WO2017073387A1 - カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品 - Google Patents

カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品 Download PDF

Info

Publication number
WO2017073387A1
WO2017073387A1 PCT/JP2016/080669 JP2016080669W WO2017073387A1 WO 2017073387 A1 WO2017073387 A1 WO 2017073387A1 JP 2016080669 W JP2016080669 W JP 2016080669W WO 2017073387 A1 WO2017073387 A1 WO 2017073387A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
crystalline polyester
polyester resin
camera module
resin composition
Prior art date
Application number
PCT/JP2016/080669
Other languages
English (en)
French (fr)
Inventor
松原知史
嶋田剛士
立川浩司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016565363A priority Critical patent/JP6693423B2/ja
Priority to US15/771,270 priority patent/US10654970B2/en
Priority to EP16859617.9A priority patent/EP3369774B1/en
Priority to KR1020187013826A priority patent/KR20180077187A/ko
Priority to CN201680058618.0A priority patent/CN108137907B/zh
Publication of WO2017073387A1 publication Critical patent/WO2017073387A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K2003/343Peroxyhydrates, peroxyacids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/521Inorganic solid particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to a liquid crystalline polyester resin composition for a camera module which is excellent in low dust generation, toughness and impact strength, and a molded product for a camera module comprising the same.
  • liquid crystalline resins having optical anisotropy characterized by parallel arrangement of molecular chains are attracting attention because of their excellent fluidity, heat resistance, mechanical properties, and dimensional stability. Used for molded products.
  • Patent Document 1 discloses a liquid crystalline polyester for ultrasonic cleaning of dust attached to a component having a lens holding part such as a camera module by blending silica having an average particle size of 5 ⁇ m or less with a liquid crystalline polyester resin. It suppresses dust generation due to fibrillation on the surface of resin parts.
  • An object of the present invention is to obtain a liquid crystalline resin composition for a camera module that is excellent in low dust generation, toughness, and impact strength, and a molded product for a camera module comprising the same.
  • liquid crystal polyester resin is a liquid crystal for a camera module that is excellent in dust generation, toughness, and impact strength by blending a specific amount of spherical silica with a specific particle diameter.
  • the present inventors have found that a functional resin composition can be obtained and have reached the present invention.
  • a liquid crystalline polyester resin composition for a camera module comprising (B) 20 to 45 parts by weight of spherical silica having an average particle diameter of 15 ⁇ m or more and less than 30 ⁇ m in 100 parts by weight of a liquid crystalline polyester resin.
  • the present invention includes a molded product for a camera module comprising the liquid crystalline polyester resin composition for a camera module described above.
  • the present invention includes a camera module made of the molded product for a camera module described above.
  • liquid crystalline polyester resin composition of the present invention it is possible to obtain a liquid crystalline resin composition for a camera module that is excellent in low dust generation, toughness, and impact strength, and a molded product for a camera module comprising the same.
  • the molded product for a camera module of the present invention can be suitably used for a camera module component.
  • the liquid crystalline polyester resin composition for a camera module comprises (B) 20 to 45 parts by weight of spherical silica having an average particle size of 15 ⁇ m or more and less than 30 ⁇ m with respect to 100 parts by weight of (A) liquid crystalline polyester resin. contains.
  • the (A) liquid crystalline polyester resin of the present invention comprises, for example, a structural unit selected from aromatic oxycarbonyl units, aromatic and / or aliphatic dioxy units, aromatic and / or aliphatic dicarbonyl units, and the like. It is a liquid crystalline polyester resin that forms an anisotropic molten phase.
  • aromatic oxycarbonyl unit examples include structural units formed from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid and the like, and p-hydroxybenzoic acid is preferable.
  • aromatic and / or aliphatic dioxy units include 4,4′-dihydroxybiphenyl, hydroquinone, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, t-butylhydroquinone, Phenylhydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane and 4,4′-dihydroxydiphenyl ether, ethylene glycol, 1,3-propylene glycol, 1, Examples thereof include structural units formed from 4-butanediol, and 4,4′-dihydroxybiphenyl and hydroquinone are preferred.
  • aromatic and / or aliphatic dicarbonyl units include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-4, Examples include structural units formed from 4′-dicarboxylic acid, 1,2-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, adipic acid, sebacic acid, and the like. Terephthalic acid and isophthalic acid are preferred.
  • liquid crystalline polyester resin examples include a liquid crystalline polyester resin composed of a structural unit formed from p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, a structural unit formed from p-hydroxybenzoic acid, and 6-hydroxy.
  • Liquid crystalline polyester resin comprising a structural unit produced from an aliphatic dicarboxylic acid, a structural unit produced from p-hydroxybenzoic acid, a structural unit produced from ethylene glycol, a liquid crystal comprising a structural unit produced from terephthalic acid and / or isophthalic acid Polyester resin, structural unit formed from p-hydroxybenzoic acid, structural unit formed from ethylene glycol, structural unit formed from 4,4′-dihydroxybiphenyl, aliphatic such as terephthalic acid and / or adipic acid, sebacic acid, etc.
  • dicarboxylic Liquid crystalline polyester resin composed of structural units, structural units generated from p-hydroxybenzoic acid, structural units generated from ethylene glycol, structural units generated from aromatic dihydroxy compounds, terephthalic acid, isophthalic acid, 2,6-naphthalene
  • a liquid crystalline polyester resin comprising a structural unit produced from an aromatic dicarboxylic acid such as dicarboxylic acid, a structural unit produced from 6-hydroxy-2-naphthoic acid, a structural unit produced from 4,4′-dihydroxybiphenyl, 2,6 -Liquid crystalline polyester resins composed of structural units formed from naphthalenedicarboxylic acid.
  • liquid crystalline polyester resins composed of the following structural units (I), (II), (III), (IV) and (V) are preferable from the viewpoint of low dust generation. This is because such a liquid crystalline polyester resin has a large number of copolymerized units, so that the liquid crystallinity is lowered and fibrillation which is a characteristic of the liquid crystalline polyester resin is hardly caused.
  • the structural unit (I) is a structural unit generated from p-hydroxybenzoic acid
  • the structural unit (II) is a structural unit generated from 4,4′-dihydroxybiphenyl
  • the structural unit (III) is a structure generated from hydroquinone.
  • the structural unit (IV) represents a structural unit generated from terephthalic acid
  • the structural unit (V) represents a structural unit generated from isophthalic acid.
  • the structural unit (I) is preferably 65 to 80 mol% with respect to the total of the structural units (I), (II) and (III). Since the amount of generated gas decreases, the lower limit is more preferably 68 mol% or more, and the upper limit is more preferably 78 mol% or less from the viewpoint of toughness.
  • the structural unit (II) is preferably 55 to 85 mol% with respect to the total of the structural units (II) and (III).
  • the lower limit is more preferably 55 mol% or more, most preferably 58 mol% or more, and the upper limit is more preferably 78 mol% or less from the viewpoint of toughness, most preferably. It is 73 mol% or less.
  • the structural unit (IV) is preferably 50 to 95 mol% with respect to the total of the structural units (IV) and (V).
  • the lower limit is more preferably 55 mol% or more, most preferably 60 mol% or more, and the upper limit is more preferably 90 mol% or less from the viewpoint of toughness, Most preferably, it is 85 mol% or less.
  • the total of the structural units (II) and (III) and the total of (IV) and (V) are preferably substantially equimolar.
  • substantially equimolar means that the structural unit constituting the polymer main chain excluding the terminal is equimolar, and when including up to the structural unit constituting the terminal, it is not necessarily equivalent. Not exclusively. An excess of dicarboxylic acid component or dihydroxy component may be added to adjust the end groups of the polymer.
  • the content of each structural unit in the (A) liquid crystalline polyester resin can be calculated by the following treatment. That is, the liquid crystalline polyester resin is weighed into an NMR (nuclear magnetic resonance) test tube, dissolved in a solvent in which the liquid crystalline polyester resin is soluble (for example, a pentafluorophenol / heavy tetrachloroethane-d 2 mixed solvent), and 1 The H-NMR spectrum is measured. The content of each structural unit can be calculated from the peak area ratio derived from each structural unit.
  • the melting point of the liquid crystalline polyester resin in the present invention is preferably 300 to 350 ° C. from the viewpoint of processability and fluidity, and the lower limit thereof is more preferably 310 ° C. or more, and particularly preferably 320 ° C. or more from the viewpoint of processability. Further, from the viewpoint of fluidity, the upper limit is more preferably 340 ° C. or less, and particularly preferably 330 ° C. or less. Such a melting point is preferable because generation of decomposition gas during processing can be suppressed and fluidity can be sufficiently exhibited.
  • the melting point (Tm) of the (A) liquid crystalline polyester resin of the present invention can be measured by the following method. In differential calorimetry, after observing the endothermic peak temperature (Tm 1 ) observed when the liquid crystalline polyester resin was measured at room temperature to 40 ° C./min, it was held at a temperature of Tm 1 + 20 ° C. for 5 minutes. Then, it was once cooled to room temperature under a temperature drop condition of 20 ° C./min, and the endothermic peak temperature (Tm 2 ) observed when measured again under a temperature rise condition of 20 ° C./min was defined as the melting point (Tm).
  • the melt viscosity of the liquid crystalline polyester resin in the present invention is preferably 1 to 100 Pa ⁇ s, and the lower limit thereof is more preferably 3 Pa ⁇ s or more, particularly preferably 5 Pa ⁇ s or more, from the viewpoint of workability.
  • the upper limit is more preferably 50 Pa ⁇ s or less, and particularly preferably 30 Pa ⁇ s or less.
  • the melt viscosity is a value measured with a Koka flow tester under the condition of the melting point of the liquid crystalline polyester resin + 10 ° C. and the shear rate of 1,000 / s.
  • the (A) liquid crystalline polyester resin of the present invention can be obtained by a known polycondensation method of polyester.
  • the following production method is preferable.
  • a predetermined amount of diphenyl carbonate is reacted with p-hydroxybenzoic acid and aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid to form diphenyl esters, respectively, and then aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
  • aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid
  • aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
  • a melt polymerization method in which the polycondensation reaction is completed by reacting under reduced pressure at a temperature at which the liquid crystalline polyester resin melts is preferable.
  • a reaction vessel having a predetermined amount of p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl, hydroquinone, terephthalic acid, isophthalic acid, and acetic anhydride with a stirring blade, a distillation pipe, and a discharge port at the bottom. And heating with stirring in a nitrogen gas atmosphere to acetylate the hydroxyl group, then raising the temperature to the melting temperature of the liquid crystalline polyester resin, and polycondensation under reduced pressure to complete the reaction.
  • the obtained polymer is pressurized to, for example, approximately 1.0 kg / cm 2 (0.1 MPa) inside the reaction vessel at a temperature at which it melts, and discharged in a strand form from the discharge port provided at the lower part of the reaction vessel.
  • the melt polymerization method is an advantageous method for producing a uniform polymer, and an excellent polymer with less gas generation can be obtained, which is preferable.
  • the polycondensation reaction of the liquid crystalline polyester resin proceeds even without catalyst, but metal compounds such as stannous acetate, tetrabutyl titanate, potassium acetate, sodium acetate, antimony trioxide, and metal magnesium can also be used.
  • the (B) spherical silica of the present invention is a silica particle having a sphericity of 0.60 or more and a primary particle having a spherical shape, and has a sphericity of 0.00 from the viewpoint of high filling into the resin and dispersibility. 85 or more are preferable, More preferably, it is 0.90 or more, More preferably, it is 0.92 or more.
  • the sphericity was measured by weighing 100 mg of silica, dispersing it in water, and using an image processing apparatus (Sysmex Corporation: FPIA-3000), the area measured from a two-dimensional image of 1000 particles randomly extracted. And the average value of the perimeters can be obtained by the above formula.
  • the average particle diameter of the (B) spherical silica of the present invention must be 15 ⁇ m or more and less than 30 ⁇ m in order to exhibit the low dust generation, toughness and impact strength that are the effects of the present invention.
  • a molded product is molded using a resin composition containing (B) spherical silica having an average particle size of 15 ⁇ m or more and less than 30 ⁇ m, the liquid crystalline polyester resin is in a state where the orientation is suppressed by (B) spherical silica. Since a molded product having a small surface roughness is obtained, a specific low dusting effect can be obtained.
  • the average particle diameter of the spherical silica is preferably 15 ⁇ m or more and 25 ⁇ m or less, more preferably 15 ⁇ m or more and 20 ⁇ m or less, from the viewpoint of the surface smoothness of the molded product and the dispersibility of the spherical silica in the resin.
  • it is smaller than 15 ⁇ m, the effect of suppressing the orientation of the liquid crystalline polyester resin is not sufficient, and the low dust generation effect due to suppression of fibrillation cannot be obtained.
  • the thickness is 30 ⁇ m or more, the surface smoothness is remarkably lowered, unevenness due to shrinkage unevenness is formed on the surface, and dust generation due to sliding deteriorates.
  • the average particle diameter is the number average particle diameter and can be measured by a laser diffraction / scattering particle size distribution meter.
  • the spherical silica used in the present invention has no change in shape and average particle diameter before and after melt kneading into the resin composition. Therefore, it may be considered that the shape and average particle diameter when the spherical silica characteristics before kneading in the resin composition are measured are also included in the resin composition.
  • the content of the (B) spherical silica of the present invention is 20 to 45 weights in order to exhibit the low dust generation, toughness and impact strength, which are the effects of the present invention, with respect to 100 parts by weight of the (A) liquid crystalline polyester resin.
  • Part is essential, and is preferably 25 parts by weight or more from the viewpoint of high toughness, and preferably 35 parts by weight or less from the viewpoint of low dust generation. If it is less than 20 parts by weight, the effect of suppressing the fibrillation of the spherical silica with respect to the liquid crystalline resin is not sufficient, and low dust generation cannot be obtained.
  • the method for producing the (B) spherical silica of the present invention is not particularly limited, but a melting method in which crystal-pulverized silica is melted and spheroidized by surface tension is preferable. This method is preferable because it can produce spherical silica having a particle diameter capable of specifically expressing low dust generation, toughness and impact strength when blended with the liquid crystalline polyester resin, which is the effect found by the present invention. .
  • FEB75A Alignchs Co., Ltd.
  • FB-950 Electrochemical Industry Co., Ltd.
  • the liquid crystalline polyester resin composition for a camera module of the present invention has a fibrous filler and a filler other than the fibrous filler (plate-like, granular, spherical (excluding spherical silica) within a range not impairing the object of the present invention. ), Hollow spheres) and (C) a plate-like filler having an average particle diameter of 10 to 50 ⁇ m and / or (D) a fibrous filler having an average fiber length of 30 to 300 ⁇ m. preferable.
  • plate-like filler for example, plate-like inorganic fillers such as mica, talc, graphite, and clay can be used, and talc and mica are preferable. Particularly, mica is used because surface smoothness and surface hardness are improved. preferable.
  • the average particle diameter of the plate-like filler is preferably 10 to 50 ⁇ m, but the lower limit is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more from the viewpoint of dispersibility. Also about an upper limit, from a viewpoint of the surface smoothness of a composition, 45 micrometers or less are preferable, More preferably, it is 40 micrometers or less, Especially preferably, it is 30 micrometers or less. Among them, the range of 20 to 30 ⁇ m or less is preferable because the plate-like filler is uniformly dispersed in the resin composition and the surface smoothness is particularly improved.
  • the average particle size of the plate-like filler is the number average particle size.
  • the ash content obtained by ashing the resin composition is observed with a scanning electron microscope, and a plate of 50 plate-like filler particles arbitrarily selected. The major axis of the part can be measured to determine the number average particle size.
  • Examples of the fibrous filler include glass fiber, carbon fiber, aromatic polyamide fiber, potassium titanate fiber, gypsum fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, boron whisker fiber, asbestos fiber, and straw.
  • Stenite, titanium oxide fiber, calcium carbonate fiber, basalt fiber and the like can be used, and glass fiber and wollastonite are preferable, and glass fiber is preferable because impact strength is particularly improved.
  • the average fiber length of the fibrous filler is preferably 30 to 300 ⁇ m, and if the fiber length exceeds 300 ⁇ m, there is an increased risk of dust generation due to fiber detachment, so the average fiber length should not exceed 300 ⁇ m. Is preferred. More preferably, from the viewpoint of impact strength, the lower limit is 35 ⁇ m or more, and more preferably 40 ⁇ m or more. The upper limit is preferably 150 ⁇ m or less, more preferably 80 ⁇ m or less, from the viewpoint of low dust generation.
  • the average fiber length of the fibrous filler is the number average fiber length. For example, the ash content obtained by ashing the resin composition is observed with an optical microscope, and the fiber length of 500 arbitrarily selected fibrous fillers is measured. Then, the number average fiber length can be obtained.
  • the plate-like filler and (D) the fibrous filler may be used in combination.
  • the content of (C) plate-like filler and / or (D) fibrous filler is preferably 1 to 25 parts by weight with respect to 100 parts by weight of (A) liquid crystalline polyester resin, from the viewpoint of impact strength.
  • the lower limit is more preferably 2 parts by weight or more, and still more preferably 3 parts by weight or more.
  • the upper limit is also preferably 15 parts by weight or less, and more preferably 10 parts by weight or less from the viewpoint of dust generation.
  • antioxidants and heat stabilizers for example, hindered phenols, hydroquinones, phosphites, and substituted products thereof
  • ultraviolet absorbers for example, resorcinol, salicylate, benzotriazole
  • mold release agents such as montanic acid and its salts, its esters, their half esters, stearyl alcohol, stearamide and polyethylene wax
  • dyes such as nigrosine
  • pigments such as cadmium sulfide, phthalocyanine, carbon black
  • Containing colorants, plasticizers, flame retardants, flame retardant aids, antistatic agents, and other conventional additives and other thermoplastic resins (fluorine resins, etc.) can be added to impart predetermined characteristics. it can.
  • the liquid crystal polyester resin composition for a camera module of the present invention is preferably produced by melt kneading, and a known method can be used for melt kneading.
  • a Banbury mixer, a rubber roll machine, a kneader, a single screw or twin screw extruder can be used.
  • the liquid crystalline polyester resin composition of the present invention needs to control the number average length of the fibrous filler, it is preferable to use an extruder, and more preferably to use a twin screw extruder. It is particularly preferable to use a twin screw extruder having an intermediate addition port.
  • the higher fatty acid metal salt is preferably blended into the pellets after melt-kneading extrusion.
  • the moldability can be dramatically improved.
  • a tumbler mixer, a ribbon blender or the like is used for blending the higher aliphatic metal salt and the pellet.
  • the higher fatty acid metal salt may be melt-kneaded in a twin screw extruder together with a liquid crystalline resin and other additives.
  • the liquid crystalline polyester resin composition for a camera module of the present invention is molded into various molded products by a known molding method, and injection molding is preferred.
  • injection molding a liquid crystal polyester resin forms a skin layer in a state in which the orientation is suppressed by spherical silica having a specific particle size blended in a specific amount, and a surface with low roughness is obtained, resulting in low dust generation A specific effect can be obtained.
  • the molded product thus obtained is excellent in low dust generation, toughness, and impact strength, and thus can be suitably used for optical equipment parts, and further suitable for parts having a lens holding portion, particularly for camera modules. Preferably used.
  • the evaluation method for each characteristic is as follows.
  • composition analysis liquid crystalline polyester resin of the liquid crystalline polyester resin was carried out by 1 H- nuclear magnetic resonance spectrum (1 H-NMR) measurement.
  • Tm Melting point
  • the polymerization temperature was maintained at 320 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued for 90 minutes, and the polycondensation was completed when the torque reached 15 kg ⁇ cm.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a base having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a liquid crystalline polyester resin (A-1) was obtained.
  • This liquid crystalline polyester resin (A-1) comprises the structural formula (I), the structural formula (II), the structural formula (III), the structural formula (IV), and the structural formula (V).
  • 70 mol% based on the sum of structural formula (I), structural formula (II) and structural formula (III), and structural formula (II) is 70 based on the total of structural formula (II) and structural formula (III) units.
  • Mol%, and the structural formula (IV) is 65 mol% with respect to the sum of the structural formula (IV) and the structural formula (V).
  • the total of structural formula (II) and structural formula (III) is 23 mol% with respect to all structural units, and the total of structural formula (IV) and structural formula (V) is 23 mol with respect to all structural units. %Met.
  • the melting point (Tm) of the liquid crystalline polyester resin (A-1) was 314 ° C.
  • the melt viscosity measured at a temperature of 324 ° C. and a shear rate of 1,000 / s was 20 Pa ⁇ s.
  • This liquid crystal polyester resin contains 80.0 mol% of p-oxybenzoate units, 10.8 mol% of 4,4′-dioxybiphenyl units, 9.2 mol% of ethylenedioxy units, and 20.0 mol% of terephthalate units. And melting point (Tm) was 326 ° C. Using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm), the melt viscosity measured at a temperature of 335 ° C. and a shear rate of 1,000 / s was 13 Pa ⁇ s.
  • B-1 “FEB75A” manufactured by Admatechs Co., Ltd.
  • B-2 “SO-C2” manufactured by Admatechs Co., Ltd.
  • B-3 “HS-103” manufactured by Nippon Steel & Sumikin Materials Co., Ltd.
  • B-4 “FB-12D” manufactured by Denki Kagaku Kogyo Co., Ltd.
  • C Plate-like filler (C-1) “Mica A-21” manufactured by Yamaguchi Mica Co., Ltd. (number average particle size 22 ⁇ m) (C-2) “Mica A-41s” manufactured by Yamaguchi Mica Co., Ltd. (number average particle diameter 47 ⁇ m)
  • D Fibrous filler (D-1) “Milled fiber EPG70M-01N” (number average fiber length 70 ⁇ m) manufactured by Nippon Electric Glass Co., Ltd.
  • Examples 1 to 11 Using a twin-screw extruder with a screw diameter of 44 mm and a rotating fan in the same direction (manufactured by Nippon Steel Works, TEX-44, space volume (V) 1590 cm 3 ), the liquid crystalline polyester resin (A) is blended in the amounts shown in Table 1. It injected from the hopper, and spherical silica (B) was supplied from the intermediate supply port in the compounding amount shown in Table 1 with respect to 100 parts by weight of the total liquid crystal polyester resin composition. Cylinder temperature was set to melting
  • the obtained pellets were dried with hot air, and the dust generation property, Izod impact strength, and bending deflection were evaluated by the above methods. Table 1 shows the results.
  • liquid crystalline resin composition for a camera module that is excellent in low dust generation, toughness, impact strength, and high toughness, and a molded product for a camera module comprising the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Optics & Photonics (AREA)

Abstract

(A)液晶性ポリエステル樹脂100重量部に、(B)平均粒子径15μm以上30μm未満の球状シリカを20~45重量部含有することを特徴とするカメラモジュール用液晶性ポリエステル樹脂組成物。発塵性、靱性および衝撃強度に優れたカメラモジュールを得ることのできるポリアミド樹脂組成物を提供する。

Description

カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品
 本発明は低発塵性、靭性および衝撃強度に優れるカメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品に関する。
 近年、プラスチックの高性能化に対する要求がますます高まり、種々の新規性能を有する樹脂が数多く開発され、市場に供されている。中でも、分子鎖の平行な配列を特徴とする光学異方性を有する液晶性樹脂が、優れた流動性、耐熱性、機械的性質、寸法安定性を有する点で注目され、微細コネクタなどの精密成形品に使用されるようになっている。
 特にカメラモジュールのような光学レンズを保持するような部品において、液晶性樹脂組成物の寸法安定性や流動性を生かしてより小型化や精度向上を進めたいニーズがあり、検討が行われている(例えば、特許文献1)。特許文献1は、液晶性ポリエステル樹脂に平均粒子径が5μm以下のシリカを配合することで、カメラモジュールなどのレンズ保持部がある部品において、部品についているゴミを超音波洗浄する際の液晶性ポリエステル樹脂部品表面のフィブリル化による発塵を抑制するものである。
特開2010-106165号公報
 近年、カメラモジュール部品はズームやピント調節、手振れ防止などの駆動機構の付与が進んでおり、部品同士が摺動する場合や、衝撃衝突する場合がある。その摺動や衝撃衝突により部品表面からパーティクルが離脱して発塵することが課題になってきている。しかし、特許文献1に記載の方法では発塵抑制が充分ではない。また、部品表面からのパーティクル離脱による発塵という課題を解決するためにナイロン樹脂などのより靭性が高く摺動性や衝撃耐性が高い樹脂へと切り替える動きもあるが、ナイロン樹脂は吸水による寸法変化が大きい点が課題であった。本発明は、低発塵性、靭性、および衝撃強度に優れるカメラモジュール用液晶性樹脂組成物、およびそれからなるカメラモジュール用成形品を得ることを課題とする。
 本発明者らは上記課題を解決すべく鋭意検討した結果、液晶ポリエステル樹脂に特定粒子径の球状シリカを特定量配合することで発塵性、靭性、および衝撃強度に優れたカメラモジュール用の液晶性樹脂組成物が得られることを見出し、本発明に到達した。
 即ち、本発明は上述の課題を解決させるためになされたものであり、本発明の実施形態は、以下に挙げる構成の少なくとも一部を含み得る。
(A)液晶性ポリエステル樹脂100重量部に、(B)平均粒子径15μm以上30μm未満の球状シリカを20~45重量部含有することを特徴とするカメラモジュール用液晶性ポリエステル樹脂組成物。
 本発明は、上記記載のカメラモジュール用液晶性ポリエステル樹脂組成物からなるカメラモジュール用成形品を含む。
 本発明は、上記記載のカメラモジュール用成形品からなるカメラモジュールを含む。
 本発明の液晶性ポリエステル樹脂組成物によれば、低発塵性、靭性、および衝撃強度に優れるカメラモジュール用液晶性樹脂組成物、およびそれからなるカメラモジュール用成形品を得ることができる。本発明のカメラモジュール用成形品は、カメラモジュール部品に好適に用いることができる。
 以下、本発明を詳細に説明する。
 本発明の実施形態のカメラモジュール用液晶性ポリエステル樹脂組成物は、(A)液晶性ポリエステル樹脂100重量部に対して、(B)平均粒子径15μm以上30μm未満の球状シリカを20~45重量部含有する。
 本発明の(A)液晶性ポリエステル樹脂は、例えば芳香族オキシカルボニル単位、芳香族および/または脂肪族ジオキシ単位、芳香族および/または脂肪族ジカルボニル単位などから選ばれた構造単位からなり、かつ異方性溶融相を形成する液晶性ポリエステル樹脂である。
 芳香族オキシカルボニル単位としては、例えば、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸などから生成した構造単位が挙げられ、p-ヒドロキシ安息香酸が好ましい。芳香族および/または脂肪族ジオキシ単位としては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、t-ブチルハイドロキノン、フェニルハイドロキノン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,2-ビス(4-ヒドロキシフェニル)プロパンおよび4,4’-ジヒドロキシジフェニルエーテル、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオールなどから生成した構造単位が挙げられ、4,4’-ジヒドロキシビフェニル、ハイドロキノンが好ましい。芳香族および/または脂肪族ジカルボニル単位としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、アジピン酸、セバシン酸などから生成した構造単位が挙げられ、テレフタル酸、イソフタル酸が好ましい。
 液晶性ポリエステル樹脂の具体例としては、p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、6-ヒドロキシ-2-ナフトエ酸から生成した構造単位、芳香族ジヒドロキシ化合物から生成した構造単位、芳香族ジカルボン酸および/または脂肪族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸および/またはアジピン酸、セバシン酸等の脂肪族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、ハイドロキノンから生成した構造単位、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸および/またはアジピン酸、セバシン酸等の脂肪族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、テレフタル酸および/またはイソフタル酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、テレフタル酸および/またはアジピン酸、セバシン酸等の脂肪族ジカルボンから生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、芳香族ジヒドロキシ化合物から生成した構造単位、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂、6-ヒドロキシ-2-ナフトエ酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、2,6-ナフタレンジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂などが挙げられる。
 これら液晶性ポリエステル樹脂の中でも、下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂は、低発塵性の観点から好ましい。このような液晶性ポリエステル樹脂は、共重合単位が多いため液晶性が低くなり、液晶性ポリエステル樹脂の特性であるフィブリル化を起こしにくいためである。
Figure JPOXMLDOC01-appb-C000002
 上記構造単位(I)はp-ヒドロキシ安息香酸から生成した構造単位を、構造単位(II)は4,4’-ジヒドロキシビフェニルから生成した構造単位を、構造単位(III)はハイドロキノンから生成した構造単位を、構造単位(IV)はテレフタル酸から生成した構造単位を、構造単位(V)はイソフタル酸から生成した構造単位を各々示す。
 構造単位(I)は、構造単位(I)、(II)および(III)の合計に対して65~80モル%が好ましい。発生ガス量が低下することから、その下限値は68モル%以上がより好ましく、靭性の観点から上限値は78モル%以下がより好ましい。
 また、構造単位(II)は、構造単位(II)および(III)の合計に対して55~85モル%が好ましい。特に発生ガス量が低下することから、その下限値は55モル%以上がより好ましく、最も好ましくは58モル%以上であり、靭性の観点から上限値は78モル%以下がより好ましく、最も好ましくは73モル%以下である。
 また、構造単位(IV)は、構造単位(IV)および(V)の合計に対して50~95モル%が好ましい。特に発生ガス量が低下することから、その下限値はより好ましくは55モル%以上がより好ましく、最も好ましくは60モル%以上であり、靭性の観点から上限値は90モル%以下がより好ましく、最も好ましくは85モル%以下である。
 構造単位(II)および(III)の合計と(IV)および(V)の合計は実質的に等モルであることが好ましい。ここで、「実質的に等モル」とは、末端を除くポリマー主鎖を構成する構造単位が等モルであることを示し、末端を構成する構造単位まで含めた場合には必ずしも等モルとは限らない。ポリマーの末端基を調節するために、ジカルボン酸成分またはジヒドロキシ成分を過剰に加えてもよい。
 本発明の実施形態において、(A)液晶性ポリエステル樹脂における各構造単位の含有量は、以下の処理によって算出することができる。すなわち、液晶性ポリエステル樹脂をNMR(核磁気共鳴)試験管に量りとり、液晶性ポリエステル樹脂が可溶な溶媒(例えば、ペンタフルオロフェノール/重テトラクロロエタン-d2混合溶媒)に溶解して、1H-NMRスペクトル測定を行う。各構造単位の含有量は、各構造単位由来のピーク面積比から算出することができる。
 本発明における液晶性ポリエステル樹脂の融点は加工性、流動性の点から300~350℃が好ましく、加工性の観点からその下限値は310℃以上がより好ましく、特に320℃以上が好ましい。また、流動性の観点からその上限値は340℃以下がより好ましく、330℃以下が特に好ましい。このような融点である場合には、加工時の分解ガス発生が抑制でき、かつ流動性が充分に発揮されるため好ましい。
 本発明の(A)液晶性ポリエステル樹脂の融点(Tm)は次の方法で測定することができる。示差熱量測定において、液晶性ポリエステル樹脂を室温から40℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)の観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)を融点(Tm)とした。
 また、本発明における液晶性ポリエステル樹脂の溶融粘度は1~100Pa・sが好ましく、加工性の観点からその下限値は3Pa・s以上がより好ましく、特に好ましくは5Pa・s以上であり、流動性の観点から上限値は50Pa・s以下がより好ましく、30Pa・s以下が特に好ましい。なお、溶融粘度は液晶性ポリエステル樹脂の融点+10℃の条件で、ずり速度1,000/sの条件下で高化式フローテスターによって測定した値である。
 本発明の(A)液晶性ポリエステル樹脂は、公知のポリエステルの重縮合法により得ることができる。例えば、次の製造方法が好ましく挙げられる。
(1)p-アセトキシ安息香酸および4,4’-ジアセトキシビフェニル、ジアセトキシベンゼンとテレフタル酸、イソフタル酸から脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。
(2)p-ヒドロキシ安息香酸および4,4’-ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。
(3)p-ヒドロキシ安息香酸のフェニルエステルおよび4,4’-ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
(4)p-ヒドロキシ安息香酸およびテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれジフェニルエステルとした後、4,4’-ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
 本発明において、液晶性ポリエステル樹脂を脱酢酸重縮合反応により製造する際には、液晶性ポリエステル樹脂が溶融する温度で減圧下反応させ、重縮合反応を完了させる溶融重合法が好ましい。例えば、所定量のp-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸、および無水酢酸を撹拌翼、留出管を備え、下部に吐出口を備えた反応容器中に仕込み、窒素ガス雰囲気下で撹拌しながら加熱して水酸基をアセチル化させた後、液晶性ポリエステル樹脂の溶融温度まで昇温し、減圧により重縮合して反応を完了させる方法が挙げられる。
 得られたポリマーは、それが溶融する温度で反応容器内を、例えば、およそ1.0kg/cm(0.1MPa)に加圧し、反応容器下部に設けられた吐出口よりストランド状に吐出することができる。溶融重合法は均一なポリマーを製造するために有利な方法であり、ガス発生量がより少ない優れたポリマーを得ることができ、好ましい。
 液晶性ポリエステル樹脂の重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウム、酢酸ナトリウム、三酸化アンチモン、および金属マグネシウムなどの金属化合物を使用することもできる。
 本発明の(B)球状シリカとは、真球度0.60以上で一次粒子が球形であるシリカ粒子であり、樹脂への高充填化および分散性の点から、その真球度が0.85以上のものが好ましく、より好ましくは0.90以上であり、更に好ましくは、0.92以上である。
 真球度は、粒子の二次元画像から求めた面積と周囲長から、(真球度)={4π×(面積)÷(周囲長)}で算出される値として算出する。1に近づくほど真球に近い。真球度の測定は、シリカを100mg秤量し、水中に分散させ、画像処理装置(シスメックス株式会社:FPIA-3000)を用い、無作為に抽出した1000個の粒子の二次元画像から測定した面積および周囲長の平均値を用いて、上記式により求めることができる。
 本発明の(B)球状シリカの平均粒子径は、本発明の効果である低発塵、靭性および衝撃強度を発現するために15μm以上30μm未満であることが必須である。平均粒子径が15μm以上30μm未満の(B)球状シリカを含有する樹脂組成物を用いて成形品を成形するとき、液晶性ポリエステル樹脂は(B)球状シリカにより配向が抑制された状態でスキン層を形成し、かつ表面粗度の小さい成形品が得られることから、特異的な低発塵の効果を得ることができる。(B)球状シリカの平均粒子径は、成形品の表面平滑性と球状シリカの樹脂中への分散性の点から、好ましくは15μm以上25μm以下、より好ましくは15μm以上20μm以下である。15μmより小さい場合は、液晶性ポリエステル樹脂の配向抑制効果が充分でなく、フィブリル化抑制による低発塵効果が得られない。また30μm以上になると表面平滑性が著しく低下し、表面に収縮ムラによる凹凸が形成されて摺動による発塵が悪化する。
 ここでいう平均粒子径は、数平均粒子径であり、レーザー回折散乱式粒度分布計により測定できる。
 本発明において用いられる球状シリカは、樹脂組成物への溶融混練前後でその形状および平均粒子径に変化はない。したがって、樹脂組成物中に混練する前の球状シリカ特性を測定した際の形状および平均粒子径で、樹脂組成物中にも含まれていると考えてよい。
 本発明の(B)球状シリカの含有量は、(A)液晶性ポリエステル樹脂100重量部に対して、本発明の効果である低発塵、靭性および衝撃強度を発現するために20~45重量部であることが必須であり、高靭性の観点から25重量部以上が好ましく、低発塵性の観点から35重量部以下が好ましい。20重量部未満では、液晶性樹脂に対する球状シリカのフィブリル化抑制効果が充分でなく低発塵性が得られない。また、45重量部を超えると樹脂から離脱する球状シリカ粒子数が多く、発塵が多くなり好ましくない。また、溶融粘度も高くなり液晶性ポリエステル樹脂の流動性が損なわれてしまう。低発塵性でありながら、高靭性を有するために25~35重量部が最も好ましい。
 本発明の(B)球状シリカの製造方法については、特に制限されるものではないが、結晶粉砕シリカを溶融し、表面張力によって球状化する溶融法が好ましい。当該方法では、本発明によって見出した効果である液晶性ポリエステル樹脂と配合した際に低発塵性、靭性および衝撃強度が特異に発現しうる粒子径を有する球状シリカを製造することができるため好ましい。溶融法によって得られる球状シリカとしては、“FEB75A”(株式会社アドマテックス)、“FB-950”(電気化学工業株式会社)などが市販されている。
 本発明のカメラモジュール用液晶性ポリエステル樹脂組成物には本発明の目的を損なわない範囲で、繊維状充填材や、繊維状充填材以外の充填材(板状、粒状、球状(球状シリカは除く)、中空球状)を含有してもよく、(C)平均粒子径が10~50μmの板状充填材および/または(D)平均繊維長が30~300μmの繊維状充填材を含有することが好ましい。
 (C)板状充填材としては、例えばマイカ、タルク、グラファイト、クレー等の板状の無機フィラーを用いることができ、タルク、マイカが好ましく、特に表面平滑性と表面硬度が向上するためマイカが好ましい。
 (C)板状充填材の平均粒子径は、10~50μmが好ましいが、分散性の観点からその下限値は15μm以上が好ましく、更に好ましくは20μm以上である。上限値についても、組成物の表面平滑性の観点から45μm以下が好ましく、更に好ましくは40μm以下であり、特に好ましくは30μm以下である。その中でも、20~30μm以下の範囲においては、板状充填材が樹脂組成物中に均一に分散し、表面平滑性が特に向上するため好ましい。
 (C)板状充填材の平均粒子径は数平均粒子径であり、例えば樹脂組成物を灰化した灰分を走査型電子顕微鏡で観察し、任意に選んだ板状充填材粒子50個の平板部の長径を測定し、数平均粒子径を求めることができる。
 (D)繊維状充填材としては、例えばガラス繊維、炭素繊維、芳香族ポリアミド繊維、チタン酸カリウム繊維、石膏繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミック繊維、ボロンウィスカー繊維、アスベスト繊維、ワラステナイト、酸化チタン繊維、炭酸カルシウム繊維、バサルト繊維などを用いることができ、ガラス繊維、ワラステナイトが好ましく、特に衝撃強度が向上するため、ガラス繊維が好ましい。
 (D)繊維状充填材の平均繊維長は30~300μmであることが好ましく、繊維長が300μmを超えると繊維の離脱による発塵の懸念が増加するため、平均繊維長は300μmを超えないことが好ましい。より好ましくは、衝撃強度の観点からその下限値は35μm以上であり、更に好ましくは40μm以上である。上限値についても、低発塵の観点から好ましくは150μm以下が好ましく、更に好ましくは80μm以下である。
 (D)繊維状充填材の平均繊維長は数平均繊維長であり、例えば樹脂組成物を灰化した灰分を光学顕微鏡で観察し、任意に選んだ繊維状充填材500本の繊維長を測定し、数平均繊維長を求めることができる。
 (C)板状充填材と(D)繊維状充填材は併用してもよい。
 (C)板状充填材および/または(D)繊維状充填材の含有量としては、(A)液晶性ポリエステル樹脂100重量部に対して1~25重量部が好ましく、衝撃強度の観点からその下限値は2重量部以上がより好ましく、さらに好ましくは3重量部以上である。上限値についても、発塵性の観点から15重量部以下がより好ましく、さらに好ましくは10重量部以下である。
 さらには、本発明の目的を損なわない範囲で、酸化防止剤および熱安定剤(たとえばヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、紫外線吸収剤(たとえばレゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、離型剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(たとえばニグロシンなど)および顔料(たとえば硫化カドミウム、フタロシアニン、カーボンブラックなど)を含む着色剤、可塑剤、難燃剤、難燃助剤、帯電防止剤などの通常の添加剤や他の熱可塑性樹脂(フッ素樹脂など)を添加して、所定の特性を付与することができる。
 本発明のカメラモジュール用液晶ポリエステル樹脂組成物は溶融混練により製造することが好ましく、溶融混練には公知の方法を用いることができる。例えば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用いることができる。これらのうち、本発明の液晶性ポリエステル樹脂組成物は、繊維状充填材の数平均長さを制御する必要があることから、押出機を用いることが好ましく、二軸押出機を用いることがより好ましく、なかでも中間添加口を有する二軸押出機を用いることが特に好ましい。ただし、高級脂肪酸金属塩は、溶融混練押出後のペレットにブレンドするのが好ましい。こうすることで、成形加工性を飛躍的に向上させることができる。高級脂肪族金属塩とペレットのブレンドには、例えばタンブラーミキサー、リボンブレンダーなどが用いられる。また、高級脂肪酸金属塩は、液晶性樹脂やその他の添加剤とともに二軸押出機中で溶融混練してもよい。
 本発明のカメラモジュール用液晶性ポリエステル樹脂組成物は、公知の成形法により各種成形品に成形されるが、射出成形が好ましい。射出成形することによって、液晶性ポリエステル樹脂が、特定量配合された特定粒子径の球状シリカにより配向を抑制された状態でスキン層を形成し、かつ粗度の小さい表面が得られ、低発塵に特異的な効果が得られる。
 かくして得られる成形品は、低発塵性、靭性、および衝撃強度に優れることから、光学機器部品に好適に用いることができ、更にはレンズ保持部を有する部品に好適であり、特にカメラモジュールに好適に用いられる。
 以下、実施例により本発明をさらに詳述するが、本発明の骨子は以下の実施例のみに限定されるものではない。
 各特性の評価方法は以下の通りである。
 (1)液晶性ポリエステル樹脂の組成分析
 液晶性ポリエステル樹脂の組成分析は、1H-核磁気共鳴スペクトル(1H-NMR)測定により実施した。液晶性ポリエステル樹脂をNMR試料管に50mg秤量し、溶媒(ペンタフルオロフェノール/1,1,2,2-テトラクロロエタン-d2=65/35(重量比)混合溶媒)800μLに溶解して、UNITY INOVA500型NMR装置(バリアン社製)を用いて観測周波数500MHz、温度80℃で1H-NMR測定を実施し、7~9.5ppm付近に観測される各構造単位由来のピーク面積比から組成を分析した。
 (2)液晶性ポリエステル樹脂の融点の測定
 Tm(融点)は示差走査熱量測定において、液晶性ポリエステル樹脂または液晶性ポリエステル樹脂組成物を室温から40℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)の観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)を融点(Tm)とした。
 (3)シリカの数平均粒子径
 シリカの数平均粒子径は、シリカを100mg秤量し、水中に分散させ、レーザー回折/散乱式粒子径分布測定装置(HORIBA社製“LA-300”)を用いて測定した。
 (4)シリカの真球度
 真球度の測定は、粒子の二次元画像から求めた面積と周囲長から、(真球度)={4π×(面積)÷(周囲長)}で算出される値として算出した。シリカを100mg秤量し、水中に分散させ、画像処理装置(シスメックス株式会社:FPIA-3000)を用い、無作為に抽出した1000個の粒子の二次元画像から面積および周囲長を測定し、その平均値を用いて、上記式により真球度を求めた。
 (5)板状充填材の数平均粒子径
 液晶性ポリエステル樹脂組成物を灰化し、灰分を走査型電子顕微鏡で観察し、任意に選んだ板状充填材粒子50個の平板部の長径を測定し、数平均粒子径を求めた。
 (6)繊維状充填材の数平均繊維長
 液晶性ポリエステル樹脂組成物を灰化し、灰分を光学顕微鏡で観察し、任意に選んだ繊維状充填材500本の繊維長を測定し、数平均繊維長を求めることにより測定した。
 (7)発塵性
 液晶性ポリエステル樹脂組成物を、ファナックロボショットα-30C(ファナック(株)製)を用いて、ASTM1号ダンベル試験片を成形した。シリンダ温度を液晶性ポリエステル樹脂組成物の融点Tm+10℃に設定し、金型温度を90℃に設定し成形した。上記により得られた成形品に住友3M(株)製Scotch透明粘着テープを圧着し、剥がした際の粘着テープを東洋精機社製直読ヘイズメーターにてヘイズ値(曇り)を測定した。ヘイズ値が小さいほど曇りが少ないことを示す。
 (8)Izod衝撃強度
 ファナックロボショットα-30C(ファナック(株)製)を用いて、シリンダ-温度を液晶性ポリエステルの融点+10℃に設定し、金型温度90℃の条件で射出成形を行い、ASTM衝撃試験片を作成し、ASTM D256に従い、ノッチ有りでアイゾット衝撃強度の測定を行った。10回の測定の平均値を算出した。
 (9)靭性
 ファナックロボショットα-30C(ファナック(株)製)を用いて、シリンダ-温度を液晶性ポリエステルの融点+10℃に設定し、金型温度90℃の条件で射出成形を行い、ASTM曲げ試験片(短冊試験片)を作成し、ASTM D648に従い、測定した。
 (A)液晶性ポリエステル樹脂
 [参考例1] 液晶性ポリエステル樹脂(A-1)の合成
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870g(6.30モル)、4,4’-ジヒドロキシビフェニル327g(1.89モル)、ハイドロキノン89g(0.81モル)、テレフタル酸292g(1.76モル)、イソフタル酸157g(0.95モル)および無水酢酸1367g(フェノール性水酸基合計の1.03当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた後、320℃まで4時間で昇温した。その後、重合温度を320℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に90分間反応を続け、トルクが15kg・cmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1個持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、液晶性ポリエステル樹脂(A-1)を得た。
 この液晶性ポリエステル樹脂(A-1)は、構造式(I)、構造式(II)、構造式(III)、構造式(IV)および構造式(V)からなり、構造式(I)を構造式(I)、構造式(II)および構造式(III)の合計に対して70モル%、構造式(II)を構造式(II)および構造式(III)単位の合計に対して70モル%、構造式(IV)を構造式(IV)および構造式(V)の合計に対して65モル%有する。また、構造式(II)および構造式(III)の合計は全構造単位に対して23モル%であり、構造式(IV)および構造式(V)の合計は全構造単位に対して23モル%であった。液晶性ポリエステル樹脂(A-1)の融点(Tm)は314℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度324℃、剪断速度1,000/sで測定した溶融粘度は20Pa・sであった。
 [参考例2] 液晶性ポリエステル樹脂(A-2)の合成
 p-ヒドロキシ安息香酸994g(7.20モル)、4,4’-ジヒドロキシビフェニル181g(0.97モル)、テレフタル酸161g(0.97モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレート159g(0.83モル)および無水酢酸1026g(フェノール性水酸基合計の1.10当量)を重合容器に仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた後、335℃まで4時間で昇温した。その後、重合温度を335℃に保持し、0.1MPaに窒素加圧し、20分間加熱攪拌した。その後、1.0時間で1.0mmHg(133Pa)に減圧し、更に90分間反応を続け、トルクが12kg・cmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1個持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、液晶性ポリエステル樹脂(A-2)を得た。
 この液晶ポリエステル樹脂は、p-オキシベンゾエート単位80.0モル%、4,4’-ジオキシビフェニル単位10.8モル%、エチレンジオキシ単位9.2モル%、テレフタレート単位20.0モル%を有し、融点(Tm)は326℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度335℃、剪断速度1,000/sで測定した溶融粘度は13Pa・sであった。
 [参考例3] 液晶性ポリエステル樹脂(A-3)の合成
 特開昭54-77691号公報に従って、p-アセトキシ安息香酸921重量部と6-アセトキシ-ナフトエ酸435重量部を、撹拌翼、留出管を備えた反応容器に仕込み、重縮合を行った。得られた液晶ポリエステル樹脂(A-3)は、p-アセトキシ安息香酸から生成した構造単位72モル%および6-アセトキシ-ナフトエ酸から生成した構造単位28モル%からなり、融点(Tm)は283℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度293℃、剪断速度1,000/sで測定した溶融粘度は30Pa・sであった。 
 (B)球状シリカ
 各実施例および比較例において用いた球状シリカを次に示す。
 (B-1)(株)アドマテックス 社製 “FEB75A” (製造方法:溶融法、平均粒子径15μm、真球度0.94)
 (B-2)(株)アドマテックス 社製 “SO-C2” (製造方法:VMC法、平均粒子径0.5μm、真球度0.90)
 (B-3)新日鉄住金マテリアルズ(株) 社製 “HS-103” (製造方法:溶射法、平均粒子径100μm、真球度0.89)
 (B-4)電気化学工業(株) 社製 “FB-12D” (製造方法:溶融法、平均粒子径10μm、真球度0.91)
 (B-5)(株)龍森 社製 “MSR-SC3” (製造方法:溶融法、平均粒子径53μm、真球度0.90)
 (B-6)(株)電気化学工業(株)社製 “FB-950” (製造方法:溶融法、平均粒子径24μm、真球度0.97)
 (B’)その他のシリカ
 (B’-1)(株)丸東 社製 “#250” (製造方法:湿式粉砕法、平均粒子径22μm、真球度0.21)
 (C)板状充填材
 (C-1)ヤマグチマイカ (株) 社製 “マイカ A-21”(数平均粒子径 22μm)
 (C-2)ヤマグチマイカ (株) 社製 “マイカ A-41s”(数平均粒子径 47μm)
 (D)繊維状充填材
 (D-1)日本電気硝子(株)社製“ミルドファイバー EPG70M-01N”(数平均繊維長 70μm)。
 (D-2)セントラル硝子(株)社製“ミルドファイバー EFH150-31”(数平均繊維長 150μm)。
 [実施例1~11]
 スクリュー径44mmの同方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44、空間部容積(V)1590cm)を用いて液晶性ポリエステル樹脂(A)を表1に示す配合量でホッパーから投入し、球状シリカ(B)を液晶ポリエステル樹脂組成物の合計100重量部に対して表1に示す配合量で中間供給口から投入した。シリンダ温度を液晶ポリエステル樹脂(A)の融点+10℃に設定し、溶融混練して液晶性ポリエステル樹脂組成物のペレットを得た。
 得られたペレットを熱風乾燥後、前記の方法により発塵性、Izod衝撃強度、曲げたわみを評価した。表1にその結果を示した。
 [比較例1~11]
 組成、球状シリカを表2に示すとおり変更した以外は実施例1~11と同様にして、発塵性、Izod衝撃強度、曲げたわみを評価した。表2にその結果を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~5に示したように、液晶性ポリエステル樹脂に特定粒径の球状シリカを特定量配合することで、これまで知られている微細シリカを配合した比較例3や大粒径シリカを配合した比較例4に比べて、著しく発塵性が改良されることが明らかである。
 また、比較例1、2に示したように、球状シリカの配合量が本願で規定する範囲を外れると、本願の効果である発塵性、衝撃強度、靭性は得られないことが明らかである。
 また、実施例6~10に示したように、更に板状フィラーを配合した場合には低発塵性が改良され、繊維状フィラーを配合した場合には、衝撃強度が改良されることがわかる。
 本発明によれば、低発塵性、靭性、衝撃強度、高靭性に優れるカメラモジュール用液晶性樹脂組成物およびそれからなるカメラモジュール用成形品を得ることができる。

Claims (6)

  1. (A)液晶性ポリエステル樹脂100重量部に、(B)平均粒子径15μm以上30μm未満の球状シリカを20~45重量部含有することを特徴とするカメラモジュール用液晶性ポリエステル樹脂組成物。
  2. (C)平均粒子径が10~50μmの板状充填材および/または(D)平均繊維長が30~300μmの繊維状充填材を更に含有することを特徴とする請求項1に記載のカメラモジュール用液晶性ポリエステル樹脂組成物。
  3. 前記(A)液晶性ポリエステル樹脂が下記構造単位(I)、(II)、(III)、(IV)および(V)から構成され、構造単位(I)が構造単位(I)、(II)および(III)の合計に対し65~80モル%であり、構造単位(II)が構造単位(II)および(III)の合計に対して55~85モル%であり、構造単位(IV)が構造単位(IV)および(V)の合計に対して50~95モル%であることを特徴とする請求項1または2に記載のカメラモジュール用液晶性ポリエステル樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
  4. 前記(B)球状シリカが、真球度が0.85以上である球状シリカであることを特徴とする請求項1から3のいずれかに記載のカメラモジュール用液晶性ポリエステル樹脂組成物。
  5. 請求項1~4のいずれかに記載のカメラモジュール用樹脂組成物からなるカメラモジュール用成形品。
  6. 請求項5に記載のカメラモジュール用成形品からなるカメラモジュール。
PCT/JP2016/080669 2015-10-30 2016-10-17 カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品 WO2017073387A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016565363A JP6693423B2 (ja) 2015-10-30 2016-10-17 カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品
US15/771,270 US10654970B2 (en) 2015-10-30 2016-10-17 Camera module-use liquid crystalline polyester resin composition and camera module-use molded product formed thereof
EP16859617.9A EP3369774B1 (en) 2015-10-30 2016-10-17 Camera module-use liquid crystalline polyester resin composition and camera module-use molded product formed thereof
KR1020187013826A KR20180077187A (ko) 2015-10-30 2016-10-17 카메라 모듈용 액정성 폴리에스테르 수지 조성물 및 그것으로 이루어지는 카메라 모듈용 성형품
CN201680058618.0A CN108137907B (zh) 2015-10-30 2016-10-17 照相机组件用液晶性聚酯树脂组合物及由其形成的照相机组件用成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-214364 2015-10-30
JP2015214364 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017073387A1 true WO2017073387A1 (ja) 2017-05-04

Family

ID=58630094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080669 WO2017073387A1 (ja) 2015-10-30 2016-10-17 カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品

Country Status (7)

Country Link
US (1) US10654970B2 (ja)
EP (1) EP3369774B1 (ja)
JP (1) JP6693423B2 (ja)
KR (1) KR20180077187A (ja)
CN (1) CN108137907B (ja)
TW (1) TW201728669A (ja)
WO (1) WO2017073387A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102627886B1 (ko) 2017-12-05 2024-01-19 티코나 엘엘씨 카메라 모듈에 사용하기 위한 방향족 중합체 조성물
US11722759B2 (en) 2019-03-20 2023-08-08 Ticona Llc Actuator assembly for a camera module
US11086200B2 (en) 2019-03-20 2021-08-10 Ticona Llc Polymer composition for use in a camera module
WO2021120113A1 (en) * 2019-12-19 2021-06-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Lens driving device, camera device, and electronic apparatus
WO2021120109A1 (en) * 2019-12-19 2021-06-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Lens driving device, camera device, and electronic apparatus
WO2022004553A1 (ja) * 2020-06-30 2022-01-06 ポリプラスチックス株式会社 耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080289A (ja) * 1998-09-07 2000-03-21 Toray Ind Inc 液晶性樹脂組成物
JP2006299254A (ja) * 2005-03-24 2006-11-02 Toray Ind Inc 液晶性樹脂組成物からなるフィルムおよびその製造方法
JP2007138143A (ja) * 2005-10-21 2007-06-07 Toray Ind Inc 液晶性樹脂組成物およびその製造方法
JP2011068831A (ja) * 2009-09-28 2011-04-07 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336185A (ja) * 1999-06-01 2000-12-05 Teijin Ltd スタンピングホイルベース用二軸配向ポリエステルフィルム
JP2010100756A (ja) * 2008-10-24 2010-05-06 Teijin Fibers Ltd ポリエステル組成物及びボトル
JP5290702B2 (ja) * 2008-10-28 2013-09-18 帝人株式会社 ポリエステル組成物及びボトル
JP2010106165A (ja) 2008-10-30 2010-05-13 Polyplastics Co 射出成形用液晶性樹脂組成物、当該樹脂組成物を成形してなる成形体、および当該成形体からなるカメラモジュール
JP2011063699A (ja) * 2009-09-16 2011-03-31 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物の成形方法および成形体
JP5197553B2 (ja) * 2009-11-20 2013-05-15 住友化学株式会社 液晶性樹脂組成物及びその成形体
JP5695389B2 (ja) * 2010-10-15 2015-04-01 Jx日鉱日石エネルギー株式会社 液晶ポリエステル樹脂組成物及びカメラモジュール部品
JP5633338B2 (ja) * 2010-11-30 2014-12-03 住友化学株式会社 液晶ポリエステル組成物
US9085672B2 (en) * 2011-04-06 2015-07-21 Toray Industries, Inc. Liquid crystalline polyester composition and metal composite molded product using the same
TWI576378B (zh) * 2012-02-29 2017-04-01 Toray Industries 液晶聚酯樹脂組成物
EP3029107B1 (en) * 2013-07-31 2019-03-13 Sumitomo Chemical Company, Limited Liquid crystal polyester composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080289A (ja) * 1998-09-07 2000-03-21 Toray Ind Inc 液晶性樹脂組成物
JP2006299254A (ja) * 2005-03-24 2006-11-02 Toray Ind Inc 液晶性樹脂組成物からなるフィルムおよびその製造方法
JP2007138143A (ja) * 2005-10-21 2007-06-07 Toray Ind Inc 液晶性樹脂組成物およびその製造方法
JP2011068831A (ja) * 2009-09-28 2011-04-07 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物

Also Published As

Publication number Publication date
CN108137907A (zh) 2018-06-08
EP3369774A1 (en) 2018-09-05
EP3369774B1 (en) 2020-05-13
US20180334534A1 (en) 2018-11-22
CN108137907B (zh) 2020-05-19
EP3369774A4 (en) 2019-07-03
JP6693423B2 (ja) 2020-05-13
TW201728669A (zh) 2017-08-16
JPWO2017073387A1 (ja) 2018-08-16
KR20180077187A (ko) 2018-07-06
US10654970B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
JP6693423B2 (ja) カメラモジュール用液晶性ポリエステル樹脂組成物およびそれからなるカメラモジュール用成形品
JP2009263640A (ja) 熱伝導性樹脂組成物及びその用途
JP5541330B2 (ja) 液晶性樹脂組成物およびそれからなる成形品
JP6762228B2 (ja) カメラモジュール用液晶性樹脂組成物及びそれを用いたカメラモジュール
JP5087958B2 (ja) 液晶性樹脂組成物からなる成形品
JP2012087171A (ja) 液晶ポリエステル樹脂組成物及びカメラモジュール部品
US8262933B2 (en) Thermoplastic resin composition, method for producing the same, and molded article obtained from the same
WO2011033892A1 (ja) 液晶ポリエステル樹脂組成物の成形方法および成形体
JP2018016754A (ja) 液晶ポリマー組成物
JP2007320996A (ja) 液晶性樹脂組成物、およびそれからなる成形品
JP2012021147A (ja) 液晶性ポリエステル樹脂組成物及びそれからなるコネクター
JP2007254716A (ja) 液晶性樹脂組成物およびそれからなる成形品
JP2009179763A (ja) 液晶性樹脂組成物、その製造方法および成形品
JP2015021063A (ja) 液晶ポリエステル樹脂組成物
JP2000281885A (ja) 帯電防止用途向け液晶性樹脂組成物
JP3111471B2 (ja) 液晶性ポリマ樹脂組成物
JP2010220997A (ja) 人工羽根
JP2011074301A (ja) 液晶性ポリエステル樹脂組成物
JP4887645B2 (ja) 液晶性樹脂組成物およびそれからなる成形品
JPH04213354A (ja) 液晶ポリエステル樹脂組成物
US20240059861A1 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and method for producing injection molded article
JP2010202785A (ja) 液晶性ポリエステル樹脂組成物
JP2005200495A (ja) 接着用液晶性樹脂組成物およびそれからなる成形品
JP3033226B2 (ja) 難燃性耐熱樹脂組成物
JPH0967575A (ja) 液晶性ポリエステル樹脂組成物及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016565363

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859617

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15771270

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013826

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016859617

Country of ref document: EP