WO2017073387A1 - カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品 - Google Patents
カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品 Download PDFInfo
- Publication number
- WO2017073387A1 WO2017073387A1 PCT/JP2016/080669 JP2016080669W WO2017073387A1 WO 2017073387 A1 WO2017073387 A1 WO 2017073387A1 JP 2016080669 W JP2016080669 W JP 2016080669W WO 2017073387 A1 WO2017073387 A1 WO 2017073387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystalline
- crystalline polyester
- polyester resin
- camera module
- resin composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/025—Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/60—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
- C08G63/605—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/60—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/40—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
- C08K7/18—Solid spheres inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/38—Polymers
- C09K19/3804—Polymers with mesogenic groups in the main chain
- C09K19/3809—Polyesters; Polyester derivatives, e.g. polyamides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
- G03B17/12—Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K2003/343—Peroxyhydrates, peroxyacids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K2019/521—Inorganic solid particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
Definitions
- the present invention relates to a liquid crystalline polyester resin composition for a camera module which is excellent in low dust generation, toughness and impact strength, and a molded product for a camera module comprising the same.
- liquid crystalline resins having optical anisotropy characterized by parallel arrangement of molecular chains are attracting attention because of their excellent fluidity, heat resistance, mechanical properties, and dimensional stability. Used for molded products.
- Patent Document 1 discloses a liquid crystalline polyester for ultrasonic cleaning of dust attached to a component having a lens holding part such as a camera module by blending silica having an average particle size of 5 ⁇ m or less with a liquid crystalline polyester resin. It suppresses dust generation due to fibrillation on the surface of resin parts.
- An object of the present invention is to obtain a liquid crystalline resin composition for a camera module that is excellent in low dust generation, toughness, and impact strength, and a molded product for a camera module comprising the same.
- liquid crystal polyester resin is a liquid crystal for a camera module that is excellent in dust generation, toughness, and impact strength by blending a specific amount of spherical silica with a specific particle diameter.
- the present inventors have found that a functional resin composition can be obtained and have reached the present invention.
- a liquid crystalline polyester resin composition for a camera module comprising (B) 20 to 45 parts by weight of spherical silica having an average particle diameter of 15 ⁇ m or more and less than 30 ⁇ m in 100 parts by weight of a liquid crystalline polyester resin.
- the present invention includes a molded product for a camera module comprising the liquid crystalline polyester resin composition for a camera module described above.
- the present invention includes a camera module made of the molded product for a camera module described above.
- liquid crystalline polyester resin composition of the present invention it is possible to obtain a liquid crystalline resin composition for a camera module that is excellent in low dust generation, toughness, and impact strength, and a molded product for a camera module comprising the same.
- the molded product for a camera module of the present invention can be suitably used for a camera module component.
- the liquid crystalline polyester resin composition for a camera module comprises (B) 20 to 45 parts by weight of spherical silica having an average particle size of 15 ⁇ m or more and less than 30 ⁇ m with respect to 100 parts by weight of (A) liquid crystalline polyester resin. contains.
- the (A) liquid crystalline polyester resin of the present invention comprises, for example, a structural unit selected from aromatic oxycarbonyl units, aromatic and / or aliphatic dioxy units, aromatic and / or aliphatic dicarbonyl units, and the like. It is a liquid crystalline polyester resin that forms an anisotropic molten phase.
- aromatic oxycarbonyl unit examples include structural units formed from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid and the like, and p-hydroxybenzoic acid is preferable.
- aromatic and / or aliphatic dioxy units include 4,4′-dihydroxybiphenyl, hydroquinone, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, t-butylhydroquinone, Phenylhydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane and 4,4′-dihydroxydiphenyl ether, ethylene glycol, 1,3-propylene glycol, 1, Examples thereof include structural units formed from 4-butanediol, and 4,4′-dihydroxybiphenyl and hydroquinone are preferred.
- aromatic and / or aliphatic dicarbonyl units include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-4, Examples include structural units formed from 4′-dicarboxylic acid, 1,2-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, adipic acid, sebacic acid, and the like. Terephthalic acid and isophthalic acid are preferred.
- liquid crystalline polyester resin examples include a liquid crystalline polyester resin composed of a structural unit formed from p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, a structural unit formed from p-hydroxybenzoic acid, and 6-hydroxy.
- Liquid crystalline polyester resin comprising a structural unit produced from an aliphatic dicarboxylic acid, a structural unit produced from p-hydroxybenzoic acid, a structural unit produced from ethylene glycol, a liquid crystal comprising a structural unit produced from terephthalic acid and / or isophthalic acid Polyester resin, structural unit formed from p-hydroxybenzoic acid, structural unit formed from ethylene glycol, structural unit formed from 4,4′-dihydroxybiphenyl, aliphatic such as terephthalic acid and / or adipic acid, sebacic acid, etc.
- dicarboxylic Liquid crystalline polyester resin composed of structural units, structural units generated from p-hydroxybenzoic acid, structural units generated from ethylene glycol, structural units generated from aromatic dihydroxy compounds, terephthalic acid, isophthalic acid, 2,6-naphthalene
- a liquid crystalline polyester resin comprising a structural unit produced from an aromatic dicarboxylic acid such as dicarboxylic acid, a structural unit produced from 6-hydroxy-2-naphthoic acid, a structural unit produced from 4,4′-dihydroxybiphenyl, 2,6 -Liquid crystalline polyester resins composed of structural units formed from naphthalenedicarboxylic acid.
- liquid crystalline polyester resins composed of the following structural units (I), (II), (III), (IV) and (V) are preferable from the viewpoint of low dust generation. This is because such a liquid crystalline polyester resin has a large number of copolymerized units, so that the liquid crystallinity is lowered and fibrillation which is a characteristic of the liquid crystalline polyester resin is hardly caused.
- the structural unit (I) is a structural unit generated from p-hydroxybenzoic acid
- the structural unit (II) is a structural unit generated from 4,4′-dihydroxybiphenyl
- the structural unit (III) is a structure generated from hydroquinone.
- the structural unit (IV) represents a structural unit generated from terephthalic acid
- the structural unit (V) represents a structural unit generated from isophthalic acid.
- the structural unit (I) is preferably 65 to 80 mol% with respect to the total of the structural units (I), (II) and (III). Since the amount of generated gas decreases, the lower limit is more preferably 68 mol% or more, and the upper limit is more preferably 78 mol% or less from the viewpoint of toughness.
- the structural unit (II) is preferably 55 to 85 mol% with respect to the total of the structural units (II) and (III).
- the lower limit is more preferably 55 mol% or more, most preferably 58 mol% or more, and the upper limit is more preferably 78 mol% or less from the viewpoint of toughness, most preferably. It is 73 mol% or less.
- the structural unit (IV) is preferably 50 to 95 mol% with respect to the total of the structural units (IV) and (V).
- the lower limit is more preferably 55 mol% or more, most preferably 60 mol% or more, and the upper limit is more preferably 90 mol% or less from the viewpoint of toughness, Most preferably, it is 85 mol% or less.
- the total of the structural units (II) and (III) and the total of (IV) and (V) are preferably substantially equimolar.
- substantially equimolar means that the structural unit constituting the polymer main chain excluding the terminal is equimolar, and when including up to the structural unit constituting the terminal, it is not necessarily equivalent. Not exclusively. An excess of dicarboxylic acid component or dihydroxy component may be added to adjust the end groups of the polymer.
- the content of each structural unit in the (A) liquid crystalline polyester resin can be calculated by the following treatment. That is, the liquid crystalline polyester resin is weighed into an NMR (nuclear magnetic resonance) test tube, dissolved in a solvent in which the liquid crystalline polyester resin is soluble (for example, a pentafluorophenol / heavy tetrachloroethane-d 2 mixed solvent), and 1 The H-NMR spectrum is measured. The content of each structural unit can be calculated from the peak area ratio derived from each structural unit.
- the melting point of the liquid crystalline polyester resin in the present invention is preferably 300 to 350 ° C. from the viewpoint of processability and fluidity, and the lower limit thereof is more preferably 310 ° C. or more, and particularly preferably 320 ° C. or more from the viewpoint of processability. Further, from the viewpoint of fluidity, the upper limit is more preferably 340 ° C. or less, and particularly preferably 330 ° C. or less. Such a melting point is preferable because generation of decomposition gas during processing can be suppressed and fluidity can be sufficiently exhibited.
- the melting point (Tm) of the (A) liquid crystalline polyester resin of the present invention can be measured by the following method. In differential calorimetry, after observing the endothermic peak temperature (Tm 1 ) observed when the liquid crystalline polyester resin was measured at room temperature to 40 ° C./min, it was held at a temperature of Tm 1 + 20 ° C. for 5 minutes. Then, it was once cooled to room temperature under a temperature drop condition of 20 ° C./min, and the endothermic peak temperature (Tm 2 ) observed when measured again under a temperature rise condition of 20 ° C./min was defined as the melting point (Tm).
- the melt viscosity of the liquid crystalline polyester resin in the present invention is preferably 1 to 100 Pa ⁇ s, and the lower limit thereof is more preferably 3 Pa ⁇ s or more, particularly preferably 5 Pa ⁇ s or more, from the viewpoint of workability.
- the upper limit is more preferably 50 Pa ⁇ s or less, and particularly preferably 30 Pa ⁇ s or less.
- the melt viscosity is a value measured with a Koka flow tester under the condition of the melting point of the liquid crystalline polyester resin + 10 ° C. and the shear rate of 1,000 / s.
- the (A) liquid crystalline polyester resin of the present invention can be obtained by a known polycondensation method of polyester.
- the following production method is preferable.
- a predetermined amount of diphenyl carbonate is reacted with p-hydroxybenzoic acid and aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid to form diphenyl esters, respectively, and then aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
- aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid
- aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
- a melt polymerization method in which the polycondensation reaction is completed by reacting under reduced pressure at a temperature at which the liquid crystalline polyester resin melts is preferable.
- a reaction vessel having a predetermined amount of p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl, hydroquinone, terephthalic acid, isophthalic acid, and acetic anhydride with a stirring blade, a distillation pipe, and a discharge port at the bottom. And heating with stirring in a nitrogen gas atmosphere to acetylate the hydroxyl group, then raising the temperature to the melting temperature of the liquid crystalline polyester resin, and polycondensation under reduced pressure to complete the reaction.
- the obtained polymer is pressurized to, for example, approximately 1.0 kg / cm 2 (0.1 MPa) inside the reaction vessel at a temperature at which it melts, and discharged in a strand form from the discharge port provided at the lower part of the reaction vessel.
- the melt polymerization method is an advantageous method for producing a uniform polymer, and an excellent polymer with less gas generation can be obtained, which is preferable.
- the polycondensation reaction of the liquid crystalline polyester resin proceeds even without catalyst, but metal compounds such as stannous acetate, tetrabutyl titanate, potassium acetate, sodium acetate, antimony trioxide, and metal magnesium can also be used.
- the (B) spherical silica of the present invention is a silica particle having a sphericity of 0.60 or more and a primary particle having a spherical shape, and has a sphericity of 0.00 from the viewpoint of high filling into the resin and dispersibility. 85 or more are preferable, More preferably, it is 0.90 or more, More preferably, it is 0.92 or more.
- the sphericity was measured by weighing 100 mg of silica, dispersing it in water, and using an image processing apparatus (Sysmex Corporation: FPIA-3000), the area measured from a two-dimensional image of 1000 particles randomly extracted. And the average value of the perimeters can be obtained by the above formula.
- the average particle diameter of the (B) spherical silica of the present invention must be 15 ⁇ m or more and less than 30 ⁇ m in order to exhibit the low dust generation, toughness and impact strength that are the effects of the present invention.
- a molded product is molded using a resin composition containing (B) spherical silica having an average particle size of 15 ⁇ m or more and less than 30 ⁇ m, the liquid crystalline polyester resin is in a state where the orientation is suppressed by (B) spherical silica. Since a molded product having a small surface roughness is obtained, a specific low dusting effect can be obtained.
- the average particle diameter of the spherical silica is preferably 15 ⁇ m or more and 25 ⁇ m or less, more preferably 15 ⁇ m or more and 20 ⁇ m or less, from the viewpoint of the surface smoothness of the molded product and the dispersibility of the spherical silica in the resin.
- it is smaller than 15 ⁇ m, the effect of suppressing the orientation of the liquid crystalline polyester resin is not sufficient, and the low dust generation effect due to suppression of fibrillation cannot be obtained.
- the thickness is 30 ⁇ m or more, the surface smoothness is remarkably lowered, unevenness due to shrinkage unevenness is formed on the surface, and dust generation due to sliding deteriorates.
- the average particle diameter is the number average particle diameter and can be measured by a laser diffraction / scattering particle size distribution meter.
- the spherical silica used in the present invention has no change in shape and average particle diameter before and after melt kneading into the resin composition. Therefore, it may be considered that the shape and average particle diameter when the spherical silica characteristics before kneading in the resin composition are measured are also included in the resin composition.
- the content of the (B) spherical silica of the present invention is 20 to 45 weights in order to exhibit the low dust generation, toughness and impact strength, which are the effects of the present invention, with respect to 100 parts by weight of the (A) liquid crystalline polyester resin.
- Part is essential, and is preferably 25 parts by weight or more from the viewpoint of high toughness, and preferably 35 parts by weight or less from the viewpoint of low dust generation. If it is less than 20 parts by weight, the effect of suppressing the fibrillation of the spherical silica with respect to the liquid crystalline resin is not sufficient, and low dust generation cannot be obtained.
- the method for producing the (B) spherical silica of the present invention is not particularly limited, but a melting method in which crystal-pulverized silica is melted and spheroidized by surface tension is preferable. This method is preferable because it can produce spherical silica having a particle diameter capable of specifically expressing low dust generation, toughness and impact strength when blended with the liquid crystalline polyester resin, which is the effect found by the present invention. .
- FEB75A Alignchs Co., Ltd.
- FB-950 Electrochemical Industry Co., Ltd.
- the liquid crystalline polyester resin composition for a camera module of the present invention has a fibrous filler and a filler other than the fibrous filler (plate-like, granular, spherical (excluding spherical silica) within a range not impairing the object of the present invention. ), Hollow spheres) and (C) a plate-like filler having an average particle diameter of 10 to 50 ⁇ m and / or (D) a fibrous filler having an average fiber length of 30 to 300 ⁇ m. preferable.
- plate-like filler for example, plate-like inorganic fillers such as mica, talc, graphite, and clay can be used, and talc and mica are preferable. Particularly, mica is used because surface smoothness and surface hardness are improved. preferable.
- the average particle diameter of the plate-like filler is preferably 10 to 50 ⁇ m, but the lower limit is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more from the viewpoint of dispersibility. Also about an upper limit, from a viewpoint of the surface smoothness of a composition, 45 micrometers or less are preferable, More preferably, it is 40 micrometers or less, Especially preferably, it is 30 micrometers or less. Among them, the range of 20 to 30 ⁇ m or less is preferable because the plate-like filler is uniformly dispersed in the resin composition and the surface smoothness is particularly improved.
- the average particle size of the plate-like filler is the number average particle size.
- the ash content obtained by ashing the resin composition is observed with a scanning electron microscope, and a plate of 50 plate-like filler particles arbitrarily selected. The major axis of the part can be measured to determine the number average particle size.
- Examples of the fibrous filler include glass fiber, carbon fiber, aromatic polyamide fiber, potassium titanate fiber, gypsum fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, boron whisker fiber, asbestos fiber, and straw.
- Stenite, titanium oxide fiber, calcium carbonate fiber, basalt fiber and the like can be used, and glass fiber and wollastonite are preferable, and glass fiber is preferable because impact strength is particularly improved.
- the average fiber length of the fibrous filler is preferably 30 to 300 ⁇ m, and if the fiber length exceeds 300 ⁇ m, there is an increased risk of dust generation due to fiber detachment, so the average fiber length should not exceed 300 ⁇ m. Is preferred. More preferably, from the viewpoint of impact strength, the lower limit is 35 ⁇ m or more, and more preferably 40 ⁇ m or more. The upper limit is preferably 150 ⁇ m or less, more preferably 80 ⁇ m or less, from the viewpoint of low dust generation.
- the average fiber length of the fibrous filler is the number average fiber length. For example, the ash content obtained by ashing the resin composition is observed with an optical microscope, and the fiber length of 500 arbitrarily selected fibrous fillers is measured. Then, the number average fiber length can be obtained.
- the plate-like filler and (D) the fibrous filler may be used in combination.
- the content of (C) plate-like filler and / or (D) fibrous filler is preferably 1 to 25 parts by weight with respect to 100 parts by weight of (A) liquid crystalline polyester resin, from the viewpoint of impact strength.
- the lower limit is more preferably 2 parts by weight or more, and still more preferably 3 parts by weight or more.
- the upper limit is also preferably 15 parts by weight or less, and more preferably 10 parts by weight or less from the viewpoint of dust generation.
- antioxidants and heat stabilizers for example, hindered phenols, hydroquinones, phosphites, and substituted products thereof
- ultraviolet absorbers for example, resorcinol, salicylate, benzotriazole
- mold release agents such as montanic acid and its salts, its esters, their half esters, stearyl alcohol, stearamide and polyethylene wax
- dyes such as nigrosine
- pigments such as cadmium sulfide, phthalocyanine, carbon black
- Containing colorants, plasticizers, flame retardants, flame retardant aids, antistatic agents, and other conventional additives and other thermoplastic resins (fluorine resins, etc.) can be added to impart predetermined characteristics. it can.
- the liquid crystal polyester resin composition for a camera module of the present invention is preferably produced by melt kneading, and a known method can be used for melt kneading.
- a Banbury mixer, a rubber roll machine, a kneader, a single screw or twin screw extruder can be used.
- the liquid crystalline polyester resin composition of the present invention needs to control the number average length of the fibrous filler, it is preferable to use an extruder, and more preferably to use a twin screw extruder. It is particularly preferable to use a twin screw extruder having an intermediate addition port.
- the higher fatty acid metal salt is preferably blended into the pellets after melt-kneading extrusion.
- the moldability can be dramatically improved.
- a tumbler mixer, a ribbon blender or the like is used for blending the higher aliphatic metal salt and the pellet.
- the higher fatty acid metal salt may be melt-kneaded in a twin screw extruder together with a liquid crystalline resin and other additives.
- the liquid crystalline polyester resin composition for a camera module of the present invention is molded into various molded products by a known molding method, and injection molding is preferred.
- injection molding a liquid crystal polyester resin forms a skin layer in a state in which the orientation is suppressed by spherical silica having a specific particle size blended in a specific amount, and a surface with low roughness is obtained, resulting in low dust generation A specific effect can be obtained.
- the molded product thus obtained is excellent in low dust generation, toughness, and impact strength, and thus can be suitably used for optical equipment parts, and further suitable for parts having a lens holding portion, particularly for camera modules. Preferably used.
- the evaluation method for each characteristic is as follows.
- composition analysis liquid crystalline polyester resin of the liquid crystalline polyester resin was carried out by 1 H- nuclear magnetic resonance spectrum (1 H-NMR) measurement.
- Tm Melting point
- the polymerization temperature was maintained at 320 ° C.
- the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
- the reaction was continued for 90 minutes, and the polycondensation was completed when the torque reached 15 kg ⁇ cm.
- the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a base having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
- a liquid crystalline polyester resin (A-1) was obtained.
- This liquid crystalline polyester resin (A-1) comprises the structural formula (I), the structural formula (II), the structural formula (III), the structural formula (IV), and the structural formula (V).
- 70 mol% based on the sum of structural formula (I), structural formula (II) and structural formula (III), and structural formula (II) is 70 based on the total of structural formula (II) and structural formula (III) units.
- Mol%, and the structural formula (IV) is 65 mol% with respect to the sum of the structural formula (IV) and the structural formula (V).
- the total of structural formula (II) and structural formula (III) is 23 mol% with respect to all structural units, and the total of structural formula (IV) and structural formula (V) is 23 mol with respect to all structural units. %Met.
- the melting point (Tm) of the liquid crystalline polyester resin (A-1) was 314 ° C.
- the melt viscosity measured at a temperature of 324 ° C. and a shear rate of 1,000 / s was 20 Pa ⁇ s.
- This liquid crystal polyester resin contains 80.0 mol% of p-oxybenzoate units, 10.8 mol% of 4,4′-dioxybiphenyl units, 9.2 mol% of ethylenedioxy units, and 20.0 mol% of terephthalate units. And melting point (Tm) was 326 ° C. Using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm), the melt viscosity measured at a temperature of 335 ° C. and a shear rate of 1,000 / s was 13 Pa ⁇ s.
- B-1 “FEB75A” manufactured by Admatechs Co., Ltd.
- B-2 “SO-C2” manufactured by Admatechs Co., Ltd.
- B-3 “HS-103” manufactured by Nippon Steel & Sumikin Materials Co., Ltd.
- B-4 “FB-12D” manufactured by Denki Kagaku Kogyo Co., Ltd.
- C Plate-like filler (C-1) “Mica A-21” manufactured by Yamaguchi Mica Co., Ltd. (number average particle size 22 ⁇ m) (C-2) “Mica A-41s” manufactured by Yamaguchi Mica Co., Ltd. (number average particle diameter 47 ⁇ m)
- D Fibrous filler (D-1) “Milled fiber EPG70M-01N” (number average fiber length 70 ⁇ m) manufactured by Nippon Electric Glass Co., Ltd.
- Examples 1 to 11 Using a twin-screw extruder with a screw diameter of 44 mm and a rotating fan in the same direction (manufactured by Nippon Steel Works, TEX-44, space volume (V) 1590 cm 3 ), the liquid crystalline polyester resin (A) is blended in the amounts shown in Table 1. It injected from the hopper, and spherical silica (B) was supplied from the intermediate supply port in the compounding amount shown in Table 1 with respect to 100 parts by weight of the total liquid crystal polyester resin composition. Cylinder temperature was set to melting
- the obtained pellets were dried with hot air, and the dust generation property, Izod impact strength, and bending deflection were evaluated by the above methods. Table 1 shows the results.
- liquid crystalline resin composition for a camera module that is excellent in low dust generation, toughness, impact strength, and high toughness, and a molded product for a camera module comprising the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Camera Bodies And Camera Details Or Accessories (AREA)
- Optics & Photonics (AREA)
Abstract
Description
(A)液晶性ポリエステル樹脂100重量部に、(B)平均粒子径15μm以上30μm未満の球状シリカを20~45重量部含有することを特徴とするカメラモジュール用液晶性ポリエステル樹脂組成物。
(1)p-アセトキシ安息香酸および4,4’-ジアセトキシビフェニル、ジアセトキシベンゼンとテレフタル酸、イソフタル酸から脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。
(2)p-ヒドロキシ安息香酸および4,4’-ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。
(3)p-ヒドロキシ安息香酸のフェニルエステルおよび4,4’-ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
(4)p-ヒドロキシ安息香酸およびテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれジフェニルエステルとした後、4,4’-ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
液晶性ポリエステル樹脂の組成分析は、1H-核磁気共鳴スペクトル(1H-NMR)測定により実施した。液晶性ポリエステル樹脂をNMR試料管に50mg秤量し、溶媒(ペンタフルオロフェノール/1,1,2,2-テトラクロロエタン-d2=65/35(重量比)混合溶媒)800μLに溶解して、UNITY INOVA500型NMR装置(バリアン社製)を用いて観測周波数500MHz、温度80℃で1H-NMR測定を実施し、7~9.5ppm付近に観測される各構造単位由来のピーク面積比から組成を分析した。
Tm(融点)は示差走査熱量測定において、液晶性ポリエステル樹脂または液晶性ポリエステル樹脂組成物を室温から40℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm2)を融点(Tm)とした。
シリカの数平均粒子径は、シリカを100mg秤量し、水中に分散させ、レーザー回折/散乱式粒子径分布測定装置(HORIBA社製“LA-300”)を用いて測定した。
真球度の測定は、粒子の二次元画像から求めた面積と周囲長から、(真球度)={4π×(面積)÷(周囲長)2}で算出される値として算出した。シリカを100mg秤量し、水中に分散させ、画像処理装置(シスメックス株式会社:FPIA-3000)を用い、無作為に抽出した1000個の粒子の二次元画像から面積および周囲長を測定し、その平均値を用いて、上記式により真球度を求めた。
液晶性ポリエステル樹脂組成物を灰化し、灰分を走査型電子顕微鏡で観察し、任意に選んだ板状充填材粒子50個の平板部の長径を測定し、数平均粒子径を求めた。
液晶性ポリエステル樹脂組成物を灰化し、灰分を光学顕微鏡で観察し、任意に選んだ繊維状充填材500本の繊維長を測定し、数平均繊維長を求めることにより測定した。
液晶性ポリエステル樹脂組成物を、ファナックロボショットα-30C(ファナック(株)製)を用いて、ASTM1号ダンベル試験片を成形した。シリンダ温度を液晶性ポリエステル樹脂組成物の融点Tm+10℃に設定し、金型温度を90℃に設定し成形した。上記により得られた成形品に住友3M(株)製Scotch透明粘着テープを圧着し、剥がした際の粘着テープを東洋精機社製直読ヘイズメーターにてヘイズ値(曇り)を測定した。ヘイズ値が小さいほど曇りが少ないことを示す。
ファナックロボショットα-30C(ファナック(株)製)を用いて、シリンダ-温度を液晶性ポリエステルの融点+10℃に設定し、金型温度90℃の条件で射出成形を行い、ASTM衝撃試験片を作成し、ASTM D256に従い、ノッチ有りでアイゾット衝撃強度の測定を行った。10回の測定の平均値を算出した。
ファナックロボショットα-30C(ファナック(株)製)を用いて、シリンダ-温度を液晶性ポリエステルの融点+10℃に設定し、金型温度90℃の条件で射出成形を行い、ASTM曲げ試験片(短冊試験片)を作成し、ASTM D648に従い、測定した。
[参考例1] 液晶性ポリエステル樹脂(A-1)の合成
撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870g(6.30モル)、4,4’-ジヒドロキシビフェニル327g(1.89モル)、ハイドロキノン89g(0.81モル)、テレフタル酸292g(1.76モル)、イソフタル酸157g(0.95モル)および無水酢酸1367g(フェノール性水酸基合計の1.03当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた後、320℃まで4時間で昇温した。その後、重合温度を320℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に90分間反応を続け、トルクが15kg・cmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1個持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、液晶性ポリエステル樹脂(A-1)を得た。
p-ヒドロキシ安息香酸994g(7.20モル)、4,4’-ジヒドロキシビフェニル181g(0.97モル)、テレフタル酸161g(0.97モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレート159g(0.83モル)および無水酢酸1026g(フェノール性水酸基合計の1.10当量)を重合容器に仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた後、335℃まで4時間で昇温した。その後、重合温度を335℃に保持し、0.1MPaに窒素加圧し、20分間加熱攪拌した。その後、1.0時間で1.0mmHg(133Pa)に減圧し、更に90分間反応を続け、トルクが12kg・cmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1個持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、液晶性ポリエステル樹脂(A-2)を得た。
特開昭54-77691号公報に従って、p-アセトキシ安息香酸921重量部と6-アセトキシ-ナフトエ酸435重量部を、撹拌翼、留出管を備えた反応容器に仕込み、重縮合を行った。得られた液晶ポリエステル樹脂(A-3)は、p-アセトキシ安息香酸から生成した構造単位72モル%および6-アセトキシ-ナフトエ酸から生成した構造単位28モル%からなり、融点(Tm)は283℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度293℃、剪断速度1,000/sで測定した溶融粘度は30Pa・sであった。
各実施例および比較例において用いた球状シリカを次に示す。
(B-2)(株)アドマテックス 社製 “SO-C2” (製造方法:VMC法、平均粒子径0.5μm、真球度0.90)
(B-3)新日鉄住金マテリアルズ(株) 社製 “HS-103” (製造方法:溶射法、平均粒子径100μm、真球度0.89)
(B-4)電気化学工業(株) 社製 “FB-12D” (製造方法:溶融法、平均粒子径10μm、真球度0.91)
(B-5)(株)龍森 社製 “MSR-SC3” (製造方法:溶融法、平均粒子径53μm、真球度0.90)
(B-6)(株)電気化学工業(株)社製 “FB-950” (製造方法:溶融法、平均粒子径24μm、真球度0.97)
(B’)その他のシリカ
(B’-1)(株)丸東 社製 “#250” (製造方法:湿式粉砕法、平均粒子径22μm、真球度0.21)
(C)板状充填材
(C-1)ヤマグチマイカ (株) 社製 “マイカ A-21”(数平均粒子径 22μm)
(C-2)ヤマグチマイカ (株) 社製 “マイカ A-41s”(数平均粒子径 47μm)
(D)繊維状充填材
(D-1)日本電気硝子(株)社製“ミルドファイバー EPG70M-01N”(数平均繊維長 70μm)。
スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44、空間部容積(V)1590cm3)を用いて液晶性ポリエステル樹脂(A)を表1に示す配合量でホッパーから投入し、球状シリカ(B)を液晶ポリエステル樹脂組成物の合計100重量部に対して表1に示す配合量で中間供給口から投入した。シリンダ温度を液晶ポリエステル樹脂(A)の融点+10℃に設定し、溶融混練して液晶性ポリエステル樹脂組成物のペレットを得た。
組成、球状シリカを表2に示すとおり変更した以外は実施例1~11と同様にして、発塵性、Izod衝撃強度、曲げたわみを評価した。表2にその結果を示す。
Claims (6)
- (A)液晶性ポリエステル樹脂100重量部に、(B)平均粒子径15μm以上30μm未満の球状シリカを20~45重量部含有することを特徴とするカメラモジュール用液晶性ポリエステル樹脂組成物。
- (C)平均粒子径が10~50μmの板状充填材および/または(D)平均繊維長が30~300μmの繊維状充填材を更に含有することを特徴とする請求項1に記載のカメラモジュール用液晶性ポリエステル樹脂組成物。
- 前記(B)球状シリカが、真球度が0.85以上である球状シリカであることを特徴とする請求項1から3のいずれかに記載のカメラモジュール用液晶性ポリエステル樹脂組成物。
- 請求項1~4のいずれかに記載のカメラモジュール用樹脂組成物からなるカメラモジュール用成形品。
- 請求項5に記載のカメラモジュール用成形品からなるカメラモジュール。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016565363A JP6693423B2 (ja) | 2015-10-30 | 2016-10-17 | カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品 |
US15/771,270 US10654970B2 (en) | 2015-10-30 | 2016-10-17 | Camera module-use liquid crystalline polyester resin composition and camera module-use molded product formed thereof |
EP16859617.9A EP3369774B1 (en) | 2015-10-30 | 2016-10-17 | Camera module-use liquid crystalline polyester resin composition and camera module-use molded product formed thereof |
KR1020187013826A KR20180077187A (ko) | 2015-10-30 | 2016-10-17 | 카메라 모듈용 액정성 폴리에스테르 수지 조성물 및 그것으로 이루어지는 카메라 모듈용 성형품 |
CN201680058618.0A CN108137907B (zh) | 2015-10-30 | 2016-10-17 | 照相机组件用液晶性聚酯树脂组合物及由其形成的照相机组件用成型品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-214364 | 2015-10-30 | ||
JP2015214364 | 2015-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017073387A1 true WO2017073387A1 (ja) | 2017-05-04 |
Family
ID=58630094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080669 WO2017073387A1 (ja) | 2015-10-30 | 2016-10-17 | カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10654970B2 (ja) |
EP (1) | EP3369774B1 (ja) |
JP (1) | JP6693423B2 (ja) |
KR (1) | KR20180077187A (ja) |
CN (1) | CN108137907B (ja) |
TW (1) | TW201728669A (ja) |
WO (1) | WO2017073387A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102627886B1 (ko) | 2017-12-05 | 2024-01-19 | 티코나 엘엘씨 | 카메라 모듈에 사용하기 위한 방향족 중합체 조성물 |
US11722759B2 (en) | 2019-03-20 | 2023-08-08 | Ticona Llc | Actuator assembly for a camera module |
US11086200B2 (en) | 2019-03-20 | 2021-08-10 | Ticona Llc | Polymer composition for use in a camera module |
WO2021120113A1 (en) * | 2019-12-19 | 2021-06-24 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Lens driving device, camera device, and electronic apparatus |
WO2021120109A1 (en) * | 2019-12-19 | 2021-06-24 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Lens driving device, camera device, and electronic apparatus |
WO2022004553A1 (ja) * | 2020-06-30 | 2022-01-06 | ポリプラスチックス株式会社 | 耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000080289A (ja) * | 1998-09-07 | 2000-03-21 | Toray Ind Inc | 液晶性樹脂組成物 |
JP2006299254A (ja) * | 2005-03-24 | 2006-11-02 | Toray Ind Inc | 液晶性樹脂組成物からなるフィルムおよびその製造方法 |
JP2007138143A (ja) * | 2005-10-21 | 2007-06-07 | Toray Ind Inc | 液晶性樹脂組成物およびその製造方法 |
JP2011068831A (ja) * | 2009-09-28 | 2011-04-07 | Jx Nippon Oil & Energy Corp | 液晶ポリエステル樹脂組成物 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000336185A (ja) * | 1999-06-01 | 2000-12-05 | Teijin Ltd | スタンピングホイルベース用二軸配向ポリエステルフィルム |
JP2010100756A (ja) * | 2008-10-24 | 2010-05-06 | Teijin Fibers Ltd | ポリエステル組成物及びボトル |
JP5290702B2 (ja) * | 2008-10-28 | 2013-09-18 | 帝人株式会社 | ポリエステル組成物及びボトル |
JP2010106165A (ja) | 2008-10-30 | 2010-05-13 | Polyplastics Co | 射出成形用液晶性樹脂組成物、当該樹脂組成物を成形してなる成形体、および当該成形体からなるカメラモジュール |
JP2011063699A (ja) * | 2009-09-16 | 2011-03-31 | Jx Nippon Oil & Energy Corp | 液晶ポリエステル樹脂組成物の成形方法および成形体 |
JP5197553B2 (ja) * | 2009-11-20 | 2013-05-15 | 住友化学株式会社 | 液晶性樹脂組成物及びその成形体 |
JP5695389B2 (ja) * | 2010-10-15 | 2015-04-01 | Jx日鉱日石エネルギー株式会社 | 液晶ポリエステル樹脂組成物及びカメラモジュール部品 |
JP5633338B2 (ja) * | 2010-11-30 | 2014-12-03 | 住友化学株式会社 | 液晶ポリエステル組成物 |
US9085672B2 (en) * | 2011-04-06 | 2015-07-21 | Toray Industries, Inc. | Liquid crystalline polyester composition and metal composite molded product using the same |
TWI576378B (zh) * | 2012-02-29 | 2017-04-01 | Toray Industries | 液晶聚酯樹脂組成物 |
EP3029107B1 (en) * | 2013-07-31 | 2019-03-13 | Sumitomo Chemical Company, Limited | Liquid crystal polyester composition |
-
2016
- 2016-10-17 WO PCT/JP2016/080669 patent/WO2017073387A1/ja active Application Filing
- 2016-10-17 US US15/771,270 patent/US10654970B2/en active Active
- 2016-10-17 KR KR1020187013826A patent/KR20180077187A/ko unknown
- 2016-10-17 EP EP16859617.9A patent/EP3369774B1/en active Active
- 2016-10-17 JP JP2016565363A patent/JP6693423B2/ja active Active
- 2016-10-17 CN CN201680058618.0A patent/CN108137907B/zh active Active
- 2016-10-27 TW TW105134750A patent/TW201728669A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000080289A (ja) * | 1998-09-07 | 2000-03-21 | Toray Ind Inc | 液晶性樹脂組成物 |
JP2006299254A (ja) * | 2005-03-24 | 2006-11-02 | Toray Ind Inc | 液晶性樹脂組成物からなるフィルムおよびその製造方法 |
JP2007138143A (ja) * | 2005-10-21 | 2007-06-07 | Toray Ind Inc | 液晶性樹脂組成物およびその製造方法 |
JP2011068831A (ja) * | 2009-09-28 | 2011-04-07 | Jx Nippon Oil & Energy Corp | 液晶ポリエステル樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
CN108137907A (zh) | 2018-06-08 |
EP3369774A1 (en) | 2018-09-05 |
EP3369774B1 (en) | 2020-05-13 |
US20180334534A1 (en) | 2018-11-22 |
CN108137907B (zh) | 2020-05-19 |
EP3369774A4 (en) | 2019-07-03 |
JP6693423B2 (ja) | 2020-05-13 |
TW201728669A (zh) | 2017-08-16 |
JPWO2017073387A1 (ja) | 2018-08-16 |
KR20180077187A (ko) | 2018-07-06 |
US10654970B2 (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6693423B2 (ja) | カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品 | |
JP2009263640A (ja) | 熱伝導性樹脂組成物及びその用途 | |
JP5541330B2 (ja) | 液晶性樹脂組成物およびそれからなる成形品 | |
JP6762228B2 (ja) | カメラモジュール用液晶性樹脂組成物及びそれを用いたカメラモジュール | |
JP5087958B2 (ja) | 液晶性樹脂組成物からなる成形品 | |
JP2012087171A (ja) | 液晶ポリエステル樹脂組成物及びカメラモジュール部品 | |
US8262933B2 (en) | Thermoplastic resin composition, method for producing the same, and molded article obtained from the same | |
WO2011033892A1 (ja) | 液晶ポリエステル樹脂組成物の成形方法および成形体 | |
JP2018016754A (ja) | 液晶ポリマー組成物 | |
JP2007320996A (ja) | 液晶性樹脂組成物、およびそれからなる成形品 | |
JP2012021147A (ja) | 液晶性ポリエステル樹脂組成物及びそれからなるコネクター | |
JP2007254716A (ja) | 液晶性樹脂組成物およびそれからなる成形品 | |
JP2009179763A (ja) | 液晶性樹脂組成物、その製造方法および成形品 | |
JP2015021063A (ja) | 液晶ポリエステル樹脂組成物 | |
JP2000281885A (ja) | 帯電防止用途向け液晶性樹脂組成物 | |
JP3111471B2 (ja) | 液晶性ポリマ樹脂組成物 | |
JP2010220997A (ja) | 人工羽根 | |
JP2011074301A (ja) | 液晶性ポリエステル樹脂組成物 | |
JP4887645B2 (ja) | 液晶性樹脂組成物およびそれからなる成形品 | |
JPH04213354A (ja) | 液晶ポリエステル樹脂組成物 | |
US20240059861A1 (en) | Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and method for producing injection molded article | |
JP2010202785A (ja) | 液晶性ポリエステル樹脂組成物 | |
JP2005200495A (ja) | 接着用液晶性樹脂組成物およびそれからなる成形品 | |
JP3033226B2 (ja) | 難燃性耐熱樹脂組成物 | |
JPH0967575A (ja) | 液晶性ポリエステル樹脂組成物及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016565363 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16859617 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15771270 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187013826 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016859617 Country of ref document: EP |