたサイクル特性、低温特性、および安全性を示した。
 本実施例では、EC、DEC、およびFBの混合重量比を、1:3:1とした。これ以外の混合重量比でも、非水電解質全体に占めるEC、DEC、およびFBの重量割合が5~30重量%、10~50重量%、および5~35重量%であれば、上記のような本発明の効果を得ることができる。
《実施例4》
 上記非水電解質作製時において、非水電解質全体に占めるDECの重量割合WDECを、表5に示す値に変更した。DEC以外の非水溶媒であるEC、PC、およびFBの混合重量比を1:3:1とした。
 上記以外、実施例1と同様の方法により、それぞれ電池31~37を作製し、評価した。電池31、32および37は比較例である。
 評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 電池33~36は、優れたサイクル特性、低温特性、および安全性を示した。
 本実施例では、EC、PC、およびFBの混合重量比を、1:3:1とした。これ以外の混合重量比でも、非水電解質全体に占めるEC、PC、およびFBの重量割合が5~30重量%、15~60重量%、および5~35重量%であれば、上記のような本発明の効果を得ることができる。
《実施例5》
 非水溶媒には、ECと、PCと、DECとに、低粘度溶媒Bとしてフッ素化芳香族化合物および脂肪酸アルキルエステルを加えた混合溶媒を用いた。フッ素化芳香族化合物には、フルオロベンゼン(FB)を用いた。脂肪酸アルキルエステルには、プロピオン酸エチル(EP)を用いた。非水電解質全体に占めるフッ素化芳香族化合物の重量割合WFAと、非水電解質全体に占める脂肪酸アルキルエステルの重量割合WESを、表6に示す値に変えた。EC、PC、およびDEC混合重量比は、1:5:4とした。
 上記以外、実施例1と同様の方法により、電池41~50を作製し、評価した。
 評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 いずれの電池も、良好なサイクル特性、低温特性、および安全性を示した。特に、FB量が5~15重量%およびEP量が5~25重量%である電池42~44および電池47~50は、優れた特性を示した。
《実施例6》
 低粘度溶媒BとしてFBの代わりに表7に示すフッ素化芳香族化合物を用い、非水電解質全体に占める低粘度溶媒Bの重量割合を10重量%とした。
 上記以外、実施例1と同様の方法により、電池を作製し、評価した。
 評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 いずれの電池も、良好なサイクル特性、低温特性、および安全性を示した。
 《実施例7》
 低粘度溶媒BとしてFBの代わりに表8に示す脂肪酸アルキルエステルを用い、非水電解質全体に占める低粘度溶媒Bの重量割合を10重量%とした。
 上記以外、実施例1と同様の方法により、電池を作製し、評価した。
 評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 いずれの電池も、良好なサイクル特性、低温特性、および安全性を示した。
《実施例8》
 非水溶媒には、ECと、PCと、DECと、FBとに、添加剤Cとして、C=C不飽和結合を有する環状カーボネートおよびサルトン化合物を加えた混合溶媒を用いた。EC、PC、DEC、FB、および添加剤Cの混合重量比を、1:5:4:1:0.5とした。C=C不飽和結合を有する環状カーボネートには、ビニレンカーボネート(VC)を用いた。サルトン化合物には、1,3-プロパンサルトン(PS)を用いた。非水電解質全体に占める環状カーボネートの重量割合WCと、非水電解質全体に占めるサルトン化合物の重量割合WSLとの比:WC/WSLを表9に示す値に変えた。
 上記以外、実施例1と同様の方法により、電池を作製し、評価した。
 評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 いずれの電池も、良好なサイクル特性、低温特性、および安全性を示した。特に、WC/WSLが0.75~3の電池72~76は、優れた特性を示した。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本発明の非水電解質を用いることで、高温環境下での保存時および充放電サイクル時の非水電解質二次電池の充放電容量の低下を抑制する効果と、優れた低温特性とを両立することができる。本発明の非水電解質二次電池は、携帯電話、パソコン、デジタルスチルカメラ、ゲーム機器、携帯オーディオ機器等に有用である。

Claims (9)

  1.  非水溶媒と、前記非水溶媒に溶解した溶質とを含む非水電解質であって、
     前記非水溶媒が、エチレンカーボネートと、プロピレンカーボネートと、ジエチルカーボネートと、添加剤とを含み、
     前記添加剤は、分子量90~200のフッ素化芳香族化合物および分子量80~240の脂肪酸アルキルエステルの少なくとも一方であり、
     前記非水電解質全体に占める前記エチレンカーボネートの重量割合WECが5~30重量%であり、
     前記非水電解質全体に占める前記プロピレンカーボネートの重量割合WPCが15~60重量%であり、
     前記非水電解質全体に占める前記ジエチルカーボネートの重量割合WDECが10~50重量%であり、
     前記非水電解質全体に占める前記添加剤の重量割合WLVが5~35重量%である、ことを特徴とする非水電解質。
  2.  前記非水電解質全体に占める前記エチレンカーボネートの重量割合WECが10~15重量%であり、
     前記非水電解質全体に占める前記プロピレンカーボネートの重量割合WPCが30~50重量%であり、
     前記非水電解質全体に占める前記ジエチルカーボネートの重量割合WDECが30~40重量%である、請求項1記載の非水電解質。
  3.  前記フッ素化芳香族化合物が、以下の式(1):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1~R6は、それぞれ独立に、水素原子、フッ素原子、またはメチル基であり、かつ、R1~R6の少なくとも一つは、フッ素原子である。)で表される化合物である、請求項1または2記載の非水電解質。
  4.  前記脂肪酸アルキルエステルが、以下の式(2):
    Figure JPOXMLDOC01-appb-C000004
    (式中、R7およびR8は、それぞれ独立に、炭素数1~5のアルキル基である。)で表される化合物である、請求項1~3のいずれか1項に記載の非水電解質。
  5.  前記フッ素化芳香族化合物が、フルオロベンゼン、1,2-ジフルオロベンゼン、1,2,3,-トリフルオロベンゼン、1,2,3,4-テトラフルオロベンゼン、ペンタフルオロベンゼン、ヘキサフルオロベンゼン、2-フルオロトルエン、およびトリフルオロトルエンよりなる群から選ばれる少なくとも1種である、請求項3記載の非水電解質。
  6.  前記脂肪酸アルキルエステルが、プロピオン酸エチル、酪酸メチル、酪酸エチル、ペンタン酸メチル、およびペンタン酸エチルよりなる群から選ばれる少なくとも1種である、請求項4記載の非水電解質。
  7.  前記添加剤が、前記フッ素化芳香族化合物および脂肪酸アルキルエステルを含み、
     前記非水電解質全体に占める前記フッ素化芳香族化合物の重量割合WFAが5~15重量%であり、
     前記非水電解質全体に占める前記脂肪酸アルキルエステルの重量割合WESが5~25重量%である、請求項1~6のいずれか1項に記載の非水電解質。
  8.  更に、C=C不飽和結合を有する環状カーボネートと、サルトン化合物とを含み、
     前記非水電解質全体に占める前記C=C不飽和結合を有する環状カーボネートの重量割合WCと、前記非水電解質全体に占める前記サルトン化合物の重量割合WSLとの比:WC/WSLが0.75~3である、請求項1~7のいずれか1項に記載の非水電解質。
  9.  正極、負極、前記正極と前記負極との間に配されるセパレータ、および請求項1~8のいずれか1項に記載の非水電解質を含む、非水電解質二次電池。
PCT/JP2011/001492 2010-03-29 2011-03-15 非水電解質およびそれを用いた非水電解質二次電池 WO2011121912A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180002422.7A CN102473962B (zh) 2010-03-29 2011-03-15 非水电解质及使用了其的非水电解质二次电池
US13/381,288 US8623558B2 (en) 2010-03-29 2011-03-15 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2012508050A JP5525599B2 (ja) 2010-03-29 2011-03-15 二次電池用非水電解質およびそれを用いた非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010075513 2010-03-29
JP2010-075513 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011121912A1 true WO2011121912A1 (ja) 2011-10-06

Family

ID=44711682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001492 WO2011121912A1 (ja) 2010-03-29 2011-03-15 非水電解質およびそれを用いた非水電解質二次電池

Country Status (5)

Country Link
US (1) US8623558B2 (ja)
JP (1) JP5525599B2 (ja)
KR (1) KR20120036882A (ja)
CN (1) CN102473962B (ja)
WO (1) WO2011121912A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103907237A (zh) * 2012-04-11 2014-07-02 松下电器产业株式会社 二次电池用非水电解质及非水电解质二次电池
WO2014103281A1 (ja) * 2012-12-26 2014-07-03 三洋電機株式会社 非水電解質二次電池用負極およびそれを用いる非水電解質二次電池
WO2015133097A1 (ja) * 2014-03-03 2015-09-11 株式会社Gsユアサ 非水電解質二次電池
WO2017111096A1 (ja) * 2015-12-25 2017-06-29 ステラケミファ株式会社 二次電池用非水電解液及びそれを備えた二次電池
JP2019145325A (ja) * 2018-02-20 2019-08-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用電解液及び非水電解質二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017004820A1 (zh) * 2015-07-09 2017-01-12 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN109585921B (zh) * 2015-07-09 2021-12-14 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105428715B (zh) 2015-11-04 2018-06-08 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN105428717A (zh) 2015-12-18 2016-03-23 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池
US10756385B2 (en) * 2016-01-15 2020-08-25 GM Global Technology Operations LLC Quinary electrolytes for high power lithium ion batteries
KR102640842B1 (ko) 2016-06-09 2024-02-27 삼성에스디아이 주식회사 리튬전지
KR102184170B1 (ko) * 2017-07-25 2020-11-27 주식회사 엘지화학 이차전지용 동박, 그 제조 방법 및 이를 포함하는 이차전지
CN110148776A (zh) * 2019-05-31 2019-08-20 广州天赐高新材料股份有限公司 一种降低电池阻抗的锂二次电池电解液及锂二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131530A (ja) * 1997-07-09 1999-02-02 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2001325988A (ja) * 2000-05-16 2001-11-22 Sony Corp 非水電解質二次電池の充電方法
JP2004165151A (ja) * 2002-10-23 2004-06-10 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびそれに用いる電解質
JP2005071749A (ja) * 2003-08-22 2005-03-17 Mitsubishi Chemicals Corp リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
JP2009524206A (ja) * 2006-01-23 2009-06-25 エルジー・ケム・リミテッド 非水電解液及びこれを用いるリチウム二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756812B1 (ko) * 2000-07-17 2007-09-07 마츠시타 덴끼 산교 가부시키가이샤 비수 전기화학 장치
JP3748843B2 (ja) 2002-08-20 2006-02-22 日立マクセル株式会社 有機電解液二次電池
US7709157B2 (en) 2002-10-23 2010-05-04 Panasonic Corporation Non-aqueous electrolyte secondary battery and electrolyte for the same
JP4283598B2 (ja) 2003-05-29 2009-06-24 Tdk株式会社 非水電解質溶液及びリチウムイオン2次電池
KR100603303B1 (ko) * 2003-10-29 2006-07-20 삼성에스디아이 주식회사 효율적인 성능을 갖는 리튬 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131530A (ja) * 1997-07-09 1999-02-02 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2001325988A (ja) * 2000-05-16 2001-11-22 Sony Corp 非水電解質二次電池の充電方法
JP2004165151A (ja) * 2002-10-23 2004-06-10 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびそれに用いる電解質
JP2005071749A (ja) * 2003-08-22 2005-03-17 Mitsubishi Chemicals Corp リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
JP2009524206A (ja) * 2006-01-23 2009-06-25 エルジー・ケム・リミテッド 非水電解液及びこれを用いるリチウム二次電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103907237A (zh) * 2012-04-11 2014-07-02 松下电器产业株式会社 二次电池用非水电解质及非水电解质二次电池
WO2014103281A1 (ja) * 2012-12-26 2014-07-03 三洋電機株式会社 非水電解質二次電池用負極およびそれを用いる非水電解質二次電池
JPWO2014103281A1 (ja) * 2012-12-26 2017-01-12 三洋電機株式会社 非水電解質二次電池用負極およびそれを用いる非水電解質二次電池
US9627682B2 (en) 2012-12-26 2017-04-18 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery including the same
WO2015133097A1 (ja) * 2014-03-03 2015-09-11 株式会社Gsユアサ 非水電解質二次電池
JPWO2015133097A1 (ja) * 2014-03-03 2017-04-06 株式会社Gsユアサ 非水電解質二次電池
US10141607B2 (en) 2014-03-03 2018-11-27 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery
WO2017111096A1 (ja) * 2015-12-25 2017-06-29 ステラケミファ株式会社 二次電池用非水電解液及びそれを備えた二次電池
JP2019145325A (ja) * 2018-02-20 2019-08-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用電解液及び非水電解質二次電池
JP7120773B2 (ja) 2018-02-20 2022-08-17 三星エスディアイ株式会社 非水電解質二次電池用電解液及び非水電解質二次電池

Also Published As

Publication number Publication date
JP5525599B2 (ja) 2014-06-18
US20120107700A1 (en) 2012-05-03
CN102473962A (zh) 2012-05-23
KR20120036882A (ko) 2012-04-18
JPWO2011121912A1 (ja) 2013-07-04
CN102473962B (zh) 2014-08-06
US8623558B2 (en) 2014-01-07

Similar Documents

Publication Publication Date Title
JP5525599B2 (ja) 二次電池用非水電解質およびそれを用いた非水電解質二次電池
WO2011039949A1 (ja) 非水電解質およびそれを用いた非水電解質二次電池
WO2010113419A1 (ja) 非水電解質およびそれを用いた非水電解質二次電池
CN111697266B (zh) 电解液和包括其的电化学装置及电子装置
US20240136577A1 (en) Secondary Battery
JP5089828B2 (ja) 非水電解質およびそれを用いた非水電解質二次電池
CN110970662B (zh) 非水电解液及锂离子电池
JP5204929B1 (ja) 二次電池用非水電解質および非水電解質二次電池
CN110911748B (zh) 一种锂二次电池电解液和锂二次电池
WO2011118144A1 (ja) 非水電解質およびそれを用いた非水電解質二次電池
JP2014067629A (ja) 非水電解質二次電池
JP5335218B2 (ja) 非水電解液二次電池
CN111384442A (zh) 一种电池电解液正极成膜添加剂及使用该添加剂的电解液和锂离子电池
CN110970664A (zh) 非水电解液及锂离子电池
JP5070759B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
CN110970660A (zh) 非水电解液及锂离子电池
CN110970663A (zh) 非水电解液及锂离子电池
CN110649317B (zh) 硅基锂离子电池电解液和锂离子二次电池
US20230411689A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
CN110970659B (zh) 非水电解液及锂离子电池
WO2013008439A1 (ja) 非水電解質およびそれを用いた非水電解質二次電池
CN110970652A (zh) 非水电解液及锂离子电池
CN110970658B (zh) 锂离子电池
US20220021031A1 (en) Electrolyte additive, electrolyte, lithium ion secondary battery containing the same and use thereof
JP2013137945A (ja) 非水電解質およびそれを用いた非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002422.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508050

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117030905

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13381288

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762165

Country of ref document: EP

Kind code of ref document: A1