WO2017054565A1 - 金属有机骨架膜及其制备方法 - Google Patents

金属有机骨架膜及其制备方法 Download PDF

Info

Publication number
WO2017054565A1
WO2017054565A1 PCT/CN2016/091783 CN2016091783W WO2017054565A1 WO 2017054565 A1 WO2017054565 A1 WO 2017054565A1 CN 2016091783 W CN2016091783 W CN 2016091783W WO 2017054565 A1 WO2017054565 A1 WO 2017054565A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
substrate
hot pressing
metal organic
organic ligand
Prior art date
Application number
PCT/CN2016/091783
Other languages
English (en)
French (fr)
Inventor
韩若丹
Original Assignee
中能科泰(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中能科泰(北京)科技有限公司 filed Critical 中能科泰(北京)科技有限公司
Priority to US15/764,109 priority Critical patent/US11395991B2/en
Publication of WO2017054565A1 publication Critical patent/WO2017054565A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02232Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/76Metal complexes of amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/10Specific pressure applied

Definitions

  • the present invention relates to the field of applied chemistry, and in particular to a method of preparing a metal organic framework film.
  • Metal-organic framework is a kind of crystalline porous material. It is composed of metal clusters or metal ions and organic ligands by coordination. It has the advantages of inorganic and organic pore materials, and has high specific surface area and orderly repeatability. Rich in functional groups, good stability and diverse structure.
  • Metal-organic framework membrane is one of the important application fields of metal-organic framework, and is widely used in many directions such as gas separation, catalysis, and sensors.
  • the preparation method of the metal organic skeleton film mainly includes an in situ growth method, an LBL deposition method, a seed crystal method, and an ultrasonic chemical method.
  • the in-situ growth method refers to directly inserting a substrate for film formation into a reaction solution, and growing a metal organic skeleton crystal on the surface of the substrate.
  • the method is simple in operation, but has a long reaction time, is prone to film defects, has too many impurities, and is difficult to expand.
  • LBL deposition method is to pre-modify the organic group on the surface of the substrate, then place the substrate in the metal solution and the organic ligand solution, and grow layer by layer to obtain a metal organic skeleton film.
  • the method has the advantages of simple operation,
  • the product has high purity, but the treatment time is long and it is difficult to expand the mass production;
  • the seeding method is to pre-coat the seed surface on the surface of the substrate and then grow the film in situ in the reaction solution, which compensates for the in-situ growth method to some extent.
  • the defects of membrane defects and excessive impurities are prone to occur, but there is still a long reaction time and mass production compared with the present invention;
  • ultrasonic chemistry is a new method developed in recent years, by placing a substrate on the substrate.
  • the reaction solution is subjected to ultrasonication to produce a metal organic skeleton membrane.
  • the advantage of the method is that the reaction conditions are mild (normal temperature can be carried out), and the reverse It should be faster than other methods, but its products often have a large number of defects, insufficient purity, and difficult mass production.
  • the current preparation method has a long production cycle, insufficient batch production capacity, low yield, and relatively high production cost, which needs to be improved.
  • It is an object of the present invention to provide a method of preparing a metal organic framework film comprising: contacting a metal source with an organic ligand and forming a metal organic framework film on the substrate by hot pressing.
  • the metal ions in the metal source include Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf 4+ , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , Au + , Zn 2+ , Cd 2+ , Hg 2
  • the metal ion in the metal source comprises at least one of Zn 2+ , Co 2+ or Cd 2+ .
  • the coordination functional group in the organic ligand includes -CO 2 H, -CS 2 H, -NO 2 , -OH, -NH2, -CN, -SO 3 H, -SH, -PO 4 H 2 , -AsO 3 H, -AsO 4 H, -CH(RSH) 2 , -C(RSH) 3 , -CH(RNH 2 ) 2 , -C(RNH 2 ) 3 , -CH(ROH 2 , -C(ROH) 3 , -CH(RCN) 2 , -C(RCN) 3 , -CH(NH 2 ) 2 , -C(NH 2 ) 3 , -CH(CN) 2 and -C( At least one of CN) 3 , wherein R in the coordinating functional group each independently represents a hydrocarbon group having 1 to 5 benzene rings.
  • the coordination functional group of the organic ligand comprises -CO 2 H, or At least one of them.
  • the metal source is used in an amount of 0.001 to 5 mol with respect to 1 mol of the organic ligand.
  • the hot pressing method has a hot pressing temperature of 80-300 ° C, a hot pressing pressure of 0.005-6 MPa, a hot pressing time of 3-120 minutes, and an adjustable hot pressing area.
  • the substrate comprises at least one of anodized aluminum, non-woven fabric, carbon cloth, nickel foam, copper foil, glass fiber cloth, glass fiber yarn, quartz substrate, glass substrate, and silicon substrate. kind.
  • the substrate comprises at least one of carbon cloth, nickel foam or copper foil.
  • the metal source is contacted with the organic ligand in an additive comprising polyacrylic acid, polyacrylonitrile, polybutene, polybutyl acrylate, polyethylene, polyethylene oxide, poly At least one of acrylate, polyethylene glycol, polyisobutylene, polyoxybutylene oxide, polymethyl acrylate, polymethyl methacrylate, polypropylene, polystyrene, polyvinyl alcohol, polyvinyl chloride, polyvinylpyrrolidone .
  • an additive comprising polyacrylic acid, polyacrylonitrile, polybutene, polybutyl acrylate, polyethylene, polyethylene oxide, poly At least one of acrylate, polyethylene glycol, polyisobutylene, polyoxybutylene oxide, polymethyl acrylate, polymethyl methacrylate, polypropylene, polystyrene, polyvinyl alcohol, polyvinyl chloride, polyvinylpyrrolidone .
  • the additive is polyvinyl alcohol (preferably having a molecular weight of 16,000), polyethylene glycol (preferably having a molecular weight of 4000), polyvinylpyrrolidone (preferably having a molecular weight of 40,000), and/or polyacrylonitrile (preferably having a molecular weight of 150,000).
  • the additive is used in an amount of from 0.001 to 0.05 mol based on 1 mol of the organic ligand.
  • the metal source of the method of the present invention is anhydrous zinc acetate
  • the organic ligand is 2-methylimidazole
  • the substrate is copper foil
  • the additive is polyethylene glycol (preferably having a molecular weight of 4000).
  • the metal source of the method of the present invention is zinc nitrate hexahydrate
  • the organic The ligand is 2-aminoterephthalic acid
  • the substrate is nickel foam
  • the additive is polyvinyl alcohol (preferably having a molecular weight of 16,000).
  • the metal source of the method of the present invention is cobalt nitrate hexahydrate
  • the organic ligand is benzimidazole
  • the substrate is carbon cloth
  • the additive is polyvinylpyrrolidone (preferably having a molecular weight of 40,000).
  • the metal source of the method of the present invention is cadmium nitrate tetrahydrate
  • the organic ligand is imidazole
  • the substrate is carbon cloth
  • the additive is polyacrylonitrile (preferably having a molecular weight of 150,000).
  • the metal source of the method of the present invention is cobalt nitrate hexahydrate
  • the organic ligand is imidazole
  • the substrate is carbon cloth
  • the additive is polyvinylpyrrolidone (preferably having a molecular weight of 40,000).
  • the method of the invention can obtain the metal organic skeleton membrane with high purity more conveniently, quickly and batchly. Therefore, the invention can make the preparation of the metal organic skeleton membrane have the advantages of low cost, simple operation, rapid production, batch production and high purity.
  • Example 1 is an X-ray powder diffraction pattern of a metal organic skeleton film obtained in Example 1.
  • Example 2 is a scanning electron micrograph of the metal organic skeleton film obtained in Example 1.
  • FIG. 3 is an X-ray powder diffraction pattern of the metal organic skeleton film obtained in Example 2.
  • Example 4 is a scanning electron micrograph of the metal organic skeleton film obtained in Example 2.
  • Fig. 5 is an X-ray powder diffraction pattern of the metal organic skeleton film obtained in Example 3.
  • Fig. 6 is a scanning electron micrograph of the metal organic skeleton film obtained in Example 3.
  • Fig. 7 is an X-ray powder diffraction pattern of the metal organic skeleton film obtained in Example 4.
  • Fig. 8 is a scanning electron micrograph of the metal organic skeleton film obtained in Example 4.
  • Fig. 9 is an X-ray powder diffraction pattern of the metal organic skeleton film obtained in Example 5.
  • Fig. 10 is a scanning electron micrograph of the metal organic skeleton film obtained in Example 5.
  • Fig. 11 is an X-ray powder diffraction pattern of the metal organic skeleton film obtained in Comparative Example 1.
  • Fig. 12 is a scanning electron micrograph of the metal organic skeleton film obtained in Comparative Example 1.
  • the present invention provides a method of preparing a metal organic framework film, the method comprising: contacting a metal source with an organic ligand and forming a metal organic framework film on the substrate by hot pressing.
  • the metal source forms a metal in the metal organic framework film;
  • the organic ligand forms an organic linking group in the metal organic framework film; and
  • the substrate provides a support layer of the metal organic framework film.
  • the metal organic framework film prepared by the method of the present invention has a porous network structure.
  • the metal source can be a metal salt and/or a metal oxide.
  • the metal ions in the metal source include Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf 4+ , V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2 + , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , Au + , Zn 2
  • the organic ligand refers to an organic ligand having one or more coordination functional groups in its molecular structure.
  • the coordination functional group in the organic ligand may be various functional groups capable of forming a coordinate bond with a metal ion, including -CO 2 H, -CS 2 H, -NO 2 , -OH, -NH 2 , -CN , -SO 3 H, -SH, -PO 4 H 2 , -CH(RSH) 2 , -C(RSH) 3 , -CH(RNH 2 ) 2 , -C(RNH 2 ) 3 , -CH(ROH) 2 , -C(ROH) 3 , At least one of -CH(RCN) 2 , -C(RCN) 3 , -CH(NH 2 ) 2 , -C(NH 2 ) 3 , -CH(CN) 2 and -C(CN) 3 , wherein R in the coordinating
  • the organic ligand containing the above-mentioned coordination functional group is exemplified below.
  • preferred organic ligands are 2-methylimidazole, benzimidazole, imidazole and/or 2-aminoterephthalic acid.
  • the metal source may be used in an amount of from 0.001 to 5 mol, preferably from 0.05 to 4 mol, more preferably from 0.1 to 3 mol, per mol of the organic ligand.
  • the hot pressing method that is, using a tool or device having a heat pressing capability, maintains a certain hot pressing time under a certain hot pressing temperature and hot pressing pressure.
  • the hot pressing tool or equipment may be a conventional hot pressing tool, such as at least one of a heating rod, a hot plate, and an electric heating roll;
  • the hot pressing temperature may be 80 ° C - 300 ° C, preferably 100 ° C - 280 ° C, Preferably, it is from 120 ° C to 250 ° C;
  • the hot pressing pressure is from 0.005 to 6 MPa, preferably from 0.01 to 4 MPa, more preferably from 0.02 to 2 MPa; and the hot pressing time may be from 3 to 120 minutes, preferably from 5 to 90 minutes, more preferably 10 -60 minutes.
  • the metal organic framework film forms a porous network structure on a substrate, and the substrate provides support for hot pressing to form the metal organic skeleton film.
  • the substrate includes at least one of carbon cloth, non-woven fabric, anodized aluminum, foamed nickel, copper foil, glass fiber cloth, glass fiber yarn, quartz substrate, glass substrate, and silicon substrate.
  • Preferred substrates include at least one of carbon cloth, nickel foam or copper foil.
  • the metal source is contacted with the organic ligand in an additive.
  • the additive is used in an amount of from 0.001 to 0.05 mol based on 1 mol of the organic ligand.
  • the additives include polyacrylic acid, polyacrylonitrile, polybutene, polybutyl acrylate, polyethylene, polyethylene oxide, polyacrylate, polyethylene glycol, polyisobutylene, polyoxybutylene oxide, polymethyl acrylate, polymethyl At least one of methyl acrylate, polypropylene, polystyrene, polyvinyl alcohol, polyvinyl chloride, and polyvinylpyrrolidone.
  • the additive polyvinyl alcohol preferably having a molecular weight of 16,000
  • polyethylene glycol preferably having a molecular weight of 4000
  • polyvinylpyrrolidone preferably having a molecular weight of 40,000
  • polyacrylonitrile preferably having a molecular weight 150000
  • the organic ligand is 2-methylimidazole, benzimidazole, imidazole and/or 2-aminoterephthalic acid
  • the metal source is anhydrous zinc acetate, zinc nitrate hexahydrate, and six Hydrating cobalt nitrate and/or cadmium nitrate tetrahydrate
  • the substrate is carbon cloth, nickel foam and/or copper foil.
  • the organic ligand is 2-methylimidazole
  • the metal source is anhydrous zinc acetate
  • the additive is polyethylene glycol (preferably having a molecular weight of 4000)
  • the substrate is a copper foil.
  • the organic ligand is 2-aminoterephthalic acid
  • the metal source is zinc nitrate hexahydrate
  • the additive is polyvinyl alcohol (preferably having a molecular weight of 16,000)
  • the substrate is foamed nickel.
  • the organic ligand is benzimidazole
  • the metal source is cobalt nitrate hexahydrate
  • the additive is polyvinylpyrrolidone (preferably having a molecular weight of 40,000)
  • the substrate is a carbon cloth.
  • the organic ligand is imidazole
  • the metal source is cadmium nitrate tetrahydrate
  • the additive is polyacrylonitrile (preferably having a molecular weight of 150,000)
  • the substrate is a carbon cloth.
  • the organic ligand is imidazole
  • the metal source is cobalt nitrate hexahydrate
  • the additive is polyvinylpyrrolidone (preferably having a molecular weight of 40,000)
  • the substrate is a carbon cloth.
  • a metal source (zinc acetate anhydrous) was mixed with an organic ligand (2-methylimidazole) and an additive (polyethylene glycol, molecular weight 4000). Among them, the metal source is used in an amount of 0.1 mol and the polyethylene glycol is used in an amount of 0.005 mol based on 1 mol of the organic ligand. Evenly spread on the base copper foil (4 cm * 4 cm), hot pressed. The hot pressing temperature was 220 ° C, the hot pressing pressure was 0.2 MPa, and the hot pressing time was 25 min. A metal organic skeleton material is obtained on a base copper foil to obtain the metal organic skeleton film.
  • the above materials were repeatedly washed with ethanol and dimethylformamide, and dried to obtain a purified metal organic skeleton film.
  • the loading of the metal organic framework material on the membrane was 10.37 g/m 2 .
  • the metal organic framework for the film X-ray diffraction and scanning electron microscopy, wherein, the X-ray powder diffraction model: Bruker D8 Advance, 4-400 test interval, the scanning speed of 40 per minute; SEM model S4800, scanning Parameters: Acceleration voltage 5kv, working distance 9.3mm, magnification 450,000 times, length scale 1um.
  • the results showed that the metal organic skeleton material was successfully obtained by hot pressing on the base copper foil to obtain a metal organic skeleton film.
  • the X-ray powder diffraction of the metal organic framework film is shown in Fig. 1.
  • the X-ray powder diffraction curve (red) of the metal organic framework material obtained after hot pressing coincides with the single crystal simulation curve (black), indicating that the metal organic skeleton is successfully obtained.
  • a metal source (zinc nitrate hexahydrate) is mixed with an organic ligand (2-aminoterephthalic acid) and an additive (polyvinyl alcohol, molecular weight 16000). Among them, the metal source is used in an amount of 1 mol and the polyvinyl alcohol is used in an amount of 0.001 mol based on 1 mol of the organic ligand. Evenly spread onto the base foam nickel (4 cm * 4 cm), hot pressed. The hot pressing temperature was 85 ° C, the hot pressing pressure was 0.2 MPa, and the hot pressing time was 120 min. A metal organic skeleton material is obtained on the base foam nickel to obtain the metal organic skeleton film.
  • the above materials were repeatedly washed with ethanol and dimethylformamide, and dried to obtain a purified metal organic skeleton film.
  • the loading amount of the metal organic skeleton material on the film was 6.03 g/m 2 .
  • the metal organic framework film X-ray diffraction and scanning electron microscopy, wherein, the X-ray powder diffraction model: Bruker D8 Advance, 4-400 test interval, the scanning speed of 40 per minute; SEM model S4800, scanning parameters : Acceleration voltage 5kv, working distance 9.3mm, magnification 450,000 times, length scale 1um.
  • the results showed that the metal organic skeleton material was successfully obtained by hot pressing on the base foam nickel to obtain a metal organic skeleton film.
  • the X-ray powder diffraction of the metal organic skeleton film is shown in Fig. 3.
  • the X-ray powder diffraction curve (red) of the metal organic skeleton material obtained after hot pressing coincides with the single crystal simulation curve (black), indicating that the metal organic skeleton is successfully obtained.
  • the metal source (cobalt hexahydrate) is mixed with the organic ligand (benzimidazole) and the additive (polyvinylpyrrolidone, molecular weight 40,000).
  • the metal source is used in an amount of 0.01 mol and the polyvinylpyrrolidone is used in an amount of 0.002 mol based on 1 mol of the organic ligand.
  • the hot pressing temperature was 120 ° C, the hot pressing pressure was 0.2 MPa, and the hot pressing time was 70 min.
  • a metal organic skeleton material is obtained on a base carbon cloth to obtain the metal organic skeleton film.
  • the above materials were repeatedly washed with ethanol and dimethylformamide, and dried to obtain a purified metal organic skeleton film.
  • the loading amount of the metal organic skeleton material on the film was 8.06 g/m 2 .
  • the metal organic framework film X-ray diffraction and scanning electron microscopy, wherein, the X-ray powder diffraction model: Bruker D8 Advance, 4-400 test interval, the scanning speed of 40 per minute; SEM model S4800, scanning parameters : Acceleration voltage 5kv, working distance 9.3mm, magnification 450,000 times, length scale 2um.
  • the results showed that the metal organic framework material was successfully obtained by hot pressing on the base carbon cloth to obtain a metal organic skeleton film.
  • the X-ray powder diffraction of the metal organic skeleton film is shown in Fig. 5.
  • the X-ray powder diffraction curve (red) of the metal organic skeleton material obtained after hot pressing coincides with the single crystal simulation curve (black), indicating that the metal organic skeleton is successfully obtained.
  • a metal source (cadmium nitrate tetrahydrate) is mixed with an organic ligand (imidazole) and an additive (polyacrylonitrile, molecular weight 150,000). Among them, the metal source is used in an amount of 0.5 mol and the polyacrylonitrile is used in an amount of 0.02 mol based on 1 mol of the organic ligand. Evenly spread to the base On the bottom carbon cloth (4cm * 4cm), hot pressing. The hot pressing temperature was 300 ° C, the hot pressing pressure was 0.2 MPa, and the hot pressing time was 5 min. A metal organic skeleton material is obtained on a base carbon cloth to obtain the metal organic skeleton film.
  • the above materials were repeatedly washed with ethanol and dimethylformamide, and dried to obtain a purified metal organic skeleton film.
  • the loading of the metal organic framework material on the membrane was 2.27 g/m 2 .
  • the metal organic framework film X-ray diffraction and scanning electron microscopy, wherein, the X-ray powder diffraction model: Bruker D8 Advance, 4-400 test interval, the scanning speed of 40 per minute; SEM model S4800, scanning parameters : Acceleration voltage 5kv, working distance 9.3mm, magnification 450,000 times, length scale 1um.
  • the results showed that the metal organic framework material was successfully obtained by hot pressing on the base carbon cloth to obtain a metal organic skeleton film.
  • the X-ray powder diffraction of the metal organic skeleton film is shown in Fig. 7.
  • the X-ray powder diffraction curve (red) of the metal organic skeleton material obtained after hot pressing coincides with the single crystal simulation curve (black), indicating that the metal organic skeleton is successfully obtained.
  • the material; the scanning electron microscope is shown in Fig. 8. After the hot pressing, a metal organic skeleton material is grown on the base carbon cloth, and the metal organic skeleton film is successfully obtained.
  • the metal source (cobalt hexahydrate) is mixed with the organic ligand (imidazole) and the additive (polyvinylpyrrolidone, molecular weight 40,000).
  • the metal source is used in an amount of 5 mol and the polyvinylpyrrolidone is used in an amount of 0.1 mol based on 1 mol of the organic ligand.
  • the hot pressing temperature was 180 ° C, the hot pressing pressure was 0.2 MPa, and the hot pressing time was 50 min.
  • a metal organic skeleton material is obtained on a base carbon cloth to obtain the metal organic skeleton film.
  • the above materials were repeatedly washed with ethanol and dimethylformamide, and dried to obtain a purified metal organic skeleton film.
  • the loading amount of the metal organic skeleton material on the film was 9.89 g/m 2 .
  • the metal organic framework film X-ray diffraction and scanning electron microscopy, wherein, the X-ray powder diffraction model: Bruker D8 Advance, 4-400 test interval, the scanning speed of 40 per minute; SEM model S4800, scanning parameters : Acceleration voltage 5kv, working distance 9.3mm, magnification 450,000 times, length scale 1um.
  • the results showed that the metal organic framework material was successfully obtained by hot pressing on the base carbon cloth to obtain a metal organic skeleton film.
  • the X-ray powder diffraction of the metal organic skeleton film is shown in Fig. 9.
  • the X-ray powder diffraction curve (red) of the metal organic skeleton material obtained after hot pressing coincides with the single crystal simulation curve (black), indicating that the metal organic skeleton is successfully obtained.
  • a metal source (zinc acetate anhydrous) was mixed with an organic ligand (2-methylimidazole) and an additive (polyethylene glycol, molecular weight 4000). Among them, the metal source is used in an amount of 0.1 mol and the polyethylene glycol is used in an amount of 0.005 mol based on 1 mol of the organic ligand. Evenly spread on the base copper foil (4 cm * 4 cm), hot pressed. The hot pressing temperature was 220 ° C, the hot pressing pressure was 0.01 MPa, and the hot pressing time was 25 min. A metal organic skeleton material is obtained on a base copper foil to obtain the metal organic skeleton film.
  • the above materials were repeatedly washed with ethanol and dimethylformamide, and dried to obtain a purified metal organic skeleton film.
  • X-ray powder diffraction and scanning electron microscopy analysis of the metal organic skeleton film were carried out in the same manner as in Example 1.
  • the loading amount of the metal organic skeleton material on the film was 7.98 g/m 2 .
  • a metal source (zinc acetate anhydrous) was mixed with an organic ligand (2-methylimidazole) and an additive (polyethylene glycol, molecular weight 4000). Among them, the metal source is used in an amount of 0.1 mol and the polyethylene glycol is used in an amount of 0.005 mol based on 1 mol of the organic ligand. Evenly spread on the base copper foil (4 cm * 4 cm), hot pressed. The hot pressing temperature is 220 ° C, the hot pressing pressure is 5 MPa, and the hot pressing time is 25 min. A metal organic skeleton material is obtained on a base copper foil to obtain the metal organic skeleton film.
  • Example 1 The above materials were repeatedly washed with ethanol and dimethylformamide, and dried to obtain a purified metal organic skeleton film.
  • X-ray powder diffraction and scanning of the metal organic framework film The mirror analysis was the same as that of Example 1.
  • the loading amount of the metal organic skeleton material on the film was 6.11 g/m 2 .
  • a metal source (zinc acetate anhydrous) was mixed with an organic ligand (2-methylimidazole) and an additive (polyethylene glycol, molecular weight 4000). Among them, the metal source is used in an amount of 0.1 mol and the polyethylene glycol is used in an amount of 0.005 mol based on 1 mol of the organic ligand. Evenly spread on the base copper foil (40 cm * 40 cm), hot pressed. The hot pressing temperature was 220 ° C, the hot pressing pressure was 0.2 MPa, and the hot pressing time was 25 min. A metal organic skeleton material is obtained on a base copper foil to obtain the metal organic skeleton film.
  • the above materials were repeatedly washed with ethanol and dimethylformamide, and dried to obtain a purified metal organic skeleton film.
  • X-ray powder diffraction and scanning electron microscopy analysis of the metal organic skeleton film were carried out in the same manner as in Example 1.
  • the loading amount of the metal organic skeleton material on the film was 10.11 g/m 2 .
  • a metal source (zinc acetate anhydrous) was mixed with an organic ligand (2-methylimidazole) and an additive (polyethylene glycol, molecular weight 4000). Among them, the metal source is used in an amount of 0.1 mol and the polyethylene glycol is used in an amount of 0.005 mol based on 1 mol of the organic ligand. Evenly spread onto the base copper foil (100 cm * 100 cm) and hot pressed. The hot pressing temperature was 220 ° C, the hot pressing pressure was 0.01 MPa, and the hot pressing time was 25 min. A metal organic skeleton material is obtained on a base copper foil to obtain the metal organic skeleton film.
  • the above materials were repeatedly washed with ethanol and dimethylformamide, and dried to obtain a purified metal organic skeleton film.
  • X-ray powder diffraction and scanning electron microscopy analysis of the metal organic skeleton film were carried out in the same manner as in Example 1.
  • the loading amount of the metal organic skeleton material on the film was 8.02 g/m 2 .
  • a metal organic framework film is grown on an alumina substrate using ultrasonic chemistry.
  • FIG. 11 is an X-ray powder diffraction pattern of the obtained metal organic skeleton film, wherein No. 1 is a single crystal simulation curve, No. 2 is an X-ray powder diffraction curve of the obtained metal organic skeleton film; and FIG. 12 is a scanning electron microscope of the obtained metal organic skeleton film.
  • Example 2 Example 3, Example 4, Example 5, Example 6, Example 7, Example 8, Example 9, and Comparative Example 1
  • the X-ray powder diffraction curve (red) of the organic framework material is in agreement with the single crystal simulation curve (black), indicating that the metal-organic framework material is successfully obtained, and there is no peak in the X-ray powder diffraction curve, indicating that the product has high purity and no Impurities are generated; in the scanning electron micrograph after hot pressing, it can be clearly seen that the metal organic framework material with a clean and simple shape is formed on the substrate, indicating that the metal organic skeleton film with high purity is successfully obtained.
  • the hot pressing method of the present invention is simple and easy to obtain, has simple operation, and has short preparation time, and can realize mass production of a high-purity metal organic skeleton film.
  • the method of the invention can obtain a large number of high-purity metal-organic framework membranes more conveniently and quickly, realizes industrial production and application, and has the advantages of low cost, simple operation, rapid production, batch production and high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laminated Bodies (AREA)

Abstract

一种制备金属有机骨架膜的方法,该方法包括:将金属源与有机配体接触并通过热压法于基底上形成金属有机骨架膜。该方法能够更便捷、快速的得到大量纯度很高的金属有机骨架膜,实现产业化生产与应用,具有成本低廉、操作简单、生产快速、产品批量化及纯度高等优势。

Description

金属有机骨架膜及其制备方法
相关申请的交叉引用
本申请要求2015年9月29日提交、申请号为201510630401.X的中国专利申请的优先权,其所公开的内容作为参考全文并入本申请。
技术领域
本发明涉及应用化学领域,具体地,涉及一种制备金属有机骨架膜的方法。
背景技术
金属有机骨架是一类晶体多孔材料,由金属团簇或金属离子与有机配体通过配位作用构筑而成,兼具无机和有机孔材料的优点,具有比表面积高、孔道有序可重复、官能团丰富、稳定性好、结构多样等特点。金属有机骨架膜是金属有机骨架的重要应用领域之一,被广泛应用于气体分离、催化、传感器等诸多方向。金属有机骨架膜的制备方法目前主要包括原位生长法、LBL沉积法、晶种法、超声化学法。
原位生长法指将成膜用的基底直接放入反应溶液中,在基底表面上生长金属有机骨架晶体,该方法操作简单,但反应时间长、容易出现膜缺陷、杂质过多、难以扩大量产;LBL沉积法是先在基底表面预修饰上有机基团,之后将基底轮番置于金属溶液与有机配体溶液中,逐层生长,得到金属有机骨架膜,该方法的优点是操作简单、产品纯度高,但处理时间长、难以扩大量产;晶种法是先在基底表面预涂晶种,再置于反应溶液中原位生长成膜,该方法在一定程度上弥补了原位生长法中容易出现膜缺陷和杂质过多的不足,但仍然存在相对本发明而言,反应时间较长,难以实现量产;超声化学法是近些年来发展起来的新方法,是通过对放置了基底的反应溶液进行超声,来生产金属有机骨架膜,该方法的优点是反应条件温和(常温即可进行)、反 应相对其他方法更快,但是它的产物往往存在大量缺陷、纯度不足、量产难度大。
总体而言,目前的制备方法生产周期长、批量化生产能力不足、产率较低、相对生产成本较高,亟待改进。
发明内容
本发明的目的是提供一种制备金属有机骨架膜的方法,该方法包括:将金属源与有机配体接触并通过热压法于基底上形成金属有机骨架膜。
本发明的方法中,所述金属源中的金属离子包括Mg2+、Ca2+、Sr2+、Ba2+、Sc3+、Y3+、Ti4+、Zr4+、Hf4+、V4+、V3+、V2+、Nb3+、Ta3+、Cr3+、Mo3+、W3+、Mn3+、Mn2+、Re3+、Re2+、Fe3+、Fe2+、Ru3+、Ru2+、Os3+、Os2+、Co3+、Co2+、Rh2+、Rh+、Ir2+、Ir+、Ni2+、Ni+、Pd2+、Pd+、Pt2+、Pt+、Cu2+、Cu+、Ag+、Au+、Zn2+、Cd2+、Hg2+、Al3+、Ga3+、In3+、Tl3+、Si4+、Si2+、Ge4+、Ge2+、Sn4+、Sn2+、Pb4+、Pb2+、As5+、As3+、As+、Sb5+、Sb3+、Sb+、Bi5+、Bi3+和Bi+中的至少一种。
优选的,所述金属源中的金属离子包含Zn2+、Co2+或Cd2+中的至少一种。
本发明的方法中,所述有机配体中的配位官能团包括-CO2H、-CS2H、-NO2、-OH、-NH2、-CN、-SO3H、-SH、
Figure PCTCN2016091783-appb-000001
Figure PCTCN2016091783-appb-000002
-PO4H2、-AsO3H、-AsO4H、-CH(RSH)2、-C(RSH)3、-CH(RNH2)2、-C(RNH2)3、-CH(ROH)2、-C(ROH)3、-CH(RCN)2、-C(RCN)3、-CH(NH2)2、-C(NH2)3、-CH(CN)2和-C(CN)3中的至少一种,其中,配位官能团中的R各自独 立地代表包含1至5个苯环的烃基。
优选的,所述有机配体的配位官能团包括-CO2H、
Figure PCTCN2016091783-appb-000003
Figure PCTCN2016091783-appb-000004
Figure PCTCN2016091783-appb-000005
中的至少一种。
本发明的方法中,相对于1mol的所述有机配体,所述金属源的用量为0.001-5mol。
本发明的方法中,所述热压法的热压温度为80-300℃、热压压强为0.005-6MPa、热压时间为3-120分钟、热压面积可调。
本发明的方法中,所述基底包括阳极氧化铝、无纺布、碳布、泡沫镍、铜箔、玻璃纤维布、玻璃纤维丝、石英基片、玻璃基片、硅基片中的至少一种。
优选的,所述基底包括碳布、泡沫镍或铜箔中的至少一种。
本发明的方法中,所述金属源与所述有机配体接触在添加剂中进行,所述添加剂包括聚丙烯酸、聚丙烯腈、聚丁烯、聚丙烯酸丁酯、聚乙烯、聚氧化乙烯、聚丙烯酸酯、聚乙二醇、聚异丁烯、聚氧化异丁烯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚丙烯、聚苯乙烯、聚乙烯醇、聚氯乙烯、聚乙烯吡咯烷酮中的至少一种。
优选的,所述添加剂为聚乙烯醇(优选分子量为16000)、聚乙二醇(优选分子量为4000)、聚乙烯吡咯烷酮(优选分子量为40000)和/或聚丙烯腈(优选分子量为150000)。
优选的,相对于1mol的所述有机配体,所述添加剂的用量为0.001-0.05mol。
更优选的,本发明的方法所述金属源为无水醋酸锌,所述有机配体为2-甲基咪唑,所述基底为铜箔,所述添加剂为聚乙二醇(优选分子量为4000)。
更优选的,本发明的方法所述金属源为六水合硝酸锌,所述有机 配体为2-氨基对苯二甲酸,所述基底为泡沫镍,所述添加剂为聚乙烯醇(优选分子量为16000)。
更优选的,本发明的方法所述金属源为六水合硝酸钴,所述有机配体为苯并咪唑,所述基底为碳布,所述添加剂为聚乙烯吡咯烷酮(优选分子量为40000)。
更优选的,本发明的方法所述金属源为四水合硝酸镉,所述有机配体为咪唑,所述基底为碳布,所述添加剂为聚丙烯腈(优选分子量为150000)。
更优选的,本发明的方法所述金属源为六水合硝酸钴,所述有机配体为咪唑,所述基底为碳布,所述添加剂为聚乙烯吡咯烷酮(优选分子量为40000)。
本发明的方法能够更加简便、快捷、批量化得到纯度很高的金属有机骨架膜,因此本发明能够使制备金属有机骨架膜具有成本低廉、操作简单、生产快速、产品批量化及纯度高等优势。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是实施例1得到的金属有机骨架膜的X射线粉末衍射图。
图2是实施例1得到的金属有机骨架膜的扫描电镜图。
图3是实施例2得到的金属有机骨架膜的X射线粉末衍射图。
图4是实施例2得到的金属有机骨架膜的扫描电镜图。
图5是实施例3得到的金属有机骨架膜的X射线粉末衍射图。
图6是实施例3得到的金属有机骨架膜的扫描电镜图。
图7是实施例4得到的金属有机骨架膜的X射线粉末衍射图。
图8是实施例4得到的金属有机骨架膜的扫描电镜图。
图9是实施例5得到的金属有机骨架膜的X射线粉末衍射图。
图10是实施例5得到的金属有机骨架膜的扫描电镜图。
图11是对比例1得到的金属有机骨架膜的X射线粉末衍射图。
图12是对比例1得到的金属有机骨架膜的扫描电镜图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供了一种制备金属有机骨架膜的方法,该方法包括:将金属源与有机配体接触并通过热压法于基底上形成金属有机骨架膜。所述金属源形成所述金属有机骨架膜中的金属;所述有机配体形成所述金属有机骨架膜中的有机连接基团;所述基底提供所述金属有机骨架膜的支撑层。本发明的方法制备得到的金属有机骨架膜具有多孔网络结构。
所述金属源可以为金属盐和/或金属氧化物。其中,所述金属源中的金属离子包括Mg2+、Ca2+、Sr2+、Ba2+、Sc3+、Y3+、Ti4+、Zr4+、Hf4+、V4+、V3+、V2+、Nb3+、Ta3+、Cr3+、Mo3+、W3+、Mn3+、Mn2+、Re3+、Re2+、Fe3+、Fe2+、Ru3+、Ru2+、Os3+、Os2+、Co3+、Co2+、Rh2+、Rh+、Ir2+、Ir+、Ni2+、Ni+、Pd2+、Pd+、Pt2+、Pt+、Cu2+、Cu+、Ag+、Au+、Zn2+、Cd2+、Hg2+、Al3+、Ga3+、In3+、Tl3+、Si4+、Si2+、Ge4+、Ge2+、Sn4+、Sn2+、Pb4+、Pb2+、As5+、As3+、As+、Sb5+、Sb3+、Sb+、Bi5+、Bi3+和Bi+中的至少一种。其中,特别优选地,所述金属源中的金属离子为Zn2+、Co2+和/或Cd2+
本发明的方法中,所述有机配体是指分子结构中含有一个及以上配位官能团的有机配体。其中,所述有机配体中的配位官能团可以为各种能够与金属离子形成配位键的官能团,包括-CO2H、-CS2H、-NO2、 -OH、-NH2、-CN、-SO3H、-SH、
Figure PCTCN2016091783-appb-000006
Figure PCTCN2016091783-appb-000007
-PO4H2、-CH(RSH)2、-C(RSH)3、-CH(RNH2)2、-C(RNH2)3、-CH(ROH)2、-C(ROH)3、-CH(RCN)2、-C(RCN)3、-CH(NH2)2、-C(NH2)3、-CH(CN)2和-C(CN)3中的至少一种,其中,配位官能团中的R各自独立地为包含1至5个苯环的烃基。所述有机配体中的优选的配位官能团为-CO2H、
Figure PCTCN2016091783-appb-000008
和/或
Figure PCTCN2016091783-appb-000009
以下对含有上述配位官能团的有机配体进行举例。例如,对苯二甲酸、均苯三甲酸、2-硝基对苯二甲酸、2-羟基对苯二甲酸、2,5-二羟基对苯二甲酸、2-氨基对苯二甲酸、2-磺酸基对苯二甲酸单钠、5-氨基间苯二甲酸、5-硝基间苯二甲酸、4-羟基间苯二甲酸、5-磺酸基间苯二甲酸单钠盐、苯甲酸、4,4’-联苯二甲酸、2,2’-二硝基-4,4’-联苯二甲酸、2,2’-二氨基-4,4’-联苯二甲酸、2,2’-二羟基-4,4’-联苯二甲酸、3,3’,5,5’-联苯四甲酸、二巯丁二酸、1,4,5,8-萘四甲酸、2,6-萘二甲酸、萘-1,4-二甲酸、O-磷酸基-DL-苏氨酸、O-磷酸基-L-酪氨酸、3-磷酸基-D-甘油酸钡盐、3-巯基丙酸、3-氨基-5-巯基-1,2,4-三氮唑、2,3-二巯基丁二酸、5-甲氧基-2-巯基苯并咪唑、1-甲基-5-巯基四氮唑、咪唑、苯并咪唑、2-巯基苯并咪唑、N,N-羰基二咪唑、1-甲基咪唑、2-乙基-4-甲基咪唑、2,4-二甲基咪唑、2-甲基咪唑、4-甲基咪唑、2-硝基咪唑、2-氰基咪唑、1,2-二甲基咪唑、咪唑-4,5-二羧酸、4-氨基-5-咪唑甲酰胺、2-羟甲基-1H-苯并咪唑、2-甲基苯并咪唑、5,6-二甲基苯并咪唑、4,5-二氰基咪唑、苯 并咪唑-5-甲酸、1H-咪唑-4-甲酸、2-异丙基咪唑、1-苄基-2-甲基咪唑、4-硝基咪唑、5-氨基四氮唑一水合物、四氮唑乙酸、1,2,4-三氮唑、三氮唑-3-羧酸、4-氨基-4H-1,2,4-三氮唑、3-硝基-1,2,4-三氮唑。
其中,优选的有机配体为2-甲基咪唑、苯并咪唑、咪唑和/或2-氨基对苯二甲酸。
本发明中,相对于1mol的所述有机配体,所述金属源的用量可以为0.001-5mol,优选为0.05-4mol,更优选为0.1-3mol。
所述热压法,即使用具有热压能力的工具或设备,在一定热压温度、热压压强下,保持一定热压时间的操作。其中,热压工具或设备可采用常规的热压工具,例如电热棒、电热板、电热滚中的至少一种;热压温度可以为80℃-300℃,优选为100℃-280℃,更优选为120℃-250℃;热压压强为0.005-6MPa,优选为0.01-4MPa,更优选为0.02-2MPa;热压时间可以为3-120分钟,优选为5-90分钟,更优选为10-60分钟。
本发明的方法中,所述金属有机骨架膜在基底上形成多孔网络结构,基底为热压形成所述金属有机骨架膜提供支撑。所述基底包括碳布、无纺布、阳极氧化铝、泡沫镍、铜箔、玻璃纤维布、玻璃纤维丝、石英基片、玻璃基片、硅基片中的至少一种。优选的基底包括碳布、泡沫镍或铜箔中的至少一种。
本发明的方法中,所述金属源与所述有机配体接触在添加剂中进行。相对于1mol的所述有机配体,所述添加剂的用量为0.001-0.05mol。所述添加剂包括聚丙烯酸、聚丙烯腈、聚丁烯、聚丙烯酸丁酯、聚乙烯、聚氧化乙烯、聚丙烯酸酯、聚乙二醇、聚异丁烯、聚氧化异丁烯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚丙烯、聚苯乙烯、聚乙烯醇、聚氯乙烯、聚乙烯吡咯烷酮中的至少一种。优选的,所述添加剂聚乙烯醇(优选分子量16000)、聚乙二醇(优选分子量4000)、聚乙烯吡咯烷酮(优选分子量40000)和/或聚丙烯腈(优选分子量 150000)。其中,特别优选地,所述有机配体为2-甲基咪唑、苯并咪唑、咪唑和/或2-氨基对苯二甲酸;所述金属源为无水醋酸锌、六水合硝酸锌、六水合硝酸钴和/或四水合硝酸镉;所述基底为碳布、泡沫镍和/或铜箔。
其中,优选地,所述有机配体为2-甲基咪唑,所述金属源为无水醋酸锌;所述添加剂为聚乙二醇(优选分子量为4000),所述基底为铜箔。
其中,优选的,所述有机配体为2-氨基对苯二甲酸,所述金属源为六水合硝酸锌;所述添加剂为聚乙烯醇(优选分子量为16000),所述基底为泡沫镍。
其中,优选的,所述有机配体为苯并咪唑,所述金属源为六水合硝酸钴;所述添加剂为聚乙烯吡咯烷酮(优选分子量为40000),所述基底为碳布。
其中,优选的,所述有机配体为咪唑,所述金属源为四水合硝酸镉;所述添加剂为聚丙烯腈(优选分子量为150000),所述基底为碳布。
其中,优选的,所述有机配体为咪唑,所述金属源为六水合硝酸钴;所述添加剂为聚乙烯吡咯烷酮(优选分子量为40000),所述基底为碳布。
以下通过实施例进一步详细说明本发明。
实施例1
将金属源(无水醋酸锌)与有机配体(2-甲基咪唑)和添加剂(聚乙二醇,分子量4000)混合均匀。其中,相对于1mol的有机配体,金属源的用量为0.1mol,聚乙二醇的用量为0.005mol。均匀涂抹到基底铜箔(4cm*4cm)上,热压。热压温度为220℃,热压压强为0.2MPa,热压时间为25min。于基底铜箔上得到金属有机骨架材料,制得所述金属有机骨架膜。
用乙醇和二甲基甲酰胺反复冲洗上述材料,烘干得到纯化的金属有机骨架膜。膜上金属有机骨架材料负载量为10.37克/平方米。为对所述金属有机骨架膜进行X射线粉末衍射和扫描电镜分析,其中,X射线粉末衍射型号:Bruker D8 Advance,测试区间4-400,扫描速度40每分钟;扫描电镜型号S4800,扫描参数:加速电压5kv,工作距离9.3mm,放大倍数45万倍,长度标尺1um。结果显示,成功地在基底铜箔上热压得到金属有机骨架材料,制得金属有机骨架膜。该金属有机骨架膜的X射线粉末衍射如图1所示,热压后得到的金属有机骨架材料X射线粉末衍射曲线(红色)与单晶模拟曲线(黑色)吻合,说明成功得到了金属有机骨架材料;扫描电镜如图2所示,热压后在基底铜箔上生长有金属有机骨架材料,成功得到金属有机骨架膜。
实施例2
将金属源(六水合硝酸锌)与有机配体(2-氨基对苯二甲酸)和添加剂(聚乙烯醇,分子量16000)混合均匀。其中,相对于1mol的有机配体,金属源的用量为1mol,聚乙烯醇的用量为0.001mol。均匀涂抹到基底泡沫镍上(4cm*4cm),热压。热压温度为85℃,热压压强为0.2MPa,热压时间为120min。于基底泡沫镍上得到金属有机骨架材料,制得所述金属有机骨架膜。
用乙醇和二甲基甲酰胺反复冲洗上述材料,烘干得到纯化的金属有机骨架膜。膜上金属有机骨架材料的负载量为6.03克/平方米。对所述金属有机骨架膜进行X射线粉末衍射和扫描电镜分析,其中,X射线粉末衍射型号:Bruker D8 Advance,测试区间4-400,扫描速度40每分钟;扫描电镜型号S4800,扫描参数:加速电压5kv,工作距离9.3mm,放大倍数45万倍,长度标尺1um。结果显示,成功地在基底泡沫镍上热压得到金属有机骨架材料,制得金属有机骨架膜。该金属有机骨架膜的X射线粉末衍射如图3所示,热压后得到的金属 有机骨架材料X射线粉末衍射曲线(红色)与单晶模拟曲线(黑色)吻合,说明成功得到了金属有机骨架材料;扫描电镜如图4所示,热压后在基底泡沫镍上生长有金属有机骨架材料,成功得到金属有机骨架膜。
实施例3
将金属源(六水合硝酸钴)与有机配体(苯并咪唑)和添加剂(聚乙烯吡咯烷酮,分子量40000)混合均匀。其中,相对于1mol的有机配体,金属源的用量为0.01mol,聚乙烯吡咯烷酮的用量为0.002mol。均匀涂抹到基底碳布上(4cm*4cm),热压。热压温度为120℃,热压压强为0.2MPa,热压时间为70min。于基底碳布上得到金属有机骨架材料,制得所述金属有机骨架膜。
用乙醇和二甲基甲酰胺反复冲洗上述材料,烘干得到纯化的金属有机骨架膜。膜上的金属有机骨架材料的负载量为8.06克/平方米。对所述金属有机骨架膜进行X射线粉末衍射和扫描电镜分析,其中,X射线粉末衍射型号:Bruker D8 Advance,测试区间4-400,扫描速度40每分钟;扫描电镜型号S4800,扫描参数:加速电压5kv,工作距离9.3mm,放大倍数45万倍,长度标尺2um。结果显示,成功地在基底碳布上热压得到金属有机骨架材料,制得金属有机骨架膜。该金属有机骨架膜的X射线粉末衍射如图5所示,热压后得到的金属有机骨架材料X射线粉末衍射曲线(红色)与单晶模拟曲线(黑色)吻合,说明成功得到了金属有机骨架材料;扫描电镜如图6所示,热压后在基底碳布上生长有金属有机骨架材料,成功得到金属有机骨架膜。
实施例4
将金属源(四水合硝酸镉)与有机配体(咪唑)和添加剂(聚丙烯腈,分子量150000)混合均匀。其中,相对于1mol的有机配体,金属源的用量为0.5mol,聚丙烯腈的用量为0.02mol。均匀涂抹到基 底碳布上(4cm*4cm),热压。热压温度为300℃,热压压强为0.2MPa,热压时间为5min。于基底碳布上得到金属有机骨架材料,制得所述金属有机骨架膜。
用乙醇和二甲基甲酰胺反复冲洗上述材料,烘干得到纯化的金属有机骨架膜。膜上的金属有机骨架材料的负载量为2.27克/平方米。对所述金属有机骨架膜进行X射线粉末衍射和扫描电镜分析,其中,X射线粉末衍射型号:Bruker D8 Advance,测试区间4-400,扫描速度40每分钟;扫描电镜型号S4800,扫描参数:加速电压5kv,工作距离9.3mm,放大倍数45万倍,长度标尺1um。结果显示,成功地在基底碳布上热压得到金属有机骨架材料,制得金属有机骨架膜。该金属有机骨架膜的X射线粉末衍射如图7所示,热压后得到的金属有机骨架材料X射线粉末衍射曲线(红色)与单晶模拟曲线(黑色)吻合,说明成功得到了金属有机骨架材料;扫描电镜如图8所示,热压后在基底碳布上生长有金属有机骨架材料,成功得到金属有机骨架膜。
实施例5
将金属源(六水合硝酸钴)与有机配体(咪唑)和添加剂(聚乙烯吡咯烷酮,分子量40000)混合均匀。其中,相对于1mol的有机配体,金属源的用量为5mol,聚乙烯吡咯烷酮的用量为0.1mol。均匀涂抹到基底碳布上(4cm*4cm),热压。热压温度为180℃,热压压强为0.2MPa,热压时间为50min。于基底碳布上得到金属有机骨架材料,制得所述金属有机骨架膜。
用乙醇和二甲基甲酰胺反复冲洗上述材料,烘干得到纯化的金属有机骨架膜。膜上的金属有机骨架材料的负载量为9.89克/平方米。对所述金属有机骨架膜进行X射线粉末衍射和扫描电镜分析,其中,X射线粉末衍射型号:Bruker D8 Advance,测试区间4-400,扫描速度40每分钟;扫描电镜型号S4800,扫描参数:加速电压5kv,工作 距离9.3mm,放大倍数45万倍,长度标尺1um。结果显示,成功地在基底碳布上热压得到金属有机骨架材料,制得金属有机骨架膜。该金属有机骨架膜的X射线粉末衍射如图9所示,热压后得到的金属有机骨架材料X射线粉末衍射曲线(红色)与单晶模拟曲线(黑色)吻合,说明成功得到了金属有机骨架材料;扫描电镜如图10所示,热压后在基底碳布上生长有金属有机骨架材料,成功得到金属有机骨架膜。
实施例6
将金属源(无水醋酸锌)与有机配体(2-甲基咪唑)和添加剂(聚乙二醇,分子量4000)混合均匀。其中,相对于1mol的有机配体,金属源的用量为0.1mol,聚乙二醇的用量为0.005mol。均匀涂抹到基底铜箔(4cm*4cm)上,热压。热压温度为220℃,热压压强为0.01MPa,热压时间为25min。于基底铜箔上得到金属有机骨架材料,制得所述金属有机骨架膜。
用乙醇和二甲基甲酰胺反复冲洗上述材料,烘干得到纯化的金属有机骨架膜。对所述金属有机骨架膜进行X射线粉末衍射和扫描电镜分析,与实施例1结果相同。膜上的金属有机骨架材料的负载量为7.98克/平方米。
实施例7
将金属源(无水醋酸锌)与有机配体(2-甲基咪唑)和添加剂(聚乙二醇,分子量4000)混合均匀。其中,相对于1mol的有机配体,金属源的用量为0.1mol,聚乙二醇的用量为0.005mol。均匀涂抹到基底铜箔(4cm*4cm)上,热压。热压温度为220℃,热压压强为5MPa,热压时间为25min。于基底铜箔上得到金属有机骨架材料,制得所述金属有机骨架膜。
用乙醇和二甲基甲酰胺反复冲洗上述材料,烘干得到纯化的金属有机骨架膜。对所述金属有机骨架膜进行X射线粉末衍射和扫描电 镜分析,与实施例1结果相同。膜上的金属有机骨架材料的负载量为6.11克/平方米。
实施例8
将金属源(无水醋酸锌)与有机配体(2-甲基咪唑)和添加剂(聚乙二醇,分子量4000)混合均匀。其中,相对于1mol的有机配体,金属源的用量为0.1mol,聚乙二醇的用量为0.005mol。均匀涂抹到基底铜箔(40cm*40cm)上,热压。热压温度为220℃,热压压强为0.2MPa,热压时间为25min。于基底铜箔上得到金属有机骨架材料,制得所述金属有机骨架膜。
用乙醇和二甲基甲酰胺反复冲洗上述材料,烘干得到纯化的金属有机骨架膜。对所述金属有机骨架膜进行X射线粉末衍射和扫描电镜分析,与实施例1结果相同。膜上的金属有机骨架材料的负载量为10.11克/平方米。
实施例9
将金属源(无水醋酸锌)与有机配体(2-甲基咪唑)和添加剂(聚乙二醇,分子量4000)混合均匀。其中,相对于1mol的有机配体,金属源的用量为0.1mol,聚乙二醇的用量为0.005mol。均匀涂抹到基底铜箔(100cm*100cm)上,热压。热压温度为220℃,热压压强为0.01MPa,热压时间为25min。于基底铜箔上得到金属有机骨架材料,制得所述金属有机骨架膜。
用乙醇和二甲基甲酰胺反复冲洗上述材料,烘干得到纯化的金属有机骨架膜。对所述金属有机骨架膜进行X射线粉末衍射和扫描电镜分析,与实施例1结果相同。膜上的金属有机骨架材料的负载量为8.02克/平方米。
对比例1
使用超声化学法在氧化铝基底上生长金属有机骨架膜。
将1.65mmol的有机配体(2-氨基对苯二甲酸)加入40mL二甲 基甲酰胺溶剂中,制得溶液。将氧化铝基底放入该溶液中,120℃处理2h。之后,取出氧化铝基底,常温条件下干燥,得到处理好的氧化铝基底。
将5mmol的金属源(六水合硝酸锌)、1.65mmol的有机配体(2-氨基对苯二甲酸)和40mL二甲基甲酰胺溶剂,在玻璃反应器中混合均匀,加入上述处理好的氧化铝基底。400W、20KHz条件下,超声1h,得到金属有机骨架膜。
用二甲基甲酰胺溶剂反复三次冲洗上述材料,烘干后得到纯化的金属有机骨架膜。
图11为所得金属有机骨架膜的X射线粉末衍射图,其中编号1为单晶模拟曲线、编号2为所得金属有机骨架膜的X射线粉末衍射曲线;图12为所得金属有机骨架膜的扫描电镜图。
通过实施例1、实施例2、实施例3、实施例4、实施例5、实施例6、实施例7、实施例8、实施例9和对比例1的数据可见,热压后得到的金属有机骨架材料X射线粉末衍射曲线(红色)与单晶模拟曲线(黑色)吻合,说明成功得到所述金属有机骨架材料,X射线粉末衍射曲线中,没有出现杂峰,说明产物纯度很高、没有杂质产生;在热压后的扫描电镜图中,可以清楚的看到基底上生长了形貌干净单一的金属有机骨架材料,说明成功得到纯度很高的金属有机骨架膜。而且,本发明的热压法原料简单易得、操作非常简便、制备时间短,可以实现高纯度金属有机骨架膜的批量化生产。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为 了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
工业实用性
本发明的方法能够更便捷、快速的得到大量纯度很高的金属有机骨架膜,实现产业化生产与应用,具有成本低廉、操作简单、生产快速、产品批量化及纯度高等优势。

Claims (17)

  1. 一种制备金属有机骨架膜的方法,该方法包括:将金属源与有机配体接触并通过热压法于基底上形成金属有机骨架膜。
  2. 根据权利要求1所述的方法,所述金属源中的金属离子包括Mg2+、Ca2+、Sr2+、Ba2+、Sc3+、Y3+、Ti4+、Zr4+、Hf4+、V4+、V3+、V2+、Nb3+、Ta3+、Cr3+、Mo3+、W3+、Mn3+、Mn2+、Re3+、Re2+、Fe3+、Fe2+、Ru3+、Ru2+、Os3+、Os2+、Co3+、Co2+、Rh2+、Rh+、Ir2+、Ir+、Ni2+、Ni+、Pd2+、Pd+、Pt2+、Pt+、Cu2+、Cu+、Ag+、Au+、Zn2+、Cd2+、Hg2+、Al3+、Ga3+、In3+、Tl3+、Si4+、Si2+、Ge4+、Ge2+、Sn4+、Sn2+、Pb4+、Pb2+、As5+、As3+、As+、Sb5+、Sb3+、Sb+、Bi5+、Bi3+和Bi+中的至少一种。
  3. 根据权利要求2所述的方法,所述金属源中的金属离子包含Zn2+、Co2+或Cd2+中的至少一种。
  4. 根据权利要求1所述的方法,所述有机配体中的配位官能团包括-CO2H、-CS2H、-NO2、-OH、-NH2、-CN、-SO3H、-SH、
    Figure PCTCN2016091783-appb-100001
    Figure PCTCN2016091783-appb-100002
    Figure PCTCN2016091783-appb-100003
    -PO4H2、-AsO3H、-AsO4H、-CH(RSH)2、-C(RSH)3、-CH(RNH2)2、-C(RNH2)3、-CH(ROH)2、-C(ROH)3、-CH(RCN)2、-C(RCN)3、-CH(NH2)2、-C(NH2)3、-CH(CN)2和-C(CN)3中的至少一种,其中,配位官能团中的R各自独立地代表包含1至5个苯环的烃基。
  5. 根据权利要求4所述的方法,所述有机配体的配位官能团包 括-CO2H、
    Figure PCTCN2016091783-appb-100004
    中的至少一种。
  6. 根据权利要求1、2或4中任一权利要求所述的方法,其特征在于:相对于1mol的所述有机配体,所述金属源的用量为0.01-5mol。
  7. 根据权利要求1所述的方法,其特征在于:所述热压法的热压温度为80-300℃、热压压强为0.005-6MPa、热压时间为3-120分钟、热压面积可调。
  8. 根据权利要求1所述的方法,所述基底包括阳极氧化铝、无纺布、碳布、泡沫镍、铜箔、玻璃纤维布、玻璃纤维丝、石英基片、玻璃基片、硅基片中的至少一种。
  9. 根据权利要求8所述的方法,所述基底包括碳布、泡沫镍或铜箔中的至少一种。
  10. 根据权利要求1所述的方法,其特征在于,所述金属源与所述有机配体接触在添加剂中进行,所述添加剂包括聚丙烯酸、聚丙烯腈、聚丁烯、聚丙烯酸丁酯、聚乙烯、聚氧化乙烯、聚丙烯酸酯、聚乙二醇、聚异丁烯、聚氧化异丁烯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚丙烯、聚苯乙烯、聚乙烯醇、聚氯乙烯、聚乙烯吡咯烷酮中的至少一种。
  11. 根据权利要求10所述的方法,所述添加剂为聚乙烯醇、聚乙二醇、聚乙烯吡咯烷酮和/或聚丙烯腈。
  12. 根据权利要求10所述的方法,其特征在于,相对于1mol的所述有机配体,所述添加剂的用量为0.001-0.05mol。
  13. 根据权利要求10所述的方法,其特征在于,所述金属源为无水醋酸锌,所述有机配体为2-甲基咪唑,所述基底为铜箔。
  14. 根据权利要求10所述的方法,其特征在于,所述金属源为六水合硝酸锌,所述有机配体为2-氨基对苯二甲酸,所述基底为泡沫镍。
  15. 根据权利要求10所述的方法,其特征在于,所述金属源为六水合硝酸钴,所述有机配体为苯并咪唑,所述基底为碳布。
  16. 根据权利要求10所述的方法,其特征在于,所述金属源为四水合硝酸镉,所述有机配体为咪唑,所述基底为碳布。
  17. 根据权利要求10所述的方法,其特征在于,所述金属源为六水合硝酸钴,所述有机配体为咪唑,所述基底为碳布。
PCT/CN2016/091783 2015-09-29 2016-07-26 金属有机骨架膜及其制备方法 WO2017054565A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/764,109 US11395991B2 (en) 2015-09-29 2016-07-26 Metal-organic framework filter and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510630401.X 2015-09-29
CN201510630401.XA CN105348198B (zh) 2015-09-29 2015-09-29 金属有机骨架膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2017054565A1 true WO2017054565A1 (zh) 2017-04-06

Family

ID=55324284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091783 WO2017054565A1 (zh) 2015-09-29 2016-07-26 金属有机骨架膜及其制备方法

Country Status (3)

Country Link
US (1) US11395991B2 (zh)
CN (1) CN105348198B (zh)
WO (1) WO2017054565A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348198B (zh) 2015-09-29 2018-10-26 中能科泰(北京)科技有限公司 金属有机骨架膜及其制备方法
CN106380614A (zh) * 2016-09-05 2017-02-08 复旦大学 功能化的金属有机骨架协同改性的聚合物杂化质子交换膜及其制备方法
CN106957439B (zh) * 2017-03-30 2020-01-03 中南大学 基于含钴双金属氧化物无溶剂制备Co-MOF材料的方法
CN106984190B (zh) * 2017-05-04 2020-07-10 中能科泰(北京)科技有限公司 一种催化降解挥发性有机物的方法
CN107875863A (zh) * 2017-10-31 2018-04-06 华南理工大学 一种无溶剂自转化制备金属有机骨架膜的方法
CN107890752B (zh) * 2017-10-31 2020-05-22 郑州大学 高度定向金属有机骨架分子筛膜及其制备方法和应用
CN107880277B (zh) * 2017-12-05 2021-08-31 池州学院 一种二维锌配位聚合物及其制备方法
CN108043459B (zh) * 2017-12-21 2021-05-11 上海应用技术大学 一种铜金属有机骨架膜在催化降解有机染料中的应用
CN108051970B (zh) * 2017-12-21 2020-06-19 东华大学 一种MOFs基多彩电致变色智能显示器件的制备方法
CN108107091B (zh) * 2017-12-29 2019-09-27 济南大学 一种手性mof膜材料的制备方法和应用
US20210230191A1 (en) * 2018-06-06 2021-07-29 Trustees Of Dartmouth College Formation of metal-organic frameworks
CN111151145B (zh) * 2018-11-08 2022-04-05 中国石油化工股份有限公司 超疏水分离膜及其制备方法和应用
CN111266087B (zh) * 2018-12-05 2021-06-22 浙江工商大学 一种水中微量敌草快的去除方法
CN109499545A (zh) * 2019-01-09 2019-03-22 长春工业大学 用于水相有机染料吸附的zif-8/碳纤维复合材料的制备方法
CN111436455A (zh) * 2019-01-16 2020-07-24 中能科泰(北京)科技有限公司 金属有机骨架材料的抗真菌用途
CN109731551A (zh) * 2019-02-23 2019-05-10 华南理工大学 一种金属有机框架膜在富氦天然气中提取氦气的应用
CN114585432A (zh) * 2019-09-30 2022-06-03 新加坡国立大学 用于分离混合物的多晶金属-有机骨架膜
CN111250170B (zh) * 2020-02-21 2021-08-24 广东工业大学 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用
CN111905828B (zh) * 2020-08-24 2022-04-19 万华化学集团股份有限公司 一种萘基配体mof活性炭复合催化剂及其制备方法和用途
CN112604517B (zh) * 2020-11-26 2021-12-14 连云港鹏辰特种新材料有限公司 一种无机-有机复合凝胶膜的制备及其在烃类混合物分离中的应用
CN112851960B (zh) * 2021-01-20 2022-12-23 江苏理工学院 超疏水金属有机框架材料及其制备方法和应用
CN112851964B (zh) * 2021-02-07 2022-06-14 河南农业大学 用于降低烟碱含量的纳米金属-有机框架材料及其应用
CN113005568B (zh) * 2021-02-24 2022-02-15 北京科技大学 一种PVP辅助ZIF生长制备多孔Co/C纳米纤维的方法
CN113054207B (zh) * 2021-03-02 2022-06-03 北京科技大学 金属盐辅助快速生长金属有机骨架衍生物的制备方法
CN113278132A (zh) * 2021-05-24 2021-08-20 浙江理工大学 一种环氧树脂固化剂及其制备方法
CN113174143B (zh) * 2021-06-10 2022-05-10 鲁东大学 一种金属有机框架/多层碳复合吸波材料及其制备方法
CN113751074B (zh) * 2021-09-02 2023-04-25 北京建筑大学 固载型催化剂及其制备方法和应用
CN114106352B (zh) * 2021-11-25 2023-05-12 浙江理工大学 一种钴基金属-氢键-有机框架材料及其制备方法和应用
CN114452946A (zh) * 2022-02-18 2022-05-10 中国石油大学(华东) 简单原位快速制备高价过渡金属基金属有机框架器件的方法
CN115926182B (zh) * 2022-12-06 2023-10-31 北京信息科技大学 一种新型编织状Ni-MOF吸波材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693168A (zh) * 2009-10-14 2010-04-14 大连理工大学 一种金属有机骨架膜的制备方法
WO2012138750A2 (en) * 2011-04-04 2012-10-11 Massachusetts Institute Of Technology Methods for electrochemically induced cathodic deposition of crystalline metal-organic frameworks
CN103820850A (zh) * 2014-02-27 2014-05-28 河南理工大学 一种金属有机骨架mof-2多晶膜的制备方法
CN105348198A (zh) * 2015-09-29 2016-02-24 中能科泰(北京)科技有限公司 金属有机骨架膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640904A (en) * 1985-06-21 1987-02-03 General Electric Company Mullite by reactive hot pressing
EP1411210A1 (en) * 2002-10-15 2004-04-21 ALSTOM Technology Ltd Method of depositing an oxidation and fatigue resistant MCrAIY-coating
DE60231084D1 (de) * 2002-12-06 2009-03-19 Alstom Technology Ltd Verfahren zur selektiven Abscheidung einer MCrAlY-Beschichtung
US8192850B2 (en) * 2008-08-20 2012-06-05 Siemens Energy, Inc. Combustion turbine component having bond coating and associated methods
CN102886244A (zh) * 2012-05-18 2013-01-23 天津工业大学 一种脱硫用金属有机骨架杂化膜及其制造方法
US20140033780A1 (en) * 2012-08-03 2014-02-06 Liquidmetal Coatings Llc Metal-containing coating and method of using and making same
NL2010031C2 (en) * 2012-12-20 2014-06-23 Univ Delft Tech A thin-film device.
US20140287514A1 (en) * 2013-03-19 2014-09-25 Board Of Regents, The University Of Texas System Luminescent microporous material for detection and discrimination of low-levels of common gases and vapors
CN104107643B (zh) * 2013-04-19 2017-07-21 珠海市吉林大学无机合成与制备化学重点实验室 金属有机骨架膜的制备方法及其用途
CN104370820B (zh) * 2013-08-13 2017-05-24 中国科学院大连化学物理研究所 一种多孔金属有机骨架材料的制备方法及应用
CN103599752A (zh) * 2013-11-20 2014-02-26 天津工业大学 一种包覆有mil-101吸附剂的无纺布石油吸附袋的制备方法
CN104478907A (zh) * 2014-11-17 2015-04-01 上海交通大学 一种金属有机骨架材料的制备方法
US9929435B2 (en) * 2015-02-27 2018-03-27 GM Global Technology Operations LLC Electrolyte structure for metal batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693168A (zh) * 2009-10-14 2010-04-14 大连理工大学 一种金属有机骨架膜的制备方法
WO2012138750A2 (en) * 2011-04-04 2012-10-11 Massachusetts Institute Of Technology Methods for electrochemically induced cathodic deposition of crystalline metal-organic frameworks
CN103820850A (zh) * 2014-02-27 2014-05-28 河南理工大学 一种金属有机骨架mof-2多晶膜的制备方法
CN105348198A (zh) * 2015-09-29 2016-02-24 中能科泰(北京)科技有限公司 金属有机骨架膜及其制备方法

Also Published As

Publication number Publication date
US11395991B2 (en) 2022-07-26
CN105348198A (zh) 2016-02-24
US20180257041A1 (en) 2018-09-13
CN105348198B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2017054565A1 (zh) 金属有机骨架膜及其制备方法
US8197786B2 (en) Porous carbon material and method of manufacturing the same
Lemaire et al. Copper benzenetricarboxylate metal–organic framework nucleation mechanisms on metal oxide powders and thin films formed by atomic layer deposition
EP3988205A1 (en) Structured metal-organic framework fiber adsorbent for capturing carbon dioxide and manufacturing method therefor
EP2948236A2 (en) A process for the preparation of mofs-porous polymeric membrane composites
KR101906043B1 (ko) 마이크로파를 이용한 탄소-금속유기골격구조(MOFs) 복합체 제조 방법
CN113046774B (zh) 一种定向多孔单原子碳膜电极及其制备方法和应用
JP2011530480A (ja) 規則性メソ多孔質の独立炭素フィルムおよび形状因子
CN111282405A (zh) 一种改性金属有机骨架纳米片及其制备方法
CN105457677B (zh) 一种基于聚合物电解质载体的有序贵金属催化剂层及其制备方法
US20180174767A1 (en) Nanofibers electrode and supercapacitors
CN112029104B (zh) 一种蒸气辅助外延生长法制备金属有机骨架膜及其应用
US11555137B1 (en) Method of forming phase change material
CN109731481B (zh) 复合膜材料、其制备方法以及过滤膜
US10179327B2 (en) Mesoporous ternary composite material and corresponding method of preparation
WO2012039305A1 (ja) カーボンナノチューブ製造方法
CN113593934A (zh) 一种用于超级电容器电极材料的mof薄膜的制备方法
CN112237850B (zh) 一种膜及其制备方法和用途
JP2013173623A (ja) 金属担持炭素材料およびその製造方法
KR101836803B1 (ko) 다공성 금속-유기 구조체 박막 및 이의 제조방법
CN112742410A (zh) 一种复合载体无机膜催化剂及其制备方法和应用
CN115463562A (zh) 一种快速合成无缺陷金属-有机骨架mof膜材料的制备方法
CN110862549A (zh) 一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法
CN102502580A (zh) 一种碳纳米管阵列及其制备方法与在制备超级电容器中的应用
KR101484850B1 (ko) 2차원 판상 구조 탄소 소재와 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15764109

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850189

Country of ref document: EP

Kind code of ref document: A1