WO2024071585A1 - 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품 - Google Patents

열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품 Download PDF

Info

Publication number
WO2024071585A1
WO2024071585A1 PCT/KR2023/008981 KR2023008981W WO2024071585A1 WO 2024071585 A1 WO2024071585 A1 WO 2024071585A1 KR 2023008981 W KR2023008981 W KR 2023008981W WO 2024071585 A1 WO2024071585 A1 WO 2024071585A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin composition
thermoplastic resin
terephthalate resin
compound
Prior art date
Application number
PCT/KR2023/008981
Other languages
English (en)
French (fr)
Inventor
공선호
고건
손선모
이현석
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230082468A external-priority patent/KR20240045076A/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to EP23840866.0A priority Critical patent/EP4375330A1/en
Publication of WO2024071585A1 publication Critical patent/WO2024071585A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a thermoplastic resin composition and automobile interior parts manufactured therefrom. More specifically, the heat resistance and impact resistance are improved by changing the raw materials used, thereby satisfying the balance of physical properties such as mechanical properties and fluidity, and excellent product reliability. It relates to a thermoplastic resin composition capable of providing quality and exterior quality, and automobile interior parts manufactured therefrom.
  • materials used in automobile interior parts include acrylonitrile-butadiene-styrene resin (ABS), composite resin mixed with polycarbonate resin (PC) and acrylonitrile-butadiene-styrene resin (ABS), and polycarbonate resin ( There are composite resins that are a mixture of PC) and acrylate-styrene-acrylonitrile (ASA), or composite resins that are a mixture of polycarbonate resin (PC) and polybutylene terephthalate resin (PBT), and these have excellent physical properties. It is used in various automobile interior parts.
  • ABS acrylonitrile-butadiene-styrene resin
  • PC polycarbonate resin
  • PC polycarbonate resin
  • PBT polybutylene terephthalate resin
  • 'PET resin' polyethylene terephthalate resin
  • PET bottles As an example, the quantity of PET bottles has increased by about 2.5 billion and 100,000 tons, but recycling methods for these are limited to recovering them and recycling them into beverage bottles or recycling them into fibers or packaging materials.
  • the PET resin like PBT, is classified as polyester resin, but it has a higher crystallization temperature than PBT, has poor moldability, and is known to have relatively unstable mechanical properties such as dimensional changes.
  • the present invention not only reduces the cost by changing the material used, but also can be used as an unpainted product, which is excellent in economic efficiency, and improves heat resistance and impact resistance to improve mechanical properties, fluidity, etc.
  • the purpose is to provide a thermoplastic resin composition that satisfies the balance of physical properties and provides excellent product reliability and appearance quality.
  • an object of the present invention is to provide automobile interior parts using the above thermoplastic resin composition.
  • the present invention I) i) 44 to 56% by weight of polybutylene terephthalate resin; ii) 8 to 17% by weight of polyethylene terephthalate resin; iii) 12 to 20% by weight of (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer; iv) 0.1 to 2.2% by weight of carboxy reactive epoxy resin; and v) It provides a thermoplastic resin composition comprising SiO2, CaO and Al2O3, wherein the SiO2 content accounts for 50% by weight or more, and 10 to 35% by weight of glass fibers where the Al2O3 content is greater than CaO.
  • the intrinsic viscosity of the polybutylene terephthalate resin may be 0.45 to 0.85 dl/g.
  • the intrinsic viscosity of the ii) polyethylene terephthalate resin may be 0.5 to 0.9 dl/g.
  • the ii) polyethylene terephthalate resin may be a recycled polyethylene terephthalate resin.
  • the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer is 40 to 80% by weight of the conjugated diene compound, 10 to 40% by weight of the aromatic vinyl compound, and (meth) ) It may contain 1 to 20% by weight of an acrylate compound.
  • the particle size of the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer may be 0.2 to 0.4 ⁇ m.
  • the iv) carboxy reactive epoxy resin is ethylene-n-butyl acrylate-glycidyl methacrylate copolymer, ethylene-glycidyl methacrylate copolymer, ethylene-acrylic Ester-Glycidyl Methacrylate Copolymer, Ethylene-Methyl Acrylate-Glycidyl Methacrylate Copolymer, Ethylene-Dimethacrylate-Glycidyl Methacrylate Copolymer, Ethylene-Acrylate-Glycidyl It may be one or more selected from methacrylate copolymer and ethylene-vinyl acetate-glycidyl methacrylate copolymer.
  • the iv) carboxy reactive epoxy resin may contain 1 to 15% by weight of a unit derived from glycidyl methacrylate.
  • the i) intrinsic viscosity of the polybutylene terephthalate resin may be smaller than the intrinsic viscosity of the ii) polyethylene terephthalate resin.
  • polyethylene terephthalate resin may include a bottle of water bottle.
  • the present invention XV) i) 44 to 56% by weight of polybutylene terephthalate resin; ii) 8 to 17% by weight of polyethylene terephthalate resin; iii) 12 to 20% by weight of (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer; iv) 0.1 to 2.2% by weight of carboxy reactive epoxy resin; and v) 10 to 35% by weight of glass fiber containing SiO2, CaO and Al2O3, wherein the SiO2 content accounts for 50% by weight or more and the Al2O3 content is greater than CaO, wherein i) polybutylene terephthalate resin.
  • a thermoplastic resin composition characterized in that the intrinsic viscosity of ii) is smaller than the intrinsic viscosity of the polyethylene terephthalate resin.
  • the present invention XVI) i) 44 to 56% by weight of polybutylene terephthalate resin; ii) 8 to 17% by weight of polyethylene terephthalate resin; iii) 12 to 20% by weight of (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer; iv) 0.1 to 2.2% by weight of carboxy reactive epoxy resin; and v) 10 to 35 wt% of glass fibers comprising SiO2, CaO and Al2O3, wherein the SiO2 content accounts for 50 wt% or more and the Al2O3 content is greater than CaO; melt kneading and extruding the glass fibers by putting them into an extruder. It provides a method for producing a thermoplastic resin composition comprising.
  • the steps of melt kneading and extruding the thermoplastic resin composition are carried out at an extrusion temperature of 250 to 300 ° C., a flow ratio (F/R) of 10 to 55 kg / hr, and a screw rotation speed of 150 to 600 rpm. can do.
  • F/R flow ratio
  • the present invention XIX) i) 44 to 56% by weight of polybutylene terephthalate resin; ii) 8 to 17% by weight of recycled polyethylene terephthalate resin; iii) 12 to 20% by weight of (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer; iv) 0.1 to 2.2% by weight of carboxy reactive epoxy resin; and v) 10 to 35 wt% of glass fibers comprising SiO2, CaO and Al2O3, wherein the SiO2 content accounts for 50 wt% or more and the Al2O3 content is greater than CaO; melt kneading and extruding the glass fibers by putting them into an extruder.
  • XX a method for producing a thermoplastic resin composition is provided, wherein the i) intrinsic viscosity of the polybutylene terephthalate resin is smaller than the intrinsic viscosity of the ii) polyethylene terephthalate resin.
  • the present invention provides XXI) an automobile interior part that is manufactured including the above-described thermoplastic resin composition.
  • the automobile interior component may be a vehicle electronic device integrated control component (Body Control Module) housing.
  • thermoplastic resin composition according to the present invention can be molded into automobile interior parts.
  • thermoplastic resin composition according to the present invention have improved heat resistance and impact resistance, satisfying the balance of physical properties such as mechanical properties and fluidity, and at the same time have excellent formability, which has the effect of improving appearance quality.
  • thermoplastic resin composition according to the present invention can be applied to the field of automobile interior parts, including body control module housings required as automobile interior materials.
  • Figure 1 is a process flow chart showing the process of manufacturing recycled polyethylene terephthalate resin used in examples described later.
  • FIG. 2 is a photograph showing a virgin PET resin (left drawing) and a waste water bottle recycled resin (right drawing) obtained according to the process of FIG. 1.
  • PET resin refers to virgin resin made by the DMT method.
  • the DMT method refers to the transesterification reaction of dimethyl terephthalate (DMT) and ethylene glycol (EG), known in the art.
  • the variable when a range is stated for a variable, the variable will be understood to include all values within the stated range, including the stated endpoints of the range.
  • the range “5 to 10" includes the values 5, 6, 7, 8, 9, and 10, as well as any subranges such as 6 to 10, 7 to 10, 6 to 9, 7 to 9, etc. and any values between integers falling within the scope of the stated range, such as 5.5 to 8.5, and 6.5 to 9.
  • the range from 10 to 30% includes values such as 10%, 11%, 12%, 13%, etc. and all integers up to and including 30%, as well as values within the stated range such as 10.5%, 15.5%, 25.5%, etc. It will be understood to include arbitrary values between valid integers.
  • hydrolysis stabilizer refers to a substance that is stable from hydrolysis and can improve mechanical properties, etc. even under conditions where hydrolysis may occur, unless otherwise specified.
  • the flow index may be the melt flow index measured with a 5kg load at 260°C according to ISO 1133.
  • the present inventors have investigated the SiO2 content in a hydrolysis stabilizer containing a specific weight % of polybutylene terephthalate resin, polyethylene terephthalate resin, (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, and carboxy reactive epoxy resin.
  • a hydrolysis stabilizer containing a specific weight % of polybutylene terephthalate resin, polyethylene terephthalate resin, (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, and carboxy reactive epoxy resin.
  • thermoplastic resin composition containing an excess of glass fibers
  • heat resistance and impact resistance are improved, satisfying the balance of physical properties such as mechanical properties and fluidity, and providing excellent product reliability and exterior quality.
  • the material for automobile interior parts was completed as an unpainted product that satisfies the physical property balance such as mechanical properties and fluidity as in the present invention and has excellent formability and exterior quality.
  • thermoplastic resin composition includes i) 44 to 56% by weight of polybutylene terephthalate resin; ii) 8 to 17% by weight of polyethylene terephthalate resin; iii) 12 to 20% by weight of (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer; iv) 0.1 to 2.2% by weight of carboxy reactive epoxy resin; and v) 10 to 35 wt% of glass fibers containing SiO2, CaO and Al2O3, wherein the SiO2 content accounts for 50 wt% or more and the Al2O3 content is greater than CaO.
  • polybutylene terephthalate resin and ii) polyethylene terephthalate resin according to an embodiment of the present invention are crystalline materials, which impart moldability to a thermoplastic resin composition containing them and are used in automobile interior parts manufactured using them. Provides chemical resistance.
  • polybutylene terephthalate resin is a crystalline resin that prevents the penetration of external chemicals and has a crystallized structure that improves the flowability of the thermoplastic resin composition containing it during injection molding, thereby improving the appearance quality.
  • the polybutylene terephthalate resin is polybutylene terephthalate that is condensed by directly esterifying or transesterifying 1,4-butanediol and terephthalic acid or dimethyl terephthalate. Phthalate resins may be used.
  • the i) polybutylene terephthalate resin (PBT) may have a repeating unit represented by the following formula (1).
  • m is the average degree of polymerization in the range of 50 to 200.
  • the polybutylene terephthalate resin in order to increase the impact strength of the thermoplastic resin composition, is improved by impact improvement such as polytetramethylene glycol, polyethylene glycol, polypropylene glycol, aliphatic polyester, aliphatic polyamide, etc.
  • impact improvement such as polytetramethylene glycol, polyethylene glycol, polypropylene glycol, aliphatic polyester, aliphatic polyamide, etc.
  • a copolymer copolymerized with a compound, or a modified polybutylene terephthalate resin mixed with the impact improving compound may be used.
  • the intrinsic viscosity of the polybutylene terephthalate resin measured according to ASTM D2857 may be, for example, 0.45 to 0.85 dl/g, 0.45 to 0.77 dl/g, or 0.55 to 0.75 dl/g. there is. If the intrinsic viscosity is too low outside the above range, the effect of reinforcing the physical properties is reduced, so the effect of improving chemical resistance is minimal. If the intrinsic viscosity is too high, the moldability is reduced, which may cause problems with the appearance of the part.
  • the intrinsic viscosity is measured by completely dissolving the sample to be measured in methylene chloride solvent at a concentration of 0.05 g/ml, then filtering the filtrate using an Ubbelohde viscometer. This is a value measured at 20°C.
  • the i) polybutylene terephthalate resin has a weight average molecular weight of, for example, 10,000 to 80,000 g/mol, 20,000 g/mol to 100,000 g/mol, 30,000 g/mol to 90,000 g/mol, 40,000 g/mol to 80,000 g. /mol, or 50,000 g/mol to 70,000 g/mol.
  • Mechanical properties can be improved within the above-mentioned range.
  • the weight average molecular weight is specifically calculated by preparing a sample sample with a compound concentration of 1 wt% by putting tetrahydrofuran (THF) and the compound in a 1 ml glass bottle, and combining the standard sample (polystyrene) and the sample sample. After filtering through a filter (pore size 0.45 ⁇ m), it is injected into the GPC injector, and the elution time of the sample is compared with the calibration curve of the standard sample to determine the molecular weight and molecular weight distribution of the compound. can be obtained.
  • Infinity II 1260 (Agilient) can be used as a measuring device, the flow rate can be set to 1.00 mL/min, and the column temperature can be set to 40.0 °C.
  • polybutylene terephthalate resin The content of i) polybutylene terephthalate resin is based on the total components constituting the composition (i) polybutylene terephthalate resin, ii) polyethylene terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic Based on a total of 100% by weight of vinyl compound copolymer, iv) carboxy reactive epoxy resin, v) glass fiber and vi) additives), for example 44 to 56% by weight, specifically 45 to 52% by weight, preferably 46 to 52% by weight. It may be weight percent.
  • the i) polybutylene terephthalate resin may have an intrinsic viscosity greater than that of the ii) polyethylene terephthalate resin.
  • the manufacturing method of the polybutylene terephthalate resin is not particularly limited as long as it is a polymerization method commonly practiced in the technical field to which the present invention pertains, and if it meets the definition of polybutylene terephthalate resin according to the present invention, it can be purchased commercially. So it is okay to use it.
  • the physical properties required for BCM parts can be implemented by including polyethylene terephthalate resin.
  • the ii) polyethylene terephthalate resin is not particularly limited if it is a typical polyethylene terephthalate resin.
  • the ii) polyethylene terephthalate resin may have a basic structure of a repeating unit represented by the following formula (2).
  • n represents an integer of 1 or more, for example, an integer of 40 to 160.
  • the ii) polyethylene terephthalate resin is a (co)polymer copolymerized or modified with an impact improving compound, or is used in the form of a copolymer including an impact improving compound or an environmentally friendly compound to form a thermoplastic resin.
  • the impact strength of the composition can be increased.
  • the impact improving compound may be, for example, polytetramethylene glycol, polyethylene glycol, polypropylene glycol, aliphatic polyester, aliphatic polyamide, etc.
  • the environmentally friendly compound may be, for example, 1,4-cyclohexanedimethanol or isophthalic acid.
  • the intrinsic viscosity of ii) polyethylene terephthalate resin measured according to ASTM D2857 may be 0.5 dl/g or more, 0.5 to 0.9 dl/g, or 0.6 to 0.9 dl/g. If the intrinsic viscosity is too low outside the above range, the effect of reinforcing physical properties may be reduced, so the effect of improving chemical resistance may be minimal, and if the intrinsic viscosity is too high, formability may decrease and problems with the appearance of the part may occur.
  • the ii) polyethylene terephthalate resin may have a weight average molecular weight of, for example, 5,000 to 80,000 g/mol, or 10,000 to 60,000 g/mol. If the above-mentioned range is satisfied, hydrolysis resistance and injection deviation can be improved.
  • the ii) polyethylene terephthalate resin may have a melting point of 250°C or higher, for example, 250 to 256°C.
  • the melt flow index of the thermoplastic resin composition can be improved, which is desirable for improving moldability. do.
  • the ii) polyethylene terephthalate resin may have a crystallization temperature (Tm) of 250°C or higher, and a specific example may be 250 to 258°C.
  • Tm crystallization temperature
  • the melt flow index of the thermoplastic resin composition can be improved to improve moldability. desirable.
  • the melting point can be measured using a method known in the field, and for example, the heat absorption peak can be measured using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the content of ii) polyethylene terephthalate resin is based on the total components constituting the composition (i) polybutylene terephthalate resin, ii) polyethylene terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound. Based on a total of 100% by weight of the copolymer, iv) carboxy reactive epoxy resin, v) glass fiber and vi) additives described later), 8 to 17% by weight, preferably 9 to 17% by weight, more preferably 9 to 16% by weight. It can be.
  • the method for producing the polyethylene terephthalate resin is not particularly limited as long as it is a polymerization method commonly practiced in the technical field to which the present invention pertains, and if it meets the definition of polyethylene terephthalate resin according to the present invention, it may be purchased and used commercially. do.
  • the ii) polyethylene terephthalate resin may include recycled polyethylene terephthalate resin.
  • polyethylene terephthalate resin may include recycled mineral water bottle resin.
  • the bottled water bottle is not limited to this, but is a resin containing polyethylene terephthalate, and may be polyethylene terephthalate manufactured by condensation polymerization of terephthalic acid and ethylene glycol.
  • the bottled water bottle recycling resin may be obtained by extruding waste bottled water bottles and molding them into pellets.
  • the bottled water bottle recycled resin can be obtained by flaking PET bottles according to the process flow diagram of FIG. 1, which will be described later.
  • Figure 1 below is a process flow chart showing the process of producing recycled polyethylene terephthalate resin by extruding waste water bottles used in examples.
  • a sorting process is performed to classify waste water bottles into colored and colorless and transparent.
  • the selection may be performed visually, where the color may be predominantly green.
  • Selected waste water bottles are pulverized using a cutter. It is desirable to wash approximately 200 kg prior to the grinding process to perform the drying and flake process.
  • the pulverized size may be finely divided, for example, within the range of 3 to 5 mm, specifically within the range of 3.5 to 5 mm.
  • the efficiency of the subsequent drying process can be increased by increasing the surface area of the pulverized product, and the mixing efficiency with the thickener can also be improved.
  • the pulverized material is secondarily dried and then processed into flakes.
  • the secondary drying is a process of removing moisture from the pulverized product and mixing a thickener, and may be performed by dehumidifying after preliminary drying, if necessary.
  • the pre-drying is a process of heating the pulverized material within the range of 120 to 140° C. so that the moisture content is about 1000 ppm, and a thickener is added simultaneously or sequentially with the pre-drying.
  • the pulverized material and the thickener are placed in a friction dryer controlled at 140°C and 50 rpm and allowed to remain for about 2 hours while continuously passing heated air at 120 to 140°C so that the pulverized material has a moisture content of 1000 ppm. .
  • ppm is based on weight unless otherwise defined.
  • the thickener is not limited as long as it is a compound that performs a thickening reaction without melting near the temperature conditions described above (e.g., 140° C.) and the dryer temperature conditions (e.g., 165° C.) described later.
  • the temperature conditions described above e.g. 140° C.
  • the dryer temperature conditions e.g., 165° C.
  • carbodi A mead-based thickener can be used.
  • carbodiimide-based thickener examples include carbodiimide, polycarbodiimide, etc.
  • the thickener is added by appropriately adjusting the mixing ratio with the ground product according to the intrinsic viscosity suitable for the target product. For a total of 100% by weight of the mixture of water and thickener, for example, 0.75% by weight or less, or 0.25 to 0.75% by weight, may be added.
  • the dehumidification treatment is a process of obtaining additional dried material by dehumidifying the water content to less than 50 ppm in order to prevent hydrolysis of the resin in the (preliminary) dried material described above.
  • the dehumidification treatment may be performed by injecting the additionally dried material into a dryer hopper in the form of hot air and allowing it to remain for about 5 hours at a temperature of 165°C and a dew point of -60 to -40°C so that the moisture content is less than 50 rpm.
  • the flake treatment uses an optical flake sorter to flake to approximately 5 mm.
  • a thickener is added to the flakes and the molten product melted at the melting temperature of the thickener can be formed into pellets.
  • the thickener is a compound with a lower melting temperature than the thickener added to the pre-drying product described above. It melts around the drying temperature of 140°C and the secondary drying temperature of 165°C, so when added together with the thickener, it melts and is subjected to pre-drying and dehumidification treatment. cannot be performed, so it must be input separately.
  • a recycled polyethylene terephthalate resin having the intrinsic viscosity required for the target product By appropriately controlling the amount of the thickener used, it is possible to provide a recycled polyethylene terephthalate resin having the intrinsic viscosity required for the target product. For example, it may be in the range of 0.1 to 0.75% by weight based on the total weight of the above-described melt.
  • the thickener may be an oxazoline-based thickener, for example, oxazoline, 1,3-phenylene bisoxazoline, etc.
  • the extrusion process may be performed, for example, by adding the flakes and thickener to an extruder and melting and extruding them at a melt temperature of 275 to 280° C. and a maximum melt pressure of about 110 bar.
  • the obtained melt extrudate may be passed through a 20 micron SUS (Steel Use Stainless) filter at a vacuum level of 10 mbar, for example, to remove foreign substances, and then cooled and cut.
  • SUS Step Use Stainless
  • the cooling and cutting can be performed using commonly used equipment.
  • the molten extrudate discharged from the SUS filter using a pelletizer can be molded into a sphere with a diameter of 2.8 mm using circulating water at 90°C under the conditions of a die plate temperature of 320°C and a blade rotation speed of 3200 rpm. .
  • the surface of the molded product can be recrystallized.
  • surface recrystallization can occur while passing through an in-line crystallizer equipped with a vibrating conveyor for about 15 minutes. .
  • the surface crystallization can prevent raw materials from sticking together and clumping together.
  • the surface recrystallized molding result can be processed into recycled polyethylene terephthalate resin by compounding it with talc, coupling agent, glass fiber, etc., if necessary.
  • the recycled polyethylene terephthalate resin consists of all components constituting the composition (i) polybutylene terephthalate resin, ii) polyethylene terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, Based on a total of 100% by weight of iv) carboxy reactive epoxy resin, v) glass fiber, and vi) additives described later), it may be 8 to 17% by weight, preferably 9 to 17% by weight, and more preferably 9 to 16% by weight. .
  • the mechanical properties of the polyester-based composition can be improved and a thermoplastic resin composition with excellent balance with injection properties can be secured.
  • iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer and iv) carboxy reactive epoxy resin are used in combination to be used as a hydrolysis stabilizer that realizes hydrolysis stability characteristics. You can.
  • the weight percent of units, monomers, blocks, etc. in the polymer may refer to the weight percent of the derived monomer.
  • the weight percent of units, monomers, blocks, etc. in the polymer can be measured by a measurement method commonly used in the technical field to which the present invention pertains, and another method is the monomer input assuming that all monomers are polymerized.
  • the content of can be defined as the content of units in the manufactured polymer.
  • iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer not only complements heat resistance properties, but can also provide excellent impact resistance to automobile interior parts manufactured with a thermoplastic resin composition containing it. there is.
  • the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer may be a graft copolymer.
  • the graft copolymer may include 40 to 80% by weight of a conjugated diene compound, 10 to 40% by weight of an aromatic vinyl compound, and 1 to 20% by weight of a (meth)acrylate compound.
  • the graft copolymer may specifically include 50 to 70% by weight of a conjugated diene compound, 20 to 35% by weight of an aromatic vinyl compound, and 1 to 15% by weight of a (meth)acrylate compound.
  • the graft copolymer may preferably include 55 to 65% by weight of a conjugated diene compound, 25 to 35% by weight of an aromatic vinyl compound, and 5 to 15% by weight of a (meth)acrylate compound.
  • the content of the conjugated diene compound is too small outside the above-mentioned range, impact resistance may be reduced, and if the content of the conjugated diene compound is too high, the rigidity (modulus of elasticity) may be reduced.
  • the rigidity may be improved but the impact resistance may be reduced, and if the content of the (meth)acrylate compound is too high, the stiffness supplementing effect may be reduced. .
  • the (meth)acrylate compound included in the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer is a typical (meth)acrylate compound that can be used in the technical field to which the present invention pertains, such as For example, it may be one or more types selected from methacrylate and acrylate, and methacrylate is preferred.
  • the conjugated diene compound included in the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer may include, for example, butadiene, but is not limited to including only a specific conjugated diene compound.
  • the aromatic vinyl compound included in the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer is, for example, one selected from styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, and p-methylstyrene. It may be more than one, and styrene is preferred.
  • the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer is characterized in that it is polymerized from components within the above-mentioned specific content range, and preferably contains an appropriate amount of (meth)acrylate component. Heat resistance properties can be excellently improved, and if necessary, a separate alkyl acrylate component different from the (meth)acrylate component may be further included.
  • the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer can be used as a powder having a particle size of 0.2 to 0.4 ⁇ m, preferably 0.25 to 0.35 ⁇ m, more preferably 0.2 to 0.35 ⁇ m, in this case. It has the effect of improving impact strength and improving injection properties.
  • the particle size can be measured according to a known method for measuring the size of particles, and in detail, it is measured using a BET analysis equipment (Micromeritics Surface Area and Porosity Analyzer ASAP 2020 equipment) using a nitrogen gas adsorption method. can do. More specifically, 0.3g to 0.5g of sample can be added to the tube, pretreated at 100°C for 8 hours, and then measured using ASAP 2020 analysis equipment at room temperature. The average value can be obtained by measuring the same sample three times.
  • a BET analysis equipment Micromeritics Surface Area and Porosity Analyzer ASAP 2020 equipment
  • the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer has a weight average molecular weight of, for example, 10,000 to 180,000 g/mol, 20,000 g/mol to 150,000 g/mol, and 30,000 g/mol to 120,000 g. /mol, 50,000 g/mol to 120,000 g/mol, or 80,000 g/mol to 120,000 g/mol.
  • Mechanical properties can be improved within the above-mentioned range.
  • the content of the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer is based on the total components constituting the composition (i) polybutylene terephthalate resin, ii) polyethylene terephthalate resin, iii) (meth) ) Acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, iv) carboxy reactive epoxy resin, v) glass fiber and vi) additives described later) 12 to 20% by weight based on a total of 100% by weight, preferred examples are 12 to 19. Weight%, more preferably 12 to 18 weight%.
  • the impact properties of automobile interior parts manufactured using the thermoplastic resin composition containing the same may be weakened, and if it exceeds the above-mentioned range, the fluidity of the thermoplastic resin composition containing the same may be poor, and the thermoplastic resin composition may have poor fluidity.
  • the rigidity and heat resistance characteristics of automobile interior parts manufactured using it may deteriorate.
  • Carboxy reactive epoxy resin according to an embodiment of the present invention can provide impact resistance and improve chemical resistance of automobile interior parts manufactured using the thermoplastic resin composition of the present invention.
  • the iv) carboxy reactive epoxy resin may be, for example, an epoxy functional (meth)acrylic copolymer produced from epoxy functional (meth)acrylic monomer and alkylene.
  • (meth)acrylic includes both acrylic and methacrylic monomers
  • (meth)acrylate includes both acrylate and methacrylate monomers
  • epoxy functional (meth)acrylic monomer may include types containing 1,2-epoxy groups, including glycidyl acrylate and glycidyl methacrylate.
  • carboxy reactive epoxy resin examples include ethylene-n-butyl acrylate-glycidyl methacrylate copolymer, ethylene-glycidyl methacrylate copolymer, and ethylene-acrylic ester-glycidyl methacrylate.
  • Copolymers ethylene-methyl acrylate-glycidyl methacrylate copolymer, ethylene-dimethacrylate-glycidyl methacrylate copolymer, ethylene-acrylate-glycidyl methacrylate copolymer and ethylene- It may be one or more types selected from vinyl acetate-glycidyl methacrylate copolymer.
  • the iv) carboxy reactive epoxy resin is, for example, 1 to 15% by weight or 3 to 10% by weight of glycidyl methacrylate unit, 60 to 74% by weight or 63 to 74% by weight of ethylene unit, and n-butyl acrylate 20%. It may be a polymerized copolymer containing from 30 to 30% by weight or from 25 to 30% by weight. At this time, if the content of the glycidyl methacrylate unit is too high, it may be insufficient to improve the impact resistance and chemical resistance of automobile interior parts manufactured using a thermoplastic resin composition containing it.
  • the content of the iv) carboxy reactive epoxy resin is determined by the total components constituting the composition (i) polybutylene terephthalate resin, ii) polyethylene terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound 0.1 to 2.2% by weight, preferably 0.5 to 2.2% by weight, more preferably 1 to 2.2% by weight, based on a total of 100% by weight of the copolymer, iv) carboxy reactive epoxy resin, v) glass fiber and vi) additives described later). You can.
  • the total content of the iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer and iv) carboxy reactive epoxy resin is the total content of the composition (i) polybutylene terephthalate resin, ii) polyethylene 15.1 to 20 based on a total of 100% by weight of terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, iv) carboxy reactive epoxy resin, v) glass fiber and vi) additives described later) It may be included in weight%, preferably 15.2 to 19 weight%, more preferably 15.3 to 18 weight%.
  • thermoplastic resin compositions containing it may be impaired, and if used in inappropriate small amounts, it may not provide impact resistance if it is too small. It is difficult to provide an inhibitory effect on the transesterification reaction.
  • the thermoplastic resin composition includes v) glass fiber, thereby improving the physical properties of the thermoplastic resin composition, thereby improving the tensile strength and bending strength of the molded product made from the thermoplastic resin composition.
  • the v) glass fiber can be used to improve mechanical properties by reinforcing the rigidity of molded products manufactured using the thermoplastic resin composition.
  • the v) glass fiber may contain, for example, 50 to 65% by weight of silica, 15 to 32% by weight of alumina, and 12 to 22% by weight of calcium oxide.
  • a thermoplastic resin composition with excellent balance between chemical resistance, mechanical properties, and heat resistance can be secured.
  • the v) glass fiber contains 50 to 60% by weight or 50 to 55% by weight of silica, 15 to 27% by weight or 15 to 22% by weight of alumina, and 13 to 25% by weight or 13 to 20% by weight of calcium oxide. It is more desirable.
  • a thermoplastic resin composition with excellent physical property balance of processability, specific gravity, and mechanical properties can be secured, and from this, molded articles with high heat resistance, high rigidity, and high toughness can be provided.
  • the v) glass fiber may be a glass fiber with a circular cross-section or a flat cross-section, and in this case, when it has the above-mentioned range and cross-section, high rigidity, lightness, and appearance quality can be secured.
  • the v) glass fiber has an aspect ratio expressed as a ratio (L/D) of the average length (L) to the average diameter (D), for example, 1:1 to 1:4, for example, 1:1 to 1:3, More specifically, in the case of 1:1 to 1:2, the thermoplastic resin composition of the present invention can provide high strength and high toughness as well as improvement in elongation and surface appearance quality, and as a specific example, 1:3 to 1:4, more specifically When the ratio is about 1:4, it is possible to provide a molded product that is advantageous in terms of flatness, deformation, and orientation along with high strength and high toughness.
  • the average diameter and average length can be measured using a scanning electron microscope (SEM). Specifically, 20 inorganic fillers are selected using a scanning electron microscope, and the icon bar where the diameter can be measured is used. ) is used to measure each diameter and length, and then calculate the arithmetic average for each.
  • SEM scanning electron microscope
  • the average diameter may be 10 to 13 ⁇ m, for example, 10 to 11 ⁇ m, for example, and the average length may be 2.5 to 6 mm, for example, 3 to 4 mm. If the above-mentioned range is satisfied, there is an effect of improving the tensile strength of a molded product manufactured by molding the thermoplastic resin composition of the present invention by improving processability.
  • the v) glass fiber may be used together with other inorganic fibers, and the inorganic fiber is at least one selected from natural fibers including carbon fiber, basalt fiber, sheep hemp, or hemp.
  • the above v) glass fiber may be treated with a sizing agent during fiber manufacturing or post-treatment.
  • sizing agents include lubricants, coupling agents, surfactants, etc.
  • the lubricant is used to form good strands of glass fiber, and the coupling agent enables good adhesion between glass fiber and the base resin.
  • thermoplasticity can be achieved. Excellent physical properties can be imparted to the resin composition.
  • the coupling agent can be treated directly on glass fiber or added to an organic matrix, and the content must be appropriately selected to sufficiently demonstrate the performance of the coupling agent.
  • the coupling agent is amine-based; Acrylic type; Or silane-based, etc. may be mentioned, and it is preferable to use silane-based.
  • the silane system includes, for example, ⁇ -aminopropyl triethoxysilane, ⁇ -aminopropyl trimethoxysilane, N-(betaaminoethyl) ⁇ -aminopropyl triethoxysilane, and ⁇ -methacryloxypropyl trimethoxysilane. , ⁇ -glycidoxypropyl trimethoxysilane, ⁇ -(3,4-epoxyethyl) ⁇ -aminopropyl trimethoxysilane, etc.
  • the v) glass fiber is an example of all components constituting the composition (i) polybutylene terephthalate resin, ii) polyethylene terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer. , 10 to 35% by weight, preferably 10 to 32% by weight, more preferably 10 to 28% by weight, based on a total of 100% by weight of iv) carboxy reactive epoxy resin, v) glass fiber and vi) additives described later).
  • a more preferred example may be 15 to 25% by weight.
  • thermoplastic resin composition according to an embodiment of the present invention may further include an appropriate vi) additive to improve its flowability.
  • the additive vi) may be, for example, one or more selected from among lubricants, heat stabilizers, and hydrolysis inhibitors.
  • the lubricant is not particularly limited as long as it can ensure ease of extraction and flowability of injection screws used to manufacture automobile interior parts from a thermoplastic resin composition containing the lubricant.
  • the lubricant may be, for example, polyethylene wax.
  • the lubricant is, for example, all components constituting the composition (i) polybutylene terephthalate resin, ii) polyethylene terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, iv) Based on a total of 100% by weight of carboxy reactive epoxy resin, v) glass fiber and vi) additives described later), 0.01 to 5% by weight, preferably 0.1 to 3% by weight, more preferably 0.1 to 2% by weight, even more preferably. It may be 0.1 to 1% by weight, most preferably 0.1 to 0.5% by weight. If the content of the lubricant is too high outside the above range, appearance problems such as stains may occur on the surface of automobile interior parts manufactured using a thermoplastic resin composition containing it, thereby deteriorating the exterior quality.
  • the heat stabilizer is not particularly limited as long as it can prevent deterioration of automobile interior parts manufactured using a thermoplastic resin composition containing it due to high temperature.
  • the heat stabilizer is not particularly limited as long as it can ensure the above properties, but preferably a phenolic antioxidant (high phenolic antioxidant) can be used.
  • the phenol-based antioxidant may include a hindered phenol-based stabilizer with a crystallization temperature (Tm) of 110 to 130°C, and a specific example is tetrakis [ethylene-3-(3,5-di-t-butyl-hydroxy phenyl)propionate], octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, or combinations thereof.
  • Tm crystallization temperature
  • the heat stabilizer is, for example, all components constituting the composition (i) polybutylene terephthalate resin, ii) polyethylene terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, iv ) Carboxy reactive epoxy resin, v) glass fiber and vi) additives described later) based on a total of 100% by weight, 0.01 to 5% by weight, preferably 0.01 to 3% by weight, more preferably 0.01 to 2% by weight. If the content of the heat stabilizer is too high, appearance problems such as stains may occur on the surface of automobile interior parts manufactured using a thermoplastic resin composition containing it, thereby deteriorating the exterior quality.
  • the hydrolysis-inhibiting adjuvant according to the present invention can be of various known types as long as it does not adversely affect the thermoplastic resin composition of the present invention.
  • inorganic phosphate compounds such as sodium phosphate monobasic of the chemical formula NaH2PO4 can be used. You can.
  • the hydrolysis-inhibiting adjuvant is, for example, all components constituting the composition (i) polybutylene terephthalate resin, ii) polyethylene terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer. , iv) carboxy reactive epoxy resin, v) glass fiber and vi) additives described later) based on a total of 100% by weight, 0.01 to 5% by weight, preferably 0.01 to 3% by weight, more preferably 0.01 to 2% by weight. there is. If the content of the hydrolysis-inhibiting additive is too high outside the above range, appearance problems such as stains may occur on the surface of automobile interior parts manufactured using a thermoplastic resin composition containing it, deteriorating the exterior quality.
  • the thermoplastic resin composition may have a high load heat distortion temperature of 180°C or higher, for example, 184 to 190°C, as measured in accordance with ISO 75 by producing a specimen to be described later.
  • the high load heat distortion temperature can be measured under a high load of 1.82 MPa according to ISO 75.
  • thermoplastic resin composition Method for producing thermoplastic resin composition
  • thermoplastic resin composition of the present invention the manufacturing method of the thermoplastic resin composition of the present invention will be described.
  • all contents of the thermoplastic resin composition described above are included.
  • the method for producing the thermoplastic resin composition of the present invention includes, for example, i) 44 to 56% by weight of polybutylene terephthalate resin; ii) 8 to 17% by weight of polyethylene terephthalate resin; iii) 15 to 28% by weight of (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer; iv) 0.1 to 2.2% by weight of carboxy reactive epoxy resin; and v) 10 to 35 wt% of glass fibers containing SiO2, CaO and Al2O3, wherein the SiO2 content accounts for 50 wt% or more and the Al2O3 content is greater than CaO, are fed into an extruder and melt-kneaded and extruded. Includes.
  • the melt-kneading step may include, for example, the other additives described above.
  • the melt-kneading and extruding steps may be performed, for example, using one or more types selected from the group consisting of a single-screw extruder, a twin-screw extruder, and a Banbury mixer, preferably a twin-screw extruder, and the composition is uniformly mixed using this. and then extruded to obtain, for example, a thermoplastic resin composition in the form of a pellet, which has the effect of reducing mechanical properties, reducing thermal properties, and providing excellent plating adhesion and appearance quality.
  • the step of producing pellets using the extrusion kneader can be performed at an extrusion temperature of 250 to 300 ° C., a feed rate (F / R) of 10 to 59 kg / hr, and a screw rotation speed of 200 to 390 rpm, , preferably extrusion temperature of 250 to 280 °C, F/R 10 to 40 kg/hr, and screw rotation speed of 220 to 300 rpm.
  • the injection speed is 10 to 50 mm/sec, specifically 10 to 30 mm/sec, at an injection temperature of 240 to 280°C, specifically 250 to 270°C, at a mold temperature of 40 to 80°C, and specifically 50 to 70°C. It may include an injection step under mm/sec.
  • thermoplastic resin composition of the present invention will be described.
  • all contents of the thermoplastic resin composition described above are included.
  • thermoplastic resin composition of the present invention can be usefully used as automobile interior parts that require moldability, mechanical properties, high load heat resistance, and chemical resistance through sufficient complementation between components.
  • the automobile interior parts can be manufactured using methods commonly used in the industry. For example, injection molding (injection molding), injection compression molding, extrusion molding (sheet casting), press molding, Molding methods such as pressure molding, heat bend molding, compression molding, calendar molding, or rotation molding can be applied.
  • injection molding injection molding
  • injection compression molding injection compression molding
  • extrusion molding sheet casting
  • press molding Molding methods such as pressure molding, heat bend molding, compression molding, calendar molding, or rotation molding can be applied.
  • thermoplastic resin composition of the present invention is, for example, extruded at 200 to 390 rpm, or 250 to 280 rpm, using a twin-screw extruder ( ⁇ 40, L/D: 42, SM Platek equipment) set at 250 to 300 °C, or 250 to 280 °C.
  • a twin-screw extruder ⁇ 40, L/D: 42, SM Platek equipment
  • i) polybutylene terephthalate resin ii) polyethylene terephthalate resin, iii) (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, iv) carboxy reactive epoxy resin, and v) glass fiber.
  • Pellets can be produced by adding to 20 kg/hr and melt-kneading and extruding.
  • the pellets can be put into an injection molding machine to manufacture automobile interior parts.
  • the pellets were injected using an injection molding machine (ENGEL, 80 tons) at an injection temperature of 260 °C, a mold temperature of 60 °C, and an injection speed of 30 mm/sec to meet ISO standards. Specimens can be manufactured.
  • ENGEL injection molding machine
  • the manufactured specimen may have a melt flow rate of 30 g/10 min or more, as a specific example, 30 to 36 g/10 min, as measured with a 5 kg load at 260 ° C. according to ISO 1133.
  • the specimen may have an Izod notch impact strength measured at 23° C. based on ISO 180/1A of 10 kJ/m 2 or more, for example, 11 to 12 kJ/m 2 .
  • the specimen may have a tensile strength of 90 MPa or more, for example, 90 to 99 MPa, as measured at a speed of 50 mm/min according to ISO 527.
  • the flexural strength of a 4 mm specimen measured at a speed of 2 mm/min using SPAN 64 in accordance with ISO 178 may be 140 MPa or more, as a specific example, 140 to 144 MPa, and the flexural modulus may be 5000 MPa or more, A specific example may be 5000 to 5150 MPa.
  • the automobile interior component may specifically be a vehicle electronic device integrated control component (Body Control Module) housing, but is not limited to a specific type.
  • Body Control Module vehicle electronic device integrated control component
  • the thermoplastic resin composition according to one embodiment of the present invention includes a specific weight % of polybutylene terephthalate resin, polyethylene terephthalate resin, (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, and carboxy reactive epoxy. It is characterized in that it contains glass fibers in which resin and SiO2 occupy an excessive amount, and automobile interior parts manufactured from the above composition have improved heat resistance and impact resistance by changing the material used from the conventional material, improving mechanical properties, fluidity, etc. It has the advantage of satisfying the balance of physical properties and improving product reliability and exterior quality.
  • thermoplastic resin composition its manufacturing method, and automobile interior parts of the present invention
  • other conditions or equipment not explicitly described can be appropriately selected within the range commonly practiced in the industry, and are not particularly limited. Specifies.
  • the raw materials used in the examples are as follows.
  • Methacrylate-butadiene-styrene copolymer particle size 0.3 ⁇ m, methyl methacrylate 15% by weight, butadiene 80% by weight, styrene 5% by weight, weight average molecular weight 103,000 g/mol
  • Lubricant polyethylene wax
  • Hydrolysis inhibitor transesterification inhibitor: sodium phosphate monobasic with the formula NaH2PO4
  • thermoplastic resin composition shown in Table 1 below The raw materials of the thermoplastic resin composition shown in Table 1 below are mixed, and then the thermoplastic resin composition with even dispersion is manufactured in the form of pellets through extrusion. Then, heat is applied to the pellets, injected into a mold, and then cooled to produce parts. A specimen that can be used as an automobile interior part was produced through an injection process.
  • Thermoplastic resin composition pellets can be produced by extrusion processing for 1 to 3 minutes while adding additives at 39 kg/hr and additives through the side inlet at 11 kg/hr.
  • the manufactured pellets were dried in a convection oven at 80 °C for more than 4 hours, and then used an injection molding machine (ENGEL, 80 tons) to produce ISO specimens by injecting them at an injection temperature of 260 °C, a mold temperature of 60 °C, and an injection speed of 30 mm/sec. did.
  • ENGEL injection molding machine
  • the total weight% of the raw materials used in Table 1 from A-1 to H is 100% by weight.
  • the physical properties of automobile interior component specimens manufactured in Examples 1 to 4 and Comparative Examples 1 to 9 were evaluated.
  • the evaluation method is as follows.
  • IZOD -Impact strength
  • HDT Heat distortion temperature
  • thermoplastic resin compositions of Examples 1 to 4 according to the present invention have high impact strength, flexural modulus, high load heat deformation temperature, and hydrolysis resistance retention rate, so that automobile interior parts manufactured using them are resistant to impact. It can be confirmed that while meeting the basic physical properties such as strength, tensile strength, and flexural strength, it has excellent chemical resistance and heat resistance under high load, and the degree of gas generation during injection is reduced, providing both product reliability and external quality. Comparative Example 1, in which an excessive amount of polybutylene terephthalate resin was used beyond the appropriate range, had a low flow index, poor processability, and significantly worse tensile strength, flexural strength, and flexural modulus compared to Examples 1 to 4. confirmed.
  • Comparative Example 2 in which an extremely small amount of polybutylene terephthalate resin was used, had somewhat poorer impact strength and heat distortion temperature when compared to Examples 1 to 4.
  • Comparative Example 3 or Comparative Example 4 using glass fibers containing less than 50% by weight of SiO2 had tensile strength, flexural strength, flexural modulus, impact strength, and heat distortion temperature when compared to Examples 1 to 4. You can see it has gotten worse.
  • Comparative Example 5 which did not use a carboxy reactive epoxy resin, had poor tensile strength, flexural strength, flexural modulus, and heat resistance characteristics when compared to Examples 1 to 4.
  • Comparative Example 9 in which the (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound was used in a smaller amount than the appropriate range, had poorer fluidity and flexural modulus compared to Examples 1 to 4, and tensile strength, flexural strength, and It was confirmed that the heat resistance properties were poor.
  • the fluidity was 34 g/10min
  • the tensile strength was 99 MPa
  • the tensile elongation was 3.9%
  • the flexural strength was 144 MPa
  • the flexural modulus was 5070 MPa
  • the impact strength was 11.4 kJ/m2
  • the thermal deformation The temperature was measured at 185°C, and it was found to provide physical property values equivalent or similar to those of the thermoplastic resin compositions of Examples 1 to 4.
  • the thermoplastic resin composition according to one embodiment of the present invention includes a specific weight % of polybutylene terephthalate resin, polyethylene terephthalate resin, (meth)acrylate compound-conjugated diene compound-aromatic vinyl compound copolymer, and carboxy reactive epoxy.
  • a hydrolytic stabilizer mixed with a resin and glass fiber containing an excessive amount of SiO2 automobile interior parts manufactured from the composition have improved heat resistance and impact resistance, satisfying the balance of physical properties such as mechanical properties and fluidity, and providing excellent performance. It has the effect of providing product reliability and appearance quality, and in particular, it has the advantage of sufficiently improving physical properties even when using recycled polyethylene terephthalate resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품에 관한 것으로, 본 발명에 따른 열가소성 수지 조성물은 사용하는 소재가 종래와 달리 변경되어 내열특성 및 내충격성이 개선되며 기계적 물성, 유동성 등과의 물성 밸런스를 만족하고 우수한 제품신뢰성과 외관 품질을 제공하는 효과가 있다.

Description

열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품
〔출원(들)과의 상호 인용〕
본 출원은 2022.09.29일자 한국특허출원 제 10-2022-0124048호 및 그를 토대로 2023.06.27로 재출원한 한국특허출원 제 10-2023-0082468호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품에 관한 것으로, 보다 상세하게는 사용하는 원료의 변화로 내열특성 및 내충격성이 개선되어 기계적 물성, 유동성 등과의 물성 밸런스를 만족하고 우수한 제품신뢰성과 외관 품질을 제공할 수 있는 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품에 관한 것이다.
종래 자동차 내장부품에 사용되는 소재로는 아크릴로니트릴-부타디엔-스티렌 수지(ABS), 폴리카보네이트 수지(PC)와 아크릴로니트릴-부타디엔-스티렌 수지(ABS)를 혼합한 복합수지, 폴리카보네이트 수지(PC)와 아크릴레이트-스티렌-아크릴로니트릴(ASA)를 혼합한 복합수지, 또는 폴리카보네이트 수지(PC)와 폴리부틸렌테레프탈레이트 수지(PBT)를 혼합한 복합수지 등이 있으며, 이들은 우수한 물성을 가지고 다양한 자동차 내장부품에 활용되고 있다.
최근, 환경 문제로 다양한 플라스틱 제품에 폴리에틸렌테레프탈레이트 수지(이하, 'PET 수지'라 함)로 제조된 제품 폐기물을 가공하여 사용하는 것이 검토되고 있다.
특히, 페트병(Pet Bottle)을 예로 들면 25억 개의 수량과 10만톤 정도의 증량이 이루어지고 있으나 이에 대한 재활용 방안은 회수되어 음료수 병으로 재생하거나 섬유나 포장재로 재생하는 정도에 불과하다.
다만, 상기 PET 수지는 PBT와 마찬가지로 폴리에스터 수지류에 분류되지만 PBT보다 결정화온도가 높아 성형성이 불량하고 치수 변화 등의 기계적 성질 또한 상대적으로 불안정한 것으로 알려져 있다.
따라서, PET 수지를 추가할 경우 PBT 대비 상기와 같은 물성이 불량할 수밖에 없어 이를 해소할 수 있는 기술 마련이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
한국 공개특허 제2016-0060907호(공개일 2016.05.31)
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 사용하는 소재를 바꿔 원가가 절감될 뿐만 아니라 무도장품으로서 사용될 수 있어 경제성이 우수하면서도, 내열특성, 내충격성을 개선하여 기계적 물성, 유동성 등과의 물성 밸런스를 만족하고 우수한 제품신뢰성과 외관 품질을 제공할 수 있는 열가소성 수지 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명의 목적은 상기의 열가소성 수지 조성물을 이용한 자동차 내장부품을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 I) i)폴리부틸렌테레프탈레이트 수지 44 내지 56 중량%; ii)폴리에틸렌테레프탈레이트 수지 8 내지 17 중량%; iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 12 내지 20 중량%; iv)카르복시 반응성 에폭시 수지 0.1 내지 2.2 중량%; 및 v)SiO2, CaO 및 Al2O3를 포함하고, 상기 SiO2 함량이 50 중량% 이상을 차지하고, Al2O3 함량이 CaO보다 큰 유리섬유 10 내지 35 중량%;를 포함하는 열가소성 수지 조성물을 제공한다.
II) 상기 I)에 있어서, 상기 i)폴리부틸렌테레프탈레이트 수지의 고유점도는 0.45 내지 0.85 dl/g일 수 있다.
III) 상기 I) 또는 II)에서, 상기 ii)폴리에틸렌테레프탈레이트 수지의 고유점도는 0.5 내지 0.9 dl/g일 수 있다.
IV) 상기 I) 내지 III)에서, 상기 ii)폴리에틸렌테레프탈레이트 수지는 재생 폴리에틸렌테레프탈레이트 수지일 수 있다.
V) 상기 I) 내지 IV)에서, 상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체는 공액디엔 화합물 40 내지 80 중량%, 방향족 비닐 화합물 10 내지 40 중량% 및 (메트)아크릴레이트 화합물 1 내지 20 중량%를 포함하여 이루어질 수 있다.
VI) 상기 I) 내지 V)에서, 상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체의 입자 사이즈는 0.2 내지 0.4㎛일 수 있다.
VII) 상기 I) 내지 VI)에 있어서, 상기 iv)카르복시 반응성 에폭시 수지는 에틸렌-n-부틸 아크릴레이트-글리시딜 메타크릴레이트 코폴리머, 에틸렌-글리시딜 메타크릴레이트 코폴리머, 에틸렌-아크릴릭 에스터-글리시딜 메타크릴레이트 코폴리머, 에틸렌-메틸 아크릴레이트-글리시딜 메타크릴레이트 코폴리머, 에틸렌-디메타크릴레이트-글리시딜 메타크릴레이트 코폴리머, 에틸렌-아크릴레이트-글리시딜 메타크릴레이트 코폴리머 및 에틸렌-비닐 아세테이트-글리시딜 메타크릴레이트 코폴리머 중에서 선택된 1종 이상일 수 있다.
VIII) 상기 I) 내지 VII)에 있어서, 상기 iv)카르복시 반응성 에폭시 수지는 글리시딜 메타크릴레이트 유래의 단위체를 1 내지 15 중량% 포함하여 이루어질 수 있다.
IX) 상기 I) 내지 VIII)에 있어서, 상기 i)폴리부틸렌테레프탈레이트 수지의 고유점도(Intrinsic viscosity)는 상기 ii)폴리에틸렌테레프탈레이트 수지의 고유점도보다 작은 것일 수 있다.
X) 상기 I) 내지 IX)에 있어서, 상기 ii)폴리에틸렌테레프탈레이트 수지는 생수보틀 재생 수지를 포함할 수 있다.
XI) 상기 I) 내지 X)에 있어서, 상기 생수보틀 재생 수지는 폐생수보틀을 압출하여 펠렛으로 성형한 것일 수 있다.
XII) 상기 I) 내지 XI)에 있어서, 상기 ii)폴리에틸렌테레프탈레이트 수지의 녹는점(Melting point)은 250 내지 256 ℃일 수 있다.
XIII) 상기 I) 내지 XII)에 있어서, 상기 열가소성 수지 조성물은 폴리에틸렌계 활제, 가수분해 억제보조제 및 페놀성 산화방지제 중에서 선택된 1종 이상의 첨가제(vi)를 포함할 수 있다.
XIV) 상기 I) 내지 XIII)에 있어서, 상기 열가소성 수지 조성물은 4mm 시편을 ISO 178에 의거하여 SPAN 64를 사용하여 2 mm/min의 속도로 측정한 굴곡강도가 140 MPa 이상인 동시에 굴곡탄성률이 5000 MPa 이상일 수 있다.
또한, 본 발명은 XV) i)폴리부틸렌테레프탈레이트 수지 44 내지 56 중량%; ii)폴리에틸렌테레프탈레이트 수지 8 내지 17 중량%; iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 12 내지 20 중량%; iv)카르복시 반응성 에폭시 수지 0.1 내지 2.2 중량%; 및 v)SiO2, CaO 및 Al2O3를 포함하고, 상기 SiO2 함량이 50 중량% 이상을 차지하고, Al2O3 함량이 CaO보다 큰 유리섬유 10 내지 35 중량%;를 포함하고, 상기 i)폴리부틸렌테레프탈레이트 수지의 고유점도(Intrinsic viscosity)는 상기 ii)폴리에틸렌테레프탈레이트 수지의 고유점도보다 작은 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
또한, 본 발명은 XVI) i)폴리부틸렌테레프탈레이트 수지 44 내지 56 중량%; ii)폴리에틸렌테레프탈레이트 수지 8 내지 17 중량%; iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 12 내지 20 중량%; iv)카르복시 반응성 에폭시 수지 0.1 내지 2.2 중량%; 및 v)SiO2, CaO 및 Al2O3를 포함하고, 상기 SiO2 함량이 50 중량% 이상을 차지하고, Al2O3 함량이 CaO보다 큰 유리섬유 10 내지 35 중량%;를 포함하여 압출기에 투입하여 용융 혼련 및 압출하는 단계를 포함하는 열가소성 수지 조성물의 제조방법을 제공한다.
XVII) 상기 XVI)에서, 상기 열가소성 수지 조성물을 용융 혼련 및 압출하는 단계는, 압출 온도 250 내지 300℃, F/R(Flow ratio) 10 내지 55 kg/hr, 스크류 회전수 150 내지 600 rpm 하에 수행할 수 있다.
XVIII) 상기 XVI) 내지 XVII)에서, 상기 열가소성 수지 조성물을 압출한 다음 사출온도 240 내지 280℃ 및 금형온도 40 내지 80℃ 하에 사출하는 단계를 포함할 수 있다.
또한, 본 발명은 XIX) i)폴리부틸렌테레프탈레이트 수지 44 내지 56 중량%; ii)재생 폴리에틸렌테레프탈레이트 수지 8 내지 17 중량%; iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 12 내지 20 중량%; iv)카르복시 반응성 에폭시 수지 0.1 내지 2.2 중량%; 및 v)SiO2, CaO 및 Al2O3를 포함하고, 상기 SiO2 함량이 50 중량% 이상을 차지하고, Al2O3 함량이 CaO보다 큰 유리섬유 10 내지 35 중량%;를 포함하여 압출기에 투입하여 용융 혼련 및 압출하는 단계를 포함하며,
XX) 상기 XIX)에서, 상기 i)폴리부틸렌테레프탈레이트 수지의 고유점도(Intrinsic viscosity)가 상기 ii)폴리에틸렌테레프탈레이트 수지의 고유점도보다 작은 것을 특징으로 하는 열가소성 수지 조성물의 제조방법을 제공한다.
또한, 본 발명은 XXI) 전술한 열가소성 수지 조성물을 포함하여 제조됨을 특징으로 하는 자동차 내장부품을 제공한다.
XXII) 상기 XXI)에서, 상기 자동차 내장부품은 차량 전자장치 통합 제어 부품(Body Control Module) 하우징일 수 있다.
본 발명에 따른 열가소성 수지 조성물은 자동차 내장부품으로 성형될 수 있다.
또한, 본 발명에 따른 열가소성 수지 조성물로부터 제조된 자동차 내장부품은 내열특성 및 내충격성이 개선되어 기계적 물성, 유동성 등과의 물성 밸런스를 만족하는 동시에 성형성이 우수하여 외관 품질이 향상되는 효과가 있다.
따라서, 본 발명에 따른 상기 열가소성 수지 조성물은 자동차 내장재로서 필요로 하는 차량 전자장치 통합 제어 부품(Body Control Module) 하우징을 비롯한 자동차 내장부품 분야에 적용될 수 있다.
도 1은 후술하는 실시예에서 사용하는 재생 폴리에틸렌테레프탈레이트 수지를 제조하는 과정을 나타내는 공정 흐름도이다.
도 2는 버진(virgin) PET 수지(좌측 도면), 그리고 도 1의 공정에 따라 수득된 폐생수보틀 재생 수지(우측 도면)을 각각 나타낸 사진이다. 여기서 PET 수지는 DMT 공법으로 만들어진 버진 수지를 지칭한다. 상기 DMT 공법은 당업계에 공지된 디메틸 테레프탈레이트(DMT)와 에틸렌 글리콜(EG)의 트란스에스테르화 반응을 지칭한다.
이하 본 발명에 대한 이해를 돕기 위하여 본 발명을 보다 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 발명을 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 점을 감안하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 기재에서 "포함하여 이루어진"의 의미는 별도의 정의가 없는 이상 "포함하여 중합 제조된", "포함하여 중합된" 또는 "유래의 단위로서 포함하는"으로 정의될 수 있다.
달리 특정되지 않는 한, 본 기재에서 사용된 성분, 반응 조건, 폴리머 조성물 및 배합물의 양을 표현하는 모든 숫자, 값 및/또는 표현은, 이러한 숫자들이 본질적으로 다른 것들 중에서 이러한 값을 얻는데 발생하는 측정의 다양한 불확실성이 반영된 근사치들이므로, 모든 경우 약이라는 용어에 의해 수식되는 것으로 이해되어야 한다. 또한, 본 기재에서 수치범위가 개시되는 경우, 이러한 범위는 연속적이며, 달리 지적되지 않는 한 이러한 범위의 최소값으로부터 최대값이 포함된 상기 최대값까지의 모든 값을 포함한다. 나아가, 이러한 범위가 정수를 지칭하는 경우, 달리 특정되지 않는 한 최소값으로부터 최대값이 포함된 상기 최대값까지를 포함하는 모든 정수가 포함된다.
본 기재에서, 범위가 변수에 대해 기재되는 경우, 상기 변수는 상기 범위의 기재된 종료점들을 포함하는 기재된 범위 내의 모든 값들을 포함하는 것으로 이해될 것이다. 예를 들어, "5 내지 10"의 범위는 5,6,7,8,9 및 10의 값들 뿐만 아니라 6 내지 10, 7 내지 10, 6 내지 9, 7 내지 9 등의 임의의 하위 범위를 포함하고, 5.5 내지 8.5, 및 6.5 내지 9 등과 같은 기재된 범위의 범주에 타당한 정수들 사이의 임의의 값도 포함하는 것으로 이해될 것이다. 또한, 10 내지 30%의 범위는 10%, 11%, 12%, 13% 등의 값과 30%까지를 포함하는 모든 정수들뿐 아니라 10.5%, 15.5%, 25.5% 등과 같이 기재된 범위의 범주 내의 타당한 정수들 사이의 임의 값도 포함하는 것으로 이해될 것이다.
본 기재에서 사용하는 용어 "가수분해 안정화제"는 달리 특정하지 않는 한 가수분해로부터 안정하여 가수분해가 일어날 수 있는 조건에서도 기계적 물성 등을 개선시킬 수 있는 물질을 지칭한다.
본 기재에서 유동지수는 달리 특정하지 않는 한, ISO 1133에 의거하여 260 ℃하에 5kg 하중으로 측정한 용융흐름지수(Melt Flow Index)일 수 있다.
본 발명자들은 특정 중량%의 폴리부틸렌테레프탈레이트 수지 및 폴리에틸렌테레프탈레이트 수지, (메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체와 카르복시 반응성 에폭시 수지가 혼합된 가수분해 안정화제에 SiO2 함량이 과량인 유리 섬유를 포함하는 열가소성 수지 조성물을 사용하여 제조한 자동차용 내장부품에서 내열특성 및 내충격성이 개선되어 기계적 물성, 유동성 등과의 물성 밸런스를 만족하고 우수한 제품신뢰성과 외관 품질을 제공하는 것을 확인하고, 본 발명과 같은 기계적 물성, 유동성 등과의 물성 밸런스를 만족하면서도 성형성과 외관 품질이 우수한 무도장품으로서 자동차용 내장부품 소재를 완성하였다.
열가소성 수지 조성물
본 발명의 일 구현예에 따른 열가소성 수지 조성물은 i)폴리부틸렌테레프탈레이트 수지 44 내지 56 중량%; ii)폴리에틸렌테레프탈레이트 수지 8 내지 17 중량%; iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 12 내지 20 중량%; iv)카르복시 반응성 에폭시 수지 0.1 내지 2.2 중량%; 및 v)SiO2, CaO 및 Al2O3를 포함하고, 상기 SiO2 함량이 50 중량% 이상을 차지하고, Al2O3 함량이 CaO보다 큰 유리섬유 10 내지 35 중량%;를 포함한다.
본 발명의 일 구현예에 따른 i)폴리부틸렌테레프탈레이트 수지와 ii)폴리에틸렌테레프탈레이트 수지는 결정성 소재로서, 이를 포함하는 열가소성 수지 조성물에 성형성을 부여하며 이를 사용하여 제조한 자동차 내장부품에 내화학성을 부여한다.
i)폴리부틸렌테레프탈레이트 수지
상기 i)폴리부틸렌테레프탈레이트 수지는 결정성 수지로서 외부에서 유입되는 화학약품의 침투를 방지하면서도 결정화된 구조로서 사출성형시 이를 포함하는 열가소성 수지 조성물의 흐름성을 향상시켜 외관 품질을 우수하게 한다.
본 발명의 일 실시예에서, 상기 i)폴리부틸렌테레프탈레이트 수지로서, 1,4-부탄디올과, 테레프탈산 또는 디메틸테레프탈레이트를 직접 에스터화 반응시키거나 또는 에스터 교환반응시켜 축중합한 폴리부틸렌테레프탈레이트 수지가 사용될 수 있다.
상기 i)폴리부틸렌테레프탈레이트 수지(PBT)는 하기 화학식 1로 표시되는 반복 단위를 가질 수 있다.
[화학식 1]
Figure PCTKR2023008981-appb-img-000001
상기 화학식에서 m은 50~200 범위의 평균 중합도이다.
본 발명의 일 실시예에서, 상기 열가소성 수지 조성물의 충격강도를 높이기 위해서, 상기 폴리부틸렌테레프탈레이트 수지를 폴리테트라메틸렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 지방족 폴리에스터, 지방족 폴리아미드 등과 같은 충격개선 화합물과 공중합한 공중합체, 또는 상기 폴리부틸렌테레프탈레이트 수지를 상기 충격개선 화합물과 혼합한 변성 폴리부틸렌테레프탈레이트 수지가 사용될 수 있다.
본 발명의 일 실시예에서, ASTM D2857에 따라 측정한 상기 폴리부틸렌테레프탈레이트 수지의 고유점도는 일례로 0.45 내지 0.85 dl/g, 0.45 내지 0.77 dl/g, 또는 0.55 내지 0.75 dl/g일 수 있다. 상기 범위를 벗어나 고유점도가 너무 낮으면 물성 보강효과가 떨어지므로 내화학성 개선 효과가 미미한 단점이 있고, 고유점도가 너무 높으면 성형성이 떨어져 부품 외관에 문제를 발생할 수 있는 단점이 있다.
본 기재에서 고유점도는 특별한 언급이 없는 한, 측정하고자 하는 시료를 0.05 g/ml의 농도로 메틸렌 클로라이드 용매에 완전히 용해시킨 뒤, 필터를 사용하여 여과시킨 여과액을 우베로데(Ubbelohde) 점도계를 사용하여 20 ℃에서 측정한 값이다.
상기 i)폴리부틸렌테레프탈레이트 수지는 중량평균분자량이 일례로 10,000 내지 80,000 g/mol, 20,000 g/mol 내지 100,000 g/mol, 30,000 g/mol 내지 90,000 g/mol, 40,000 g/mol 내지 80,000 g/mol, 또는 50,000 g/mol 내지 70,000 g/mol일 수 있다. 상술한 범위 내에서 기계적 물성을 향상시킬 수 있다.
상기 중량평균분자량은 구체적으로, 1 ml의 유리병에 테트라하이드로퓨란(tetrahydrofuran, THF)와 화합물을 넣어 화합물의 농도가 1 wt%인 샘플 시료를 준비하고, 표준 시료(폴리스티렌, polystryere)와 샘플 시료를 필터(포어 크기가 0.45㎛)를 통해 여과시킨 후, GPC 인젝터(injector)에 주입하여, 샘플 시료의 용리(elution) 시간을 표준 시료의 캘리브레이션(calibration) 곡선과 비교하여 화합물의 분자량 및 분자량 분포를 얻을 수 있다. 이 때, 측정 기기로 Infinity II 1260(Agilient 社)를 이용할 수 있고, 유속은 1.00 mL/min, 컬럼 온도는 40.0 ℃로 설정할 수 있다.
상기 i)폴리부틸렌테레프탈레이트 수지의 함량은 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 vi)첨가제)의 총 100 중량% 기준, 일례로 44 내지 56 중량%, 구체적인 예로 45 내지 52 중량%, 바람직하게는 46 내지 52 중량%일 수 있다. 상술한 범위 미만이면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품에 크랙이 발생하는 단점이 있고, 상술한 범위를 초과하면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품의 강성 및 내열특성이 떨어지는 단점이 있다.
상기 i)폴리부틸렌테레프탈레이트 수지는 고유점도(Intrinsic viscosity)가 상기 ii)폴리에틸렌테레프탈레이트 수지의 고유점도보다 큰 것일 수 있다.
상기 폴리부틸렌테레프탈레이트 수지의 제조방법은 본 발명이 속한 기술분야에서 통상적으로 실시되는 중합 방법인 경우 특별히 제한되지 않고, 본 발명에 따른 폴리부틸렌테레프탈레이트 수지의 정의에 부합하는 경우 상업적으로 구입해서 사용해도 무방하다.
ii)폴리에틸렌테레프탈레이트 수지
본 발명의 일 실시예에 따르면, ii)폴리에틸렌테레프탈레이트 수지를 포함함으로써 BCM 부품에 필요한 물성을 구현할 수 있다.
상기 ii)폴리에틸렌테레프탈레이트 수지는 통상적인 폴리에틸렌테레프탈레이트 수지인 경우 특별히 제한되지 않는다.
상기 ii)폴리에틸렌테레프탈레이트 수지는 하기 화학식 2로 표시되는 반복 단위를 기본 구조로 가질 수 있다.
[화학식 2]
Figure PCTKR2023008981-appb-img-000002
상기 화학식에서 n은 1 이상의 정수를 나타내며, 예를 들면 40~160의 정수를 나타낸다.
본 발명의 일 실시예에서, 상기 ii)폴리에틸렌테레프탈레이트 수지는 충격개선 화합물과 공중합하거나 개질된 (공)중합체이거나, 충격개선 화합물 또는 환경친화적 화합물을 포함하여 이루어진 공중합체의 형태로 사용하여 열가소성 수지 조성물의 충격강도를 높일 수 있다.
상기 충격개선 화합물은 일례로 폴리테트라메틸렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 지방족 폴리에스터, 지방족 폴리아미드 등일 수 있다.
상기 환경친화적 화합물은 일례로 1,4-시클로헥산디메탄올 또는 이소프탈산 등일 수 있다.
본 발명의 일 실시예에서, ASTM D2857에 따라 측정한 ii)폴리에틸렌테레프탈레이트 수지의 고유점도는 0.5 dl/g 이상, 0.5 내지 0.9 dl/g 또는 0.6 내지 0.9 dl/g일 수 있다. 상기 범위를 벗어나 고유점도가 너무 낮으면 물성 보강효과가 떨어지므로 내화학성 개선 효과가 미미할 수 있고, 고유점도가 너무 높으면 성형성이 떨어져 부품 외관에 문제를 발생할 수 있다.
상기 ii)폴리에틸렌테레프탈레이트 수지는 중량평균분자량이 일례로 5,000 내지 80,000 g/mol, 또는 10,000 내지 60,000 g/mol일 수 있다. 상술한 범위를 만족하면 내가수분해성과 사출 편차를 개선할 수 있다.
상기 ii)폴리에틸렌테레프탈레이트 수지는 녹는점(Melting point)이 250 ℃ 이상, 구체적인 예로 250 내지 256 ℃일 수 있으며, 이 경우 열가소성 수지 조성물의 용융흐름지수를 개선시킬 수 있어 성형성을 향상시키기에 바람직하다.
상기 ii)폴리에틸렌테레프탈레이트 수지는 결정화온도(Tm)이 250 ℃ 이상일 수 있고, 구체적인 예로 250 내지 258 ℃일 수 있으며, 이 경우 열가소성 수지 조성물의 용융흐름지수를 개선시킬 수 있어 성형성을 향상시키기에 바람직하다.
본 기재에서 녹는점은 해당 분야에서 공지된 방법을 사용하여 측정할 수 있으며, 일례로 열시차 주사 열량계 (DSC)를 이용하여 열 흡수 피크를 측정할 수 있다.
상기 ii)폴리에틸렌테레프탈레이트 수지의 함량은 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 후술하는 vi)첨가제)의 총 100 중량% 기준, 8 내지 17 중량%, 바람직한 예로 9 내지 17 중량%, 보다 바람직한 예로 9 내지 16 중량%일 수 있다. 상술한 범위 미만이면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품에 크랙이 발생할 수 있고, 상술한 범위를 초과하면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품의 강성 및 내열특성이 떨어질 수 있다.
상기 폴리에틸렌테레프탈레이트 수지의 제조방법은 본 발명이 속한 기술분야에서 통상적으로 실시되는 중합 방법인 경우 특별히 제한되지 않고, 본 발명에 따른 폴리에틸렌테레프탈레이트 수지의 정의에 부합하는 경우 상업적으로 구입해서 사용해도 무방하다.
상기 ii)폴리에틸렌테레프탈레이트 수지는 재생 폴리에틸렌테레프탈레이트 수지를 포함할 수 있다.
일례로, 상기 ii)폴리에틸렌테레프탈레이트 수지는 생수보틀 재생 수지를 포함할 수 있다. 상기 생수 보틀은 이에 한정하는 것은 아니나 폴리에틸렌테레프탈레이트를 포함하는 수지로서, 테레프탈산과 에틸렌글리콜을 축합 중합하여 제조한 폴리에틸렌테레프탈레이트일 수 있다.
상기 생수보틀 재생 수지는 폐생수보틀을 압출하여 펠렛으로 성형한 것일 수 있다.
상기 생수보틀 재생 수지는 일례로 후술하는 도 1의 공정 흐름도에 따라 PET병을 플레이크처리하여 수득할 수 있다.
하기 도 1은 실시예에서 사용하는 폐생수보틀을 압출하여 재활용 폴리에틸렌테레프탈레이트 수지를 제작하는 과정을 나타내는 공정 흐름도이다.
하기 도 1에 따르면, 폐생수보틀을 유색과 무색 투명으로 분류하는 선별 공정을 수행한다. 상기 선별은 육안으로 수행될 수 있고, 여기서 유색은 주로 녹색일 수 있다.
선별된 폐생수보틀은 절단기를 사용하여 분쇄된다. 분쇄 공정에 앞서 200 kg 내외를 세척하는 것이 건조 및 플레이크 공정을 수행하기에 바람직하다.
상기 분쇄 사이즈는 일례로, 3 내지 5mm 범위 내, 구체적인 예로 3.5 내지 5mm 범위 내로 미분할 수 있으며, 이 경우 분쇄물의 표면적을 높여 후속 건조 공정의 효율을 높여 증점제와의 배합 효율 또한 개선할 수 있다.
상기 분쇄물을 2차 건조한 다음 플레이크 처리한다.
상기 2차 건조는 상기 분쇄물로부터 수분 제거 및 증점제 배합하는 공정으로 필요에 따라서는 예비 건조후 제습 처리하는 방식으로 수행될 수 있다.
상기 예비 건조는 상기 분쇄물의 함수율이 1000 ppm 내외가 되도록 120 내지 140℃ 범위 내로 가열하는 공정으로, 예비 건조와 동시에 혹은 순차적으로 증점제를 배합한다.
구체적으로, 140 ℃, 50 rpm로 제어된 마찰 건조기에 상기 분쇄물과 증점제를 투입하고 120 내지 140 ℃의 가열 공기를 연속 통과시키면서 2 시간 정도 체류시켜 상기 분쇄물의 함수율 1000 ppm이 되도록 수행될 수 있다.
본 기재에서 ppm은 별도의 정의가 없는 이상 중량 기준이다.
상기 증점제는 전술한 온도조건(예를 들어, 140 ℃)와 후술하는 건조기 온도조건(예를 들어, 165 ℃) 부근에서 용융하지 않으면서 증점 반응을 수행하는 화합물이면 한정하지 않으며, 일례로 카르보디이미드계 증점제를 사용할 수 있다.
상기 카르보디이미드계 증점제로는 예를 들어 카르보디이미드, 폴리카르보디이미드 등이 있으며, 해당 증점제는 목적 제품에 적합한 고유점도에 따라 상기 분쇄물과의 배합비를 적절하게 조절하여 투입하는 것으로, 분쇄물과 증점제의 혼합물 총 100 중량%에, 일례로 0.75 중량% 이하, 또는 0.25 내지 0.75 중량%로 투입할 수 있다.
상기 제습 처리는 전술한 (예비) 건조물에서 수지의 가수분해를 방지하고자 함수율이 50 ppm 미만이 되도록 제습하여 추가 건조물을 얻는 공정이다.
상기 제습 처리는 일례로 상기 추가 건조물을 고온의 열풍 형태로 건조기 호퍼에 투입하고 온도 165 ℃ 및 노점 -60 내지 -40 ℃ 하에 5시간 내외로 체류시켜 함수율이 50 rpm 미만이 되도록 처리할 수 있다.
상기 플레이크 처리는 광학 플레이크 선별기를 이용하여 5mm 내외로 플레이크화한다.
그런 다음 200 내지 270 ℃의 압출 온도로 압출하여 필렛으로 성형할 수 있다.
구체적으로, 상기 압출 공정은 상기 플레이크에 증점제를 추가 배합하고 증점제의 용융 온도로 용융시킨 용융물을 펠렛으로 성형할 수 있다.
상기 증점제는 전술한 예비 건조물에 투입하던 증점제보다 용융 온도가 낮은 화합물로서, 전술한 건조 온도 140 ℃와 2차 건조 온도 165 ℃ 부근에서 용융되므로 전술한 증점제와 함께 투입하면 용융되어 예비건조 및 제습 처리를 수행할 수 없어 별도로 투입하게 된다.
상기 증점제의 사용량을 적절히 조절하여 목적 제품에 요구되는 고유점도를 갖는 재활용 폴리에틸렌테레프탈레이트 수지를 제공할 수 있다. 일례로, 전술한 용융물의 총 중량을 기준으로 일례로 0.1 내지 0.75 중량% 범위 내일 수 있다.
상기 증점제는 옥사졸린계 증점제를 사용할 수 있으며, 예를 들어 옥사졸린, 1,3-페닐렌 비스옥사졸린 등을 들 수 있다.
상기 압출 공정은 일례로 압출기에 상기 플레이크와 증점제를 투입하고, 용융온도 275 내지 280 ℃, 최대 용융압 약 110 bar로 용융 압출시켜 수행될 수 있다.
수득된 용융 압출물은 일례로 진공도 10 mbar에서 20 미크론의 SUS(Steel Use Stainless) 필터로 통과시켜 이물질을 제거하는 후공정을 수행한 다음 냉각 및 절단될 수 있다. 상기 진공도와 SUS 필터의
상기 냉각 및 절단은 통상 사용하는 장치를 사용하여 수행될 수 있다.
일례로, 펠렛타이저를 사용하여 SUS 필터로부터 배출되는 용융 압출물을 다이 플레이트 온도 320 ℃, 칼날 회전수 3200 rpm 조건 하에, 90 ℃의 순환수를 사용하여 직경 2.8 mm의 구형으로 성형될 수 있다.
수득된 성형 결과물이 140 ℃ 이상의 잔열을 보유할 경우 성형 결과물의 표면을 재결정화할 수 있으며, 일례로 진동 콘베이어가 설치된 인라인(in line) 결정화기를 15분 내외로 통과시키는 도중에 표면 재결정화가 일어날 수 있다.
상기 표면 결정화로 인해 원료끼리 엉겨붙어 뭉치는 것을 방지할 수 있다.
표면 재결정화된 성형 결과물은 필요에 따라 탈크, 커플링제, 유리섬유 등과 컴파운드 처리하여 재생 폴리에틸렌테레프탈레이트 수지로 가공될 수 있다.
상기 재생 폴리에틸렌테레프탈레이트 수지는 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 후술하는 vi)첨가제)의 총 100 중량% 기준, 8 내지 17 중량%, 바람직한 예로 9 내지 17 중량%, 보다 바람직한 예로 9 내지 16 중량%일 수 있다. 상술한 범위 내에서 상기 재활용 PET 수지의 함량을 조절함으로써, 상기 폴리에스테르계 조성물의 기계적 물성을 향상시킬 수 있고 사출 특성과의 밸런스가 우수한 열가소성 수지 조성물을 확보할 수 있다.
(가수분해 안정화제)
본 발명의 일 실시예에 따르면, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 및 iv)카르복시 반응성 에폭시 수지를 병용 사용하여 가수분해 안정특성을 구현하는 가수분해 안정화제로 사용할 수 있다.
본 기재에서 중합체 내 단위, 단위체, 블록 등의 중량%는 유래된 단량체의 중량%를 의미할 수 있다.
또한, 본 기재에서 중합체 내 단위, 단위체, 블록 등의 중량%는 본 발명이 속한 기술분야에서 통상적으로 사용되는 측정방법으로 측정될 수 있고, 또 다른 방법으로는 모든 단량체가 중합됨을 전제로 투입된 단량체의 함량을 제조된 중합체 내 단위 등의 함량으로 정의할 수 있다.
iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체
본 발명에서 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체는 내열 특성을 보완할 뿐 아니라, 이를 포함하는 열가소성 수지 조성물로 제조되는 자동차 내장부품에 우수한 내충격성을 제공할 수 있다.
상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체는 그라프트 공중합체일 수 있다.
상기 그라프트 공중합체는 일례로 공액디엔 화합물 40 내지 80 중량%, 방향족 비닐 화합물 10 내지 40 중량% 및 (메트)아크릴레이트 화합물 1 내지 20 중량%를 포함하여 이루어질 수 있다.
상기 그라프트 공중합체는 구체적으로 공액디엔 화합물 50 내지 70 중량%, 방향족 비닐 화합물 20 내지 35 중량% 및 (메트)아크릴레이트 화합물 1 내지 15 중량%를 포함하여 이루어질 수 있다.
상기 그라프트 공중합체는 바람직하게는 공액디엔 화합물 55 내지 65 중량%, 방향족 비닐 화합물 25 내지 35 중량% 및 (메트)아크릴레이트 화합물 5 내지 15 중량%를 포함하여 이루어질 수 있다.
전술한 범위를 벗어나 공액디엔 화합물의 함량이 너무 적으면 내충격성이 저하될 수 있고, 공액디엔 화합물의 함량이 너무 많으면 강성(탄성률)이 저하될 수 있다.
또한, 전술한 범위를 벗어나 (메트)아크릴레이트 화합물의 함량이 너무 적으면 강성은 개선되나 내충격성이 저하될 수 있고, (메트)아크릴레이트 화합물의 함량이 너무 많으면 강성보완 효과가 저하될 수 있다.
상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체에 포함되는 (메트)아크릴레이트 화합물은 본 발명이 속한 기술분야에서 사용할 수 있는 통상의 (메트)아크릴레이트 화합물, 예를 들어 메타크릴레이트 및 아크릴레이트 중에서 선택되는 1종 이상일 수 있고, 메타크릴레이트가 바람직하다.
상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체에 포함되는 공액디엔 화합물은 예를 들어 부타디엔을 포함할 수 있으나, 특정 공액디엔 화합물만을 포함하는 것으로 제한되지 않는다.
상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체에 포함되는 상기 방향족 비닐 화합물은 일례로 스티렌, α-메틸스티렌, α-에틸스티렌 및 p-메틸스티렌 중에서 선택되는 1종 이상일 수 있고, 스티렌이 바람직하다.
상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체는 전술한 특정 함량 범위의 성분으로부터 중합된 것을 특징으로 하며, 바람직하게는 (메트)아크릴레이트 성분이 적절하게 포함되어 있어 내열 특성을 우수하게 향상시킬 수 있고, 필요한 경우 상기 (메트)아크릴레이트 성분과 다른 별개의 알킬 아크릴레이트 성분을 더 포함할 수 있다.
상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체는 입자 사이즈 0.2 내지 0.4㎛, 바람직한 예로 0.25 내지 0.35㎛, 보다 바람직한 예로 0.2 내지 0.35㎛인 분체로 사용할 수 있고, 이 경우에 충격강도 향상 및 사출성 향상을 제공하는 효과가 있다.
본 기재에서 입자 사이즈는 입자의 크기를 측정하는 공지된 방법에 따라 측정할 수 있으며, 상세하게는 질소가스 흡착법을 사용하여 BET 분석장비(Micromeritics사 Surface Area and Porosity Analyzer ASAP 2020 장비)를 이용하여 측정할 수 있다. 보다 구체적으로는, 튜브에 0.3g 내지 0.5g의 시료를 첨가하여 100℃에서 8시간 동안 전처리한 후, 상온에서 ASAP 2020 분석장비를 이용하여 측정할 수 있다. 동일 샘플에 대하여 3회 측정하여 평균치를 얻을 수 있다.
상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체는 중량평균분자량이 일례로 10,000 내지 180,000 g/mol, 20,000 g/mol 내지 150,000 g/mol, 30,000 g/mol 내지 120,000 g/mol, 50,000 g/mol 내지 120,000 g/mol, 또는 80,000 g/mol 내지 120,000 g/mol일 수 있다. 상술한 범위 내에서 기계적 물성을 향상시킬 수 있다.
상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체의 함량은 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 후술하는 vi)첨가제)의 총 100 중량% 기준 12 내지 20 중량%, 바람직한 예로 12 내지 19 중량%, 보다 바람직한 예로 12 내지 18 중량%일 수 있다. 상술한 범위 미만이면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품의 충격성이 약화될 수 있고, 상술한 범위를 초과하면 이를 포함하는 열가소성 수지 조성물의 유동성이 불량하며, 해당 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품의 강성과 내열특성이 악화될 수 있다.
iv)카르복시 반응성 에폭시 수지
본 발명의 일 구현예에 따른 iv)카르복시 반응성 에폭시 수지는 본 기재의 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품의 내충격성을 제공하는 동시에 내화학성을 개선할 수 있다.
상기 iv)카르복시 반응성 에폭시 수지는 일례로 에폭시 관능성 (메트)아크릴 모노머와 알킬렌으로부터 생성되는 에폭시 관능성 (메트)아크릴 코폴리머일 수 있다.
본 기재에서 달리 특정하지 않는 한, "(메트)아크릴"은 아크릴 및 메타크릴 모노머 모두를 포함하며, "(메트)아크릴레이트"은 아크릴레이트 및 메타크릴레이트 모노머 모두를 포함한다.
상기 에폭시 관능성 (메트)아크릴 모노머의 구체적인 예는 글리시딜 아크릴레이트 및 글리시딜 메타크릴레이트를 비롯한 1,2-에폭시기를 함유하는 종류를 포함할 수 있다.
상기 iv)카르복시 반응성 에폭시 수지는, 구체적인 예로 에틸렌-n-부틸 아크릴레이트-글리시딜 메타크릴레이트 코폴리머, 에틸렌-글리시딜 메타크릴레이트 코폴리머, 에틸렌-아크릴릭 에스터-글리시딜 메타크릴레이트 코폴리머, 에틸렌-메틸 아크릴레이트-글리시딜 메타크릴레이트 코폴리머, 에틸렌-디메타크릴레이트-글리시딜 메타크릴레이트 코폴리머, 에틸렌-아크릴레이트-글리시딜 메타크릴레이트 코폴리머 및 에틸렌-비닐 아세테이트-글리시딜 메타크릴레이트 코폴리머 중에서 선택된 1종 이상일 수 있다.
상기 iv)카르복시 반응성 에폭시 수지는 일례로 글리시딜 메타크릴레이트 단위체 1 내지 15 중량% 또는 3 내지 10 중량%, 에틸렌 단위체 60 내지 74 중량% 또는 63 내지 74 중량%, 및 n-부틸 아크릴레이트 20 내지 30 중량% 또는 25 내지 30 중량%를 포함하여 중합된 공중합체일 수 있다. 이때 글리시딜 메타크릴레이트 단위체의 함량이 너무 많으면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품의 내충격성과 내화학성을 개선하기에 미흡할 수 있다.
상기 iv)카르복시 반응성 에폭시 수지의 함량은 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 후술하는 vi)첨가제)의 총 100 중량% 기준 0.1 내지 2.2 중량%, 바람직한 예로 0.5 내지 2.2 중량%, 보다 바람직한 예로 1 내지 2.2 중량%일 수 있다. 상기 범위를 벗어나 카르복시 반응성 에폭시 수지의 함량이 너무 많으면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품 표면에 사출품의 가스 발생 문제가 발생하여 외관 품질을 저해하는 단점이 있다.
상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 및 iv)카르복시 반응성 에폭시 수지의 총 함량은 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 후술하는 vi)첨가제)의 총 100 중량% 기준 15.1 내지 20 중량%, 바람직한 예로 15.2 내지 19 중량%, 보다 바람직한 예로 15.3 내지 18 중량%로 포함될 수 있다. 상기 범위를 벗어나 과량으로 사용하면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품 표면에 사출품의 외관 품질을 저해할 수 있고, 적절하지 않은 소량으로 사용하면 너무 작으면 내충격성을 제공할 수 없고 에스테르 교환반응 억제효과를 제공하기 어렵다.
v)유리섬유
본 발명의 일 실시예에서 상기 열가소성 수지 조성물은 v)유리섬유를 포함함으로써, 상기 열가소성 수지 조성물의 물성을 향상시킴으로써 상기 열가소성 수지 조성물로 제조된 성형품의 인장강도 및 굴곡강도를 향상시킬 수 있다.
상기 v)유리섬유는 상기 열가소성 수지 조성물을 사용하여 제조된 성형품의 강성을 보강하여 기계적 물성을 개선하는 종류를 사용할 수 있다.
상기 v)유리섬유는 일례로 실리카 50 내지 65 중량%, 알루미나 15 내지 32 중량% 및 산화칼슘 12 내지 22 중량%를 포함하는 것일 수 있다. 상기 범위로 포함되는 유리섬유를 사용하는 경우에 내화학성, 기계적 물성 및 내열성과의 밸런스가 우수한 열가소성 수지 조성물을 확보할 수 있다.
상기 v)유리섬유는 실리카 50 내지 60 중량% 또는 50 내지 55 중량%, 알루미나 15 내지 27 중량% 또는 15 내지 22 중량%, 및 산화칼슘 13 내지 25 중량% 또는 13 내지 20 중량%를 포함하는 것이 보다 바람직하다. 이 경우에 가공성, 비중, 기계적 특성의 물성 균형이 우수한 열가소성 수지 조성물을 확보할 수 있고, 이로부터 고내열, 고강성 및 고인성의 성형품을 제공할 수 있다.
상기 v)유리섬유는 원형 단면 또는 플랫 단면의 유리섬유일 수 있고, 이 경우에 전술한 범위와 단면을 갖는 경우에 고강성, 경량화 및 외관품질이 확보될 수 있다.
상기 v)유리섬유는 일례로 평균직경(D) 대비 평균길이(L)의 비(L/D)로 나타내는 종횡비가 일례로 1:1 내지 1:4, 구체적인 예로 1:1 내지 1:3, 더욱 구체적으로 1:1 내지 1:2인 경우, 본 발명의 열가소성 수지 조성물에서 고강도, 고인성과 함께 신율 및 표면외관 품질 개선을 제공할 수 있으며, 구체적인 예로 1:3 내지 1:4, 더욱 구체적으로 약 1:4인 경우 고강도, 고인성과 함께 평탄도, 변형 및 배향 측면에서 유리한 성형품을 제공할 수 있다.
본 기재에서 평균직경 및 평균길이는 주사전자현미경(SEM)을 이용해서 측정할 수 있고, 구체적으로는 주사전자현미경을 이용하여 무기 충전제 20개를 선택하고, 직경을 측정할 수 있는 아이콘 바(bar)를 이용하여 각각의 직경과 길이를 잰 다음, 산술 평균내어 각각 산출한다.
상기 평균직경은 일례로 10 내지 13 ㎛, 구체적인 예로 10 내지 11 ㎛일 수 있고, 상기 평균길이는 일례로 2.5 내지 6 mm, 구체적인 예로, 3 내지 4 mm일 수 있다. 상술한 범위를 만족하면, 가공성을 개선하여 본 발명의 열가소성 수지 조성물을 성형하여 제조된 성형품의 인장강도를 개선하는 효과가 있다.
본 발명의 일 실시예에서, 상기 v)유리섬유는 다른 무기질 섬유들과 함께 사용될 수 있으며, 상기 무기질 섬유는 탄소 섬유, 현무암 섬유, 양마 또는 대마를 비롯한 천연 섬유 중에서 선택되는 1종 이상이다.
상기 v)유리섬유는 섬유 제조시 또는 후처리 공정시 사이징제로 처리될 수 있는데, 이러한 사이징제로는 윤활제, 커플링제, 계면활성제 등이 있다.
상기 윤활제는 유리섬유가 양호한 스트랜드를 형성하기 위해 사용되며, 상기 커플링제는 유리섬유와 상기 베이스 수지 사이의 양호한 접착을 가능하게 하는 것으로 베이스 수지와 유리섬유의 종류를 고려하여 적절하게 선택할 경우에 열가소성 수지 조성물에 우수한 물성을 부여할 수 있다.
상기 커플링제는 유리섬유에 직접 처리하거나, 유기 매트릭스에 첨가할 수 있으며, 커플링제의 성능을 충분히 발휘할 수 있는 함량을 적절히 선택하여야 한다.
상기 커플링제는, 아민계; 아크릴계; 또는 실란계 등을 들 수 있으며, 실란계를 사용하는 것이 바람직하다.
상기 실란계는 일례로 τ-아미노프로필 트리에톡시실란, τ-아미노프로필 트리메톡시실란, N-(베타아미노에틸) τ-아미노프로필 트리에톡시실란, τ-메타크릴옥시프로필 트리메톡시실란, τ-글리시독시프로필 트리메톡시실란, β-(3,4-에폭시에틸) τ-아미노프로필 트리메톡시실란 등일 수 있다.
상기 v)유리섬유는 일례로 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 후술하는 vi)첨가제)의 총 100 중량% 기준, 10 내지 35 중량%, 바람직한 예로 10 내지 32 중량%, 보다 바람직한 예로 10 내지 28 중량%, 보다 더 바람직한 예로 15 내지 25 중량%일 수 있다. 상술한 범위 미만이면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품에 크랙이 발생할 수 있고, 상술한 범위를 초과하면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품의 강성 및 내열특성이 떨어질 수 있다.
첨가제
본 발명의 일 구현예에 따른 열가소성 수지 조성물은 이의 흐름성 향상 등을 위해 적절한 vi)첨가제를 더 포함할 수 있다.
상기 vi)첨가제는 일례로 활제, 열 안정제 및 가수분해 억제보조제 중에서 선택된 1종 이상을 사용할 수 있다.
상기 활제는 이를 포함하는 열가소성 수지 조성물로부터 자동차 내장부품을 제조하기 위해 사용되는 사출 스크류의 취출 용이성과 흐름성을 확보할 수 있는 것이면 특별히 제한되지 않는다.
상기 활제는 일례로 폴리에틸렌계 왁스를 사용할 수 있다.
상기 활제는 일례로 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 후술하는 vi)첨가제)의 총 100 중량% 기준, 0.01 내지 5 중량%, 바람직한 예로 0.1 내지 3 중량%, 보다 바람직한 예로 0.1 내지 2 중량%, 더욱 더 바람직한 예로 0.1 내지 1 중량%, 가장 바람직한 예로 0.1 내지 0.5 중량%일 수 있다. 상기 범위를 벗어나, 상기 활제의 함량이 너무 많으면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품 표면에 얼룩 등의 외관 문제가 발생하여 외관 품질을 저해할 수 있다.
상기 열 안정제는 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품의 고온에 의한 변성을 방지할 수 있는 것이라면 특별히 제한되지 않는다.
상기 열 안정제는 상기 특성을 확보할 수 있는 한 특별히 제한되지 않으나, 바람직하게는 페놀계 산화방지제(High phenolic antioxidant)를 사용할 수 있다.
상기 페놀계 산화방지제는 결정화온도(Tm)가 110 내지 130℃인 힌더드 페놀계 안정제를 포함할 수 있고, 구체적인 예로 테트라키스[에틸렌-3-(3,5-다이-t-부틸-하이드록시 페닐)프로피오네이트], 옥타데실 3-(3,5-다이-t-부틸-4-하이드록시페닐)프로피오네이트 또는 이들의 결합을 포함할 수 있다.
상기 열 안정제는 일례로 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 후술하는 vi)첨가제)의 총 100 중량% 기준, 0.01 내지 5 중량%, 바람직한 예로 0.01 내지 3 중량%, 보다 바람직한 예로 0.01 내지 2 중량%일 수 있다. 상기 열 안정제의 함량이 너무 많으면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품 표면에 얼룩 등의 외관 문제가 발생하여 외관 품질을 저해할 수 있다.
본 발명에 따른 가수분해 억제보조제는 본 발명의 열가소성 수지 조성물에 악영향을 미치지 않는 한 공지된 종류를 다양하게 사용할 수 있으며, 시판되는 물질 중에서는 화학식 NaH2PO4의 제1인산 나트륨과 같은 무기 포스페이트 화합물을 사용할 수 있다.
상기 가수분해 억제보조제는 일례로 조성물을 구성하는 전체 성분들(i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지, v)유리섬유 및 후술하는 vi)첨가제)의 총 100 중량% 기준, 0.01 내지 5 중량%, 바람직한 예로 0.01 내지 3 중량%, 보다 바람직한 예로 0.01 내지 2 중량%일 수 있다. 상기 범위를 벗어나, 상기 가수분해 억제보조제의 함량이 너무 많으면 이를 포함하는 열가소성 수지 조성물을 사용하여 제조된 자동차 내장부품 표면에 얼룩 등의 외관 문제가 발생하여 외관 품질을 저해할 수 있다.
상기 열가소성 수지 조성물은 후술하는 시편을 제작하여 ISO 75에 의거하여 측정한 고하중 열변형 온도가 180 ℃ 이상, 구체적인 예로 184 내지 190 ℃일 수 있다.
본 기재에서 고하중 열변형 온도는 ISO 75에 의거하여 1.82 MPa의 고하중 하에 측정할 수 있다.
열가소성 수지 조성물의 제조방법
이하에서는 본 발명의 열가소성 수지 조성물의 제조방법에 관하여 설명하기로 한다. 본 발명의 열가소성 수지 조성물의 제조방법을 설명함에 있어서 상술한 열가소성 수지 조성물의 내용을 모두 포함한다.
본 기재의 열가소성 수지 조성물의 제조방법은 일례로 i)폴리부틸렌테레프탈레이트 수지 44 내지 56 중량%; ii)폴리에틸렌테레프탈레이트 수지 8 내지 17 중량%; iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 15 내지 28 중량%; iv)카르복시 반응성 에폭시 수지 0.1 내지 2.2 중량%; 및 v)SiO2, CaO 및 Al2O3를 포함하고, 상기 SiO2 함량이 50 중량% 이상을 차지하고, Al2O3 함량이 CaO보다 큰 유리섬유 10 내지 35 중량%를 포함하여 압출기에 투입하여 용융 혼련 및 압출하는 단계를 포함한다.
상기 용융혼련 단계는 일례로 상술한 기타 첨가제를 포함할 수 있다.
상기 용융혼련 및 압출하는 단계는 일례로 일축 압출기, 이축 압출기 및 벤버리 믹서로 이루어진 군으로부터 선택된 1종 이상을 사용하여 수행될 수 있고, 바람직하게는 이축 압출기이며, 이를 사용하여 조성물을 균일하게 혼합한 뒤 압출하여 일례로 펠렛 형태의 열가소성 수지 조성물을 수득할 수 있으며, 이 경우 기계적 물성 저하, 열적 특성 저하, 도금 밀착력과 외관 품질이 우수한 효과가 있다.
상기 압출 혼련기를 사용하여 펠렛을 제조하는 단계는 일례로 압출 온도 250 내지 300 ℃, 공급속도(Flow ratio, F/R) 10 내지 59 kg/hr, 스크류 회전수 200 내지 390 rpm 하에 수행할 수 있고, 바람직하게는 압출 온도 250 내지 280 ℃, F/R 10 내지 40 kg/hr, 스크류 회전수 220 내지 300 rpm 하에 수행할 수 있다.
상기 열가소성 수지 조성물을 압출한 다음 사출온도 240 내지 280 ℃, 구체적인 예로 250 내지 270 ℃, 금형온도 40 내지 80℃, 구체적인 예로 50 내지 70 ℃ 하에 사출속도 10 내지 50 mm/sec, 구체적인 예로 10 내지 30 mm/sec 하에 사출하는 단계를 포함할 수 있다.
나아가 본 발명의 열가소성 수지 조성물을 포함하는 자동차 내장부품에 관하여 설명하기로 한다. 본 발명의 열가소성 수지 조성물을 포함하는 자동차 내장부품을 설명함에 있어서 상술한 열가소성 수지 조성물의 내용을 모두 포함한다.
자동차 내장부품
본 발명의 열가소성 수지 조성물은 성분간 충분한 보완을 통하여, 성형성, 기계적 물성과 고하중 내열특성과 내화학성을 필요로 하는 자동차 내장부품으로 유용하게 사용할 수 있다.
상기 자동차 내장부품의 제조방법은 당업계에서 통상적으로 사용하는 방법으로 제조될 수 있다. 일례로, 본 발명에 따른 열가소성 수지 조성물의 용융 혼련물, 펠렛 또는 이로부터 성형된 시트(판재)를 원료로 하여 사출 성형법(인젝션 몰딩), 사출 압축 성형법, 압출 성형법(시트 캐스팅), 프레스 성형법, 압공 성형법, 열 굽힘 성형법, 압축 성형법, 캘린더 성형법 또는 회전 성형법 등의 성형법을 적용할 수 있다.
본 기재의 열가소성 수지 조성물은 일례로 250 내지 300 ℃, 또는 250 내지 280 ℃로 설정된 이축압출기(φ40, L/D: 42, SM Platek 장비)를 사용하여 200 내지 390 rpm, 또는 250 내지 280 rpm 하에, 주 투입구에 i)폴리부틸렌테레프탈레이트 수지, ii)폴리에틸렌테레프탈레이트 수지, iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, iv)카르복시 반응성 에폭시 수지 및 v)유리섬유를 주 투입구로 공급속도(Flow ratio, F/R,) 10 내지 59 kg/hr, 또는 30 내지 40 kg/hr로 투입하고 사이드 투입구로 vi)첨가제를 공급속도 10 내지 59 kg/hr, 또는 10 내지 20 kg/hr로 투입하고 용융 혼련 및 압출하여 펠렛을 제조할 수 있다.
상기 펠렛을 사출 성형기에 투입하여 자동차 내장부품을 제조할 수 있다.
제조된 자동차 내장부품의 물성을 간접적으로 확인하기 위해 상기 펠렛을 사출 성형기(ENGEL사, 80톤)을 사용하여 사출온도 260 ℃, 금형온도 60 ℃, 사출속도 30 mm/sec에서 사출하여 ISO 규격의 시편을 제조할 수 있다.
제조된 시편은 일례로 ISO 1133에 의거하여 260 ℃ 하에 5 kg 하중으로 측정한 유동지수(Melt Flow Rate)가 30 g/10min 이상, 구체적인 예로 30 내지 36 g/10 min일 수 있다.
또한, 상기 시편은 일례로 ISO 180/1A에 의거하여 23 ℃ 하에 측정한 아이조드 노치 충격강도가 10 kJ/m2 이상, 구체적인 예로 11 내지 12 kJ/m2일 수 있다.
또한, 상기 시편은 일례로 ISO 527에 의거하여 50 mm/min의 속도로 측정한 인장강도가 90 MPa 이상, 구체적인 예로 90 내지 99 MPa일 수 있다.
또한, 4mm 시편을 일례로 ISO 178에 의거하여 SPAN 64를 사용하여 2 mm/min의 속도로 측정한 굴곡강도가 140 MPa 이상, 구체적인 예로 140 내지 144 MPa일 수 있고, 굴곡탄성률이 5000 MPa 이상, 구체적인 예로 5000 내지 5150 MPa일 수 있다.
상기 자동차 내장부품은 구체적으로 차량 전자장치 통합 제어 부품(Body Control Module) 하우징일 수 있으나, 특정 종류로 한정되지 않는다.
즉, 본 발명의 일 구현예에 따른 열가소성 수지 조성물은 특정 중량%의 폴리부틸렌테레프탈레이트 수지, 폴리에틸렌테레프탈레이트 수지, (메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, 카르복시 반응성 에폭시 수지와 SiO2가 과량을 차지하는 유리 섬유를 포함하는 것을 특징으로 하며, 상기 조성물로부터 제조된 자동차 내장부품은 사용되는 소재가 종래의 소재에서 변경되어 내열특성 및 내충격성이 개선되어 기계적 물성, 유동성 등과의 물성 밸런스를 만족하고 우수한 제품 신뢰성과 외관 품질을 향상시키는 장점이 있다.
본 발명의 열가소성 수지 조성물, 이의 제조방법 및 자동차 내장부품을 설명함에 있어서, 명시적으로 기재하지 않은 다른 조건이나 장비 등은 당업계에서 통상적으로 실시되는 범위 내에서 적절히 선택할 수 있고, 특별히 제한되지 않음을 명시한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정하는 것은 아니다.
[실시예]
실시예 1 내지 4, 및 비교예 1 내지 9
실시예에서 사용한 원료는 다음과 같다.
(A) 폴리부틸렌테레프탈레이트 수지(PBT)
A-1) PBT, 고유점도(IV) 0.7 dl/g
A-2) PBT, 고유점도(IV) 0.8 dl/g
(B) 폴리에틸렌테레프탈레이트 수지(PET: 호모 폴리머), 고유점도(IV) 0.8 dl/g의 재활용 PET 수지: 생수 보틀을 하기 도 1의 공정 흐름도에 따라 가공하여 수득된 도 2(우측 도면)의 백색 칩에 해당
(C) (메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체
C1) 메타크릴레이트-부타디엔-스티렌 공중합체(입자 사이즈 0.3㎛, 메틸메타크릴레이트 15 중량%, 부타디엔 80 중량%, 스티렌 5 중량%, 중량평균분자량 103,000 g/mol)
C2) 아크릴로니트릴-스티렌-부틸 아크릴레이트 공중합체(아크릴로니트릴 25 중량%, 스티렌 34 중량%, 부틸 아크릴레이트 41 중량%, 중량평균분자량 130,000 g/mol)
C3) 아크릴로니트릴-부타디엔-스티렌 공중합체 (아크릴로니트릴 10 중량%, 부타디엔 60 중량%, 스티렌 30 중량%, 중량평균분자량 78,000 g/mol)
D) 에틸렌/n-부틸 아크릴레이트/글리시딜 메타크릴레이트 수지(에틸렌 65 중량%, n-부틸 아크릴레이트 28 중량%, 글리시딜 메타크릴레이트 7 중량%)
(E) 유리섬유: 평균길이 3mm, 평균직경 10 um
E-1) 실리카 48 중량%, 알루미나 12 중량%, 산화칼슘 35 중량%, MgO를 포함하는 기타 성분 5 중량%를 포함하여 이루어진 유리섬유
E-2) 실리카 44 중량%, 알루미나 14 중량%, 산화칼슘 36 중량%, MgO를 포함하는 기타 성분 6 중량%를 포함하여 이루어진 유리섬유
E-3) 실리카 52 중량%, 알루미나 18 중량%, 산화칼슘 16 중량%, MgO를 포함하는 기타 성분 14 중량%를 포함하여 이루어진 유리섬유
(첨가제)
F) 활제(폴리에틸렌 왁스) LDPE wax
G) 가수분해 억제보조제(에스테르 교환반응 억제제): 화학식 NaH2PO4의 제1인산 나트륨
H) 열 안정제(고페놀계 산화방지제) :Pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxypehnyl)propionate
하기 표 1에 기재된 열가소성 수지 조성물의 원재료를 혼합한 다음, 압출을 통해 고른 분산도의 열가소성 수지 조성물을 펠렛 형태로 제조한 다음, 상기 펠렛에 열을 가하여 금형 틀에 주입한 후 냉각시켜 부품을 생산하는 사출 공정을 통해 자동차 내장부품으로 이용가능한 시편을 제작하였다.
구체적으로, 하기 표 1에 나타낸 각 성분을 포함하여 믹서로 혼합한 후, 260 ℃로 설정된 이축압출기(φ40, L/D: 42, SM Platek 장비)를 사용하여 250 rpm 하에, 주 투입구로 공급속도 39 kg/hr로 투입하고 사이드 투입구로 첨가제를 11 kg/hr로 투입하면서 1 내지 3분간 압출 가공하여 열가소성 수지 조성물 펠렛을 제조할 수 있다.
제조된 펠렛을 대류 오븐에서 80 ℃로 4시간 이상 건조한 다음 사출 성형기(ENGEL사, 80톤)을 사용하여 사출온도 260 ℃, 금형온도 60 ℃, 사출속도 30 mm/sec에서 사출하여 ISO 시편을 제작하였다.
구분 실시예1 실시예2 실시예3 실시예4 비교예1 비교예2 비교예3 비교예4 비교예5 비교예6 비교예7 비교예8 비교예9
A-1 51.7 46.7 49.7 46.2 61.7 41.2 49.2 49.2 51.2 51.2 51.2 56.7 39.7
B 10.0 15.0 10.0 15.0 - 20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
C-1 14.0 14.0 16.0 14.0 14.0 14.0 16.0 16.0 16.0 - - 9.0 26.0
C-2 16.0
C-3 16.0
D 1.5 1.5 1.5 2.0 1.5 2.0 2.0 2.0 - - - 1.5 1.5
E-1 22.0
E-2 22.0
E-3 22.0 22.0 22.0 22.0 22.0 22.0 - - 22.0 22.0 22.0 22.0 22.0
F 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
G 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
H 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
참고로, 상기 표 1에서 사용한 원료는 A-1~ H까지 모두 합한 중량%가 총 100 중량%가 된다.
실험예 1 : 자동차 내장부품 시편의 물성 평가
상기 실시예 1 내지 4, 및 비교예 1 내지 9로 제조된 자동차 내장부품 시편의 물성을 평가하였다. 평가 방식은 다음과 같다.
-유동성(Melt Flow Rate): ISO 1133에 의거 실시(260 ℃, 5 kg)
-충격강도(IZOD): ISO 180/1A에 의거 실시(Notched, 23 ℃)
-인장강도 및 신율: ISO 527에 의거 실시(50 mm/min)
-굴곡강도, 굴곡탄성률: ISO 178에 의거 실시 (4mm, SPAN 64, 속도 2 mm/min)
-열변형 온도(HDT): ISO 75에 의거 실시 (고하중 1.82 MPa)
상기 평가 기준으로 측정한 결과는 하기 표 2와 같다.
구분 실시예1 실시예2 실시예3 실시예4 비교예1 비교예2 비교예3 비교예4 비교예5 비교예6 비교예7 비교예8 비교예9
유동성(g/10min) 35 36 34 30 2 40 34 34 39 58 44 43 29
인장강도(MPa) 93 94 90 90 87 95 89 90 82 95 88 97 89
인장신율(%) 3.0 3.0 3.9 4.0 4.0 3.0 3.5 3.0 3.0 4.9 3.9 2.2 5.2
굴곡강도(MPa) 141 143 142 140 137 143 139 135 126 140 137 147 138
굴곡탄성률(MPa) 5075 5100 5000 5087 4710 5100 4725 4925 4695 5102 5010 5210 4820
충격강도(kJ/m2) 11.4 11.0 11.7 11.8 11.4 10.2 8.4 9.5 11.7 9.5 11.4 9.2 16.2
열변형 온도(℃) 185 186 184 184 183 181 177 180 140 158 160 188 178
상기 표 2를 참조하면, 본 발명에 따른 실시예 1 내지 4의 열가소성 수지 조성물은 충격강도와 굴곡탄성률, 고하중 열변형 온도, 내가수분해 유지율이 모두 높아 이를 사용하여 제조된 자동차 내장부품이 충격강도와 인장강도, 굴곡 강도 등의 물리적 물성을 기본적으로 충족시키면서도 내화학성, 고하중 내열특성이 우수하고 사출시 가스 발생 정도가 저감되어 제품신뢰성 및 외관 품질을 함께 제공하는 것을 확인할 수 있다.또한, 폴리부틸렌테레프탈레이트 수지를 적절한 범위를 벗어나 과량 사용하는 비교예 1은, 실시예 1 내지 4와 비교했을 때, 유동지수가 낮아 가공성이 불량하고 인장강도, 굴곡강도 및 굴곡탄성률이 현저하게 악화된 것을 확인하였다.
또한, 폴리부틸렌테레프탈레이트 수지를 극히 소량 사용하는 비교예 2는, 실시예 1 내지 4와 비교했을 때, 충격강도와 열변형 온도가 다소 불량한 것을 확인하였다.
또한, SiO2가 50 중량% 미만인 유리 섬유를 사용하는 비교예 3, 또는 비교예 4는, 실시예 1 내지 4와 비교했을 때, 인장강도, 굴곡강도, 굴곡탄성률, 충격강도 와 열변형 온도 등이 악화된 것을 알 수 있다.
또한, 카르복시 반응성 에폭시 수지를 사용하지 않은 비교예 5는 실시예 1 내지 4와 비교했을 때, 인장강도, 굴곡강도와 굴곡탄성률, 내열 특성이 불량한 것을 알 수 있다.
또한, (메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 대신 ASA 수지를 사용한 비교예 6은 실시예 1 내지 4와 비교했을 때, 충격강도와 내열 특성이 악화된 것을 알 수 있다.
또한, (메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 대신 ABS 수지를 사용한 비교예 7은 실시예 1 내지 4와 비교했을 때, 인장강도, 굴곡강도와 내열 특성이 악화된 것을 알 수 있다.
또한, (메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물을 적절한 범위보다 소량 사용한 비교예 8은 실시예 1 내지 4와 비교했을 때, 충격강도가 악화된 것을 알 수 있다.
또한, (메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물을 적절한 범위보다 소량 사용한 비교예 9는 실시예 1 내지 4와 비교했을 때, 유동성과 굴곡탄성률이 악화되며, 인장강도와 굴곡강도 그리고 내열 특성이 불량한 것을 확인하였다.
추가로, 실시예 1의 재활용 PET 수지를 버진 PET로 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하여 수득한 시편에 대해 전술한 유동성, 인장강도, 인장신율, 굴곡강도, 굴곡탄성률, 충격강도와 열변형온도를 동일하게 측정하였다. 이때 버진 PET로는 하기 도 2의 좌측 도면으로 나타낸 백색 칩을 사용하였다.
그 결과, 유동성은 34 g/10min이었고, 인장강도는 99 MPa이었으며, 인장신율은 3.9%이었고, 굴곡강도는 144 MPa이었고, 굴곡탄성률은 5070 MPa이었고, 충격강도는 11.4 kJ/m2이었으며, 열변형 온도는 185 ℃로 측정되어 실시예 1 내지 4의 열가소성 수지 조성물과 동등 또는 유사한 물성 값을 제공하는 것을 알 수 있었다.
즉, 본 발명의 일 구현예에 따른 열가소성 수지 조성물은 특정 중량%의 폴리부틸렌테레프탈레이트 수지, 폴리에틸렌테레프탈레이트 수지, (메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체, 카르복시 반응성 에폭시 수지가 혼합된 가수분해 안정화제, 및 SiO2가 과량 포함된 유리 섬유를 포함함으로써, 상기 조성물로부터 제조된 자동차 내장부품이 내열특성 및 내충격성이 개선되어 기계적 물성, 유동성 등과의 물성 밸런스를 만족하고 우수한 제품신뢰성과 외관 품질을 제공하는 효과가 있으며, 특히 폴리에틸렌테레프탈레이트 수지로서 재생 폴리에틸렌테레프탈레이트 수지를 적용하고도 물성값을 충분히 개선시킨 장점이 있다.

Claims (14)

  1. i)폴리부틸렌테레프탈레이트 수지 44 내지 56 중량%;
    ii)폴리에틸렌테레프탈레이트 수지 8 내지 17 중량%;
    iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 12 내지 20 중량%;
    iv)카르복시 반응성 에폭시 수지 0.1 내지 2.2 중량%; 및
    v)SiO2, CaO 및 Al2O3를 포함하고, 상기 SiO2 함량이 50 중량% 이상을 차지하고, Al2O3 함량이 CaO보다 큰 유리섬유 10 내지 35 중량%;를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서,
    상기 i)폴리부틸렌테레프탈레이트 수지의 고유점도는 0.45 내지 0.85 dl/g이고, 상기 ii)폴리에틸렌테레프탈레이트 수지의 고유점도는 0.5 내지 0.9 dl/g인 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제1항에 있어서,
    상기 ii)폴리에틸렌테레프탈레이트 수지는 재생 폴리에틸렌테레프탈레이트 수지인 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제1항에 있어서,
    상기 iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체는 공액디엔 화합물 40 내지 80 중량%, 방향족 비닐 화합물 10 내지 40 중량% 및 (메트)아크릴레이트 화합물 1 내지 20 중량%를 포함하여 이루어진 그라프트 공중합체를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항에 있어서,
    상기 iv)카르복시 반응성 에폭시 수지는 에틸렌-n-부틸 아크릴레이트-글리시딜 메타크릴레이트 코폴리머, 에틸렌-글리시딜 메타크릴레이트 코폴리머, 에틸렌-아크릴릭 에스터-글리시딜 메타크릴레이트 코폴리머, 에틸렌-메틸 아크릴레이트-글리시딜 메타크릴레이트 코폴리머, 에틸렌-디메타크릴레이트-글리시딜 메타크릴레이트 코폴리머, 에틸렌-아크릴레이트-글리시딜 메타크릴레이트 코폴리머 및 에틸렌-비닐 아세테이트-글리시딜 메타크릴레이트 코폴리머 중에서 선택된 1종 이상인 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제1항에 있어서,
    상기 iv)카르복시 반응성 에폭시 수지는 글리시딜 메타크릴레이트 유래의 단위체를 1 내지 15 중량% 포함하여 이루어진 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항에 있어서,
    상기 i)폴리부틸렌테레프탈레이트 수지의 고유점도(Intrinsic viscosity)는 상기 ii)폴리에틸렌테레프탈레이트 수지의 고유점도보다 작은 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항에 있어서,
    상기 ii)폴리에틸렌테레프탈레이트 수지는 생수보틀 재생 수지를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항에 있어서,
    상기 열가소성 수지는 폴리에틸렌계 활제, 가수분해 억제보조제 및 페놀성 산화방지제 중에서 선택된 1종 이상의 첨가제를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항에 있어서,
    상기 열가소성 수지 조성물은 4mm 시편을 ISO 178에 의거하여 SPAN 64를 사용하여 2 mm/min의 속도로 측정한 굴곡강도가 140 MPa 이상인 동시에 굴곡탄성률이 5000 MPa 이상인 것을 특징으로 하는 열가소성 수지 조성물.
  11. i)폴리부틸렌테레프탈레이트 수지 44 내지 56 중량%; ii)폴리에틸렌테레프탈레이트 수지 8 내지 17 중량%; iii)(메트)아크릴레이트 화합물-공액디엔 화합물-방향족 비닐 화합물 공중합체 12 내지 20 중량%; iv)카르복시 반응성 에폭시 수지 0.1 내지 2.2 중량%; 및 v)SiO2, CaO 및 Al2O3를 포함하고, 상기 SiO2 함량이 50 중량% 이상을 차지하고, Al2O3 함량이 CaO보다 큰 유리섬유 10 내지 35 중량%;를 포함하여 압출기에 투입하여 용융 혼련 및 압출하는 단계를 포함하는 것을 특징으로 하는 열가소성 수지 조성물의 제조방법.
  12. 제11항에 있어서,
    상기 i)폴리부틸렌테레프탈레이트 수지의 고유점도(Intrinsic viscosity)가 상기 ii)폴리에틸렌테레프탈레이트 수지의 고유점도보다 작은 것을 특징으로 하는 열가소성 수지 조성물의 제조방법.
  13. 제1항 내지 제10항 중 어느 한 항의 열가소성 수지 조성물을 포함하여 제조됨을 특징으로 하는 자동차 내장부품.
  14. 제13항에 있어서,
    상기 자동차 내장부품은 차량 전자장치 통합 제어 부품(Body Control Module) 하우징인 것을 특징으로 하는 자동차 내장부품.
PCT/KR2023/008981 2022-09-29 2023-06-28 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품 WO2024071585A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23840866.0A EP4375330A1 (en) 2022-09-29 2023-06-28 Thermoplastic resin composition and automobile interior part manufactured therefrom

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0124048 2022-09-29
KR20220124048 2022-09-29
KR10-2023-0082468 2023-06-27
KR1020230082468A KR20240045076A (ko) 2022-09-29 2023-06-27 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품

Publications (1)

Publication Number Publication Date
WO2024071585A1 true WO2024071585A1 (ko) 2024-04-04

Family

ID=89834317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008981 WO2024071585A1 (ko) 2022-09-29 2023-06-28 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품

Country Status (2)

Country Link
EP (1) EP4375330A1 (ko)
WO (1) WO2024071585A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060005571A (ko) * 2004-07-13 2006-01-18 현대자동차주식회사 내열성 및 표면평활성이 우수한 폴리에스테르 수지 조성물
KR20100079986A (ko) * 2008-12-31 2010-07-08 주식회사 삼양사 친환경 수지 조성물
KR20160060907A (ko) 2014-11-21 2016-05-31 주식회사 엘지화학 유리섬유 강화 폴리부틸렌 테레프탈레이트 고유동 수지 조성물 및 사출품
CN109749372A (zh) * 2018-12-30 2019-05-14 聚石化学(苏州)有限公司 一种阻燃增强pbt复合材料及其制备方法
KR20190097091A (ko) * 2016-12-26 2019-08-20 니토 보세키 가부시기가이샤 유리 섬유 강화 수지 성형품
US20210002477A1 (en) * 2018-03-07 2021-01-07 Toyobo Co., Ltd. Inorganic reinforced thermoplastic polyester resin composition
CN112759900A (zh) * 2020-12-28 2021-05-07 苏州旭光聚合物有限公司 一种玻纤增强聚对苯二甲酸丁二醇酯复合材料及其制备方法
KR20220124048A (ko) 2021-03-02 2022-09-13 주식회사 동성케미컬 멜라민-포름알데히드 발포체 및 이의 제조방법
KR20230082468A (ko) 2021-12-01 2023-06-08 주식회사 맵퍼스 정밀 위치 제공 장치 및 정밀 위치 제공 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060005571A (ko) * 2004-07-13 2006-01-18 현대자동차주식회사 내열성 및 표면평활성이 우수한 폴리에스테르 수지 조성물
KR20100079986A (ko) * 2008-12-31 2010-07-08 주식회사 삼양사 친환경 수지 조성물
KR20160060907A (ko) 2014-11-21 2016-05-31 주식회사 엘지화학 유리섬유 강화 폴리부틸렌 테레프탈레이트 고유동 수지 조성물 및 사출품
KR20190097091A (ko) * 2016-12-26 2019-08-20 니토 보세키 가부시기가이샤 유리 섬유 강화 수지 성형품
US20210002477A1 (en) * 2018-03-07 2021-01-07 Toyobo Co., Ltd. Inorganic reinforced thermoplastic polyester resin composition
CN109749372A (zh) * 2018-12-30 2019-05-14 聚石化学(苏州)有限公司 一种阻燃增强pbt复合材料及其制备方法
CN112759900A (zh) * 2020-12-28 2021-05-07 苏州旭光聚合物有限公司 一种玻纤增强聚对苯二甲酸丁二醇酯复合材料及其制备方法
KR20220124048A (ko) 2021-03-02 2022-09-13 주식회사 동성케미컬 멜라민-포름알데히드 발포체 및 이의 제조방법
KR20230082468A (ko) 2021-12-01 2023-06-08 주식회사 맵퍼스 정밀 위치 제공 장치 및 정밀 위치 제공 방법

Also Published As

Publication number Publication date
EP4375330A1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
WO2017057847A1 (ko) 고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법
WO2023008902A1 (ko) 생분해성 수지 조성물, 및 이를 이용한 생분해성 필름 및 생분해성 제품
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2019093703A1 (ko) 열가소성 수지 조성물
WO2022158709A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2019117587A1 (ko) 내열 수지 조성물 및 이를 이용한 자동차용 스포일러
WO2024071585A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023055099A1 (ko) 열가소성 수지 및 이로부터 제조된 성형품
WO2024043533A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2022158720A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023229132A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023146143A1 (ko) 열가소성 수지 조성물 및 성형품
WO2024005288A1 (ko) 자동차 내장재용 복합수지 조성물 및 이를 이용한 자동차 내장재
WO2023153641A1 (ko) 열가소성 수지 조성물 및 성형품
WO2022225164A1 (ko) 자동차 내장재용 복합수지 조성물 및 이를 이용한 자동차 내장재
WO2023075104A1 (ko) 열가소성 폴리에스테르 엘라스토머 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020149504A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2024071549A1 (ko) 폴리부틸렌테레프탈레이트 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2024039099A1 (ko) 폴리카보네이트 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2015016464A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018088677A1 (ko) 열가소성 수지 및 열가소성 수지 조성물
WO2022239938A1 (ko) 자동차 내장재용 복합수지 조성물 및 이를 이용한 자동차 내장재
WO2023068481A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023840866

Country of ref document: EP

Effective date: 20240123