WO2017073696A1 - 複合成形体及びその製造方法 - Google Patents

複合成形体及びその製造方法 Download PDF

Info

Publication number
WO2017073696A1
WO2017073696A1 PCT/JP2016/081962 JP2016081962W WO2017073696A1 WO 2017073696 A1 WO2017073696 A1 WO 2017073696A1 JP 2016081962 W JP2016081962 W JP 2016081962W WO 2017073696 A1 WO2017073696 A1 WO 2017073696A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
composite material
molded body
continuous fiber
Prior art date
Application number
PCT/JP2016/081962
Other languages
English (en)
French (fr)
Inventor
英明 市来
大賀 齋藤
梅井 勇雄
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201680050597.8A priority Critical patent/CN107921726B/zh
Priority to EP16859925.6A priority patent/EP3369566B1/en
Priority to JP2017547869A priority patent/JP6483848B2/ja
Priority to KR1020177035869A priority patent/KR102110994B1/ko
Priority to US15/771,425 priority patent/US10479005B2/en
Publication of WO2017073696A1 publication Critical patent/WO2017073696A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • B29C45/14221Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure by tools, e.g. cutting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14786Fibrous material or fibre containing material, e.g. fibre mats or fibre reinforced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • B29K2105/0881Prepregs unidirectional
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0077Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to a composite molded body and a method for producing the same.
  • composite material molded bodies in which a reinforcing material such as glass fiber is added to a resin material are used.
  • materials constituting the composite material molded body composite yarns in which continuous reinforcing fibers and continuous thermoplastic resin fibers are continuously and uniformly mixed, and fabrics composed of the composite yarns have been proposed.
  • a molded body in which the fabric is heated to about 280 ° C. to melt a portion of the thermoplastic resin and then cooled to about 50 ° C. to be solidified has been proposed (see, for example, Patent Document 1). .
  • a molten thermoplastic resin composition is put into a mold after a metal member or a composite material is inserted into a mold of an injection molding machine. Proposals have also been made for a method of injection-filling to obtain a composite molded body.
  • the above-described conventionally known composite molded body has sufficient bond strength at the interface between the metal member or composite material previously inserted in the mold and the injection-filled thermoplastic resin composition. There is still room for improvement.
  • Patent Document 1 does not disclose any composite molded body having excellent bonding strength by hybrid molding.
  • the present inventors have identified a composite molded article having a thermoplastic resin continuous fiber composite material and a thermoplastic resin composition and excellent in bonding strength.
  • the present inventors have found that it can be produced by performing the hybrid molding, and have completed the present invention. That is, the present invention is as follows.
  • thermoplastic resin continuous fiber composite material (1) containing a continuous reinforcing fiber (A) and a thermoplastic resin (B), and a thermoplastic resin composition (2), wherein the thermoplastic resin continuous fiber composite material ( 1) and a composite molded body (3) in which the thermoplastic resin composition (2) is bonded via a bonding surface,
  • the tensile strength of the joining part of the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) is 0.35 times or more the tensile strength of the thermoplastic resin composition (2).
  • the tensile strength of the joining part of the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) is 0.5 times or more the tensile strength of the thermoplastic resin composition (2).
  • the tensile strength of the joining part of the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) is 1.0 times or more of the tensile strength of the thermoplastic resin composition (2).
  • thermoplastic resin continuous fiber composite material (1) containing a continuous reinforcing fiber (A) and a thermoplastic resin (B), and a thermoplastic resin composition (2), wherein the thermoplastic resin continuous fiber composite material ( 1) and a composite molded body (3) in which the thermoplastic resin composition (2) is bonded via a bonding surface,
  • the interface is an interface formed by a continuous reinforcing fiber (A) contained in the thermoplastic resin continuous fiber composite material (1) and a discontinuous reinforcing material contained in the thermoplastic resin composition (2).
  • the continuous reinforcing fiber (A) is at least selected from the group consisting of glass fiber, carbon fiber, aramid fiber, ultrahigh strength polyethylene fiber, polybenzazole fiber, liquid crystal polyester fiber, polyketone fiber, metal fiber, and ceramic fiber.
  • thermoplastic resin (B) is a polyolefin resin, polyamide resin, polyester resin, polyether ketone, polyether ether ketone, polyether sulfone, polyphenylene sulfide, thermoplastic polyether imide, and thermoplastic fluorine resin.
  • thermoplastic resin continuous fiber composite material (1) containing a continuous reinforcing fiber (A) and a thermoplastic resin (B), and a thermoplastic resin composition (2), wherein the thermoplastic resin continuous fiber composite material ( 1) and the thermoplastic resin composition (2) is a method for producing a composite molded body in which the thermoplastic resin composition (2) is bonded via a bonding surface, Molding the thermoplastic resin continuous fiber composite material (1) in a mold; Injection-filling the thermoplastic resin composition (2) into a mold; Joining the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2); The manufacturing method of the composite molded object containing this.
  • thermoplastic resin composition (2) After the step of injecting and filling the thermoplastic resin composition (2) into a mold, A step of compression molding the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) in a mold having a melting point of the thermoplastic resin (B) or higher;
  • thermoplastic resin continuous fiber composite material (1) After the step of molding the thermoplastic resin continuous fiber composite material (1) in the mold, A step of compression-molding the thermoplastic resin continuous fiber composite material (1) in a mold having a melting point of the thermoplastic resin (B) or higher;
  • thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) has a concavo-convex structure mixed with each other, according to any one of the above [17] to [21].
  • a method for producing a composite molded body [23] Injection pressure or injection holding pressure when the thermoplastic resin composition (2) is injected and filled in a mold, and the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) The method for producing a composite molded body according to any one of the above [17] to [22], wherein the pressing pressure at the time of compression molding is the same.
  • thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) are solidified to ⁇ 10 ° C. or less until the heat Any one of the above [17] to [23], wherein an injection holding pressure equivalent to a press pressure at the time of compression molding the plastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) is continuously applied.
  • a method for producing a composite molded article is
  • thermoplastic resin continuous fiber composite material a thermoplastic resin fat composition
  • the schematic perspective view of an example of the composite molded object of this embodiment is shown.
  • (A) to (D) A schematic view of a molding process of the composite molded body of the present embodiment is shown.
  • the cross section of the junction part of the composite molded object of this embodiment is shown.
  • the distance L and thickness t of this embodiment are shown.
  • the result of the tension test in Example 2 is shown.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist.
  • the composite molded body of this embodiment is A thermoplastic resin continuous fiber composite material (1) containing a continuous reinforcing fiber (A) and a thermoplastic resin (B), and a thermoplastic resin composition (2), wherein the thermoplastic resin continuous fiber composite material ( 1) and a composite molded body (3) in which the thermoplastic resin composition (2) is bonded via a bonding surface,
  • the tensile strength of the joining part of the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) is 0.35 times or more the tensile strength of the thermoplastic resin composition (2).
  • thermoplastic resin continuous fiber composite material includes continuous reinforcing fibers (A) and a thermoplastic resin (B).
  • continuous reinforcing fibers (A) those used as a normal fiber reinforced composite material can be used, and are not limited to the following.
  • glass fiber, carbon fiber, aramid fiber, ultra high strength Preferable examples include at least one selected from the group consisting of polyethylene fiber, polybenzazole fiber, liquid crystal polyester fiber, polyketone fiber, metal fiber, and ceramic fiber. Glass fiber, carbon fiber, and aramid fiber are preferable from the viewpoint of mechanical characteristics, thermal characteristics, and versatility, and glass fiber is preferable from the viewpoint of economy.
  • a sizing agent may be used, and the sizing agent preferably contains a silane coupling agent, a lubricant, and a binding agent.
  • silane coupling agent A silane coupling agent is usually used as a surface treatment agent for glass fibers and contributes to an improvement in interfacial adhesive strength.
  • the silane coupling agent include, but are not limited to, aminosilanes such as ⁇ -aminopropyltrimethoxysilane and N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane; It is preferable to use one or more selected from the group consisting of mercaptosilanes such as mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane; epoxysilanes; vinylsilanes.
  • the lubricant contributes to the improvement of the opening property of the glass fiber.
  • any ordinary liquid or solid lubricating material suitable for the purpose can be used, and it is not limited to the following, but for example, animal and plant systems such as carnauba wax and lanolin wax, or mineral systems It is preferable to use at least one selected from surfactants such as fatty acid amides, fatty acid esters, fatty acid ethers, aromatic esters, and aromatic ethers.
  • the binding agent contributes to the improvement of the converging property and the interfacial adhesive strength of the glass fiber.
  • a polymer or a thermoplastic resin suitable for the purpose can be used.
  • the polymer include, but are not limited to, homopolymers of acrylic acid, copolymers of acrylic acid and other copolymerizable monomers, and primary, secondary, and tertiary amines thereof. And the like.
  • polyurethane resins synthesized from isocyanates such as m-xylylene diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate) and isophorone diisocyanate, and polyester or polyether diols. used.
  • the homopolymer and copolymer of acrylic acid preferably have a weight average molecular weight of 1,000 to 90,000, more preferably 1,000 to 25,000.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) (polystyrene conversion).
  • the copolymerizable monomer constituting the copolymer of acrylic acid and other copolymerizable monomer is not limited to the following, but examples thereof include acrylic acid and maleic acid among monomers having a hydroxyl group and / or a carboxyl group. , Methacrylic acid, vinyl acetic acid, crotonic acid, isocrotonic acid, fumaric acid, itaconic acid, citraconic acid, and mesaconic acid (one or more selected from the group consisting of acrylic acid).
  • Salts of acrylic acid homopolymers and copolymers with primary, secondary and tertiary amines are not limited to the following, but include, for example, triethylamine salts, triethanolamine salts and glycine salts. Can be mentioned.
  • the degree of neutralization is preferably 20 to 90%, and preferably 40 to 60% from the viewpoint of improving the stability of the mixed solution with other concomitant drugs (such as a silane coupling agent) and reducing the amine odor. Is more preferable.
  • the weight average molecular weight of the acrylic acid polymer forming the salt is not particularly limited, but is preferably in the range of 3,000 to 50,000. From the viewpoint of improving the converging property of the glass fiber, it is preferably 3,000 or more, and preferably from 50,000 or less from the viewpoint of improving characteristics when a composite material is formed.
  • thermoplastic resin used as the binder examples include, but are not limited to, for example, polyolefin resins, polyamide resins, polyacetal resins, polycarbonate resins, polyester resins, polyether ketones, polyether ethers. Examples include ketone, polyether sulfone, polyphenylene sulfide, thermoplastic polyetherimide, thermoplastic fluororesin, and modified thermoplastic resins obtained by modifying these.
  • the thermoplastic resin used as the binder is a thermoplastic resin (B) contained in the thermoplastic resin continuous fiber composite material (1), for example, the same kind of thermoplastic resin and / or modified thermoplastic resin as the continuous thermoplastic resin fiber.
  • the continuous thermoplastic resin fiber refers to a continuous reinforcing fiber, for example, a polyamide fiber mixed with a continuous glass fiber, and is melted after hot pressing to become a matrix material of a thermoplastic resin continuous composite material. Furthermore, when attaching the sizing agent to the glass fiber as an aqueous dispersion to further improve the adhesion of both fibers, it is used as a binding agent from the viewpoint of reducing the ratio of the emulsifier component or eliminating the need for an emulsifier.
  • the thermoplastic resin to be used is preferably a modified thermoplastic resin.
  • the modified thermoplastic resin means that, in addition to the monomer component that can form the main chain of the thermoplastic resin, different monomer components are copolymerized for the purpose of changing the properties of the thermoplastic resin, and hydrophilicity, crystallinity, and the like. Means a modified thermodynamic property.
  • the modified thermoplastic resin used as the binder is not limited to the following, and examples thereof include a modified polyolefin resin, a modified polyamide resin, and a modified polyester resin.
  • the modified polyolefin resin as a binder is a copolymer of an olefin monomer such as ethylene or propylene and a monomer copolymerizable with an olefin monomer such as an unsaturated carboxylic acid, and can be produced by a known method.
  • the modified polyolefin resin may be a random copolymer obtained by copolymerizing an olefin monomer and an unsaturated carboxylic acid, or a graft copolymer obtained by grafting an unsaturated carboxylic acid on an olefin.
  • Examples of the olefinic monomer include, but are not limited to, ethylene, propylene, 1-butene, and the like. These may be used alone or in combination of two or more.
  • Examples of the monomer copolymerizable with the olefin monomer include acrylic acid, maleic acid, maleic anhydride, methacrylic acid, vinyl acetic acid, crotonic acid, isocrotonic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid and the like. Saturated carboxylic acid etc. are mentioned, These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the copolymerization ratio between the olefin monomer and the monomer copolymerizable with the olefin monomer is 60 to 95% by mass of the olefin monomer and 100% by mass when the total mass of the copolymer is 100% by mass.
  • the amount of the polymerizable monomer is preferably 5 to 40% by mass, more preferably 70 to 85% by mass of the olefin monomer, and more preferably 15 to 30% by mass of the monomer copolymerizable with the olefin monomer.
  • the olefin monomer is 60% by mass or more, the affinity with the matrix tends to be good, and if the olefin monomer is 95% by mass or less, the water-dispersibility of the modified polyolefin resin is good. Thus, uniform application to continuous reinforcing fibers tends to be facilitated.
  • a modified group such as a carboxyl group introduced by copolymerization may be neutralized with a basic compound.
  • the basic compound include, but are not limited to, alkalis such as sodium hydroxide and potassium hydroxide; ammonia; amines such as monoethanolamine and diethanolamine.
  • the weight average molecular weight of the modified polyolefin resin used as a binder is not particularly limited, but is preferably 5,000 to 200,000, and more preferably 50,000 to 150,000.
  • the weight average molecular weight of the modified polyolefin-based resin is preferably 5,000 or more from the viewpoint of improving the converging property of the glass fiber, and 200,000 or less from the viewpoint of emulsion stability when water dispersibility is obtained. preferable.
  • the modified polyamide resin used as a binder is a modified polyamide compound in which a hydrophilic group such as a polyalkylene oxide chain or a tertiary amine component is introduced into a molecular chain, and can be produced by a known method.
  • a polyalkylene oxide chain is introduced into the molecular chain, for example, a part or all of polyethylene glycol, polypropylene glycol or the like modified with diamine or dicarboxylic acid is copolymerized.
  • a tertiary amine component for example, aminoethylpiperazine, bisaminopropylpiperazine, ⁇ -dimethylamino ⁇ -caprolactam and the like are copolymerized.
  • the modified polyester resin used as a binder is a resin having a hydrophilic group in a molecular skeleton including a terminal and is a copolymer of a polycarboxylic acid or an anhydride thereof and a polyol, and can be produced by a known method.
  • hydrophilic groups include polyalkylene oxide groups, sulfonates, carboxyl groups, and neutralized salts thereof.
  • the polycarboxylic acid or its anhydride include aromatic dicarboxylic acid, sulfonate-containing aromatic dicarboxylic acid, aliphatic dicarboxylic acid, alicyclic dicarboxylic acid, and trifunctional or higher polycarboxylic acid.
  • aromatic dicarboxylic acid examples include phthalic acid, terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and phthalic anhydride.
  • sulfonate-containing aromatic dicarboxylic acid examples include sulfoterephthalate, 5-sulfoisophthalate, and 5-sulfoorthophthalate.
  • Aliphatic dicarboxylic acids or alicyclic dicarboxylic acids include fumaric acid, maleic acid, itaconic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dimer acid, 1,4-cyclohexanedicarboxylic acid, succinic anhydride, anhydrous And maleic acid.
  • Examples of the tri- or higher functional polycarboxylic acid include trimellitic acid, pyromellitic acid, trimellitic anhydride, pyromellitic anhydride, and the like.
  • the modified polyester resin from the viewpoint of improving the heat resistance of the modified polyester resin, it is preferable that 40 to 99 mol% of the total polycarboxylic acid component is an aromatic dicarboxylic acid. From the viewpoint of emulsion stability when the modified polyester resin is used as an aqueous dispersion, it is preferable that 1 to 10 mol% of the total polycarboxylic acid component is a sulfonate-containing aromatic dicarboxylic acid.
  • Examples of the polyol constituting the modified polyester resin include diols, trifunctional or higher functional polyols, and the like.
  • Examples of the diol include, but are not limited to, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, polybutylene glycol, 1,3-propanediol, 1,4-butanediol, 1, Examples thereof include 6-hexanediol, neopentyl glycol, polytetramethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, bisphenol A or an alkylene oxide adduct thereof.
  • Examples of the tri- or higher functional polyol include trimethylolpropane, glycerin, pentaerythritol and the like.
  • the copolymerization ratio of the polycarboxylic acid or its anhydride constituting the modified polyester resin and the polyol when the total mass of the copolymerization components is 100% by mass, the polycarboxylic acid or its anhydride is 40 to 60% by mass, The polyol is preferably 40 to 60% by mass, more preferably 45 to 55% by mass of polycarboxylic acid or anhydride thereof, and more preferably 45 to 55% by mass of polyol.
  • the weight average molecular weight of the modified polyester resin is preferably 3,000 to 100,000, and more preferably 10,000 to 30,000.
  • the weight-average molecular weight of the modified polyester resin is preferably 3,000 or more from the viewpoint of improving the converging property of the glass fiber, and is 100,000 or less from the viewpoint of emulsion stability in the case of water dispersibility. It is preferable.
  • the said polymer and thermoplastic resin used as a binder may be used individually by 1 type, and may use 2 or more types together.
  • the total amount of the binder is 100% by mass, it is selected from homopolymers of acrylic acid, copolymers of acrylic acid and other copolymerizable monomers, and salts of these primary, secondary and tertiary amines. It is preferable to use 50% by mass or more, and more preferable to use 60% by mass or more of the one or more kinds of polymers.
  • the glass fiber sizing agent preferably contains 0.1 to 2% by mass of the silane coupling agent, 0.01 to 1% by mass of the lubricant, and 1 to 25% by mass of the binding agent. Is diluted with water to adjust the total mass to 100% by mass.
  • the compounding amount of the silane coupling agent in the glass fiber sizing agent is 0.1 to 2% by mass from the viewpoints of improving the glass fiber sizing property and interfacial adhesion strength and improving the mechanical strength of the composite material molded body It is preferably 0.1 to 1% by mass, more preferably 0.2 to 0.5% by mass.
  • the blending amount of the lubricant in the glass fiber sizing agent is preferably 0.01 from the viewpoint of providing sufficient lubricity and from the viewpoint of improving the tensile breaking strength of the connecting yarn by the air splicer and improving the opening property in the blending process.
  • the blending amount of the binder in the glass fiber sizing agent is preferably 1 to 25% by mass, more preferably 3 from the viewpoints of controlling the sizing property of the glass fiber, improving the interfacial adhesion strength, and improving the mechanical strength of the composite material molded body. -15% by mass, more preferably 3-10% by mass.
  • the glass fiber as the continuous reinforcing fiber (A) contained in the thermoplastic resin continuous fiber composite material (1) constituting the composite molded body of the present embodiment is obtained by using the above-described sizing agent in the known glass fiber manufacturing process. Using a known method such as a roller-type applicator, the glass fiber produced by applying to the glass fiber is continuously obtained by drying.
  • the sizing agent is preferably 0.1 to 3% by mass, more preferably 0.2 to 2% by mass, and still more preferably the total mass of the silane coupling agent, the lubricant and the binding agent with respect to 100% by mass of the glass fiber. Apply 0.2 to 1 mass%.
  • the amount of sizing agent applied is 0.1% by mass or more as the total mass of the silane coupling agent, the lubricant and the binding agent with respect to 100% by mass of the glass fiber. It is preferable that the amount is 3% by mass or less from the viewpoint of improving the tensile breaking strength of the binding yarn by the air splicer and improving the spreadability in the fiber mixing step.
  • the sizing agent preferably contains a lubricant and a binding agent.
  • a lubricant There are no particular limitations on the type of sizing agent, lubricant, and binding agent, and known materials can be used. As a specific material, the material described in the said patent document 1 can be used.
  • the type and amount of sizing agent used for glass fibers and carbon fibers may be appropriately selected according to the characteristics of the continuous reinforcing fibers (A). It is preferable to use the sizing agent in accordance with
  • the number of single yarns of the continuous reinforcing fiber (A) is preferably 30 to 15,000 from the viewpoints of fiber opening and handling in the fiber mixing process.
  • thermoplastic resin (B) contained in the thermoplastic resin continuous fiber composite material (1) constituting the composite molded body of the present embodiment, those usually used for the composite material molded body can be used.
  • the thermoplastic resin (B) is preferably a crystalline resin from the viewpoint that it can be processed into a fibrous form.
  • examples of the thermoplastic resin (B) include, but are not limited to, polyolefin resins such as polyethylene and polypropylene; polyamide resins such as polyamide 6, polyamide 66, and polyamide 46; polyethylene terephthalate and polybutylene terephthalate.
  • Polyester resins such as polytrimethylene terephthalate; Polyacetal resins such as polyoxymethylene; Polycarbonate resins; Polyether ketones; Polyether ether ketones; Polyether sulfone; Polyphenylene sulfide; Thermoplastic polyether imides; Continuous fibers obtained by melt spinning at least one thermoplastic resin selected from thermoplastic fluororesins such as ethylene copolymers and modified thermoplastic resins obtained by modifying them. It is preferable that.
  • the polyester resin means a polymer compound having a —CO—O— (ester) bond in the main chain.
  • ester an organic compound having a —CO—O— (ester) bond in the main chain.
  • the polyester resin may be a homopolyester or a copolyester. In the case of a copolyester, a copolymer obtained by suitably copolymerizing a third component with a homopolyester is preferable.
  • the third component examples include, but are not limited to, diethylene glycol, neopentyl glycol, polyalkylene glycol, and the like.
  • Diol components, dicarboxylic acid components such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid.
  • a polyester-based resin using a raw material derived from biomass resources can be used, but is not limited to the following, for example, aliphatic such as polylactic acid, polybutylene succinate, polybutylene succinate adipate Examples thereof include polyester resins and aromatic polyester resins such as polybutylene adipate terephthalate.
  • the polyamide-based resin means a polymer compound having a —CO—NH— (amide) bond in the main chain.
  • polyamide obtained by ring-opening polymerization of lactam polyamide obtained by self-condensation of ⁇ -aminocarboxylic acid
  • polyamide obtained by condensing diamine and dicarboxylic acid polyamide obtained by condensing diamine and dicarboxylic acid, and these The copolymer of these is mentioned.
  • a polyamide-type resin may be used individually by 1 type, and may be used as a 2 or more types of mixture.
  • lactam examples include, but are not limited to, pyrrolidone, caprolactam, undecane lactam, and dodecalactam.
  • ⁇ -aminocarboxylic acid examples include, but are not limited to, ⁇ -amino fatty acid, which is a ring-opening compound of lactam with water. Lactam or ⁇ -aminocarboxylic acid may be condensed using two or more monomers in combination.
  • diamine examples include, but are not limited to, linear aliphatic diamines such as hexamethylene diamine and pentamethylene diamine; 2-methylpentane diamine and 2-ethyl hexamethylene diamine.
  • Branched aliphatic diamines such as p-phenylene diamine and m-phenylene diamine; cycloaliphatic diamines such as cyclopentane diamine, cyclopentane diamine and cyclooctane diamine.
  • dicarboxylic acid examples include, but are not limited to, aliphatic dicarboxylic acids such as adipic acid, pimelic acid and sebacic acid; aromatic dicarboxylic acids such as phthalic acid and isophthalic acid; cyclohexane And alicyclic dicarboxylic acids such as dicarboxylic acids.
  • aliphatic dicarboxylic acids such as adipic acid, pimelic acid and sebacic acid
  • aromatic dicarboxylic acids such as phthalic acid and isophthalic acid
  • cyclohexane And alicyclic dicarboxylic acids such as dicarboxylic acids.
  • Each of the diamine and dicarboxylic acid as the monomer may be condensed alone or in combination of two or more.
  • copolymerized polyamide examples include, but are not limited to, for example, a copolymer of hexamethylene adipamide and hexamethylene terephthalamide, a copolymer of hexamethylene adipamide and hexamethylene isophthalamide, and hexamethylene adipamide. And a copolymer of methylene terephthalamide and 2-methylpentanediamine terephthalamide.
  • thermoplastic resin continuous fiber composite material (1) There is no restriction
  • the woven fabric may use a weaving machine such as a shuttle loom, a rapier loom, an air jet loom, a water jet loom, etc., and may contain a composite yarn at least partially.
  • a weaving machine such as a shuttle loom, a rapier loom, an air jet loom, a water jet loom, etc.
  • the knitted fabric is obtained by knitting a fiber including a composite yarn at least partially using a knitting machine such as a circular knitting machine, a flat knitting machine, a tricot knitting machine, and a raschel knitting machine.
  • Non-woven fabric is a sheet-like fiber assembly called a web made of fibers containing at least a portion of composite yarn, and then the physical action such as a needle punch machine, stitch bond machine, columnar flow machine, etc. It is obtained by bonding fibers with an adhesive.
  • the method of the said patent document 1 can be used suitably.
  • the material in the form of a fabric is used as the raw material of the thermoplastic resin continuous fiber composite material (1)
  • the cloth-like material has an uneven structure in the interface structure with respect to the plate-shaped object. Therefore, unevenness is generated on the joint surface with the injection-filled thermoplastic resin composition, the joint area between the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) is increased, and the thermoplasticity is increased.
  • higher bonding strength tends to be obtained.
  • a mixed fiber is preferable, but a continuous reinforcing fiber (for example, glass fiber or carbon fiber) in which a thermoplastic resin is dispersed or adhered, or A film-like thermoplastic resin superposed with continuous reinforcing fibers may be used.
  • thermoplastic resin (B) constituting the thermoplastic resin continuous fiber composite material (1) is continuous when a thermoplastic resin continuous fiber composite material mixed yarn is used as the material of the thermoplastic resin continuous fiber composite material (1).
  • a thermoplastic resin fiber is more preferable.
  • “Thermoplastic resin continuous fiber composite material mixed yarn” is one form of the configuration of the thermoplastic resin continuous fiber composite material (1) constituting the composite molded body of the present embodiment. That is, the “thermoplastic resin continuous fiber composite material mixed yarn” is composed of continuous reinforcing fiber (A) and thermoplastic resin (B), and the thermoplastic resin is “continuous thermoplastic resin fiber”. The continuous reinforcing fiber and the continuous thermoplastic resin fiber are mixed.
  • the “continuous thermoplastic resin fiber” is a fiber made of a thermoplastic resin, and suitable examples include polyamide fiber and polyester fiber.
  • continuous reinforcing fibers and / or continuous thermoplastic resin fibers are opened by electrostatic force, pressure due to fluid spraying, external force due to pressure applied to rollers, etc., and then as continuous reinforcing fibers (A) and thermoplastic resins (B).
  • continuous reinforcing fibers A
  • thermoplastic resins B
  • the fluid entanglement method (interlace method) is preferable from the viewpoint that the continuous reinforcing fiber (A) can be prevented from being damaged, is excellent in spreadability, and can be uniformly mixed.
  • the fluid entanglement method two or more vortex turbulence zones with fluids such as air, nitrogen gas, and water vapor are made almost parallel to the yarn axis, and fibers are introduced into the zone to cause loops and crimps.
  • examples include a method of fluid entanglement after opening both (fluid entanglement after opening).
  • the continuous thermoplastic resin fiber as the thermoplastic resin (B) is subjected to false twisting in a process including thermal processing alone and then continuously in the same apparatus and mixed by a fluid entanglement method.
  • the method described in the said patent document 1 can be used suitably.
  • thermoplastic resin composition (2) If the thermoplastic resin composition (2) which comprises the composite molded object in this embodiment is a thermoplastic resin composition used for general injection molding, it can be especially used without a restriction
  • the thermoplastic resin composition (2) include, but are not limited to, polyethylene, polypropylene, polyvinyl chloride, acrylic resin, styrene resin, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyphenylene ether. , Modified polyphenylene ether resin, wholly aromatic polyester, polyacetal, polycarbonate, polyetherimide, polyethersulfone, polyamide resin, polysulfone, polyetheretherketone, polyetherketone, etc. Can be used. Moreover, various fillers may be mix
  • short fibers and long fiber materials which are discontinuous reinforcing materials of the same type as the continuous reinforcing fibers (A) may be used.
  • a sizing agent may be used in the same manner as the continuous reinforcing fiber (A), and the sizing agent includes a silane coupling agent, a lubricant and a binding agent. It is preferable. With respect to the types of the silane coupling agent, the lubricant, and the binding agent, the same sizing agents as those for the continuous reinforcing fiber (A) described above can be used.
  • the tensile strength of the joining portion between the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) is 0 of the tensile strength of the thermoplastic resin composition (2). .35 times or more, preferably 0.5 times or more, more preferably 1.0 times or more.
  • the tensile strength of the joint portion is determined by measuring the tensile strength by a tensile test.
  • the composite molded body breaks at the joint portion, the molded body made of only the thermoplastic resin composition (2) is cut out, the tensile strength is measured, and compared with the tensile strength of the joint portion.
  • the composite molded body is broken at the portion of the thermoplastic resin composition (2), it is determined that the tensile strength of the bonded portion is 1.0 times or more the tensile strength of the thermoplastic resin composition (2).
  • the tensile test can be carried out according to the method shown in [Example] described later, and the tensile strength of the joint portion and the tensile strength of the thermoplastic resin composition can be measured.
  • the joining portion of the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) has an uneven structure mixed with each other from the viewpoint of joining strength. Is preferred.
  • the relationship between L and t satisfies the above formula, the joining area of the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) becomes large, and the thermoplastic resin continuous fiber composite material (1). And the thermoplastic resin composition (2) tends to exhibit an anchor effect and obtain higher bonding strength.
  • the distance L of the interface and the thickness t of the composite molded body can be measured according to the method shown in [Example] described later.
  • the said interface is normally formed with the continuous reinforcement fiber (A) contained in the said thermoplastic resin continuous fiber composite material (1), and the discontinuous reinforcement material contained in the said thermoplastic resin composition (2). Indicates an interface.
  • thermoplastic resin continuous fiber composite material (1) containing a continuous reinforcing fiber (A) and a thermoplastic resin (B), and a thermoplastic resin composition (2), wherein the thermoplastic resin continuous fiber composite material ( 1) and the thermoplastic resin composition (2) is a method for producing a composite molded body in which the thermoplastic resin composition (2) is bonded via a bonding surface, Molding the thermoplastic resin continuous fiber composite material (1) in a mold; Injection-filling the thermoplastic resin composition (2) into a mold; Joining the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2); Is a manufacturing method.
  • thermoplastic resin continuous fiber composite material (1) a material constituting the thermoplastic resin continuous fiber composite material (1), preferably a fabric-like material, is cut according to a desired composite molded body, and a necessary number of layers are laminated in consideration of the product thickness, Set according to the shape.
  • a cloth-like material the degree of freedom with respect to the mold can be increased as compared with a conventional composite material plate in which a resin is impregnated with a general reinforcing fiber. Even if there is a difference in height, the shape can be shaped with a high degree of freedom.
  • thermoplastic resin continuous fiber composite material (1) when a fabric-like material is selected as the thermoplastic resin continuous fiber composite material (1), the unmelted end portion includes a large amount of voids. Therefore, the thermoplastic resin continuous fiber composite material (1) and the heat In the step of joining the plastic resin composition (2), the thermoplastic resin composition (2) enters the void portion, and the joining area increases and the anchor effect becomes strong, so that the joining strength tends to be improved.
  • thermoplastic resin continuous fiber composite material (1) (Process of molding the thermoplastic resin continuous fiber composite material (1) in the mold)
  • the material is set in a mold whose temperature is controlled below the melting point of the thermoplastic resin (B) constituting the thermoplastic resin continuous fiber composite material, and then the mold is closed, compressed, and molded.
  • the clamping pressure is not particularly limited, but is preferably 1 MPa or more, more preferably 3 MPa or more.
  • one-end clamping may be performed for degassing and the like, and after the compression molding, the clamping pressure of the one-end mold may be released.
  • thermoplastic resin composition (2) After the thermoplastic resin continuous fiber composite material (1) is set in the mold and the mold is closed, the thermoplastic resin composition (2) is injection-filled and molded after a predetermined time, and the thermoplastic resin continuous fiber is molded.
  • the composite molded body of this embodiment which is a hybrid molded body can be obtained.
  • thermoplastic resin composition (2) in the method for producing a composite molded body in the present embodiment, after the step of injecting and filling the thermoplastic resin composition (2) into the mold, in the mold having a melting point of the thermoplastic resin (B) or higher, It is preferable to perform a step of compression molding the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2).
  • the mold temperature in the step of injecting and filling (2) into the mold is equal to or lower than the melting point of the thermoplastic resin (B).
  • the mold temperature during injection filling is preferably the melting point of the thermoplastic resin (B) ⁇ 100 ° C. or higher or the glass transition temperature ⁇ 50 ° C. or higher, more preferably the melting point ⁇ 50 ° C. or higher, or glass
  • the transition temperature is ⁇ 25 ° C. or higher, more preferably the melting point is ⁇ 10 ° C. or higher or the glass transition temperature or higher.
  • thermoplastic resin continuous fiber composite material (1) when the thermoplastic resin continuous fiber composite material (1) is subjected to compression molding, the pressing pressure applied to the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) are injected. It is preferable that the injection pressure or the injection holding pressure to be applied is equal.
  • the press pressure when the press pressure is larger than the injection pressure or the injection holding pressure, the thermoplastic resin (B) contained in the thermoplastic resin continuous fiber composite material (1) flows out at the time of melting, and includes reinforcing fibers. There is a part that is not, and that part tends to be vulnerable.
  • the injection pressure or the injection holding pressure is larger than the pressing pressure, the thermoplastic resin continuous fiber composite material (1) is pushed against the injection pressure or the injection holding pressure, and the reinforcing fiber orientation included in (1) Tend to collapse.
  • the pressures are the same, and includes a case where there is a pressure difference of ⁇ 10 MPa, preferably ⁇ 5 MPa.
  • the injection holding pressure is a holding pressure at the time of injection molding.
  • thermoplastic resin continuous in the mold having a melting point of the thermoplastic resin (B) or higher.
  • the step of compression molding the fiber composite material (1) may be further included.
  • the mold temperature when injection-filling the thermoplastic resin composition (2) is the melting point of the thermoplastic resin (B) constituting the thermoplastic resin continuous fiber composite material (1) + 10 ° C. or higher, or the glass transition temperature + 10 ° C. or higher. More preferably, it is melting
  • the mold temperature when injection-filling the thermoplastic resin composition (2) is within the melting point + 50 ° C. of the thermoplastic resin (B) constituting the thermoplastic resin continuous fiber composite material (1) or within the glass transition temperature + 50 ° C. It is.
  • the timing of injection filling the thermoplastic resin composition (2) at this time is preferably within 30 seconds after the thermoplastic resin continuous fiber composite material (1) is set in the mold and the mold is closed. .
  • thermoplastic resin continuous fiber composite material (1) inserted into the mold when the thermoplastic resin composition (2) is injected and filled constitutes the thermoplastic resin continuous fiber composite material (1).
  • the melting point of the thermoplastic resin (B) is preferably within ⁇ 10 ° C.
  • the end surface temperature of the thermoplastic resin continuous fiber composite material (1) is the temperature of the portion in contact with the thermoplastic resin composition to be injected and filled.
  • thermoplastic resin continuous fiber composite material (1) when the thermoplastic resin continuous fiber composite material (1) is subjected to compression molding, the pressing pressure applied to the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) are injected. It is preferable that the injection pressure to be loaded or the injection holding pressure become equal.
  • thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) are bonded via the joint surface, and the thermoplastic resin continuous
  • the tensile strength of the joint portion of the fiber composite material (1) and the thermoplastic resin composition (2) is 0.35 times or more, preferably 0.5 times or more the tensile strength of the thermoplastic resin composition (2). More preferably, it is 1.0 times or more.
  • it is 1.0 times or more.
  • thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) it is effective to perform compression molding with a mold having a melting point or higher after joining the thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2).
  • thermoplastic resin continuous fiber composite material (1) and a thermoplastic resin composition (2) it is effective to select a cloth-like material for the thermoplastic resin continuous fiber composite material (1) in addition to compression molding with a mold having a melting point or higher after joining.
  • thermoplastic resin continuous fiber composite material (1) and the thermoplastic resin composition (2) in order to make the tensile strength of the joining portion 1.0 times or more of the tensile strength of the thermoplastic resin composition (2).
  • thermoplastic resin continuous fiber composite material (1) In addition to compression molding with a mold having a melting point or higher, and selection of a cloth-like material for the thermoplastic resin continuous fiber composite material (1), press pressure and injection pressure or injection holding pressure are equivalent. Furthermore, the injection pressure holding time is long, for example, 5 seconds or more, preferably 10 seconds or more, more preferably, the thermoplastic resin (B) in which the mold temperature is included in the thermoplastic resin continuous fiber composite material (1). It is effective to hold the time until the temperature becomes equal to or lower than the solidification point of the thermoplastic resin composition (2).
  • Example 1 A glass fiber having a fineness of 685 dtex and 400 single yarns, to which 1.0% by mass of the following sizing agent a was attached, was used as the continuous reinforcing fiber (A).
  • Composition of sizing agent a (in terms of solid content)): Silane coupling agent: 0.6% by mass of ⁇ -aminopropyltriethoxysilane [trade name: KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.)] ⁇ Lubricant: 0.1% by weight of wax [Brand name: Carnauba wax (manufactured by Hiroyuki Kato)] ⁇ Binder: 5% by mass of acrylic acid / maleic acid copolymer salt [trade name: Aqualic TL (manufactured by Nippon Shokubai Co., Ltd.)]
  • thermoplastic resin (B) polyamide 66 fiber (trade name: Leona (registered trademark) 470 / 144BAU (manufactured by Asahi Kasei Fibers Co., Ltd.), fineness 470 dtex, number of single yarns 144) not subjected to entanglement treatment was used.
  • the melting point of the thermoplastic resin (B) was 265 ° C.
  • a continuous reinforcing fiber (A) having a fineness of 685 dtex and a bundle of 400 single-fiber glass fibers and a thermoplastic resin (B) having a fineness of 470 dtex of PA fibers are bundled and aligned, and then substantially added to the fluid entanglement nozzle.
  • the composite yarn was obtained by feeding it vertically to the fluid and entangled the fluid under the following conditions.
  • -Fluid entanglement nozzle Kyocera KC-AJI-L (1.5 mm diameter, propulsion type) Air pressure: 2 kg / cm 2 (Example 1) ⁇ Processing speed: 30m / min
  • the obtained composite yarn was used as warp and weft, and a woven fabric (fabric: material of thermoplastic resin continuous fiber composite material (1)) having a warp density of 6/5 mm and a weft density of 6/5 mm was woven. There was no generation of fluff or fibrils during weaving, and no lint or fluff was observed on the loom, and weaving was good.
  • fabric material of thermoplastic resin continuous fiber composite material (1)
  • a hybrid molded body 1 shown in FIG. 1 includes a compression molded portion 2 made of a thermoplastic resin continuous fiber composite material (1) and an injection molded portion 3 made of a thermoplastic resin composition (2).
  • 2A to 2D show a composite molded body manufacturing process including a compression molding process and an injection molding process.
  • the molding machine used was Toshiba Machine (S100V-8A) with a maximum clamping force of 300 tons.
  • the resin composition of the product name: Leona (registered trademark) 14G33] was injected and filled at a cylinder set temperature of 290 ° C., an injection pressure of 20 MPa, an injection speed of 50 mm / sec, and an injection holding pressure of 10 MPa was applied.
  • the mold temperature was raised to 300 ° C., which is higher than the melting point of the thermoplastic resin (B), and then held for 3 minutes to perform compression molding.
  • Cooling step Next, the mold was cooled to 150 ° C. and cooled and solidified.
  • Mold release step As shown in FIG. 2 (C), the mold was opened, and as shown in FIG. 2 (D), a flat plate composite molded product having the shape of FIG. 1 was taken out.
  • the average value of the distance L was 6.6 mm and the thickness t.
  • the average value was 2.10 mm, and the relationship of L> 1.8 t was satisfied.
  • the test piece broke at the joint.
  • the average value of the tensile strength at this time was 75 MPa.
  • the average value of the tensile strength was 137 MPa.
  • the tensile strength of the joined portion was about 0.55 times the tensile strength of the thermoplastic resin (2).
  • the product composition of Leona (registered trademark) 14G33] was injection-filled at a cylinder set temperature of 290 ° C., an injection pressure of 20 MPa, an injection speed of 50 mm / sec, and an injection holding pressure of 20 MPa was applied.
  • the mold temperature was raised to 300 ° C., which is equal to or higher than the melting point of the thermoplastic resin (B), and held for 3 minutes to perform compression molding.
  • Cooling step Next, the mold was cooled to 150 ° C. and cooled and solidified. The injection holding pressure was kept at 20 MPa up to 200 ° C., which is below the solidification temperature of the thermoplastic resin (B).
  • Mold release step The mold was opened, and the same flat composite molded product as in Example 1 was taken out.
  • the average value of the distance L was 5.7 mm and the thickness t.
  • the average value was 1.90 mm, and the relationship of L> 1.8 t was satisfied.
  • the result of the tensile test is shown in FIG.
  • the fracture interface of the tensile test occurs in the injection molded part (part 3 of FIG. 1) made of the thermoplastic resin composition (2), and the strength of the joint part between the compression molded part 2 and the injection molded part 3 is: It turned out that it is 1.0 times or more of the intensity
  • Example 3 A hybrid molded body was manufactured using the same woven fabric (fabric: material of the thermoplastic resin continuous fiber composite material (1)) as in Example 1. As a hybrid molded body, a flat plate composite molded body (longitudinal 250 mm, lateral 250 mm, wall thickness 2.0 mm) shown in FIG. 1 was produced according to the following procedure.
  • the test piece broke at the joint.
  • the average value of the tensile strength at this time was 69 MPa.
  • the average value of the tensile strength was 137 MPa.
  • the tensile strength of the joined portion was about 0.50 times the tensile strength of the thermoplastic resin (2).
  • Composition of sizing agent a (in terms of solid content)): Silane coupling agent: 0.6% by mass of ⁇ -aminopropyltriethoxysilane [trade name: KBE-903 (manufactured by Shin-Etsu Chemical Co., Ltd.)] ⁇ Lubricant: 0.1% by weight of wax [Brand name: Carnauba wax (manufactured by Hiroyuki Kato)] ⁇ Binder: 5% by mass of acrylic acid / maleic acid copolymer salt [trade name: Aqualic TL (manufactured by Nippon Shokubai Co., Ltd.)]
  • thermoplastic resin (B) polyamide 66 fiber (trade name: Leona (registered trademark) 470 / 144BAU (manufactured by Asahi Kasei Fibers Co., Ltd.), fineness 470 dtex, number of single yarns 144) not subjected to entanglement treatment was used.
  • the melting point of the thermoplastic resin (B) was 265 ° C.
  • a continuous reinforcing fiber (A) having a fineness of 685 dtex and a bundle of 400 single-fiber glass fibers and a thermoplastic resin (B) having a fineness of 470 dtex of PA fibers are bundled and aligned, and then substantially added to the fluid entanglement nozzle.
  • the composite yarn was obtained by feeding it vertically to the fluid and entangled the fluid under the following conditions.
  • -Fluid entanglement nozzle Kyocera KC-AJI-L (1.5 mm diameter, propulsion type) Air pressure: 2 kg / cm 2 (Example 1) ⁇ Processing speed: 30m / min
  • the obtained composite yarn was used as warp and weft, and a woven fabric (fabric: material of thermoplastic resin continuous fiber composite material (1)) having a warp density of 6/5 mm and a weft density of 6/5 mm was woven. There was no generation of fluff or fibrils during weaving, and no lint or fluff was observed on the loom, and weaving was good.
  • fabric material of thermoplastic resin continuous fiber composite material (1)
  • a prepreg material was manufactured using the woven fabric (fabric: material of the thermoplastic resin continuous fiber composite material (1)). 7 sheets of fabric are sandwiched between 2 steel plates with a 2.0 mm thick mold, then placed in a compression molding machine heated to 300 ° C., heated for 10 minutes at a compression force of 5 MPa, transferred to a cooling plate and cooled for 5 minutes Then, a plate-like prepreg was produced.
  • fabric material of the thermoplastic resin continuous fiber composite material (1)
  • a hybrid molded body was manufactured using the prepreg material.
  • a flat plate composite molded body (longitudinal 250 mm, lateral 250 mm, wall thickness 2.0 mm) shown in FIG. 1 was produced according to the following procedure.
  • Prepreg material cutting step The prepreg material produced as described above was cut into a width of 250 mm and a height of 125 mm so as to have the shape of reference numeral 2 in FIG.
  • Prepreg Material Preheating Step The prepreg material was preheated to 300 ° C. with a short wavelength infrared heater manufactured by Heraeus.
  • Sloth shaping step As shown in FIG. 2A, the mold heated to 300 ° C. is opened, cut into the desired shape, and the preheated prepreg material is placed in a predetermined position in the mold. Then, the mold was clamped with a clamping force of 90 t and molded.
  • the average value of the distance L was 4.2 mm and the thickness t.
  • the average value was 2.01 mm, and the relationship of L> 1.8 t was satisfied.
  • the test piece broke at the joint.
  • the average value of the tensile strength at this time was 50 MPa.
  • the average value of the tensile strength was 137 MPa.
  • the tensile strength of the joined portion was about 0.36 times the tensile strength of the thermoplastic resin (2).
  • Example 1 A hybrid molded body was manufactured using the same prepreg material as in Example 4. As a hybrid molded body, a flat plate composite molded body (longitudinal 250 mm, lateral 250 mm, wall thickness 2.0 mm) shown in FIG. 1 was produced according to the following procedure.
  • Prepreg material cutting step The prepreg material produced as described above was cut into a width of 250 mm and a height of 125 mm so as to have the shape of reference numeral 2 in FIG.
  • Prepreg Material Preheating Step The prepreg material was preheated to 300 ° C. with a short wavelength infrared heater manufactured by Heraeus.
  • Fabric shaping step A mold heated to 150 ° C. is opened, cut into the desired shape, the preheated prepreg material is set at a predetermined position in the mold, and then the mold is clamped with a clamping force of 90 t. Tighten and mold.
  • the average value of the distance L was 2.3 mm and the thickness t.
  • the test piece broke at the joint.
  • the average value of the tensile strength at this time was 20 MPa.
  • the average value of the tensile strength was 134 MPa.
  • the tensile strength of the joined portion was about 0.15 times the tensile strength of the thermoplastic resin (2).
  • Example 2 A hybrid molded body was manufactured using the same prepreg material as in Example 4. As a hybrid molded body, a flat plate composite molded body (longitudinal 250 mm, lateral 250 mm, wall thickness 2.0 mm) shown in FIG. 1 was produced according to the following procedure.
  • Prepreg material cutting step The prepreg material produced as described above was cut into a width of 250 mm and a height of 125 mm so as to have the shape of reference numeral 2 in FIG.
  • Prepreg Material Preheating Step The prepreg material was preheated to 300 ° C. with a short wavelength infrared heater manufactured by Heraeus.
  • Fabric shaping step The mold heated to 200 ° C. is opened, cut into the desired shape, the preheated prepreg material is set at a predetermined position in the mold, and then the mold is clamped with a clamping force of 90 t. Tighten and mold.
  • the composite molded article of the present invention requires high-level mechanical properties such as parts of various machines and automobiles, members, frames, beams, supports, oil pans, bumpers, seat frames, etc., and housings of electrical parts.
  • Industrial applicability as a composite molding of a continuous thermoplastic continuous fiber composite material and a thermoplastic resin composition.

Abstract

連続強化繊維(A)と熱可塑性樹脂(B)を含む熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)と、を具備し、前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)とが接合面を介して結合している複合成形体(3)であって、 前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分の引張強度が、前記熱可塑性樹脂組成物(2)の引張強度の0.35倍以上である、複合成形体。

Description

複合成形体及びその製造方法
 本発明は、複合成形体及びその製造方法に関する。
 各種機械や自動車等の構造部品、圧力容器、及び管状の構造物等には、樹脂材料にガラス繊維等の強化材が添加された複合材料成形体が使用されている。
 当該複合材料成形体を構成する材料としては、連続強化繊維と連続熱可塑性樹脂繊維が連続して均一に混じり合った複合糸、及び当該複合糸からなる布帛が提案されている。
 さらには、前記布帛を280℃程度に加熱して熱可塑性樹脂の部分を溶融させた後に、50℃程度に冷却して固化させた成形体についても提案されている(例えば、特許文献1参照)。
 また、近年においては、複雑な形状の構造部材を成形するハイブリッド成形方法として、金属部材や複合材料を射出成形機の金型内に挿入した後に、溶融した熱可塑性樹脂組成物を金型内に射出充填して、複合成形体を得る方法についての提案もなされている。
特開2015-101794号公報
 しかしながら、上述した従来知られている複合成形体は、金型内にあらかじめ挿入しておいた金属部材や複合材料と、射出充填した熱可塑性樹脂組成物との界面の接合強度が十分とはいえず、未だ改善の余地がある。
 また、前記特許文献1の方法でも、ハイブリッド成形による接合強度に優れた複合成形体に関しては何ら開示がなされていない。
 そこで本発明においては、熱可塑性樹脂連続繊維複合材料と、熱可塑性樹脂組成物とを具備する、接合強度に優れた複合成形体を提供することを目的とする。
 本発明者らは、上述した従来技術の課題を解決するべく鋭意検討した結果、熱可塑性樹脂連続繊維複合材料と熱可塑性樹脂組成物とを具備する、接合強度に優れた複合成形体を、特定のハイブリッド成形を行うことにより製造することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
[1]
 連続強化繊維(A)と熱可塑性樹脂(B)を含む熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)と、を具備し、前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)とが接合面を介して結合している複合成形体(3)であって、
 前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分の引張強度が、前記熱可塑性樹脂組成物(2)の引張強度の0.35倍以上である、複合成形体。
[2]
 前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分の引張強度が、前記熱可塑性樹脂組成物(2)の引張強度の0.5倍以上である、上記[1]に記載の複合成形体。
[3]
 前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分の引張強度が、前記熱可塑性樹脂組成物(2)の引張強度の1.0倍以上である、上記[1]又は[2]に記載の複合成形体。
[4]
 前記熱可塑性樹脂組成物(2)が、不連続強化材料を含む、上記[1]~[3]のいずれか記載の複合成形体。
[5]
 前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分は、互いに混じり合った凹凸構造である、上記[1]~[4]のいずれか記載の複合成形体。
[6]
 前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合面における界面の距離Lと、前記複合成形体(3)の厚みtの間に、L>1.8tの関係が成り立つ、上記[5]に記載の複合成形体。
[7]
 前記Lと前記tの間に、L>2.0tの関係が成り立つ、上記[5]又は[6]に記載の複合成形体。
[8]
 前記界面は、前記熱可塑性樹脂連続繊維複合材料(1)に含まれる連続強化繊維(A)と、前記熱可塑性樹脂組成物(2)に含まれる不連続強化材料により形成される界面である、上記[6]又は[7]に記載の複合成形体。
[9]
 連続強化繊維(A)と熱可塑性樹脂(B)を含む熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)と、を具備し、前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)とが接合面を介して結合している複合成形体(3)であって、
 前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分は、互いに混じり合った凹凸構造である、複合成形体。
[10]
 前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)の接合面における界面の距離Lと、複合成形体(3)の厚みtの間に、L>1.8tの関係が成り立つ、上記[9]に記載の複合成形体。
[11]
 前記Lと前記tの間に、L>2.0tの関係が成り立つ、上記[9]又は[10]に記載の複合成形体。
[12]
 前記界面は、前記熱可塑性樹脂連続繊維複合材料(1)に含まれる連続強化繊維(A)と、前記熱可塑性樹脂組成物(2)に含まれる不連続強化材料により形成される界面である、上記[10]又は[11]に記載の複合成形体。
[13]
 前記連続強化繊維(A)が、ガラス繊維、炭素繊維、アラミド繊維、超高強力ポリエチレン繊維、ポリベンザゾール系繊維、液晶ポリエステル繊維、ポリケトン繊維、金属繊維、及びセラミック繊維からなる群より選ばれる少なくとも1種である、上記[1]~[12]のいずれかに記載の複合成形体。
[14]
 前記熱可塑性樹脂(B)が、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンサルファイド、熱可塑性ポリエーテルイミド、及び熱可塑性フッ素系樹脂からなる群より選ばれる少なくとも1種である、上記[1]~[13]のいずれかに記載の複合成形体。
[15]
 前記熱可塑性樹脂(B)が、熱可塑性樹脂繊維である、上記[1]~[14]のいずれかに記載の複合成形体。
[16]
 前記熱可塑性樹脂連続繊維複合材料(1)の素材が布帛状である、上記[1]~[15]のいずれかに記載の複合成形体。
[17]
 連続強化繊維(A)と熱可塑性樹脂(B)を含む熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)と、を具備し、前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)とが接合面を介して結合している複合成形体の製造方法であって、
 熱可塑性樹脂連続繊維複合材料(1)を金型内で賦型する工程と、
 前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程と、
 前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)を接合する工程と、
を含む、複合成形体の製造方法。
[18]
 前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程の後に、
 前記熱可塑性樹脂(B)の融点以上の金型内で、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)を圧縮成形する工程と、
をさらに含む、上記[17]に記載の複合成形体の製造方法。
[19]
 前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程における金型温度が熱可塑性樹脂(B)の融点以下である、上記[17]又は[18]に記載の複合成形体の製造方法。
[20]
 熱可塑性樹脂連続繊維複合材料(1)を金型内で賦型する工程の後に、
 前記熱可塑性樹脂(B)の融点以上の金型内で、前記熱可塑性樹脂連続繊維複合材料(1)を圧縮成形する工程、
をさらに含む、上記[17]に記載の複合成形体の製造方法。
[21]
 前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程において、前記金型が前記熱可塑性樹脂(B)の融点以上である時に射出充填する、上記[20]に記載の複合成形体の製造方法。
[22]
 前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)の接合部分は、互いに混じり合った凹凸構造である、上記[17]~[21]のいずれかに記載の複合成形体の製造方法。
[23]
 前記熱可塑性樹脂組成物(2)を金型内に射出充填・保圧するときの射出圧力または射出保圧力と、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)を圧縮成形するときのプレス圧力が同等である、上記[17]~[22]のいずれかに記載の複合成形体の製造方法。
[24]
 前記熱可塑性樹脂組成物(2)を金型内に射出充填後、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)の固化点-10℃以下まで、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)を圧縮成形するときのプレス圧力と同等の射出保圧力をかけ続ける、上記[17]~[23]のいずれかに記載の複合成形体の製造方法。
 本発明によれば、熱可塑性樹脂連続繊維複合材料と、熱可塑性樹脂脂組成物とからなる、接合強度に優れた複合成形体及びその製造方法が得られる。
本実施形態の複合成形体の一例の概略斜視図を示す。 (A)~(D) 本実施形態の複合成形体の成形工程の概略図を示す。 本実施形態の複合成形体の接合部分の断面を示す。 本実施形態の距離Lと厚みtを示す。 実施例2における引張試験の結果を示す。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
〔複合成形体〕
 本実施形態の複合成形体は、
 連続強化繊維(A)と熱可塑性樹脂(B)を含む熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)と、を具備し、前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)とが接合面を介して結合している複合成形体(3)であって、
 前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分の引張強度が、前記熱可塑性樹脂組成物(2)の引張強度の0.35倍以上である。
(熱可塑性樹脂連続繊維複合材料(1))
 前記熱可塑性樹脂連続繊維複合材料は、連続強化繊維(A)と熱可塑性樹脂(B)を含む。
<連続強化繊維(A)>
 連続強化繊維(A)としては、通常の繊維強化複合材料として使用されるものを用いることができ、以下に限定されるものではないが、例えば、ガラス繊維、炭素繊維、アラミド繊維、超高強力ポリエチレン繊維、ポリベンザゾール系繊維、液晶ポリエステル繊維、ポリケトン繊維、金属繊維、セラミックス繊維からなる群から選ばれる少なくとも1種が好ましいものとして挙げられる。
 機械的特性、熱的特性、汎用性の観点から、ガラス繊維、炭素繊維、アラミド繊維が好ましく、経済性の面からは、ガラス繊維が好ましい。
 連続強化繊維(A)として、ガラス繊維を選択した場合、集束剤を用いてもよく、集束剤としてはシランカップリング剤、潤滑剤、及び結束剤を含むことが好ましい。
[シランカップリング剤]
 シランカップリング剤は、通常ガラス繊維の表面処理剤として用いられ、界面接着強度向上に寄与する。
 シランカップリング剤としては、以下に限定されるものではないが、例えば、γ-アミノプロピルトリメトキシシラン及びN-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン等のアミノシラン類;γ-メルカプトプロピルトリメトキシシラン及びγ-メルカプトプロピルトリエトキシシラン等のメルカプトシラン類;エポキシシラン類;ビニルシラン類からなる群より選択される1種類以上を用いることが好ましい。
[潤滑剤]
 潤滑剤は、ガラス繊維の開繊性向上に寄与する。
 潤滑剤としては、目的に適した通常の液体又は固体の任意の潤滑材料が使用可能であり、以下に限定されるものではないが、例えば、カルナウバワックスやラノリンワックス等の動植物系又は鉱物系のワックス;脂肪酸アミド、脂肪酸エステル、脂肪酸エーテル、芳香族系エステル、芳香族系エーテル等の界面活性剤から選択される1種以上を用いることが好ましい。
[結束剤]
 結束剤は、ガラス繊維の集束性向上及び界面接着強度向上に寄与する。
 結束剤としては、目的に適したポリマー、熱可塑性樹脂が使用可能である。
 ポリマーとしては、以下に限定されるものではないが、例えば、アクリル酸のホモポリマー、アクリル酸とその他共重合性モノマーとのコポリマー、並びにこれらの第1級、第2級及び第3級アミンとの塩等が挙げられる。また、例えば、m-キシリレンジイソシアナート、4,4’-メチレンビス(シクロヘキシルイソシアナート)及びイソホロンジイソシアナート等のイソシアネートと、ポリエステル系やポリエーテル系のジオールとから合成されるポリウレタン樹脂も好適に使用される。
 アクリル酸のホモポリマー及びコポリマーとしては、重量平均分子量1,000~90,000であることが好ましく、より好ましくは1,000~25,000である。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)(ポリスチレン換算)により測定することができる。
 アクリル酸とその他共重合性モノマーとのコポリマーを構成する共重合性モノマーとしては、以下に限定されるものではないが、例えば、水酸基及び/又はカルボキシル基を有するモノマーのうち、アクリル酸、マレイン酸、メタクリル酸、ビニル酢酸、クロトン酸、イソクロトン酸、フマル酸、イタコン酸、シトラコン酸及びメサコン酸よりなる群から選択される1種以上が挙げられる(但し、アクリル酸のみの場合を除く)。共重合性モノマーとしては、エステル系モノマーを1種以上有することが好ましい。
 アクリル酸のホモポリマー及びコポリマーの第1級、第2級及び第3級アミンとの塩としては、以下に限定されるものではないが、例えば、トリエチルアミン塩、トリエタノールアミン塩やグリシン塩等が挙げられる。
 中和度は、他の併用薬剤(シランカップリング剤等)との混合溶液の安定性向上や、アミン臭低減の観点から、20~90%とすることが好ましく、40~60%とすることがより好ましい。
 塩を形成するアクリル酸のポリマーの重量平均分子量は、特に制限されないが、3,000~50,000の範囲であることが好ましい。ガラス繊維の集束性向上の観点から、3,000以上であることが好ましく、複合材料成形体とした際の特性向上の観点から50,000以下であることが好ましい。
 結束剤として用いられる熱可塑性樹脂としては、以下に限定されるものではないが、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンサルファイド、熱可塑性ポリエーテルイミド、熱可塑性フッ素系樹脂、及びこれらを変性させた変性熱可塑性樹脂等が挙げられる。
 結束剤として用いられる熱可塑性樹脂は、熱可塑性樹脂連続繊維複合材料(1)に含まれる熱可塑性樹脂(B)、例えば連続熱可塑性樹脂繊維と同種の熱可塑性樹脂及び/又は変性熱可塑性樹脂であると、複合材料成形体となった後、ガラス繊維と熱可塑性樹脂の接着性が向上する傾向にあるため好ましい。
 なおここで、連続熱可塑性樹脂繊維とは、連続強化繊維、例えば連続ガラス繊維と混繊したポリアミド繊維などを指し、加熱プレス後溶融して熱可塑性樹脂連続複合材料のマトリックス材料となる。
 さらに、両繊維の接着性を一層向上させるために集束剤を水分散体としてガラス繊維に付着させる場合において、乳化剤成分の比率を低減、あるいは乳化剤を不要とできる等の観点から、結束剤として用いられる熱可塑性樹脂としては、変性熱可塑性樹脂が好ましい。ここで、変性熱可塑性樹脂とは、熱可塑性樹脂の主鎖を形成し得るモノマー成分以外に、その熱可塑性樹脂の性状を変化させる目的で、異なるモノマー成分を共重合させ、親水性、結晶性、熱力学特性等を改質したものを意味する。
 結束剤として用いられる変性熱可塑性樹脂は、以下に限定されるものではないが、例えば、変性ポリオレフィン系樹脂、変性ポリアミド系樹脂、変性ポリエステル系樹脂等が挙げられる。
 結束剤としての変性ポリオレフィン系樹脂とは、エチレン、プロピレン等のオレフィン系モノマーと不飽和カルボン酸等のオレフィン系モノマーと共重合可能なモノマーとの共重合体であり、公知の方法により製造できる。変性ポリオレフィン系樹脂は、オレフィン系モノマーと不飽和カルボン酸とを共重合させたランダム共重合体でもよいし、オレフィンに不飽和カルボン酸をグラフトしたグラフト共重合体でもよい。
 オレフィン系モノマーとしては、以下に限定されるものではないが、例えば、エチレン、プロピレン、1-ブテン等が挙げられる。これらは1種のみを単独で使用してもよく、あるいは2種以上を組み合わせて使用してもよい。
 オレフィン系モノマーと共重合可能なモノマーとしては、例えば、アクリル酸、マレイン酸、無水マレイン酸、メタクリル酸、ビニル酢酸、クロトン酸、イソクロトン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸等の不飽和カルボン酸等が挙げられ、これらは、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 オレフィン系モノマーと、当該オレフィン系モノマーと共重合可能なモノマーとの共重合比率としては、共重合の合計質量を100質量%とした場合、オレフィン系モノマー60~95質量%、オレフィン系モノマーと共重合可能なモノマー5~40質量%であることが好ましく、オレフィン系モノマー70~85質量%、オレフィン系モノマーと共重合可能なモノマー15~30質量%であることがより好ましい。
 オレフィン系モノマーが60質量%以上である場合、マトリックスとの親和性が良好となる傾向にあり、オレフィン系モノマーの質量%が95質量%以下である場合、変性ポリオレフィン系樹脂の水分散性が良好となり、連続強化繊維への均一付与が行い易くなる傾向にある。
 結束剤として用いられる変性ポリオレフィン系樹脂は、共重合により導入したカルボキシル基等の変性基が、塩基性化合物で中和されていてもよい。
 塩基性化合物としては、以下に限定されるものではないが、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ類;アンモニア;モノエタノールアミン、ジエタノールアミン等のアミン類が挙げられる。
 結束剤として用いられる変性ポリオレフィン系樹脂の重量平均分子量は、特に制限されないが、5,000~200,000であることが好ましく、50,000~150,000であることがより好ましい。変性ポリオレフィン系樹脂の重量平均分子量は、ガラス繊維の集束性向上の観点から5,000以上であることが好ましく、水分散性とする場合の乳化安定性の観点から200,000以下であることが好ましい。
 結束剤として用いられる変性ポリアミド系樹脂とは、分子鎖中にポリアルキレンオキサイド鎖や3級アミン成分等の親水基を導入した変性ポリアミド化合物であり、公知の方法により製造できる。
 分子鎖中にポリアルキレンオキサイド鎖を導入する場合は、例えばポリエチレングリコールやポリプロピレングリコール等の一部又は全部をジアミン又はジカルボン酸に変性したものを共重合する。また、3級アミン成分を導入する場合は、例えばアミノエチルピペラジン、ビスアミノプロピルピペラジン、α-ジメチルアミノε-カプロラクタム等を共重合する。
 結束剤として用いられる変性ポリエステル系樹脂とは、ポリカルボン酸又はその無水物とポリオールとの共重合体で、かつ末端を含む分子骨格中に親水基を有する樹脂であり、公知の方法により製造できる。親水基としては、例えば、ポリアルキレンオキサイド基、スルホン酸塩、カルボキシル基、これらの中和塩等が挙げられる。
 ポリカルボン酸又はその無水物としては、芳香族ジカルボン酸、スルホン酸塩含有芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環式ジカルボン酸、3官能以上のポリカルボン酸等が挙げられる。
 芳香族ジカルボン酸としては、フタル酸、テレフタル酸、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、無水フタル酸等が挙げられる。
 スルホン酸塩含有芳香族ジカルボン酸としては、スルホテレフタル酸塩、5-スルホイソフタル酸塩、5-スルホオルトフタル酸塩等が挙げられる。
 脂肪族ジカルボン酸又は脂環式ジカルボン酸としては、フマル酸、マレイン酸、イタコン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、1,4-シクロヘキサンジカルボン酸、無水コハク酸、無水マレイン酸等が挙げられる。
 3官能以上のポリカルボン酸としては、トリメリット酸、ピロメリット酸、無水トリメリット酸、無水ピロメリット酸等が挙げられる。
 これらの中で、変性ポリエステル系樹脂の耐熱性を向上させる観点から、全ポリカルボン酸成分の40~99モル%が芳香族ジカルボン酸であることが好ましい。また、変性ポリエステル系樹脂を水分散液とする場合の乳化安定性の観点から、全ポリカルボン酸成分の1~10モル%がスルホン酸塩含有芳香族ジカルボン酸であることが好ましい。
 変性ポリエステル樹脂を構成するポリオールとしては、ジオール、3官能以上のポリオール等が挙げられる。
 ジオールとしては、以下に限定されるものではないが、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、ポリブチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ポリテトラメチレングリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、ビスフェノールA又はそのアルキレンオキサイド付加物等が挙げられる。3官能以上のポリオールとしては、トリメチロールプロパン、グリセリン、ペンタエリスリトール等が挙げられる。
 変性ポリエステル樹脂を構成するポリカルボン酸又はその無水物とポリオールとの共重合比率としては、共重合成分の合計質量を100質量%とした場合、ポリカルボン酸又はその無水物40~60質量%、ポリオール40~60質量%であることが好ましく、ポリカルボン酸又はその無水物45~55質量%、ポリオール45~55質量%であることがより好ましい。
 変性ポリエステル系樹脂の重量平均分子量としては、3,000~100,000が好ましく、10,000~30,000がより好ましい。変性ポリエステル系樹脂の重量平均分子量は、ガラス繊維の集束性向上の観点から、3,000以上であることが好ましく、水分散性とする場合の乳化安定性の観点から、100,000以下であることが好ましい。
 結束剤として用いる、前記ポリマー、熱可塑性樹脂は、1種のみを単独で用いてもよいし、2種類以上を併用してもよい。
 結束剤の全量を100質量%とした場合、アクリル酸のホモポリマー、アクリル酸とその他共重合性モノマーとのコポリマー、並びにこれらの第1級、第2級及び第3級アミンとの塩より選択された1種以上のポリマーを50質量%以上用いることが好ましく、60質量%以上用いることがより好ましい。
[ガラス繊維集束剤の組成]
 ガラス繊維集束剤において、それぞれ、シランカップリング剤を0.1~2質量%、潤滑剤を0.01~1質量%、結束剤を1~25質量%を含有することが好ましく、これらの成分を水で希釈し、全質量を100質量%に調整する。
 ガラス繊維集束剤におけるシランカップリング剤の配合量は、ガラス繊維の集束性向上及び界面接着強度向上と複合材料成形体の機械的強度向上との観点から、0.1~2質量%であることが好ましく、より好ましくは0.1~1質量%、さらに好ましくは0.2~0.5質量%である。
 ガラス繊維集束剤における潤滑剤の配合量は、充分な潤滑性を与えるという観点、及びエアスプライサーによる繋ぎ糸の引張り破断強力向上と混繊工程における開繊性向上の観点から、好ましくは0.01質量%以上、より好ましくは0.02質量%以上であり、界面接着強度向上と複合材料成形体の機械的強度向上の観点から、好ましくは1質量%以下、より好ましくは0.5質量%以下である。
 ガラス繊維集束剤における結束剤の配合量は、ガラス繊維の集束性制御及び界面接着強度向上と複合材料成形体の機械的強度向上との観点から、好ましくは1~25質量%、より好ましくは3~15質量%、さらに好ましくは3~10質量%である。
[ガラス繊維集束剤の使用態様]
 ガラス繊維集束剤は、使用態様に応じて、水溶液、コロイダルディスパージョンの形態、乳化剤を用いたエマルジョンの形態等、いずれの形態に調製してもよいが、集束剤の分散安定性向上、耐熱性向上の観点から、水溶液であることが好ましい。
 本実施形態の複合成形体を構成する熱可塑性樹脂連続繊維複合材料(1)に含まれる連続強化繊維(A)としてのガラス繊維は、上述した集束剤を、公知のガラス繊維の製造工程において、ローラー型アプリケーター等の公知の方法を用いて、ガラス繊維に付与して製造したガラス繊維を乾燥することによって連続的に得られる。
 集束剤はガラス繊維100質量%に対し、シランカップリング剤、潤滑剤及び結束剤の合計質量として、好ましくは0.1~3質量%、より好ましくは0.2~2質量%、さらに好ましくは0.2~1質量%付与する。ガラス繊維の集束性制御と界面接着強度向上の観点から、集束剤の付与量が、ガラス繊維100質量%に対し、シランカップリング剤、潤滑剤及び結束剤の合計質量として0.1質量%以上であることが好ましく、エアスプライサーによる繋ぎ糸の引張り破断強力向上と混繊工程における開繊性向上の観点から3質量%以下であることが好ましい。
 連続強化繊維(A)として、炭素繊維を選択した場合には、集束剤は、潤滑剤、結束剤を含むことが好ましい。集束剤、潤滑剤、結束剤の種類については、特に制限はなく公知の物が使用できる。具体的材料としては、前記特許文献1に記載されている材料を使用できる。
 その他の連続強化繊維(A)を用いる場合、連続強化繊維(A)の特性に応じ、ガラス繊維、炭素繊維に用いる集束剤の種類、付与量を適宜選択すればよく、炭素繊維に用いる集束剤に準じた集束剤の種類、付与量とすることが好ましい。
[連続強化繊維(A)の単糸数]
 連続強化繊維(A)の単糸数は、混繊工程における開繊性、及び取扱い性の観点から30~15,000本であることが好ましい。
<熱可塑性樹脂(B)>
 本実施形態の複合成形体を構成する熱可塑性樹脂連続繊維複合材料(1)に含まれる熱可塑性樹脂(B)は、通常、複合材料成形体に用いるものを使用することができる。熱可塑性樹脂(B)は、繊維状に加工できるといった観点から、結晶性樹脂であることが好ましい。
 熱可塑性樹脂(B)としては、以下に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリアミド6、ポリアミド66、ポリアミド46等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系樹脂;ポリオキシメチレン等のポリアセタール系樹脂;ポリカーボネート系樹脂;ポリエーテルケトン;ポリエーテルエーテルケトン;ポリエーテルスルフォン;ポリフェニレンサルファイド;熱可塑性ポリエーテルイミド;テトラフルオロエチレン-エチレン共重合体等の熱可塑性フッ素系樹脂、及びこれらを変性させた変性熱可塑性樹脂から選ばれる少なくとも1種の熱可塑性樹脂を溶融紡糸して得られた連続繊維であることが好ましい。
 これらの熱可塑性樹脂(B)の中でも、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンサルファイド、熱可塑性ポリエーテルイミド、及び熱可塑性フッ素系樹脂が好ましく、機械的物性、汎用性の観点から、ポリオレフィン系樹脂、変性ポリオレフィン系樹脂、ポリアミド系樹脂及びポリエステル系樹脂がより好ましく、熱的物性の観点を加えると、ポリアミド系樹脂及びポリエステル系樹脂がさらに好ましい。
 また、繰り返し荷重負荷に対する耐久性の観点から、ポリアミド系樹脂がよりさらに好ましく、ポリアミド66を好適に用いることができる。
[ポリエステル系樹脂]
 ポリエステル系樹脂とは、主鎖に-CO-O-(エステル)結合を有する高分子化合物を意味する。以下に限定されるものではないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリ-1,4-シクロヘキシレンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート等が挙げられる。
 ポリエステル系樹脂は、ホモポリエステルであってもよく、また、共重合ポリエステルであってもよい。共重合ポリエステルの場合、ホモポリエステルに適宜第3成分を共重合させたものが好ましく、第3成分としては、以下に限定されるものではないが、例えば、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコール等のジオール成分、アジピン酸、セバシン酸、フタル酸、イソフタル酸、5-ナトリウムスルホイソフタル酸等のジカルボン酸成分等が挙げられる。また、バイオマス資源由来の原料を用いたポリエステル系樹脂を用いることもでき、以下に限定されるものではないが、例えば、ポリ乳酸、ポリブチレンスクシネート、ポリブチレンスクシネートアジペート等の脂肪族ポリエステル系樹脂、ポリブチレンアジペートテレフタレート等の芳香族ポリエステル系樹脂等が挙げられる。
[ポリアミド系樹脂]
 ポリアミド系樹脂とは、主鎖に-CO-NH-(アミド)結合を有する高分子化合物を意味する。以下に限定されるものではないが、例えば、ラクタムの開環重合で得られるポリアミド、ω-アミノカルボン酸の自己縮合で得られるポリアミド、ジアミン及びジカルボン酸を縮合することで得られるポリアミド、並びにこれらの共重合物が挙げられる。
 ポリアミド系樹脂は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。
 ラクタムとしては、以下に限定されるものではないが、例えば、ピロリドン、カプロラクタム、ウンデカンラクタムやドデカラクタムが挙げられる。
 ω-アミノカルボン酸としては、以下に限定されるものではないが、例えば、ラクタムの水による開環化合物であるω-アミノ脂肪酸が挙げられる。
 ラクタム又はω-アミノカルボン酸はそれぞれ2種以上の単量体を併用して縮合させてもよい。
 ジアミン(単量体)としては、以下に限定されるものではないが、例えば、ヘキサメチレンジアミンやペンタメチレンジアミン等の直鎖状の脂肪族ジアミン;2-メチルペンタンジアミンや2-エチルヘキサメチレンジアミン等の分岐型の脂肪族ジアミン;p-フェニレンジアミンやm-フェニレンジアミン等の芳香族ジアミン;シクロヘキサンジアミン、シクロペンタンジアミンやシクロオクタンジアミン等の脂環式ジアミンが挙げられる。
 ジカルボン酸(単量体)としては、以下に限定されるものではないが、例えば、アジピン酸、ピメリン酸やセバシン酸等の脂肪族ジカルボン酸;フタル酸やイソフタル酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環式ジカルボン酸が挙げられる。
 単量体としてのジアミン及びジカルボン酸はそれぞれ1種単独又は2種以上の併用により縮合させてもよい。
 ポリアミド系樹脂としては、以下に限定されるものではないが、例えば、ポリアミド4(ポリα-ピロリドン)、ポリアミド6(ポリカプロアミド)、ポリアミド11(ポリウンデカンアミド)、ポリアミド12(ポリドデカンアミド)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド610、ポリアミド612、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド9T(ポリノナンメチレンテレフタルアミド)、及びポリアミド6I(ポリヘキサメチレンイソフタルアミド)、並びにこれらを構成成分として含む共重合ポリアミドが挙げられる。
 共重合ポリアミドとしては、以下に限定されるものではないが、例えば、ヘキサメチレンアジパミド及びヘキサメチレンテレフタルアミドの共重合物、ヘキサメチレンアジパミド及びヘキサメチレンイソフタルアミドの共重合物、並びにヘキサメチレンテレフタルアミド及び2-メチルペンタンジアミンテレフタルアミドの共重合物が挙げられる。
(熱可塑性樹脂連続繊維複合材料(1)の素材の形態)
 本実施形態における複合成形体を構成する熱可塑性樹脂連続繊維複合材料(1)の素材の形態については、特に制限はなく、布帛状、熱可塑性樹脂が連続強化繊維に含浸したプリプレグ状、シート状、フィルム状、紛体状、粒状、ペレット状等が挙げられ、金型内での形状追従性、操作性、形状柔軟性の観点から、布帛状であることが好ましい。
 布帛を得る方法としては特に限定されず、用途、目的に応じて選定した適切な布帛を作製するための公知の方法を用いることができる。
 例えば、織物は、シャトル織機、レピア織機、エアジェット織機、ウォータージェット織機等の製織機を用い、少なくとも一部に複合糸条を含んでいればよい。中でも、複合糸条を含む繊維を配列させた経糸に、緯糸を打ち込むことによって得ることが好ましい。
 編物は、丸編み機、横編み機、トリコット編み機、ラッシェル編み機等の編み機を用い、少なくとも一部に複合糸条を含む繊維を編成することによって得られる。
 不織布は、少なくとも一部に複合糸条を含む繊維をウェブと呼ばれるシート状の繊維集合体とした後、ニードルパンチ機、ステッチボンド機、柱状流機等の物理作用やエンボスロール等による熱作用や接着剤によって繊維同士を結合させることによって得られる。
 その他の布帛の形態等については、適宜前記特許文献1に記載の方法を用いることができる。
 熱可塑性樹脂連続繊維複合材料(1)の素材として布帛状の形態のものを用いると、当該布帛状のものは、切断面が、板状の物に対して界面構造に凹凸を有しているため、射出充填された熱可塑性樹脂組成物との接合面に凹凸が生じ、熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合面積が大きくなり、かつ熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)でアンカー効果が発現することによって、より高い接合強度が得られる傾向にある。
 布帛状の熱可塑性樹脂連続繊維複合材料の素材としては、混繊糸が好ましいが、連続強化繊維(例えば、ガラス繊維やカーボン繊維)に熱可塑性樹脂を紛体で分散したものや付着したもの、又はフィルム状の熱可塑性樹脂を連続強化繊維と重ね合わせたものでもよい。
 熱可塑性樹脂連続繊維複合材料(1)を構成する熱可塑性樹脂(B)は、熱可塑性樹脂連続繊維複合材料(1)の素材として熱可塑性樹脂連続繊維複合材料混繊糸を用いる場合は、連続熱可塑性樹脂繊維であることがより好ましい。
 「熱可塑性樹脂連続繊維複合材料混繊糸」とは、本実施形態の複合成形体を構成する熱可塑性樹脂連続繊維複合材料(1)の構成の一形態である。すなわち、「熱可塑性樹脂連続繊維複合材料混繊糸」は、連続強化繊維(A)と熱可塑性樹脂(B)から構成されるもののうち、熱可塑性樹脂が「連続熱可塑性樹脂繊維」であって、連続強化繊維と該連続熱可塑性樹脂繊維を混繊したものである。
 「連続熱可塑性樹脂繊維」とは、熱可塑性樹脂を繊維状にしたものであって、好適な例としてポリアミド繊維、ポリエステル繊維などが挙げられる。
 また、連続強化繊維と連続熱可塑性樹脂繊維との混繊糸の製造方法としては、以下に限定されるものではないが、公知の方法を利用できる。
 例えば、連続強化繊維及び/又は連続熱可塑性樹脂繊維を静電気力や流体噴霧による圧力、ローラー等に押し付ける圧力等による外力によって開繊した後、連続強化繊維(A)と熱可塑性樹脂(B)としての連続熱可塑性樹脂繊維を開繊したままの状態で合糸・引き揃える開繊合糸法;流体交絡(インターレース)法が挙げられる。
 中でも、連続強化繊維(A)の損傷が抑制でき、開繊性に優れ、均一に混合可能であるという観点から、流体交絡法(インターレース)法が好ましい。流体交絡(インターレース)法としては、空気、窒素ガス及び水蒸気等の流体による渦流乱流帯域を糸軸とほぼ平行に2個又はそれ以上作り、該帯域に繊維を導いてループや捲縮を生じない程度の張力下で非嵩高性の糸条とする方法や、連続強化繊維(A)のみ開繊した後、又は連続強化繊維(A)と熱可塑性樹脂(B)としての連続熱可塑性樹脂繊維共に開繊した後に流体交絡させる方法(開繊後流体交絡法)等が挙げられる。特に、熱可塑性樹脂(B)としての連続熱可塑性樹脂繊維に単独で熱加工を含む工程で仮撚加工を施した後、同一の装置で連続して、流体交絡法により混繊することが好ましい。
 その他、混繊法の詳細については、適宜上記特許文献1に記載された方法を用いることができる。
(熱可塑性樹脂組成物(2))
 本実施形態における複合成形体を構成する熱可塑性樹脂組成物(2)は、一般の射出成形に使用される熱可塑性樹脂組成物であれば特に制限なく用いることができる。
 熱可塑性樹脂組成物(2)としては、以下に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、アクリル樹脂、スチレン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、ポリフェニレンエーテル、変性ポリフェニレンエーテル樹脂、全芳香族ポリエステル、ポリアセタール、ポリカーボネート、ポリエーテルイミド、ポリエーテルサルフォン、ポリアミド系樹脂、ポリサルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン等の1種または2種以上を混合した組成物を用いることができる。
 また、これらの熱可塑性樹脂組成物には、各種充填材が配合されていてもよい。
 各種充填剤としては、連続強化繊維(A)と同種の材料の不連続強化材料である短繊維、長繊維材料を用いてもよい。
 不連続強化材料としてガラス短繊維、長繊維を用いる場合には、連続強化繊維(A)と同様に集束剤を用いてもよく、集束剤としてはシランカップリング剤、潤滑剤及び結束剤を含むことが好ましい。
 シランカップリング剤、潤滑剤、結束剤の種類に関しては、前述の連続強化繊維(A)の集束剤と同様のものが挙げられる。
 熱可塑性樹脂組成物(2)の樹脂材料としては、本実施形態における複合成形体の、熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)との接合強度の観点から、熱可塑性樹脂連続繊維複合材料(1)を構成する熱可塑性樹脂(B)と類似のものが好ましく、同種類のものがより好ましい。
 具体的には、熱可塑性樹脂連続繊維複合材料(1)を構成する熱可塑性樹脂(A)にポリアミド66繊維を用いた場合には、熱可塑性樹脂組成物(2)の樹脂材料は、ポリアミド66であることが好ましい。
〔複合成形体の特性〕
 本実施形態における複合成形体は、熱可塑性樹脂連続繊維複合材料(1)と熱可塑性樹脂組成物(2)との接合部分の引張強度が、熱可塑性樹脂組成物(2)の引張強度の0.35倍以上であり、好ましくは0.5倍以上、より好ましくは1.0倍以上である。
 ここで、接合部分の引張強度とは、引張試験による引張強度を測定して判定したものである。
 複合成形体が接合部分で破壊した場合は、熱可塑性樹脂組成物(2)のみによる成形体を切り出して引張強度を測定し、接合部分の引張強度と比較する。
 複合成形体が熱可塑性樹脂組成物(2)の部分で破壊した場合は、接合部分の引張強度が熱可塑性樹脂組成物(2)の引張強度の1.0倍以上であると判定する。
 ここで、引張試験については、後述する〔実施例〕に示す方法に従って実施することができ、前記接合部分の引張強度、及び熱可塑性樹脂組成物の引張強度を測定することができる。
 また、本実施形態における複合成形体において、熱可塑性樹脂連続繊維複合材料(1)と熱可塑性樹脂組成物(2)の接合部分は、接合強度の観点から、互いに混じり合った凹凸構造となることが好ましい。
 ここで、熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合面における界面の距離Lと、前記複合成形体(3)の厚みtの間に、L>1.8tの関係が成り立つことが好ましく、L>2.0tの関係が成り立つことがより好ましく、L>3.0tの関係が成り立つことがさらに好ましい。
 Lとtの関係が上記式を満たす場合、熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合面積が大きくなり、かつ熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)でアンカー効果が発現し、より高い接合強度が得られる傾向にある。
 ここで、界面の距離L及び複合成形体の厚みtについては、後述する〔実施例〕に示す方法に従って測定することができる。
 また、前記界面は、通常、前記熱可塑性樹脂連続繊維複合材料(1)に含まれる連続強化繊維(A)と、前記熱可塑性樹脂組成物(2)に含まれる不連続強化材料により形成される界面のことを示す。
〔複合成形体の製造方法〕
 本実施形態における複合成形体の製造方法について説明する。
 本実施形態における複合成形体の製造方法は、
 連続強化繊維(A)と熱可塑性樹脂(B)を含む熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)と、を具備し、前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)とが接合面を介して結合している複合成形体の製造方法であって、
 熱可塑性樹脂連続繊維複合材料(1)を金型内で賦型する工程と、
 前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程と、
 前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)を接合する工程と、
を含む、製造方法である。
 本実施形態における複合成形体の製造方法は、以下の例に限定されるものではなく、熱可塑性樹脂連続繊維複合材料(1)として、種々の形態のものを適用することができる。
 例えば、熱可塑性樹脂連続繊維複合材料(1)を構成する素材、好ましくは布帛状の素材を、所望の複合成形体に合わせて裁断し、製品厚みを考慮して、必要枚数積層させ、金型形状にあわせてセットする。この時、布帛状の素材を用いることにより、一般的な強化繊維に樹脂が含浸された従来の複合材料板に比して、金型に対して自由度を高くすることができ、複合成形体において高低差がある場合でも、形状自由度を高く成形することができる。さらに、前記熱可塑性樹脂連続繊維複合材料(1)として布帛状の素材を選択した場合、未溶融状態の端部は空隙を多く含むため、前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)を接合する工程おいて、熱可塑性樹脂組成物(2)がその空隙部分に入り込み、接合面積が増えてアンカー効果も強くなるため、接合強度が向上する傾向にある。
(熱可塑性樹脂連続繊維複合材料(1)を金型内で賦型する工程)
 熱可塑性樹脂連続繊維複合材料を構成する熱可塑性樹脂(B)の融点以下に温調した金型に素材をセットした後、金型を閉じて圧縮し、賦型する。
 型締め圧力としては、特に限定はされないが、好ましくは1MPa以上、より好ましくは3MPa以上である。また、ガス抜き等をするために一端型締めをし、圧縮成形した後に一端金型の型締め圧力を解除してもよい。
(前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程及び前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)を接合する工程)
 熱可塑性樹脂連続繊維複合材料(1)を金型内にセットして金型を閉じた後、所定の時間後に熱可塑性樹脂組成物(2)を射出充填して成形し、熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)とを接合することにより、ハイブリッド成形体である本実施形態の複合成形体を得ることができる。
 本実施形態における複合成形体の製造方法においては、前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程の後に、前記熱可塑性樹脂(B)の融点以上の金型内で、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)を圧縮成形する工程を行うことが好ましい。
 前記熱可塑性樹脂組成物(2)の射出充填工程の後に、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)の圧縮成形を行う場合、前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程における金型温度が熱可塑性樹脂(B)の融点以下とすることが好ましい。具体的には、射出充填時の金型温度は、熱可塑性樹脂(B)の融点-100℃以上又はガラス転移温度-50℃以上であることが好ましく、より好ましくは融点-50℃以上又はガラス転移温度-25℃以上であり、さらに好ましくは融点-10℃以上又はガラス転移温度以上である。
 本実施形態における複合成形体の製造方法においては、圧縮成形を行う際の熱可塑性樹脂連続繊維複合材料(1)に負荷されるプレス圧力と、熱可塑性樹脂組成物(2)を射出する際に負荷する射出圧力または射出保圧力が同等であることが好ましい。ここで、プレス圧力の方が射出圧力または射出保圧力よりも大きい場合、熱可塑性樹脂連続繊維複合材料(1)に含まれる熱可塑性樹脂(B)が溶融時に流出してしまい、強化繊維が含まれない部分が存在し、その部分が脆弱となる傾向にある。一方、射出圧力または射出保圧力の方がプレス圧力よりも大きい場合、射出圧力または射出保圧力に負けて熱可塑性樹脂連続繊維複合材料(1)が押され、(1)に含まれる強化繊維配向が崩れてしまう傾向にある。
 なお、圧力が同等とは、必ずしも同一である必要はなく、±10MPa、好ましくは±5MPaの圧力差がある場合も含まれる。なお、ここで射出保圧力とは射出成形時の保持圧力のことである。
 また、別の態様として、熱可塑性樹脂連続繊維複合材料(1)を金型内で賦型する工程の後に、前記熱可塑性樹脂(B)の融点以上の金型内で、前記熱可塑性樹脂連続繊維複合材料(1)を圧縮成形する工程、をさらに含んでいてもよい。
 この方法を採用する場合、熱可塑性樹脂組成物(2)を金型内に射出充填する工程においては、金型が熱可塑性樹脂(B)の融点以上である時に射出充填することが好ましい。熱可塑性樹脂組成物(2)を射出充填する時の金型温度は、熱可塑性樹脂連続繊維複合材料(1)を構成する熱可塑性樹脂(B)の融点+10℃以上又はガラス転移温度+10℃以上であることがより好ましく、さらに好ましくは融点+20℃以上又はガラス転移温度+20℃以上であり、さらにより好ましくは融点+30℃以上又はガラス転移温度+30℃以上である。
 熱可塑性樹脂組成物(2)を射出充填する時の金型温度は、熱可塑性樹脂連続繊維複合材料(1)を構成する熱可塑性樹脂(B)の融点+50℃以内又はガラス転移温度+50℃以内である。
 このときの熱可塑性樹脂組成物(2)を射出充填するタイミングは、熱可塑性樹脂連続繊維複合材料(1)を金型内にセットして金型を閉じてから30秒以内であることが好ましい。
 更に、熱可塑性樹脂組成物(2)を射出充填する時の金型内に挿入した熱可塑性樹脂連続繊維複合材料(1)の端面温度は、熱可塑性樹脂連続繊維複合材料(1)を構成する熱可塑性樹脂(B)の融点±10℃以内であることが好ましい。
 ここで、熱可塑性樹脂連続繊維複合材料(1)の端面温度とは、射出充填される熱可塑性樹脂組成物と接する部分の温度である。
 本実施形態における複合成形体の製造方法においては、圧縮成形を行う際の熱可塑性樹脂連続繊維複合材料(1)に負荷されるプレス圧力と、熱可塑性樹脂組成物(2)を射出する際に負荷する射出圧力または射出保圧力が同等になることが好ましい。 
 本実施形態における複合成形体は、上述したように、熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)とが接合面を介して結合しており、熱可塑性樹脂連続繊維複合材料(1)と熱可塑性樹脂組成物(2)の接合部分の引張強度が、熱可塑性樹脂組成物(2)の引張強度の0.35倍以上であり、好ましくは0.5倍以上であり、より好ましくは1.0倍以上である。
 このように、熱可塑性樹脂連続繊維複合材料(1)と熱可塑性樹脂組成物(2)の接合部分の引張強度を熱可塑性樹脂組成物(2)の引張強度の0.35倍以上とするためには、熱可塑性樹脂連続繊維複合材料(1)と熱可塑性樹脂組成物(2)の接合後、融点以上の金型で圧縮成形することが有効である。
 また、接合部分の引張強度を熱可塑性樹脂組成物(2)の引張強度の0.5倍以上とするためには、熱可塑性樹脂連続繊維複合材料(1)と熱可塑性樹脂組成物(2)の接合後、融点以上の金型で圧縮成形することに加えて、前記熱可塑性樹脂連続繊維複合材料(1)に布帛状の素材を選択することが有効である。
 さらに、接合部分の引張強度を熱可塑性樹脂組成物(2)の引張強度の1.0倍以上とするためには、熱可塑性樹脂連続繊維複合材料(1)と熱可塑性樹脂組成物(2)の接合後、融点以上の金型で圧縮成形すること、前記熱可塑性樹脂連続繊維複合材料(1)に布帛状の素材を選択することに加えて、プレス圧力と射出圧力または射出保圧力を同等にし、さらに、射出保圧時間を長く、例えば5秒以上、好ましくは10秒以上、より好ましくは、金型温度が前記熱可塑性樹脂連続繊維複合材料(1)に含まれる熱可塑性樹脂(B)および熱可塑性樹脂組成物(2)の固化点以下になるまでの間の時間保持することが有効である。
 以下、本発明を、実施例と比較例を挙げて説明するが、本実施形態は、以下の実施例に限定されるものではない。
 実施例及び比較例における、各物性の評価方法は以下のとおりである。
(断面観察方法)
 試験片の接合面部分を研磨し、デジタルマイクロスコープ(商品名「VHX1000」 キーエンス社製)を使用して図3に示すように断面の観察を行った。次いで、図4に示すように熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)の接合面における界面の距離Lと、複合成形体(3)の厚みtを測定した。熱可塑性樹脂連続繊維複合材料(1)と熱可塑性樹脂組成物(2)に含まれる樹脂が同色で界面の判断が難しい場合、画像処理ソフトを使用して2値化を行うことで接合面における界面を明確に判断した。
(引張試験方法)
 試験片を長手方向に50mmの間隔でチャッキングし、万能試験機( 商品名「インストロン5581」、インストロン社製)にて、速度5mm/min、23℃50%RH環境下で引張強度を測定した。
[実施例1]
 下記集束剤aを1.0質量%付着させた、繊度685dtexで単糸数400本のガラス繊維を連続強化繊維(A)として用いた。
(集束剤aの組成(固形分換算)):
・シランカップリング剤:γ-アミノプロピルトリエトキシシラン0.6質量%〔商品名:KBE-903(信越化学工業(株)製)〕
・潤滑剤:ワックス0.1質量%〔商品名:カルナウバワックス((株)加藤洋行製)〕
・結束剤:アクリル酸/マレイン酸共重合体塩5質量%〔商品名:アクアリックTL(日本触媒(株)製)〕
 熱可塑性樹脂(B)として、交絡処理を施していないポリアミド66繊維〔商品名:レオナ(登録商標)470/144BAU(旭化成せんい(株)製)、繊度470dtex、単糸数144本〕を用いた。熱可塑性樹脂(B)の融点は、265℃であった。
 連続強化繊維(A)として繊度685dtexで単糸数400本のガラス繊維2束と、熱可塑性樹脂(B)として繊度470dtexのPA繊維2束を合糸・引き揃えた後、流体交絡ノズルに実質的に垂直に供給し、下記条件で流体交絡させて、複合糸条を得た。
・流体交絡ノズル:京セラ KC-AJI-L(1.5mm径、推進型)
・空気圧:2kg/cm(実施例1)
・加工速度:30m/分
 得られた複合糸条を経糸、緯糸として用い、経糸密度が6本/5mm、緯糸密度が6本/5mmの織物(布帛:熱可塑性樹脂連続繊維複合材料(1)の素材)を製織した。
 製織時に毛羽やフィブリル状物の発生はなく、織機にも糸くずや毛玉の付着は観察されず製織性は良好であった。
 次に、上記織物(布帛:熱可塑性樹脂連続繊維複合材料(1)の素材)を用いて、ハイブリッド成形体を製造した。
 ハイブリッド成形体としては、図1に示す平板の複合成形体(縦250mm、横250mm、肉厚2.0mm)を、下記の手順に従って製造した。
 図1の複合成形体1は、熱可塑性樹脂連続繊維複合材料(1)からなる圧縮成形部分2と、熱可塑性樹脂組成物(2)からなる射出成形部分3とから構成されている。
 図2(A)~(D)に、圧縮成形工程、及び射出成形工程を含む、複合成形体の製造工程を示す。
 成形機は、最大型締め力300トンの東芝機械製(S100V-8A)を用いた。
(布帛裁断工程):上述のようにして作製した布帛を、成形後に図1中の符号2の形状になるように幅250mm、高さ125mmに裁断した。
(布帛の賦型工程):図2(A)に示すように、150℃に加熱した金型を開き、上記所望の形状に裁断した布帛を7枚、金型内の所定の位置にセットし、次いで型締め力90tで型締めし、賦型した。
(射出充填・接合・圧縮成形工程):前記型締め後、金型の温度を255℃まで昇温した状態で、図2(B)に示すように、短繊維GF33%含有のポリアミド66樹脂[商品名:レオナ(登録商標)14G33]の樹脂組成物を、シリンダー設定温度290℃、射出圧力20MPa、射出速度50mm/secで射出充填し、射出保圧力10MPaをかけた。射出成形工程が終了後、金型の温度を熱可塑性樹脂(B)の融点以上である300℃まで昇温後、3分間保持することにより、圧縮成形を行った。
(冷却工程):次いで、金型を150℃に冷却し、冷却固化を行った。
(離型工程):図2(C)に示すように、前記金型を開放し、図2(D)に示すように、図1の形状の平板の複合成形品を取り出した。
 複合成形体を取り出し後、図1中の鎖線に示すように、短冊形状の成形品(長さ100mm、幅10mm)を5本切り出して、試験片を得、上述した方法により断面観察と引張試験を行った。
 試験片5点の熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)の接合面における界面の距離Lを測定したところ、距離Lの平均値は6.6mm、厚みtの平均値は2.10mmとなり、L>1.8tの関係を満たしていた。
 引張試験の結果、接合部分で試験片は破断した。このときの引張強度の平均値は75MPaであった。さらに、熱可塑性樹脂組成物(2)のみを切り出して引張試験を実施したところ、引張強度の平均値は137MPaであった。
 接合部分の引張強度は、熱可塑性樹脂(2)の引張強度の約0.55倍であった。
[実施例2]
 実施例1と同じ織物(布帛:熱可塑性樹脂連続繊維複合材料(1)の素材)を用いて、ハイブリッド成形体を製造した。
 ハイブリッド成形体としては、図1に示す平板の複合成形体(縦250mm、横250mm、肉厚2.0mm)を、下記の手順に従って製造した。
(布帛裁断工程):上述のようにして作製した布帛を図1中の符号2の形状になるように幅250mm、高さ125mmに裁断した。
(布帛の賦型工程):図2(A)に示すように、150℃に加熱した金型を開き、上記所望の形状に裁断した布帛を7枚、金型内の所定の位置にセットし、次いで型締め力65tで型締めし、賦型した。
(射出充填・接合・圧縮成形工程):前記型締め後、金型の温度を255℃まで昇温した状態で、図2(B)に示すように、短繊維GF33%含有のポリアミド66樹脂[商品名:レオナ(登録商標)14G33]の樹脂組成物を、シリンダー設定温度290℃、射出圧力20MPa、射出速度50mm/secで射出充填し、射出保圧力20MPaをかけた。射出充填工程が終了後、金型の温度を熱可塑性樹脂(B)の融点以上である300℃まで昇温し、3分間保持することにより、圧縮成形を行った。
(冷却工程):次いで、金型を150℃に冷却し、冷却固化を行った。熱可塑性樹脂(B)の固化温度以下である200℃まで射出保圧力を20MPaに保持した。
(離型工程):前記金型を開放し、実施例1と同様の平板の複合成形品を取り出した。
 複合成形体を取り出し後、実施例1と同様の短冊形状の成形品(長さ100mm、幅10mm)を5本切り出して、試験片を得、上述した方法により断面観察と引張試験を行った。
 試験片5点の熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)の接合面における界面の距離Lを測定したところ、距離Lの平均値は5.7mm、厚みtの平均値は1.90mmとなり、L>1.8tの関係を満たしていた。
 引張試験の結果を図5に示す。
 引張試験の破壊界面は、熱可塑性樹脂組成物(2)からなる射出成形部分(図1の符号3の部分)で発生し、圧縮成形部分2と射出成形部分3との接合部分の強度は、熱可塑性樹脂組成物の強度の1.0倍以上であることが分かった。同様に他の試験片についても破壊は全て熱可塑性樹脂組成物部分(図1の符号3の部分)で発生した。
[実施例3]
 実施例1と同じ織物(布帛:熱可塑性樹脂連続繊維複合材料(1)の素材)を用いて、ハイブリッド成形体を製造した。
 ハイブリッド成形体としては、図1に示す平板の複合成形体(縦250mm、横250mm、肉厚2.0mm)を、下記の手順に従って製造した。
(布帛裁断工程):上述のようにして作製した布帛を図1中の符号2の形状になるように幅250mm、高さ125mmに裁断した。
(布帛の賦型工程):図2(A)に示すように、300℃に加熱した金型を開き、上記所望の形状に裁断した布帛を7枚、金型内の所定の位置にセットし、次いで型締め力90tで型締めし、賦型した。
(射出充填・接合・圧縮成形工程):前記型締め後、短繊維GF33%含有のポリアミド66樹脂[商品名:レオナ(登録商標)14G33]の樹脂組成物を、シリンダー設定温度290℃、射出圧力20MPa、射出速度50mm/secで射出充填し、射出保圧力10MPaをかけた。射出成形工程が終了後、金型の温度を熱可塑性樹脂(B)の融点以上である300℃まで昇温し、3分間保持することにより、圧縮成形を行った。
(冷却工程):次いで、金型を150℃に冷却し、冷却固化を行った。
(離型工程):前記金型を開放し、実施例1及び2と同様の平板の複合成形品を取り出した。
 複合成形体を取り出し後、実施例1と同様の短冊形状の成形品(長さ100mm、幅10mm)を5本切り出して、試験片を得、上述した方法により断面観察と引張試験を行った。
 試験片5点の熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)の接合面における界面の距離Lを測定したところ、距離Lの平均値は5.3mm、厚みtの平均値は1.90mmとなり、L>1.8tの関係を満たしていた。
 引張試験の結果、接合部分で試験片は破断した。このときの引張強度の平均値は69MPaであった。さらに、熱可塑性樹脂組成物(2)のみを切り出して引張試験を実施したところ、引張強度の平均値は137MPaであった。
 接合部分の引張強度は、熱可塑性樹脂(2)の引張強度の約0.50倍であった。
[実施例4]
 下記集束剤aを1.0質量%付着させた、繊度685dtexで単糸数400本のガラス繊維を連続強化繊維(A)として用いた。
(集束剤aの組成(固形分換算)):
・シランカップリング剤:γ-アミノプロピルトリエトキシシラン0.6質量%〔商品名:KBE-903(信越化学工業(株)製)〕
・潤滑剤:ワックス0.1質量%〔商品名:カルナウバワックス((株)加藤洋行製)〕
・結束剤:アクリル酸/マレイン酸共重合体塩5質量%〔商品名:アクアリックTL(日本触媒(株)製)〕
 熱可塑性樹脂(B)として、交絡処理を施していないポリアミド66繊維〔商品名:レオナ(登録商標)470/144BAU(旭化成せんい(株)製)、繊度470dtex、単糸数144本〕を用いた。熱可塑性樹脂(B)の融点は、265℃であった。
 連続強化繊維(A)として繊度685dtexで単糸数400本のガラス繊維2束と、熱可塑性樹脂(B)として繊度470dtexのPA繊維2束を合糸・引き揃えた後、流体交絡ノズルに実質的に垂直に供給し、下記条件で流体交絡させて、複合糸条を得た。
・流体交絡ノズル:京セラ KC-AJI-L(1.5mm径、推進型)
・空気圧:2kg/cm(実施例1)
・加工速度:30m/分
 得られた複合糸条を経糸、緯糸として用い、経糸密度が6本/5mm、緯糸密度が6本/5mmの織物(布帛:熱可塑性樹脂連続繊維複合材料(1)の素材)を製織した。
 製織時に毛羽やフィブリル状物の発生はなく、織機にも糸くずや毛玉の付着は観察されず製織性は良好であった。
 次に、上記織物(布帛:熱可塑性樹脂連続繊維複合材料(1)の素材)を用いて、プリプレグ材料を製造した。
 布帛7枚を厚み2.0mmの型枠を付けた鉄板二枚に挟み、次いで300℃に加熱した圧縮成形機に入れて圧縮力5MPaで10分間加熱した後に冷却版に移し替え、5分間冷却し、板状のプリプレグを作製した。
 次に、上記プリプレグ材料を用いて、ハイブリッド成形体を製造した。
 ハイブリッド成形体としては、図1に示す平板の複合成形体(縦250mm、横250mm、肉厚2.0mm)を、下記の手順に従って製造した。
(プリプレグ材料裁断工程):上述のようにして作製したプリプレグ材料を、成形後に図1中の符号2の形状になるように幅250mm、高さ125mmに裁断した。
(プリプレグ材料予備加熱工程):プリプレグ材料をヘレウス社製の短波長赤外線ヒーターで300℃に予備加熱した。
(布帛の賦型工程):図2(A)に示すように、300℃に加熱した金型を開き、上記所望の形状に裁断し、予備加熱したプリプレグ材料を金型内の所定の位置にセットし、次いで型締め力90tで型締めし、賦型した。
(射出充填・接合・圧縮成形工程):前記型締め後、図2(B)に示すように、短繊維GF33%含有のポリアミド66樹脂[商品名:レオナ(登録商標)14G33]の樹脂組成物を、シリンダー設定温度290℃、射出圧力20MPa、射出速度50mm/secで射出充填し、射出保圧力10MPaをかけた。射出成形工程が終了後、3分間保持することにより、圧縮成形を行った。
(冷却工程):次いで、金型を150℃に冷却し、冷却固化を行った。
(離型工程):前記金型を開放し、実施例1と同様の平板の複合成形品を取り出した。
 複合成形体を取り出し後、実施例1と同様の短冊形状の成形品(長さ100mm、幅10mm)を5本切り出して、試験片を得、上述した方法により断面観察と引張試験を行った。
 試験片5点の熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)の接合面における界面の距離Lを測定したところ、距離Lの平均値は4.2mm、厚みtの平均値は2.01mmとなり、L>1.8tの関係を満たしていた。
 引張試験の結果、接合部分で試験片は破断した。このときの引張強度の平均値は50MPaであった。さらに、熱可塑性樹脂組成物(2)のみを切り出して引張試験を実施したところ、引張強度の平均値は137MPaであった。
 接合部分の引張強度は、熱可塑性樹脂(2)の引張強度の約0.36倍であった。
[比較例1]
 実施例4と同様のプリプレグ材料を用いて、ハイブリッド成形体を製造した。
 ハイブリッド成形体としては、図1に示す平板の複合成形体(縦250mm、横250mm、肉厚2.0mm)を、下記の手順に従って製造した。
(プリプレグ材料裁断工程):上述のようにして作製したプリプレグ材料を、成形後に図1中の符号2の形状になるように幅250mm、高さ125mmに裁断した。
(プリプレグ材料予備加熱工程):プリプレグ材料をヘレウス社製の短波長赤外線ヒーターで300℃に予備加熱した。
(布帛の賦型工程):150℃に加熱した金型を開き、上記所望の形状に裁断し、予備加熱したプリプレグ材料を金型内の所定の位置にセットし、次いで型締め力90tで型締めし、賦型した。
(射出充填・接合・圧縮成形工程):前記型締め後、短繊維GF33%含有のポリアミド66樹脂[商品名:レオナ(登録商標)14G33]の樹脂組成物を、シリンダー設定温度290℃、射出圧力20MPa、射出速度50mm/secで射出充填し、射出保圧力10MPaをかけた。射出成形工程が終了後、3分間保持することにより、圧縮成形を行った。
(冷却工程):次いで、金型を100℃に冷却し、冷却固化を行った。
(離型工程):前記金型を開放し、実施例1と同様の平板の複合成形品を取り出した。
 複合成形体を取り出し後、短冊形状の成形品(長さ100mm、幅10mm)を5本切り出して、試験片を得、上述した方法により断面観察と引張試験を行った。
 試験片5点の熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)の接合面における界面の距離Lを測定したところ、距離Lの平均値は2.3mm、厚みtの平均値は1.89mmとなり、L=1.2tとなった。
 引張試験の結果、接合部分で試験片は破断した。このときの引張強度の平均値は20MPaであった。さらに、熱可塑性樹脂組成物(2)のみを切り出して引張試験を実施したところ、引張強度の平均値は134MPaであった。
 接合部分の引張強度は、熱可塑性樹脂(2)の引張強度の約0.15倍であった。
[比較例2]
 実施例4と同様のプリプレグ材料を用いて、ハイブリッド成形体を製造した。
 ハイブリッド成形体としては、図1に示す平板の複合成形体(縦250mm、横250mm、肉厚2.0mm)を、下記の手順に従って製造した。
(プリプレグ材料裁断工程):上述のようにして作製したプリプレグ材料を、成形後に図1中の符号2の形状になるように幅250mm、高さ125mmに裁断した。
(プリプレグ材料予備加熱工程):プリプレグ材料をヘレウス社製の短波長赤外線ヒーターで300℃に予備加熱した。
(布帛の賦型工程):200℃に加熱した金型を開き、上記所望の形状に裁断し、予備加熱したプリプレグ材料を金型内の所定の位置にセットし、次いで型締め力90tで型締めし、賦型した。
(射出充填・接合・圧縮成形工程):前記型締め後、短繊維GF33%含有のポリアミド66樹脂[商品名:レオナ(登録商標)14G33]の樹脂組成物を、シリンダー設定温度290℃、射出圧力20MPa、射出速度50mm/secで射出充填し、射出保圧力10MPaをかけた。射出成形工程が終了後、3分間保持することにより、圧縮成形を行った。
(冷却工程):次いで、金型を100℃に冷却し、冷却固化を行った。
(離型工程):前記金型を開放し、実施例1と同様の平板の複合成形品を取り出した。
 複合成形体を取り出し後、短冊形状の成形品(長さ100mm、幅10mm)を5本切り出して、試験片を得、上述した方法により断面観察と引張試験を行った。
 試験片5点の熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)の接合面における界面の距離Lを測定したところ、距離Lの平均値は3.2mm、厚みtの平均値は1.87mmとなり、L=1.7tとなった。
 引張試験の結果、接合部分で試験片は破断した。このときの引張強度の平均値は31MPaであった。さらに、熱可塑性樹脂組成物(2)のみを切り出して引張試験を実施したところ、引張強度の平均値は135MPaであった。
 接合部分の引張強度は、熱可塑性樹脂(2)の引張強度の約0.23倍であった。
 上記実施例1~4及び比較例1~2の結果を、以下の表1に纏めた。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本実施形態の複合成形体は、いずれも接合強度に優れていることが分かる。
 本出願は、2015年10月29日に日本国特許庁へ出願された日本特許出願(特願2015-213407号及び特願2015-213408号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の複合成形品は、各種機械や自動車のピラー、メンバ、フレーム、ビーム、サポート、オイルパン、バンパー、シートフレームなどの部品、電気部品の筐体等、高レベルでの機械的物性が要求される連続熱可塑性連続繊維複合材料と熱可塑性樹脂組成物との複合成形体としての産業上の利用可能性を有する。
 1  複合成形体
 2  熱可塑性樹脂連続繊維複合材料からなる圧縮成形部分
 3  熱可塑性樹脂組成物からなる射出成形部分

Claims (24)

  1.  連続強化繊維(A)と熱可塑性樹脂(B)を含む熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)と、を具備し、前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)とが接合面を介して結合している複合成形体(3)であって、
     前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分の引張強度が、前記熱可塑性樹脂組成物(2)の引張強度の0.35倍以上である、複合成形体。
  2.  前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分の引張強度が、前記熱可塑性樹脂組成物(2)の引張強度の0.5倍以上である、請求項1に記載の複合成形体。
  3.  前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分の引張強度が、前記熱可塑性樹脂組成物(2)の引張強度の1.0倍以上である、請求項1又は2に記載の複合成形体。
  4.  前記熱可塑性樹脂組成物(2)が、不連続強化材料を含む、請求項1~3のいずれか1項記載の複合成形体。
  5.  前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分は、互いに混じり合った凹凸構造である、請求項1~4のいずれか1項記載の複合成形体。
  6.  前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合面における界面の距離Lと、前記複合成形体(3)の厚みtの間に、L>1.8tの関係が成り立つ、請求項5に記載の複合成形体。
  7.  前記Lと前記tの間に、L>2.0tの関係が成り立つ、請求項5又は6に記載の複合成形体。
  8.  前記界面は、前記熱可塑性樹脂連続繊維複合材料(1)に含まれる連続強化繊維(A)と、前記熱可塑性樹脂組成物(2)に含まれる不連続強化材料により形成される界面である、請求項6又は7に記載の複合成形体。
  9.  連続強化繊維(A)と熱可塑性樹脂(B)を含む熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)と、を具備し、前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)とが接合面を介して結合している複合成形体(3)であって、
     前記熱可塑性樹脂連続繊維複合材料(1)と前記熱可塑性樹脂組成物(2)の接合部分は、互いに混じり合った凹凸構造である、複合成形体。
  10.  前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)の接合面における界面の距離Lと、複合成形体(3)の厚みtの間に、L>1.8tの関係が成り立つ、請求項9に記載の複合成形体。
  11.  前記Lと前記tの間に、L>2.0tの関係が成り立つ、請求項9又は10に記載の複合成形体。
  12.  前記界面は、前記熱可塑性樹脂連続繊維複合材料(1)に含まれる連続強化繊維(A)と、前記熱可塑性樹脂組成物(2)に含まれる不連続強化材料により形成される界面である、請求項10又は11に記載の複合成形体。
  13.  前記連続強化繊維(A)が、ガラス繊維、炭素繊維、アラミド繊維、超高強力ポリエチレン繊維、ポリベンザゾール系繊維、液晶ポリエステル繊維、ポリケトン繊維、金属繊維、及びセラミック繊維からなる群より選ばれる少なくとも1種である、請求項1~12のいずれか1項に記載の複合成形体。
  14.  前記熱可塑性樹脂(B)が、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンサルファイド、熱可塑性ポリエーテルイミド、及び熱可塑性フッ素系樹脂からなる群より選ばれる少なくとも1種である、請求項1~13のいずれか1項に記載の複合成形体。
  15.  前記熱可塑性樹脂(B)が、熱可塑性樹脂繊維である、請求項1~14のいずれか1項に記載の複合成形体。
  16.  前記熱可塑性樹脂連続繊維複合材料(1)の素材が布帛状である、請求項1~15のいずれか1項に記載の複合成形体。
  17.  連続強化繊維(A)と熱可塑性樹脂(B)を含む熱可塑性樹脂連続繊維複合材料(1)と、熱可塑性樹脂組成物(2)と、を具備し、前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)とが接合面を介して結合している複合成形体の製造方法であって、
     熱可塑性樹脂連続繊維複合材料(1)を金型内で賦型する工程と、
     前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程と、
     前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)を接合する工程と、
    を含む、複合成形体の製造方法。
  18.  前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程の後に、
     前記熱可塑性樹脂(B)の融点以上の金型内で、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)を圧縮成形する工程と、
    をさらに含む、請求項17に記載の複合成形体の製造方法。
  19.  前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程における金型温度が熱可塑性樹脂(B)の融点以下である、前記17又は18に記載の複合成形体の製造方法。
  20.  熱可塑性樹脂連続繊維複合材料(1)を金型内で賦型する工程の後に、
     前記熱可塑性樹脂(B)の融点以上の金型内で、前記熱可塑性樹脂連続繊維複合材料(1)を圧縮成形する工程、
    をさらに含む、請求項17に記載の複合成形体の製造方法。
  21.  前記熱可塑性樹脂組成物(2)を金型内に射出充填する工程において、前記金型が前記熱可塑性樹脂(B)の融点以上である時に射出充填する、請求項20に記載の複合成形体の製造方法。
  22.  前記熱可塑性樹脂連続繊維複合材料(1)と、前記熱可塑性樹脂組成物(2)の接合部分は、互いに混じり合った凹凸構造である、前記17~21のいずれか1項に記載の複合成形体の製造方法。
  23.  前記熱可塑性樹脂組成物(2)を金型内に射出充填・保圧するときの射出圧力または射出保圧力と、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)を圧縮成形するときのプレス圧力が同等である、前記17~22のいずれか1項に記載の複合成形体の製造方法。
  24.  前記熱可塑性樹脂組成物(2)を金型内に射出充填後、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)の固化点-10℃以下まで、前記熱可塑性樹脂連続繊維複合材料(1)及び前記熱可塑性樹脂組成物(2)を圧縮成形するときのプレス圧力と同等の射出保圧力をかけ続ける、前記17~23のいずれか1項に記載の複合成形体の製造方法。
PCT/JP2016/081962 2015-10-29 2016-10-27 複合成形体及びその製造方法 WO2017073696A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680050597.8A CN107921726B (zh) 2015-10-29 2016-10-27 复合成型体及其制造方法
EP16859925.6A EP3369566B1 (en) 2015-10-29 2016-10-27 Composite molding and method for producing same
JP2017547869A JP6483848B2 (ja) 2015-10-29 2016-10-27 複合成形体及びその製造方法
KR1020177035869A KR102110994B1 (ko) 2015-10-29 2016-10-27 복합 성형체 및 그 제조 방법
US15/771,425 US10479005B2 (en) 2015-10-29 2016-10-27 Composite molded article and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-213408 2015-10-29
JP2015213407 2015-10-29
JP2015213408 2015-10-29
JP2015-213407 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017073696A1 true WO2017073696A1 (ja) 2017-05-04

Family

ID=58631812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081962 WO2017073696A1 (ja) 2015-10-29 2016-10-27 複合成形体及びその製造方法

Country Status (7)

Country Link
US (1) US10479005B2 (ja)
EP (1) EP3369566B1 (ja)
JP (1) JP6483848B2 (ja)
KR (1) KR102110994B1 (ja)
CN (1) CN107921726B (ja)
TW (1) TWI601631B (ja)
WO (1) WO2017073696A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104138A (ja) * 2017-12-11 2019-06-27 旭化成株式会社 射出インサート成形方法
CN110065242A (zh) * 2018-01-23 2019-07-30 波音公司 具有连续和短切纤维组分二者的复合材料部件的制造
JP2021525189A (ja) * 2018-05-24 2021-09-24 ローディア オペレーションズ 複合物品を製造するためのプロセス

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370530B2 (en) * 2016-02-26 2019-08-06 Ricoh Company, Ltd. Methods for solid freeform fabrication
EP3595853A4 (en) 2017-03-16 2020-12-23 Guerrilla Industries LLC COMPOSITE STRUCTURES AND PROCESSES FOR FORMING COMPOSITE STRUCTURES
EP3974465A4 (en) * 2019-05-23 2023-09-27 Toray Industries, Inc. FIBER-REINFORCED RESIN SUBSTRATE, INTEGRATED MOLDED ARTICLE, AND METHOD FOR MANUFACTURING FIBER-REINFORCED RESIN SUBSTRATE
CN112208172A (zh) * 2019-07-12 2021-01-12 大赛璐美华株式会社 复合成型体及其制造方法
CN111942525A (zh) * 2020-08-24 2020-11-17 上海赛珀特复合材料科技发展有限公司 连续长纤维增强的热塑性聚合物复合材料船舶舱口盖支承块及其制备方法
WO2022192355A1 (en) 2021-03-09 2022-09-15 Guerrilla Industries LLC Composite structures and methods of forming composite structures
US20220402220A1 (en) * 2021-06-18 2022-12-22 Goodrich Corporation Carbonization shape forming of oxidized pan fiber preform
TWI767811B (zh) * 2021-07-30 2022-06-11 臺灣塑膠工業股份有限公司 碳纖維束的處理方法
CN114559683A (zh) * 2022-02-28 2022-05-31 华中科技大学 一种具有复杂结构制件的lcm整体成形方法及制件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253959A (ja) * 1991-12-18 1993-10-05 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂成形品およびその成形方法
JP2000280281A (ja) * 1999-03-30 2000-10-10 Asahi Chem Ind Co Ltd インサート射出成形方法
JP2009113244A (ja) * 2007-11-02 2009-05-28 Toyota Boshoku Corp 成形構造体及び成形構造体の製造方法
JP2011218559A (ja) * 2010-04-02 2011-11-04 Toyoda Gosei Co Ltd 複合部材及びその製造方法
JP2013006389A (ja) * 2011-06-27 2013-01-10 Toray Ind Inc 複合成形体およびその製造方法
JP2014136365A (ja) * 2013-01-17 2014-07-28 Meiki Co Ltd 繊維複合成形品の圧縮成形方法および繊維複合成形品の圧縮成形装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3722000A (en) * 1968-11-27 1973-03-27 Rohm & Haas Method for reinforcing textile garments with thermosetting films
US4249517A (en) 1978-02-13 1981-02-10 Burgess Carlton M Composite molded article and method of making the same
JPS6033520A (ja) * 1983-08-05 1985-02-20 Ube Nitto Kasei Kk 繊維強化光ファイバ並びにその製造方法
ES2051274T3 (es) * 1986-12-25 1994-06-16 Toray Industries Materiales compuestos altamente resistentes.
US5288829A (en) * 1991-07-23 1994-02-22 Shin-Etsu Chemical Co., Ltd. Curable silicone composition
TW509617B (en) 1999-10-01 2002-11-11 Ein Kohsan Co Ltd Resin pallet having a spring structure and method of producing the resin pallet
JP2002309007A (ja) * 2001-04-10 2002-10-23 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂成形物およびその製造方法
JP5250972B2 (ja) * 2004-02-27 2013-07-31 東レ株式会社 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、一体化成形品、繊維強化複合材料板、および電気・電子機器用筐体
CN101495307B (zh) * 2006-07-28 2013-04-03 东丽株式会社 成型品及其制造方法
JP2010131804A (ja) 2008-12-03 2010-06-17 Toray Ind Inc 複合成形品およびその製造方法
WO2010078697A1 (zh) * 2009-01-09 2010-07-15 瑞鸿复材企业股份有限公司 预浸热塑性树脂的纤维结构的制造方法
JP5721698B2 (ja) * 2010-03-26 2015-05-20 三菱重工プラスチックテクノロジー株式会社 繊維強化複合材の製造方法
WO2012117593A1 (ja) 2011-02-28 2012-09-07 帝人株式会社 繊維強化複合材料からなる成形体
JP2012206446A (ja) 2011-03-30 2012-10-25 Teijin Ltd 裏打ち付き繊維強化複合材料の製造方法
DE102012220782A1 (de) 2012-11-14 2014-06-05 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Faserverstärkte Thermoplastbauteilanordnung und Verfahren zum Herstellen einer derartigen faserverstärkten Thermoplastbauteilanordnung
JP5641080B2 (ja) 2013-03-06 2014-12-17 東レ株式会社 繊維強化樹脂シート、一体化成形品およびその製造方法、並びに実装部材
US11179534B2 (en) * 2013-11-15 2021-11-23 ResMed Pty Ltd Patient interface with seal-forming structure
JP6372996B2 (ja) 2013-11-20 2018-08-15 旭化成株式会社 複合材料成型体の製造方法
JP6499927B2 (ja) * 2015-06-10 2019-04-10 Jxtgエネルギー株式会社 網状構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253959A (ja) * 1991-12-18 1993-10-05 Sumitomo Chem Co Ltd 繊維強化熱可塑性樹脂成形品およびその成形方法
JP2000280281A (ja) * 1999-03-30 2000-10-10 Asahi Chem Ind Co Ltd インサート射出成形方法
JP2009113244A (ja) * 2007-11-02 2009-05-28 Toyota Boshoku Corp 成形構造体及び成形構造体の製造方法
JP2011218559A (ja) * 2010-04-02 2011-11-04 Toyoda Gosei Co Ltd 複合部材及びその製造方法
JP2013006389A (ja) * 2011-06-27 2013-01-10 Toray Ind Inc 複合成形体およびその製造方法
JP2014136365A (ja) * 2013-01-17 2014-07-28 Meiki Co Ltd 繊維複合成形品の圧縮成形方法および繊維複合成形品の圧縮成形装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104138A (ja) * 2017-12-11 2019-06-27 旭化成株式会社 射出インサート成形方法
JP7017917B2 (ja) 2017-12-11 2022-02-09 旭化成株式会社 射出インサート成形方法
CN110065242A (zh) * 2018-01-23 2019-07-30 波音公司 具有连续和短切纤维组分二者的复合材料部件的制造
JP2021525189A (ja) * 2018-05-24 2021-09-24 ローディア オペレーションズ 複合物品を製造するためのプロセス
JP7315664B2 (ja) 2018-05-24 2023-07-26 ローディア オペレーションズ 複合物品を製造するためのプロセス

Also Published As

Publication number Publication date
CN107921726B (zh) 2019-08-20
JPWO2017073696A1 (ja) 2018-03-22
EP3369566A1 (en) 2018-09-05
EP3369566A4 (en) 2018-09-05
EP3369566B1 (en) 2020-04-08
CN107921726A (zh) 2018-04-17
KR20180008603A (ko) 2018-01-24
US20180326627A1 (en) 2018-11-15
JP6483848B2 (ja) 2019-03-13
TW201718238A (zh) 2017-06-01
TWI601631B (zh) 2017-10-11
US10479005B2 (en) 2019-11-19
KR102110994B1 (ko) 2020-05-14

Similar Documents

Publication Publication Date Title
JP6483848B2 (ja) 複合成形体及びその製造方法
JP6372996B2 (ja) 複合材料成型体の製造方法
US10828807B2 (en) Method for manufacturing molded article
JP6077758B2 (ja) 複合糸条の製造方法
RU2655158C2 (ru) Смешанная пряжа, способ для производства смешанной пряжи и тканая ткань
US9994976B2 (en) Method for manufacturing commingled yarn, commingled yarn, wind-up article, and, woven fabric
JP6227956B2 (ja) 複合糸条
JP6734643B2 (ja) 複合糸、織物、及び連続強化繊維樹脂成形体
JP6297311B2 (ja) 布帛
JP6175222B2 (ja) 複合糸条布帛
JP6297310B2 (ja) 組紐
JP7020988B2 (ja) 成形品の製造方法
JP6598532B2 (ja) 布帛
JP2016528080A (ja) 部材に含まれるプラスチック構成部分間の付着が改善された複合プラスチック部材
JP2023149049A (ja) 連続繊維強化樹脂複合材料
JP2019026945A (ja) 連続繊維不織布、複合材用強化繊維基材およびそれらの成形体ならびに製造方法
JP2023000373A (ja) 連続繊維強化熱可塑性樹脂複合材料及びその製造方法
JP2023152719A (ja) ペレット及びペレットの製造方法
JP2024056588A (ja) 成形体及びその製造方法
JP2019130848A (ja) シート、成形体、及び成形体の製造方法
JP2023111522A (ja) 繊維強化熱可塑性樹脂成形体及びその製造方法
JP2018095720A (ja) 複合材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547869

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177035869

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15771425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE