WO2017057847A1 - 고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법 - Google Patents

고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법 Download PDF

Info

Publication number
WO2017057847A1
WO2017057847A1 PCT/KR2016/009173 KR2016009173W WO2017057847A1 WO 2017057847 A1 WO2017057847 A1 WO 2017057847A1 KR 2016009173 W KR2016009173 W KR 2016009173W WO 2017057847 A1 WO2017057847 A1 WO 2017057847A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
polymer composition
resin
acrylonitrile
Prior art date
Application number
PCT/KR2016/009173
Other languages
English (en)
French (fr)
Inventor
방경
권필구
김인
이혜정
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP16851995.7A priority Critical patent/EP3342820B1/en
Priority to US15/765,347 priority patent/US10851238B2/en
Priority to CN201680067908.1A priority patent/CN108603006B/zh
Publication of WO2017057847A1 publication Critical patent/WO2017057847A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/529Esters containing heterocyclic rings not representing cyclic esters of phosphoric or phosphorous acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the invention relates to a polymer composition containing polyketone, a method for producing the same, an electronic device and a method for producing the electronic device.
  • One aspect of the present invention is to provide a polymer composition including polyketone, which is an environmentally friendly material, a method for manufacturing the same, an electronic device, and a method for manufacturing the electronic device.
  • Another aspect of the present invention is a polymer composition further comprising acrylonitrile-butadiene-styrene (ABS) copolymer resin to supplement physical properties of polyketone, an environmentally friendly material, a method of manufacturing the same, and an electronic device and an electronic device. It is intended to provide a manufacturing method.
  • ABS acrylonitrile-butadiene-styrene
  • Polymer composition according to one aspect 3 to 20 parts by weight of a polyketone (Polyketone) resin made of carbon monoxide as a raw material relative to the weight of the total polymer composition; And 80 to 97 parts by weight of a thermoplastic resin including an acrylonytril-butadiene-styrene (ABS) copolymer resin.
  • a polyketone Polyketone
  • ABS acrylonytril-butadiene-styrene
  • the acrylonitrile-butadiene-styrene copolymer resin may include 15 to 22 parts by weight of acrylonitrile component based on the total weight of the acrylonitrile-butadiene-styrene copolymer resin.
  • thermoplastic resin may further include a polycarbonate resin.
  • the acrylonitrile-butadiene-styrene copolymer resin may be included in an amount of 1 part by weight or more and less than 100 parts by weight based on the total weight of the polycarbonate resin.
  • 10 to 20 parts by weight based on the total weight of the polymer composition may further include.
  • amine-based compatibilizer 1 to 3 parts by weight of the amine-based compatibilizer relative to the total polymer composition weight may be further included.
  • it may further include a phosphorus-based flame retardant.
  • Polymer composition according to one aspect 3 to 20 parts by weight of a polyketone resin prepared from carbon monoxide as a raw material relative to the weight of the total polymer composition; And 80 to 97 parts by weight of a thermoplastic resin including polycarbonate (PC).
  • a polyketone resin prepared from carbon monoxide as a raw material relative to the weight of the total polymer composition
  • a thermoplastic resin including polycarbonate (PC) 80 to 97 parts by weight of a thermoplastic resin including polycarbonate (PC).
  • the thermoplastic resin may further include an acrylonitrile-butadiene-styrene copolymer resin.
  • the acrylonitrile-butadiene-styrene copolymer resin may include 15 to 22 parts by weight of acrylonitrile component based on the total weight of the acrylonitrile-butadiene-styrene copolymer resin.
  • the thermoplastic resin may include 1 part by weight or more and less than 100 parts by weight of acrylonitrile-butadiene-styrene copolymer resin based on the total weight of the polycarbonate resin.
  • 10 to 20 parts by weight based on the total weight of the polymer composition may further include.
  • amine-based compatibilizer 1 to 3 parts by weight of the amine-based compatibilizer relative to the total polymer composition weight may be further included.
  • it may further include a phosphorus-based flame retardant.
  • the polymer composition according to one aspect is a polyketone resin made of carbon monoxide as a raw material; And acrylonytril-butadiene-styrene (ABS) resins; And amine compatibilizers.
  • ABS acrylonytril-butadiene-styrene
  • the electronic device 3 to 20 parts by weight of a polyketone resin (Polyketone) resin prepared from carbon monoxide relative to the total weight of the polymer composition and acrylonitrile-butadiene-styrene (Acrylonytril-Butadiene-Styrene; ABS) It is made of a polymer composition comprising 80 to 97 parts by weight of the copolymer resin.
  • Polyketone polyketone resin prepared from carbon monoxide relative to the total weight of the polymer composition and acrylonitrile-butadiene-styrene (Acrylonytril-Butadiene-Styrene; ABS) It is made of a polymer composition comprising 80 to 97 parts by weight of the copolymer resin.
  • the acrylonitrile-butadiene-styrene copolymer resin may include 15 to 22 parts by weight of acrylonitrile component based on the total weight of the acrylonitrile-butadiene-styrene copolymer resin.
  • the electronic device may include at least one of an interior material and an exterior material of the electronic device.
  • the electronic device is a display device, a smart device, a computer, a tablet PC, a printer, a multifunction device, a refrigerator, a washing machine, an air conditioner, a robot cleaner, a camera, an e-book, an e-paper, an 3D It may include at least one selected from the group comprising glasses and charger.
  • a method for preparing a polymer composition may include 3 to 20 parts by weight of a polyketone resin prepared from carbon monoxide based on the total polymer composition weight, and acrylonitrile-butadiene-styrene (Arylonytril-Butadiene-Styrene; ABS). ) Mixing the polymer composition comprising 80 to 97 parts by weight of the copolymer resin, and injecting the polymer composition into the hopper of the extruder.
  • a polyketone resin prepared from carbon monoxide based on the total polymer composition weight
  • ABS acrylonitrile-butadiene-styrene
  • the method may further include injecting a flame retardant into the first side feeder.
  • the method may further include a step of introducing a reinforcing material into the second side feeder.
  • the manufacturing method of the electronic device is 3 to 20 parts by weight of a polyketone resin (Polyketone) resin prepared from carbon monoxide relative to the total polymer composition weight and acrylonitrile-butadiene-styrene (Acrylonytril-Butadiene- Styrene (ABS) comprising the step of preparing a polymer composition comprising 80 to 97 parts by weight of a copolymer resin, and the step of injection molding the polymer composition into an injection molding apparatus.
  • a polyketone resin Polyketone resin prepared from carbon monoxide relative to the total polymer composition weight and acrylonitrile-butadiene-styrene (Acrylonytril-Butadiene- Styrene (ABS)
  • ABS acrylonitrile-butadiene-styrene
  • the step of injection molding the polymer composition may include the step of introducing the polymer composition into the hopper of the injection molding apparatus, melting the introduced polymer composition, and providing the molten polymer composition to the mold. .
  • a polymer composition, a method for preparing a polymer composition, an electronic device molded from a polymer composition, and a method for manufacturing an electronic device are made of polyketone, which is an environmentally friendly material. And consumer needs. More specifically, the polyketone material is meaningful for the first time applied to interior materials or exterior materials of electronic devices.
  • a polymer composition, a method for preparing a polymer composition, an electronic device molded from a polymer composition, and a method for manufacturing an electronic device may be provided by mixing polyketone and other materials, thereby forming a thin film of an internal and external agent of an electronic device. It is possible to achieve the required high rigidity properties and high flow characteristics, and to improve the surface hardness, scratch resistance, chemical resistance, and flame resistance of the injection molding of parts.
  • 1 is a diagram illustrating an example of formation of a polyketone domain.
  • FIG. 2 is a perspective view of a display device according to an exemplary embodiment.
  • FIG. 3 is a view showing the structure of an extruder according to one embodiment.
  • FIG. 4 is a view showing the structure of an injection molding apparatus according to an embodiment.
  • FIG. 5 is a view illustrating a method of manufacturing a polymer composition and a method of manufacturing a molded article according to an embodiment.
  • the polymer composition according to one aspect includes a polyketone resin and a thermoplastic resin manufactured from carbon monoxide (CO) based on the total weight of the polymer composition. Specifically, it may include 3 to 20 parts by weight of polyketone resin made of carbon monoxide as a raw material and 80 to 97 parts by weight of thermoplastic resin, based on the total weight of the polymer composition.
  • Polyketones are alternating copolymers of carbon monoxide and olefins.
  • olefins are aliphatic unsaturated hydrocarbons and refer to compounds including double bonds between carbons.
  • Polyketones are engineering plastics whose main chains are all composed of carbon, and have high crystallinity and compact crystal structure, and because of this crystal structure, they have excellent impact resistance, chemical resistance, abrasion resistance, fuel resistance, gas barrier property, and flame retardancy.
  • poly ketone has an impact strength of about 200% or more compared to nylon, which is a general engineering plastic material.
  • polyketone has a small change in physical properties for moisture.
  • polyketones are excellent in resistance to chemicals.
  • poly ketones are more than about 14 times better in abrasion resistance than polyacetal (POM), which is generally known as a hard material (based on base resin), and thus may be used as a semipermanent material.
  • POM polyacetal
  • Such polyketones can be prepared by synthesizing carbon monoxide and olefins.
  • the polyketone may include a copolymer prepared by synthesizing carbon monoxide and ethylene, and a terpolymer prepared by synthesizing carbon monoxide, ethylene and propylene.
  • Schemes 1 and 2 below show the synthesis of polyketone.
  • carbon monoxide and ethylene may be synthesized to prepare a polyketone copolymer.
  • carbon monoxide, ethylene and propylene may be synthesized to prepare a polyketone terpolymer.
  • Copolymers can be used for high strength fibers and generally have a melting point of about 260 ° C. and a molecular weight of about 200,000 or more.
  • the terpolymer may be used by extrusion or injection processing as a material for engineering plastics, and generally has a melting point of about 220 ° C., and may have a molecular weight of about 60,000 or more.
  • the integer n in Scheme 1 may be an integer within a range such that the molecular weight of the copolymer has a molecular weight of 200,000 or more
  • the integer n, m in Scheme 2 is such that the molecular weight of the terpolymer has a molecular weight of 600,000 or more It may be an integer within the range.
  • the thermoplastic resin is a resin that can be deformed by applying heat again after being molded by applying heat.
  • the thermoplastic resin according to an embodiment may include at least one of a rubber-modified styrene-based resin and a polycarbonate (PC) resin. have.
  • the rubber modified styrene resin may be acrylonitrile-butadiene-styrene copolymer (Acrylonitrile-Butadiene-Styrene; ABS, hereinafter referred to as ABS resin), high impact polystyrene (HIPS), acrylonitrile It may include at least one of acrylonitrile styrene acrylic ester (AAS), acrylonitrile-ethylene / propylene rubber-styrene copolymer (AES). have.
  • Acrylonitrile-butadiene-styrene copolymer resin is a thermoplastic resin composed of three components of acrylonitrile, butadiene, and styrene, and has excellent balance of impact resistance, rigidity, and flow, and thus excellent dimensional stability. It has moldability.
  • Polyketone resin is a single material and may cause shrinkage or warpage when applied to parts of electronic devices. Accordingly, the polymer composition according to the disclosed invention may prevent the phenomenon of shrinking or bending of the material during molding by mixing the acrylonitrile-butadiene-styrene copolymer resin with the polyketone resin.
  • the high impact polystyrene resin is an opaque resin having a rubber content of about 5 to 16% and may be provided for the purpose of improving the impact resistance of the material due to its high impact strength.
  • the high impact polystyrene resin has excellent molding processing characteristics such as heat resistance and fluidity. Accordingly, the polymer composition according to the disclosed invention may prevent the phenomenon of shrinking or bending of the material during molding by mixing the high-impact polystyrene resin with the polyketone resin.
  • Polycarbonate resin is a commercialized thermoplastic resin can be synthesized from bisphenol-A (bisphenol-A) as a raw material.
  • the polycarbonate resin has excellent mechanical properties, thereby imparting impact resistance to the molded article molded of the polymer composition.
  • the polycarbonate resin has self-extinguishing and can impart heat resistance and fire retardant to a molded article molded of the polymer composition according to the present invention.
  • Polycarbonate resins are excellent in transparency, flexibility and processability as well as impact resistance, heat resistance and flame retardancy described above, and can be applied to a wide range of applications from automotive parts to packaging materials and electronic devices.
  • thermoplastic resins may be used alone or mixed with each other.
  • the rubber modified styrene resin and the polycarbonate resin may be mixed and provided at a predetermined ratio. More specifically, the acrylonitrile-butadiene-styrene copolymer resin may be provided in a ratio of 1 part by weight or more and less than 100 parts by weight with respect to the total weight of the polycarbonate resin.
  • the type of thermoplastic resin included in the polymer composition may be adjusted at an appropriate ratio according to the properties of the material to be implemented, and descriptions overlapping with those described above will be omitted.
  • the polymer composition according to another aspect may include a polyketone resin, a thermoplastic resin, and a compatibilizer prepared from carbon monoxide based on the total weight of the polymer composition.
  • the polymer composition may include 3 to 20 parts by weight of polyketone resin, 80 to 97 parts by weight of thermoplastic resin, and 1 to 3 parts by weight of compatibilizer, based on the total weight of the polymer composition.
  • the thermoplastic resin may include at least one of a rubber-modified styrene-based resin and a polycarbonate resin including an acrylonitrile-butadiene-styrene copolymer resin, and a description thereof will be omitted below.
  • the polymer composition may further include a compatibilizer to increase the compatibility of the polyketone resin with the acrylonitrile-butadiene-styrene copolymer resin alloy.
  • a compatibilizer to increase the compatibility of the polyketone resin with the acrylonitrile-butadiene-styrene copolymer resin alloy.
  • Compatibilizers are polymeric additives that allow blending of heterogeneous polymers to control the phase structure and consequently impart reliability to the material.
  • polyketone resins and acrylonitrile-butadiene-styrene copolymer resins are incompatible, so that polyketones are styrene acrylonitrile (SAN), which is a mattress part of acrylonitrile-butadiene-styrene copolymer resin.
  • SAN styrene acrylonitrile
  • a compatibilizer may be added to the polymer composition including the polyketone resin and the acrylonitrile-butadiene-styrene copolymer resin to increase the compatibility of the polyketone resin and the acrylonitrile-butadiene-styrene copolymer resin.
  • FIG. 1A and 1B illustrate a state in which a polyketone domain (PK) is formed in an acrylonitrile-butadiene-styrene copolymer resin. More specifically, FIG. 1A is a view showing an example of a polymer alloy formed when the acrylonitrile-butadiene-styrene copolymer resin and the polyketone resin are mixed, and FIG. 1B is an acrylonitrile-butadiene-styrene copolymer. The figure which shows the example of the polymer alloy formed when a compatibilizer is added to resin and a polyketone resin.
  • the polyketone may form a domain with butadiene (B) in styrene-acrylonitrile copolymer resin (SAN), which is a mattress portion of acrylonitrile-butadiene-styrene copolymer resin.
  • SAN styrene-acrylonitrile copolymer resin
  • polyketone resin and acrylonitrile-butadiene-styrene copolymer resin have high interfacial tension, and acrylonitrile-butadiene-styrene copolymerization when polyketone resin and acrylonitrile-butadiene-styrene copolymer resin are mixed
  • Polyketone domains (PK) are formed in the resin.
  • a compatibilizer may be added in the polymer composition to increase compatibility between materials.
  • polyketone (PK-1) forms a domain with butadiene (B) in styrene-acrylonitrile copolymer resin (SAN), which is a mattress part of acrylonitrile-butadiene-styrene copolymer resin. Can be formed.
  • SAN styrene-acrylonitrile copolymer resin
  • the polymer composition according to FIG. 1B is a case in which a compatibilizer is added to a mixture of a polyketone resin and an acrylonitrile-butadiene-styrene copolymer resin, compared to FIG. 1A where no compatibilizer is added to the styrene-acrylonitrile copolymer resin ( It can be seen that the size of the polyketone domain (PK-1) is distributed small in the SAN).
  • the compatibilizer When the compatibilizer is added to the incompatible polymer composition, the interfacial tension between the polyketone resin and the styrene-acrylonitrile resin may be reduced by the compatibilizer, thereby increasing the interfacial bonding force, thereby increasing the polyketone domain (PK-1).
  • the size can be formed small.
  • the polymer composition according to the present invention can secure excellent mechanical properties by adding at least one compatibilizer in preparing the alloy of the polyketone resin and the acrylonitrile-butadiene-styrene copolymer resin.
  • Compatibilizers may include amine based compatibilizers.
  • the amine compatibilizer is a copolymer having an amine group at the terminal, and the main chain portion may have affinity with the styrene-acrylonitrile copolymer resin, and the terminal amine group may react with the ketone group of the polyketone to increase compatibility between materials. Can be.
  • the amine compatibilizer may include having one amine group at the terminal.
  • Specific examples of the amine compatibilizer include N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, (3-aminopropyl) trimethoxysilane, and (3-aminopropyl) triethoxysilane.
  • examples of the amine-based use agent are not limited thereto, and may include modifications within a range easily understood by those skilled in the art.
  • the amine-based compatibilizer includes two or more amine groups at the terminal, crosslinking of the ketone group of the poly ketone, so that the composition can be gelled to reduce the processability. Therefore, it is preferable to use a compatibilizer having one amine group at the terminal.
  • amine-based compatibilizers can be used alone, and in order to reinforce the impact strength, a core-shell rubber type compatibilizer, a copolymer compatibilized with maleic anhydride and a copolymer modified with glycidyl group Of course, at least one of the compatibilizers may be used together.
  • the polymer composition according to the disclosed invention increases the acrylonitrile content in the acrylonitrile-butadiene-styrene copolymer resin to increase the compatibility of the acrylonitrile-butadiene-styrene copolymer resin and the polyketone resin.
  • Acrylonitrile-butadiene-styrene copolymers are prepared by blending styrene-acrylonitrile copolymer resins with butadiene graft styrene-acrylonitrile copolymer resins (hereinafter referred to as butadiene-g-ABS resins).
  • the acrylonitrile component of the styrene-acrylonitrile copolymer resin may function as a compatibilizer.
  • the acrylonitrile-butadiene-styrene copolymer resin may include 15 to 22 parts by weight of acrylonitrile component based on the total weight of the acrylonitrile-butadiene-styrene copolymer resin.
  • the acrylonitrile component in the styrene-acrylonitrile copolymer resin increases, the nitrile group, which is a polar group, increases, and polyketone, which is a polar polymer compared to the acrylonitrile-butadiene-styrene copolymer,
  • the compatibility of can be increased.
  • the acrylonitrile component is higher, the domain size of the polyketone can be formed smaller in the composition, and as a result, the mechanical properties of the polymer alloy can be increased.
  • the size of the mixed polyketone domain may be too small to express the characteristics of the polyketone. That is, it may be difficult to achieve a synergistic effect of surface hardness or chemical resistance.
  • the polymer composition according to one aspect may further include a reinforcing material for providing a molded article requiring high modulus.
  • a reinforcing material for providing a molded article requiring high modulus.
  • a filler for rigid reinforcement such as glass fiber, mineral fiber, or the like may be used.
  • the glass fiber is one of artificial fibers made by stretching and thinning the glass, such as silicon oxide (SiO 2), aluminum oxide (Al 2 O 3), iron oxide (Fe 2 O 3), calcium oxide (CaO), magnesium oxide (MgO), and sodium oxide (Na 2 O). ), Boron oxide (B 2 O 3) and titanium oxide (TiO 2) may include at least one component selected from the group consisting of.
  • the type of fiber is not limited to the above examples and may include modifications within a range easily understood by those skilled in the art.
  • the polymer composition according to one aspect may further include an additive, and the additive may include at least one selected from the group consisting of a heat stabilizer, a UV stabilizer, an antioxidant, a lubricant, a surface stabilizer, a flame retardant, carbon black, a pigment, a wax, and a deodorant.
  • the additive may include at least one selected from the group consisting of a heat stabilizer, a UV stabilizer, an antioxidant, a lubricant, a surface stabilizer, a flame retardant, carbon black, a pigment, a wax, and a deodorant.
  • Thermal stabilizers, UV stabilizers, and anti-oxidants may cause degradation of the polymer composition. Chemicals added to prevent or inhibit).
  • the polymer composition according to one aspect includes a plastic component such as polycarbonate, which is deteriorated under the influence of heat, light or oxygen, and thus needs to be prevented.
  • the polymer composition according to an embodiment may be added to the heat stabilizer, UV stabilizer or antioxidant as necessary to prevent or inhibit degradation of the polymer composition.
  • Lubricant is a chemical agent which is added in order to facilitate the processing by making the fluidity thereof good during the heat molding of the polymer composition, or to make it easier to remove the molded product from the mold.
  • the polymer composition according to one aspect may include a softener or a plasticizer whose main purpose is plasticity during processing, and may include a release agent for the purpose of mold removal.
  • the surface stabilizer is an additive that is added to form a smooth surface when the molded article is manufactured using the polymer composition.
  • the polymer composition according to an embodiment may include a surface stabilizer.
  • Flame retardant is an additive added to improve the flame resistance of the polymer composition, and may be applied by applying to the surface of the molded article according to the embodiment.
  • Plastics are susceptible to combustion and can be added with flame retardants to prevent toxic gases from burning.
  • Phosphorus-based flame retardant may be used as a kind of flame retardant. Specifically, bisphenol-A diphenylphosphate and mixtures containing the same may be used.
  • examples of the flame retardant that can be used are not limited thereto, and may include modifications within a range easily understood by those skilled in the art.
  • the polymer composition which further contains a compatibilizer was demonstrated.
  • the type and composition ratio of the polymer composition are not limited to the examples described above and should be broadly understood as a concept including a change within a range easily understood by a person skilled in the art.
  • the compatibilizer at least one of an amine compatibilizer and a copolymer compatibilizer modified with maleic anhydride (hereinafter, MA compatibilizer) was used. More specifically, polyketone resin used c Hyosung 330A, acrylonitrile butadiene styrene resin c Kumho 780N, amine compatibilizer N- (2-aminoethyl)-of Shin-Etsu 3-aminopropyltrimethoxysilane was used, and MA-g-EVA of cSCONA was used as the MA compatibilizer.
  • MA compatibilizer at least one of an amine compatibilizer and a copolymer compatibilizer modified with maleic anhydride
  • the prepared pellets were dried in an oven at 80 ° C. for 4 hours, and injection molded at a cylinder temperature of 220 to 235 ° C. and a pressure of 30 kgf / cm 2 in a family mold in an injection molding machine to prepare test specimens.
  • Examples 9 to 13 and Comparative Examples 6 to 10 a polymer composition comprising a polyketone resin, a styrene-acrylonitrile copolymer resin, and a butadiene-g-ABS resin A phosphite antioxidant, a phenol antioxidant, and a lubricant were mixed together with 0.2 phr of the resin, and extruded in a twin-screw compressor to prepare pellets.
  • Acrylonitrile-butadiene-styrene copolymer resin may be prepared by synthesizing styrene-acrylonitrile copolymer resin and butadiene-g-ABS resin, and thus styrene-acrylonitrile copolymer resin and butadiene-g-
  • the description of the ABS resin may be understood as a concept including a description of an acrylonitrile-butadiene-styrene copolymer resin having the same composition ratio.
  • butadiene-g-ABS resin was used butadiene (60wt%)-g-ABS resin containing 60 parts by weight of butadiene compared to butadiene-g-ABS resin.
  • the prepared pellets were dried in an oven at 80 ° C. for 4 hours, and injection molded at a cylinder temperature of 220 to 235 ° C. and a pressure of 30 kgf / cm 2 in a family mold in an injection molding machine to prepare test specimens.
  • a polyketone resin, a polycarbonate resin, an acrylonitrile-butadiene-styrene resin, and a mineral fiber The polymer composition comprising a reinforcing agent and an amine compatibilizer, together with a phosphite antioxidant, a phenol antioxidant and a lubricant, is mixed with 0.2 phr of the resin and extruded in a twin-screw compressor to form pellets. Prepared.
  • Polycarbonate resin was used for Samsung SDI's CF-1050, mineral fiber was used for NYCO's NYGLOS 4W.
  • the prepared pellets were dried in an oven at 80 ° C. for 4 hours, and injection molded at a cylinder temperature of 230 to 260 ° C. and a pressure of 30 kgf / cm 2 in a family mold in an injection molding machine to prepare test specimens.
  • composition ratio of the polymer composition used in [Example 1] to [Example 20] and [Comparative Example 1] to [Comparative Example 17] is as follows, and the specific content is shown to [Table 1]-[Table 3]. .
  • Specimens were prepared from a polymer composition comprising 3 parts by weight of polyketone resin, 96 parts by weight of acrylonitrile-butadiene styrene resin, and 1 part by weight of an amine compatibilizer based on the total weight of the polymer composition.
  • Specimens were prepared from a polymer composition comprising 10 parts by weight of a polyketone resin, 89 parts by weight of acrylonitrile-butadiene styrene resin, and 1 part by weight of an amine compatibilizer based on the total weight of the polymer composition.
  • Specimens were prepared from a polymer composition comprising 20 parts by weight of polyketone resin, 79 parts by weight of acrylonitrile-butadiene styrene resin, and 1 part by weight of an amine compatibilizer based on the total weight of the polymer composition.
  • Specimens were prepared from a polymer composition comprising 10 parts by weight of a polyketone resin, 87 parts by weight of acrylonitrile-butadiene styrene resin, and 3 parts by weight of an amine compatibilizer based on the total polymer composition weight.
  • Specimens were prepared from a polymer composition comprising 9 parts by weight of polyketone resin, 85 parts by weight of acrylonitrile-butadiene styrene resin, 1 part by weight of an amine compatibilizer, and 5 parts by weight of MA compatibilizer, based on the total weight of the polymer composition. .
  • Specimens were prepared from a polymer composition comprising 10 parts by weight of polyketone resin, 89 parts by weight of acrylonitrile-butadiene styrene resin, and 1 part by weight of MA compatibilizer, based on the total weight of the polymer composition.
  • Specimen was prepared from a polymer composition comprising 10 parts by weight of polyketone resin, 87 parts by weight of acrylonitrile-butadiene styrene resin, and 3 parts by weight of MA compatibilizer, based on the total polymer composition weight.
  • Specimens were prepared from a polymer composition comprising 10 parts by weight of polyketone resin, 86 parts by weight of acrylonitrile-butadiene styrene resin, and 5 parts by weight of MA compatibilizer, based on the total polymer composition weight.
  • Specimens were prepared from a polymer composition comprising 25 parts by weight of a polyketone resin, 74 parts by weight of acrylonitrile-butadiene styrene resin, and 1 part by weight of an amine compatibilizer based on the total weight of the polymer composition.
  • Specimens were prepared from a polymer composition comprising 100 parts by weight of acrylonitrile-butadiene styrene resin based on the total polymer composition weight.
  • Specimens were prepared from a polymer composition comprising 10 parts by weight of polyketone resin and 90 parts by weight of acrylonitrile-butadiene styrene resin based on the total weight of the polymer composition.
  • Specimen was prepared from a polymer composition comprising 9 parts by weight of polyketone resin, 85 parts by weight of acrylonitrile-butadiene styrene resin, and 6 parts by weight of MA compatibilizer, based on the total polymer composition weight.
  • Specimens were prepared from a polymer composition comprising 10 parts by weight of a polyketone resin, 87 parts by weight of acrylonitrile-butadiene styrene resin, and 4 parts by weight of an amine compatibilizer based on the total polymer composition weight.
  • polyketone resin 25 parts by weight of polyketone resin, 54 parts by weight of polycarbonate resin, 5 parts by weight of acrylonitrile-butadiene-styrene copolymer resin, 15 parts by weight of reinforcing agent containing mineral fiber, and amine-based commercialization Specimens were prepared from a polymer composition comprising a first weight part.
  • Table 1 summarizes the composition ratios of [Example 1] to [Example 8] and [Comparative Example 1] to [Comparative Example 5] described above.
  • Table 2 summarizes the composition ratios of the above-described [Example 9] to [Example 13] and [Comparative Example 6] to [Comparative Example 10].
  • SAN1 to SAN4 will distinguish styrene-acrylonitrile copolymer resins according to the content of acrylonitrile in the styrene-acrylonitrile copolymer resin, respectively.
  • SAN 1 is the case where the content of acrylonitrile in the styrene-acrylonitrile copolymer resin is about 18 to 20 parts by weight relative to the total styrene-acrylonitrile copolymer resin
  • SAN 2 is in the styrene-acrylonitrile copolymer resin.
  • the content of acrylonitrile is about 24 to 26 parts by weight relative to the total styrene-acrylonitrile copolymer resin, and in the case of SAN 3, the content of acrylonitrile in the styrene-acrylonitrile copolymer resin is total styrene-acrylonitrile. It is about 27 to 29 parts by weight relative to the nitrile copolymer resin, SAN 4 is about 30 to 32 parts by weight of the acrylonitrile content in the styrene-acrylonitrile copolymer resin compared to the total styrene-acrylonitrile copolymer resin to be.
  • MI Melt Index
  • Examples 1 to 8 and Comparative 2 are compared, the comparison of Examples 1 to 8 in which the polyketone is included in the polyketone resin and the acrylonitrile-butadiene-styrene copolymer resin alloy does not include the polyketone. It was confirmed that pencil hardness and chemical resistance were improved compared to Example 2.
  • the polyketone resin is contained in the polymer composition in an amount of 3 to 20 parts by weight based on the total weight of the composition.
  • Comparative Example 3 in which no compatibilizer was added, had low flexural strength, elastic modulus, and impact strength, but used amine compatibilizer or MA compatibilizer. When phr or more was added, flexural strength of 600 or more, elastic modulus of 20000 or more, and impact strength of 20 or more were confirmed. On the other hand, as shown in Comparative Example 5, when the amine-based compatibilizer is added in the polymer composition 4 phr or more compared to the case of adding 3 phr of the amine-based compatibilizer was confirmed that the physical property increase does not occur significantly. That is, it was confirmed that it is preferable to add an amine compatibilizer in an appropriate ratio in terms of material utilization.
  • the impact strength is relatively high as 35, but the flexural strength is 450 kgf / cm 2 , the flexural modulus is 18010 kgf / cm 2 suddenly It was confirmed that the degradation.
  • the acrylonitrile component may be included in the range of 15 to 22 parts by weight based on the total weight of the acrylonitrile-butadiene-styrene copolymer resin.
  • butadiene (60wt%)-g-ABS resin may be included in the range of 28 to 38 parts by weight based on the total weight of the polymer composition, that is, it may include the butadiene component in the range of 16 to 23 parts by weight based on the total weight of the polymer composition. .
  • melt index was increased to 27, 28, and 30 as the content of polyketone was increased to 3, 10, and 20 relative to the total polymer composition weight.
  • the comparative example 13 in which the content of the reinforcing agent is 30 parts by weight relative to the weight of the entire polymer composition is significantly lower than that of Examples 15, 17, and 18, and the impact of the reinforcing material is extruded on the surface during injection. It was confirmed that it can be inhibited.
  • Example 15 based on Examples 15, 19 and 20 and Comparative Example 17 was confirmed the change in the physical properties of the specimen according to the resin content control in the polymer composition. More specifically, the content of the polyketone resin was fixed to 10 parts by weight relative to the weight of the entire polymer composition, and the experiment was performed by changing the ratio of acrylonitrile-butadiene-styrene copolymer resin and polycarbonate resin.
  • ABS / PC 0.7
  • acrylonitrile-butadiene-styrene copolymer resin may be included in an amount of 1 part by weight or more and less than 100 parts by weight based on the total weight of the polycarbonate resin.
  • the molded article according to an embodiment is a polymer composition comprising a polyketone resin and an acrylonytril-butadiene-styrene (ABS) copolymer resin made of carbon monoxide as a raw material based on the total polymer composition weight It may be made of.
  • the polymer composition may further include a polycarbonate resin, a flame retardant, and the like, and when the excellent impact resistance is required, the polymer composition may further include a reinforcing material.
  • ABS acrylonytril-butadiene-styrene
  • the molded article may be molded in the form of a film, a sheet, a pellet, or a fiber.
  • an example of the molded article will be described as an electronic device.
  • the molded article may comprise interior materials or exterior materials of the electronic device, and more particularly, the molded article may include a housing of the electronic device.
  • the housing is a box-shaped portion that surrounds all mechanical devices, such as a case housing a part or a frame that encompasses a mechanism, and may be a concept including an accessory of the housing.
  • the accessory of the housing may be defined as a concept including a part of the housing, such as a bezel part of a TV, a stand of the TV, or a concept including a part of an electronic device.
  • Electronic devices include display devices, smart devices, computers, tablet PCs, printers, multifunction devices, refrigerators, washing machines, air conditioners, robot vacuum cleaners, cameras, e-books, e-paper, 3D glasses and It may include at least one selected from the group including the charger.
  • display devices smart devices, computers, tablet PCs, printers, multifunction devices, refrigerators, washing machines, air conditioners, robot vacuum cleaners, cameras, e-books, e-paper, 3D glasses and It may include at least one selected from the group including the charger.
  • FIG 2 is a perspective view of a display device 200 according to an exemplary embodiment.
  • the display device 200 may include a main body 210 displaying an image and outputting a sound, and a stand 220 supporting the main body 210. .
  • the body 210 and the stand 220 of the display device may include a material formed of the above-described composition. That is, it may be a molded article manufactured by injection molding the aforementioned polymer composition. That is, by applying polyketone, which is an eco-friendly material, to interior materials or exterior materials of electronic devices, it can be made to meet the global eco-friendly policy through the implementation of eco-friendly materials, and can meet the needs of consumers for eco-friendly products.
  • polyketone which is an eco-friendly material
  • it can be made to meet the global eco-friendly policy through the implementation of eco-friendly materials, and can meet the needs of consumers for eco-friendly products.
  • it is of course possible to ensure the rigidity of the stand 220 by adding a reinforcing material to the polymer composition applied to the stand 220 of the display device 200 according to the embodiment.
  • FIG 3 is a view showing the structure of an extruder according to an embodiment
  • Figure 4 is a view showing the structure of an injection molding apparatus according to an embodiment.
  • the extruder 300 includes an extruder hopper 310 for inputting raw materials, a first side feeder 311 and a second side for additionally adding raw materials.
  • It may include an extruder heater (350) for heating the inside, a discharge die 360 for discharging the polymer composition, and an extruder controller (not shown) for controlling the heating temperature of the extruder heater (350).
  • the extruder 300 may be a continuous flow twin screw extruder as shown in FIG. 3, but is not limited thereto. A continuous flow single screw extruder may be used.
  • the extruder driver 340 may include a motor for rotating the shaft 320, a coupling part connected to the motor and transmitting power of the motor to the gear part, and a gear part for rotating the shaft 320 by receiving power of the motor. May contain.
  • the shaft 320 driven by the extruder drive 340 may rotate in a direction (eg clockwise) to apply shear stress to the molten mixture and may rotate at a speed within the range of 100 to 400 rpm. .
  • the extruder heater 350 may be configured in plural from the supply region to the discharge region to adjust the temperature inside the extruder cylinder 330. That is, the temperature inside the extruder cylinder 330 may be divided into a plurality of zones so that the temperature may be adjusted for each zone, and the temperature of each zone may be appropriately adjusted according to the raw materials to be processed.
  • the injection molding apparatus 400 includes an injection molding apparatus hopper 410 into which raw materials are introduced, and a barrel containing raw materials introduced through the injection molding apparatus hopper 410.
  • 420 a screw 430 which is installed to move and rotate back and forth inside the barrel 420, an injection molding machine motor 440 which transmits rotational force to the screw 430, and a screw 430
  • an injection molding machine cylinder portion 450 for linearly moving the screw 430
  • an injection molding machine heater 460 installed on an outer circumferential surface of the barrel 420 to heat a raw material accommodated in the barrel 420, and a barrel
  • It may include a nozzle 465 for supplying the synthetic resin raw material accommodated in the 420 to the mold 470, and a mold 470 for receiving the raw material from the nozzle 465 to form a molded article.
  • the mold 470 may include a first mold 470a receiving a raw material and a second mold 470b which is combined with the first mold 470a to form an injection cavity 475 therein.
  • the first mold 470a may be a stationary mold and the second mold 470b may be a movable mold.
  • FIG. 5 is a view illustrating a method of manufacturing a polymer composition and a method of manufacturing a molded article according to an embodiment.
  • Part A of FIG. 5 is a view illustrating a pellet manufacturing process performed in the extruder 300
  • part B of FIG. 5 is a view showing a manufacturing process of a molded product that is performed in the injection molding apparatus 400.
  • raw materials are premixed using a Henschel mixer, and the premixed raw materials are introduced into the extruder hopper 310.
  • the raw material introduced into the extruder hopper 310 is extruded in the extruder cylinder 330.
  • the flame retardant may be separately added to the extruder cylinder 330 through the first side feeder 311, and the reinforcement may be separately added to the extruder cylinder 330 through the second side feeder 312.
  • the time that the flame retardant and the reinforcement stays in the extruder 300 may be decomposed, and as a result, the material may not function as the flame retardant or the reinforcement.
  • the flame retardant and the reinforcing material may be continuously adjusted through the first side feeder 311 and the second side feeder 312, and thus the amount of the flame retardant and the reinforcing material may be constantly adjusted. It is possible to prevent the flame retardant and the reinforcement from being crushed by the force received from the inside 300.
  • a method for preparing a polymer composition may include 3 to 20 parts by weight of a polyketone resin prepared from carbon monoxide based on the total weight of the polymer composition, and acrylonitrile-butadiene-styrene; ABS)
  • a polymer composition including 80 to 97 parts by weight of the copolymer resin may be provided as a raw material.
  • the kind of the raw material is not limited thereto, and of course, the polycarbonate resin may be further included.
  • bisphenol-A diphenyl phosphate and a mixture containing the same may be used as the flame retardant, and mineral filler may be used as the reinforcing material.
  • descriptions related to the types of polymer compositions that can be added as raw materials will be omitted.
  • the extruder cylinder 330 was divided into a plurality of zones to adjust the temperature for each zone. Specifically, the extruder cylinder 330 was divided into seven zones to adjust the temperature step by step in each zone.
  • the area around the extruder hopper 310 of the extruder cylinder 330 is defined as the first zone
  • the area around the discharge die 360 of the extruder cylinder 330 is defined as the seventh zone.
  • the temperature of the first zone was adjusted to 250 ° C
  • the temperature of the seventh zone was adjusted to 275 ° C.
  • the temperature of the extruder cylinder 330 gradually decreased in the direction of the seventh zone from the first zone, and then increased again.
  • the polymer composition may enter the first zone through the extruder hopper 310, may be discharged in the seventh zone through the discharge die 360, and dry the polymer composition discharged in the seventh zone through the discharge die 360. Pellets can be prepared.
  • the manufactured pellets may be introduced into the hopper 410 of the injection molding apparatus 400 to melt them, and the molded polymer may be manufactured by injection molding the molten polymer composition using the mold 470.
  • the molded article may be a concept including a housing of an electronic device, and a description overlapping with the above description will be omitted.
  • the injection molding of the polymer composition may include introducing the polymer composition into the hopper 410 of the injection molding apparatus, melting the introduced polymer composition, and providing the molten polymer composition to the mold 470. It may include the step.
  • [Table 8] shows the injection conditions when the injection process is performed using the polymer composition according to the above Examples 1 to 13, and [Table 9] shows the polymer composition to which the reinforcing agent according to the above Examples 14 to 20 is added. When the injection process is used, the injection conditions are shown.
  • the barrel 420 was divided into a plurality of zones to adjust the temperature step by step.
  • the temperature of the barrel 420 around the nozzle 465 was adjusted to 220 ° C. and the temperature of the barrel 420 around the injection molding machine hopper was adjusted to 235 ° C. to feed the raw material to the mold.
  • the temperature of the first mold, which is a stationary mold was adjusted to 55 ° C
  • the temperature of the second mold, which is a movable mold was adjusted to 60 ° C.
  • the barrel 420 temperature around the nozzle 465 was adjusted to 260 ° C.
  • the barrel 420 temperature around the injection molding machine hopper 410 was adjusted to 235 ° C. to adjust the raw material to the mold ( 470).
  • the temperature of the first mold 470a which is a stationary mold, was adjusted to 55 ° C
  • the temperature of the second mold 470b which is a movable mold, was adjusted to 60 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

일 측면은 친 환경 소재인 폴리 케톤을 포함하는 고분자 조성물, 그 제조 방법, 전자기기 및 그 제조 방법을 제공하고자 한다. 일 측면에 따른 고분자 조성물은 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지 3 내지 20 중량부; 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지를 포함하는 열가소성 수지 80 내지 97 중량부;를 포함한다.

Description

고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법
폴리 케톤을 포함하는 고분자 조성물, 그 제조 방법, 전자기기 및 전자기기의 제조 방법에 관한 발명입니다.
전자 통신 산업의 발달로 영상기기 및 휴대용 무선단말기가 소형화, 경박화, 경량화 및 고화질화 되어 가면서 기능이 다양해지고 있는 추세이다.
이에 경박화에 따른 제품의 강성을 유지하고, 공정에 있어서 제품 성형성에 문제가 없는 유변학적 특성을 가지며, 소비자의 니즈를 충족하기 위한 친환경성을 가지는 재료 설계에 대한 개발이 필요한 상황이다.
이에 최근에는 유해가스 및 온실가스를 포집 하고 자원화하여 고부가가치의 탄소제품으로 전환하는 적극적인 탄소 저감 기술에 대해 관심이 증대되고 있다.
일 측면은 친 환경 소재인 폴리 케톤(Polyketone)을 포함하는 고분자 조성물, 그 제조 방법, 전자기기 및 전자기기의 제조 방법을 제공하고자 한다.
다른 측면은 친 환경 소재인 폴리 케톤의 물성을 보완하도록 아크릴로나이트릴-부타디엔-스티렌(Acrylonitrile-Butadiene-Styrene; ABS) 공중합 수지를 더 포함하는 고분자 조성물, 그 제조 방법, 전자기기 및 전자기기의 제조 방법을 제공하고자 한다.
일 측면에 따른 고분자 조성물은 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리케톤(Polyketone) 수지 3 내지 20 중량부; 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지를 포함하는 열가소성 수지 80 내지 97 중량부;를 포함한다.
또한, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 전체 중량 대비 아크릴로나이트릴 성분을 15 내지 22 중량부로 포함할 수 있다.
또한, 열가소성 수지는, 폴리카보네이트(Polycarbonate) 수지를 더 포함할 수 있다.
또한, 폴리카보네이트 수지 전체 중량 대비 아크릴로나이트릴-부타디엔-스티렌 공중합 수지를 1 중량부 이상 100 중량부 미만으로 포함할 수 있다.
또한, 전체 고분자 조성물 중량 대비 보강재 10 내지 20 중량부;를 더 포함할 수 있다.
또한, 전체 고분자 조성물 중량 대비 아민계 상용화제 1 내지 3 중량부;를 더 포함할 수 있다.
또한, 인계 난연제;를 더 포함할 수 있다.
일 측면에 따른 고분자 조성물은 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤 수지 3 내지 20 중량부; 및 폴리 카보네이트(Polycarbonate; PC)를 포함하는 열가소성 수지 80 내지 97 중량부;를 포함한다.
또한, 열가소성 수지는, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지;를 더 포함할 수 있다.
또한, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 전체 중량 대비 아크릴로나이트릴 성분을 15 내지 22 중량부로 포함할 수 있다.
또한, 열가소성 수지는, 폴리카보네이트 수지 전체 중량 대비 아크릴로나이트릴-부타디엔-스티렌 공중합 수지를 1 중량부 이상 100 중량부 미만으로 포함할 수 있다.
또한, 전체 고분자 조성물 중량 대비 보강재 10 내지 20 중량부;를 더 포함할 수 있다.
또한, 전체 고분자 조성물 중량 대비 아민계 상용화제 1 내지 3 중량부;를 더 포함할 수 있다.
또한, 인계 난연제;를 더 포함할 수 있다.
다음으로, 일 측면에 따른 고분자 조성물은 일산화 탄소를 원료로 제조된 폴리 케톤 수지; 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 수지; 및 아민계 상용화제;를 포함한다.
다음으로, 일 측면에 따른 전자기기는 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지 3 내지 20 중량부 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지 80 내지 97 중량부를 포함하는 고분자 조성물로 이루어진다.
또한, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 전체 중량 대비 아크릴로나이트릴 성분을 15 내지 22 중량부로 포함할 수 있다.
또한, 전자기기는, 전자기기의 내장제(interior materials) 및 외장재(exterior materials) 중 적어도 하나를 포함할 수 있다.
또한, 전자기기는, 표시 장치, 스마트 기기, 컴퓨터, 태블릿 PC, 프린터, 복합기, 냉장고, 세탁기, 공기조화기, 로봇청소기, 카메라, 이북(E-BOOK), 전자종이(E-Paper), 3D 안경 및 충전기를 포함하는 군에서 선택된 적어도 하나를 포함할 수 있다.
일 측면에 따른 고분자 조성물의 제조 방법은 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지 3 내지 20 중량부 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지 80 내지 97 중량부를 포함하는 고분자 조성물을 혼합하는 단계와, 고분자 조성물을 압출기의 호퍼에 투입하는 단계를 포함한다.
또한, 제 1 사이드 피더에 난연제를 투입하는 단계를 더 포함할 수 있다.
또한, 제 2 사이드 피더에 보강재를 투입하는 단계를 더 포함할 수 있다.
다음으로, 일 측면에 따른 전자기기의 제조 방법은 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지 3 내지 20 중량부 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지 80 내지 97 중량부를 포함하는 고분자 조성물을 제조하는 단계와, 고분자 조성물을 사출성형장치에 투입해 사출 성형하는 단계를 포함한다.
또한, 고분자 조성물을 사출 성형하는 단계는, 고분자 조성물을 사출성형장치의 호퍼에 인입하는 단계와, 인입된 고분자 조성물을 용융하는 단계와, 용융된 고분자 조성물을 금형에 제공하는 단계를 포함할 수 있다.
일 측면에 따른 고분자 조성물, 고분자 조성물의 제조 방법, 고분자 조성물로 성형된 전자기기 및 전자기기의 제조 방법은 친 환경 소재인 폴리 케톤을 재료로 하며, 이를 통해 친환경 재료 구현을 통한 글로벌 친황경 정책 부합 및 소비자의 니즈를 충족시킬 수 있다. 보다 상세하게, 폴리케톤 소재를 최초로 전자기기의 내장재 또는 외장재에 적용하는데 의의가 있다.
다른 측면에 따른 고분자 조성물, 고분자 조성물의 제조 방법, 고분자 조성물로 성형된 전자기기 및 전자기기의 제조 방법은 폴리 케톤과 다른 재료를 혼합하여 제공될 수 있으며, 이에 전자 기기의 내외장제의 박막 성형에 필요한 고강성 물성 구현 및 고유동 특성을 확보할 수 있으며, 부품 사출물의 표면 경도, 내스크래치성, 내화학성, 난연성 등을 향상시킬 수 있다.
도 1은 폴리케톤 도메인의 형성 예를 도시한 도면이다.
도 2은 일 실시 예에 따른 표시 장치의 사시도 이다.
도 3은 일 실시 예에 따른 압출기의 구조를 도시한 도면이다.
도 4는 일 실시 예에 따른 사출성형장치의 구조를 도시한 도면이다.
도 5는 일 실시 예에 따른 고분자 조성물의 제조 방법과 성형품의 제조 방법을 도시한 도면이다.
본 명세서에 기재된 실시 예와 도면에 도시된 구성은 발명의 바람직한 예에 불과하며, 출원 시점에 있어 본 명세서의 실시 예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
이하 첨부된 도면들에 기재된 내용들을 참조하여 발명의 예시적 실시 예를 상세하게 설명한다.
일 측면에 따른 고분자 조성물은 전체 고분자 조성물 중량 대비 일산화 탄소(Carbon monoxide, CO)를 원료로 제조된 폴리 케톤(Polyketone) 수지 및 열가소성 수지를 포함한다. 구체적으로, 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤 수지 3 내지 20 중량부와, 열가소성 수지 80 내지 97 중량부를 포함할 수 있다.
폴리 케톤은 일산화탄소와 올레핀의 교대 공중합 고분자이다. 여기서 올레핀은 지방족 불포화 탄화수소로 탄소 간의 이중결합을 포함하는 화합물을 총칭한다.
폴리 케톤은 세 개의 탄소 사슬마다 도입된 카르보닐기(C=O)로 인해 결정성을 가지며, 원료로 대기오염물질인 일산화탄소를 사용하므로 친 환경적인 고분자 소재이다.
폴리 케톤은 주쇄가 모두 탄소로 구성된 엔지니어링 플라스틱으로, 고결정성, 컴팩트한 결정 구조를 가지며, 이러한 결정 구조로 인해 탁월한 내충격성, 내화학성, 내마모성, 내연료성, 기체차단성, 난연성을 가진다.
구체적으로, 폴리 케톤은 일반적인 엔지니어링플라스틱 소재인 나일론 대비 약 200% 이상의 충격 강도를 가진다. 또한, 폴리 케톤은 수분에 대한 물성 변화가 적다. 또한, 폴리 케톤은 화학 물질에 대한 저항성이 우수하다. 또한, 폴리 케톤은 일반적으로 단단한 소재로 알려져 있는 폴리아세탈(POM) 대비 내마모성이 약 14배 이상 우수하여(베이스 레진 기준) 반영구적인 소재로 사용될 수 있다. 또한, 폴리케톤은 연소 시 카르보닐기(C=O)와 수소가 반응하여 물이 생성되면서 차(char)를 형성하게 되고, 생성된 차 레이어(char layer)가 산소와 열을 차단하여 폴리 케톤을 원료로 하여 제조된 성형품에 난연성을 부여할 수 있다.
이러한 폴리 케톤은 일산화탄소와 올레핀을 합성하여 제조될 수 있다. 구체적으로, 폴리 케톤은 일산화탄소와 에틸렌(ethylene)을 합성하여 제조된 공중합물(Copolymer)과, 일산화탄소와 에틸렌과 프로필렌(propylene)을 합성하여 제조된 터폴리머(Terpolymer)를 포함할 수 있다. 이하 반응식 1과 2는 폴리 케톤의 합성 과정을 나타낸 것이다.
[반응식 1]
Figure PCTKR2016009173-appb-I000001
[반응식 2]
Figure PCTKR2016009173-appb-I000002
[반응식 1]과 같이 일산화 탄소와 에틸렌이 합성되어 폴리케톤 공중합물이 제조될 수 있으며, [반응식 2]와 같이 일산화 탄소와, 에틸렌과, 프로필렌이 합성되어 폴리케톤 터폴리머가 제조될 수 있다.
코폴리머는 고강도 섬유용으로 사용될 수 있으며 일반적으로 약 260℃의 녹는점을 가지며, 약 200,000이상의 분자량을 가질 수 있다. 터폴리머는 엔지니어링 플리스틱 용도의 소재로 압출 또는 사출 가공하여 사용될 수 있으며 일반적으로 약 220℃의 녹는점을 가지며, 약 60,000 이상의 분자량을 가질 수 있다. 이에, 반응식 1 에서의 정수 n 은 코폴리머의 분자량이 200,000 이상의 분자량을 가지도록 하는 범위 내에서의 정수일 수 있으며, 반응식 2에서의 정수 n, m은 터폴리머의 분자량이 600,000 이상의 분자량을 가지도록 하는 범위 내에서의 정수일 수 있다.
열가소성 수지는 열을 가하여 성형한 뒤에도 다시 열을 가하여 형태를 변형시킬 수 있는 수지로 일 실시 예에 따른 열가소성 수지는 고무 변성 스티렌계 수지 및 폴리카보네이트(polycarbonate; PC) 수지 중 적어도 하나를 포함할 수 있다.
고무 변성 스티렌계 수지는 아크릴로나이트릴-부타디엔-스티렌 공중합 수지(Acrylonitrile-Butadiene-Styrene; ABS, 이하 ABS 수지라 지칭될 수 있다), 고충격 폴리스티렌 수지(High Impact Polystyrene; HIPS), 아크릴로나이트릴-아크릴고무-스티렌 공중합 수지(Acrylonitrile styrene acrylic ester copolymer; AAS), 아크릴로나이트릴-에틸렌프로필렌고무-스티렌 공중합 수지(Acrylonitrile-Ethylene/Propylene Rubber-Styrene Copolymer; AES) 중 적어도 하나를 포함할 수 있다.
아크릴로나이트릴-부타디엔-스티렌 공중합 수지 는 아크릴로나이트릴(Acrylonitrile), 부타디엔(Butadiene) 및 스티렌(Styrene)의 3 성분으로 이루어진 열가소성 수지로 내충격성, 강성, 플로우 등의 밸런스가 뛰어나 우수한 치수 안정성, 성형 가공성을 가진다. 폴리 케톤 수지는 단독 소재로 전자기기의 부품에 적용 시 수축이나 휨 발생이 일어날 수 있다. 이에, 개시된 발명에 따른 고분자 조성물은 폴리 케톤 수지에 아크릴로나이트릴-부타디엔-스티렌 공중합 수지를 혼합함으로써 성형 시 재료가 수축되거나 휘어지는 현상을 막을 수 있다.
고충격 폴리스티렌 수지는 약 5 내지 16%의 고무 함량을 가지는 불투명한 수지로서 내충격 강도가 높아 재료의 내충격성을 향상시키기 위한 목적으로 제공될 수 있다. 아울러, 고충격 폴리스티렌 수지는 내열성, 유동성 등과 같은 성형 가공특성이 우수하다. 이에, 개시된 발명에 따른 고분자 조성물은 폴리 케톤 수지에 고충격 폴리스티렌 수지를 혼합함으로써 성형 시 재료가 수축되거나 휘어지는 현상을 막을 수 있다.
이하, 설명의 편의 상 고무 변성 스티렌계 수지 중 아크릴로나이트릴-부타디엔-스티렌 공중합 수지를 예로 들어 발명의 실시 예에 대해 설명하도록 할 것이다.
폴리카보네이트 수지는 실용화된 열가소성 수지로 비스페놀-A(bisphenol-A)를 원료로 합성될 수 있다. 폴리카보네이트 수지는 우수한 기계적 특성을 가지며, 이에 고분자 조성물을 재료로 성형한 성형품에 내충격성을 부여할 수 있다. 아울러, 폴리카보네이트 수지는 자소성(self-extinguishing)을 가지며, 이에 개시된 발명에 따른 고분자 조성물을 재료로 성형한 성형품에 내열성(heat resistance) 및 난연성(fire retardant)을 부여할 수 있다.
폴리카보네이트 수지는 전술한 내충격성, 내열성 및 난연성 뿐만 아니라 투명성, 유연성 및 가공성이 우수하여 자동차 부품에서 포장재료, 전자기기에 이르기 까지 넓은 응용분야에 적용될 수 있다.
이러한 열 가소성 수지는 단독으로 사용되거나 서로 혼합되어 사용될 수 있다. 일 예에 따르면 열가소성 수지가 서로 혼합되어 사용될 경우 고무 변성 스티렌계 수지와 폴리카보네이트 수지가 일정 비율로 혼합되어 제공될 수 있다. 보다 상세하게, 폴리카보네이트 수지 전체 중량 대비 아크릴로나이트릴-부타디엔-스티렌 공중합 수지가 1 중량부 이상 100 중량부 미만의 비율로 제공될 수 있다. 고분자 조성물에 포함되는 열가소성 수지의 종류는 구현하고자 하는 재료의 특성에 따라 적절한 비율로 조절될 수 있으며, 이하 전술한 바와 중복되는 설명은 생략하도록 한다.
다음으로, 다른 측면에 따른 고분자 조성물에 대해 설명한다.
다른 측면에 따른 고분자 조성물은 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지, 열가소성 수지 및 상용화제를 포함할 수 있다. 구체적으로, 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤 수지 3 내지 20 중량부와, 열가소성 수지 80 내지 97 중량부와, 상용화제 1 내지 3 중량부를 포함할 수 있다.
열가소성 수지는 아크릴로나이트릴-부타디엔-스티렌 공중합 수지를 포함하는 고무 변성 스티렌계 수지와 폴리카보네이트 수지 중 적어도 하나를 포함할 수 있으며, 이하 전술한 바와 중복되는 설명은 생략하도록 한다.
고분자 조성물은 폴리 케톤 수지와 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 얼로이(alloy)의 상용성을 증대시키기 위해 상용화제를 더 포함할 수 있다. 상용화제는 이종 폴리머를 블랜드(blend)시킴으로서 상 구조를 제어하고 그 결과 재료에 신뢰성을 부여할 수 있도록 한 고분자 첨가제이다.
일반적으로 폴리 케톤 수지와 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는 비상용성을 가지며, 이에 폴리 케톤은 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 매트리스 부분인 스티렌 아크릴로나이트릴(Styrene Acrylonitrile; SAN) 공중합 수지에 도메인을 형성하게 된다. 이에, 폴리 케톤 수지와 아크릴로나이트릴-부타디엔-스티렌 공중합 수지를 포함하는 고분자 조성물에 상용화제를 첨가하여 폴리 케톤 수지와 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 상용성을 증대시킬 수 있다.
이하, 첨부된 도면을 참조하여 상용화제의 첨가에 따른 폴리 케톤 도메인의 형성 예에 대해 설명한다. 도 1a 및 도 1b은 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 내에 폴리 케톤 도메인(PK)이 형성된 모습을 도시한 도면이다. 보다 상세하게, 도 1a는 아크릴로나이트릴-부타디엔-스티렌 공중합 수지와 폴리케톤 수지를 혼합한 경우 형성되는 폴리머 얼로이의 예를 도시한 도면이고, 도 1b는 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 및 폴리케톤 수지에 상용화제를 첨가한 경우 형성되는 폴리머 얼로이의 예를 도시한 도면이다.
도 1a에 도시된 바를 참조하면 폴리 케톤은 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 매트리스 부분인 스티렌-아크릴로나이트릴 공중합 수지(SAN) 내에 부타디엔(B)과 함께 도메인을 형성할 수 있다. 일반적으로 폴리 케톤 수지와 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는 계면 장력이 높으며, 이에 폴리 케톤 수지와 아크릴로나이트릴-부타디엔-스티렌 공중합 수지가 혼합될 경우 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 내에 폴리 케톤 도메인(PK)이 형성되게 된다. 이 때, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 내에 폴리 케톤 도메인(PK)의 크기가 일정 기준 이상으로 분포할 경우 재료의 기계적 물성을 확보하기 어려울 수 있다. 이에 개시된 발명에 따른 고분자 조성물은 고분자 조성물 내에 상용화제를 첨가하여 재료 간의 상용성이 증대되도록 할 수 있다.
도 1b에 도시된 바를 참조하면 폴리 케톤(PK-1)은 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 매트리스 부분인 스티렌-아크릴로나이트릴 공중합 수지(SAN) 내에 부타디엔(B)과 함께 도메인을 형성할 수 있다.
도 1b에 따른 고분자 조성물은 폴리 케톤 수지 및 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 혼합물에 상용화제를 첨가한 경우로 상용화제를 첨가하지 않은 도 1a에 비해 스티렌-아크릴로나이트릴 공중합 수지(SAN) 내에 폴리 케톤 도메인(PK-1)의 사이즈가 작게 분포됨을 확인할 수 있다.
비상용계 고분자 조성물에 상용화제를 첨가할 경우 상용화제에 의해 폴리케톤 수지와 스티렌-아크릴로나이트릴 수지의 계면 장력이 저하되어 계면간 결합력이 증대될 수 있으며, 이에 폴리 케톤 도메인(PK-1) 사이즈가 작게 형성될 수 있다.
이에 게시된 발명에 따른 고분자 조성물은 폴리케톤 수지와 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 얼로이를 제조하는데 있어 적어도 하나의 상용화제를 첨가함으로써 우수한 기계적 물성을 확보할 수 있다.
상용화제는 아민계 상용화제를 포함할 수 있다. 아민계 상용화제는 말단에 아민기를 갖는 공중합체로 주쇄 부분은 스티렌-아크릴로나이트릴 공중합 수지와 친화력을 가질 수 있으며, 말단의 아민기는 폴리 케톤의 케톤기와 반응함으로써 재료 간의 상용성이 증대되도록 할 수 있다.
아민계 상용화제는 말단에 하나의 아민기를 가지는 것을 포함할 수 있다. 아민계 상용화제의 구체적인 예로는 N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane 등이 있다. 다만, 아민계 사용화제의 예가 이에 한정되는 것은 아니며 통상의 기술자가 쉽게 생각할 수 있는 범위 내의 변경을 포함할 수 있다.
한편, 아민계 상용화제가 말단에 두 개 이상의 아민기를 포함하는 경우, 폴리 케톤의 케톤기와 가교를 일으키게 되므로 조성물을 겔화하여 가공성이 저하될 수 있다. 이에, 말단에 하나의 아민기를 가지는 상용화제를 사용하는 것이 바람직하다.
이러한 아민계 상용화제는 단독으로 사용할 수 있으며, 충격 강도의 보강을 위해 코어-쉘 러버 타입(Core-Shell rubber type)의 상용화제, 무수말레인산으로 변성된 공중합 상용화제 및 글리시딜기로 변성된 공중합 상용화제 중 적어도 하나의 상용화제가 함께 사용될 수 있음은 물론이다.
실시 예에 따라, 개시된 발명에 따른 고분자 조성물은 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 내의 아크릴로나이트릴 함량을 증가시켜 아크릴로나이트릴-부타디엔-스티렌 공중합 수지와 폴리케톤 수지의 상용성을 높일 수 있다. 아크릴로나이트릴-부타디엔-스티렌 공중합체는 스티렌-아크릴로나이트릴 공중합 수지와 부타디엔 그라프트 스티렌-아크릴로나이트릴 공중합 수지(이하, butadiene-g-ABS 수지로 지칭한다.)의 블렌딩을 통해 제조될 수 있으며, 이 때 스티렌-아크릴로나이트릴 공중합 수지의 아크릴로나이트릴 성분은 상용화제로서 기능할 수 있다.
일 예에 따르면, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 전체 중량 대비 아크릴로나이트릴 성분을 15 내지 22 중량부로 포함할 수 있다.
아크릴로나이트릴-부타디엔-스티렌 공중합 수지 내의 아크릴로나이트릴 성분 함량이 지나치게 적을 경우 아크릴로나이트릴-부타디엔-스티렌 공중합 수지와 폴리케톤 수지의 상용성이 떨어질 수 있다.
아크릴로나이트릴-부타디엔-스티렌 공중합 수지에 포함된 아크릴로나이트릴 함량이 높을수록 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 내에 분포되는 폴리케톤 도메인의 사이즈가 감소하게 되며, 결과적으로 폴리머 얼로이의 기계적 물성이 증대될 수 있다.
구체적으로 스티렌-아크릴로나이트릴 공중합 수지 내의 아크릴로나이트릴 성분이 증가함에 따라 극성기인 나이트릴기(nitrile기)가 증가하면서 상대적으로 아크릴로나이트릴-부타디엔-스티렌 공중합체 대비 극성 고분자인 폴리케톤과의 상용성이 증대될 수 있다. 다시 말해, 아크릴로나이트릴 성분이 높을수록 조성물에서 폴리케톤의 도메인 사이즈를 작게 형성할 수 있으며, 결과적으로 폴리머 얼로이의 기계적 물성을 증대시킬 수 있다.
한편, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 내의 아크릴로나이트릴 성분 함량이 지나치게 높을 경우 혼합되는 폴리 케톤 도메인의 사이즈가 지나치게 작아져 폴리 케톤의 특성을 발현하기 어려울 수 있다. 즉, 표면 경도 또는 내화학성의 상승 효과를 달성하기 어려울 수 있다.
이에, 구현하고자 하는 재료의 성능에 따라 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 내의 아크릴로나이트릴 성분 함량을 적절하게 조절함이 바람직하다.
일 측면에 따른 고분자 조성물은 높은 모듈러스를 요구하는 성형품의 제공을 위해 보강재를 더 포함할 수 있다. 보강재로는 유리 섬유(Glass fiber), 미네랄 섬유(Mineral fiber) 등과 같은 강성 보강용 필러가 사용될 수 있다.
구체적으로, 유리 섬유는 유리를 잡아 늘려 가늘게 한 인조 섬유 중 하나로, 산화실리콘(SiO2), 산화알루미늄(Al2O3), 산화철(Fe2O3), 산화칼슘(CaO), 산화마그네슘(MgO), 산화나트륨(Na2O), 산화붕소(B2O3) 및 산화티타늄(TiO2)을 포함하는 군에서 선택된 적어도 하나의 성분을 포함할 수 있다. 다만, 섬유의 종류가 전술한 예에 한정되는 것은 아니며 통상의 기술자가 쉽게 생각할 수 있는 범위 내의 변경을 포함할 수 있다.
일 측면에 따른 고분자 조성물은 첨가제를 더 포함할 수 있으며, 첨가제로는 열 안정제, UV 안정제, 산화 방지제, 활제, 표면 안정제, 난연제, 카본블랙, 안료, 왁스, 및 소취제를 포함하는 군에서 선택된 적어도 하나가 사용될 수 있다.
열 안정제(thermal stabilizer), UV 안정제(UV stabilizer), 산화방지제(anti-oxidant)는 고분자 조성물의 열화(
Figure PCTKR2016009173-appb-I000003
)를 방지 또는 억제하기 위해 첨가되는 화학약품이다. 일 측면에 따른 고분자 조성물은 폴리카보네이트와 같은 플라스틱 성분을 포함하는데, 이와 같은 플라스틱 성분은 열, 빛 또는 산소 등의 영향을 받아 열화 해 가므로 이를 방지할 필요가 있다. 이에, 일 실시 예에 따른 고분자 조성물은 필요에 따라 열 안정제, UV 안정제 또는 산화 방지제를 첨가해 고분자 조성물의 열화를 방지 또는 억제할 수 있다.
활제(lubricant)는 고분자 조성물의 가열 성형을 할 때 그 유동성을 양호하게 해서 가공을 쉽게 하거나, 성형품을 형틀에서 빼어내는 것(형빼기)을 쉽게 하기 위해 첨가하는 약제이다. 일 측면에 따른 고분자 조성물은 필요에 따라 가공 시 소성 개성을 주목적으로 하는 연화제 또는 가소제를 포함할 수 있으며, 형빼기 개선을 목적으로 이형제를 포함할 수 있다.
표면안정제(surface stabilizer)는 고분자 조성물을 이용해 성형품 제조 시 표면이 매끄럽게 형성되도록 첨가하는 첨가물로, 일 실시 예에 따른 고분자 조성물은 표면안정제를 포함할 수 있다.
난연제(flame retardant)는 고분자 조성물의 내연소성을 개량하기 위하여 첨가하는 첨가제로, 실시 예에 따라 성형품의 표면에 도포하는 방식으로 적용될 수 있다. 플라스틱은 연소되기 쉽고 연소 시 유독 가스가 발생될 수 있는 바 이를 방지하기 위해 난연제를 첨가할 수 있다. 난연제의 종류로는 인계 난연제가 사용될 수 있다. 구체적으로 비스페놀-A 디페닐포스페이트 및 이를 포함하는 혼합물이 사용될 수 있다. 다만 사용 가능한 난연제의 예가 이에 한정되는 것은 아니며 통상의 기술자가 쉽게 생각할 수 있는 범위 내의 변경을 포함할 수 있다.
이상으로, 상용화제를 더 포함하는 고분자 조성물에 대해 설명하였다. 고분자 조성물의 종류 및 조성 비율이 전술한 예에 한정되는 것은 아니며 통상의 기술자가 쉽게 생각할 수 있는 범위 내의 변경을 포함하는 개념으로 넓게 이해되어야 할 것이다.
다음으로, 발명의 이해를 돕기 위해 발명의 실시 예 및 비교 예에 대한 물성 측정 실험 결과를 설명한다.
물성 측정 실험을 수행하고자, 각 실시 예 및 비교 예 별로 [표 1] 내지 [표 3] 에 나타난 함량의 성분들을 포함한 고분자 조성물을 헨셀 믹서로 혼합하고, 이를 균일하게 분산시켰다. 이후 분산된 고분자 조성물을 L/D=40, Φ=25mm인 이축 압출기(twin screw extruder)에서 220 내지 250℃의 온도 조건 하에서 압출하여 펠렛 형태로 제조하였다. 이후, 제조된 펠렛을 오븐에서 80℃에서 4시간 동안 건조한 후 사출 성형하여 물성 시편을 제조하였다.
[실시예 1] 내지 [실시예 8] 및 [비교예 1] 내지 [비교예 5]에서는 폴리 케톤 수지와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지와, 상용화제를 포함하는 고분자 조성물과 함께 아인산염계(phosphite) 산화 방지제와, 페놀계(phenol) 산화 방지제와, 윤활제를 각각 수지 대비 0.2 phr 혼합하여 이축 압축기에서 압출하여 펠렛 형태로 제조하였다. 이하, phr은 전체 고분자 조성물 100 중량부에 대한 파트 환산 값(part per hundred)으로 정의한다.
상용화제로는 아민계 상용화제와 무수말레인산으로 변성된 공중합 상용화제(이하, MA 상용화제)중 적어도 하나를 사용하였다. 보다 상세하게, 폴리케톤 수지는 ⓒ효성의 330A를 사용하였으며, 아크릴로나이트릴 부타디엔 스티렌 수지는 ⓒ금호의 780N를 사용하였으며, 아민계 상용화제로는 ⓒShin-Etsu의 N-(2-aminoethyl)-3- aminopropyltrimethoxysilane를 사용하였으며, MA 상용화제로는 ⓒSCONA의 MA-g-EVA를 사용하였다.
이후, 제조된 펠렛을 오븐에서 80℃에서 4시간 동안 건조시키고, 사출성형기에서 패밀리 금형으로 실린더 온도 220 내지 235℃, 압력 30 kgf/cm^2에서 사출을 진행하여 평가용 시편을 제조하였다.
[실시예 9] 내지 [실시예 13] 및 [비교예 6] 내지 [비교예 10]에서는 폴리 케톤 수지와, 스티렌-아크릴로나이트릴 공중합 수지와, butadiene-g-ABS 수지를 포함하는 고분자 조성물과 함께 아인산염계(phosphite) 산화 방지제와, 페놀계(phenol) 산화 방지제와, 윤활제를 각각 수지 대비 0.2 phr 혼합하여 이축 압축기에서 압출하여 펠렛 형태로 제조하였다. [실시예 9] 내지 [실시예 13] 및 [비교예 6] 내지 [비교예 10]에서는 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 아크릴로나이트릴 함량에 따른 물성 변화를 측정하기 위해 스티렌-아크릴로나이트릴 공중합 수지와, butadiene-g-ABS 수지는 각각 첨가하였다. 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는 스티렌-아크릴로나이트릴 공중합 수지와, butadiene-g-ABS 수지를 합성해 제조될 수 있으며, 따라서 스티렌-아크릴로나이트릴 공중합 수지와, butadiene-g-ABS 수지에 대한 설명은 동일 구성비를 가지는 아크릴로나이트릴-부타디엔-스티렌 공중합 수지에 대한 설명을 포함하는 개념으로 이해될 수 있다.
butadiene-g-ABS 수지는 butadiene-g-ABS 수지 대비 60 중량부의 부타디엔을 함유한 butadiene(60wt%)-g-ABS 수지를 사용하였다.
이후, 제조된 펠렛을 오븐에서 80℃에서 4시간 동안 건조시키고, 사출성형기에서 패밀리 금형으로 실린더 온도 220 내지 235℃, 압력 30 kgf/cm^2에서 사출을 진행하여 평가용 시편을 제조하였다.
[실시예 14] 내지 [실시예 20] 및 [비교예 11] 내지 [비교예 17]에서는 폴리 케톤 수지와, 폴리카보네이트 수지와, 아크릴로나이트릴-부타디엔-스티렌 수지와, 미네랄 섬유를 포함하는 보강제와, 아민계 상용화제를 포함하는 고분자 조성물과 함께 아인산염계(phosphite) 산화 방지제와, 페놀계(phenol) 산화 방지제와, 윤활제를 각각 수지 대비 0.2 phr 혼합하여 이축 압축기에서 압출하여 펠렛 형태로 제조하였다.
폴리카보네이트 수지는 ⓒ삼성 SDI의 CF-1050을 사용하였으며, 미네랄 섬유는 ⓒNYCO의 NYGLOS® 4W를 사용하였다.
이후, 제조된 펠렛을 오븐에서 80℃에서 4시간 동안 건조시키고, 사출성형기에서 패밀리 금형으로 실린더 온도 230 내지 260℃, 압력 30 kgf/cm^2에서 사출을 진행하여 평가용 시편을 제조하였다.
[실시예 1] 내지 [실시예 20] 및 [비교예 1] 내지 [비교예 17]에서 사용한 고분자 조성물의 조성비는 아래와 같으며, 그 구체적인 내용을 [표 1] 내지 [표 3]에 나타내었다.
[실시예 1]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 3 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 96 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 2]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 89 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 3]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 20 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 79 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 4]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 87 중량부와, 아민계 상용화제 3 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 5]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 9 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 85 중량부와, 아민계 상용화제 1 중량부와, MA 상용화제 5 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 6]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 89 중량부와, MA 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 7]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 87 중량부와, MA 상용화제 3 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 8]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 86 중량부와, MA 상용화제 5 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 9]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 27 내지 29 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 60 중량부와, 부타디엔 30 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 10]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 24 내지 26 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 60 중량부와, 부타디엔 30 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 11]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 30 내지 32 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 60 중량부와, 부타디엔 30 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 12]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 24 내지 26 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 62 중량부와, 부타디엔 28 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 13]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 27 내지 29 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 55 중량부와, 부타디엔 35 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 14]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 3 중량부와, 폴리카보네이트 수지 76 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 15중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 15]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 69 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 15중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 16]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 20 중량부와, 폴리카보네이트 수지 59 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 15 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 17]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 74 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 15 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 18]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 64 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 20 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 19]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 54 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 20 중량부와, 미네랄 섬유를 포함하는 보강제 15 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[실시예 20]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 44 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 30 중량부와, 미네랄 섬유를 포함하는 보강제 15 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 1]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 25 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 74 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 2]
전체 고분자 조성물 중량 대비 아크릴로나이트릴-부타디엔 스티렌 수지 100 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 3]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 90 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 4]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 9 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 85 중량부와, MA 상용화제 6 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 5]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 아크릴로나이트릴-부타디엔 스티렌 수지 87 중량부와, 아민계 상용화제 4 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 6]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 18 내지 20 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 60 중량부와, 부타디엔 30 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 7]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 24 내지 26 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 50 중량부와, 부타디엔 40 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 8]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 24 내지 26 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 80 중량부와, 부타디엔 10 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 9]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 24 내지 26 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 70 중량부와, 부타디엔 20 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 10]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 스티렌-아크릴로나이트릴 공중합 수지 중량 대비 24 내지 26 중량부의 아크릴로나이트릴 함량을 가지는 스티렌-아크릴로나이트릴 공중합 수지 62 중량부와, 부타디엔 28 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 11]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 25 중량부와, 폴리카보네이트 수지 54 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 15 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 12]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 84 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 0 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 13]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 54 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 30 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 14]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 70 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 15 중량부와, 아민계 상용화제 0 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 15]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 67 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 15 중량부와, 아민계 상용화제 3 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 16]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 0 중량부와, 폴리카보네이트 수지 79 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 5 중량부와, 미네랄 섬유를 포함하는 보강제 15 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[비교예 17]
전체 고분자 조성물 중량 대비 폴리 케톤 수지 10 중량부와, 폴리카보네이트 수지 37 중량부와, 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 37 중량부와, 미네랄 섬유를 포함하는 보강제 15 중량부와, 아민계 상용화제 1 중량부를 포함하는 고분자 조성물로 시편을 제조하였다.
[표 1]은 전술한 [실시예 1] 내지 [실시예 8] 및 [비교예 1] 내지 [비교예 5]의 조성비를 정리한 것이다.
Figure PCTKR2016009173-appb-T000001
[표 2]는 전술한 [실시예 9] 내지 [실시예 13] 및 [비교예 6] 내지 [비교예 10]의 조성비를 정리한 것이다.
Figure PCTKR2016009173-appb-T000002
[표 2]에서 SAN1 내지 SAN4는 각각 스티렌-아크릴로나이트릴 공중합 수지 내의 아크릴로나이트릴의 함량에 따라 스티렌-아크릴로나이트릴 공중합 수지를 구분할 것이다. SAN 1은 스티렌-아크릴로나이트릴 공중합 수지 내의 아크릴로나이트릴의 함량이 전체 스티렌-아크릴로나이트릴 공중합 수지 대비 약 18 내지 20 중량부인 경우이며, SAN 2는 스티렌-아크릴로나이트릴 공중합 수지 내의 아크릴로나이트릴의 함량이 전체 스티렌-아크릴로나이트릴 공중합 수지 대비 약 24 내지 26 중량부인 경우이며, SAN 3은 스티렌-아크릴로나이트릴 공중합 수지 내의 아크릴로나이트릴의 함량이 전체 스티렌-아크릴로나이트릴 공중합 수지 대비 약 27 내지 29 중량부인 경우이며, SAN 4는 스티렌-아크릴로나이트릴 공중합 수지 내의 아크릴로나이트릴의 함량이 전체 스티렌-아크릴로나이트릴 공중합 수지 대비 약 30 내지 32 중량부인 경우이다.
[표 3]은 전술한 [실시예 14] 내지 [실시예 20] 및 [비교예 11] 내지 [비교예 17]의 조성비를 정리한 것이다.
Figure PCTKR2016009173-appb-T000003
[실시예 1] 내지 [실시예 20] 및 [비교예 1] 내지 [비교예 17]의 고분자 조성물로 제조한 시편의 제반 물성을 다음의 방법으로 평가하였다.
용융지수(MI, Melt Index)
ASTM(American Society for Testing and Materials) D1238법에 따라 2.16kg, 260℃ 조건 하에서 [실시예 14] 내지 [실시예 20] 및 [비교예 11] 내지 [비교예 17]의 고분자 조성물로 제조된 시편의 용융 지수를 측정하였다.
인장강도
ASTM D638법에 따라 타입 1의 시편규격, 인장 속도 3mm/min 조건 하에서 [실시예 14] 내지 [실시예 20] 및 [비교예 11] 내지 [비교예 17]의 고분자 조성물로 제조된 시편의 인장 강도를 측정하였다. 총 5회 측정 하여 측정된 결과의 평균 값을 사용하였다.
아이조드 노치 충격강도
ASTM D265법에 따라 63.5 x 12.7 x 3.2 mm의 시편 규격, 상온 조건 하에서 [실시예 1] 내지 [실시예 20] 및 [비교예 1] 내지 [비교예 17]의 고분자 조성물로 제조된 시편의 아이조드 노치 충격 강도를 측정하였다. 총 5회 측정 하여 측정된 결과의 평균 값을 사용하였다.
굴곡 강도 및 굴곡 탄성률
ASTM D790법에 따라 6.4 mm 두께 시편으로 2.8 mm/min 속도 조건 하에서 [실시예 1] 내지 [실시예 20] 및 [비교예 1] 내지 [비교예 17]의 고분자 조성물로 제조된 시편의 굴곡 강도 및 굴곡 탄성률을 측정하였다. 총 5회 측정 하여 측정된 결과의 평균 값을 사용하였다.
연필 경도
연필경도측정기로 측정하였다. 구체적으로, 연필 심을 원기둥 모양으로 3 mm 노출시킨 상태에서 연필 심의 끝이 평단하고 각이 예리하게 되도록 연마하였다. 이후, 도막 면에 45° 각도로 연필 심을 닿게 하고 시험기의 높이를 시편과 평행하게 셋팅 하고, 시험기를 시편 방향으로 균일한 속도로 약 10 mm 이동시켜 [실시예 1] 내지 [실시예 8], [실시예 14] 내지 [실시예 20], [비교예 1] 내지 [비교예 5] 및 [비교예 11] 내지 [비교예 17]의 고분자 조성물로 제조된 시편의 스크레치 발생 여부를 측정하였다. 시편과 연필심의 위치를 바꾸어 5회 실시하였으며, 총 5회 중 1회 이상 스크래치가 발생할 경우 연필 심의 경도를 측정하였다.
외관 특성
[실시예 1] 내지 [실시예 8], [실시예 14] 내지 [실시예 20], [비교예 1] 내지 [비교예 5] 및 [비교예 11] 내지 [비교예 17]의 고분자 조성물로 제조된 성형품의 미 성형, 상 분리, 실버 스트리크 또는 표면 돌출 등의 문제를 육안으로 검사하였다.
치수
[실시예 1] 내지 [실시예 8], [실시예 14] 내지 [실시예 20], [비교예 1] 내지 [비교예 5] 및 [비교예 11] 내지 [비교예 17]의 고분자 조성물을 이용해 규격 사출된 사출품의 치수를 23℃에서 1차로 측정하고, 24시간 이상 경과된 후 사출품의 치수를 23℃에서 2차로 측정하여 치수 변화를 확인하였다. 2차 치수에 대한 1차 치수의 변화가 -0.4 내지 0.2 mm 범위 이내일 경우 패스(Pass), 범위를 벗어날 경우 NG(No Good)로 나타내었다.
위와 같은 방법으로 측정된 물성을 하기 [표 4] 내지 [표 6]에 나타내었다. 보다 상세하게, 전술한 [실시예 1] 내지 [실시예 8] 및 [비교예 1] 내지 [비교예 5]의 고분자 조성물로 제조한 시편의 물성을 [표 4]에 나타내었으며, [실시예 9] 내지 [실시예 13] 및 [비교예 6] 내지 [비교예 10]의 고분자 조성물로 제조한 시편의 물성을 [표 5]에 나타내었으며, [실시예 14] 내지 [실시예 20] 및 [비교예 11] 내지 [비교예 17]의 고분자 조성물로 제조한 시편의 물성을 [표 6]에 나타내었다.
Figure PCTKR2016009173-appb-T000004
Figure PCTKR2016009173-appb-T000005
Figure PCTKR2016009173-appb-T000006
[표 1] 및 [표 4]의 실시예 1 내지 8 및 비교예 1 내지 5를 통해 다음과 같은 결론을 도출하였다.
먼저, 실시예 1 내지 8 및 비교에 2를 비교하면 폴리 케톤 수지와 아크릴로나이트릴-부타디엔-스티렌 공중합 수지 얼로이에서 폴리 케톤을 포함하는 실시예 1 내지 8의 경우 폴리 케톤을 포함하지 않는 비교예 2 대비 연필 경도와 내화학성이 향상됨을 확인하였다.
다음으로, 실시예 1 내지 3과 비교예 1을 비교하면 고분자 조성물 내에 폴리 케톤 함량이 20 중량부 이하인 경우 굴곡 강도와 굴곡 탄성률과 충격 강도의 변화가 적게 발생함을 확인하였다. 다만, 고분자 조성물 내의 폴리 케톤 함량이 25 중량부인 경우 굴곡 강도와, 굴곡 탄성률과, 충격 강도가 각각 561 kgf/cm2, 18442 kgf/cm2, 15.4 kgf.cm/cm 로 저하되고, 사출 시 상 분리가 발생되며, 치수 변화가 크게 나타날 수 있음을 확인하였다. 즉, 성형품의 물성 저하 없이 일산화탄소 자원화 소재인 친환경 폴리케톤 수지를 적용하기 위해서는 고분자 조성물 내에 폴리 케톤 수지가 전체 조성물 중량 대비 3 내지 20 중량부로 포함되는 것이 바람직 함을 확인하였다.
다음으로, 실시예 2, 4 내지 8과 비교예 3 내지 5에 기초해 상용화제의 첨가에 따른 시편의 물성 변화를 확인하였다.
실시예 2, 4 내지 8과 비교예 3 내지 5의 결과를 비교하면, 상용화제를 전혀 첨가하지 않은 비교예 3의 경우 굴곡강도, 탄성률, 충격 강도가 낮으나 아민계 상용화제 또는 MA 상용화제를 1 phr 이상 첨가하는 경우 굴곡 강도 600 이상, 탄성률 20000이상, 충격 강도 20 이상을 확보함을 확인하였다. 한편, 비교예 5에 나타난 바와 같이 고분자 조성물 내에 아민계 상용화제를 4 phr 이상 첨가할 경우 아민계 상용화제를 3 phr 첨가하는 경우와 비교해 물성 상승이 크게 일어나지 않고 유지되는 것을 확인하였다. 즉, 재료 활용 측면에서 아민계 상용화제를 적정 비율로 첨가하는 것이 바람직함을 확인하였다.
또한, 실시예 6 내지 8 및 비교예 3 및 4의 결과를 비교하면, MA 상용화제를 첨가하는 경우 상용화제를 전혀 첨가하지 않은 비교예 3에 비해 시편의 충격강도가 증가됨을 확인하였다. 또한, 실시예 6 내지 8 및 비교예 4로 갈수록 MA 상용화제의 함량이 각각 1, 3, 5 및 6 중량부로 증가하는데, MA 상용화제의 함량이 증가할수록 굴곡 강도와 굴곡 탄성률이 점차적으로 감소되는 반면, 충격 강도는 20, 22, 34 및 35 kgf·cm/cm로 증가됨을 확인하였다. 다만, 비교예 4에서와 같이 MA 상용화제의 함량을 전체 조성물 중량 대비 6 중량부로 사용하는 경우 충격 강도는 35로 비교적 높으나 굴곡 강도가 450 kgf/cm2, 굴곡 탄성률이 18010 kgf/cm2로 급격하게 저하됨을 확인하였다.
아울러, 실시예 5에서와 같이 아민계 상용화제와 MA 상용화제를 동시에 사용하는 경우 시편의 충격 강도 38 kgf·cm/cm로서 크게 증가됨을 확인하였다.
[표 2] 및 [표 5]의 실시예 9 내지 13 및 비교예 6 내지 10을 통해 다음과 같은 결론을 도출하였다.
실시예 9 내지 11 및 비교예 6의 결과를 비교하면 스티렌-아크릴로나이트릴 공중합 수지 내의 아크릴로나이트릴 함량이 높을수록 굴곡 강도가 각각 485, 582, 618 및 675 kgf/cm2로 증가하고, 굴곡 탄성률이 각각 18340, 19362, 20249 및 22206 kgf/cm2으로 증가하고, 충격 강도가 15, 26, 39 및 42 kgf·cm/cm로 증가함을 확인하였다. 특히 충격 강도의 경우 스티렌-아크릴로나이트릴 공중합 수지 내의 아크릴로나이트릴 함량이 가장 높은 실시예 11의 경우, 아크릴로나이트릴 함량이 가장 낮은 비교예 6의 경우에 비해 3배에 가까운 충격 강도를 보임을 확인하였다.
다음으로, 실시예 10, 12, 13 및 비교예 7의 결과를 비교하면 전체 고분자 조성물 중량 대비 butadiene(60wt%)-g-ABS 수지의 함량이 각각 28, 30, 35 및 40 중량부로 증가됨에 따라 굴곡 강도가 각각 655, 582, 600 및 506 kgf/cm2으로 감소되는 경향을 보이고, 굴곡 탄성률이 각각 20400, 19362, 20002 및 16573 kgf/cm2으로 감소되는 경향을 보이는 반면, 충격 강도는 각각 20, 26, 35 및 42 kgf·cm/cm로 증가되는 경향을 보임을 확인하였다. 이는 고무 성분인 부타디엔의 함량이 증가함에 따라 내 충격성이 증가되는 반면 강성(stiffness)과 강도(strength)가 감소되기 때문이다.
적용 부품에 따라 요구되는 물성이 다르므로 목적에 맞는 배합비를 가지는 고분자 조성물을 적용할 수 있다. 실시 예에 따라 전자기기 외장 소재의 물성을 확보하기 위해서는 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 전체 중량 대비 아크릴로나이트릴 성분을 15 내지 22 중량부 범위 내로 포함할 수 있다. 아울러 전체 고분자 조성물 중량 대비 butadiene(60wt%)-g-ABS 수지를 28 내지 38 중량부 범위 내로 포함할 수 있으며, 다시 말해 전체 고분자 조성물 중량 대비 부타디엔 성분을 16 내지 23 중량부 범위 내로 포함할 수 있다.
[표 3] 및 [표 6]의 실시예 14 내지 20 및 비교예 11 내지 17을 통해 다음과 같은 결론을 도출하였다.
먼저, 실시예 14 내지 16 및 비교예 11 및 16에 기초해 폴리 케톤 수지의 함량에 따른 시편의 물성 변화를 확인하였다.
구체적으로, 실시예 14 내지 16에서는 전체 고분자 조성물 중량 대비 폴리 케톤의 함량이 3, 10 및 20으로 증가됨에 따라 용융 지수가 27, 28 및 30으로 증가됨을 확인하였다.
실시예 14 내지 16 및 비교예 16에서는, 폴리 케톤 수지의 함량이 0인 비교예 16의 경우 대비 폴리 케톤 수지의 함량이 3 내지 20 중량부로 포함된 실시예 14 내지 16의 경우 연필 강도가 2B 또는 B로 향상 됨을 확인하였다. 아울러, 비교예 16과 같이 폴리 케톤의 함량이 0인 경우 사출 시 상분리 현상이 발생될 수 있음을 확인하였다.
실시예 14 내지 16 및 비교예 11에서는, 폴리 케톤 수지의 함량이 25인 비교예 11의 경우 실시예 14 내지 16의 경우와 비교해 사출 시 외관에 상 분리 현상이 나타나며 치수안정성이 낮음을 확인하였다.
이를 통해 전체 고분자 조성물 중량 대비 폴리 케톤 수지의 함량이 3 내지 20 중량부로 포함됨이 바람직함을 확인하였다.
다음으로, 실시예 15, 17 내지 18 및 비교예 12 및 13에 기초해 보강제의 함량에 따른 시편의 물성의 변화를 확인하였다.
구체적으로, 보강제의 함량이 0인 비교예 12의 경우, 실시예 15, 17 및 18의 경우와 비교해 굴곡 탄성률이 2배 가까이 증가됨을 확인하였다.
또한, 전체 고분자 조성물의 중량 대비 보강제의 함량이 30 중량부인 비교예 13의 경우 실시예 15, 17 및 18의 경우와 비교해 충격 강도의 저하가 심하고 사출 시 표면에 보강재의 돌출로 사출면의 광택을 저해할 수 있음을 확인하였다.
다음으로, 실시예 15, 19 및 20과 비교예 17에 기초해 고분자 조성물 내의 수지 함량 조절에 따른 시편의 물성 변화를 확인하였다. 보다 상세하게, 폴리 케톤 수지의 함량을 전제 고분자 조성물 중량 대비 10 중량부로 고정하였으며 아크릴로나이트릴-부타디엔-스티렌 공중합 수지와 폴리카보네이트 수지의 비율을 변경하여 실험하였다.
실시예 15, 19 및 20과 비교예 17에서는 폴리카보네이트 수지 대비 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 함량이 증가될수록 굴곡 탄성률이 각각 45933, 41900, 38702 및 29840 kgf/cm2 순서로 감소되고, 신율이 각각 7.8, 9.9, 13 및 30으로 증가되는 경향을 보임을 확인하였다.
한편, 실시예 20에서와 같이 전체 고분자 조성물 중량 대비 폴리카보네이트 수지가 44 중량부로 포함되고 아크릴로나이트릴-부타디엔-스티렌 공중합 수지가 30 중량부로 포함되는 경우(ABS/PC = 0.7)까지는 물성 변화가 크지 않으나, 폴리카보네이트 수지가 37 중량부로 포함되고 아크릴로나이트릴-부타디엔-스티렌 공중합 수지가 37 중량부로 포함되는 경우(ABS/PC=1)에는 굴곡 탄성률이 급격하게 저하되고 신율이 급격하게 증가되며, 뿐만 아니라 사출물의 광택도가 감소하고 연필 경도의 저하가 발생됨을 확인하였다.
이를 통해 폴리카보네이트 수지 전체 중량 대비 아크릴로나이트릴-부타디엔-스티렌 공중합 수지가 1 중량부 이상 100 중량부 미만으로 포함될 수 있음을 확인하였다.
이상으로, 일산화 탄소를 원료로 제조된 친환경 폴리 케톤 수지를 포함하는 친환경 고분자 조성물의 실시 예 및 비교 예에 대한 물성 측정 결과에 대해 설명하였다.
다음으로, 일 실시 예에 따른 고분자 조성물로 이루어지는 성형품에 대해 설명한다.
일 실시 예에 따른 성형품은 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지를 포함하는 고분자 조성물로 이루어질 수 있다. 실시 예에 따라 고분자 조성물은 폴리카보네이트 수지, 난연제 등을 더 포함할 수 있으며, 우수한 내충격성이 요구되는 경우 고분자 조성물은 보강재를 더 포함할 수 있다. 이하 고분자 조성물과 관련해 전술한 바와 중복되는 설명은 생략하도록 한다.
성형품은, 필름(film), 시트(sheet), 펠릿(pellet) 또는 섬유(fiber) 형태로 성형될 수 있으며, 이하 성형품의 일 예로 전자기기를 예로 들어 설명하도록 한다.
성형품은 전자기기의 내장재(interior materials) 또는 외장재(exterior materials)를 포함할 수 있으며, 보다 상세하게 성형품은 전자기기의 하우징을 포함할 수 있다. 하우징은 부품을 수용하는 케이스나 기구를 포용하는 프레임 등 모든 기계 장치를 둘러싸고 있는 상자 모양의 부분으로, 하우징의 액세서리를 포함하는 개념일 수 있다. 본 명세서에서 하우징의 액세서리는 티브이의 베젤부, 티브이의 스탠드와 같이 하우징의 일 부분을 포함하는 개념 또는 전자기기의 부품을 포함하는 개념으로 정의될 수 있다.
전자기기는, 표시 장치, 스마트 기기, 컴퓨터, 태블릿 PC, 프린터, 복합기, 냉장고, 세탁기, 공기조화기, 로봇청소기, 카메라, 이북(E-BOOK), 전자종이(E-Paper), 3D 안경 및 충전기를 포함하는 군에서 선택된 적어도 하나를 포함할 수 있다. 이하, 전자기기의 일 예로 표시 장치를 예로 들어 개시된 발명에 따른 성형품의 적용 예대 대해 설명하도록 한다.
도 2은 일 실시 예에 따른 표시 장치(200)의 사시도 이다.
도 2에 도시된 바를 참조하면, 일 실시 예에 따른 표시 장치(200)는 영상을 디스플레이하고 사운드를 출력하는 본체(210)와, 본체(210)를 지지하는 스탠드(220)를 포함할 수 있다.
일 예에 따른 표시 장치의 본체(210) 및 스탠드(220)는 전술한 조성물을 재료로 성형된 것을 포함할 수 있다. 즉, 전술한 고분자 조성물을 사출 성형하여 제조된 성형품일 수 있다. 즉, 친환경소재인 폴리 케톤을 전자기기의 내장재 또는 외장재에 적용하여 친환경 재료 구현을 통한 글로벌 친환경 정책에 부합하도록 할 수 있으며, 친환경 제품에 대한 소비자의 니즈를 충족시킬 수 있다. 또한, 실시 예에 따라 표시 장치(200)의 스탠드(220)에 적용되는 고분자 조성물에 보강재를 첨가함으로써 스탠드(220)의 강성을 확보하도록 할 수 있음은 물론이다.
이상으로, 일 실시 예에 따른 고분자 조성물로 이루어진 전자기기에 대해 설명하였다.
다음으로, 일 실시 예에 따른 고분자 조성물의 제조 방법 및 성형품의 제조 방법에 대해 설명하도록 한다. 성형품의 예로는 전술한 바와 같이 전자기기를 예로 들어 설명하도록 할 것이다.
먼저, 일 실시 예에 따른 고분자 조성물을 제조하는 압출기의 구조 및 압출기에서 제조된 고분자 조성물을 원료로 성형품을 제조하는 사출성형장치의 구조에 대해 설명하도록 한다.
도 3은 일 실시 예에 따른 압출기의 구조를 도시한 도면이고, 도 4는 일 실시 예에 따른 사출성형장치의 구조를 도시한 도면이다.
도 3에 도시된 바를 참조하면, 일 예에 따른 압출기(300)는 원료를 투입하기 위한 압출기 호퍼(hopper)(310)와, 원료를 추가적으로 투입하기 위한 제 1 사이드 피더(311) 및 제 2 사이드 피더(312)와, 회동 가능하게 설치된 샤프트(shaft)(320)와, 샤프트(320)를 수용하는 압출기 실린더(330)와, 샤프트를 회동시키기 위한 압출기 구동부(340)와, 압출기 실린더(330) 내부를 가열하기 위한 압출기 히터(heater)(350)와, 고분자 조성물을 배출하는 토출 다이(360)와, 압출기 히터(350)의 가열 온도를 제어하기 위한 압출기 제어부(미도시)를 포함할 수 있다. 압출기(300)는 도 3에 도시된 바와 같은 연속식 트윈 압출기(continuous flow twin screw extruder)가 사용될 수 있으나, 이에 한정되는 것은 아니며 연속식 단일 압출기(continuous flow single screw extruder)가 사용될 수도 있다.
압출기 구동부(340)는 샤프트(320)를 회전 구동시키기 위한 모터와, 모터와 연결되고 모터의 동력을 기어부로 전달하기 위한 커플링부와, 모터의 동력을 전달받아 샤프트(320)를 회전시키는 기어부를 포함할 수있다. 압출기 구동부(340)에 의해 구동되는 샤프트(320)는 용융된 혼합물에 전단 응력을 인가하기 위해 일정 방향(예컨대, 시계 방향)으로 회전할 수 있으며, 100 내지 400 rpm 범위 내의 속도로 회전할 수 있다.
압출기 히터(350)는 공급 영역부터 토출 영역까지 복수개로 구성되어 압출기 실린더(330) 내부의 온도를 조절할 수 있다. 즉, 압출기 실린더(330) 내부의 온도는 복수개의 구역으로 구획되어 각 구역별로 온도가 조절될 수 있으며, 각 구역의 온도는 가공되는 원료에 따라 적절하게 조절될 수 있다.
도 4에 도시된 바를 참조하면, 일 실시 예에 따른 사출성형장치(400)는 원료가 인입되는 사출성형장치 호퍼(410)와, 사출성형장치 호퍼(410)를 통해 인입되는 원료를 수용하는 바렐(420)과, 바렐(420)의 내부에 전후로 이동 및 회전 가능하게 설치되는 스크류(430)와, 스크류(430)에 회전력을 전달하는 사출성형장치 모터(440)와, 스크류(430)에 연결되어 스크류(430)를 직선 이동시키는 사출성형장치 실린더부(450)와, 바렐(420)의 외주면에 설치되어 바렐(420)에 수용되는 원료를 가열하는 사출성형장치 히터(460)와, 바렐(420)에 수용된 합성수지 원료를 금형(470)에 공급하는 노즐(465)과, 노즐(465)로부터 원료를 공급받아 성형품을 성형하는 금형(470)을 포함할 수 있다.
금형(470)은 원료를 공급받는 제 1 금형(470a) 및 제 1 금형(470a)과 조합되어 내부에 사출 캐비티(475)를 형성하는 제 2 금형(470b)을 포함할 수 있다. 제 1 금형(470a)은 고정형 금형일 수 있으며 제 2 금형(470b)은 이동형 금형일 수 있다.
이상으로, 일 실시 예에 따른 성형품의 제조를 위한 압출기(300) 및 사출성형장치(400)에 대해 설명하였다. 다음으로, 일 실시 예에 따른 고분자 조성물의 제조 방법 및 성형품의 제조 방법을 설명한다.
도 5는 일 실시 예에 따른 고분자 조성물의 제조 방법과 성형품의 제조 방법을 도시한 도면이다. 도 5의 A 부분은 압출기(300)에서 진행되는 펠렛 제조 과정을 도시한 도면이고, 도 5의 B 부분은 사출성형장치(400)에서 진행되는 성형품의 제조 과정을 도시한 도면이다.
도 5에 도시된 바를 참조하면, 먼저 헨셀 믹서를 사용하여 원재료가 프리 믹싱되고, 프리 믹싱된 원재료가 압출기 호퍼(310)에 투입된다. 압출기 호퍼(310)에 투입된 원재료는 압출기 실린더(330) 내에서 압출된다. 이 때, 난연제는 제 1 사이드 피더(311)를 통해 압출기 실린더(330)에 별도로 투입될 수 있으며, 보강제는 제 2 사이드 피더(312)를 통해 압출기 실린더(330)에 별도로 투입될 수 있다.
난연제와 보강제를 원료와 동시에 투입할 경우 난연제와 보강제가 압출기(300) 내에 머무르는 시간이 길어지는 결과 재료가 분해될 수 있으며, 결과적으로 난연재 또는 보강재로서의 기능을 하지 못할 수 있다.
이에, 일 실시 예에 따른 고분자 조성물의 제조 방법에서는 제 1 사이드 피더(311)와 제 2 사이드 피더(312)를 통해 난연재와 보강재를 투입함으로써 난연재와 보강재의 투입 량을 일정하게 조절할 수 있으며, 압출기(300) 내부에서 받는 힘에 의해 난연재와 보강재가 분쇄되는 것을 방지할 수 있다.
일 실시 예에 따른 고분자 조성물의 제조 방법은 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지 3 내지 20 중량부 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지 80 내지 97 중량부를 포함하는 고분자 조성물이 원료로서 제공될 수 있다. 한편, 원료의 종류가 이에 한정되는 것은 아니며, 폴리카보네이트 수지 등이 더 포함될 수 있음은 물론이다. 아울러, 난연재로는 비스페놀-A 디페닐포스페이트 및 이를 포함하는 혼합물이 사용될 수 있으며, 보강재로는 미네랄 필러가 사용될 수 있다. 이하 원재료로 투입 가능한 고분자 조성물의 종류와 관련해 전술한 고분자 조성물에서 설명한 것과 중복된 설명은 생략하도록 한다.
이하 [표 7]은 일 실시 예에 따른 고분자 조성물의 제조 조건을 나타낸 것이다.
Figure PCTKR2016009173-appb-T000007
[표 7]에 도시된 바와 같이, 일 실시 예에 따른 고분자 조성물을 제조하기 위해 압출기 실린더(330)를 복수개의 구역으로 구분해 각 구역별로 온도를 조절하였다. 구체적으로, 압출기 실린더(330)를 7 개의 구역으로 구분해 각 구역별로 온도를 단계적으로 조절하였다. 이하, 압출기 실린더(330) 중 압출기 호퍼(310) 주위 구역을 제 1 구역으로 정의하고, 압출기 실린더(330) 중 토출 다이(360) 주위 구역을 제 7 구역으로 정의한다. 본 제조 예에서는 제 1 구역의 온도를 250℃로 조절하였으며, 제 7 구역의 온도를 275℃로 조절하였다. 또한, 제 1 구역에서 제 7 구역 방향으로 압출기 실린더(330)의 온도가 점차적으로 하강된 후 다시 상승되도록 조절하였다.
고분자 조성물은 압출기 호퍼(310)를 통해 제 1 구역에 유입되고, 토출 다이(360)를 통해 제 7 구역에서 토출될 수 있으며, 토출 다이(360)를 통해 제 7 구역에서 토출된 고분자 조성물을 건조시켜 펠렛을 제조할 수 있다.
이후, 제조된 펠렛을 사출성형장치(400)의 호퍼(410)에 인입해 이를 용융시키고 용융된 고분자 조성물을 금형(470)을 이용해 사출 성형하여 성형품을 제조할 수 있다. 여기서 성형품은 전자기기의 하우징을 포함하는 개념일 수 있으며 이하 전술한 바와 중복되는 설명은 생략한다.
보다 상세하게, 고분자 조성물을 사출성형하는 단계는 고분자 조성물을 사출성형장치의 호퍼(410)에 인입하는 단계와, 인입된 고분자 조성물을 용융하는 단계와, 용융된 고분자 조성물을 금형(470)에 제공하는 단계를 포함할 수 있다.
[표 8]은 전술한 실시예 1 내지 13에 따른 고분자 조성물을 이용해 사출 공정을 진행할 경우 사출 조건을 나타낸 것이고, [표 9]는 전술한 실시예 14 내지 20에 따른 보강제가 첨가된 고분자 조성물을 이용해 사출 공정을 진행할 경우 사출 조건을 나타낸 것이다.
Figure PCTKR2016009173-appb-T000008
Figure PCTKR2016009173-appb-T000009
[표 8] 및 [표 9]에 도시된 바와 같이, 본 제조 예 에서는 바렐(420)을 복수 개의 구역으로 구분해 온도를 단계적으로 조절하였다. 보다 상세하게 [표 8]의 경우, 노즐(465) 주위의 바렐(420) 온도를 220℃로 조절하였으며 사출성형장치 호퍼 주위의 바렐(420) 온도를 235℃로 조절하여 원료를 금형에 공급하였다. 또한, 고정형 금형인 제 1 금형의 온도를 55℃로 조절하였으며, 이동형 금형인 제 2 금형의 온도를 60℃로 조절하였다.
한편, [표 9]의 경우, 노즐(465) 주위의 바렐(420) 온도를 260℃로 조절하였으며 사출성형장치 호퍼(410) 주위의 바렐(420) 온도를 235℃로 조절하여 원료를 금형(470)에 공급하였다. 또한, 고정형 금형인 제 1 금형(470a)의 온도를 55℃로 조절하였으며, 이동형 금형인 제 2 금형(470b)의 온도를 60℃로 조절하였다.
이상으로 고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법의 여러 실시 예들에 대해 설명하였다. 발명의 기술적 사상이 전술한 실시 예에 의해 한정되는 것은 아니며 당해 기술분야에서 통상의 지식을 가진 자가 쉽게 생각할 수 있는 범위 내의 변경을 포함하는 개념으로 넓게 이해되어야 할 것이다.

Claims (15)

  1. 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리케톤(Polyketone) 수지 3 내지 20 중량부; 및
    아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지를 포함하는 열가소성 수지 80 내지 97 중량부;를 포함하는 고분자 조성물.
  2. 제 1 항에 있어서,
    상기 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는,
    상기 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 전체 중량 대비 상기 아크릴로나이트릴 성분을 15 내지 22 중량부로 포함하는 고분자 조성물.
  3. 제 1항에 있어서,
    상기 열가소성 수지는,
    폴리카보네이트 수지를 더 포함하고,
    상기 폴리카보네이트 수지 전체 중량 대비 상기 아크릴로나이트릴-부타디엔-스티렌 공중합 수지를 1 중량부 이상 100 중량부 미만으로 포함하는 고분자 조성물.
  4. 제 1항에 있어서,
    상기 전체 고분자 조성물 중량 대비 10 내지 20 중량부의 보강재;
    상기 전체 고분자 조성물 중량 대비 1 내지 3 중량부의 아민계 상용화제; 및
    인계 난연제; 중 적어도 하나를 더 포함하는 고분자 조성물.
  5. 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤 수지 3 내지 20 중량부; 및
    폴리 카보네이트(Polycarbonate; PC)를 포함하는 열가소성 수지 80 내지 97 중량부;를 포함하는 고분자 조성물.
  6. 제 5항에 있어서,
    상기 열가소성 수지는,
    아크릴로나이트릴-부타디엔-스티렌 공중합 수지;를 더 포함하고,
    상기 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는,
    상기 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 전체 중량 대비 상기 아크릴로나이트릴 성분을 15 내지 22 중량부로 포함하는 고분자 조성물.
  7. 제 5항에 있어서,
    상기 열가소성 수지는,
    상기 폴리카보네이트 수지 전체 중량 대비 상기 아크릴로나이트릴-부타디엔-스티렌 공중합 수지를 1 중량부 이상 100 중량부 미만으로 포함하는 고분자 조성물.
  8. 제 5항에 있어서,
    상기 전체 고분자 조성물 중량 대비 10 내지 20 중량부의 보강재; 및
    상기 전체 고분자 조성물 중량 대비 1 내지 3 중량부의 아민계 상용화제;
    인계 난연제; 중 적어도 하나를 더 포함하는 고분자 조성물.
  9. 일산화 탄소를 원료로 제조된 폴리 케톤 수지; 및
    아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 수지; 및
    아민계 상용화제;를 포함하는 고분자 조성물.
  10. 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지 3 내지 20 중량부 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지 80 내지 97 중량부를 포함하는 고분자 조성물로 이루어지는 전자기기.
  11. 제 10항에 있어서,
    상기 아크릴로나이트릴-부타디엔-스티렌 공중합 수지는,
    상기 아크릴로나이트릴-부타디엔-스티렌 공중합 수지의 전체 중량 대비 상기 아크릴로나이트릴 성분을 15 내지 22 중량부로 포함하는 전자기기.
  12. 제 10항에 있서,
    상기 전자 기기는,
    전자기기의 내장제(interior materials) 및 외장재(exterior materials) 중 적어도 하나를 포함하고,
    상기 전자기기는,
    표시 장치, 스마트 기기, 컴퓨터, 태블릿 PC, 프린터, 복합기, 냉장고, 세탁기, 공기조화기, 로봇청소기, 카메라, 이북(E-BOOK), 전자종이(E-Paper), 3D 안경 및 충전기를 포함하는 군에서 선택된 적어도 하나를 포함하는 전자기기.
  13. 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지 3 내지 20 중량부 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지 80 내지 97 중량부를 포함하는 고분자 조성물을 혼합하는 단계와,
    상기 고분자 조성물을 압출기의 호퍼에 투입하는 단계를 포함하는 고분자 조성물의 제조 방법.
  14. 제 13항에 있어서,
    제 1 사이드 피더에 난연제를 투입하는 단계; 및
    제 2 사이드 피더에 보강재를 투입하는 단계;를 더 포함하는 고분자 조성물의 제조 방법.
  15. 전체 고분자 조성물 중량 대비 일산화 탄소를 원료로 제조된 폴리 케톤(Polyketone) 수지 3 내지 20 중량부 및 아크릴로나이트릴-부타디엔-스티렌(Acrylonytril-Butadiene-Styrene; ABS) 공중합 수지 80 내지 97 중량부를 포함하는 고분자 조성물을 제조하는 단계와,
    상기 고분자 조성물을 사출성형장치에 투입해 사출 성형하는 단계를 포함하는 전자기기의 제조 방법.
PCT/KR2016/009173 2015-10-02 2016-08-19 고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법 WO2017057847A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16851995.7A EP3342820B1 (en) 2015-10-02 2016-08-19 Polymeric composition, method for producing polymeric composition, electronic apparatus, and method for manufacturing electronic apparatus
US15/765,347 US10851238B2 (en) 2015-10-02 2016-08-19 Polymeric composition, method for producing polymeric composition, electronic apparatus, and method for manufacturing electronic apparatus
CN201680067908.1A CN108603006B (zh) 2015-10-02 2016-08-19 聚合物组合物、用于制造聚合物组合物的方法、电子设备和用于制造电子设备的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150138950A KR102386124B1 (ko) 2015-10-02 2015-10-02 고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법
KR10-2015-0138950 2015-10-02

Publications (1)

Publication Number Publication Date
WO2017057847A1 true WO2017057847A1 (ko) 2017-04-06

Family

ID=58424187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009173 WO2017057847A1 (ko) 2015-10-02 2016-08-19 고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법

Country Status (5)

Country Link
US (1) US10851238B2 (ko)
EP (1) EP3342820B1 (ko)
KR (1) KR102386124B1 (ko)
CN (1) CN108603006B (ko)
WO (1) WO2017057847A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641269A (zh) * 2018-03-28 2018-10-12 广东聚石化学股份有限公司 一种耐溶剂耐候阻燃abs/pok合金及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172554B1 (ko) * 2017-12-27 2020-11-02 주식회사 엘지화학 폴리카보네이트 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
CN109438895B (zh) * 2018-10-09 2021-12-31 上海长伟锦磁工程塑料有限公司 一种耐候性能优异的无卤阻燃asa/pok合金材料
CN111138821B (zh) * 2018-11-06 2022-09-16 万华化学集团股份有限公司 一种薄壁阻燃聚碳酸酯材料及其制备方法和用途
CN111154219B (zh) * 2018-11-07 2022-08-05 万华化学集团股份有限公司 一种低内应力电镀组合物及其制备方法
CN109825027B (zh) * 2019-02-28 2021-11-16 威海联桥新材料科技股份有限公司 一种abs/pok合金免喷涂材料及其制备方法
CN110343382A (zh) * 2019-07-23 2019-10-18 金发科技股份有限公司 一种高性能阻燃abs复合材料及其制备方法
CN112372863A (zh) * 2020-11-06 2021-02-19 江西中昱新材料科技有限公司 一种用于硅锭切片的支撑板及其制作方法
TWI740709B (zh) * 2020-11-10 2021-09-21 禾聚實業有限公司 苯乙烯共聚物組成物
WO2022225816A1 (en) 2021-04-19 2022-10-27 Jabil Inc. Improved elastomeric additive manufacturing composition
WO2023128554A1 (ko) 2021-12-27 2023-07-06 삼성전자주식회사 난연 플라스틱 소재 조성물 및 그 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451918B1 (en) * 1990-04-12 1996-07-10 Shell Internationale Researchmaatschappij B.V. Polyketone polymer compositions
JPH101601A (ja) * 1996-06-18 1998-01-06 Kuraray Co Ltd 熱可塑性樹脂組成物
WO1998054262A1 (en) * 1997-05-29 1998-12-03 Bp Chemicals Limited Toughened polyketone composition
WO1999054406A1 (de) * 1998-04-21 1999-10-28 Bayer Aktiengesellschaft Thermoplastische polyketon-formmassen mit verbesserten eigenschaften
KR20110012153A (ko) * 2009-07-30 2011-02-09 주식회사 효성 폴리케톤 블렌드 및 그 제조방법
KR20120077807A (ko) * 2010-12-31 2012-07-10 주식회사 효성 폴리케톤 및 abs를 포함하는 블렌드 및 그 제조방법
KR20130021283A (ko) * 2011-08-22 2013-03-05 현대자동차주식회사 프론트 엔드 모듈 캐리어용 경량화된 강화플라스틱 복합소재 조성물

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2738725A1 (de) * 1977-08-27 1979-03-08 Basf Ag Azolylalkohole
US4880908A (en) 1988-04-11 1989-11-14 Shell Oil Company Polymer blend of carbon monoxide/olefin copolymer and polycarbonate
US5086113A (en) * 1988-08-25 1992-02-04 E. I. Du Pont De Nemours & Company Thermoplastic blends of ABS containing ethylene terpolymers
US5369170A (en) * 1993-12-13 1994-11-29 Shell Oil Company Composite systems of polyketone and aminated, modified polyolefins
USH1601H (en) 1995-03-02 1996-10-01 Shell Oil Company Compatibilized polyketone polymer blend
JPH101590A (ja) * 1996-06-18 1998-01-06 Kuraray Co Ltd 熱可塑性樹脂組成物
CN1229101A (zh) * 1998-03-06 1999-09-22 通用电气公司 一种芳族乙烯/酮类聚合物的组合物
CN1472251A (zh) 2002-07-29 2004-02-04 上海普利特复合材料有限公司 一种高抗冲耐热苯乙烯丙烯腈类共聚物及其制备方法
EP2128200B1 (en) 2007-03-23 2014-12-31 Toray Industries, Inc. Polyphenylene sulfide resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451918B1 (en) * 1990-04-12 1996-07-10 Shell Internationale Researchmaatschappij B.V. Polyketone polymer compositions
JPH101601A (ja) * 1996-06-18 1998-01-06 Kuraray Co Ltd 熱可塑性樹脂組成物
WO1998054262A1 (en) * 1997-05-29 1998-12-03 Bp Chemicals Limited Toughened polyketone composition
WO1999054406A1 (de) * 1998-04-21 1999-10-28 Bayer Aktiengesellschaft Thermoplastische polyketon-formmassen mit verbesserten eigenschaften
KR20110012153A (ko) * 2009-07-30 2011-02-09 주식회사 효성 폴리케톤 블렌드 및 그 제조방법
KR20120077807A (ko) * 2010-12-31 2012-07-10 주식회사 효성 폴리케톤 및 abs를 포함하는 블렌드 및 그 제조방법
KR20130021283A (ko) * 2011-08-22 2013-03-05 현대자동차주식회사 프론트 엔드 모듈 캐리어용 경량화된 강화플라스틱 복합소재 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641269A (zh) * 2018-03-28 2018-10-12 广东聚石化学股份有限公司 一种耐溶剂耐候阻燃abs/pok合金及其制备方法

Also Published As

Publication number Publication date
US10851238B2 (en) 2020-12-01
CN108603006B (zh) 2021-02-02
CN108603006A (zh) 2018-09-28
KR20170039863A (ko) 2017-04-12
US20180282536A1 (en) 2018-10-04
KR102386124B1 (ko) 2022-04-14
EP3342820A4 (en) 2018-10-31
EP3342820A1 (en) 2018-07-04
EP3342820B1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2017057847A1 (ko) 고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법
WO2016080675A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2012015128A1 (ko) 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2014119827A9 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 성형품
EP3289015A1 (en) Polymer composition, molded article, and method of manufacturing the molded article
WO2024071585A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품
WO2024043533A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2016175402A1 (en) Polymer composition, molded article, and method of manufacturing the molded article
WO2019117587A1 (ko) 내열 수지 조성물 및 이를 이용한 자동차용 스포일러
WO2023146143A1 (ko) 열가소성 수지 조성물 및 성형품
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023075104A1 (ko) 열가소성 폴리에스테르 엘라스토머 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2024071549A1 (ko) 폴리부틸렌테레프탈레이트 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018088677A1 (ko) 열가소성 수지 및 열가소성 수지 조성물
WO2019194620A1 (ko) 열가소성 수지 조성물
WO2020050639A1 (ko) 열가소성 수지 조성물
WO2023229132A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023090931A1 (ko) 폴리에틸렌 및 이를 이용한 가황성 염소화 폴리에틸렌 조성물
WO2022085893A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2024048976A1 (ko) 폴리(아릴렌 에테르) 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2024005288A1 (ko) 자동차 내장재용 복합수지 조성물 및 이를 이용한 자동차 내장재
WO2023229131A1 (ko) 열가소성 폴리에스테르 엘라스토머 조성물, 이의 제조방법 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016851995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15765347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE