WO2017065009A1 - 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体 - Google Patents

熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体 Download PDF

Info

Publication number
WO2017065009A1
WO2017065009A1 PCT/JP2016/078729 JP2016078729W WO2017065009A1 WO 2017065009 A1 WO2017065009 A1 WO 2017065009A1 JP 2016078729 W JP2016078729 W JP 2016078729W WO 2017065009 A1 WO2017065009 A1 WO 2017065009A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
mass
based carbon
pitch
Prior art date
Application number
PCT/JP2016/078729
Other languages
English (en)
French (fr)
Inventor
理 奥中
石井 弘樹
和昭 伊藤
修二 石渡
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020187009966A priority Critical patent/KR102138550B1/ko
Priority to EP16855263.6A priority patent/EP3363864B1/en
Priority to JP2016562604A priority patent/JP6801455B2/ja
Priority to CN201680059420.4A priority patent/CN108137932A/zh
Publication of WO2017065009A1 publication Critical patent/WO2017065009A1/ja
Priority to US15/943,464 priority patent/US11279808B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length

Definitions

  • the present invention relates to a thermoplastic resin composition, a method for producing a thermoplastic resin composition, and a molded body.
  • Patent Document 1 discloses a thermoplastic resin composition in which a PAN-based carbon fiber and graphite are blended with a thermoplastic resin.
  • Patent Documents 2 and 3 disclose a thermoplastic resin composition in which pitch-based carbon fibers and graphite are blended with a thermoplastic resin.
  • Patent Document 4 discloses a thermoplastic resin composition in which pitch-based carbon fibers are blended with a thermoplastic resin.
  • thermoplastic resin composition disclosed in Patent Document 1 contains only PAN-based carbon fibers as carbon fibers, the molded article is inferior in thermal conductivity.
  • thermoplastic resin composition currently disclosed by patent document 2 has a low content rate of pitch-type carbon fiber, it is inferior to the heat conductivity of a molded object.
  • thermoplastic resin composition currently disclosed by patent document 3 has a high content rate of graphite, it is inferior to moldability.
  • thermoplastic resin composition disclosed in Patent Document 4 does not contain graphite, the molded article is inferior in thermal conductivity.
  • thermoplastic resin composition containing a thermoplastic resin (A), pitch-based carbon fiber (B) and graphite (C), wherein the content of the pitch-based carbon fiber (B) is the thermoplastic resin.
  • the thermoplastic resin composition is 30% by mass or more in 100% by mass of the composition, and the content of the graphite (C) is 1% by mass or more and 20% by mass or less in 100% by mass of the thermoplastic resin composition.
  • object [2] The thermoplastic resin composition according to [1], wherein a content of the graphite (C) is 2% by mass to 12% by mass in 100% by mass of the thermoplastic resin composition.
  • thermoplastic resin composition according to any one of [1] to [6], further comprising a PAN-based carbon fiber (D).
  • the thermal conductivity as measured by a hot wire method of a 1 mm-thick molded product obtained by molding the thermoplastic resin composition is 10 W / mK or more, according to any one of [1] to [7].
  • Thermoplastic resin composition is 10 W / mK or more, according to any one of [1] to [7].
  • Thermoplastic resin composition [9] The thermoplastic resin composition according to any one of [1] to [8], wherein the molded article obtained by molding the thermoplastic resin composition has a tensile strength measured according to ISO 527 of 100 MPa or more. object.
  • a method for producing the composition [11] A molded article obtained by molding the thermoplastic resin composition according to any one of [1] to [9].
  • This invention is providing the thermoplastic resin composition excellent in the thermal conductivity of a molded object, and the mechanical characteristic of a molded object.
  • thermoplastic resin (A) The thermoplastic resin composition of the present invention contains a thermoplastic resin (A).
  • thermoplastic resin (A) examples include crystalline resins such as polypropylene resin, polyamide resin, polybutylene terephthalate resin, and polyphenylene sulfide resin; amorphous resins such as polycarbonate resin, ABS resin, and acrylic resin. These thermoplastic resins (A) may be used individually by 1 type, and may use 2 or more types together. Among these thermoplastic resins (A), a crystalline resin is preferable, a polyamide resin and a polyphenylene sulfide resin are more preferable, and a polyamide resin is still more preferable because of excellent mechanical properties and heat resistance of the molded body.
  • polyamide resin examples include nylon 6, nylon 66, nylon 69, nylon 610, nylon 612, nylon 46, nylon 11, nylon 12, poly (hexamethylene terephthalamide), poly (hexamethylene isophthalamide), poly (M-xylene adipamide) and the like. These polyamide resins may be used alone or in combination of two or more. Among these polyamide resins, nylon 6, nylon 66, and poly (m-xylene adipamide) are preferable because of excellent moldability of the thermoplastic resin composition and mechanical properties of the molded body, and poly (m-xylene) is preferable. Adipamide) is more preferred.
  • the content of the thermoplastic resin (A) in the thermoplastic resin composition is preferably 39% by mass to 69% by mass and more preferably 43% by mass to 65% by mass in 100% by mass of the thermoplastic resin composition. 47 mass% or more and 61 mass% or less are still more preferable.
  • the content of the thermoplastic resin (A) in the thermoplastic resin composition is 39% by mass or more, the moldability of the thermoplastic resin composition is excellent.
  • the pitch-based carbon fiber (B) and the graphite (C) can be sufficiently blended, so that the heat conduction of the molded body. Excellent in properties.
  • thermoplastic resin composition of the present invention contains pitch-based carbon fibers (B).
  • Pitch-based carbon fiber is a mesophase pitch, that is, a resin having a liquid crystal structure partially generated by processing petroleum tar, coal tar, or the like, or an artificially synthesized mesophase pitch that is spun and made infusible. It means that it is an aggregate of fibers composed mainly of filament fibers composed essentially of carbon, which are produced by carbonization and whose graphite crystal structure is highly developed in the fiber axis direction.
  • the pitch-based carbon fiber is excellent in the effect of imparting thermal conductivity.
  • pitch-based carbon fibers have the advantage of a high modulus of elasticity and a low coefficient of thermal expansion.
  • Examples of the pitch-based carbon fiber (B) include long fibers, chopped fibers, and milled fibers.
  • One type of these pitch-based carbon fibers (B) may be used alone, or two or more types may be used in combination.
  • chopped fibers are preferable because they are excellent in handleability and can easily control the mass average fiber length.
  • pitch-based carbon fibers examples include dialeads (trade names, Mitsubishi Plastics, Inc.) such as K63712 (tensile modulus 640 GPa, thermal conductivity 140 W / mK), K13312 (tensile modulus 420 GPa), and the like.
  • K223SE tensile modulus 185 GPa, thermal conductivity 20 W / mK
  • K223Y1 tensile modulus 50 GPa, thermal conductivity less than 5 W / mK
  • K223HE tensile modulus 900 GPa, thermal conductivity 550 W / mK
  • K6371T tensile modulus 640 GPa, thermal conductivity 140 W / mK
  • K6331M tensile modulus 640 GPa, thermal conductivity 140 W / mK
  • the like is milled fiber series, and the like.
  • the diameter of the pitch-based carbon fiber (B) is preferably 4 ⁇ m or more and 15 ⁇ m or less, and more preferably 8 ⁇ m or more and 12 ⁇ m or less.
  • a carbon fiber can be easily manufactured as the diameter of pitch type carbon fiber (B) is 4 micrometers or more. Moreover, it is excellent in handleability that the diameter of pitch-type carbon fiber (B) is 15 micrometers or less.
  • the diameter of the pitch-based carbon fiber (B) is determined by heating the thermoplastic resin composition or molded body to 600 ° C. for 3 hours in an air atmosphere to thermally decompose the thermoplastic resin (A) and the like. The diameter of the 10 remaining pitch-based carbon fibers (B) is measured with an electron microscope, and the average value is obtained.
  • the diameter of the pitch-based carbon fiber (B) is the maximum ferret diameter of the filament fiber constituting the pitch-based carbon fiber (B).
  • the content of the pitch-based carbon fiber (B) in the thermoplastic resin composition is preferably 30% by mass to 60% by mass and more preferably 32% by mass to 55% by mass in 100% by mass of the thermoplastic resin composition. Preferably, 34 mass% or more and 50 mass% or less are more preferable.
  • the molded article has excellent thermal conductivity. Moreover, it is excellent in the moldability of a thermoplastic resin composition as the content rate of the pitch-type carbon fiber (B) in a thermoplastic resin composition is 60 mass% or less.
  • thermoplastic resin composition of the present invention contains graphite (C).
  • Examples of graphite (C) include flaky graphite, artificial graphite, and expanded graphite. These graphite (C) may be used individually by 1 type, and may use 2 or more types together. Among these graphites (C), expanded graphite is preferable because of excellent dispersibility in the thermoplastic resin composition, and expanded graphite after expansion is more preferable.
  • the content of graphite (C) in the thermoplastic resin composition is 1% by mass or more and 20% by mass or less, preferably 2% by mass or more and 12% by mass or less, and preferably 3% by mass in 100% by mass of the thermoplastic resin composition. % To 8% by mass is more preferable.
  • the content of graphite (C) in the thermoplastic resin composition is 1% by mass or more, the molded article has excellent thermal conductivity. Further, if the content of graphite (C) in the thermoplastic resin composition is 20% by mass or less, even if it is expanded graphite after expansion, which is a bulky powder, it is blended without deteriorating productivity. And the dropping of the graphite (C) from the molded body can be suppressed.
  • the total content of pitch-based carbon fibers (B) and graphite (C) in the thermoplastic resin composition is preferably 31% by mass to 61% by mass, and 34% by mass in 100% by mass of the thermoplastic resin composition. More preferably, it is 57 mass% or less, and 37 mass% or more and 53 mass% or less are still more preferable.
  • the thermal conductivity of the molded article is excellent.
  • it is excellent in the moldability of a thermoplastic resin composition as the total content rate of the pitch-type carbon fiber (B) and graphite (C) in a thermoplastic resin composition is 61 mass% or less.
  • thermoplastic resin composition of the present invention includes a PAN-based carbon fiber (D) and other additives (if necessary). E) may be included.
  • the PAN-based carbon fiber (D) is mainly composed of filament fibers made substantially of carbon produced by infusifying and carbonizing a fiber made of a polyacrylonitrile-based resin obtained by polymerizing acrylonitrile as a main component. It is meant to be an aggregate of fibers constructed as follows. PAN-based carbon fibers are excellent in the effect of imparting mechanical properties.
  • Examples of the form of the PAN-based carbon fiber (D) include long fibers, chopped fibers, and milled fibers.
  • One type of these PAN-based carbon fibers (D) may be used alone, or two or more types may be used in combination.
  • chopped fibers are preferable because they are excellent in handleability and can easily control the mass average fiber length.
  • Examples of commercially available PAN-based carbon fibers (D) include chopped fiber series such as TR06U, TR06UL, TR06NE, TR06NL, MR06NE, MR03NE and other pyrofils (trade name, manufactured by Mitsubishi Rayon Co., Ltd.).
  • the diameter of the PAN-based carbon fiber (D) is preferably 1 ⁇ m to 20 ⁇ m, more preferably 4 ⁇ m to 15 ⁇ m, still more preferably 5 ⁇ m to 8 ⁇ m.
  • the diameter of the PAN-based carbon fiber (D) is 1 ⁇ m or more, the specific surface area of the PAN-based carbon fiber (D) can be reduced, and the resin pellets are excellent in moldability.
  • the diameter of the PAN-based carbon fiber (D) is 20 ⁇ m or less, the handleability is excellent, the aspect ratio of the PAN-based carbon fiber (D) can be increased, and the mechanical properties of the molded body are excellent.
  • the diameter of the PAN-based carbon fiber (D) is determined by heating the thermoplastic resin composition or the molded body to 600 ° C. for 3 hours in an air atmosphere to thermally decompose the thermoplastic resin (A). The diameter of 10 remaining PAN-based carbon fibers (D) is measured with an electron microscope, and the average value is obtained. The diameter of the PAN-based carbon fiber (D) is the maximum ferret diameter of the filament fiber constituting the PAN-based carbon fiber (D).
  • the content of the PAN-based carbon fiber (D) in the thermoplastic resin composition is preferably 0% by mass to 30% by mass and more preferably 1% by mass to 20% by mass in 100% by mass of the thermoplastic resin composition. Preferably, 2 mass% or more and 15 mass% or less are preferable.
  • the content of the PAN-based carbon fiber (D) is 1% by mass or more, the molded article has excellent mechanical properties. Moreover, it is excellent in the moldability of a thermoplastic resin composition as the content rate of a PAN-type carbon fiber (D) is 30 mass% or less.
  • additives (E) include colorants, antioxidants, metal deactivators, carbon black, nucleating agents, mold release agents, lubricants, antistatic agents, light stabilizers, UV absorbers, PANs. Examples thereof include carbon fiber, glass fiber, inorganic filler, impact modifier, melt tension improver, flame retardant, and plasticizer. These other additives (E) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the other additive (E) in the thermoplastic resin composition does not impair the original performance of the thermoplastic resin composition or the molded article, it is 0% by mass in 100% by mass of the thermoplastic resin composition. 20 mass% or less is preferable, 0 mass% or more and 10 mass% or less are more preferable, and 0 mass% or more and 5 mass% or less are still more preferable.
  • thermoplastic resin composition Pitch-based carbon fiber (B) and graphite (C) both have high thermal conductivity, but by blending both pitch-based carbon fiber (B) and graphite (C), it is easy to form a heat conduction path. Thus, a thermoplastic resin composition having a higher thermal conductivity can be obtained.
  • the content of pitch-based carbon fiber (B) is increased, and pitch-based carbon fiber (B )), It is considered necessary to increase the mass average fiber length, but the pitch-based carbon fiber (B) is likely to be broken when the thermoplastic resin composition or the molded body is produced, and the molding method is large. It will be restricted.
  • thermoplastic resin composition having a high graphite (C) content has a high viscosity and is inferior in moldability.
  • the mass average fiber length of the pitch-based carbon fiber (B) in the thermoplastic resin composition is preferably from 0.1 mm to 0.3 mm, and more preferably from 0.12 mm to 0.2 mm.
  • the mass average fiber length of the pitch-based carbon fiber (B) in the thermoplastic resin composition is 0.1 mm or more, the molded article is excellent in mechanical properties and thermal conductivity.
  • the mass average fiber length of the pitch-based carbon fibers (B) in the thermoplastic resin composition is 0.3 mm or less, the pitch-based carbon fibers (B) are easily filled up to the minute ends of the molded body.
  • the mass average fiber length of the pitch-based carbon fibers (B) is determined by heating the thermoplastic resin composition or the molded body to 600 ° C. for 3 hours in an air atmosphere, etc. Is removed by thermal decomposition, and the fiber length of 100 remaining pitch-based carbon fibers (B) is measured with an optical microscope, and the average value is obtained.
  • the mass average fiber length of the PAN-based carbon fiber (D) in the thermoplastic resin composition is preferably from 0.1 mm to 0.9 mm, more preferably from 0.12 mm to 0.25 mm.
  • the mass average fiber length of the PAN-based carbon fiber (D) in the thermoplastic resin composition is 0.1 mm or more, the mechanical properties of the molded article are excellent. Further, when the PAN-based carbon fiber (D) in the thermoplastic resin composition is 0.9 mm or less, the carbon fiber (B) is easily filled to the details of the molded body.
  • the mass average fiber length of the PAN-based carbon fiber (D) is determined by heating the thermoplastic resin composition or the molded body to 600 ° C. for 3 hours in an air atmosphere. Is removed by thermal decomposition, and the fiber length of 100 remaining PAN-based carbon fibers (D) is measured with an optical microscope to obtain the average value.
  • the mass average fiber length is calculated by the above formula (1), where L is the fiber length.
  • melt volume rate of the thermoplastic resin composition is excellent in moldability of the thermoplastic resin composition, 3 cm 3/10 minutes or more 80cm is preferably 3/10 minutes or less, 5 cm 3/10 minutes or more 30 cm 3 / 10 minutes or less is more preferable.
  • the melt volume rate (MVR) is 21N at 300 ° C. if the thermoplastic resin (A) is a polyamide resin, 21N at 250 ° C. if it is a polybutylene terephthalate resin, and if it is a polyphenylene sulfide resin. It is 21N at 330 ° C, 21N at 300 ° C for polycarbonate resin, and the value measured according to ISO 1133-1 Annex B Table 1 for other resins.
  • the thermal conductivity of the thermoplastic resin composition is preferably 10 W / mK or more and 50 W / mK or less, and more preferably 12 W / mK or more and 30 W / mK or less.
  • the thermal conductivity of the thermoplastic resin composition is 10 W / mK or more, the thermal conductivity is excellent, and it is possible to avoid the molded body from being locally heated.
  • the thermal conductivity of the thermoplastic resin composition is 50 W / mK or less, the content of pitch-based carbon fibers (B) and graphite (C) can be suppressed, and the mechanical properties of the molded article are excellent.
  • the thermal conductivity of the thermoplastic resin composition is a value measured by a hot wire method.
  • the thermoplastic resin composition is injection molded to obtain a molded body having a thickness of 1 mm, and the molded body is measured with a thermal conductivity meter.
  • the molded body is obtained from the result of measurement in which a plurality of reference plates with known thermal conductivity, a molded body, and a box type probe are stacked in this order so that the flow direction of the injection molding and the heat ray are orthogonal to each other.
  • the thermal conductivity of can be calculated.
  • thermoplastic resin composition As a method for producing a thermoplastic resin composition, for example, a method in which a thermoplastic resin (A), pitch-based carbon fiber (B), and graphite (C) are dry-blended and then melt-kneaded; a molten thermoplastic resin (A ) To feed pitch-based carbon fiber (B) and graphite (C); thermoplastic resin (A) and graphite (C) are dry blended, and then thermoplastic resin (A) is melted to obtain a molten thermoplastic resin.
  • a method of supplying the pitch-based carbon fiber (B) to (A) is exemplified.
  • the dispersibility and mass average fiber length of the pitch-based carbon fiber (B) can be controlled, and the molded article has excellent mechanical properties and thermal conductivity.
  • Carbon fiber (B), method of supplying graphite (C), thermoplastic resin (A), graphite (C), dry blended thermoplastic resin (A), molten thermoplastic resin (A) A method of supplying the pitch-based carbon fiber (B) to is preferable. Specifically, after the thermoplastic resin (A) is supplied from the main feeder installed upstream of the extruder and melt-kneaded, the pitch-based carbon fiber (B) is supplied from the side feeder installed downstream of the extruder. That's fine.
  • the fiber length of the pitch-based carbon fiber (B) used for the production of the thermoplastic resin composition is preferably 2 mm or more and 20 mm or less, more preferably 3 mm or more and 10 mm or less, and more preferably 5 mm or more and 8 mm or less because quantitative supply is easy. Further preferred.
  • the mass average fiber length of the pitch-based carbon fibers (B) in the thermoplastic resin composition described above and the mass average fiber length of the pitch-based carbon fibers (B) in the molded body described later are the pitch-based carbon fibers (B). It can be adjusted by controlling the melt-kneading conditions such as the feed method, screw rotation speed, and extrusion amount.
  • the melt kneading for producing the thermoplastic resin composition may be performed using an extruder.
  • the extruder include a single screw extruder and a twin screw extruder, and a twin screw extruder is preferable.
  • the screw rotation speed of the extruder is preferably 100 rpm or more and 300 rpm or less.
  • the screw speed of the extruder is 100 rpm or more, the dispersibility of the pitch-based carbon fiber (B) is excellent.
  • breakage of the pitch-based carbon fiber (B) can be suppressed when the screw rotation speed of the extruder is 300 rpm or less.
  • the screw of the extruder is at least one kneading zone before and after the supply of the pitch-based carbon fiber (B).
  • the thermoplastic resin (A) is sufficiently melt-kneaded in the kneading zone before the supply of the pitch-based carbon fiber (B), and the thermoplastic resin in the molten state by the kneading zone after the supply of the pitch-based carbon fiber (B).
  • the resin (A) and the carbon fiber (B) are kneaded. By doing in this way, the dispersibility and mass average fiber length of pitch type carbon fiber (B) are controllable.
  • the melt kneading temperature may be set to a temperature not lower than the melting point of the thermoplastic resin (A) and not higher than the thermal decomposition temperature of the thermoplastic resin (A), and preferably 200 ° C. or higher and 350 ° C. or lower.
  • the melt kneading temperature is 200 ° C. or higher, the shear stress applied to the pitch-based carbon fiber (B) can be suppressed, and the mechanical properties of the molded body are excellent.
  • the melt kneading temperature is 350 ° C. or lower, the thermal decomposition of the thermoplastic resin (A) can be suppressed, and the mechanical properties of the molded article are excellent.
  • the molded product of the present invention contains the thermoplastic resin of the present invention.
  • the molded product of the present invention can be obtained by molding the thermoplastic resin of the present invention.
  • Examples of the molding method include injection molding and press molding, and injection molding is preferable.
  • the mass average fiber length of the pitch-based carbon fiber (B) in the molded body is preferably 0.1 mm or more and 0.3 mm or less, and more preferably 0.11 mm or more and 0.19 mm or less.
  • the mass average fiber length of the pitch-based carbon fiber (B) in the molded product is 0.1 mm or more, the molded product is excellent in mechanical properties and thermal conductivity.
  • the mass average fiber length of the pitch-based carbon fibers (B) in the molded body is 0.3 mm or less, the pitch-based carbon fibers (B) are easily filled up to the minute ends of the molded body.
  • the mass average fiber length in a molded object is smaller than the mass average fiber length in a thermoplastic resin composition from the breakage of the pitch-type carbon fiber (B) at the time of shaping
  • the maintenance ratio of the mass average fiber length is preferably 50% or more and 100% or less, and preferably 70% or more and 98 because the change in mechanical properties and thermal conductivity of the molded body is small even if it is repeatedly molded or recycled. % Or less is more preferable, and 90% or more and 95% or less is more preferable.
  • the bending strength of the molded body is preferably 150 MPa or more and 700 MPa or less, and more preferably 200 MPa or more and 500 MPa or less because the molded body can be thinned.
  • the bending elastic modulus of the molded body is preferably 20 GPa or more and 70 GPa or less, and more preferably 30 GPa or more and 60 GPa or less because the molded body can be thinned.
  • the bending strength and flexural modulus of the molded body are values measured in accordance with ISO178.
  • Charpy impact strength of the molded body has notches, since the cracking hardly molded article is obtained, preferably 2.0 kJ / m 2 or more 20 kJ / m 2 or less, and more is 3.0kJ / m 2 or more 15 kJ / m 2 or less preferable.
  • Charpy impact strength of the molded body without notch since the cracking hardly molded article is obtained, preferably 10 kJ / m 2 or more 80 kJ / m 2 or less, 15 kJ / m 2 or more 50 kJ / m 2 or less is more preferable.
  • the Charpy impact strength of the molded body is a value measured according to ISO179.
  • the notch is a V notch.
  • the tensile strength of the molded body is preferably 100 MPa or more and 300 MPa or less, and more preferably 150 MPa or more and 200 MPa or less, since a molded body that is difficult to break can be obtained.
  • the tensile strength of a molded object shall be the value measured based on ISO527.
  • the molded article of the present invention is excellent in mechanical properties and thermal conductivity, it can be suitably used for an in-vehicle camera casing, an electronic equipment casing, a high-intensity lamp component, a high-speed drive gear, and the like. Particularly suitable for the body.
  • thermoplastic resin compositions obtained in the examples and comparative examples are injected under the conditions of a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C. using an injection molding machine (model name “IS55”, manufactured by Toshiba Machine Co., Ltd.). Molding was performed to obtain a molded body (width 100 mm, length 100 mm, thickness 1 mm).
  • a thin wire that is the heat source of the box type probe is placed on a reference plate with a known thermal conductivity in the order of the obtained molded body and the box type probe so as to be perpendicular to the flow direction of the injection molding of the molded body.
  • Measurement was performed using a thermal conductivity meter (model name “QTM-500”, manufactured by Kyoto Electronics Industry Co., Ltd.). From the results of measurement using a plurality of reference plates, interpolation was performed such that the difference from the reference plate was zero, and the thermal conductivity of the molded body was calculated.
  • a thermal conductivity meter model name “QTM-500”, manufactured by Kyoto Electronics Industry Co., Ltd.
  • melt volume rate (MVR) measurement The melt volume rate (MVR) of the thermoplastic resin compositions obtained in the examples and comparative examples was measured using a melt flow index tester (model name “LABO-MI”, manufactured by Yasuda Seiki Seisakusho Co., Ltd.) and ISO1133-1. Measured according to The thermoplastic resin composition using the thermoplastic resin (A-1) which is a polyamide resin is 21N at 300 ° C., and the thermoplastic resin composition using the thermoplastic resin (A-2) which is a polyphenylene sulfide resin. The product was 21 N at 330 ° C., and the thermoplastic resin composition using the thermoplastic resin (A-3) which is a polypropylene resin was 21 N at 230 ° C.
  • thermoplastic resin compositions obtained in the examples and comparative examples are injected under the conditions of a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C. using an injection molding machine (model name “IS55”, manufactured by Toshiba Machine Co., Ltd.). Molding was performed to obtain a molded body (width 10 mm, length 80 mm, thickness 4 mm). The obtained molded body was subjected to a three-point bending test in accordance with ISO178, and the bending strength and bending elastic modulus were measured.
  • thermoplastic resin compositions obtained in the examples and comparative examples are injected under the conditions of a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C. using an injection molding machine (model name “IS55”, manufactured by Toshiba Machine Co., Ltd.). Molding was performed to obtain a molded body (width 10 mm, length 80 mm, thickness 4 mm).
  • the obtained molded product was subjected to a Charpy impact test in accordance with ISO 179, and the Charpy impact strength of the molded product without notch was measured.
  • a V-notch was imparted to the obtained molded body, and a Charpy impact test was performed according to ISO 179, and the Charpy impact strength of the molded body with a notch was measured.
  • thermoplastic resin compositions obtained in the examples and comparative examples are injected under the conditions of a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C. using an injection molding machine (model name “IS55”, manufactured by Toshiba Machine Co., Ltd.). Molding was performed to obtain a dumbbell-shaped compact (parallel portion width 10 mm, length 80 mm, thickness 4 mm). The obtained molded body was subjected to a tensile test according to ISO 527, and the tensile strength was measured.
  • thermoplastic resin compositions obtained in the examples and comparative examples are heated to 600 ° C. in an air atmosphere for 3 hours to remove the thermoplastic resin (A) and the like by thermal decomposition, and any 100 remaining carbon fibers. The fiber length was measured with an optical microscope, and the mass average fiber length was calculated.
  • the thermoplastic resin compositions obtained in the examples and comparative examples are injected under the conditions of a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C. using an injection molding machine (model name “IS55”, manufactured by Toshiba Machine Co., Ltd.). Molding was performed to obtain a molded body (width 10 mm, length 80 mm, thickness 4 mm). The obtained molded body was heated at 600 ° C. for 3 hours in an air atmosphere to remove the thermoplastic resin (A) and the like by pyrolysis, and the length of any 100 remaining carbon fibers was measured with an optical microscope. The mass average fiber length was calculated.
  • Thermoplastic resin (A-1) Polyamide resin (poly (m-xylene adipamide) (trade name “MX Nylon 6007”, manufactured by Mitsubishi Gas Chemical Co., Ltd.) 88% by mass, nylon 66 (trade name “E2000SL- 1 ", manufactured by Unitika Ltd.) 10% by mass, and a resin composition containing 2% by mass of other additives (including mold release agent, nucleating agent and carbon black).
  • Thermoplastic resin (A-2) Polyphenylene sulfide resin (trade name “DSP C-115”, manufactured by DIC Corporation, cross-linked polyphenylene sulfide resin)
  • Thermoplastic resin (A-3) Polypropylene resin (trade name “NOVATEC PP MA04A”, manufactured by Nippon Polypro Co., Ltd.) 95%, Modified polypropylene resin (trade name “YUMEX 1001”, manufactured by Sanyo Chemical Industries, Ltd.) 5 % Resin composition.
  • Thermoplastic resin (A-4) Polybutylene terephthalate resin (trade name “Novaduran 5008”, manufactured by Mitsubishi Engineering Plastics)
  • Thermoplastic resin (A-5) Polycarbonate resin (trade name “Novalex 7020IR”, manufactured by Mitsubishi Engineering Plastics) 75.9% by mass, polybutylene terephthalate resin (trade name “Novaduran 5008”, Mitsubishi Engineering Plastics) 19.0% by mass), impact modifier (trade name “METABREN S2006”, manufactured by Mitsubishi Rayon Co., Ltd.) 4.7% by mass, and 0.4% by mass of antioxidant were blended. Resin composition.
  • Pitch-based carbon fiber (B-1) Pitch-based carbon fiber (trade name “DIALEAD K6371T”, manufactured by Mitsubishi Plastics, fiber length 6 mm, thermal conductivity 140 W / mK, tensile elastic modulus 640 GPa, tensile strength 2600 MPa)
  • Pitch-based carbon fiber (B-2) Pitch-based carbon fiber (trade name “DIALEAD K223HE”, manufactured by Mitsubishi Plastics, fiber length 6 mm, thermal conductivity 550 W / mK, tensile elastic modulus 900 GPa, tensile strength 3800 MPa)
  • Example 1 Using the same direction twin screw extruder (model name “TEX44 ⁇ II”, manufactured by Nippon Steel Works, Ltd.) having main raw material feeder and side feeder, 60 parts by mass of thermoplastic resin (A-1), pitch-based carbon fiber 35 parts by mass of (B-1) and 5 parts by mass of graphite (C-1) were melt-kneaded to obtain a thermoplastic resin composition. The evaluation results are shown in Table 2.
  • thermoplastic resin composition was obtained in the same manner as in Example 1 except that the formulation was changed as shown in Table 1. The evaluation results are shown in Table 2.
  • the feeder of the extruder was installed with the main raw material feeder, the side feeder 1 and the side feeder 2 from the upstream, and the kneading zone. Are arranged at two places between the main raw material feeder and the side feeder 1, one place between the side feeder 1 and the side feeder 2, and one place between the side feeder 2 and the die, for a total of three places.
  • the extrusion conditions were a screw rotation speed of 200 rpm and a discharge amount of 80 kg / hour.
  • the cylinder temperature was 300 ° C. when the thermoplastic resin (A) was a polyamide resin, and 330 ° C.
  • thermoplastic resin (A) was a polyphenylene sulfide resin. Further, in each of Examples 1 to 7 and Comparative Examples 1 to 4, the thermoplastic resin (A) and the graphite (C) are supplied from the main raw material feeder, and the pitch-based carbon fiber (B) is supplied. Side feeder 2 and PAN-based carbon fiber (D) were supplied from side feeder 1.
  • Example 8 Using a same-direction twin screw extruder (model name “PCM-30”, manufactured by Ikegai Co., Ltd.) having a main raw material feeder and a side feeder, 50 parts by mass of a thermoplastic resin (A-4), pitch-based carbon fiber (B-3) 35 parts by mass and 5 parts by mass of graphite (C-1) were melt-kneaded to obtain pellets. On the other hand, 50 parts by mass of thermoplastic resin (A-4), PAN-based carbon fiber (D-2) Ten parts by mass and 5 parts by mass of graphite (C-1) were melt-kneaded to obtain pellets, and these two types of pellets were dry blended at a ratio of 7: 2 to obtain a thermoplastic resin composition.
  • Example 9 Using a co-directional twin screw extruder (model name “PCM-30”, manufactured by Ikegai Co., Ltd.) having a main raw material feeder and a side feeder, 50 parts by mass of a thermoplastic resin (A-5), pitch-based carbon fiber (B-3) 35 parts by mass and 5 parts by mass of graphite (C-1) were melt-kneaded to obtain pellets. On the other hand, 50 parts by mass of thermoplastic resin (A-5), PAN-based carbon fiber (D-2) Ten parts by mass and 5 parts by mass of graphite (C-1) were melt-kneaded to obtain pellets, and these two types of pellets were dry blended at a ratio of 7: 2 to obtain a thermoplastic resin composition.
  • PCM-30 co-directional twin screw extruder
  • Example 10 Using a same-direction twin screw extruder (model name “PCM-30”, manufactured by Ikegai Co., Ltd.) having a main raw material feeder and a side feeder, 50 parts by mass of a thermoplastic resin (A-2), pitch-based carbon fiber (B-3) 35 parts by mass and 5 parts by mass of graphite (C-1) were melt-kneaded to obtain pellets. On the other hand, 50 parts by mass of thermoplastic resin (A-2), PAN-based carbon fiber (D-1) Ten parts by mass and 5 parts by mass of graphite (C-1) were melt-kneaded to obtain pellets, and these two types of pellets were dry blended at a ratio of 7: 2 to obtain a thermoplastic resin composition.
  • the feeder of the extruder is installed from the upstream with the main raw material feeder and the side feeder, and the kneading zone is located at two locations between the main raw material feeder and the side feeder. A total of three locations were arranged between the side feeder and the die.
  • the extrusion conditions were a screw rotation speed of 200 rpm and a discharge rate of 15 kg / hour.
  • the cylinder temperature is 250 ° C. when the thermoplastic resin (A) is a polybutylene terephthalate resin (A-4), and 270 ° C. when the thermoplastic resin (A) is a polycarbonate / polybutylene terephthalate alloy resin (A-5).
  • the thermoplastic resin (A) and the graphite (C) were supplied from the main raw material feeder, and the pitch type carbon fiber (B) and the PAN type carbon fiber (D) were supplied from the side feeder.
  • thermoplastic resin compositions obtained in Examples 1 to 10 were excellent in moldability and excellent in mechanical properties and thermal conductivity of the molded body.
  • the thermoplastic resin composition obtained in Comparative Example 1 had a low content of pitch-based carbon fiber (B) and was inferior in thermal conductivity of the molded body.
  • the thermoplastic resin composition obtained in Comparative Example 2 used PAN-based carbon fibers instead of pitch-based carbon fibers (B), it was inferior in moldability and inferior in thermal conductivity of the molded body.
  • thermoplastic resin composition obtained in Comparative Example 3 did not use graphite (C), the thermal conductivity of the molded article was inferior.
  • graphite (C) was bulky, supply failure occurred in the feeder, and a thermoplastic resin composition could not be obtained.
  • the present invention can provide a thermoplastic resin composition excellent in the thermal conductivity of the molded body and the mechanical properties of the molded body.

Abstract

成形体の熱伝導性及び成形体の機械的特性に優れた熱可塑性樹脂組成物を提供する。熱可塑性樹脂(A)、ピッチ系炭素繊維(B)及び黒鉛(C)を含む熱可塑性樹脂組成物であって、前記黒鉛(C)の含有率が、前記熱可塑性樹脂組成物100質量%中、1質量%以上20質量%以下であり、前記熱可塑性樹脂組成物を成形した厚さ1mmの成形体の、熱線法で測定した熱伝導率が、10W/mK以上である熱可塑性樹脂組成物。溶融状態の熱可塑性樹脂(A)に、質量平均繊維長2mm以上20mm以下のピッチ系炭素繊維(B)を供給する前記熱可塑性樹脂組成物の製造方法。前記熱可塑性樹脂組成物を含む成形体。

Description

熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体
 本発明は、熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体に関する。
 本願は、2015年10月16日に、日本出願された特願2015-204141号に基づき優先権を主張し、その内容をここに援用する。
 熱可塑性樹脂を成形して得られる成形体の熱伝導性や機械的特性を高めるため、熱可塑性樹脂に炭素繊維を配合することが知られている。
 例えば、特許文献1には、熱可塑性樹脂にPAN系炭素繊維と黒鉛とを配合した熱可塑性樹脂組成物が開示されている。また、特許文献2及び3には、熱可塑性樹脂にピッチ系炭素繊維と黒鉛とを配合した熱可塑性樹脂組成物が開示されている。更に、特許文献4には、熱可塑性樹脂にピッチ系炭素繊維を配合した熱可塑性樹脂組成物が開示されている。
特開2000-095947号公報 特開2006-265441号公報 特開2003-049081号公報 特開2015-120358号公報
 しかしながら、特許文献1に開示されている熱可塑性樹脂組成物は、炭素繊維としてPAN系炭素繊維のみを配合しているため、成形体の熱伝導性に劣る。また、特許文献2に開示されている熱可塑性樹脂組成物は、ピッチ系炭素繊維の含有率が低いため、成形体の熱伝導性に劣る。また、特許文献3に開示されている熱可塑性樹脂組成物は、黒鉛の含有率が高いため、成形加工性に劣る。更に、特許文献4に開示されている熱可塑性樹脂組成物は、黒鉛を含まないため、成形体の熱伝導性に劣る。
 [1] 熱可塑性樹脂(A)、ピッチ系炭素繊維(B)及び黒鉛(C)を含む熱可塑性樹脂組成物であって、前記ピッチ系炭素繊維(B)の含有率が、前記熱可塑性樹脂組成物100質量%中、30質量%以上であり、前記黒鉛(C)の含有率が、前記熱可塑性樹脂組成物100質量%中、1質量%以上20質量%以下である、熱可塑性樹脂組成物。
 [2] 前記黒鉛(C)の含有率が、前記熱可塑性樹脂組成物100質量%中、2質量%以上12質量%以下である、[1]に記載の熱可塑性樹脂組成物。
 [3] 前記熱可塑性樹脂組成物中のピッチ系炭素繊維(B)の質量平均繊維長が、0.1mm以上0.3mm以下である、[1]又は[2]に記載の熱可塑性樹脂組成物。
 [4] 前記ピッチ系炭素繊維(B)の熱伝導率が、400W/mK以下である、[1]~[3]のいずれかに記載の熱可塑性樹脂組成物。
 [5] 前記熱可塑性樹脂(A)が、ポリアミド樹脂である、[1]~[4]のいずれかに記載の熱可塑性樹脂組成物。
 [6] 前記ポリアミド樹脂が、ポリ(m-キシレンアジパミド)である、[5]に記載の熱可塑性樹脂組成物。
 [7] 更に、PAN系炭素繊維(D)を含む、[1]~[6]のいずれかに記載の熱可塑性樹脂組成物。
 [8] 前記熱可塑性樹脂組成物を成形した厚さ1mmの成形体の、熱線法で測定した熱伝導率が、10W/mK以上である、[1]~[7]のいずれかに記載の熱可塑性樹脂組成物。
 [9] 前記熱可塑性樹脂組成物を成形した成形体の、ISO527に準拠して測定した引張強さが、100MPa以上である、[1]~[8]のいずれかに記載の熱可塑性樹脂組成物。
 [10] 溶融状態の熱可塑性樹脂(A)に、質量平均繊維長2mm以上20mm以下のピッチ系炭素繊維(B)を供給する、[1]~[9]のいずれかに記載の熱可塑性樹脂組成物の製造方法。
 [11] [1]~[9]のいずれかに記載の熱可塑性樹脂組成物を成形した、成形体。
 [12] [10]に記載の製造方法により得られた熱可塑性樹脂組成物を射出成形する、成形体の製造方法。
 本発明は、成形体の熱伝導性及び成形体の機械的特性に優れた熱可塑性樹脂組成物を提供することにある。
 (熱可塑性樹脂(A))
 本発明の熱可塑性樹脂組成物は、熱可塑性樹脂(A)を含む。
 熱可塑性樹脂(A)としては、例えば、ポリプロピレン樹脂、ポリアミド樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂等の結晶性樹脂;ポリカーボネート樹脂、ABS樹脂、アクリル樹脂等の非晶性樹脂等が挙げられる。これらの熱可塑性樹脂(A)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの熱可塑性樹脂(A)の中でも、成形体の機械的特性、耐熱性に優れることから、結晶性樹脂が好ましく、ポリアミド樹脂、ポリフェニレンサルファイド樹脂がより好ましく、ポリアミド樹脂が更に好ましい。
 ポリアミド樹脂としては、例えば、ナイロン6、ナイロン66、ナイロン69、ナイロン610、ナイロン612、ナイロン46、ナイロン11、ナイロン12、ポリ(ヘキサメチレンテレフタラミド)、ポリ(ヘキサメチレンイソフタラミド)、ポリ(m-キシレンアジパミド)等が挙げられる。これらのポリアミド樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのポリアミド樹脂の中でも、熱可塑性樹脂組成物の成形性、成形体の機械的特性に優れることから、ナイロン6、ナイロン66、ポリ(m-キシレンアジパミド)が好ましく、ポリ(m-キシレンアジパミド)がより好ましい。
 熱可塑性樹脂組成物中の熱可塑性樹脂(A)の含有率は、熱可塑性樹脂組成物100質量%中、39質量%以上69質量%以下が好ましく、43質量%以上65質量%以下がより好ましく、47質量%以上61質量%以下が更に好ましい。熱可塑性樹脂組成物中の熱可塑性樹脂(A)の含有率が39質量%以上であると、熱可塑性樹脂組成物の成形性に優れる。また、熱可塑性樹脂組成物中の熱可塑性樹脂(A)の含有率が69質量%以下であると、ピッチ系炭素繊維(B)及び黒鉛(C)を十分配合できるため、成形体の熱伝導性に優れる。
 (ピッチ系炭素繊維(B))
 本発明の熱可塑性樹脂組成物は、ピッチ系炭素繊維(B)を含む。
 ピッチ系炭素繊維とは、メソフェーズピッチ即ち石油タール、石炭タール等を処理して生じた部分的に液晶構造を示す樹脂、又は、人工的に合成されたメソフェーズピッチを紡糸して、不融化して、炭化させて生成した、黒鉛結晶構造が繊維軸方向に高度に発達した実質的に炭素のみからなるフィラメント繊維を主たる成分として構成される繊維の集合体であることを意味する。
 ピッチ系炭素繊維は、熱伝導性付与の効果に優れる。また、ピッチ系炭素繊維は、弾性率が高く熱膨張率が低いといった利点がある。
 ピッチ系炭素繊維(B)の形態は、例えば、長繊維、チョップドファイバー、ミルドファイバー等が挙げられる。これらのピッチ系炭素繊維(B)の形態は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのピッチ系炭素繊維(B)の形態の中でも、取り扱い性に優れ、質量平均繊維長を容易に制御することができることから、チョップドファイバーが好ましい。
 ピッチ系炭素繊維(B)の市販品としては、例えば、K63712(引張弾性率640GPa、熱伝導率140W/mK)、K13312(引張弾性率420GPa)等のダイアリード(商品名、三菱樹脂(株)製)の長繊維シリーズ;K223SE(引張弾性率185GPa、熱伝導率20W/mK)、K223Y1(引張弾性率50GPa、熱伝導率5W/mK未満)、K223HE(引張弾性率900GPa、熱伝導率550W/mK)、K6371T(引張弾性率640GPa、熱伝導率140W/mK)等のダイアリード(商品名、三菱樹脂(株)製)のチョップドファイバーシリーズ;K223HM(引張弾性率900GPa、熱伝導率550W/mK)、K6371M(引張弾性率640GPa、熱伝導率140W/mK)等のミルドファイバーシリーズ等が挙げられる。
 ピッチ系炭素繊維(B)の直径は、4μm以上15μm以下が好ましく、8μm以上12μm以下がより好ましい。ピッチ系炭素繊維(B)の直径が4μm以上であると、炭素繊維を容易に製造することができる。また、ピッチ系炭素繊維(B)の直径が15μm以下であると、取り扱い性に優れる。
 尚、本明細書において、ピッチ系炭素繊維(B)の直径は、熱可塑性樹脂組成物又は成形体を、空気雰囲気下で3時間600℃に加熱して熱可塑性樹脂(A)等を熱分解により除去し、残存したピッチ系炭素繊維(B)10本の直径を電子顕微鏡にて測定し、その平均値とする。ピッチ系炭素繊維(B)の直径は、ピッチ系炭素繊維(B)を構成するフィラメント繊維の最大フェレ径とする。
 熱可塑性樹脂組成物中のピッチ系炭素繊維(B)の含有率は、熱可塑性樹脂組成物100質量%中、30質量%以上60質量%以下が好ましく、32質量%以上55質量%以下がより好ましく、34質量%以上50質量%以下が更に好ましい。熱可塑性樹脂組成物中のピッチ系炭素繊維(B)の含有率が30質量%以上であると、成形体の熱伝導性に優れる。また、熱可塑性樹脂組成物中のピッチ系炭素繊維(B)の含有率が60質量%以下であると、熱可塑性樹脂組成物の成形性に優れる。
 (黒鉛(C))
 本発明の熱可塑性樹脂組成物は、黒鉛(C)を含む。
 黒鉛(C)としては、例えば、鱗片状黒鉛、人造黒鉛、膨張黒鉛等が挙げられる。これらの黒鉛(C)は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの黒鉛(C)の中でも、熱可塑性樹脂組成物中の分散性に優れることから、膨張黒鉛が好ましく、膨張化後の膨張黒鉛がより好ましい。
 熱可塑性樹脂組成物中の黒鉛(C)の含有率は、熱可塑性樹脂組成物100質量%中、1質量%以上20質量%以下であり、2質量%以上12質量%以下が好ましく、3質量%以上8質量%以下がより好ましい。熱可塑性樹脂組成物中の黒鉛(C)の含有率が1質量%以上であると、成形体の熱伝導性に優れる。また、熱可塑性樹脂組成物中の黒鉛(C)の含有率が20質量%以下であると、嵩高い紛体である膨張化後の膨張黒鉛であっても生産性を悪化させることなく配合することができ、黒鉛(C)の成形体からの脱落を抑制することができる。
 熱可塑性樹脂組成物中のピッチ系炭素繊維(B)と黒鉛(C)との合計含有率は、熱可塑性樹脂組成物100質量%中、31質量%以上61質量%以下が好ましく、34質量%以上57質量%以下がより好ましく、37質量%以上53質量%以下が更に好ましい。熱可塑性樹脂組成物中のピッチ系炭素繊維(B)と黒鉛(C)との合計含有率が31質量%以上であると、成形体の熱伝導性に優れる。また、熱可塑性樹脂組成物中のピッチ系炭素繊維(B)と黒鉛(C)との合計含有率が61質量%以下であると、熱可塑性樹脂組成物の成形性に優れる。
 本発明の熱可塑性樹脂組成物は、熱可塑性樹脂(A)、ピッチ系炭素繊維(B)、黒鉛(C)以外に、必要に応じて、PAN系炭素繊維(D)、他の添加剤(E)を含んでもよい。
 PAN系炭素繊維(D)は、アクリロニトリルを主成分として重合させたポリアクリルニトリル系樹脂からなる繊維を、不融化させて、更に炭化させて生成した実質的に炭素のみからなるフィラメント繊維を主たる成分として構成される繊維の集合体であることを意味する。
 PAN系炭素繊維は、機械的特性付与の効果に優れる。
 PAN系炭素繊維(D)の形態は、例えば、長繊維、チョップドファイバー、ミルドファイバー等が挙げられる。これらのPAN系炭素繊維(D)の形態は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのPAN系炭素繊維(D)の形態の中でも、取り扱い性に優れ、質量平均繊維長を容易に制御することができることから、チョップドファイバーが好ましい。
 PAN系炭素繊維(D)の市販品としては、例えば、TR06U、TR06UL、TR06NE、TR06NL、MR06NE、MR03NE等のパイロフィル(商品名、三菱レイヨン(株)製)のチョップドファイバーシリーズ等が挙げられる。
 PAN系炭素繊維(D)の直径は、1μm~20μmが好ましく、4μm~15μmがより好ましく、5μm~8μmが更に好ましい。PAN系炭素繊維(D)の直径が1μm以上であると、PAN系炭素繊維(D)の比表面積を小さくすることができ、樹脂ペレットの成形性に優れる。また、PAN系炭素繊維(D)の直径が20μm以下であると、取り扱い性に優れ、PAN系炭素繊維(D)のアスペクト比を大きくすることができ、成形体の機械特性に優れる。
 尚、本明細書において、PAN系炭素繊維(D)の直径は、熱可塑性樹脂組成物又は成形体を、空気雰囲気下で3時間600℃に加熱して熱可塑性樹脂(A)等を熱分解により除去し、残存したPAN系炭素繊維(D)10本の直径を電子顕微鏡にて測定し、その平均値とする。PAN系炭素繊維(D)の直径は、PAN系炭素繊維(D)を構成するフィラメント繊維の最大フェレ径とする。
 熱可塑性樹脂組成物中のPAN系炭素繊維(D)の含有率は、熱可塑性樹脂組成物100質量%中、0質量%以上30質量%以下が好ましく、1質量%以上20質量%以下がより好ましく、2質量%以上15質量%以下が好ましい。PAN系炭素繊維(D)の含有率が1質量%以上であると、成形体の機械特性に優れる。また、PAN系炭素繊維(D)の含有率が30質量%以下であると、熱可塑性樹脂組成物の成形性に優れる。
 他の添加剤(E)としては、例えば、着色剤、酸化防止剤、金属不活性剤、カーボンブラック、造核剤、離型剤、滑剤、帯電防止剤、光安定剤、紫外線吸収剤、PAN系炭素繊維、ガラス繊維、無機フィラー、耐衝撃性改質剤、溶融張力向上剤、難燃剤、可塑剤等が挙げられる。これらの他の添加剤(E)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 熱可塑性樹脂組成物中の他の添加剤(E)の含有率は、熱可塑性樹脂組成物や成形体の本来の性能を損なわないことから、熱可塑性樹脂組成物100質量%中、0質量%以上20質量%以下が好ましく、0質量%以上10質量%以下がより好ましく、0質量%以上5質量%以下が更に好ましい。
 (熱可塑性樹脂組成物)
 ピッチ系炭素繊維(B)及び黒鉛(C)は、いずれも熱伝導率が高いが、ピッチ系炭素繊維(B)と黒鉛(C)の両者を配合することで、熱伝導パスを形成しやすくなり、より高い熱伝導率の熱可塑性樹脂組成物を得ることができる。
 黒鉛(C)を配合することなくピッチ系炭素繊維(B)のみで高い熱伝導率を達成する場合は、ピッチ系炭素繊維(B)の含有率を高くし、かつ、ピッチ系炭素繊維(B)の質量平均繊維長を長くすることが必要であると考えられるが、熱可塑性樹脂組成物や成形体を製造する際にピッチ系炭素繊維(B)の折損が起こりやすく、成形方法等が大きく制限されてしまう。
 また、ピッチ系炭素繊維(B)を配合することなく黒鉛(C)のみで高い熱伝導率を達成する場合は、黒鉛(C)の含有率を高くすることが必要であると考えられるが、黒鉛(C)の含有率が高い熱可塑性樹脂組成物は、粘度が高く、成形性に劣る。
 熱可塑性樹脂組成物中のピッチ系炭素繊維(B)の質量平均繊維長は、0.1mm以上0.3mm以下が好ましく、0.12mm以上0.2mm以下がより好ましい。熱可塑性樹脂組成物中のピッチ系炭素繊維(B)の質量平均繊維長が0.1mm以上であると、成形体の機械的特性、熱伝導性に優れる。また、熱可塑性樹脂組成物中のピッチ系炭素繊維(B)の質量平均繊維長が0.3mm以下であると、ピッチ系炭素繊維(B)が成形体の微細な端部まで充填されやすい。
 尚、本明細書において、ピッチ系炭素繊維(B)の質量平均繊維長は、熱可塑性樹脂組成物又は成形体を、空気雰囲気下で3時間600℃に加熱して熱可塑性樹脂(A)等を熱分解により除去し、残存したピッチ系炭素繊維(B)100本の繊維長を光学顕微鏡で測定し、その平均値とする。質量平均繊維長は、繊維長をLとしたとき、下式(1)で算出される。
  質量平均繊維長=ΣL/ΣL ・・・(1)
 熱可塑性樹脂組成物中のPAN系炭素繊維(D)の質量平均繊維長は、0.1mm以上0.9mm以下が好ましく、0.12mm以上0.25mm以下がより好ましい。熱可塑性樹脂組成物中のPAN系炭素繊維(D)の質量平均繊維長が0.1mm以上であると、成形体の機械的特性に優れる。また、熱可塑性樹脂組成物中のPAN系炭素繊維(D)が0.9mm以下であると、成形体の細部まで炭素繊維(B)が充填されやすい。
 尚、本明細書において、PAN系炭素繊維(D)の質量平均繊維長は、熱可塑性樹脂組成物又は成形体を、空気雰囲気下で3時間600℃に加熱して熱可塑性樹脂(A)等を熱分解により除去し、残存したPAN系炭素繊維(D)100本の繊維長を光学顕微鏡にて測定し、その平均値とする。質量平均繊維長は、繊維長をLとしたとき、前記式(1)で算出される。
 熱可塑性樹脂組成物のメルトボリュームレイト(MVR)は、熱可塑性樹脂組成物の成形性に優れることから、3cm/10分以上80cm/10分以下が好ましく、5cm/10分以上30cm/10分以下がより好ましい。
 尚、本明細書において、メルトボリュームレイト(MVR)は、熱可塑性樹脂(A)がポリアミド樹脂であれば300℃で21N、ポリブチレンテレフタレート樹脂であれば250℃で21N、ポリフェニレンサルファイド樹脂であれば330℃で21N、ポリカーボネート樹脂であれば300℃21N、他の樹脂であればISO1133-1附属書B表1に準拠して測定した値とする。
 熱可塑性樹脂組成物の熱伝導率は、10W/mK以上50W/mK以下が好ましく、12W/mK以上30W/mK以下がより好ましい。熱可塑性樹脂組成物の熱伝導率が10W/mK以上であると、熱伝導性に優れ、成形体が局所的に高温となることを避けることができる。また、熱可塑性樹脂組成物の熱伝導率が50W/mK以下であると、ピッチ系炭素繊維(B)や黒鉛(C)の含有率を抑制することができ、成形体の機械的特性に優れる。
 尚、本明細書において、熱可塑性樹脂組成物の熱伝導率は、熱線法で測定した値とする。具体的には、熱可塑性樹脂組成物を射出成形し、厚さ1mmの成形体を得て、その成形体を熱伝導率計により測定する。ボックス式プローブを用いる場合、複数の熱伝導率既知のリファレンスプレート、成形体、ボックス式プローブの順に、成形体の射出成形の流動方向と熱線が直交するように重ねて測定した結果から、成形体の熱伝導率を算出することができる。
 (熱可塑性樹脂組成物の製造方法)
 熱可塑性樹脂組成物の製造方法としては、例えば、熱可塑性樹脂(A)、ピッチ系炭素繊維(B)、黒鉛(C)をドライブレンドした後に溶融混練する方法;溶融状態の熱可塑性樹脂(A)にピッチ系炭素繊維(B)、黒鉛(C)を供給する方法;熱可塑性樹脂(A)、黒鉛(C)をドライブレンドした後に熱可塑性樹脂(A)溶融し、溶融状態の熱可塑性樹脂(A)にピッチ系炭素繊維(B)を供給する方法等が挙げられる。
 特に、ピッチ系炭素繊維(B)の分散性と質量平均繊維長を制御することができ、成形体の機械的特性、熱伝導性に優れることから、溶融状態の熱可塑性樹脂(A)にピッチ系炭素繊維(B)、黒鉛(C)を供給する方法、熱可塑性樹脂(A)、黒鉛(C)をドライブレンドした後に熱可塑性樹脂(A)溶融し、溶融状態の熱可塑性樹脂(A)にピッチ系炭素繊維(B)を供給する方法が好ましい。具体的には、押出機の上流に設置したメインフィーダーから熱可塑性樹脂(A)を供給して溶融混練した後に、押出機の下流に設置したサイドフィーダーからピッチ系炭素繊維(B)を供給すればよい。
 また、PAN系炭素繊維(D)を配合する場合、押出機の上流に設置したメインフィーダーから熱可塑性樹脂(A)を供給して溶融混練した後に、押出機の下流に設置した第1サイドフィーダーからPAN系炭素繊維(D)を供給し、第1サイドフィーダーの下流に設置した第2サイドフィーダーからピッチ系炭素繊維(B)を供給することが好ましい。
 熱可塑性樹脂組成物の製造に用いるピッチ系炭素繊維(B)の繊維長は、定量供給が容易であることから、2mm以上20mm以下が好ましく、3mm以上10mm以下がより好ましく、5mm以上8mm以下が更に好ましい。
 前述した熱可塑性樹脂組成物中のピッチ系炭素繊維(B)の質量平均繊維長や後述する成形体中のピッチ系炭素繊維(B)の質量平均繊維長は、ピッチ系炭素繊維(B)のフィード方法、スクリュー回転数、押出量等の溶融混練条件を制御することにより調整することができる。
 熱可塑性樹脂組成物を製造するための溶融混練は、押出機を用いればよい。
 押出機としては、例えば、単軸押出機、二軸押出機等が挙げられ、二軸押出機が好ましい。
 同方向二軸押出機の場合、押出機のスクリュー回転数は、100rpm以上300rpm以下が好ましい。押出機のスクリュー回転数が100rpm以上であると、ピッチ系炭素繊維(B)の分散性に優れる。また、押出機のスクリュー回転数が300rpm以下であると、ピッチ系炭素繊維(B)の折損を抑制することができる。
 押出機のスクリューは、溶融状態の熱可塑性樹脂(A)にピッチ系炭素繊維(B)を供給する方法の場合、ピッチ系炭素繊維(B)の供給前後に、それぞれ1箇所以上のニーディングゾーンを設けたものが好ましい。即ち、ピッチ系炭素繊維(B)の供給前のニーディングゾーンにより熱可塑性樹脂(A)を十分に溶融混練し、ピッチ系炭素繊維(B)の供給後のニーディングゾーンにより溶融状態の熱可塑性樹脂(A)と炭素繊維(B)とを混練する。このようにすることで、ピッチ系炭素繊維(B)の分散性と質量平均繊維長を制御することができる。
 溶融混練温度は、熱可塑性樹脂(A)の融点以上、熱可塑性樹脂(A)の熱分解温度以下の温度に設定すればよく、200℃以上350℃以下が好ましい。溶融混練温度が200℃以上であると、ピッチ系炭素繊維(B)にかかる剪断応力を抑制することができ、成形体の機械的特性に優れる。また、溶融混練温度が350℃以下であると、熱可塑性樹脂(A)の熱分解を抑制することができ、成形体の機械的特性に優れる。
 本発明の成形体は、本発明の熱可塑性樹脂を含む。
 本発明の成形体は、本発明の熱可塑性樹脂を成形することで得られる。
 成形方法としては、例えば、射出成形、プレス成形等が挙げられ、射出成形が好ましい。
 成形体中のピッチ系炭素繊維(B)の質量平均繊維長は、0.1mm以上0.3mm以下が好ましく、0.11mm以上0.19mm以下がより好ましい。成形体中のピッチ系炭素繊維(B)の質量平均繊維長が0.1mm以上であると、成形体の機械的特性、熱伝導性に優れる。また、成形体中のピッチ系炭素繊維(B)の質量平均繊維長が0.3mm以下であると、ピッチ系炭素繊維(B)が成形体の微細な端部まで充填されやすい。
 一般的に、成形体中の質量平均繊維長は、成形時のピッチ系炭素繊維(B)の折損から、熱可塑性樹脂組成物中の質量平均繊維長よりも小さい。
 質量平均繊維長の維持率は、繰り返し成形したりリサイクルしたりしても、成形体の機械的特性や熱伝導性の変化が小さいことから、50%以上100%以下が好ましく、70%以上98%以下がより好ましく、90%以上95%以下が更に好ましい。
 成形体の曲げ強さは、成形体の薄肉化が可能であることから、150MPa以上700MPa以下が好ましく、200MPa以上500MPa以下がより好ましい。
 成形体の曲げ弾性率は、成形体の薄肉化が可能であることから、20GPa以上70GPa以下が好ましく、30GPa以上60GPa以下がより好ましい。
 尚、本明細書において、成形体の曲げ強さ、曲げ弾性率は、ISO178準拠して測定した値とする。
 ノッチありの成形体のシャルピー衝撃強度は、割れにくい成形体が得られることから、2.0kJ/m以上20kJ/m以下が好ましく、3.0kJ/m以上15kJ/m以下がより好ましい。
 ノッチなしの成形体のシャルピー衝撃強度は、割れにくい成形体が得られることから、10kJ/m以上80kJ/m以下が好ましく、15kJ/m以上50kJ/m以下がより好ましい。
 尚、本明細書において、成形体のシャルピー衝撃強度は、ISO179準拠して測定した値とする。また、ノッチは、Vノッチとする。
 成形体の引張強さは、割れにくい成形体が得られることから、100MPa以上300MPa以下が好ましく、150MPa以上200MPa以下がより好ましい。
 尚、本明細書において、成形体の引張強さは、ISO527準拠して測定した値とする。
 本発明の成形体は、機械的特性及び熱伝導性に優れることから、車載カメラ筐体、電子機器の筐体、高輝度ランプ部品、高速駆動ギヤ等に好適に用いることができ、車載カメラ筐体に特に好適である。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (熱伝導率測定)
 実施例・比較例で得られた熱可塑性樹脂組成物を、射出成形機(機種名「IS55」、東芝機械(株)製)を用い、シリンダー温度300℃、金型温度80℃の条件で射出成形を行い、成形体(幅100mm、長さ100mm、厚さ1mm)を得た。
 熱伝導率既知のリファレンスプレート上に、得られた成形体、ボックス式プローブの順に、ボックス式プローブの熱源である細線を成形体の射出成形の流動方向と直交するように重ねて配置し、迅速熱伝導率計(機種名「QTM-500」、京都電子工業(株)製)を用いて測定した。
 複数のリファレンスプレートを用いて測定した結果から、リファレンスプレートとの差がゼロになるように内挿し、その成形体の熱伝導率を算出した。
 (メルトボリュームレイト(MVR)測定)
 実施例・比較例で得られた熱可塑性樹脂組成物のメルトボリュームレイト(MVR)を、メルトフローインデックステスター(機種名「LABO-MI」、(株)安田精機製作所製)を用い、ISO1133-1に準拠して測定した。
 尚、ポリアミド樹脂である熱可塑性樹脂(A-1)を用いた熱可塑性樹脂組成物については、300℃で21N、ポリフェニレンサルファイド樹脂である熱可塑性樹脂(A-2)を用いた熱可塑性樹脂組成物については、330℃で21N、ポリプロピレン樹脂である熱可塑性樹脂(A-3)を用いた熱可塑性樹脂組成物については、230℃で21Nとした。
 (曲げ強さ・曲げ弾性率測定)
 実施例・比較例で得られた熱可塑性樹脂組成物を、射出成形機(機種名「IS55」、東芝機械(株)製)を用い、シリンダー温度300℃、金型温度80℃の条件で射出成形を行い、成形体(幅10mm、長さ80mm、厚さ4mm)を得た。得られた成形体について、ISO178に準拠し、3点曲げ試験を行い、曲げ強さ、曲げ弾性率を測定した。
 (シャルピー衝撃強度測定)
 実施例・比較例で得られた熱可塑性樹脂組成物を、射出成形機(機種名「IS55」、東芝機械(株)製)を用い、シリンダー温度300℃、金型温度80℃の条件で射出成形を行い、成形体(幅10mm、長さ80mm、厚さ4mm)を得た。得られた成形体を、ISO179に準拠し、シャルピー衝撃試験を行い、ノッチなしの成形体のシャルピー衝撃強度を測定した。また、得られた成形体にVノッチを付与し、ISO179に準拠し、シャルピー衝撃試験を行い、ノッチありの成形体のシャルピー衝撃強度を測定した。
 (引張強さ測定)
 実施例・比較例で得られた熱可塑性樹脂組成物を、射出成形機(機種名「IS55」、東芝機械(株)製)を用い、シリンダー温度300℃、金型温度80℃の条件で射出成形を行い、ダンベル状の成形体(平行部の幅10mm、長さ80mm、厚さ4mm)を得た。得られた成形体を、ISO527に準拠し、引張試験を行い、引張強さを測定した。
 (質量平均繊維長測定)
 実施例・比較例で得られた熱可塑性樹脂組成物を、空気雰囲気下で3時間600℃に加熱して熱可塑性樹脂(A)等を熱分解により除去し、残存した炭素繊維任意の100本の繊維長を光学顕微鏡で測定して、質量平均繊維長を算出した。
 実施例・比較例で得られた熱可塑性樹脂組成物を、射出成形機(機種名「IS55」、東芝機械(株)製)を用い、シリンダー温度300℃、金型温度80℃の条件で射出成形を行い、成形体(幅10mm、長さ80mm、厚さ4mm)を得た。得られた成形体を、空気雰囲気下で3時間600℃に加熱して熱可塑性樹脂(A)等を熱分解により除去し、残存した炭素繊維任意の100本の繊維長を光学顕微鏡で測定して、質量平均繊維長を算出した。
 (原料)
 熱可塑性樹脂(A-1):ポリアミド樹脂(ポリ(m-キシレンアジパミド)(商品名「MXナイロン6007」、三菱ガス化学(株)製)88質量%、ナイロン66(商品名「E2000SL-1」、ユニチカ(株)製)10質量%、他の添加剤(離型剤、造核剤及びカーボンブラックを含む)2質量%を配合した樹脂組成物。
 熱可塑性樹脂(A-2):ポリフェニレンサルファイド樹脂(商品名「DSP C-115」、DIC(株)製、架橋型ポリフェニレンサルファイド樹脂)
 熱可塑性樹脂(A-3):ポリプロピレン樹脂(商品名「ノバテックPP MA04A」、日本ポリプロ(株)製)95%、変性ポリプロピレン樹脂(商品名「ユーメックス1001」、三洋化成工業(株)製)5%を配合した樹脂組成物。
 熱可塑性樹脂(A-4):ポリブチレンテレフタレート樹脂(商品名「ノバデュラン5008」、三菱エンジニアリングプラスチックス(株)製)
 熱可塑性樹脂(A-5):ポリカーボネート樹脂(商品名「ノバレックス7020IR」、三菱エンジニアリングプラスチックス(株)製)75.9質量%、ポリブチレンテレフタレート樹脂(商品名「ノバデュラン5008」、三菱エンジニアリングプラスチックス(株)製)19.0質量%、耐衝撃性改質剤(商品名「メタブレンS2006」、三菱レイヨン(株)製)4.7質量%、酸化防止剤0.4質量%を配合した樹脂組成物。
 ピッチ系炭素繊維(B-1):ピッチ系炭素繊維(商品名「ダイアリード K6371T」、三菱樹脂(株)製、繊維長6mm、熱伝導率140W/mK、引張弾性率640GPa、引張強度2600MPa)
 ピッチ系炭素繊維(B-2):ピッチ系炭素繊維(商品名「ダイアリード K223HE」、三菱樹脂(株)製、繊維長6mm、熱伝導率550W/mK、引張弾性率900GPa、引張強度3800MPa)
 ピッチ系炭素繊維(B-3):ピッチ系炭素繊維(商品名「ダイアリード K237SE」、三菱樹脂(株)製、繊維長6mm、熱伝導率140W/mK、引張弾性率640GPa、引張強度2600MPa)
 黒鉛(C-1):膨張黒鉛(商品名「GRAFOILパウダー GFP-100」、米国グラフテック社製、膨張黒鉛シート粉砕したもの、平均粒子径0.1mm)
 PAN系炭素繊維(D-1):(商品名「パイロフィル TR06NL」、三菱レイヨン(株)製、繊維長6mm、引張弾性率230GPa以上、引張強度3720MPa以上)
 PAN系炭素繊維(D-2):(商品名「パイロフィル TR06UL」、三菱レイヨン(株)製、繊維長6mm、引張弾性率230GPa以上、引張強度3720MPa以上)
 [実施例1]
 主原料フィーダーとサイドフィーダーとを有する同方向二軸押出機(機種名「TEX44αII」、(株)日本製鋼所製)を用いて、熱可塑性樹脂(A-1)60質量部、ピッチ系炭素繊維(B-1)35質量部、黒鉛(C-1)5質量部を溶融混練し、熱可塑性樹脂組成物を得た。評価結果を表2に示す。
 [実施例2~7、比較例1~4]
 配合を表1に示すように変更した以外は、実施例1と同様に操作を行い、熱可塑性樹脂組成物を得た。評価結果を表2に示す。
 尚、実施例1~7、比較例1~4いずれの実施例・比較例においても、押出機のフィーダーは、上流から、主原料フィーダー、サイドフィーダー1、サイドフィーダー2と設置し、ニーディングゾーンは、主原料フィーダーとサイドフィーダー1との間に2箇所、サイドフィーダー1とサイドフィーダー2との間に1箇所、サイドフィーダー2とダイとの間に1箇所、合計3箇所配置した。
 また、実施例1~7、比較例1~4いずれの実施例・比較例においても、押出条件は、スクリュー回転数200rpm、吐出量80kg/時間とした。シリンダー温度は、熱可塑性樹脂(A)がポリアミド樹脂のときは300℃、熱可塑性樹脂(A)がポリフェニレンサルファイド樹脂のときは330℃とした。
 更に、実施例1~7、比較例1~4いずれの実施例・比較例においても、熱可塑性樹脂(A)と黒鉛(C)を主原料フィーダーから供給し、ピッチ系炭素繊維(B)をサイドフィーダー2、PAN系炭素繊維(D)をサイドフィーダー1から供給した。
 [実施例8]
 主原料フィーダーとサイドフィーダーとを有する同方向二軸押出機(機種名「PCM-30」、(株)池貝製)を用いて、熱可塑性樹脂(A-4)50質量部、ピッチ系炭素繊維(B-3)35質量部、黒鉛(C-1)5質量部を溶融混練しペレットを得て、他方、熱可塑性樹脂(A-4)50質量部、PAN系炭素繊維(D-2)10質量部、黒鉛(C-1)5質量部を溶融混練しペレットを得て、これら2種類のペレットを7:2の比率でドライブレンドし、熱可塑性樹脂組成物を得た。
 [実施例9]
 主原料フィーダーとサイドフィーダーとを有する同方向二軸押出機(機種名「PCM-30」、(株)池貝製)を用いて、熱可塑性樹脂(A-5)50質量部、ピッチ系炭素繊維(B-3)35質量部、黒鉛(C-1)5質量部を溶融混練しペレットを得て、他方、熱可塑性樹脂(A-5)50質量部、PAN系炭素繊維(D-2)10質量部、黒鉛(C-1)5質量部を溶融混練しペレットを得て、これら2種類のペレットを7:2の比率でドライブレンドし、熱可塑性樹脂組成物を得た。
 [実施例10]
 主原料フィーダーとサイドフィーダーとを有する同方向二軸押出機(機種名「PCM-30」、(株)池貝製)を用いて、熱可塑性樹脂(A-2)50質量部、ピッチ系炭素繊維(B-3)35質量部、黒鉛(C-1)5質量部を溶融混練しペレットを得て、他方、熱可塑性樹脂(A-2)50質量部、PAN系炭素繊維(D-1)10質量部、黒鉛(C-1)5質量部を溶融混練しペレットを得て、これら2種類のペレットを7:2の比率でドライブレンドし、熱可塑性樹脂組成物を得た。
 尚、実施例8~10いずれの実施例においても、押出機のフィーダーは、上流から、主原料フィーダー、サイドフィーダーと設置し、ニーディングゾーンは、主原料フィーダーとサイドフィーダーとの間に2箇所、サイドフィーダーとダイとの間に1箇所、合計3箇所配置した。
 また、いずれの実施例においても、押出条件は、スクリュー回転数200rpm、吐出量15kg/時間とした。シリンダー温度は、熱可塑性樹脂(A)がポリブチレンテレフタレート樹脂(A-4)のときは250℃、熱可塑性樹脂(A)がポリカーボネート/ポリブチレンテレフタレートアロイ樹脂(A-5)のときは270℃、とした。
 更に、いずれの実施例においても、熱可塑性樹脂(A)と黒鉛(C)を主原料フィーダーから供給し、ピッチ系炭素繊維(B)、PAN系炭素繊維(D)をサイドフィーダーから供給した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~10で得られた熱可塑性樹脂組成物は、成形性に優れ、成形体の機械的特性及び熱伝導性に優れた。
 一方、比較例1で得られた熱可塑性樹脂組成物は、ピッチ系炭素繊維(B)の含有率が低く、成形体の熱伝導性に劣った。また、比較例2で得られた熱可塑性樹脂組成物は、ピッチ系炭素繊維(B)でなくPAN系炭素繊維を用いたため、成形性に劣り、成形体の熱伝導性に劣った。更に、比較例3で得られた熱可塑性樹脂組成物は、黒鉛(C)を用いていないため、成形体の熱伝導性に劣った。比較例4は、黒鉛(C)が嵩高いためにフィーダーで供給不良が発生し、熱可塑性樹脂組成物が得られなかった。
 本発明は、成形体の熱伝導性及び成形体の機械的特性に優れた熱可塑性樹脂組成物を提供することができる。

Claims (12)

  1.  熱可塑性樹脂(A)、ピッチ系炭素繊維(B)及び黒鉛(C)を含む熱可塑性樹脂組成物であって、
     前記ピッチ系炭素繊維(B)の含有率が、前記熱可塑性樹脂組成物100質量%中、30質量%以上であり、
     前記黒鉛(C)の含有率が、前記熱可塑性樹脂組成物100質量%中、1質量%以上20質量%以下である、熱可塑性樹脂組成物。
  2.  前記黒鉛(C)の含有率が、前記熱可塑性樹脂組成物100質量%中、2質量%以上12質量%以下である、請求項1に記載の熱可塑性樹脂組成物。
  3.  前記熱可塑性樹脂組成物中のピッチ系炭素繊維(B)の質量平均繊維長が、0.1mm以上0.3mm以下である、請求項1又は2に記載の熱可塑性樹脂組成物。
  4.  前記ピッチ系炭素繊維(B)の熱伝導率が、400W/mK以下である、請求項1~3のいずれかに記載の熱可塑性樹脂組成物。
  5.  前記熱可塑性樹脂(A)が、ポリアミド樹脂である、請求項1~4のいずれかに記載の熱可塑性樹脂組成物。
  6.  前記ポリアミド樹脂が、ポリ(m-キシレンアジパミド)である、請求項5に記載の熱可塑性樹脂組成物。
  7.  更に、PAN系炭素繊維(D)を含む、請求項1~6のいずれかに記載の熱可塑性樹脂組成物。
  8.  前記熱可塑性樹脂組成物を成形した厚さ1mmの成形体の、熱線法で測定した熱伝導率が、10W/mK以上である、請求項1~7のいずれかに記載の熱可塑性樹脂組成物。
  9.  前記熱可塑性樹脂組成物を成形した成形体の、ISO527に準拠して測定した引張強さが、100MPa以上である、請求項1~8のいずれかに記載の熱可塑性樹脂組成物。
  10.  溶融状態の熱可塑性樹脂(A)に、質量平均繊維長2mm以上20mm以下のピッチ系炭素繊維(B)を供給する、請求項1~9のいずれかに記載の熱可塑性樹脂組成物の製造方法。
  11.  請求項1~9のいずれかに記載の熱可塑性樹脂組成物を成形した、成形体。
  12.  請求項10に記載の製造方法により得られた熱可塑性樹脂組成物を射出成形する、成形体の製造方法。
PCT/JP2016/078729 2015-10-16 2016-09-28 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体 WO2017065009A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187009966A KR102138550B1 (ko) 2015-10-16 2016-09-28 열가소성 수지 조성물, 열가소성 수지 조성물의 제조 방법 및 성형체
EP16855263.6A EP3363864B1 (en) 2015-10-16 2016-09-28 Thermoplastic resin composition, method for producing thermoplastic resin composition, and molded body
JP2016562604A JP6801455B2 (ja) 2015-10-16 2016-09-28 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体
CN201680059420.4A CN108137932A (zh) 2015-10-16 2016-09-28 热塑性树脂组合物、热塑性树脂组合物的制造方法及成型体
US15/943,464 US11279808B2 (en) 2015-10-16 2018-04-02 Thermoplastic resin composition, method for producing thermoplastic resin composition, and molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-204141 2015-10-16
JP2015204141 2015-10-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/943,464 Continuation US11279808B2 (en) 2015-10-16 2018-04-02 Thermoplastic resin composition, method for producing thermoplastic resin composition, and molded body

Publications (1)

Publication Number Publication Date
WO2017065009A1 true WO2017065009A1 (ja) 2017-04-20

Family

ID=58517616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078729 WO2017065009A1 (ja) 2015-10-16 2016-09-28 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体

Country Status (6)

Country Link
US (1) US11279808B2 (ja)
EP (1) EP3363864B1 (ja)
JP (1) JP6801455B2 (ja)
KR (1) KR102138550B1 (ja)
CN (1) CN108137932A (ja)
WO (1) WO2017065009A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6296197B1 (ja) * 2017-09-06 2018-03-20 東洋インキScホールディングス株式会社 樹脂組成物、およびその成形体
KR20190111800A (ko) * 2018-03-23 2019-10-02 프러스 가부시키가이샤 문구용 점착제 조성물 및 적층체
JP2019167502A (ja) * 2018-03-26 2019-10-03 三菱ケミカル株式会社 繊維強化熱可塑性樹脂組成物、その製造方法および射出成形品
CN111793356A (zh) * 2019-04-01 2020-10-20 旭化成株式会社 滑动构件
JP6993390B2 (ja) 2019-09-27 2022-01-13 ポリプラスチックス株式会社 車載カメラ用ケーシング部材及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7152405B2 (ja) * 2017-01-24 2022-10-12 ティコナ・エルエルシー 電動輸送機器用の電池モジュール
TW202104449A (zh) * 2019-06-07 2021-02-01 愛爾蘭商伊頓智慧動力有限公司 導熱聚合物
CN111484747B (zh) * 2020-05-30 2021-11-12 山东高速集团有限公司创新研究院 一种超薄路面专用高性能改性沥青及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327836A (ja) * 2002-05-07 2003-11-19 Mitsubishi Gas Chem Co Inc 高熱伝導樹脂材料及び成形品
JP2007327010A (ja) * 2006-06-09 2007-12-20 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
WO2009075322A1 (ja) * 2007-12-12 2009-06-18 Starlite Co., Ltd. 樹脂炭素複合材料
JP2009185151A (ja) * 2008-02-05 2009-08-20 Idemitsu Kosan Co Ltd 伝熱性樹脂組成物
JP2010143986A (ja) * 2008-12-17 2010-07-01 Nippon Zeon Co Ltd 熱伝導性感圧接着剤組成物及び熱伝導性感圧接着性シート
CN102532869A (zh) * 2012-02-17 2012-07-04 南京聚隆科技股份有限公司 一种导热抗静电碳纤维改性聚酰胺复合材料及其制备方法
JP2014101459A (ja) * 2012-11-21 2014-06-05 Sumitomo Bakelite Co Ltd 複合樹脂組成物及び熱放散性に優れた成形体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288537A (en) * 1992-03-19 1994-02-22 Hexcel Corporation High thermal conductivity non-metallic honeycomb
JPH06240132A (ja) * 1993-02-18 1994-08-30 Fujitsu Ltd ポリアミド樹脂組成物および電子機器用筐体
US6121388A (en) * 1998-05-12 2000-09-19 Toray Industries, Inc. Polyamide resin composition
JP2000095947A (ja) 1998-09-21 2000-04-04 Unitika Ltd 導電性樹脂組成物
JP2003049081A (ja) 2001-08-08 2003-02-21 Sumitomo Bakelite Co Ltd 熱放散性に優れた熱可塑性樹脂組成物
CN100547030C (zh) * 2004-07-15 2009-10-07 东丽株式会社 热塑性树脂组合物
JP5092401B2 (ja) * 2004-07-15 2012-12-05 東レ株式会社 熱可塑性樹脂組成物
JP5023433B2 (ja) 2005-03-25 2012-09-12 三菱瓦斯化学株式会社 熱伝導性樹脂成形品およびその製造方法
JP4747918B2 (ja) * 2005-11-04 2011-08-17 東ソー株式会社 ポリアリーレンスルフィド組成物
US8299159B2 (en) 2009-08-17 2012-10-30 Laird Technologies, Inc. Highly thermally-conductive moldable thermoplastic composites and compositions
WO2011030910A1 (ja) * 2009-09-14 2011-03-17 三菱瓦斯化学株式会社 ポリアミド樹脂組成物
KR101374361B1 (ko) * 2010-08-20 2014-03-18 제일모직주식회사 휴대용 디스플레이 제품의 lcd 보호용 브라켓
JP2013001818A (ja) * 2011-06-17 2013-01-07 Sumitomo Chemical Co Ltd 樹脂組成物及びこれからなるインバータ用部品
US20150315371A1 (en) * 2012-11-30 2015-11-05 Mitsubishi Rayon Co., Ltd. Pellet mixture, carbon fiber-reinforced polypropylene resin composition, molded body, and method for producing pellet mixture
US10391676B2 (en) * 2014-02-03 2019-08-27 Toray Industries, Inc. Fiber-reinforced multilayered pellet, molded article molded therefrom, and method of producing fiber-reinforced multilayered pellet
KR20160094724A (ko) * 2015-02-02 2016-08-10 현대자동차주식회사 탄소 장섬유 강화 열가소성 수지 조성물 및 이에 의해 제조된 성형품
JP5959681B2 (ja) 2015-03-31 2016-08-02 ダイセルポリマー株式会社 熱伝導性射出成形体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327836A (ja) * 2002-05-07 2003-11-19 Mitsubishi Gas Chem Co Inc 高熱伝導樹脂材料及び成形品
JP2007327010A (ja) * 2006-06-09 2007-12-20 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
WO2009075322A1 (ja) * 2007-12-12 2009-06-18 Starlite Co., Ltd. 樹脂炭素複合材料
JP2009185151A (ja) * 2008-02-05 2009-08-20 Idemitsu Kosan Co Ltd 伝熱性樹脂組成物
JP2010143986A (ja) * 2008-12-17 2010-07-01 Nippon Zeon Co Ltd 熱伝導性感圧接着剤組成物及び熱伝導性感圧接着性シート
CN102532869A (zh) * 2012-02-17 2012-07-04 南京聚隆科技股份有限公司 一种导热抗静电碳纤维改性聚酰胺复合材料及其制备方法
JP2014101459A (ja) * 2012-11-21 2014-06-05 Sumitomo Bakelite Co Ltd 複合樹脂組成物及び熱放散性に優れた成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3363864A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6296197B1 (ja) * 2017-09-06 2018-03-20 東洋インキScホールディングス株式会社 樹脂組成物、およびその成形体
JP2019044131A (ja) * 2017-09-06 2019-03-22 東洋インキScホールディングス株式会社 樹脂組成物、およびその成形体
KR20190111800A (ko) * 2018-03-23 2019-10-02 프러스 가부시키가이샤 문구용 점착제 조성물 및 적층체
KR102480225B1 (ko) 2018-03-23 2022-12-21 프러스 가부시키가이샤 문구용 점착제 조성물 및 적층체
JP2019167502A (ja) * 2018-03-26 2019-10-03 三菱ケミカル株式会社 繊維強化熱可塑性樹脂組成物、その製造方法および射出成形品
JP7447930B2 (ja) 2018-03-26 2024-03-12 三菱ケミカル株式会社 繊維強化熱可塑性樹脂成形材料、ペレットおよびその製造方法
CN111793356A (zh) * 2019-04-01 2020-10-20 旭化成株式会社 滑动构件
JP6993390B2 (ja) 2019-09-27 2022-01-13 ポリプラスチックス株式会社 車載カメラ用ケーシング部材及びその製造方法

Also Published As

Publication number Publication date
JP6801455B2 (ja) 2020-12-16
EP3363864A1 (en) 2018-08-22
EP3363864A4 (en) 2018-09-12
KR20180051597A (ko) 2018-05-16
EP3363864B1 (en) 2021-02-24
CN108137932A (zh) 2018-06-08
JPWO2017065009A1 (ja) 2018-08-02
US11279808B2 (en) 2022-03-22
US20180223054A1 (en) 2018-08-09
KR102138550B1 (ko) 2020-07-28

Similar Documents

Publication Publication Date Title
JP6801455B2 (ja) 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体
JP6973526B2 (ja) 樹脂ペレットの製造方法、及び成形体の製造方法
US20080153959A1 (en) Thermally Conducting and Electrically Insulating Moldable Compositions and Methods of Manufacture Thereof
JP2008260830A (ja) 伝熱性樹脂組成物
JP5570703B2 (ja) ガラス長繊維強化ポリアミド樹脂組成物、樹脂ペレット、及びそれらの成形品
KR100885653B1 (ko) 고방열성 하이브리드 충진재 타입 복합수지 조성물
JP2023106452A (ja) 熱可塑性樹脂組成物およびその成形品、樹脂ペレットおよびその製造方法、ならびに樹脂ペレットを用いた射出成形品
JP2011057811A (ja) プロピレン系樹脂組成物
JP5786817B2 (ja) 押出成形用熱伝導性樹脂組成物及びそれを用いた熱伝導性樹脂押出成形品
KR20140080115A (ko) 열전도성이 우수하고, 열전도도의 이방성이 감소된 전기 전도성 열가소성 수지 조성물
CN113372647A (zh) 一种具有高精度fdm打印性能的聚丙烯复合物及其制备方法
JP7447930B2 (ja) 繊維強化熱可塑性樹脂成形材料、ペレットおよびその製造方法
JP2006037001A (ja) 熱可塑性樹脂製電極
RU2814520C1 (ru) Полимерная композиция на основе полифениленсульфида
CN115505207B (zh) 短玻纤增强阻燃聚丙烯材料、应用和制备方法
KR101567450B1 (ko) 대전방지 조성물
CN112266614B (zh) 聚苯硫醚复合材料及其制备方法和注塑制件
KR102000785B1 (ko) 고열전도성 합성수지 조성물
KR20170100469A (ko) 열전도성이 우수하고, 열전도도의 이방성이 감소된 전기 전도성 열가소성 수지 조성물
JP6683030B2 (ja) 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法、成形体及び成形体の製造方法
TW201840733A (zh) 樹脂化合物及將樹脂化合物成型而成之成形物
CN117511146A (zh) 一种兼具导热和无卤化阻燃功能的玻纤增强pbt复合材料及其制备方法和应用
JP2017066352A (ja) 摺動部品用の樹脂組成物及びその製造方法
JP2016093997A (ja) 強化繊維ペレットの製造方法、強化繊維ペレット及び成形体
JP2019019193A (ja) 樹脂組成物及びガラス樹脂一体成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016562604

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187009966

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE