WO2017104186A1 - Ebsd検出装置 - Google Patents

Ebsd検出装置 Download PDF

Info

Publication number
WO2017104186A1
WO2017104186A1 PCT/JP2016/075793 JP2016075793W WO2017104186A1 WO 2017104186 A1 WO2017104186 A1 WO 2017104186A1 JP 2016075793 W JP2016075793 W JP 2016075793W WO 2017104186 A1 WO2017104186 A1 WO 2017104186A1
Authority
WO
WIPO (PCT)
Prior art keywords
ebsd
sample
electron beam
pattern
image sensor
Prior art date
Application number
PCT/JP2016/075793
Other languages
English (en)
French (fr)
Inventor
鈴木 清一
Original Assignee
株式会社Tslソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tslソリューションズ filed Critical 株式会社Tslソリューションズ
Publication of WO2017104186A1 publication Critical patent/WO2017104186A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Definitions

  • the present invention relates to an EBSD detection device, and more particularly to an EBSD detection device in which distortion of an EBSD pattern to be photographed is small and an electron beam detection range by EBSD is wide.
  • the orientation information of the crystalline material can be analyzed by an electron beam backscattering diffraction (in this specification, referred to as “EBSD”) method.
  • the EBSD method is a method of analyzing crystal orientation based on an EBSD pattern (: Kikuchi line diffraction pattern) obtained by EBSD using a scanning electron microscope.
  • FIG. 3 is a schematic diagram showing the measurement principle of the conventional reflective EBSD method.
  • a bulk sample 31 is placed in a scanning electron microscope, an electron beam (e ⁇ ) is irradiated on the surface of the bulk sample 31, and a diffraction pattern of the electron beam reflected from the surface layer portion (reflective EBSD pattern) To get.
  • the angle between the surface 32 perpendicular to the optical axis of the electron beam (e ⁇ ) incident on the bulk sample 31 and the bulk sample 31 is preferably 60 ° to 80 °, more preferably 60 ° to 70 °. is there.
  • the EBSD pattern is acquired by the fluorescent screen 33 of the EBSD pattern detector, and the azimuth information is mapped by scanning the electron beam on the sample surface. In this way, the crystal orientation in a predetermined local region of the crystalline material can be known.
  • FIG. 4 is a schematic diagram showing the measurement principle of the conventional transmission type EBSD method. As shown in FIG. 4, a thin film sample 41 is placed in a scanning electron microscope, an electron beam (e ⁇ ) is irradiated from the objective lens 44 to the thin film sample 41, and a diffraction pattern (transmission EBSD pattern) by the transmitted electron beam is obtained.
  • a thin film sample 41 is placed in a scanning electron microscope, an electron beam (e ⁇ ) is irradiated from the objective lens 44 to the thin film sample 41, and a diffraction pattern (transmission EBSD pattern) by the transmitted electron beam is obtained.
  • the orientation information is mapped by scanning the electron beam on the sample.
  • the spread of the electron beam in the sample can be reduced, and the transmission type EBSD method can analyze a finer structure as compared with a normal reflection type EBSD method.
  • the angle between the normal direction 45 of the thin film sample 41 and the optical axis of the electron beam is ⁇
  • the surface 42 perpendicular to the optical axis of the electron beam incident on the thin film sample 41 and the thin film sample 41 The angle formed by is also ⁇ .
  • the tilt angle ⁇ of the sample is preferably 0 ° to 40 °, particularly preferably 10 ° to 30 °, in that the resolution of the transmission EBSD pattern and the resolution of the orientation map image obtained by mapping the transmission EBSD pattern are good.
  • the distance WD (working distance) from the lower end of the objective lens 44 to the measurement site of the thin film sample 41 is preferably 3 mm to 9 mm in view of good resolution of the transmission EBSD pattern and the orientation map image. Is particularly preferred.
  • the preferred arrangement of the sample is different, so the direction of the electron beam by EBSD generated from the measurement site of the sample is different. Therefore, when an EBSD pattern detector arranged for detecting a diffracted electron beam due to reflection is used to detect a diffracted electron beam due to transmission, the distortion of the transmitted EBSD pattern increases, and the detectable range of the EBSD pattern is increased. It tends to narrow. In addition, since the distortion is large, it is difficult to detect the band in the pattern, which tends to deteriorate the accuracy of indexing.
  • An object of the present invention is to provide an EBSD pattern detection device that can cope with both the reflection type EBSD method and the transmission type EBSD method under preferable conditions without changing the arrangement of the EBSD pattern detector.
  • the present invention has a small distortion of the EBSD pattern to be photographed in both the reflection type EBSD method and the transmission type EBSD method without changing the arrangement of the EBSD pattern detector, and the electron beam detection range by EBSD is wide. It is an object to provide an EBSD detection device.
  • the EBSD detection device of the present invention includes an electron beam source, a focusing lens that focuses the electron beam from the electron beam source, an objective lens that forms an electron probe on the sample by further focusing the electron beam, and a sample on the sample.
  • an EBSD pattern detector that detects an EBSD pattern generated from the sample by an electron beam that is incident substantially vertically downward, and a sample holder that changes the tilt angle and arrangement of the sample with respect to the incident electron beam are provided. Analyze crystal orientation.
  • the elevation angle of the image sensor unit that captures the EBSD pattern with respect to the sample can be adjusted in the EBSD pattern detector.
  • the image sensor unit has a hinge at the upper end, and the image sensor unit is pivotally connected to the EBSD pattern detector main body by the hinge, and the image sensor unit is a rod-like body that moves forward or backward in the longitudinal direction of the EBSD pattern detector.
  • a mode in which the elevation angle with respect to the sample of the imaging element unit is adjusted by rotating is preferable.
  • the image sensor unit can be integrated with a camera having the image sensor unit as a component. It is preferable that the elevation angle of such an image sensor section is adjusted to 20 degrees to 50 degrees.
  • the EBSD detection apparatus of the present invention can cope with both the reflection type EBSD method and the transmission type EBSD method under preferable conditions without changing the arrangement of the EBSD pattern detector. Moreover, an EBSD pattern with small distortion can be obtained by both the reflection type EBSD method and the transmission type EBSD method without changing the arrangement of the EBSD pattern detector, and the detection range of the diffracted electron beam can be widened.
  • separated is shown. It is a schematic diagram in the detection site
  • the EBSD detection apparatus of the present invention includes an electron beam source, a focusing lens that focuses the electron beam from the electron beam source, and an objective lens that forms an electron probe on the sample by further focusing the electron beam. Further, a scanning coil for scanning the electron probe on the sample, an EBSD pattern detector, and a sample holder are provided.
  • the EBSD pattern detector detects an EBSD pattern generated from the sample by an electron beam incident substantially vertically downward.
  • the sample holder to be used can change the tilt angle and arrangement of the sample with respect to the incident electron beam, and the EBSD detection device can analyze the crystal orientation of the sample based on the EBSD pattern.
  • FIG. 1 is a schematic diagram at a detection site of the EBSD detection device of the present invention, and shows an aspect in which the image sensor section 2 and the camera power supply section 13 are separated.
  • FIG. 1A shows a mode in which the crystal orientation of the bulk sample 5 is detected by irradiating an electron beam from the objective lens 7 by the reflective EBSD method.
  • a preferable inclination angle ⁇ of the sample 5 in the reflection type EBSD method is 60 ° to 70 °.
  • the objective lens 7, the sample 5, and the image sensor unit 2 that captures the EBSD pattern are adjusted to have a preferable arrangement relationship when using the reflective EBSD method. ing.
  • a point (calibration point) perpendicular to the image sensor unit 2 from the measurement site of the sample 5 is located at the center of the image sensor unit 2, and the image sensor unit 2 captures the measurement site of the sample 5 from the front. Yes. Therefore, the diffracted electron beam 6 due to reflection can be sufficiently taken into the imaging element unit 2 and a reflected EBSD pattern with small distortion can be obtained.
  • FIG. 1B shows an aspect in which the crystal orientation of the crystalline thin film sample 8 is detected by irradiating an electron beam from the objective lens 7 by the transmission EBSD method.
  • the preferable inclination angle ⁇ of the sample 8 is 10 ° to 30 °, and the distance WD from the lower end of the objective lens 7 to the measurement site of the sample 8 is 3 to 5 mm is preferable. Therefore, if the tilt angle ⁇ and the WD are set to be preferable, the direction in which the diffracted electron beam is emitted by transmission is determined to some extent.
  • the arrangement of the EBSD pattern detector 1 and the imaging element unit 2 in FIG. 1 (b) is the same as the preferred arrangement in the reflective EBSD method shown in FIG. 1 (a).
  • a part of the diffracted electron beam 3 due to transmission exceeds the imaging range of the imaging element unit 2.
  • a perpendicular foot (calibration point) dropped from the measurement site of the sample 8 to the image sensor unit 2 is in the vicinity of the upper edge of the image sensor unit 2, and the image sensor unit 2 obliquely transmits the diffracted electron beam 3 by transmission. It captures from.
  • the width of the band in the transmissive EBSD pattern is expanded at the lower part of the imaging element unit 2 as compared with the upper part, and distortion occurs in the transmissive EBSD pattern.
  • the diffracted electron beam 3 by transmission is sufficiently taken into the image sensor unit 2, and the diffracted electron beam by transmission is obtained. 3 can be widened.
  • a calibration point exists in the center of the image pick-up element part 2, and the image pick-up element part 2 looks up the measurement site
  • the EBSD detection apparatus of the present invention can adjust the elevation angle ⁇ of the image sensor section 2 with respect to the sample 8 in the EBSD pattern detector 1. For this reason, after analyzing the crystal orientation by the reflection type EBSD method, the crystal orientation can be analyzed by the transmission type EBSD method under preferable detection conditions without changing the arrangement of the EBSD pattern detector 1.
  • an EBSD detection apparatus in which both the reflection type EBSD method and the transmission type EBSD method have a small distortion of an EBSD pattern to be photographed and a wide detection range of an electron beam by the EBSD without changing the arrangement of the EBSD pattern detector 1. can be provided.
  • the elevation angle ⁇ of the image sensor unit 2 with respect to the sample 8 means an angle formed by the direction 9 and the horizontal plane 10 orthogonal to the image pickup surface 2b of the image sensor unit 2 as shown in FIG.
  • the preferred range of the elevation angle ⁇ when analyzing the crystal orientation by the transmission type EBSD method varies depending on the WD value, the inclination angle ⁇ of the sample 8, the arrangement of the imaging element unit 2, and the like.
  • the detection range is preferably 20 ° or more, more preferably 25 ° or more, in that a pattern with a small distortion can be obtained.
  • the elevation angle ⁇ is increased, the electron beam (e ⁇ ) passing through the sample is more taken in without being involved in the EBSD pattern, the detection result becomes brighter, and the pattern contrast tends to decrease.
  • the elevation angle ⁇ is preferably 50 ° or less, and more preferably 45 ° or less.
  • a hinge 11 is provided at the upper end of the image sensor unit 2, and the image sensor unit 2 is connected to the EBSD pattern detector 1 by the hinge 11. It is connected to the main body of the machine so as to be rotatable.
  • the EBSD pattern detector 1 includes a rod-shaped body 4 that moves forward or backward in the longitudinal direction. As shown in FIG. 1C, the image-capturing element section 2 is rotated by rotating the image-capturing element section 2 with the rod-shaped body 4. The elevation angle ⁇ with respect to the sample 8 can be adjusted. In the example shown in FIG.
  • the rod-shaped body 4 abuts on the lower part of the image sensor unit 2 and moves forward in the longitudinal direction, that is, moves rightward in FIG. ⁇ can be increased. Further, by moving the rod-like body 4 backward in the longitudinal direction, that is, by moving leftward in FIG. 1C, the elevation angle ⁇ can be reduced, and a preferable elevation angle ⁇ can be set by such a method.
  • FIG. 2 is a schematic diagram at a detection site of the EBSD detection device of the present invention.
  • FIG. 2A shows an embodiment in which the crystal orientation of the crystalline thin film sample 8 is detected by the transmission EBSD method. As shown in FIG.
  • a preferable arrangement in the transmission type EBSD method is that the inclination angle ⁇ of the sample 8 is 10 ° to 30 °, the WD is 3 mm to 5 mm, and the elevation angle of the imaging device unit 2 ⁇ is 20 ° to 50 °.
  • the arrangement relationship as shown in FIG. 2A makes it possible to widen the detection range of the diffracted electron beam 3 by transmission, and a transmission EBSD pattern with small distortion can be obtained.
  • FIG. 2 (b) and FIG. 2 (c) show a mode in which the crystal orientation of the bulk sample 5 is detected by the reflective EBSD method.
  • the preferable inclination angle ⁇ of the sample 5 is 60 ° to 70 °, and the direction in which the diffracted electron beam 6 is emitted by reflection depends on the arrangement of the sample 5. Determined to some extent.
  • the arrangement of the EBSD pattern detector 1 and the imaging element unit 2 in FIG. 2B is the same as the preferred arrangement in the transmissive EBSD method in FIG. Therefore, in the mode shown in FIG.
  • the calibration point is located below the image sensor unit 2, and the image sensor unit 2 captures the diffraction electron beam 6 due to reflection from an oblique direction.
  • variety of the band in a reflective EBSD pattern expands in the upper part of the image pick-up element part 2, and a reflective EBSD pattern with a big distortion arises.
  • the EBSD detection device of the present invention can adjust the elevation angle ⁇ of the image sensor section 2 in the EBSD pattern detector 1. Therefore, after analyzing the crystal orientation by the transmission type EBSD method, the crystal orientation can be analyzed by the reflection type EBSD method under preferable detection conditions without changing the arrangement of the EBSD pattern detector 1.
  • the elevation angle ⁇ is adjusted to 0 °.
  • the elevation angle ⁇ can be adjusted to a preferable value according to the measurement mode of the EBSD detection device. This can be easily performed by the hinge 11 and the rod-shaped body 4.
  • FIG. 5 is a schematic diagram at a detection site of the EBSD detection device of the present invention, and shows an aspect in which the image sensor unit 2 is integrated with a camera 2a having the image sensor unit 2 as a constituent element.
  • FIG. 5A shows an aspect in which the crystal orientation of the bulk sample 5 is analyzed by irradiating an electron beam from the objective lens 7 by the reflective EBSD method.
  • the tilt angle ⁇ of the sample 5 is 60 ° to 70 °.
  • the elevation angle of the imaging element unit 2 is 0 °.
  • the calibration point is located at the center of the image sensor section 2 in the EBSD pattern detector 1, it is possible to detect a reflected EBSD pattern having a wide detection range of the diffracted electron beam 6 by reflection and low distortion. it can.
  • FIG. 5B shows an aspect in which the crystal orientation of the crystalline thin film sample 8 is analyzed by the transmission EBSD method.
  • the inclination angle ⁇ of the sample 8 is 10 ° to 30 °
  • the WD is 3 mm to 5 mm.
  • the elevation angle ⁇ of the imaging element unit 2 is adjusted to 20 ° to 50 ° corresponding to the direction of the diffracted electron beam 3 by transmission. Therefore, since the calibration point is at the center of the image sensor unit 2, the detection range of the diffracted electron beam 3 by transmission is wide, and the distortion of the transmission EBSD pattern can be reduced.
  • the elevation angle ⁇ of the image pickup device unit 2 can be adjusted, it is preferable without changing the arrangement of the EBSD pattern detector 1 after analysis by the reflective EBSD method. Under the detection conditions, analysis can be performed by the transmission type EBSD method. Further, without changing the arrangement of the EBSD pattern detector, in both the reflective EBSD method and the transmissive EBSD method, a pattern with a wide detection range of electron beams by EBSD and a small distortion can be obtained.
  • the image sensor unit 2 includes a hinge 11 at the upper end, and the hinge 11 is adjusted. As a result, the image pickup device unit 2 is rotatably connected to the main body of the EBSD pattern detector 1.
  • the EBSD pattern detector 1 includes a rod-like body 4 that moves forward or backward in the longitudinal direction, and the imaging element portion 2 and the rod-like body 4 are rotatably connected by a hinge 11a. Therefore, as shown in FIG. 5B, the imaging element unit 2 is rotated by the rod-shaped body 4 to adjust the elevation angle ⁇ of the imaging element unit 2 with respect to the sample 8. That is, in the embodiment shown in FIG. 5A, by moving the rod-like body 4 forward in the longitudinal direction (moving rightward in FIG. 5A), as shown in FIG. The elevation angle ⁇ can be increased.
  • the image sensor unit 2 is integrated with a camera 2a having the image sensor unit 2 as a constituent element, so that the center of gravity of the camera 2a main body is not on the image sensor unit 2.
  • the elevation angle ⁇ of the imaging element unit 2 is set to a predetermined value by holding the imaging element unit 2 at a predetermined position by the rod-shaped body 4. Can be adjusted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

EBSDパターン検出器の配置を変更することなく、反射型EBSD法と透過型EBSD法の両方において、撮影するEBSDパターンの歪みが小さく、EBSDによる電子線の検出範囲が広いEBSD検出装置を提供することを課題とする。 このため、本発明のEBSD検出装置は、電子線源と、集束レンズと、対物レンズと、走査コイルと、EBSDパターン検出器と、試料ホルダーとを備え、試料の結晶方位を解析し、EBSDパターン検出器において、EBSDパターンを撮影する撮像素子部の試料に対する仰角が調整可能である。

Description

EBSD検出装置
 本発明は、EBSD検出装置に関し、特に撮影するEBSDパターンの歪みが小さく、EBSDによる電子線の検出範囲が広いEBSD検出装置に関する。
 金属やセラミックスなどの結晶性材料は、構成する原子や分子が一定のパターンに従って配列し、配列パターン(方位情報)により、結晶性材料の特性が異なる。したがって、結晶性材料の方位情報は、材料の特性を明らかにし、制御するための重要な情報である。この結晶性材料の方位情報は、電子線後方散乱回折(electron back scattering diffraction)(本明細書においては、“EBSD”という。)法により解析することができる。EBSD法は、走査電子顕微鏡を使用し、EBSDにより得られるEBSDパターン(:菊池線回折パターン)に基づき結晶方位を解析する方法である。
 図3は、従来の反射型EBSD法の測定原理を示す模式図である。図3に示すように、走査電子顕微鏡内にバルク試料31を配置し、バルク試料31の表面に電子線(e-)を照射し、表層部から反射する電子線の回折パターン(反射EBSDパターン)を取得する。バルク試料31に入射する電子線(e-)の光軸に垂直な面32と、バルク試料31とのなす角度は、好ましくは60°~80°であり、より好ましくは60°~70°である。EBSDパターンは、EBSDパターン検出器の蛍光スクリーン33で取得し、試料表面上で電子線を走査することにより、方位情報をマッピングする。このようにして、結晶性材料の所定の局所領域における結晶方位を知ることができる。
 一方、透過型EBSD法が知られている(R.R.ケラー & R.H.ゲイス, 「走査電子顕微鏡による10nm領域からの透過EBSD( Transmission EBSD from 10nm domains in a scanning electron microscope )」, “ジャーナル オブ マイクロスコピー”, vol.245, 2012年, pp.245-251(非特許文献1)参照)。図4は、従来の透過型EBSD法の測定原理を示す模式図である。図4に示すように、走査電子顕微鏡内に薄膜試料41を配置し、対物レンズ44から薄膜試料41に電子線(e-)を照射し、透過する電子線による回折パターン(透過EBSDパターン)をEBSDパターン検出器の蛍光スクリーン43により取得し、試料上で電子線を走査することにより方位情報をマッピングする。薄膜試料を使用することにより試料中の電子線の広がりを減らすことができ、透過型EBSD法では、通常の反射型EBSD法と比較して、より微細な構造の分析が可能である。
 図4に示すように、薄膜試料41の法線方向45と電子線の光軸とのなす角度をαとすると、薄膜試料41に入射する電子線の光軸に垂直な面42と薄膜試料41とのなす角度もαである。試料の傾斜角αは、透過EBSDパターンの解像度及び透過EBSDパターンをマッピングして得られる方位マップ像の解像度が良好である点で、0°~40°が好ましく、10°~30°が特に好ましい。また、対物レンズ44の下端から、薄膜試料41の測定部位までの距離WD(working distance)は、透過EBSDパターン及び方位マップ像の解像度が良好である点で、3mm~9mmが好ましく、3mm~5mmが特に好ましい。
R.R.ケラー & R.H.ゲイス, 「走査電子顕微鏡による10nm領域からの透過EBSD( Transmission EBSD from 10nm domains in a scanning electron microscope )」, "ジャーナル オブ マイクロスコピー", vol.245, 2012年, pp.245-251
 反射型EBSD法と透過型EBSD法とでは、試料の好ましい配置が異なるため、試料の測定部位から発生するEBSDによる電子線の方向が異なる。したがって、反射による回折電子線を検出するために配置したEBSDパターン検出器を使用して、透過による回折電子線を検出しようとすると、透過EBSDパターンの歪が大きくなり、EBSDパターンの検出可能範囲が狭くなりやすい。また、歪が大きいことから、パターン中のバンドの検出も難しくなり、指数付けの精度の劣化につながり易い。
 本発明の課題は、EBSDパターン検出器の配置を変更することなく、反射型EBSD法と透過型EBSD法の両方に、好ましい条件で対応することができるEBSDパターン検出装置を提供することにある。また、本発明は、EBSDパターン検出器の配置を変更することなく、反射型EBSD法と透過型EBSD法の両方において、撮影するEBSDパターンの歪みが小さく、EBSDによる電子線の検出可能範囲が広いEBSD検出装置を提供することを課題とする。
 本発明のEBSD検出装置は、電子線源と、電子線源からの電子線を集束する集束レンズと、電子線をさらに集束することにより試料上に電子プローブを形成する対物レンズと、試料上で電子プローブを走査する走査コイルとを備える。また、ほぼ鉛直下向きに入射する電子線により試料から生じるEBSDパターンを検出するEBSDパターン検出器と、入射する電子線に対する試料の傾斜角及び配置を変更する試料ホルダーとを備え、EBSDパターンにより試料の結晶方位を解析する。本発明のEBSD検出装置では、EBSDパターン検出器において、EBSDパターンを撮影する撮像素子部の試料に対する仰角が調整可能である。
 撮像素子部は、上端部にヒンジを備え、ヒンジにより撮像素子部をEBSDパターン検出器本体と回動自在に連結し、EBSDパターン検出器の長手方向に前進又は後進する棒状体で撮像素子部を回動することにより撮像素子部の試料に対する仰角を調整する態様が好ましい。また、撮像素子部は、撮像素子部を構成要素とするカメラと一体化している形態が可能である。かかる撮像素子部の仰角は、20度~50度に調整する態様が好ましい。
 本発明のEBSD検出装置では、EBSDパターン検出器の配置を変更することなく、反射型EBSD法と透過型EBSD法の両方に、好ましい条件で対応することができる。また、EBSDパターン検出器の配置を変更することなく、反射型EBSD法と透過型EBSD法の両方で、歪の小さいEBSDパターンが得られ、回折電子線の検出範囲を広くすることができる。
本発明のEBSD検出装置の検出部位における模式図であり、撮像素子部2とカメラ電源部13とが分離している態様を示す。 本発明のEBSD検出装置の検出部位における模式図である。 従来の反射型EBSD法の測定原理を示す模式図である。 従来の透過型EBSD法の測定原理を示す模式図である。 本発明のEBSD検出装置の検出部位における模式図であり、撮像素子部2が、撮像素子部2を構成要素とするカメラ2aと一体化している態様を示す。
 本発明のEBSD検出装置は、電子線源と、電子線源からの電子線を集束する集束レンズと、電子線をさらに集束することにより試料上に電子プローブを形成する対物レンズとを備える。また、試料上で電子プローブを走査する走査コイルと、EBSDパターン検出器と、試料ホルダーとを備える。EBSDパターン検出器は、ほぼ鉛直下向きに入射する電子線により試料から生じるEBSDパターンを検出する。また、使用する試料ホルダーは、入射する電子線に対する試料の傾斜角及び配置を変更し、かかるEBSD検出装置により、EBSDパターンに基づき試料の結晶方位を解析することができる。
 図1は、本発明のEBSD検出装置の検出部位における模式図であり、撮像素子部2とカメラ電源部13とが分離している態様を示す。図1(a)は、反射型EBSD法により、対物レンズ7から電子線を照射して、バルク試料5の結晶方位を検出する態様を示す。反射型EBSD法における試料5の好ましい傾斜角δは、60°~70°である。図1(a)に例示する態様では、反射型EBSD法を使用する上で、対物レンズ7と、試料5と、EBSDパターンを撮影する撮像素子部2とが好ましい配置関係となるように調整されている。このため、試料5の測定部位から撮像素子部2に垂直に下ろした点(キャリブレーション点)が撮像素子部2の中央に位置し、撮像素子部2が試料5の測定部位を正面から捉えている。したがって、反射による回折電子線6は、撮像素子部2に十分に取り込まれ、歪が小さい反射EBSDパターンを得ることができる。
 図1(b)及び図1(c)は、透過型EBSD法により、対物レンズ7から電子線を照射し、結晶性薄膜試料8の結晶方位を検出している態様を示す。図1(b)に示すように、透過型EBSD法において、試料8の好ましい傾斜角αは、10°~30°であり、対物レンズ7の下端から、試料8の測定部位までの距離WDは、3mm~5mmが好ましい。したがって、好ましい傾斜角αとWDとなるように配置すると、透過による回折電子線の放出する方向はある程度定まる。
 ここに、図1(b)におけるEBSDパターン検出器1と撮像素子部2との配置は、図1(a)に示す反射型EBSD法における好ましい配置と同様である。このため、図1(b)に示すように、透過による回折電子線3の一部は、撮像素子部2の撮像範囲を越えている。また、試料8の測定部位から撮像素子部2に下ろした垂線の足(キャリブレーション点)が、撮像素子部2の上部エッジ付近にあり、撮像素子部2は、透過による回折電子線3を斜めから捉えている。このため、撮像素子部2の下部では、上部と比較して透過EBSDパターン中のバンドの幅が拡大し、透過EBSDパターンに歪が生じる。
 そこで、図1(c)に示すように、撮像素子部2を傾け、試料8に対する仰角βを設けることにより、透過による回折電子線3を撮像素子部2に十分に取り込み、透過による回折電子線3の検出範囲を広くすることができる。また、図1(c)に示すように、キャリブレーション点が撮像素子部2の中央にあり、撮像素子部2は、試料8の測定部位を正面に見上げ、透過による回折電子線3を正面から捉えているため、透過EBSDパターンの歪が減少する。
 本発明のEBSD検出装置は、EBSDパターン検出器1における撮像素子部2の試料8に対する仰角βが調整可能である。このため、反射型EBSD法により結晶方位を解析した後、EBSDパターン検出器1の配置を変更することなく、好ましい検出条件で透過型EBSD法により結晶方位を解析することができる。また、EBSDパターン検出器1の配置を変更することなく、反射型EBSD法と透過型EBSD法の両方において、撮影するEBSDパターンの歪みが小さく、EBSDによる電子線の検出範囲が広いEBSD検出装置を提供することができる。ここに、撮像素子部2の試料8に対する仰角βとは、図1(c)に示すように、撮像素子部2の撮像面2bに直交する方向9と水平面10とのなす角度をいう。
 透過型EBSD法により結晶方位を解析するときの仰角βの好ましい範囲は、WD値、試料8の傾斜角α、撮像素子部2の配置などにより異なるが、一般的には、透過による回折電子線の検出範囲を広くすることができ、歪の小さいパターンが得られる点で、20°以上が好ましく、25°以上がより好ましい。一方、仰角βを大きくするにつれて、EBSDパターンに関与することなく、試料を透過する電子線(e)などをより多く取り込み、検出結果が明るくなり、パターンのコントラストが低下する傾向がある。このため、仰角βは、50°以下が好ましく、45°以下がより好ましい。
 撮像素子部の仰角βの調整方法としては、図1(c)に例示するように、撮像素子部2の上端部にヒンジ11を設け、ヒンジ11により、撮像素子部2をEBSDパターン検出器1の本体と回動自在に連結する。EBSDパターン検出器1は、長手方向に前進し又は後進する棒状体4を備え、図1(c)に示すように、棒状体4で撮像素子部2を回動することにより、撮像素子部2の試料8に対する仰角βを調整することができる。図1に示す例では、棒状体4は、撮像素子部2の下部に当接し、棒状体4を長手方向に前進することにより、即ち図1(c)において右方向に移動することにより、仰角βを大きくすることができる。また、棒状体4を長手方向に後進することにより、即ち図1(c)において左方向に移動することにより、仰角βを小さくし、かかる方法により好ましい仰角βを設定することができる。
 一方、本発明のEBSD検出装置を使用することにより、透過型EBSD法により結晶方位を解析した後、EBSDパターン検出器の配置をそのまま保持して、反射型EBSD法により結晶方位を解析することができる。図2は、本発明のEBSD検出装置の検出部位における模式図である。図2(a)は、透過型EBSD法により、結晶性薄膜試料8の結晶方位を検出している態様を示す。図2(a)に示すように、透過型EBSD法における好ましい配置は、試料8の傾斜角αが、10°~30°であり、WDが、3mm~5mmであり、撮像素子部2の仰角βが20°~50°である。透過型EBSD法では、図2(a)に示すような配置関係とすることにより、透過による回折電子線3の検出範囲を広くすることができ、歪の小さい透過EBSDパターンが得られる。
 図2(b)及び図2(c)は、反射型EBSD法により、バルク試料5の結晶方位を検出している態様を示す。図2(b)に示すように、反射型EBSD法において、試料5の好ましい傾斜角δは、60°~70°であり、試料5の配置により、反射による回折電子線6の放出する方向はある程度定まる。図2(b)におけるEBSDパターン検出器1と撮像素子部2との配置は、図2(a)における透過型EBSD法における好ましい配置と同様である。したがって、図2(b)に示す態様では、キャリブレーション点が撮像素子部2の下部に位置し、撮像素子部2は、反射による回折電子線6を斜めから捉えている。このため、撮像素子部2の上部では、下部と比較して、反射EBSDパターン中のバンドの幅が拡大し、歪の大きい反射EBSDパターンが生じる。
 そこで、図2(c)に示すように、撮像素子部2の仰角βを0°とすることにより、撮像素子部2の正面に試料5の測定部位が配置することになり、反射による電子線6を正面から捉えているため、パターンの歪を小さく抑えることができる。このように本発明のEBSD検出装置は、EBSDパターン検出器1における撮像素子部2の仰角βが調整可能である。このため、透過型EBSD法により結晶方位を解析した後、EBSDパターン検出器1の配置を変更することなく、好ましい検出条件で反射型EBSD法により結晶方位を解析することができる。
 また、EBSDパターン検出器1の配置を変更することなく、反射型EBSD法と透過型EBSD法の両方において、EBSDパターンの歪みが小さく、回折電子線の検出可能範囲が広いEBSD検出装置を提供することができる。図2(c)に示す例では、仰角β=0°に調整したが、EBSD検出装置の測定態様に応じて、仰角βを好ましい値に調整することができ、調整方法は、前述のとおり、ヒンジ11と棒状体4により容易に行うことができる。
 図5は、本発明のEBSD検出装置の検出部位における模式図であり、撮像素子部2が、撮像素子部2を構成要素とするカメラ2aと一体化している態様を示す。図5(a)は、反射型EBSD法により、対物レンズ7から電子線を照射し、バルク試料5の結晶方位を解析する態様を示す。図5(a)に示すように、反射型EBSD法における好ましい態様は、試料5の傾斜角δが60°~70°である。また、図5(a)に示す例では、撮像素子部2の仰角は0°である。かかる態様では、EBSDパターン検出器1における撮像素子部2の中央にキャリブレーション点が位置しているため、反射による回折電子線6の検出範囲が広く、歪が小さい反射EBSDパターンを検出することができる。
 図5(b)は、透過型EBSD法により、結晶性薄膜試料8の結晶方位を解析している態様を示す。図5(b)に示すように、透過型EBSD法における好ましい測定態様は、試料8の傾斜角αが、10°~30°であり、WDが、3mm~5mmである。図5(b)に示す例では、透過による回折電子線3の方向に対応して、撮像素子部2の仰角βが20°~50°となるように調整している。したがって、キャリブレーション点が撮像素子部2の中央にあるため、透過による回折電子線3の検出範囲が広く、透過EBSDパターンの歪を小さくすることができる。
 したがって、図5に例示するEBSD検出装置においても、撮像素子部2の仰角βを調整可能であるため、反射型EBSD法により解析した後、EBSDパターン検出器1の配置を変更することなく、好ましい検出条件で、透過型EBSD法により解析することができる。また、EBSDパターン検出器の配置を変更することなく、反射型EBSD法と透過型EBSD法の両方において、EBSDによる電子線の検出範囲が広く、歪みが小さいパターンを得ることができる。
 図5に例示するEBSDパターン検出器1では、撮像素子部2の仰角βの調整方法は、図5(a)に示すように、撮像素子部2が、上端部にヒンジ11を備え、ヒンジ11により、撮像素子部2をEBSDパターン検出器1の本体と回動自在に連結する。EBSDパターン検出器1は、長手方向に前進又は後進する棒状体4を備え、撮像素子部2と棒状体4とはヒンジ11aにより回動自在に連結している。そこで、図5(b)に示すように、棒状体4で撮像素子部2を回動させ、撮像素子部2の試料8に対する仰角βを調整する。即ち図5(a)に示す態様において、棒状体4を長手方向に前進(:図5(a)で右方向に移動)することにより、図5(b)に示すように、撮像素子部2の仰角βを大きくすることができる。
 図5に示す態様では、撮像素子部2は、撮像素子部2を構成要素とするカメラ2aと一体化しているため、カメラ2a本体の重心が撮像素子部2上にない。しかし、かかる態様においても、図5(a)に示すように、棒状体4により撮像素子部2を所定の位置に保持することにより、撮像素子部2の仰角βが所定の値となるように調整することができる。
 EBSDパターン検出器の配置を変更することなく、反射型EBSD法と透過型EBSD法の両方に、好ましい条件で対応することができるEBSDパターン検出装置を提供することができる。
 1  EBSDパターン検出器
 2  撮像素子部
 2a  カメラ
 3  透過による回折電子線
 4  棒状体
 5,8  試料
 6  反射による回折電子線
 7  対物レンズ
 11,11a  ヒンジ
 13  カメラ電源部
 31  バルク試料
 41  薄膜試料
 α,δ  試料の傾斜角
 β  撮像素子部の仰角
 WD  対物レンズの下端から試料の測定部位までの距離

Claims (4)

  1.  電子線源と、
     電子線源からの電子線を集束する集束レンズと、
     電子線をさらに集束することにより試料上に電子プローブを形成する対物レンズと、
     試料上で電子プローブを走査する走査コイルと、
     ほぼ鉛直下向きに入射する電子線により試料から生じる電子線後方散乱回折(electron back scattering diffraction:EBSD)パターンを検出するEBSDパターン検出器と、
     入射する電子線に対する試料の傾斜角及び配置を変更する試料ホルダーと、
    を備え、EBSDパターンにより試料の結晶方位を解析するEBSD検出装置であって、
     前記EBSDパターン検出器において、EBSDパターンを撮影する撮像素子部の試料に対する仰角が調整可能なEBSD検出装置。
  2.  前記撮像素子部は、上端部にヒンジを備え、
     該ヒンジにより撮像素子部をEBSDパターン検出器本体と回動自在に連結し、
     EBSDパターン検出器の長手方向に前進又は後進する棒状体で撮像素子部を回動することにより撮像素子部の試料に対する仰角を調整する
    請求項1に記載のEBSD検出装置。
  3.  前記撮像素子部は、該撮像素子部を構成要素とするカメラと一体化している請求項1に記載のEBSD検出装置。
  4.  前記撮像素子部は、仰角を20度~50度に調整する請求項1に記載のEBSD検出装置。
PCT/JP2016/075793 2015-12-14 2016-09-02 Ebsd検出装置 WO2017104186A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-243299 2015-12-14
JP2015243299A JP6359002B2 (ja) 2015-12-14 2015-12-14 Ebsd検出装置

Publications (1)

Publication Number Publication Date
WO2017104186A1 true WO2017104186A1 (ja) 2017-06-22

Family

ID=59056536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075793 WO2017104186A1 (ja) 2015-12-14 2016-09-02 Ebsd検出装置

Country Status (2)

Country Link
JP (1) JP6359002B2 (ja)
WO (1) WO2017104186A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644341A1 (en) * 2018-10-25 2020-04-29 Bruker Nano GmbH Moveable detector
CN113376192A (zh) * 2021-06-11 2021-09-10 华东交通大学 一种基于ebsd花样推测模糊菊池带宽度的方法
CN113433149A (zh) * 2021-05-26 2021-09-24 中国科学院金属研究所 一种实现ebsd系统跨尺度连续自动表征分析测试方法
EP4312021A1 (en) * 2022-07-26 2024-01-31 Bruker Nano GmbH Detector and method for obtaining kikuchi images

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6823563B2 (ja) * 2017-07-31 2021-02-03 株式会社日立製作所 走査電子顕微鏡および画像処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129170U (ja) * 1974-03-18 1975-10-23
JPS50147793A (ja) * 1974-05-17 1975-11-27
JPH0352946U (ja) * 1989-09-29 1991-05-22
JPH05296947A (ja) * 1992-04-24 1993-11-12 Japan Aviation Electron Ind Ltd 電子線回折測定装置
JP2014178154A (ja) * 2013-03-13 2014-09-25 Tsl Solutions:Kk 透過型ebsd法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3174396B2 (ja) * 1992-06-03 2001-06-11 科学技術振興事業団 電子エネルギー損失微細構造測定方法および装置
JP3910884B2 (ja) * 2002-07-02 2007-04-25 独立行政法人科学技術振興機構 Rheedのエネルギー損失スペクトル計測装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129170U (ja) * 1974-03-18 1975-10-23
JPS50147793A (ja) * 1974-05-17 1975-11-27
JPH0352946U (ja) * 1989-09-29 1991-05-22
JPH05296947A (ja) * 1992-04-24 1993-11-12 Japan Aviation Electron Ind Ltd 電子線回折測定装置
JP2014178154A (ja) * 2013-03-13 2014-09-25 Tsl Solutions:Kk 透過型ebsd法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644341A1 (en) * 2018-10-25 2020-04-29 Bruker Nano GmbH Moveable detector
US11087953B2 (en) 2018-10-25 2021-08-10 Bruker Nano Gmbh Moveable detector
CN113433149A (zh) * 2021-05-26 2021-09-24 中国科学院金属研究所 一种实现ebsd系统跨尺度连续自动表征分析测试方法
CN113376192A (zh) * 2021-06-11 2021-09-10 华东交通大学 一种基于ebsd花样推测模糊菊池带宽度的方法
CN113376192B (zh) * 2021-06-11 2023-11-10 华东交通大学 一种基于ebsd花样推测模糊菊池带宽度的方法
EP4312021A1 (en) * 2022-07-26 2024-01-31 Bruker Nano GmbH Detector and method for obtaining kikuchi images

Also Published As

Publication number Publication date
JP2017110935A (ja) 2017-06-22
JP6359002B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
WO2017104186A1 (ja) Ebsd検出装置
US9400176B2 (en) Dynamic focus adjustment with optical height detection apparatus in electron beam system
JP5309552B2 (ja) 電子線トモグラフィ法及び電子線トモグラフィ装置
US9618463B2 (en) Method of acquiring EBSP patterns
TWI437227B (zh) 用於分析一樣本之裝置及方法
US9506880B2 (en) Diffraction imaging
JP6581790B2 (ja) 走査プローブ顕微鏡
JP2005147851A (ja) 結晶解析方法及び結晶解析装置
JP2008519304A (ja) 全内部反射蛍光顕微鏡
JP5958914B2 (ja) 透過型ebsd法
JP2017110935A5 (ja)
JP5296578B2 (ja) 電子顕微鏡の自動試料傾斜装置
JP2006138837A5 (ja)
JP5006005B2 (ja) 異物検査装置及び異物検査方法
US11087953B2 (en) Moveable detector
JP4690584B2 (ja) 表面評価装置及び表面評価方法
JP2014025936A (ja) 荷電粒子顕微鏡における角度ルミネセンスを測定するためのシステムおよび方法
WO2015133014A1 (ja) 走査プローブ顕微鏡及び、これを用いた試料測定方法
JP5903900B2 (ja) 粒子存在比率算出方法及び粒子結晶サイズ算出方法
JP4845452B2 (ja) 試料観察方法、及び荷電粒子線装置
JP4616612B2 (ja) 反射電子線検出装置
JP2904191B2 (ja) X線回折顕微方法およびx線回折顕微装置
JP7207186B2 (ja) X線回折装置およびx線回折測定方法
CN110794560B (zh) 用于扫描显微成像系统的动态准直方法
JP2005055265A (ja) X線分析装置、x線分析方法、及び表面検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875172

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875172

Country of ref document: EP

Kind code of ref document: A1