CN110862549A - 一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法 - Google Patents

一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法 Download PDF

Info

Publication number
CN110862549A
CN110862549A CN201911142411.3A CN201911142411A CN110862549A CN 110862549 A CN110862549 A CN 110862549A CN 201911142411 A CN201911142411 A CN 201911142411A CN 110862549 A CN110862549 A CN 110862549A
Authority
CN
China
Prior art keywords
fumaric acid
organic framework
bipyridine
crystal material
dimensional metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911142411.3A
Other languages
English (en)
Inventor
李崧
王宣军
秦向东
彭梦琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Agricultural University
Original Assignee
Yunnan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Agricultural University filed Critical Yunnan Agricultural University
Publication of CN110862549A publication Critical patent/CN110862549A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pyridine Compounds (AREA)

Abstract

本发明属于金属‑有机骨架晶体材料技术领域,具体涉及一种基于延胡索酸及4,4'‑联吡啶的三维金属‑有机骨架晶体材料及其制备方法。是将延胡索酸、4,4’‑联吡啶、硝酸锌、水与乙醇、甲醇或丙酮置于具聚四氟乙烯内衬的高压反应釜中,用NaOH调节pH为9,超声混匀,保持120℃反应三天,自然冷却到室温。经过过滤、洗涤后得到无色块状晶体。本发明是一种新型具有规则孔道结构的三维金属‑有机骨架晶体材料,具有较高的比表面积、孔容和良好的热稳定性,可以有效提高甲烷的吸附和存储量。该材料在药物合成、气体存储、捕集、分离,药物输送,光、电、磁,选择性催化,分子识别以及手性拆分等诸多领域都具有应用价值。

Description

一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体 材料及其制备方法
技术领域
本发明属于金属-有机骨架晶体材料技术领域,具体的说,涉及一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法。
背景技术
金属-有机骨架晶体材料属于超分子化合物的一种,是晶体工程理论与超分子化学相结合的产物。它具有无机和有机的两部分优点,变化有机配体的可以使此类分子筛结构实现多样化的结构和可调控的孔道,从而做到定向设计。关于种新型分子功能材料的研究横跨了晶体工程学、材料化学、拓扑学、无机化学、有机化学、超分子化学、配位化学、物理化学、等多个领域。此材料具有类沸石分子筛般孔道规则的晶态结构,还具备比传统多孔材料更高的比表面积,另外包含有机成分使其结构得到了可剪裁性、可设计性、可调节孔道尺寸和功能化孔道表面等特点,在主–客体化学,药物合成、气体存储、捕集、分离,药物输送,光、电、磁学科,选择性催化,分子识别以及手性拆分等诸多领域都表现出色。近年来,金属-有机骨架晶体材料已成为新功能化材料研究的热点之一。最近,一些金属-有机骨架晶体材料已经成功实现商业化。
延胡索酸,又名富马酸、紫堇酸或地衣酸可作为酸度调节剂、酸化剂、抗氧化助剂、腌制促进剂、香料使用,并对抑菌防霉有重要作用。医学将其用于治疗严重银屑病,还可用于还可以帮助防止多发性硬化症等。
4,4’-联吡啶是常用的医药及有机合成中间体,且可用于测定铁含量及液晶材料。而金属锌具有良好的光电磁性能以及促进人体的生长发育及增强免疫力等能力。
有鉴于此,本案发明人特提出了基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法,既保留了各配体本身的化学及药理性质,又形成了具有规则孔道结构的三维金属-有机骨架晶体材料结构在药物合成、气体存储、捕集、分离,药物输送,光、电、磁,选择性催化,分子识别以及手性拆分等诸多领域都具有应用价值。
发明内容
为了克服背景技术中存在的问题,本发明提供了一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法,既保留了各配体本身的化学及药理性质,又形成了具有规则孔道结构的三维金属-有机骨架晶体材料结构在药物合成、气体存储、捕集、分离,药物输送,光、电、磁,选择性催化,分子识别以及手性拆分等诸多领域都具有应用价值。
为实现上述目的,本发明是通过如下技术方案实现的:
所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料以延胡索酸为配体A、4,4’-联吡啶为配体B与金属锌配位组成该金属-有机骨架晶体材料基本结构单元;在此金属-有机骨架晶体材料基本结构单元结构当中包含两个二价锌离子、四个延胡索酸配体和两个4,4’-联吡啶配体;其中,两个锌离子均采取六配位的形式,与每个锌离子分别配位的四个氧原子和一个氮原子分别来自由四个延胡索酸配体提供的四个单齿配位的羧基氧原子、一个4,4’-联吡啶配体提供的杂环氮原子,还有一个配位键由两个锌离子直接配位形成;两个4,4’-联吡啶配体相互垂直沿ab平面与锌离子配位并伸展,四个延胡索酸配体与锌离子配位并向四个方向延伸,最终形成了延c轴方向具有规则孔道结构的三维金属-有机骨架材料晶体结构,其化学分子式为:C18H13N2O8.50Zn2,属于单斜晶体(monoclinic,),空间群为:C 1 2/m 1(12),晶胞参数为:
Figure BDA0002281310600000031
α=90°,β=105.938(3)°,γ=90°,
Figure BDA0002281310600000032
Z=4。该金属-有机骨架晶体材料的是一种孔结构高度有序、孔径为0.38nm-3.6nm的三维规则孔道体系微孔类分子筛,Langmuir比表面积为1025m 2/g,总孔容0.389cm 3/g。从而表现出优异的分子扩散与吸附性能,吸附容量大,并且变温、变压条件下甲烷的吸附和存储量高。
进一步的,所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料由延胡索酸配体及4,4’-联吡啶配体与金属锌离子按2:2:1的摩尔比组合而成。其三维网络结构Langmuir比表面积为1025m2/g,总孔容0.389cm3/g。
所述的一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料制备方法,其特征在于包括如下步骤:
(1)将摩尔比0.5:0.5:1~4:4:1的延胡索酸配体、4,4’-联吡啶配体和硝酸锌以及有机溶剂,一并加入到高压反应釜中;
(2)将高压反应釜置于超声器上,室温超声混匀1-4小时;
(3)搅拌停止后,将高压反应釜置于40~120℃烘箱中放置10~40小时后取出,降到室温后有块状无色晶体析出,即为基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料
进一步的,步骤(1)所述的有机溶剂选自甲醇、乙醇、异丙醇、乙酸乙酯、丙酮、乙腈中的一种或几种。
进一步的,步骤(1)反应温度为40~120℃。
进一步的,步骤(2)的超声混匀为2小时;
进一步的,所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在药物合成、气体存储、捕集、分离中的应用。
进一步的,所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在药物输送中的应用.
进一步的,所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在光、电、磁领域中的应用.
进一步的,所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在选择性催化、分子识别、手性拆分领域中的应用。
本发明的有益效果:
本发明制备的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料既保留了各配体本身的化学及药理性质,又形成了具有规则孔道结构的三维金属-有机骨架晶体材料结构在药物合成、气体存储、捕集、分离,药物输送,光、电、磁,选择性催化,分子识别以及手性拆分等诸多领域都具有应用价值。
附图说明
图1:本发明金属-有机骨架晶体材料结构单元示意图;
图2:本发明金属-有机骨架晶体材料显微镜结构图;
图3:本发明金属-有机骨架晶体材料的空间三维网络图;
图4:本发明金属-有机骨架晶体材料模拟得到XRD谱图;
图5:本发明金属-有机骨架晶体材料的TG图;
图6:在77K、0~1atm条件下本发明金属-有机骨架晶体材料的氮气吸附等温线;
图7:在298K、323K;0~10bar条件下本发明金属-有机骨架晶体材料的金属有机框架材料的甲烷存储能力等温线。
具体实施方式
为了使本发明的目的、技术方案和有益效果更加清楚,下面将对本发明的优选实施例进行详细的说明,以方便技术人员理解。
本发明选用延胡索酸为配体A,4,4’-联吡啶为配体B与金属锌配位并在水与乙醇、甲醇或丙酮等溶剂中制备得到的一种新型具有规则孔道结构的三维金属-有机骨架晶体材料。
延胡索酸与4,4’-联吡啶是有机羧酸是临床药物及药物合成前体,分子式分别为:C4H4O4;C10H8N2,其结构式如式a,b所示。
Figure BDA0002281310600000051
所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料以延胡索酸为配体A、4,4’-联吡啶为配体B与金属锌配位组成该金属-有机骨架晶体材料基本结构单元;在此金属-有机骨架晶体材料基本结构单元结构当中包含两个二价锌离子、四个延胡索酸配体和两个4,4’-联吡啶配体;其中,两个锌离子均采取六配位的形式,与每个锌离子分别配位的四个氧原子和一个氮原子分别来自由四个延胡索酸配体提供的四个单齿配位的羧基氧原子、一个4,4’-联吡啶配体提供的杂环氮原子,还有一个配位键由两个锌离子直接配位形成;两个4,4’-联吡啶配体相互垂直沿ab平面与锌离子配位并伸展,四个延胡索酸配体与锌离子配位并向四个方向延伸,最终形成了延c轴方向具有规则孔道结构的三维金属-有机骨架材料晶体结构,其化学分子式为:C18H13N2O8.50Zn2,属于单斜晶体(monoclinic,),空间群为:C 1 2/m 1(12),晶胞参数为:
Figure BDA0002281310600000052
Figure BDA0002281310600000053
α=90°,β=105.938(3)°,γ=90°,
Figure BDA0002281310600000054
Z=4。所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料由延胡索酸配体及4,4’-联吡啶配体与金属锌离子按2:2:1的摩尔比组合而成。其晶体结构表征如下:
晶体结构测定采用Bruker Apex II CCD衍射仪,于296(2)K下,用经石墨单色化的MoKα射线
Figure BDA0002281310600000055
以ω扫描方式收集衍射点,收集的数据通过SAINT程序还原并用SADABS方法进行半经验吸收校正。结构解析和精修分别采用SHELXTL程序的SHELXS和SHELXL完成,通过全矩阵最小二乘方法对F 2进行修正得到全部非氢原子的坐标及各向异性参数。所有氢原子在结构精修过程中被理论固定在母原子上,赋予比母原子位移参数稍大(C–H,1.2或O/N–H,1.5倍)的各向同性位移参数。详细的晶体测定数据见表1,结构单元示意图如图1,
基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料显微镜结构图如图2,基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料的空间三维网络图如图3,基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料的模拟粉末衍射图如图4。
表1共晶体主要晶体学数据
Figure BDA0002281310600000061
基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料的热稳定性、低温氮气吸附及甲烷气体吸附表征:
在0℃到600℃范围内氮气环境下对基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料进行的热重分析。图5是TG测试图,从图中可以看出,基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料可以稳定到380℃;在50-260℃范围内发生第一次失重,失重比例为31.99%,可归属于客体分子与端基配位分子的失去。而在260℃-380℃范围内发生骨架坍塌而失重34.22%,最终分解产物剩余33.69%。
将基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在100℃下真空活化3个小时,并在77K的温度下对活化好的样品进行低温氮气吸附,结果如图6所示。并测得基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料的BET面积754.4m2/g,相应的朗格缪尔面积为1025m2/g,总孔容0.389cm3/g。
图7是基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在298K和323K对甲烷的吸附曲线。从图7中可以看出甲烷的吸附量随着压强的增加而增加。当压强增加到10bar时,该材料在298K下吸附了2.02mmol/g的甲烷。当温度升高到323K时,甲烷吸附量为1.57mmol/g。
制备方法实施例1:一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料的制备方法:
0.2mmol延胡索酸、0.2mmol 4,4’-联吡啶和0.1mmol硝酸锌加入3ml水和3ml乙醇组成的混合溶剂并置于具聚四氟乙烯内衬的高压反应釜中,室温超声混匀2小时;超声停止后,将高压反应釜置于80℃烘箱中放置20小时后取出,降到室温后有块状无色晶体析出,摩尔收率87%。
制备方法实施例2:基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料的制备方法:
0.2mmol延胡索酸、0.2mmol 4,4’-联吡啶和0.1mmol硝酸锌加入3ml水和3ml甲醇组成的混合溶剂并置于具聚四氟乙烯内衬的高压反应釜中,室温超声混匀2小时;超声停止后,将高压反应釜置于80℃烘箱中放置20小时后取出,降到室温后有块状无色晶体析出,摩尔收率85%。
制备方法实施例3:基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料的制备方法:
0.2mmol延胡索酸、0.2mmol 4,4’-联吡啶和0.1mmol硝酸锌加入3ml水和3ml丙酮组成的混合溶剂并置于具聚四氟乙烯内衬的高压反应釜中,室温超声混匀2小时;超声停止后,将高压反应釜置于80℃烘箱中放置20小时后取出,降到室温后有块状无色晶体析出,摩尔收率84%。
最后说明的是,以上优选实施例仅用于说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (9)

1.一种基于延胡索酸及4,4'-联吡啶的三维金属-有机骨架晶体材料,其特征在于:所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料以延胡索酸为配体A、4,4’-联吡啶为配体B与金属锌配位组成该金属-有机骨架晶体材料基本结构单元;在此金属-有机骨架晶体材料基本结构单元结构当中包含两个二价锌离子、四个延胡索酸配体和两个4,4’-联吡啶配体;其中,两个锌离子均采取六配位的形式,与每个锌离子分别配位的四个氧原子和一个氮原子分别来自由四个延胡索酸配体提供的四个单齿配位的羧基氧原子、一个4,4’-联吡啶配体提供的杂环氮原子,还有一个配位键由两个锌离子直接配位形成;两个4,4’-联吡啶配体相互垂直沿ab平面与锌离子配位并伸展,四个延胡索酸配体与锌离子配位并向四个方向延伸,最终形成了延c轴方向具有规则孔道结构的三维金属-有机骨架材料晶体结构,其化学分子式为:C18H13N2O8.50Zn2,属于单斜晶体(monoclinic,),空间群为: C 12/m 1 (12) ,晶胞参数为:a=13.4229(11) Å,b= 11.4760(9) Å,c=14.1021(12) Å,α=90°,β= 105.938 (3)°,γ= 90°, V = 2088.8 Å3, Z =4。
2.根据权利要求1所述的一种基于延胡索酸及4,4'-联吡啶的三维金属-有机骨架晶体材料,其特征在于:所述的基于延胡索酸及4,4'-联吡啶的三维金属-有机骨架晶体材料由延胡索酸配体及4,4’-联吡啶配体与金属锌离子按2:2:1的摩尔比组合而成,其三维网络结构Langmuir比表面积为 1025 m2/g,总孔容0.389 cm3/g。
3.根据权利要求1所述的一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料制备方法,其特征在于包括如下步骤:
(1)将摩尔比 0.5:0.5:1~4:4:1的延胡索酸配体、4,4’-联吡啶配体和硝酸锌以及有机溶剂,一并加入到高压反应釜中;
(2)将高压反应釜置于超声器上,室温超声混匀1-4小时;
(3) 搅拌停止后,将高压反应釜置于40~120℃烘箱中放置10~40小时后取出,降到室温后有块状无色晶体析出,即为基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料。
4.根据权利要求3所述的一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料制备方法,其特征在于:步骤(1)所述的有机溶剂选自甲醇、乙醇、异丙醇、乙酸乙酯、丙酮、乙腈中的一种或几种。
5.根据权利要求3所述的一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料制备方法,其特征在于:步骤(1)反应温度为40~120℃。
6.根据权利要求1所述的一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料,其特征在于:所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在药物合成、气体存储、捕集、分离中的应用。
7.根据权利要求1所述的一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料,其特征在于:所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在药物输送中的应用。
8.根据权利要求1所述的一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料,其特征在于:所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在光、电、磁领域中的应用。
9.根据权利要求1所述的一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料,其特征在于:所述的基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料在选择性催化、分子识别、手性拆分领域中的应用。
CN201911142411.3A 2019-04-04 2019-11-20 一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法 Pending CN110862549A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019102690521 2019-04-04
CN201910269052 2019-04-04

Publications (1)

Publication Number Publication Date
CN110862549A true CN110862549A (zh) 2020-03-06

Family

ID=69655833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911142411.3A Pending CN110862549A (zh) 2019-04-04 2019-11-20 一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110862549A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128341A (zh) * 2019-05-13 2019-08-16 西安交通大学 一种手性2,2’-联吡啶配体及其制备方法和在制备手性环丙烷衍生物中的应用
CN112058237A (zh) * 2020-09-02 2020-12-11 蚌埠学院 一种手性金属有机骨架材料的制备方法及其在盐酸四环素缓释中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024888A1 (ja) * 2011-08-17 2013-02-21 株式会社クラレ 分離材及び該分離材を用いた分離方法
CN102962037A (zh) * 2012-11-01 2013-03-13 中国科学院大连化学物理研究所 用于甲烷吸附分离的一类金属-有机框架材料及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024888A1 (ja) * 2011-08-17 2013-02-21 株式会社クラレ 分離材及び該分離材を用いた分離方法
CN102962037A (zh) * 2012-11-01 2013-03-13 中国科学院大连化学物理研究所 用于甲烷吸附分离的一类金属-有机框架材料及制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN,BANGLIN: "Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules", 《INORGANIC CHEMISTRY》 *
ER-BO YING: "Syntheses and crystal structures of [Mn(H2O)4(bpy)]L•4H2O, [Mn(H2O)4(bpy)]L′•4H2O and [Zn(H2O)4(bpy)]L•4H2O (H2L = succinic acid, H2L′= fumaric acid)", 《JOURNAL OF COORDINATION CHEMISTRY》 *
KEISUKE KISHIDA: "Structual optimization of interpenetrated pillared layer coordination polymers for ethylene/ethane separation", 《CHEMISTRY-AN ASIAN JOURNAL》 *
MA,BQ: "Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions", 《INORGANIC CHEMISTRY》 *
TAO, J: "Blue photoluminescent zinc coordination polymers with supertetranuclear cores", 《CHEMICAL COMMUNICATIONS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128341A (zh) * 2019-05-13 2019-08-16 西安交通大学 一种手性2,2’-联吡啶配体及其制备方法和在制备手性环丙烷衍生物中的应用
CN110128341B (zh) * 2019-05-13 2020-08-18 西安交通大学 一种手性2,2’-联吡啶配体及其制备方法和在制备手性环丙烷衍生物中的应用
CN112058237A (zh) * 2020-09-02 2020-12-11 蚌埠学院 一种手性金属有机骨架材料的制备方法及其在盐酸四环素缓释中的应用

Similar Documents

Publication Publication Date Title
Sun et al. Recent progress in the synthesis of metal–organic frameworks
CN105985362B (zh) 一种制备沸石咪唑酯骨架结构材料的方法
CN109092365B (zh) 一种具有三维插层结构的多酸基晶体材料及其制备方法
Luo et al. pH-Dependent cobalt (ii) frameworks with mixed 3, 3′, 5, 5′-tetra (1 H-imidazol-1-yl)-1, 1′-biphenyl and 1, 3, 5-benzenetricarboxylate ligands: synthesis, structure and sorption property
CN108440766B (zh) 一种钴金属有机骨架材料及其制备方法和应用
CN104230968B (zh) 一种具有混合配体的含镉双核聚合物及其制备方法
JP2022549955A (ja) 金属有機骨格ガラス膜およびその製造方法
CN108947813B (zh) 一步溶剂热法制备二维mof材料的工艺
CN110862549A (zh) 一种基于延胡索酸及4,4’-联吡啶的三维金属-有机骨架晶体材料及其制备方法
Asghar et al. Ultrasonication treatment enhances MOF surface area and gas uptake capacity
CN108440439A (zh) 一种基于T型配体的Zr的金属有机骨架材料和制备方法及其应用
CN103626788A (zh) 一种具有吸脱附碘的杂化材料及其合成方法
CN112592486B (zh) 一种具有二维超分子结构的Cd(II)配位聚合物及其制备方法
CN105884805B (zh) 一种Cd(Ⅱ)混配配位聚合物及其制备方法
CN110862404A (zh) 一种基于环己烷六羧酸和联吡啶的金属有机骨架晶体材料及其制备方法
CN110590858A (zh) 一种含钴的具有低温相变的配位化合物及其制备方法
CN104292247B (zh) 一种具有混合配体的含镉二维聚合物及其制备方法
Carlucci et al. Nanoporous three-dimensional networks topologically related to Cooperite from the self-assembly of copper (I) centres and the “square-planar” building block 1, 2, 4, 5-tetracyanobenzene
CN109851559B (zh) 一种基于两头吡唑配体的镍的金属有机骨架材料和制备方法及其应用
Haitao et al. The study on single crystal structure of [Zn (Hpdc) 2 (H2O) 2]· 2H2O (Hpdc−= 2, 5-pyridinedicarboxylic acid group)
Rekik et al. New transition metal sulfates templated by 1, 4-butanediamine,(C4H14N2)[MII (H2O) 6](SO4) 2· 4H2O (MII: Co, Ni): Structure, reactivity and thermal decomposition
CN109836326B (zh) 一种基于苯并菲羧酸配体的Cu的金属-有机骨架材料和制备方法及其应用
KR102044806B1 (ko) 신규한 화합물 및 이의 용도
CN108440769B (zh) 一种氢键连接的多孔铜配位聚合物及其制备方法
CN114854037B (zh) 一种具有半导体性质的钴(ii)配合物及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200306

RJ01 Rejection of invention patent application after publication