WO2017054399A1 - 一种移位寄存器, 其驱动方法, 栅极驱动电路及显示装置 - Google Patents

一种移位寄存器, 其驱动方法, 栅极驱动电路及显示装置 Download PDF

Info

Publication number
WO2017054399A1
WO2017054399A1 PCT/CN2016/074136 CN2016074136W WO2017054399A1 WO 2017054399 A1 WO2017054399 A1 WO 2017054399A1 CN 2016074136 W CN2016074136 W CN 2016074136W WO 2017054399 A1 WO2017054399 A1 WO 2017054399A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching transistor
node
signal
potential
shift register
Prior art date
Application number
PCT/CN2016/074136
Other languages
English (en)
French (fr)
Inventor
商广良
郑皓亮
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/512,284 priority Critical patent/US10186221B2/en
Publication of WO2017054399A1 publication Critical patent/WO2017054399A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/18Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
    • G11C19/182Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
    • G11C19/184Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • G11C19/287Organisation of a multiplicity of shift registers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/04Arrangements for selecting an address in a digital store using a sequential addressing device, e.g. shift register, counter
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a shift register, a driving method thereof, a gate driving circuit, and a display device.
  • liquid crystal displays have been widely used in electronic display products such as televisions, computers, mobile phones and personal digital assistants.
  • the liquid crystal display includes a data driver (Source Driver), a gate driver (Gate Driver), a liquid crystal display panel, and the like.
  • the liquid crystal display panel has a pixel array, and the gate driving device is configured to sequentially open corresponding pixel rows in the pixel array to transmit the pixel data output by the data driver to the pixels, thereby displaying the image to be displayed.
  • the gate driving device is generally formed on the array substrate of the liquid crystal display by an array process, that is, a Gate Driver on Array (GOA) process, which not only saves cost, but also can realize a liquid crystal panel ( Panel) symmetrical aesthetic design on both sides, at the same time, the bonding area of the integrated circuit of IC (Integrated Circuit) and the wiring space of Fan-out are eliminated, so that the design of the narrow bezel can be realized. Moreover, this integrated process also eliminates the Bonding process in the direction of the gate scan line, thereby increasing throughput and yield.
  • a Gate Driver on Array GAA
  • Existing gate drive devices typically consist of a plurality of cascaded shift registers.
  • the output signal of the drive signal output end of each shift register is generally controlled by the pull-up node and the clock signal, but in the existing shift register, the pull-up node and the drive signal are at the rising edge of the clock signal. Noise is generated at the output, which may cause output errors.
  • Embodiments of the present disclosure provide a shift register, a driving method thereof, a gate driving circuit, and a display device for reducing or even eliminating at least some of the problems in the prior art described above.
  • a shift register may include: an input module, a first reset module, a second reset module, a first output module, a second output module, and a pull-down driver module;
  • the first end of the input module is connected to the input signal end, and the second end is connected to the first node; the input module is configured to control the potential of the first node under the control of the input signal end;
  • the first end of the first reset module is connected to the reference signal end, the second end is connected to the first reset control signal end, and the third end is connected to the first node; the first reset module is used in the a reference signal of the reference signal end is provided to the first node under control of a first reset control signal end;
  • the first end of the second reset module is connected to the second reset control signal end, the second end is connected to the reference signal end, the third end is connected to the drive signal output end, and the second reset module is used in the Providing the reference signal to the drive signal output terminal under the control of the second reset control signal terminal;
  • the first output module is connected to the first clock signal end, the second end is connected to the first node, and the third end is connected to the driving signal output end; the first output module is used to Controlling, by the first node, the first clock signal of the first clock signal end to the driving signal output end;
  • a first end of the second output module is connected to the reference signal end, a second end is connected to the second node, and a third end is connected to the driving signal output end; the second output module is used to be in the The reference signal is provided to the drive signal output terminal under the control of the second node;
  • the first end of the pull-down driving module is connected to the node control signal end, the second end is connected to the reference signal end, the third end is connected to the first node, and the fourth end is connected to the second node;
  • the pull-down driving module is configured to control a potential of the second node to be a second potential when the potential of the first node is a first potential, and to control the potential of the second node when the potential of the second node is a first potential
  • the potential of the first node is the second potential;
  • the first potential is a high potential
  • the second potential is a low potential
  • the first potential is a low potential
  • the second potential is a high potential
  • the node control signal of the node control signal end is for canceling noise on the first node caused by the change of the first clock signal.
  • the node control signal when the effective pulse signal of the input signal terminal is a high potential signal, the node control signal may be at least when the first clock signal is a rising edge. Is a high potential signal.
  • the node control signal when the effective pulse signal of the input signal terminal is a low potential signal, the node control signal may be at least when the first clock signal is a falling edge. Is a low potential signal.
  • the node control signal may be a second clock signal.
  • the node control signal may be a direct current signal.
  • the duty ratio of the second clock signal may be 2% to 50%.
  • the input module may include: a first switching transistor; wherein
  • the gate and the source of the first switching transistor are both connected to the input signal end, and the drain is connected to the first node.
  • the first reset module may include: a second switching transistor; wherein
  • the gate of the second switching transistor is connected to the first reset control signal end, the source is connected to the first node, and the drain is connected to the reference signal end.
  • the first output module may include: a third switching transistor and a capacitor; wherein
  • a gate of the third switching transistor is connected to the first node, a source is connected to the first clock signal end, and a drain is connected to the driving signal output end;
  • the capacitor is connected between a gate and a drain of the third switching transistor.
  • the second output module may include: a fourth switching transistor; wherein
  • the gate of the fourth switching transistor is connected to the second node, the source is connected to the output end of the driving signal, and the drain is connected to the reference signal end.
  • the second reset module may include: a fifth switching transistor;
  • the gate of the fifth switching transistor is connected to the second reset control signal end, the source is connected to the output of the driving signal, and the drain is connected to the reference signal end.
  • the pull-down driving module may include: a sixth switching transistor, a seventh switching crystal a tube, an eighth switching transistor, a ninth switching transistor, and a tenth switching transistor;
  • the gate and the source of the sixth switching transistor are both connected to the node control signal end, and the drain is respectively connected to the gate of the seventh switching transistor and the source of the ninth switching transistor;
  • a source of the seventh switching transistor is connected to the node control signal end, and a drain is connected to the second node;
  • a gate of the eighth switching transistor is connected to the second node, a source is connected to the first node, and a drain is connected to the reference signal end;
  • a gate of the ninth switching transistor is connected to the first node, and a drain is connected to the reference signal end;
  • the gate of the tenth switching transistor is connected to the first node, the source is connected to the second node, and the drain is connected to the reference signal end.
  • the pull-down driving module may further include: a fifth end connected to the input signal end, and a sixth end connected to the output end of the driving signal And a seventh end connected to the third clock signal end.
  • the pull-down driving module may include: a sixth switching transistor, a seventh switching transistor, an eighth switching transistor, and an eleventh switching transistor a twelfth switching transistor, a thirteenth switching transistor, a fourteenth switching transistor, and a fifteenth switching transistor;
  • the gate and the source of the sixth switching transistor are both connected to the node control signal end, and the drain is respectively connected to the gate of the seventh switching transistor, the source of the eleventh switching transistor, and the first The sources of the twelve switching transistors are connected;
  • a source of the seventh switching transistor is connected to the node control signal end, and a drain is connected to the second node;
  • a gate of the eighth switching transistor is connected to the second node, a source is connected to the first node, and a drain is connected to the reference signal end;
  • a gate of the eleventh switching transistor is connected to the output end of the driving signal, and a drain is connected to the reference signal end;
  • a gate of the twelfth switching transistor is connected to the input signal end, and a drain is connected to the reference signal end;
  • a gate of the thirteenth switching transistor is connected to the input signal end, a source is connected to the second node, and a drain is connected to the reference signal end;
  • a gate of the fourteenth switching transistor is connected to the output end of the driving signal, a source is connected to the second node, and a drain is connected to the reference signal end;
  • the gate of the fifteenth switching transistor is connected to the third clock signal end, the source of the driving signal output end is connected, and the drain is connected to the reference signal end.
  • the first reset control signal end and the second reset control signal end may be the same signal end.
  • the signal of the first reset control signal end may be greater than 0 and less than 1 pulse width than the signal of the second reset control signal end.
  • the embodiment of the present disclosure provides a driving method of any one of the above shift registers, which may include: an input phase, an output phase, a reset phase, and a reset hold phase;
  • the pull-down driver module eliminates noise on the first node caused by the change of the first clock signal under the control of the node control signal terminal.
  • the node control signal when the effective pulse signal of the input signal terminal is a high potential signal, the node control signal may be at least when the first clock signal is a rising edge. High potential signal.
  • the node control signal when the effective pulse signal of the input signal end is a low potential signal, the node control signal may be at least when the first clock signal is a falling edge. Low potential signal.
  • an embodiment of the present disclosure provides a gate driving circuit, including any one of the above-mentioned shift registers provided by the plurality of embodiments of the present disclosure
  • the driving signal output ends of each of the shift registers of each stage are respectively connected to the first reset control signal end and the second reset control signal end of the adjacent upper stage shift register;
  • the input signal terminal of the first stage shift register is connected to the frame start signal end.
  • each of the other stages of the shift register may further include: a frame initialization module;
  • An input end of the frame initialization module is connected to the frame start signal end, and an output end is connected to the second node;
  • the frame initialization module is configured to initialize a driving signal output end of the shift register under the control of the frame start signal end.
  • the frame initialization module may include: a sixteenth switching transistor, where
  • the gate and the source of the sixteenth switching transistor are both connected to the frame start signal end, and the drain is connected to the second node.
  • an embodiment of the present disclosure provides a gate driving circuit, including any one of the above-mentioned shift registers provided by the plurality of embodiments of the present disclosure; wherein, in addition to the first stage shift register and the second stage shift In addition to the bit register, the driving signal output ends of the remaining shift registers of each stage are respectively connected to the second reset control signal end of the adjacent upper two shift registers;
  • the second reset control signal terminals of each of the other stage shift registers are respectively connected to the first reset control signal end of the adjacent upper stage shift register;
  • the input signal terminals of the first stage shift register and the second stage shift register are connected to the frame start signal end.
  • each of the other stages of the shift register may further include: a frame initialization module;
  • the input end of the frame initialization module is connected to the frame start signal end; the output end is connected to the second node;
  • the frame initialization module is configured to initialize a driving signal output end of the shift register under the control of the frame start signal end.
  • the frame initialization module may include: a sixteenth switching transistor, where
  • the gate and the source of the sixteenth switching transistor are both connected to the frame start signal end, and the drain is connected to the second node.
  • an embodiment of the present disclosure further provides a display device including any of the above-described gate driving circuits provided by the embodiments of the present disclosure.
  • the embodiment of the present disclosure provides the above shift register, a driving method thereof, a gate driving circuit, and a display device, wherein the shift register includes: an input module, a first reset module, a second reset module, a pull-down drive module, a first output module, and a second output module.
  • the input module is configured to control the potential of the first node under the control of the input signal end;
  • the first reset module is configured to provide the reference signal of the reference signal end to the first node under the control of the first reset control signal end;
  • the reset module is configured to provide a reference signal to the driving signal output end under the control of the second reset control signal end;
  • the first output module is configured to provide the first clock signal of the first clock signal end to the first node under the control of the first node a driving signal output end;
  • the second output module is configured to provide a reference signal to the driving signal output end under the control of the second node;
  • the pull-down driving module is configured to control the second node when the potential of the first node is the first potential
  • the potential is the second potential, and when the potential of the second node is the first potential, the potential of the first node is controlled to be the second potential, and the potential of the node control signal is the first potential, and the potential of the first node is the first potential At the two potentials,
  • FIG. 1 is a schematic structural diagram of a shift register according to an embodiment of the present disclosure
  • FIG. 1b is a schematic structural diagram of a shift register according to another embodiment of the present disclosure.
  • 2a is a schematic structural diagram of a shift register according to an embodiment of the present disclosure
  • 2b is a schematic structural diagram of a shift register according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a shift register according to still another embodiment of the present disclosure.
  • FIG. 3b is a schematic structural diagram of a shift register according to still another embodiment of the present disclosure.
  • 4a is a circuit timing diagram of a shift register corresponding to the first embodiment of the present disclosure
  • 4b is a circuit timing diagram of a shift register corresponding to the second embodiment of the present disclosure.
  • 4c is a circuit timing diagram of a shift register corresponding to the third embodiment of the present disclosure.
  • 4d is a circuit timing diagram of a shift register corresponding to a fourth embodiment of the present disclosure.
  • 5a is a circuit timing diagram of a shift register corresponding to a fifth embodiment of the present disclosure.
  • FIG. 5b is a circuit timing diagram of a shift register corresponding to a sixth embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a gate driving circuit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a shift register including a frame initialization module according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a shift register including a frame initialization module according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a gate driving circuit according to an embodiment of the present disclosure.
  • a shift register provided by an embodiment of the present disclosure includes: an input module 1, a first reset module 2, a second reset module 3, a pull-down drive module 4, a first output module 5, and a second output. Module 6; wherein
  • the first end of the input module 1 is connected to the input signal terminal Input, and the second end is connected to the first node A; the input module 1 is configured to control the potential of the first node A under the control of the input signal terminal Input;
  • the first end of the first reset module 2 is connected to the reference signal terminal Vref, the second end is connected to the first reset control signal terminal Rst1, the third end is connected to the first node A, and the first reset module 2 is used for the first reset.
  • Control signal terminal Rst1 the reference signal of the reference signal terminal Vref is provided to the first node A;
  • the first end of the second reset module 3 is connected to the second reset control signal terminal Rst2, the second end is connected to the reference signal terminal Vref, the third end is connected to the driving signal output terminal Output, and the second reset module 3 is used in the second Under the control of the reset control signal terminal Rst2, the reference signal is supplied to the drive signal output terminal Output;
  • the first end of the first output module 5 is connected to the first clock signal terminal CK1, the second end is connected to the first node A, the third end is connected to the driving signal output terminal Output, and the first output module 5 is used at the first node.
  • the first clock signal of the first clock signal terminal CK1 is supplied to the drive signal output terminal Output;
  • the first end of the second output module 6 is connected to the reference signal terminal Vref, the control terminal is connected to the second node B, the output terminal is connected to the driving signal output terminal Output, and the second output module 6 is used under the control of the second node B. , providing a reference signal to the drive signal output terminal Output;
  • the first end of the pull-down driver module 4 is connected to the node control signal terminal VHD, the second end is connected to the reference signal terminal Vref terminal, the third terminal is connected to the first node A, and the fourth terminal is connected to the second node B; the pull-down driver module 4, when the potential of the first node A is the first potential, the potential of the second node B is controlled to be the second potential, and when the potential of the second node B is the first potential, the potential of the first node A is controlled to be the first Two potential
  • the first potential is a high potential
  • the second potential is a low potential
  • the first potential is a low potential
  • the second potential is high; the node control signal of the node control signal terminal VHD is used to cancel the noise on the first node caused by the change of the first clock signal.
  • the above shift register includes: an input module, a first reset module, a second reset module, a pull-down drive module, a first output module, and a second output module.
  • the input module is configured to control the potential of the first node under the control of the input signal end;
  • the first reset module is configured to provide the reference signal of the reference signal end to the first node under the control of the first reset control signal end, to implement a reset of the first node;
  • the second reset module is configured to provide a reference signal to the output of the drive signal under the control of the second reset control signal end to implement resetting of the output of the drive signal;
  • the first output module is used at the first node Controlling, providing a first clock signal of the first clock signal end to the driving signal output end;
  • the second output module is configured to provide the reference signal to the driving signal output end under the control of the second node;
  • the pull-down driving module is used for When the potential of the first node is the first potential, the potential of the second node is controlled to
  • the node control signal is a high potential signal at least when the first clock signal is a rising edge. Therefore, when the first clock signal is at the rising edge and the potential of the first node is low, the potential of the second node is controlled to be high, so that the second output module provides the reference signal under the control of the second node. Giving the drive signal output, thereby eliminating the loss of the first node and the drive signal when the rising edge of the first clock signal The noise generated by the coupling at the out end.
  • the node control signal when the effective pulse signal of the input signal terminal is a low potential signal, the node control signal is a low potential signal at least when the first clock signal is a falling edge. Therefore, when the first clock signal is a falling edge and the potential of the first node is high, the potential of the second node is controlled to be a low potential, so that the second output module provides the reference signal under the control of the second node.
  • the drive signal output is coupled to eliminate noise generated by coupling at the first node and the drive signal output when the falling edge of the first clock signal.
  • the node control signal may be an AC signal or a DC signal, which is not limited herein.
  • the node control signal is an alternating current signal
  • the alternating current signal is a second clock signal, which can reduce the biasing effect of the pull-down driving circuit, thereby extending the pull-down driving module. life.
  • the node control signal when the node control signal is the second clock signal, the node control signal is a high potential signal in each period (when the input signal end The time when the effective pulse signal is a high potential signal) or the low potential signal (when the effective pulse signal at the input signal end is a low potential signal) is controlled to be 0.5 us or more.
  • the duty ratio of the second clock signal is controlled between 2% and 50%. This can further reduce the bias of the pull-down driver module, thereby extending the life of the pull-down driver module.
  • the period width of the first clock signal is an integer multiple of the period width of the second clock signal, thereby ensuring cancellation of the change by the first clock signal. Caused by noise on the first node.
  • the reference signal of the reference signal end when the effective pulse signal of the input signal terminal is a high potential signal, the reference signal of the reference signal end is a low potential; when the effective pulse signal of the input signal end is a low potential When the signal is used, the reference signal at the reference signal terminal is high.
  • the first reset control signal end and the second reset control signal end are the same signal end, that is, the first reset control end of the first reset control end and the second The second reset control signal of the reset control terminal is the same signal.
  • the signal of the first reset control signal end is delayed by more than 0 and less than 1 pulse width than the signal of the second reset control signal end.
  • the input module 1 specifically includes: a first switching transistor T1;
  • the gate and the source of the first switching transistor T1 are both connected to the input signal terminal Input, and the drain is connected to the first node A.
  • the first transistor T1 may be an N-type transistor, or, as shown in FIG. 2b and FIG. 3b, the first transistor T1. It can also be a P-type transistor, which is not limited herein.
  • the above is only a specific structure of the input module in the shift register.
  • the specific structure of the input module is not limited to the above structure provided by the embodiment of the present disclosure, and may be other structures known to those skilled in the art. Not limited.
  • the first reset module 2 specifically includes: a second switching transistor T2;
  • the gate of the second switching transistor T2 is connected to the first reset control signal terminal Rst1, the source is connected to the first node A, and the drain is connected to the reference signal terminal Vref.
  • the second switching transistor T2 may be an N-type transistor, or, as shown in FIG. 2b and FIG. 3b, the second switch The transistor T2 may also be a P-type transistor, which is not limited herein.
  • the above is only a specific structure of the first reset module in the shift register.
  • the specific structure of the first reset module is not limited to the above-mentioned structure provided by the embodiment of the present disclosure, and may be other known to those skilled in the art. Structure, not limited here.
  • the first output module 5 specifically includes: a third switching transistor T3 and a capacitor C1;
  • the gate of the third switching transistor T3 is connected to the first node A, the source is connected to the first clock signal terminal CK1, and the drain is connected to the driving signal output terminal Output;
  • the capacitor C1 is connected between the gate and the drain of the third switching transistor T3.
  • the capacitor C1 is for further raising or further lowering the potential of the first node A by the bootstrap action of the capacitor C1 when the first node A is in the floating state, thereby ensuring that the output of the shift register is correct.
  • the third switching transistor T3 may be an N-type transistor, or, as shown in FIG. 2b and FIG. 3b, the third switch.
  • the transistor T3 may also be a P-type transistor, which is not limited herein.
  • the above is only a specific structure of the first output module in the shift register.
  • the specific structure of the first output module is not limited to the above structure provided by the embodiment of the present disclosure, and may be other known to those skilled in the art. Structure, not limited here.
  • the second output module 6 specifically includes: a fourth switching transistor T4;
  • the gate of the fourth switching transistor T4 is connected to the second node B, the drain is connected to the reference signal terminal Vref, and the source is connected to the driving signal output terminal Output.
  • the fourth switching transistor T4 may be an N-type transistor, or, as shown in FIG. 2b and FIG. 3b, the fourth switch.
  • the transistor T4 may also be a P-type transistor, which is not limited herein.
  • the above is only a specific structure of the second output module in the shift register.
  • the specific structure of the second output module is not limited to the above structure provided by the embodiment of the present disclosure, and may be other known to those skilled in the art. Structure, not limited here.
  • the second reset module 3 specifically includes: a fifth switching transistor T5;
  • the gate of the fifth switching transistor T5 is connected to the second reset control signal terminal Rst2, the drain is connected to the reference signal terminal Vref, and the source is connected to the driving signal output terminal Output.
  • the fifth switching transistor T5 may be an N-type transistor, or, as shown in FIG. 2b and FIG. 3b, the fifth switch.
  • the transistor T5 may also be a P-type transistor, which is not limited herein.
  • the above is only a specific structure of the second reset module in the shift register.
  • the specific structure of the second reset module is not limited to the foregoing structure provided by the embodiment of the present disclosure, and may be other known to those skilled in the art. Structure, not limited here.
  • the pull-down driving module 4 specifically includes: a sixth switching transistor T6, a seventh switching transistor T7, an eighth switching transistor T8, a ninth switching transistor T9, and a tenth switching transistor T10;
  • the gate and the source of the sixth switching transistor T6 are both connected to the node control signal terminal VHD, and the drain is connected to the gate of the seventh switching transistor T7 and the source of the ninth switching transistor T9, respectively;
  • the source of the seventh switching transistor T7 is connected to the node control signal terminal VHD, and the drain is connected to the second node B;
  • the gate of the eighth switching transistor T8 is connected to the second node B, the source is connected to the first node A, and the drain is connected to the reference signal terminal Vref;
  • a gate of the ninth switching transistor T9 is connected to the first node A, and a drain is connected to the reference signal terminal Vref;
  • the gate of the tenth switching transistor T10 is connected to the first node A, the source is connected to the second node B, and the drain is connected to the reference signal terminal Vref.
  • the sixth switching transistor T6, the seventh switching transistor T7, the eighth switching transistor T8, the ninth switching transistor T9, and the tenth switching transistor are shown in FIG. 2a.
  • T10 may be an N-type transistor, or, as shown in FIG. 2b, the sixth switching transistor T6, the seventh switching transistor T7, the eighth switching transistor T8, the ninth switching transistor T9, and the tenth switching transistor T10 may also be P-type transistors. It is not limited here.
  • the pull-down driving module 4 further includes: a fifth end connected to the input signal terminal Input, and connected to the driving signal output terminal Output. a sixth end, and a seventh end connected to the third clock signal terminal CKB1.
  • the pull-down driving module 4 specifically includes: a sixth switching transistor T6, a seventh switching transistor T7, and an eighth switching transistor. T8, the eleventh switching transistor T11, the twelfth switching transistor T12, the thirteenth switching transistor T13, the fourteenth switching transistor T14, and the fifteenth switching transistor T15;
  • the gate and the source of the sixth switching transistor T6 are both connected to the node control signal terminal VHD, and the drain is respectively connected to the gate of the seventh switching transistor T7, the source of the eleventh switching transistor T11, and the twelfth switching transistor T12. Source connected
  • the source of the seventh switching transistor T7 is connected to the node control signal terminal VHD, and the drain is connected to the second node B;
  • the gate of the eighth switching transistor T8 is connected to the second node B, the source is connected to the first node A, and the drain is connected to the reference signal terminal Vref;
  • the gate of the eleventh switching transistor T11 is connected to the driving signal output terminal Output, and the drain is connected to the reference signal terminal Vref;
  • the gate of the twelfth switching transistor T12 is connected to the input signal terminal Input, and the drain is connected to the reference signal terminal Vref;
  • the gate of the thirteenth switching transistor T13 is connected to the input signal terminal Input, the source is connected to the second node B, and the drain is connected to the reference signal terminal Vref;
  • the gate of the fourteenth switching transistor T14 is connected to the output of the driving signal, the source is connected to the second node B, and the drain is connected to the reference signal terminal Vref;
  • the gate of the fifteenth switching transistor T15 is connected to the third clock signal terminal CKB1, the source is connected to the driving signal output terminal Output, and the drain is connected to the reference signal terminal Vref; wherein the third clock signal terminal CKB1 has a third clock signal and The first clock signal has the opposite phase.
  • the switching transistor T12, the thirteenth switching transistor T13, the fourteenth switching transistor T14, and the fifteenth switching transistor T15 may be N-type transistors, or, as shown in FIG. 3b, the sixth switching transistor T6, the seventh switching transistor T7, The eighth switching transistor T8, the eleventh switching transistor T11, the twelfth switching transistor T12, the thirteenth switching transistor T13, the fourteenth switching transistor T14, and the fifteenth switching transistor T15 may also be P-type transistors, and are not used herein. limited.
  • the above is only a specific structure of the pull-down driver module in the shift register.
  • the specific structure of the pull-down driver module is not limited to the above-mentioned structure provided by the embodiments of the present disclosure, and may be other structures known to those skilled in the art. There is no limit here.
  • the switching transistors are generally all made of transistors of the same material.
  • the first to fifteenth switching transistors are all P-type transistors or N-type transistors. Transistor.
  • the first to fifteenth switching transistors are N-type transistors; when the effective pulse signal of the input signal terminal is a low potential signal, the first to fifteenth switching transistors are P-type transistor.
  • the switching transistor mentioned in the above embodiments of the present disclosure may be a thin film transistor (TFT) or a metal oxide semiconductor field effect transistor (MOS, Metal Oxide Semiconductor). Make a limit.
  • TFT thin film transistor
  • MOS metal oxide semiconductor field effect transistor
  • the source and the drain of these switching transistors are interchangeable according to the type of the transistor and the input signal, and no specific distinction is made here.
  • the first embodiment to the fourth embodiment are described by taking the structure of the shift register shown in FIG. 2a as an example, and the fifth embodiment and the sixth embodiment are shown in FIG. 3a.
  • the structure of the shift register is taken as an example to describe its working process.
  • the third node C of the seventh switching transistor T7 is taken as a third node C.
  • all switching transistors are N-type transistors, and each N-type switching transistor is It is turned on under high potential and cut off under low potential; the effective pulse signal of Input signal input terminal is high potential signal, and the reference signal of reference signal terminal Vref is low potential signal.
  • the first reset control signal terminal Rst1 and the second reset control signal terminal Rst2 are the same signal end, and the node control signal of the node control signal terminal VHD is a DC signal, and the corresponding input and output timing diagram is as shown in FIG. 4a. Show. Specifically, four stages of T1, T2, T3, and T4 in the input-output timing diagram shown in FIG. 4a are selected.
  • the third switching transistor T3, the ninth switching transistor T9, and the tenth switching transistor T10 are turned on, and the reference signal is transmitted to the third node C through the ninth switching transistor T9, since the sixth switching transistor T6 and the ninth switching transistor T9
  • the setting of the aspect ratio the potential at point C is low, and therefore the seventh switching transistor T7 is turned off.
  • the reference signal is transmitted to the second node B through the tenth switching transistor T10, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor T8 are turned off; the first clock signal is transmitted through the third switching transistor T3.
  • drive signal output To the drive signal output terminal Output, drive signal output The potential of Output is low.
  • the potential at point C is low, so the seventh switching transistor T7 is kept off.
  • the reference signal is transmitted to the second node B through the tenth switching transistor T10, and the potential of the second node B remains low, so the fourth switching transistor T4 and the eighth switching transistor T8 remain off; the first clock signal passes through the third switching transistor T3 It is transmitted to the drive signal output terminal Output, and the potential of the drive signal output terminal becomes high.
  • the potential of the second node B becomes high, the second node B controls the eighth switching transistor T8 and the fourth switching transistor to become conductive, and the reference signal is transmitted to the first node A through the eighth switching transistor T8, further ensuring the first
  • the potential of the node A is low, the reference signal is transmitted to the drive signal output terminal through the fourth switching transistor T4, and the reference signal is passed through the fifth switching transistor.
  • T5 is transmitted to the drive signal output terminal Output, so that the potential of the drive signal output terminal is turned to a low potential.
  • the second switching transistor T2 and the fifth switching transistor T5 become off; since the Input remains low, the first switching crystal The body tube T1 remains off. Since the VHD remains at a high potential, the sixth switching transistor T6 remains turned on, the node control signal is transmitted to the third node C through the sixth switching transistor T6, and the potential of the third node C remains high, the seventh switch The transistor T7 is kept turned on, the potential of the second node B is kept high, the second node B controls the eighth switching transistor T8 and the fourth switching transistor T4 to be turned on, and the reference signal is transmitted to the first node A through the eighth switching transistor T8.
  • the potential of the first node A is kept low, the capacitor C1 is in a discharging state, and the third switching transistor T3, the ninth switching transistor T9, and the tenth switching transistor T10 are kept off, since the third switching transistor T3 is turned off, regardless of CK1. Whether it is high or low, there is no influence on the output of the drive signal output; the reference signal is transmitted to the output terminal of the drive signal through the fourth switching transistor T4, so that the potential of the output of the drive signal output is kept low.
  • the shift register repeats the above-described fourth stage of operation until the shift register begins to receive the input signal of the next frame.
  • the node control signal is a high potential signal
  • the node control signal controls the potential of the second node B to be high through the sixth switching transistor T6 and the seventh switching transistor T7
  • the second node B passes the
  • the eight-switching transistor T8 controls the potential of the first node to be low
  • the second node B controls the driving signal output terminal Output to output a low-potential signal through the fourth switching transistor T4, thereby effectively eliminating the first clock signal terminal CK1 Noise generated by a node A and a drive signal output.
  • the first reset control signal terminal Rst1 and the second reset control signal terminal Rst2 are the same signal end, and the node control signal of the node control signal terminal VHD is the second clock signal, and the period width of the first clock signal is The period width of the second clock signal is equal, and the corresponding input and output timing diagram is as shown in FIG. 4b. Specifically, four stages of T1, T2, T3, and T4 in the input-output timing diagram shown in FIG. 4b are selected.
  • the body tube T9 is transmitted to the third node C; when the VHD is low, the sixth switching transistor T6 is turned off, the potential of the third node C is low; when the VHD is high, the sixth switching transistor T6 is turned on, Setting the aspect ratio of the sixth switching transistor T6 and the ninth switching transistor T9, the potential of the third node C is low; therefore, regardless of whether the node control signal terminal VHD controls the sixth switching transistor T6 to be turned on, the third node C The potentials are all low, and the seventh switching transistor T7 is turned off.
  • the reference signal is transmitted to the second node B through the tenth switching transistor T10, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor T8 are turned off; the first clock signal is transmitted through the third switching transistor T3. To the drive signal output terminal Output, the potential of the drive signal output terminal Output is low.
  • the seventh switching transistor T7 is turned off.
  • the reference signal is transmitted to the second node B through the tenth switching transistor T10, the potential of the second node B is kept low, and the first clock signal is transmitted to the driving signal output terminal Output through the third switching transistor T3, and the potential of the driving signal output terminal Output It becomes high.
  • the sixth switching transistor T6 When the VHD is low, the sixth switching transistor T6 is turned off, the potential of the third node C is low, the seventh switching transistor T7 is turned off, and the potential of the second node B is kept low; The eighth switching transistor T8 and the fourth switching transistor remain off, and the reference signal is transmitted to the driving signal output terminal Output through the fifth switching transistor T5, and the potential of the driving signal output terminal becomes a low potential.
  • the sixth switching transistor T6 is turned on, the node control signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C becomes a high potential, and the seventh switching transistor T7 becomes a guide.
  • the potential of the second node B becomes high, the second node B controls the eighth switching transistor T8 and the fourth switching transistor to become conductive, and the reference signal is transmitted to the first node through the eighth switching transistor T8, further ensuring
  • the potential of a node A is low, the reference signal is transmitted to the driving signal output terminal Output through the fourth switching transistor T4, and the reference signal is transmitted to the driving signal output terminal Output through the fifth switching transistor T5, and the potential of the driving signal output terminal Output is changed. Is low.
  • the second switching transistor T2 and the fifth switching transistor T5 become off; since Input remains low, the first switching transistor T1 remains off; when VHD is high, The six-switch transistor T6 is turned on, the node control signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C is high, the seventh switching transistor T7 is turned on, and the potential of the second node B is high.
  • the second node B controls the eighth switching transistor T8 and the fourth switching transistor T4 to be turned on, and the reference signal is transmitted to the first node A through the eighth switching transistor T8, so that the potential of the first node A is low, and the capacitor C1 is discharged.
  • the third switching transistor T3, the ninth switching transistor T9, and the tenth switching transistor T10 remain off; since the third switching transistor T3 is turned off, regardless of whether the CK1 is high or low, there is no influence on the output of the driving signal output.
  • the reference signal is transmitted to the drive signal output terminal Output through the fourth switching transistor T4, so that the potential of the drive signal output terminal Output is kept low.
  • the sixth switching transistor T6 When the VHD is at a low potential, the sixth switching transistor T6 becomes off, the potential of the third node C becomes a low potential, the seventh switching transistor T7 becomes off, the potential of the second node B becomes a low potential; the eighth switch The transistor T8 and the fourth switching transistor T4 are turned off, the potential of the first node A is kept at a low potential, and the third switching transistor T3, the ninth switching transistor T9, and the tenth switching transistor T10 are kept turned off, because the third switching transistor T3 is turned off. Regardless of whether the CK1 is high or low, there is no influence on the output of the drive signal output; the output of the drive signal output is in a floating state, and the potential remains at a low potential.
  • the node control signal controls the potential of the second node B through the sixth switching transistor T6 and the seventh switching transistor T7. Is high, and the second node B controls the potential of the first node A to be low through the eighth switching transistor T8, and the second node B controls the driving signal output terminal Output to output a low potential signal through the fourth switching transistor T4, thereby The noise generated by the first clock signal change to the first node A and the drive signal output terminal Output is effectively eliminated.
  • the shift register repeats the above-described fourth stage of operation until the shift register begins to receive the input signal of the next frame.
  • the node control signal terminal VHD is a clock signal
  • the sixth switching transistor T6 only when the node control signal is high, the sixth switching transistor T6,
  • the seventh switching transistor T7, the eighth switching transistor T8, and the fourth switching transistor T4 are in an on state, thereby preventing the four switching transistors from being in a conducting state in the fourth stage, thereby prolonging the service life thereof.
  • the first reset control signal of the first reset control signal terminal Rst1 is delayed by 0.5 pulse width than the second reset control signal of the second reset control signal terminal Rst2, and the node control signal of the node control signal terminal VHD is DC signal
  • the corresponding input and output timing diagram is shown in Figure 4c. Specifically, four stages of T1, T2, T3, and T4 in the input-output timing diagram shown in FIG. 4c are selected.
  • the specific working process is the same as the T1 phase in the first embodiment, and details are not described herein.
  • the potential of the third node C is low; therefore, regardless of whether the node control signal terminal VHD controls the sixth switching transistor T6 to be turned on, the potential of the third node C is low, and the seventh switching transistor T7 is turned off.
  • the reference signal is transmitted to the second node B through the tenth switching transistor T10, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor remain T8 turned off; the first clock signal passes through the third switching transistor T3 It is transmitted to the output of the drive signal output to further ensure that the potential of the output of the drive signal output is low.
  • the first switching transistor T1 since the input remains at a low potential, the first switching transistor T1 remains turned on, and since Rst2 becomes a low potential, the fifth switching transistor T5 becomes off; since the VHD remains at a high potential, the sixth switching transistor T6 remains turned on.
  • Rst1 remains at a high potential
  • the second switching transistor T2 remains turned on, the reference signal is transmitted to the first node A through the second switching transistor T2, the potential of the first node A remains low; the capacitor C1 remains in a discharged state, and
  • the third switching transistor T3, the ninth switching transistor T9, and the tenth switching transistor T10 are kept off.
  • the third switching transistor T3 since the third switching transistor T3 is turned off, no effect is affected on the driving signal output terminal regardless of whether the CK1 is high or low;
  • the signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C is kept at a high potential, the seventh switching transistor T7 is kept turned on, and the potential of the second node B is maintained at a high potential.
  • the second node B controls the eighth switching transistor T8 and the fourth switching transistor to be turned on, and the reference signal terminal is transmitted to the first node A through the eighth switching transistor T8, further causing the potential of the first node A to be low, and the reference signal passes the first
  • the four-switching transistor T4 is transmitted to the driving signal output terminal Output so that the potential of the driving signal output terminal Output is low.
  • the second switching transistor T2 When Rst1 becomes low, the second switching transistor T2 becomes off; the node control signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C is maintained at a high potential, and the seventh switching transistor T7 remains Turning on, the potential of the second node B is kept at a high potential, the second node B controls the eighth switching transistor T8 and the fourth switching transistor T4 to be turned on, and the reference signal is transmitted to the first node A through the eighth switching transistor T8, so that The potential of the first node A remains low, the capacitor C1 remains in a discharged state, and the third switching transistor T3, the ninth switching transistor T9, and the tenth switching transistor T10 remain off; since the third switching transistor T3 is turned off, regardless of whether CK1 is high It is still low, and has no effect on the output of the drive signal output; the reference signal is transmitted to the output terminal of the drive signal through the fourth switching transistor T4, so that the potential of the output of the drive signal output is kept low.
  • the shift register repeats the above-described fourth stage of operation until the shift register begins to receive the input signal of the next frame.
  • the node control signal is a high potential signal
  • the node control signal controls the potential of the second node B to be high through the sixth switching transistor T6 and the seventh switching transistor T7
  • the second node B passes the
  • the eighth switching transistor T8 controls the potential of the first node A to be low
  • the second node B controls the driving signal output terminal Output to output a low potential signal through the fourth switching transistor T4, thereby effectively eliminating the first clock signal terminal CK1.
  • the first reset control signal of the first reset control signal terminal Rst1 is delayed by 0.5 pulse width than the second reset control signal of the second reset control signal terminal Rst2, and the node control signal of the node control signal terminal VHD is
  • the second clock signal has a period width equal to a period width of the second clock signal, and a corresponding input/output timing diagram is shown in FIG. 4d. Specifically, four stages of T1, T2, T3, and T4 in the input-output timing diagram shown in FIG. 4d are selected.
  • the specific working process is the same as the T1 phase in the second embodiment, here Do not repeat them.
  • the specific working process is the same as the T2 phase in the second embodiment, and details are not described herein.
  • the sixth switching transistor T6 is kept off, and the potential of the third node C is kept at a low potential, so that the seventh switching transistor T7 is kept off.
  • the reference signal is transmitted to the second node B through the tenth switching transistor T10, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor remain T8 turned off; the first clock signal passes through the third switching transistor T3 It is transmitted to the output of the drive signal output to further ensure that the potential of the output of the drive signal output is low.
  • the reference signal is transmitted to the first node A through the eighth switching transistor T8, so that the potential of the first node A becomes a low potential, the capacitor C1 is in a discharging state, the third switching transistor T3, the ninth switching transistor T9, and the The ten-switching transistor T10 is turned off; the reference signal is transmitted to the driving signal output terminal Output through the fourth switching transistor T4, further ensuring that the potential of the driving signal output terminal is low.
  • the first switching transistor T1 remains turned on, and since Rst2 becomes a low potential, the fifth switching transistor T5 becomes off; when Rst1 remains at a high potential, the second switching transistor T2 leads The reference signal is transmitted to the first node A through the second switching transistor T2, the potential of the first node A remains low; the capacitor C1 remains in the discharged state, and the third switching transistor T3, the ninth switching transistor T9 and the tenth switching transistor T10 remains off; since the third switching transistor T3 is turned off, no matter whether the CK1 is high or low, there is no influence on the output of the driving signal output; since the VHD is high, the sixth switching transistor T6 is turned on, and the node control signal passes through The six-switch transistor T6 is transmitted to the third node C, the potential of the third node C is high, the seventh switching transistor T7 is turned on, the potential of the second node B is high, and the second node B controls the eighth switching transistor T8.
  • the fourth switching transistor T4 is turned on, and the reference signal is transmitted to the first node through the eighth switching transistor T8, so that the potential of the first node A is kept low, the capacitance C1 remains in a discharged state, and the third switching transistor T3, the ninth switching transistor T9, and the tenth switching transistor T10 remain off. Therefore, since the third switching transistor T3 is turned off, the driving signal output terminal is output regardless of whether the CK1 is high or low. There is no effect; the reference signal is transmitted to the drive signal output terminal Output through the fourth switching transistor T4, so that the potential of the drive signal output terminal Output is low.
  • the second switching transistor T2 When Rst1 becomes a low potential, the second switching transistor T2 is turned off, the potential of the first node A becomes a low potential; when the VHD becomes a low potential, the sixth switching transistor T6 is turned off, and the potential of the third node C is low.
  • the seventh switching transistor T7 is turned off, the potential of the second node B is low; the eighth switching transistor T8 and the fourth switching transistor are turned off; the potential of the first node A is kept low, and the third switching transistor T3,
  • the nine-switching transistor T9 and the tenth switching transistor T10 are kept off.
  • the third switching transistor T3 Since the third switching transistor T3 is turned off, no matter whether the CK1 is high or low, there is no influence on the output terminal of the driving signal, and the output terminal of the driving signal is in a floating state. The potential remains low.
  • the sixth switching transistor T6 When the VHD is high, the sixth switching transistor T6 is turned on, and the node control signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C is high, and the seventh switching transistor T7 is turned on, The potential of the two nodes B is high, the second node B controls the eighth switching transistor T8 and the fourth switching transistor T4 to be turned on, and the reference signal is transmitted to the first node through the eighth switching transistor T8, so that the potential of the first node A is At a low potential, the capacitor C1 remains in a discharged state, and the third switching transistor T3, the ninth switching transistor T9, and the tenth switching transistor T10 remain off due to the third switching transistor T3 No matter whether CK1 is high or
  • the shift register repeats the above-described fourth stage of operation until the shift register begins to receive the input signal of the next frame.
  • the node control signal is a high potential signal
  • the node control signal controls the potential of the second node B to be high through the sixth switching transistor T6 and the seventh switching transistor T7
  • the second node B passes the
  • the eighth switching transistor T8 controls the potential of the first node A to be low
  • the second node B controls the driving signal output terminal Output to output a low potential signal through the fourth switching transistor T4, thereby effectively eliminating the first clock signal terminal CK1.
  • the sixth switching transistor T6, the seventh switching transistor T7, the eighth switching transistor T8, and the fourth switching transistor T4 are at only when the node control signal is high.
  • the conduction state prevents the above four switching transistors from being turned on in the fourth stage, thereby prolonging the service life thereof.
  • the first reset control signal terminal Rst1 and the second reset control signal terminal Rst2 are the same signal end, and the node control signal of the node control signal terminal VHD is the second clock signal, and the period width of the first clock signal is The period width of the second clock signal is equal, and the corresponding input and output timing diagram is as shown in FIG. 5a. Specifically, four stages of T1, T2, T3, and T4 in the input-output timing diagram shown in FIG. 5a are selected.
  • the second switching transistor T2 and the fifth switching transistor T5 are turned off; since Input is high, the first switching transistor T1, the twelfth switching transistor T12, and the thirteenth switching transistor T13 Turn-on; because CKB1 is high, the fifteenth switching transistor T15 is turned on, the reference signal is transmitted to the driving signal output terminal Output through the fifteenth switching transistor T15, and the potential of the driving signal output terminal is low; the driving signal output end Output controls the eleventh switching transistor T11 and the fourteenth switching transistor T14 to be turned off; the input signal is transmitted to the first section through the first switching transistor T1 Point A, the potential of the first node A is high, the capacitor C1 is in a charging state, the third switching transistor T3 is turned on; the reference signal is transmitted to the third node C through the twelfth switching transistor T12; when the VHD is low, The sixth switching transistor T6 is turned off, the potential of the third node C is low;
  • the reference signal is transmitted to the second node B through the thirteenth switching transistor T13, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor T8 are turned off; the first clock signal passes through the third switching transistor T3. It is transmitted to the output of the drive signal output to further ensure that the potential of the output of the drive signal output is low.
  • the third switching transistor T3 is turned on, the first clock signal is transmitted to the driving signal output terminal Output through the third switching transistor T3, and the potential of the driving signal output terminal Output is high; the driving signal output terminal Output controls the eleventh switching transistor T11 and The fourteenth switching transistor T14 is turned on, the reference signal is transmitted to the third node C through the eleventh switching transistor T11; when the VHD is low, the sixth switching transistor T6 is turned off, and the potential of the third node C is low; When the VHD is at a high potential, the sixth switching transistor T6 is turned on, and the third node is set due to the width-to-length ratio of the sixth switching transistor T6 and the eleventh switching transistor T11.
  • the potential of C is low; therefore, regardless of whether or not the node control signal terminal VHD controls the sixth switching transistor T6 to be turned on, the potential of the third node C is low, and the seventh switching transistor T7 is turned off.
  • the reference signal is transmitted to the second node B through the fourteenth switching transistor T14, and the potential of the second node B is low, so that the fourth switching transistor T4 and the eighth switching transistor T8 are turned off.
  • the reference signal is transmitted to the driving signal output terminal Output through the fifteenth switching transistor T15, further ensuring that the potential of the driving signal output terminal is low; the reference signal is transmitted to the first node A through the second switching transistor T2, first The potential of the node A becomes a low potential, the capacitor C1 is in a discharging state, and the third switching transistor T3 is turned off; when the VHD is kept at a low potential, the sixth switching transistor T6 is turned off, and the potential of the third node C is low, The seven-switch transistor T7 is turned off, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor T8 are cut off. .
  • the sixth switching transistor T6 When the VHD becomes high, the sixth switching transistor T6 is turned on, and the node control signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C becomes high, and the seventh switching transistor T7 is turned on.
  • the potential of the second node B becomes a high potential
  • the second node B controls the eighth switching transistor T8 and the fourth switching transistor T4 to be turned on
  • the reference signal is transmitted to the first node A through the eighth switching transistor T8, so that the first node A
  • the potential is low, the capacitor C1 remains in the discharge state, and the third switching transistor T3 is turned off; the reference signal is transmitted to the driving signal output terminal Output through the fourth switching transistor T4, further ensuring that the potential of the driving signal output terminal is low.
  • the driving signal output terminal Output controls the eleventh switching transistor T11 and the fourteenth switching transistor T14 to be turned off.
  • the first switching transistor T1 since the Input remains low, the first switching transistor T1, the twelfth switching transistor T12, and the thirteenth switching transistor T13 remain off; since Rst1 and Rst2 remain at a low potential, the second switching transistor T2 and the fifth switch
  • the transistor T5 is kept off; when CKB1 is low: the fifteenth switching transistor T15 is turned off, the sixth switching transistor T6 is turned on when the node control signal terminal VHD is high, and the node control signal is transmitted to the sixth through the sixth switching transistor T6.
  • the three-node C the potential of the third node C is high, the seventh switching transistor T7 is turned on, the potential of the second node B is high, and the second node B controls the eighth switching transistor T8 and the fourth switching transistor T4 to be turned on.
  • the reference signal is transmitted to the first node A through the eighth switching transistor T8, so that the potential of the first node A is low, and the capacitance
  • the C1 is in a discharging state, the third switching transistor T3 is turned off; since the third switching transistor T3 is turned off, no matter whether the CK1 is high or low, there is no influence on the driving signal output terminal; the reference signal passes through the fourth switching transistor.
  • T4 is transmitted to the drive signal output terminal Output, so that the potential of the drive signal output terminal Output is low; when the node control signal terminal VHD is low, the sixth switch transistor T6 is turned off, and the potential of the third node C is low, seventh The switching transistor T7 is turned off, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor T8 are turned off; the driving signal output terminal Output is in a floating state, and the potential of the driving signal output terminal is low.
  • the drive signal output terminal Output controls the eleventh switching transistor T11 and the fourteenth switching transistor T14 to be turned off.
  • the fifteenth switching transistor T15 When CKB1 is high: the fifteenth switching transistor T15 is turned on, the reference signal is transmitted to the driving signal output terminal Output through the fifteenth switching transistor T15, the potential of the driving signal output terminal is low, and the driving signal output terminal is output controlled.
  • the eleventh switching transistor T11 and the fourteenth switching transistor T14 become off.
  • the sixth switching transistor T6 When the node control signal terminal VHD is high, the sixth switching transistor T6 is turned on, and the node control signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C is high, and the seventh switching transistor T7 leads Passing, the potential of the second node B is high, the second node B controls the eighth switching transistor T8 and the fourth switching transistor T4 to be turned on, and the reference signal is transmitted to the first node A through the eighth switching transistor T8, so that the first node The potential of A is low, the capacitor C1 is kept in a discharge state, and the third switching transistor T3 is turned off; since the third switching transistor T3 is turned off, no effect is affected on the drive signal output terminal regardless of whether the CK1 is high or low; The reference signal is transmitted to the driving signal output terminal Output through the fourth switching transistor T4, so that the potential of the driving signal output terminal is low, and the driving signal output terminal Output controls the eleventh switching transistor T11 and the fourteenth switching transistor T14 to be turned
  • the sixth switching transistor T6 When the node control signal terminal VHD is at a low potential, the sixth switching transistor T6 is turned off, the potential of the third node C is low, the seventh switching transistor T7 is turned off, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor T8 are turned off; the driving signal output terminal Output is in a floating state, the potential of the driving signal output terminal Output is low, and the driving signal output terminal Output controls the eleventh switching transistor T11 and the fourteenth switching transistor T14 to be changed. For the deadline.
  • the shift register repeats the above-described fourth stage of operation until the shift register begins to receive the input signal of the next frame.
  • the node control signal is a high potential signal when the first clock signal is a rising edge
  • the node control signal is controlled by the sixth switching transistor T6 and the seventh switching transistor T7.
  • the potential of the two nodes B is high, and the second node B controls the potential of the first node to be low through the eighth switching transistor T8, and the second node B controls the output of the driving signal output through the fourth switching transistor T4.
  • the potential signal thereby effectively eliminating the noise generated by the first clock signal to the first node A and the drive signal output.
  • the sixth switching transistor T6, the seventh switching transistor T7, the eighth switching transistor T8, and the fourth switching transistor T4 are at only when the node control signal is high.
  • the conduction state prevents the above four switching transistors from being turned on in the fourth stage, thereby prolonging the service life thereof.
  • the first reset control signal of the first reset control signal terminal Rst1 is delayed by 0.5 pulse width than the second reset control signal of the second reset control signal terminal Rst2, and the node control signal of the node control signal terminal VHD is
  • the second clock signal has a period width equal to a period width of the second clock signal, and a corresponding input/output timing diagram is shown in FIG. 5b. Specifically, four stages of T1, T2, T3, and T4 in the input-output timing diagram shown in FIG. 5b are selected.
  • the specific working process is the same as the T1 phase in the fifth embodiment, and details are not described herein.
  • the specific working process is the same as the T2 phase in the fifth embodiment, and details are not described herein.
  • the first switching transistor T1 since Input remains low, the first switching transistor T1, the twelfth switching transistor T12, and the thirteenth switching transistor T13 remain off; since CKB1 becomes high, the fifteenth switching transistor T15 becomes conductive.
  • the reference signal is transmitted to the driving signal output terminal Output through the fifteenth switching transistor T15, and the driving signal output terminal is output.
  • the potential becomes a low potential, and the drive signal output terminal Output controls the eleventh switching transistor T11 and the fourteenth switching transistor T14 to be turned off. Since Rst2 becomes a high potential, the fifth switching transistor T5 is turned on, and the reference signal is transmitted to the driving signal output terminal Output through the fifth switching transistor T5, further ensuring that the potential of the driving signal output terminal is low.
  • the second switching transistor T2 When Rst1 is low, the second switching transistor T2 is turned off. Since CK1 becomes low and the capacitor C1 acts, the potential of the first node A is pulled low, but is still high, and the third switching transistor T3 is kept.
  • the first clock signal is transmitted to the driving signal output terminal Output through the third switching transistor T3 to further ensure that the potential of the driving signal output terminal is low; at this time, when the node control signal terminal VHD is low, the second node B and the third node C are both low, the seventh switching transistor T7, the fourth switching transistor T4 and the eighth switching transistor T8 are turned off; when the node control signal terminal VHD is high, the sixth switching transistor T6 is turned on, the node
  • the control signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C is high, the seventh switching transistor T7 is turned on, the potential of the second node B is high, and the second node B is controlled eighth.
  • the switching transistor T8 and the fourth switching transistor T4 are turned on, and the reference signal is transmitted to the first node A through the eighth switching transistor T8, so that the potential of the first node A is low, and the capacitor C1 is Discharge state, the third switching transistor T3 is turned off; the reference signal to the drive signal output terminal Output transmission through the fourth switching transistor T4, to further ensure the potential of the driving signal output terminal Output is low.
  • the first switching transistor T1 since the Input remains low, the first switching transistor T1, the twelfth switching transistor T12, and the thirteenth switching transistor T13 remain off; since Rst2 becomes a low potential, the fifth switching transistor T5 is turned off; When the potential is high, the second switching transistor T2 is turned on, the reference signal is transmitted to the first node A through the second switching transistor T2, the potential of the first node A is low, the capacitor C1 is kept in a discharging state, and the third switching transistor T3 is kept off.
  • the third switching transistor T3 since the third switching transistor T3 is turned off, no matter whether the CK1 is high or low, there is no influence on the output of the driving signal output; since the node control signal terminal VHD is at a high potential, the sixth switching transistor T6 is turned on, and the node is controlled.
  • the signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C is high, the seventh switching transistor T7 is turned on, the potential of the second node B is high, and the second node B controls the eighth switch.
  • the transistor T8 and the fourth switching transistor T4 are turned on, and the reference signal is transmitted to the first node A through the eighth switching transistor T8, further ensuring the potential of the first node A.
  • the reference signal is transmitted to the driving signal output terminal Output through the fourth switching transistor T4, the potential of the driving signal output terminal is low, and the driving signal output terminal Output controls the eleventh switching transistor T11 and the fourteenth switching transistor T14.
  • the fifteenth switching transistor T15 is turned off.
  • Rst1 goes low
  • the second switching transistor T2 becomes off.
  • CKB1 is low
  • the fifteenth switching transistor T15 is turned off, and when the node control signal terminal VHD is high, the sixth switching transistor T6 is turned on.
  • the node control signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C is high, the seventh switching transistor T7 is turned on, the potential of the second node B is high, and the second node B controls The eighth switching transistor T8 and the fourth switching transistor T4 are turned on, and the reference signal is transmitted to the first node A through the eighth switching transistor T8, so that the potential of the first node A is low, the capacitor C1 is in a discharging state, and the third switching transistor T3 As the third switching transistor T3 is turned off, no matter whether the CK1 is high or low, there is no influence on the output of the driving signal output; the reference signal is transmitted to the driving signal output terminal through the fourth switching transistor T4 to drive The potential of the signal output terminal is low; when the node control signal terminal VHD is low, the sixth switching transistor T6 is turned off, and the potential of the third node C is low.
  • the seventh switching transistor T7 is turned off, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor T8 are turned off; the driving signal output terminal Output is in a floating state, and the potential of the driving signal output terminal is Low potential, drive signal output output control eleventh
  • the switching transistor T11 and the fourteenth switching transistor T14 become turned off.
  • CKB1 is high: the fifteenth switching transistor T15 is turned on, the reference signal is transmitted to the driving signal output terminal Output through the fifteenth switching transistor T15, the potential of the driving signal output terminal is low, and the driving signal output terminal is output controlled.
  • the eleventh switching transistor T11 and the fourteenth switching transistor T14 become off.
  • the sixth switching transistor T6 When the node control signal terminal VHD is high, the sixth switching transistor T6 is turned on, and the node control signal is transmitted to the third node C through the sixth switching transistor T6, the potential of the third node C is high, and the seventh switching transistor T7 leads Passing, the potential of the second node B is high, the second node B controls the eighth switching transistor T8 and the fourth switching transistor T4 to be turned on, and the reference signal is transmitted to the first node A through the eighth switching transistor T8, so that the first node The potential of A is low, the capacitor C1 is kept in a discharge state, and the third switching transistor T3 is turned off; since the third switching transistor T3 is turned off, no effect is affected on the drive signal output terminal regardless of whether the CK1 is high or low; The reference signal is transmitted to the driving signal output terminal Output through the fourth switching transistor T4, so that the potential of the driving signal output terminal is low, and the driving signal output terminal Output controls the eleventh switching transistor T11 and the fourteenth switching transistor T14 to be turned
  • the sixth switching transistor T6 When the node control signal terminal VHD is at a low potential, the sixth switching transistor T6 is turned off, the potential of the third node C is low, the seventh switching transistor T7 is turned off, and the potential of the second node B is low, so the fourth switching transistor T4 and the eighth switching transistor T8 are turned off; the driving signal output terminal Output is in a floating state, the potential of the driving signal output terminal Output is low, and the driving signal output terminal Output controls the eleventh switching transistor T11 and the fourteenth switching transistor T14 to be changed. For the deadline.
  • the shift register repeats the above-described fourth stage of operation until the shift register begins to receive the input signal of the next frame.
  • the node control signal is a high potential signal
  • the node control signal controls the potential of the second node B to be high through the sixth switching transistor T6 and the seventh switching transistor T7
  • the second node B passes the
  • the eighth switching transistor T8 controls the potential of the first node A to be low
  • the second node B controls the driving signal output terminal Output to output a low potential signal through the fourth switching transistor T4, thereby effectively eliminating the first clock signal CK1. Noise generated by a node A and a drive signal output.
  • the node control signal is a clock signal, it is only in the section.
  • the sixth switching transistor T6, the seventh switching transistor T7, the eighth switching transistor T8, and the fourth switching transistor T4 are in an on state, thereby avoiding the above four switching transistors in the fourth stage. It is always on, which in turn extends its life.
  • the above six embodiments are all described by taking an N-type switching transistor as an example.
  • the working principle of the P-type switching transistor is similar to that of the above-mentioned N-type switching transistor. The only difference is that the P-type switching transistor is low-level conduction. , will not repeat them here.
  • an embodiment of the present disclosure further provides a gate driving circuit, as shown in FIG. 6, including a plurality of cascaded shift registers: SR(1), SR(2)...SR(n) ...SR(N-1), SR(N) (a total of N shift registers, 1 ⁇ n ⁇ N), wherein, for each stage shift register, when the first reset control signal terminal Rst1 and the second When the reset control signal terminal Rst2 is the same signal terminal:
  • the drive signal output terminals Output_n of each of the shift register SR(n) are respectively associated with the adjacent upper stage shift register SR(n-1)
  • a reset control signal terminal Rst1 is connected to the second reset control signal terminal Rst2;
  • the input signal terminal Input of the first stage shift register SR(1) is connected to the frame start signal terminal STV.
  • first reset control signal terminal Rst1 and the second reset control signal terminal Rst2 of the last stage shift register SR(N) are both connected to the reset control terminal Reset for the last stage shift register SR(N).
  • the first node of the last stage shift register SR(N) and the drive signal output are reset after the scan signal is output.
  • the reset control terminal Reset in this embodiment may be separately set, or may be shared with other terminals according to the situation, as long as the normal reset of the last stage shift register SR(N) can be ensured.
  • each shift register in the above-mentioned gate driving circuit is the same as the above-mentioned shift register of the present disclosure, and the details are not described again.
  • the reference signal terminals Verf of the shift registers of the respective stages are connected to the same reference signal terminal Verf;
  • the first clock signal of the odd-numbered shift register is The third clock signal terminal CKB1 of the CK1 and the even-numbered shift register are connected to the same clock signal terminal CLK;
  • the third of the odd-numbered shift register The clock signal terminal CKB1 and the first clock signal terminal CK1 of the even-numbered shift register are both connected to the same clock signal terminal CLKB;
  • the node control signal of the node control signal terminal VHD is a DC signal
  • the node control signal terminals of the shift registers of each stage The VHDs are connected to the same node control signal terminal VHD.
  • each of the other stages of the shift register further includes: a frame initializing module 7; wherein, as shown in FIG. The input end of the frame initialization module 7 is connected to the frame start signal end STV; the output end is connected to the second node B;
  • the frame initialization module 7 is configured to initialize the drive signal output end of the shift register under the control of the frame start signal terminal STV.
  • the frame initialization module of the other stage shift register controls the potential reset of the second node B of the other stage shift register, thereby shifting The drive signal output of the register is initialized.
  • the frame initialization module 7 specifically includes: a sixteenth switching transistor T16, wherein
  • the gate and the source of the sixteenth switching transistor T16 are both connected to the frame start signal terminal STV, and the drain is connected to the second node B.
  • the sixteenth switching transistor T16 may be an N-type transistor or a P-type transistor, which is not limited herein.
  • the above is only a specific structure of the frame initialization module in the shift register.
  • the specific structure of the frame initialization module is not limited to the above structure provided by the embodiment of the present disclosure, and may be other structures known to those skilled in the art. There is no limit here.
  • an embodiment of the present disclosure further provides a gate driving circuit, as shown in FIG. 9, including a plurality of cascaded shift registers: SR(1), SR(2), ...SR(n )...SR(N-1), SR(N) (total N shift registers, 1 ⁇ n ⁇ N), only SR(1), SR(2), SR(3) are shown in Fig. 9
  • each stage shift register SR(n) In addition to the first stage shift register SR(1) and the second stage shift register SR(2), the drive signal output terminals Output_n of each stage shift register SR(n) are respectively adjacent to the upper two stages.
  • the second reset control signal terminal Rst2 of the shift register SR(n-2) is connected;
  • each of the other stages of the shift register SR(n) The second reset control signal terminal Rst2 is respectively connected to the first reset control signal terminal Rst1 of the adjacent upper-stage shift register SR(n-1);
  • the drive signal output OUT_n of each of the shift registers SR(n) is connected to the input signal terminal Input of the adjacent lower shift register SR(n+2). ;
  • the input signal terminal Input of the first stage shift register SR(1) and the second stage shift register SR(2) is connected to the frame start signal terminal STV.
  • the second reset control signal terminal Rst2 of the penultimate stage shift register SR(N-1) is connected to the first reset control terminal Reset1, and the second-order shift register SR(N- 1)
  • the first reset control signal terminal Rst1 is connected to the second reset control terminal Reset2 for making the last-stage shift register SR(N) after the penultimate-stage shift register SR(N-1) outputs the scan signal The first node and the drive signal output are reset.
  • the first reset control signal terminal Rst1 of the last stage shift register SR(N) is connected to the third reset control terminal Reset3, and the second reset control signal terminal Rst2 of the last stage shift register SR(N) and the second reset control
  • the terminal Reset2 is connected to reset the first node of the last stage shift register SR(N) and the drive signal output terminal after the last stage shift register SR(N) outputs the scan signal.
  • each shift register in the above-mentioned gate driving circuit is the same as the above-mentioned shift register of the present disclosure, and the details are not described again.
  • the first clock signal terminal CK1 of the shift register and the third clock signal terminal CKB1 of the 4n+3th stage shift register are both connected to the same clock signal terminal CLK1; 4n+1
  • the third clock signal terminal CKB1 of the stage shift register and the first clock signal terminal CK1 of the 4n+3th stage shift register are both connected to the same clock signal terminal CLK1B;
  • the first clock signal terminal CK1 of the 4n+2th stage shift register The third clock signal terminal CKB1 of the 4th+4th stage shift register is connected to the same clock signal terminal CLK2;
  • the third clock signal terminal CKB1 of the 4th + 2nd stage shift register and the 4th + 4th stage shift register are A clock signal terminal CK1 is connected to the same clock signal terminal CLK2B; when
  • each of the other stage shift registers further includes: a frame initialization module 7; wherein
  • the input end of the frame initialization module 7 is connected to the frame start signal end STV; the output end is connected to the second node B;
  • the frame initialization module 7 is configured to initialize the drive signal output end of the shift register under the control of the frame start signal terminal STV.
  • the frame initialization module of the other stage shift register controls the potential reset of the second node B of the other stage shift register, thereby shifting The drive signal output of the register is initialized.
  • the frame initialization module 7 specifically includes: a sixteenth switching transistor T16, wherein
  • the gate and the source of the sixteenth switching transistor T16 are both connected to the frame start signal terminal STV, and the drain is connected to the second node B.
  • the sixteenth switching transistor T16 may be an N-type transistor or a P-type transistor, which is not limited herein.
  • the above is only a specific structure of the frame initialization module in the shift register.
  • the specific structure of the frame initialization module is not limited to the above structure provided by the embodiment of the present disclosure, and may be other structures known to those skilled in the art. There is no limit here.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned gate driving circuit, by which a scan signal is provided for each gate line on an array substrate in a display device, and the specific implementation may be implemented. Referring to the description of the above gate driving circuit, the same points will not be described again.
  • an embodiment of the present disclosure further provides a driving method of any one of the shift registers, including: an input phase, an output phase, a reset phase, and a reset hold phase;
  • the pull-down driver module eliminates noise on the first node caused by the first clock signal change under the control of the node control signal terminal.
  • the input phase corresponds to the T1 phase in the first to sixth embodiments
  • the output phase corresponds to the T2 phase in the first to sixth embodiments
  • the reset phase corresponds to the T3 phase in the first to sixth embodiments described above
  • the reset hold phase corresponds to the T4 phase in the first to sixth embodiments described above, and the specific process is not described in detail.
  • the node control signal when the effective pulse signal of the input signal terminal is a high potential signal, the node control signal is a high potential signal at least when the first clock signal is a rising edge.
  • the node control signal when the effective pulse signal of the input signal terminal is a low potential signal, the node control signal is a low potential signal at least when the first clock signal is a falling edge.
  • Embodiments of the present disclosure provide a shift register, a driving method thereof, a gate driving circuit, and a display device, the shift register including an input module, a first reset module, a second reset module, a pull-down driving module, and a first output Module and second output module.
  • the input module is configured to control the potential of the first node under the control of the input signal end;
  • the first reset module is configured to provide the reference signal of the reference signal end to the first node under the control of the first reset control signal end;
  • the reset module is configured to provide a reference signal to the driving signal output end under the control of the second reset control signal end;
  • the first output module is configured to provide the first clock signal of the first clock signal end to the first node under the control of the first node a driving signal output end;
  • the second output module is configured to provide a reference signal to the driving signal output end under the control of the second node;
  • the pull-down driving module is configured to control the second node when the potential of the first node is the first potential
  • the potential is the second potential, and when the potential of the second node is the first potential, the potential of the first node is controlled to be the second potential, and the potential of the node control signal is the first potential, and the potential of the first node is the first potential At the two potentials,

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Shift Register Type Memory (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种移位寄存器、其驱动方法、栅极驱动电路及显示装置,其中,输入模块(1)控制第一节点(A)的电位;第一复位模块(2)控制第一节点(A)的电位;第二复位模块(3)控制驱动信号输出端(Output)的电位;第一输出模块(5)在第一节点(A)的控制下控制驱动信号输出端(Output)的电位;第二输出模块(6)在第二节点(B)的控制下控制驱动信号输出端(Output)的电位;下拉驱动模块(4)控制第一节点(A)和第二节点(B)的电位。由于节点控制信号端(VHD)的节点控制信号可以消除由第一时钟信号变化引起的第一节点(A)上的噪声,因此可以提高该移位寄存器的输出稳定性。

Description

一种移位寄存器、其驱动方法、栅极驱动电路及显示装置 技术领域
本公开涉及显示技术领域,特别地涉及一种移位寄存器、其驱动方法、栅极驱动电路及显示装置。
背景技术
在科技发展日新月异的现今时代中,液晶显示器已经广泛地应用在电子显示产品上,如电视机、计算机、手机及个人数字助理等。液晶显示器包括数据驱动器(Source Driver)、栅极驱动装置(Gate Driver)及液晶显示面板等。其中,液晶显示面板中具有像素阵列,而栅极驱动装置用以依序开启像素阵列中对应的像素行,以将数据驱动器输出的像素数据传输至像素,进而显示待显示图像。
目前,栅极驱动装置一般通过阵列工艺形成在液晶显示器的阵列基板上,即阵列基板行驱动(Gate Driver on Array,GOA)工艺,这种集成工艺不仅节省了成本,而且可以做到液晶面板(Panel)两边对称的美观设计,同时,也省去了栅极集成电路(IC,Integrated Circuit)的键合(Bonding)区域以及扇出(Fan-out)的布线空间,从而可以实现窄边框的设计;并且,这种集成工艺还可以省去栅极扫描线方向的Bonding工艺,从而提高了产能和良率。
现有的栅极驱动装置通常由多个级联的移位寄存器构成。其中各级移位寄存器的驱动信号输出端所输出信号一般是由上拉节点和时钟信号控制的,但是在现有的移位寄存器中,在时钟信号上升沿时会对上拉节点以及驱动信号输出端产生噪声,从而可能导致输出错误。
发明内容
本公开实施例提供一种移位寄存器、其驱动方法、栅极驱动电路及显示装置,用以减少或甚至消除上述现有技术中所存在的问题中的至少一些。
本公开实施例提供的一种移位寄存器,其可以包括:输入模块、第一复位模块、第二复位模块、第一输出模块、第二输出模块和下拉驱动模块;其中,
所述输入模块的第一端与输入信号端相连,第二端与第一节点相连;所述输入模块用于在所述输入信号端的控制下,控制所述第一节点的电位;
所述第一复位模块的第一端与参考信号端相连,第二端与第一复位控制信号端相连,第三端与所述第一节点相连;所述第一复位模块用于在所述第一复位控制信号端的控制下,将所述参考信号端的参考信号提供给所述第一节点;
所述第二复位模块的第一端与第二复位控制信号端相连,第二端与所述参考信号端相连,第三端与驱动信号输出端相连;所述第二复位模块用于在所述第二复位控制信号端的控制下,将所述参考信号提供给所述驱动信号输出端;
所述第一输出模块的第一端与第一时钟信号端相连,第二端与所述第一节点相连,第三端与所述驱动信号输出端相连;所述第一输出模块用于在所述第一节点的控制下,将所述第一时钟信号端的第一时钟信号提供给所述驱动信号输出端;
所述第二输出模块的第一端与所述参考信号端相连,第二端与第二节点相连,第三端与所述驱动信号输出端相连;所述第二输出模块用于在所述第二节点的控制下,将所述参考信号提供给所述驱动信号输出端;
所述下拉驱动模块的第一端与节点控制信号端相连,第二端与所述参考信号端相连,第三端与所述第一节点相连,第四端与所述第二节点相连;所述下拉驱动模块用于在所述第一节点的电位为第一电位时,控制所述第二节点的电位为第二电位,在所述第二节点的电位为第一电位时,控制所述第一节点的电位为第二电位;
当所述输入信号端的有效脉冲信号为高电位信号时,所述第一电位为高电位,所述第二电位为低电位;当所述输入信号端的有效脉冲信号为低电位信号时,所述第一电位为低电位,所述第二电位为高电位;所述节点控制信号端的节点控制信号用于消除由所述第一时钟信号变化引起的所述第一节点上的噪声。
可选地,在本公开实施例提供的上述移位寄存器中,当所述输入信号端的有效脉冲信号为高电位信号时,所述节点控制信号至少在所述第一时钟信号为上升沿时可以为高电位信号。
可选地,在本公开实施例提供的上述移位寄存器中,当所述输入信号端的有效脉冲信号为低电位信号时,所述节点控制信号至少在所述第一时钟信号为下降沿时可以为低电位信号。
可选地,在本公开实施例提供的上述移位寄存器中,所述节点控制信号可以为第二时钟信号。
可选地,在本公开实施例提供的上述移位寄存器中,所述节点控制信号可以为直流信号。
可选地,在本公开实施例提供的上述移位寄存器中,所述第二时钟信号的占空比可以为2%~50%。
在一种可能的实施方式中,在本公开实施例提供的上述移位寄存器中,所述输入模块可以包括:第一开关晶体管;其中,
所述第一开关晶体管的栅极和源极均与所述输入信号端相连,漏极与所述第一节点相连。
在一种可能的实施方式中,在本公开实施例提供的上述移位寄存器中,所述第一复位模块可以包括:第二开关晶体管;其中,
所述第二开关晶体管的栅极与所述第一复位控制信号端相连,源极与所述第一节点相连,漏极与所述参考信号端相连。
在一种可能的实施方式中,在本公开实施例提供的上述移位寄存器中,所述第一输出模块可以包括:第三开关晶体管和电容器;其中,
所述第三开关晶体管的栅极与所述第一节点相连,源极与所述第一时钟信号端相连,漏极与所述驱动信号输出端相连;
所述电容器连接于所述第三开关晶体管的栅极与漏极之间。
在一种可能的实施方式中,在本公开实施例提供的上述移位寄存器中,所述第二输出模块可以包括:第四开关晶体管;其中,
所述第四开关晶体管的栅极与所述第二节点相连,源极与所述驱动信号输出端相连,漏极与所述参考信号端相连。
在一种可能的实施方式中,在本公开实施例提供的上述移位寄存器中,所述第二复位模块可以包括:第五开关晶体管;其中,
所述第五开关晶体管的栅极与所述第二复位控制信号端相连,源极与所述驱动信号输出端相连,漏极与所述参考信号端相连。
在一种可能的实施方式中,在本公开实施例提供的上述移位寄存器中,所述下拉驱动模块可以包括:第六开关晶体管、第七开关晶体 管、第八开关晶体管、第九开关晶体管和第十开关晶体管;其中,
所述第六开关晶体管的栅极和源极均与所述节点控制信号端相连,漏极分别与所述第七开关晶体管的栅极和所述第九开关晶体管的源极相连;
所述第七开关晶体管的源极与所述节点控制信号端相连,漏极与所述第二节点相连;
所述第八开关晶体管的栅极与所述第二节点相连,源极与所述第一节点相连,漏极与所述参考信号端相连;
所述第九开关晶体管的栅极与所述第一节点相连,漏极与所述参考信号端相连;
所述第十开关晶体管的栅极与所述第一节点相连,源极与所述第二节点相连,漏极与所述参考信号端相连。
可选地,在本公开实施例提供的上述移位寄存器中,所述下拉驱动模块还可以包括:与所述输入信号端相连的第五端,与所述驱动信号输出端相连的第六端,以及与第三时钟信号端相连的第七端。
在一种可能的实施方式中,在本公开实施例提供的上述移位寄存器中,所述下拉驱动模块可以包括:第六开关晶体管、第七开关晶体管、第八开关晶体管、第十一开关晶体管、第十二开关晶体管、第十三开关晶体管、第十四开关晶体管和第十五开关晶体管;其中,
所述第六开关晶体管的栅极和源极均与所述节点控制信号端相连,漏极分别与所述第七开关晶体管的栅极、所述第十一开关晶体管的源极和所述第十二开关晶体管的源极相连;
所述第七开关晶体管的源极与所述节点控制信号端相连,漏极与所述第二节点相连;
所述第八开关晶体管的栅极与所述第二节点相连,源极所述第一节点相连,漏极与所述参考信号端相连;
所述第十一开关晶体管的栅极与所述驱动信号输出端相连,漏极与所述参考信号端相连;
所述第十二开关晶体管的栅极与所述输入信号端相连,漏极与所述参考信号端相连;
所述第十三开关晶体管的栅极与所述输入信号端相连,源极所述第二节点相连,漏极与所述参考信号端相连;
所述第十四开关晶体管的栅极与所述驱动信号输出端相连,源极与所述第二节点相连,漏极与所述参考信号端相连;
所述第十五开关晶体管的栅极与所述第三时钟信号端相连,源极所述驱动信号输出端相连,漏极与所述参考信号端相连。
可选地,在本公开实施例提供的上述移位寄存器中,所述第一复位控制信号端与所述第二复位控制信号端可以为同一信号端。
可选地,在本公开实施例提供的上述移位寄存器中,所述第一复位控制信号端的信号可以比所述第二复位控制信号端的信号延迟大于0且小于1个脉冲宽度。
相应地,本公开实施例提供了上述任一种移位寄存器的驱动方法,其可以包括:输入阶段、输出阶段、复位阶段和复位保持阶段;其中,
在复位保持阶段,所述下拉驱动模块在所述节点控制信号端的控制下消除由所述第一时钟信号变化引起的所述第一节点上的噪声。
可选地,在本公开实施例提供的上述驱动方法中,当所述输入信号端的有效脉冲信号为高电位信号时,所述节点控制信号至少在所述第一时钟信号为上升沿时可以为高电位信号。
可选地,在本公开实施例提供的上述驱动方法中,当所述输入信号端的有效脉冲信号为低电位信号时,所述节点控制信号至少在所述第一时钟信号为下降沿时可以为低电位信号。
相应地,本公开实施例提供了一种栅极驱动电路,包括级联的多个本公开实施例提供的上述任一种移位寄存器;其中,
除第一级移位寄存器之外,其余每一级移位寄存器的驱动信号输出端分别与相邻的上一级移位寄存器的第一复位控制信号端和第二复位控制信号端相连;
除最后一级移位寄存器之外,其余每一级移位寄存器的驱动信号输出端分别与相邻的下一级移位寄存器的输入信号端相连;
第一级移位寄存器的输入信号端与帧起始信号端相连。
可选地,在本公开实施例提供的上述栅极驱动电路中,除第一级移位寄存器之外,其余每一级移位寄存器还可以包括:帧初始化模块;其中,
所述帧初始化模块的输入端与所述帧起始信号端相连,输出端与所述第二节点相连;
所述帧初始化模块用于在所述帧起始信号端的控制下,对移位寄存器的驱动信号输出端进行初始化。
可选地,在本公开实施例提供的上述栅极驱动电路中,所述帧初始化模块可以包括:第十六开关晶体管,其中,
所述第十六开关晶体管的栅极和源极均与所述帧起始信号端相连,漏极与所述第二节点相连。
相应地,本公开实施例提供了一种栅极驱动电路,包括级联的多个本公开实施例提供的上述任一种移位寄存器;其中,除第一级移位寄存器和第二级移位寄存器之外,其余每一级移位寄存器的驱动信号输出端分别与相邻的上两级移位寄存器的第二复位控制信号端相连;
除第一级移位寄存器之外,其余每一级移位寄存器的第二复位控制信号端分别与相邻的上一级移位寄存器的第一复位控制信号端相连;
除最后两级移位寄存器之外,其余每一级移位寄存器的驱动信号输出端分别与相邻的下两级移位寄存器的输入信号端相连;
第一级移位寄存器和第二级移位寄存器的输入信号端与帧起始信号端相连。
可选地,在本公开实施例提供的上述栅极驱动电路中,除第一级移位寄存器之外,其余每一级移位寄存器还可以包括:帧初始化模块;其中,
所述帧初始化模块的输入端与所述帧起始信号端相连;输出端与所述第二节点相连;
所述帧初始化模块用于在所述帧起始信号端的控制下,对移位寄存器的驱动信号输出端进行初始化。
可选地,在本公开实施例提供的上述栅极驱动电路中,所述帧初始化模块可以包括:第十六开关晶体管,其中,
所述第十六开关晶体管的栅极和源极均与所述帧起始信号端相连,漏极与所述第二节点相连。
相应地,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述任一种栅极驱动电路。
本公开实施例提供了上述移位寄存器、其驱动方法、栅极驱动电路及显示装置,其中所述移位寄存器包括:输入模块、第一复位模块、 第二复位模块、下拉驱动模块、第一输出模块和第二输出模块。其中,输入模块用于在输入信号端的控制下,控制第一节点的电位;第一复位模块用于在第一复位控制信号端的控制下,将参考信号端的参考信号提供给第一节点;第二复位模块用于在第二复位控制信号端的控制下,将参考信号提供给驱动信号输出端;第一输出模块用于在第一节点的控制下,将第一时钟信号端的第一时钟信号提供给驱动信号输出端;第二输出模块用于在第二节点的控制下,将参考信号提供给驱动信号输出端;下拉驱动模块用于在第一节点的电位为第一电位时,控制第二节点的电位为第二电位,在第二节点的电位为第一电位时,控制第一节点的电位为第二电位,以及在节点控制信号端的电位为第一电位、且第一节点的电位为第二电位时,控制第二节点的电位为第一电位。由于节点控制信号端的节点控制信号可以消除由第一时钟信号变化引起的第一节点上的噪声,因此可以提高该移位寄存器的输出稳定性。
附图说明
图1a为本公开的一个实施例提供的移位寄存器的结构示意图;
图1b为本公开的另一实施例提供的移位寄存器的结构示意图;
图2a为本公开的一个实施例提供的移位寄存器的具体结构示意图;
图2b为本公开的另一实施例提供的移位寄存器的具体结构示意图;
图3a为本公开的又一实施例提供的移位寄存器的具体结构示意图;
图3b为本公开的再一实施例提供的移位寄存器的具体结构示意图;
图4a为本公开的第一实施例对应的移位寄存器的电路时序图;
图4b为本公开的第二实施例对应的移位寄存器的电路时序图;
图4c为本公开的第三实施例对应的移位寄存器的电路时序图;
图4d为本公开的第四实施例对应的移位寄存器的电路时序图;
图5a为本公开的第五实施例对应的移位寄存器的电路时序图;
图5b为本公开的第六实施例对应的移位寄存器的电路时序图;
图6为本公开实施例提供的栅极驱动电路的结构示意图;
图7为本公开实施例提供的包含有帧初始化模块的移位寄存器的结构示意图;
图8a和图8b分别为本公开实施例提供的包含有帧初始化模块的移位寄存器的具体结构示意图;
图9为本公开实施例提供的栅极驱动电路的结构示意图。
具体实施方式
下面结合附图,对本公开实施例提供的移位寄存器、其驱动方法、栅极驱动电路及显示装置的具体实施方式进行详细地说明。
本公开实施例提供的一种移位寄存器,如图1a所示,包括:输入模块1、第一复位模块2、第二复位模块3、下拉驱动模块4、第一输出模块5和第二输出模块6;其中,
输入模块1的第一端与输入信号端Input相连,第二端与第一节点A相连;输入模块1用于在输入信号端Input的控制下,控制第一节点A的电位;
第一复位模块2的第一端与参考信号端Vref相连,第二端与第一复位控制信号端Rst1相连,第三端与第一节点A相连;第一复位模块2用于在第一复位控制信号端Rst1的控制下,将参考信号端Vref的参考信号提供给第一节点A;
第二复位模块3的第一端与第二复位控制信号端Rst2相连,第二端与参考信号端Vref相连,第三端与驱动信号输出端Output相连;第二复位模块3用于在第二复位控制信号端Rst2的控制下,将参考信号提供给驱动信号输出端Output;
第一输出模块5的第一端与第一时钟信号端CK1相连,第二端与第一节点A相连,第三端与驱动信号输出端Output相连;第一输出模块5用于在第一节点A的控制下,将第一时钟信号端CK1的第一时钟信号提供给驱动信号输出端Output;
第二输出模块6的第一端与参考信号端Vref相连,控制端与第二节点B相连,输出端与驱动信号输出端Output相连;第二输出模块6用于在第二节点B的控制下,将参考信号提供给驱动信号输出端Output;
下拉驱动模块4的第一端与节点控制信号端VHD相连,第二端与参考信号端Vref端相连,第三端与第一节点A相连,第四端与第二节点B相连;下拉驱动模块4用于在第一节点A的电位为第一电位时,控制第二节点B的电位为第二电位,在第二节点B的电位为第一电位时,控制第一节点A的电位为第二电位;
当输入信号端Input的有效脉冲信号为高电位信号时,第一电位为高电位,第二电位为低电位;当输入信号端Input的有效脉冲信号为低电位信号时,第一电位为低电位,第二电位为高电位;节点控制信号端VHD的节点控制信号用于消除由第一时钟信号变化引起的第一节点上的噪声。
本公开实施例提供的上述移位寄存器,包括:输入模块、第一复位模块、第二复位模块、下拉驱动模块、第一输出模块和第二输出模块。其中,输入模块用于在输入信号端的控制下,控制第一节点的电位;第一复位模块用于在第一复位控制信号端的控制下,将参考信号端的参考信号提供给第一节点,实现对第一节点的复位;第二复位模块用于在第二复位控制信号端的控制下,将参考信号提供给驱动信号输出端,实现对驱动信号输出端的复位;第一输出模块用于在第一节点的控制下,将第一时钟信号端的第一时钟信号提供给驱动信号输出端;第二输出模块用于在第二节点的控制下,将参考信号提供给驱动信号输出端;下拉驱动模块用于在第一节点的电位为第一电位时,控制第二节点的电位为第二电位,在第二节点的电位为第一电位时,控制第一节点的电位为第二电位,以及在节点控制信号端的电位为第一电位、且第一节点的电位为第二电位时,控制第二节点的电位为第一电位。由于节点控制信号端的节点控制信号可以消除由第一时钟信号变化引起的第一节点上的噪声,因此可以提高该移位寄存器的输出稳定性。
在具体实施时,在本公开实施例提供的上述移位寄存器中,当输入信号端的有效脉冲信号为高电位信号时,节点控制信号至少在第一时钟信号为上升沿时为高电位信号。从而保证在第一时钟信号为上升沿时、且第一节点的电位为低电位时,控制第二节点的电位为高电位,从而在第二节点的控制下,第二输出模块将参考信号提供给驱动信号输出端,进而消除当第一时钟信号上升沿时在第一节点和驱动信号输 出端所耦合产生的噪声。
在具体实施时,在本公开实施例提供的上述移位寄存器中,当输入信号端的有效脉冲信号为低电位信号时,节点控制信号至少在第一时钟信号为下降沿时为低电位信号。从而保证在第一时钟信号为下降沿时、且第一节点的电位为高电位时,控制第二节点的电位为低电位,从而在第二节点的控制下,第二输出模块将参考信号提供给驱动信号输出端,进而消除当第一时钟信号下降沿时在第一节点和驱动信号输出端所耦合产生的噪声。
在具体实施时,在本公开实施例提供的上述移位寄存器中,节点控制信号可以为交流信号,也可以直流信号,在此不作限定。
可选地,在本公开实施例提供的上述移位寄存器中,节点控制信号为交流信号,该交流信号为第二时钟信号,这样可以降低下拉驱动电路的偏置作用,从而延长下拉驱动模块的寿命。
可选地,在具体实施时,在本公开实施例提供的上述移位寄存器中,当节点控制信号为第二时钟信号时,节点控制信号在每一周期内为高电位信号(当输入信号端的有效脉冲信号为高电位信号时)或低电位信号(当输入信号端的有效脉冲信号为低电位信号时)的时间控制在0.5us以上。
进一步地,在本公开实施例提供的上述移位寄存器中,第二时钟信号的占空比控制在2%~50%之间。这样可以进一步降低下拉驱动模块的偏置作用,从而延长下拉驱动模块的寿命。
进一步地,在具体实施时,在本公开实施例提供的上述移位寄存器中,第一时钟信号的周期宽度是第二时钟信号的周期宽度的整数倍,从而可以保证消除由第一时钟信号变化引起的第一节点上的噪声。
需要说明的是,在本公开实施例提供的上述移位寄存器中,当输入信号端的有效脉冲信号为高电位信号时,参考信号端的参考信号为低电位;当输入信号端的有效脉冲信号为低电位信号时,参考信号端的参考信号为高电位。
在具体实施时,在本公开实施例提供的上述移位寄存器中,第一复位控制信号端与第二复位控制信号端为同一信号端,即第一复位控制端的第一复位控制信号与第二复位控制端的第二复位控制信号为同一信号。
或者,在具体实施时,在本公开实施例提供的上述移位寄存器中,第一复位控制信号端的信号比第二复位控制信号端的信号延迟大于0且小于1个脉冲宽度。
下面结合具体实施例,对本公开进行详细说明。需要说明的是,本实施例中是为了更好的解释本公开,但不限制本公开。
在具体实施时,在本公开实施例提供的上述移位寄存器中,如图2a至图3b所示,输入模块1具体包括:第一开关晶体管T1;其中,
第一开关晶体管T1的栅极和源极均与输入信号端Input相连,漏极与第一节点A相连。
具体地,在本公开实施例提供的上述移位寄存器中,如图2a和图3a所示,第一晶体管T1可以为N型晶体管,或者,如图2b和图3b所示,第一晶体管T1也可以为P型晶体管,在此不作限定。
以上仅是举例说明移位寄存器中输入模块的具体结构,在具体实施时,输入模块的具体结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
在具体实施时,在本公开实施例提供的上述移位寄存器中,如图2a至图3b所示,第一复位模块2具体包括:第二开关晶体管T2;其中,
第二开关晶体管T2的栅极与第一复位控制信号端Rst1相连,源极与第一节点A相连,漏极与参考信号端Vref相连。
具体地,在本公开实施例提供的上述移位寄存器中,如图2a和图3a所示,第二开关晶体管T2可以为N型晶体管,或者,如图2b和图3b所示,第二开关晶体管T2也可以为P型晶体管,在此不作限定。
以上仅是举例说明移位寄存器中第一复位模块的具体结构,在具体实施时,第一复位模块的具体结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
在具体实施时,在本公开实施例提供的上述移位寄存器中,如图2a至图3b所示,第一输出模块5具体包括:第三开关晶体管T3和电容器C1;其中,
第三开关晶体管T3的栅极与第一节点A相连,源极与第一时钟信号端CK1相连,漏极与驱动信号输出端Output相连;
电容器C1连接于第三开关晶体管T3的栅极与漏极之间。
这里电容器C1是为了在第一节点A处于浮接状态时,通过电容器C1的自举作用进一步拉高或进一步拉低第一节点A的电位,从而保证移位寄存器的输出正确。
具体地,在本公开实施例提供的上述移位寄存器中,如图2a和图3a所示,第三开关晶体管T3可以为N型晶体管,或者,如图2b和图3b所示,第三开关晶体管T3也可以为P型晶体管,在此不作限定。
以上仅是举例说明移位寄存器中第一输出模块的具体结构,在具体实施时,第一输出模块的具体结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
在具体实施时,在本公开实施例提供的上述移位寄存器中,如图2a至图3b所示,第二输出模块6具体包括:第四开关晶体管T4;其中,
第四开关晶体管T4的栅极与第二节点B相连,漏极与参考信号端Vref相连,源极与驱动信号输出端Output相连。
具体地,在本公开实施例提供的上述移位寄存器中,如图2a和图3a所示,第四开关晶体管T4可以为N型晶体管,或者,如图2b和图3b所示,第四开关晶体管T4也可以为P型晶体管,在此不作限定。
以上仅是举例说明移位寄存器中第二输出模块的具体结构,在具体实施时,第二输出模块的具体结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
在具体实施时,在本公开实施例提供的上述移位寄存器中,如图2a至图3b所示,第二复位模块3具体包括:第五开关晶体管T5;其中,
第五开关晶体管T5的栅极与第二复位控制信号端Rst2相连,漏极与参考信号端Vref相连,源极与驱动信号输出端Output相连。
具体地,在本公开实施例提供的上述移位寄存器中,如图2a和图3a所示,第五开关晶体管T5可以为N型晶体管,或者,如图2b和图3b所示,第五开关晶体管T5也可以为P型晶体管,在此不作限定。
以上仅是举例说明移位寄存器中第二复位模块的具体结构,在具体实施时,第二复位模块的具体结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
在具体实施时,在本公开实施例提供的上述移位寄存器中,如图 2a和图2b所示,下拉驱动模块4具体包括:第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8、第九开关晶体管T9和第十开关晶体管T10;其中,
第六开关晶体管T6的栅极和源极均与节点控制信号端VHD相连,漏极分别与第七开关晶体管T7的栅极和第九开关晶体管T9的源极相连;
第七开关晶体管T7的源极与节点控制信号端VHD相连,漏极与第二节点B相连;
第八开关晶体管T8的栅极与第二节点B相连,源极与第一节点A相连,漏极与参考信号端Vref相连;
第九开关晶体管T9的栅极与第一节点A相连,漏极与参考信号端Vref相连;
第十开关晶体管T10的栅极与第一节点A相连,源极与第二节点B相连,漏极与参考信号端Vref相连。
具体地,在本公开实施例提供的上述移位寄存器中,如图2a所示,第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8、第九开关晶体管T9和第十开关晶体管T10可以为N型晶体管,或者,如图2b所示,第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8、第九开关晶体管T9和第十开关晶体管T10也可以为P型晶体管,在此不作限定。
在具体实施时,在本公开实施例提供的上述移位寄存器中,如图1b所示,下拉驱动模块4还包括:与输入信号端Input相连的第五端,与驱动信号输出端Output相连的第六端,以及与第三时钟信号端CKB1相连的第七端。
在具体实施时,在本公开实施例提供的上述移位寄存器中,如图3a和图3b所示,下拉驱动模块4具体包括:第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8、第十一开关晶体管T11、第十二开关晶体管T12、第十三开关晶体管T13、第十四开关晶体管T14和第十五开关晶体管T15;其中,
第六开关晶体管T6的栅极和源极均与节点控制信号端VHD相连,漏极分别与第七开关晶体管T7的栅极、第十一开关晶体管T11的源极和第十二开关晶体管T12的源极相连;
第七开关晶体管T7的源极与节点控制信号端VHD相连,漏极与第二节点B相连;
第八开关晶体管T8的栅极与第二节点B相连,源极与第一节点A相连,漏极与参考信号端Vref相连;
第十一开关晶体管T11的栅极与驱动信号输出端Output相连,漏极与参考信号端Vref相连;
第十二开关晶体管T12的栅极与输入信号端Input相连,漏极与参考信号端Vref相连;
第十三开关晶体管T13的栅极与输入信号端Input相连,源极与第二节点B相连,漏极与参考信号端Vref相连;
第十四开关晶体管T14的栅极与驱动信号输出端相连Output,源极与第二节点B相连,漏极与参考信号端Vref相连;
第十五开关晶体管T15的栅极与第三时钟信号端CKB1相连,源极与驱动信号输出端Output相连,漏极与参考信号端Vref相连;其中第三时钟信号端CKB1的第三时钟信号与第一时钟信号相位相反。
具体地,在本公开实施例提供的上述移位寄存器中,如图3a所示,第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8、第十一开关晶体管T11、第十二开关晶体管T12、第十三开关晶体管T13、第十四开关晶体管T14和第十五开关晶体管T15可以为N型晶体管,或者,如图3b所示,第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8、第十一开关晶体管T11、第十二开关晶体管T12、第十三开关晶体管T13、第十四开关晶体管T14和第十五开关晶体管T15也可以为P型晶体管,在此不作限定。
以上仅是举例说明移位寄存器中下拉驱动模块的具体结构,在具体实施时,下拉驱动模块的具体结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
在本公开实施例提供的上述移位寄存器中,开关晶体管一般均采用相同材质的晶体管,在具体实施时,为了简化制作工艺,上述第一至第十五开关晶体管均采用P型晶体管或N型晶体管。
当输入信号端的有效脉冲信号为高电位信号时,第一至第十五开关晶体管均为N型晶体管;当输入信号端的有效脉冲信号为低电位信号时,第一至第十五开关晶体管均为P型晶体管。
需要说明的是,在本公开上述实施例中提到的开关晶体管可以是薄膜晶体管(TFT,Thin Film Transistor),也可以是金属氧化物半导体场效应管(MOS,Metal Oxide Semiconductor),在此不做限定。在具体实施中,这些开关晶体管的源极和漏极根据晶体管类型以及输入信号的不同,其功能可以互换,在此不做具体区分。
下面以N型晶体管为例,对本公开实施例移位寄存器的工作过程作以描述。下述描述中以1表示高电位,0表示低电位。
具体地,第一实施例至第四实施例是以图2a所示的移位寄存器的结构为例对其工作过程作以描述,第五实施例和第六实施例是以图3a所示的移位寄存器的结构为例对其工作过程作以描述。为了描述方便,均取第七开关晶体管T7栅极处为第三节点C,其中在图2a和图3a所示的移位寄存器中,所有开关晶体管均为N型晶体管,各N型开关晶体管在高电位作用下导通,在低电位作用下截止;输入信号端Input的有效脉冲信号为高电位信号,参考信号端Vref的参考信号为低电位信号。
在第一实施例中,第一复位控制信号端Rst1与第二复位控制信号端Rst2为同一信号端,节点控制信号端VHD的节点控制信号为直流信号,对应的输入输出时序图如图4a所示。具体地,选取如图4a所示的输入输出时序图中的T1、T2、T3和T4四个阶段。
在第一阶段T1,Input=1,Rst1=Rst2=0,CK1=0,VHD=1。
在T1阶段,由于Rst1和Rst2为低电位,第二开关晶体管T2和第五开关晶体管T5截止;由于Input为高电位,第一开关晶体管T1导通,由于VHD为高电位,第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,Input的输入信号通过第一开关晶体管T1传输至第一节点A,第一节点A的电位为高电位,电容器C1处于充电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10导通,参考信号通过第九开关晶体管T9传输至第三节点C,由于第六开关晶体管T6和第九开关晶体管T9的宽长比的设置,C点的电位为低电位,因此第七开关晶体管T7截止。参考信号通过第十开关晶体管T10传输至第二节点B,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管T8截止;第一时钟信号通过第三开关晶体管T3传输至驱动信号输出端Output,驱动信号输出端 Output的电位为低电位。
在第二阶段T2,Input=0,Rst1=Rst2=0,CK1=1,VHD=1。
在T2阶段,由于Rst1和Rst2保持低电位,第二开关晶体管T2和第五开关晶体管T5保持截止;由于Input变为低电位,第一开关晶体管T1变为截止;由于VHD保持高电位,因此第六开关晶体管T6保持导通,节点控制信号通过第六开关晶体管T6传输至第三节点C;由于CK1变为高电位,根据电容器C1的自举作用,第一节点A的电位被进一步拉高,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持导通,参考信号通过第九开关晶体管T9传输至第三节点C,由于第六开关晶体管T6和第九开关晶体管T9的宽长比的设置,C点的电位为低电位,因此第七开关晶体管T7保持截止。参考信号通过第十开关晶体管T10传输至第二节点B,第二节点B的电位保持低电位,因此第四开关晶体管T4和第八开关晶体管T8保持截止;第一时钟信号通过第三开关晶体管T3传输至驱动信号输出端Output,驱动信号输出端Output的电位变为高电位。
在第三阶段T3,Input=0,Rst1=Rst2=1,CK1=0,VHD=1。
在T3阶段,由于Rst1和Rst2变为高电位,第二开关晶体管T2和第五开关晶体管T5变为导通;由于Input保持低电位,第一开关晶体管T1保持截止;由于VHD保持高电位,因此第六开关晶体管T6保持导通,参考信号通过第二开关晶体管T2传输至第一节点A,第一节点A的电位变为低电位,电容器C1处于放电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10变为截止,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位变为高电位,第七开关晶体管T7变为导通,第二节点B的电位变为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管变为导通,参考信号通过第八开关晶体管T8传输至第一节点A,进一步保证第一节点A的电位为低电位,参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,并且参考信号通过第五开关晶体管T5传输至驱动信号输出端Output,使驱动信号输出端Output的电位变为低电位。
在第四阶段T4,Input=0,Rst1=Rst2=0,CK1=1或0,VHD=1。
在T4阶段,由于Rst1和Rst2变为低电位,第二开关晶体管T2和第五开关晶体管T5变为截止;由于Input保持低电位,第一开关晶 体管T1保持截止,由于VHD保持高电位,第六开关晶体管T6保持导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位保持高电位,第七开关晶体管T7保持导通,第二节点B的电位保持高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4保持导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位保持为低电位,电容器C1处于放电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持截止,由于第三开关晶体管T3截止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位保持低电位。
之后,移位寄存器一直重复上述第四阶段的工作状态,直至移位寄存器开始接收到下一帧的输入信号为止。这样,在一帧时间中,从第四阶段至下一帧开始的时间段内,在第一时钟信号为上升沿时,会对第一节点A和驱动信号输出端Output产生噪声,但是由于在第一时钟信号为上升沿时节点控制信号为高电位信号,节点控制信号通过第六开关晶体管T6和第七开关晶体管T7控制第二节点B的电位为高电位,而第二节点B又通过第八开关晶体管T8控制第一节点的电位为低电位,第二节点B又通过第四开关晶体管T4控制驱动信号输出端Output输出低电位信号,从而有效地消除了第一时钟信号端CK1会对第一节点A和驱动信号输出端Output产生的噪声。
在第二实施例中,第一复位控制信号端Rst1与第二复位控制信号端Rst2为同一信号端,节点控制信号端VHD的节点控制信号为第二时钟信号,第一时钟信号的周期宽度与第二时钟信号的周期宽度相等,对应的输入输出时序图如图4b所示。具体地,选取如图4b所示的输入输出时序图中的T1、T2、T3和T4四个阶段。
在第一阶段T1,Input=1,Rst1=Rst2=0,CK1=0,VHD=0或1。
在T1阶段,由于Rst1和Rst2为低电位,第二开关晶体管T2和第五开关晶体管T5截止;由于Input为高电位,第一开关晶体管T1导通,输入信号通过第一开关晶体管传输至第一节点A,第一节点A的电位为高电位,电容器C1处于充电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10导通,参考信号通过第九开关晶 体管T9传输至第三节点C;当VHD为低电位时,第六开关晶体管T6截止,第三节点C的电位为低电位;当VHD为高电位时,第六开关晶体管T6导通,由于第六开关晶体管T6和第九开关晶体管T9的宽长比的设置,第三节点C的电位为低电位;因此不管节点控制信号端VHD是否控制第六开关晶体管T6导通,第三节点C的电位均为低电位,第七开关晶体管T7截止。参考信号通过第十开关晶体管T10传输至第二节点B,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管T8截止;第一时钟信号通过第三开关晶体管T3传输至驱动信号输出端Output,驱动信号输出端Output的电位为低电位。
在第二阶段T2,Input=0,Rst1=Rst2=0,CK1=1,VHD=1或0。
在T2阶段,由于Rst1和Rst2保持为低电位,第二开关晶体管T2和第五开关晶体管T5保持截止;由于Input变为低电位,第一开关晶体管T1变为截止;由于CK1变为高电位,根据电容器C1的自举作用,第一节点A的电位被进一步拉高,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持导通,参考信号通过第九开关晶体管T9传输至第三节点C;当VHD为低电位时,第六开关晶体管T6截止,第三节点C的电位为低电位;当VHD为高电位时,第六开关晶体管T6导通,由于第六开关晶体管T6和第九开关晶体管T9的宽长比的设置,第三节点C的电位为低电位;因此不管节点控制信号端VHD是否控制第六开关晶体管T6导通,第三节点C的电位均为低电位,第七开关晶体管T7截止。参考信号通过第十开关晶体管T10传输至第二节点B,第二节点B的电位保持低电位,第一时钟信号通过第三开关晶体管T3传输至驱动信号输出端Output,驱动信号输出端Output的电位变为高电位。
在第三阶段T3,Input=0,Rst1=Rst2=1,CK1=0,VHD=0或1。
在T3阶段,由于Rst1和Rst2变为高电位,第二开关晶体管T2和第五开关晶体管T5变为导通;由于Input保持低电位,第一开关晶体管T1保持截止;参考信号通过第二开关晶体管T2传输至第一节点A,第一节点A的电位变为低电位,电容器C1处于放电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10变为截止。在VHD为低电位时第六开关晶体管T6截止,第三节点C的电位为低电位,第七开关晶体管T7截止,第二节点B的电位保持为低电位; 第八开关晶体管T8和第四开关晶体管保持截止,参考信号通过第五开关晶体管T5传输至驱动信号输出端Output,驱动信号输出端的电位变为低电位。在VHD为高电位时,第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位变为高电位,第七开关晶体管T7变为导通,第二节点B的电位变为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管变为导通,参考信号通过第八开关晶体管T8传输至第一节点,进一步保证第一节点A的电位为低电位,参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,并且参考信号通过第五开关晶体管T5传输至驱动信号输出端Output,驱动信号输出端Output的电位变为低电位。
在第四阶段T4,Input=0,Rst1=Rst2=0,CK1=1或0,VHD=1或0。
在T4阶段,由于Rst1和Rst2变为低电位,第二开关晶体管T2和第五开关晶体管T5变为截止;由于Input保持低电位,第一开关晶体管T1保持截止;在VHD为高电位时,第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位为低电位,电容器C1处于放电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持截止;由于第三开关晶体管T3截止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响,参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位保持为低电位。在VHD为低电位时,第六开关晶体管T6变为截止,第三节点C的电位变为低电位,第七开关晶体管T7变为截止,第二节点B的电位变为低电位;第八开关晶体管T8和第四开关晶体管T4变为截止,第一节点A的电位保持为低电位,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持截止,由于第三开关晶体管T3截止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;驱动信号输出端Output处于浮接状态,电位保持为低电位。
并且,在此阶段,在第一时钟信号为上升沿时,会对第一节点A 和驱动信号输出端Output产生噪声,但是由于在第一时钟信号为上升沿时节点控制信号为高电位信号,节点控制信号通过第六开关晶体管T6和第七开关晶体管T7控制第二节点B的电位为高电位,而第二节点B又通过第八开关晶体管T8控制第一节点A的电位为低电位,第二节点B又通过第四开关晶体管T4控制驱动信号输出端Output输出低电位信号,从而有效地消除了第一时钟信号变化会对第一节点A和驱动信号输出端Output产生的噪声。
之后,移位寄存器一直重复上述第四阶段的工作状态,直至移位寄存器开始接收到下一帧的输入信号为止。这样,在一帧时间中,从第四阶段至下一帧开始的时间段内,由于节点控制信号端VHD为时钟信号,因此只有在节点控制信号为高电位的时候,第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8和第四开关晶体管T4处于导通状态,从而避免上述4个开关晶体管在第四阶段一直处于导通状态,进而可以延长其使用寿命。
在第三实施例中,第一复位控制信号端Rst1的第一复位控制信号比第二复位控制信号端Rst2的第二复位控制信号延迟0.5个脉冲宽度,节点控制信号端VHD的节点控制信号为直流信号,对应的输入输出时序图如图4c所示。具体地,选取如图4c所示的输入输出时序图中的T1、T2、T3和T4四个阶段。
在第一阶段T1,Input=1,Rst1=0,Rst2=0,CK1=0,VHD=1。
在T1阶段,具体工作过程与第一实施例中的T1阶段相同,在此不作赘述。
在第二阶段T2,Input=0,Rst1=0,Rst2=0,CK1=1,VHD=1。
在T2阶段,具体工作过程与第一实施例中的T2阶段相同,在此不作赘述。
在第三阶段T3,Input=0,Rst1=0或1,Rst2=1,CK1=0,VHD=1。
在T3阶段,由于Rst2变为高电位,第五开关晶体管T5变为导通,参考信号通过第五开关晶体管T5传输至驱动信号输出端Output,驱动信号输出端Output的电位变为低电位;由于Input保持低电位,第一开关晶体管T1保持截止;由于VHD保持高电位,因此第六开关晶体管T6保持导通;在Rst1保持为低电位时,第二开关晶体管T2保持截止,由于CK1变为低电位,以及电容器C1的自举作用,第一节点A的电 位被拉低,但是仍为高电位,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持导通;参考信号通过第九开关晶体管T9传输至第三节点C;当VHD为低电位时,第六开关晶体管T6截止,第三节点C的电位为低电位;当VHD为高电位时,第六开关晶体管T6导通,由于第六开关晶体管T6和第九开关晶体管T9的宽长比的设置,第三节点C的电位为低电位;因此不管节点控制信号端VHD是否控制第六开关晶体管T6导通,第三节点C的电位均为低电位,第七开关晶体管T7截止。参考信号通过第十开关晶体管T10传输至第二节点B,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管保持T8截止;第一时钟信号通过第三开关晶体管T3传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位。在Rst1变为高电位时,第二开关晶体管T2变为导通,参考信号通过第二开关晶体管T2传输至第一节点A,第一节点A的电位变为低电位,电容器C1处于放电状态,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10变为截止;节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位变为高电位,第七开关晶体管T7变为导通,第二节点B的电位变为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管变为导通,参考信号通过第八开关晶体管T8传输至第一节点,进一步保证第一节点A的电位为低电位,参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位。
在第四阶段T4,Input=0,Rst1=1或0,Rst2=0,CK1=1或0,VHD=1。
在T4阶段,由于Input保持为低电位,第一开关晶体管T1保持导通,由于Rst2变为低电位,第五开关晶体管T5变为截止;由于VHD保持高电位,第六开关晶体管T6保持导通;在Rst1保持为高电位时,第二开关晶体管T2保持导通,参考信号通过第二开关晶体管T2传输至第一节点A,第一节点A的电位保持低电位;电容器C1保持放电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持截止,因此由于第三开关晶体管T3截止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位保持为高电位,第七开关晶体管T7保持导通,第二节点B的电位保持为高电位, 第二节点B控制第八开关晶体管T8和第四开关晶体管导通,参考信号端通过第八开关晶体管T8传输至第一节点A,进一步使第一节点A的电位为低电位,参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位为低电位。在Rst1变为低电位时,第二开关晶体管T2变为截止;节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位保持为高电位,第七开关晶体管T7保持导通,第二节点B的电位保持为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4保持导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位保持低电位,电容器C1保持放电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持截止;由于第三开关晶体管T3截止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位保持为低电位。
之后,移位寄存器一直重复上述第四阶段的工作状态,直至移位寄存器开始接收到下一帧的输入信号为止。这样,在一帧时间中,从第四阶段至下一帧开始的时间段内,在第一时钟信号为上升沿时,会对第一节点A和驱动信号输出端Output产生噪声,但是由于在第一时钟信号为上升沿时节点控制信号为高电位信号,节点控制信号通过第六开关晶体管T6和第七开关晶体管T7控制第二节点B的电位为高电位,而第二节点B又通过第八开关晶体管T8控制第一节点A的电位为低电位,第二节点B又通过第四开关晶体管T4控制驱动信号输出端Output输出低电位信号,从而有效地消除了第一时钟信号端CK1会对第一节点A和驱动信号输出端Output产生的噪声。
在第四实施例中,第一复位控制信号端Rst1的第一复位控制信号比第二复位控制信号端Rst2的第二复位控制信号延迟0.5个脉冲宽度,节点控制信号端VHD的节点控制信号为第二时钟信号,第一时钟信号的周期宽度与第二时钟信号的周期宽度相等,对应的输入输出时序图如图4d所示。具体地,选取如图4d所示的输入输出时序图中的T1、T2、T3和T4四个阶段。
在第一阶段T1,Input=1,Rst1=0,Rst2=0,CK1=0,VHD=0或1。
在T1阶段,具体工作过程与第二实施例中的T1阶段相同,在此 不作赘述。
在第二阶段T2,Input=0,Rst1=0,Rst2=0,CK1=1,VHD=1或0。
在T2阶段,具体工作过程与第二实施例中的T2阶段相同,在此不作赘述。
在第三阶段T3,Input=0,Rst1=0或1,Rst2=1,CK1=0,VHD=0或1。
在T3阶段,由于Input保持为低电位,第一开关晶体管T1保持截止;由于Rst2变为高电位,第五开关晶体管T5变为导通,参考信号通过第五开关晶体管T5传输至驱动信号输出端Output,驱动信号输出端Output的电位变为低电位;在Rst1保持低电位时,第二开关晶体管T2截止,由于第一时钟信号变为低电位,以及电容器C1的作用,第一节点A的电位被拉低,但是仍为高电位,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10导通,参考信号通过第九开关晶体管T9传输至第三节点C,由于VHD保持为低电位,第六开关晶体管T6保持截止,第三节点C的电位保持为低电位,因此第七开关晶体管T7保持截止。参考信号通过第十开关晶体管T10传输至第二节点B,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管保持T8截止;第一时钟信号通过第三开关晶体管T3传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位。在Rst1变为高电位时,第二开关晶体管T2变为导通,参考信号通过第二开关晶体管T2传输至第一节点A,第一节点A的电位变为低电位,电容器C1处于放电状态,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10变为截止,由于VHD变为高电位,第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位变为高电位,第七开关晶体管T7变为导通,第二节点B的电位变为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管变为导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位变为低电位,电容器C1处于放电状态,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10变为截止;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位。
在第四阶段T4,Input=0,Rst1=1或0,Rst2=0,CK1=1或0,VHD=1 或0。
在T4阶段,由于Input保持为低电位,第一开关晶体管T1保持导通,由于Rst2变为低电位,第五开关晶体管T5变为截止;在Rst1保持为高电位时,第二开关晶体管T2导通,参考信号通过第二开关晶体管T2传输至第一节点A,第一节点A的电位保持低电位;电容器C1保持放电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持截止;由于第三开关晶体管T3截止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;由于VHD为高电位,第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点,使第一节点A的电位保持为低电位,电容器C1保持放电状态,并且第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持截止,因此由于第三开关晶体管T3截止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位为低电位。在Rst1变为低电位时,第二开关晶体管T2截止,第一节点A的电位变为低电位;在VHD变为低电位时,第六开关晶体管T6截止,第三节点C的电位为低电位,第七开关晶体管T7截止,第二节点B的电位为低电位;第八开关晶体管T8和第四开关晶体管变为截止;第一节点A的电位保持为低电位,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持截止,由于第三开关晶体管T3截止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响,驱动信号输出端Output处于浮接状态,电位保持为低电位。在VHD为高电位时,第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点,使第一节点A的电位为低电位,电容器C1保持放电状态,第三开关晶体管T3、第九开关晶体管T9和第十开关晶体管T10保持截止,由于第三开关晶体管T3截 止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响,参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位为低电位。
之后,移位寄存器一直重复上述第四阶段的工作状态,直至移位寄存器开始接收到下一帧的输入信号为止。这样,在一帧时间中,从第四阶段至下一帧开始的时间段内,在第一时钟信号为上升沿时,会对第一节点A和驱动信号输出端Output产生噪声,但是由于在第一时钟信号为上升沿时节点控制信号为高电位信号,节点控制信号通过第六开关晶体管T6和第七开关晶体管T7控制第二节点B的电位为高电位,而第二节点B又通过第八开关晶体管T8控制第一节点A的电位为低电位,第二节点B又通过第四开关晶体管T4控制驱动信号输出端Output输出低电位信号,从而有效地消除了第一时钟信号端CK1会对第一节点A和驱动信号输出端Output产生的噪声。
另外,在此阶段,由于节点控制信号为时钟信号,因此只有在节点控制信号为高电位的时候,第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8和第四开关晶体管T4处于导通状态,从而避免上述4个开关晶体管在第四阶段一直处于导通状态,进而可以延长其使用寿命。
在第五实施例中,第一复位控制信号端Rst1与第二复位控制信号端Rst2为同一信号端,节点控制信号端VHD的节点控制信号为第二时钟信号,第一时钟信号的周期宽度与第二时钟信号的周期宽度相等,对应的输入输出时序图如图5a所示。具体地,选取如图5a所示的输入输出时序图中的T1、T2、T3和T4四个阶段。
在第一阶段T1,Input=1,Rst1=Rst2=0,CK1=0,CKB1=1,VHD=0或1。
在T1阶段,由于Rst1和Rst2为低电位,第二开关晶体管T2和第五开关晶体管T5截止;由于Input为高电位,第一开关晶体管T1、第十二开关晶体管T12和第十三开关晶体管T13导通;由于CKB1为高电位,第十五开关晶体管T15导通,参考信号通过第十五开关晶体管T15传输至驱动信号输出端Output,驱动信号输出端Output的电位为低电位;驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14截止;输入信号通过第一开关晶体管T1传输至第一节 点A,第一节点A的电位为高电位,电容器C1处于充电状态,第三开关晶体管T3导通;参考信号通过第十二开关晶体管T12传输至第三节点C;当VHD为低电位时,第六开关晶体管T6截止,第三节点C的电位为低电位;当VHD为高电位时,第六开关晶体管T6导通,由于第六开关晶体管T6和第十一开关晶体管T11的宽长比的设置,第三节点C的电位为低电位;因此不管节点控制信号端VHD是否控制第六开关晶体管T6导通,第三节点C的电位均为低电位,第七开关晶体管T7截止。参考信号通过第十三开关晶体管T13传输至第二节点B,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管T8截止;第一时钟信号通过第三开关晶体管T3传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位。
在第二阶段T2,Input=0,Rst1=Rst2=0,CK1=1,CKB1=0,VHD=1或0。
在T2阶段,由于Rst1和Rst2保持为低电位,第二开关晶体管T2和第五开关晶体管T5保持截止;由于Input变为低电位,第一开关晶体管T1、第十二开关晶体管T12和第十三开关晶体管T13变为截止;由于CKB1变为低电位,第十五开关晶体管T15变为截止;由于CK1变为高电位,根据电容器C1的自举作用,第一节点A的电位被进一步拉高,第三开关晶体管T3导通,第一时钟信号通过第三开关晶体管T3传输至驱动信号输出端Output,驱动信号输出端Output的电位为高电位;驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14导通,参考信号通过第十一开关晶体管T11传输至第三节点C;当VHD为低电位时,第六开关晶体管T6截止,第三节点C的电位为低电位;当VHD为高电位时,第六开关晶体管T6导通,由于第六开关晶体管T6和第十一开关晶体管T11的宽长比的设置,第三节点C的电位为低电位;因此不管节点控制信号端VHD是否控制第六开关晶体管T6导通,第三节点C的电位均为低电位,第七开关晶体管T7截止。参考信号通过第十四开关晶体管T14传输至第二节点B,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管T8截止。
在第三阶段T3,Input=0,Rst1=Rst2=1,CK1=0,CKB1=1,VHD=0或1。
在T3阶段,由于Input保持低电位,第一开关晶体管T1、第十二开关晶体管T12和第十三开关晶体管T13保持截止;由于Rst1和Rst2变为高电位,第二开关晶体管T2和第五开关晶体管T5变为导通;由于CKB1变为高电位,第十五开关晶体管T15变为导通,参考信号通过第五开关晶体管T5传输至驱动信号输出端Output,驱动信号输出端Output的电位为低电位;同时参考信号通过第十五开关晶体管T15传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位;参考信号通过第二开关晶体管T2传输至第一节点A,第一节点A的电位变为低电位,电容器C1处于放电状态,第三开关晶体管T3变为截止;在VHD保持为低电位时,第六开关晶体管T6截止,第三节点C的电位为低电位,第七开关晶体管T7截止,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管T8截止。在VHD变为高电位时第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位变为高电位,第七开关晶体管T7导通,第二节点B的电位变为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位为低电位,电容器C1保持放电状态,第三开关晶体管T3变为截止;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位。同时驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。
在第四阶段T4,Input=0,Rst1=Rst2=0,CK1=1或0,CKB1=0或1,VHD=1或0。
在T4阶段,由于Input保持低电位,第一开关晶体管T1、第十二开关晶体管T12和第十三开关晶体管T13保持截止;由于Rst1和Rst2保持为低电位,第二开关晶体管T2和第五开关晶体管T5保持截止;在CKB1为低电位时:第十五开关晶体管T15截止,在节点控制信号端VHD为高电位时第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位为低电位,电容 器C1处于放电状态,第三开关晶体管T3变为截止;由于第三开关晶体管T3截止,因此无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位为低电位;在节点控制信号端VHD为低电位时第六开关晶体管T6截止,第三节点C的电位为低电位,第七开关晶体管T7截止,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管T8截止;驱动信号输出端Output处于浮接状态,驱动信号输出端Output的电位为低电位,驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。在CKB1为高电位时:第十五开关晶体管T15导通,参考信号通过第十五开关晶体管T15传输至驱动信号输出端Output,驱动信号输出端Output的电位为低电位,驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。在节点控制信号端VHD为高电位时第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位为低电位,电容器C1保持放电状态,第三开关晶体管T3变为截止;由于第三开关晶体管T3截止,因此无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位为低电位,驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。在节点控制信号端VHD为低电位时,第六开关晶体管T6截止,第三节点C的电位为低电位,第七开关晶体管T7截止,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管T8截止;驱动信号输出端Output处于浮接状态,驱动信号输出端Output的电位为低电位,驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。
之后,移位寄存器一直重复上述第四阶段的工作状态,直至移位寄存器开始接收到下一帧的输入信号为止。这样,在一帧时间中,从第四阶段至下一帧开始的时间段内,在第一时钟信号为上升沿时,会 对第一节点A和驱动信号输出端Output产生噪声,但是由于在第一时钟信号为上升沿时节点控制信号为高电位信号,节点控制信号通过第六开关晶体管T6和第七开关晶体管T7控制第二节点B的电位为高电位,而第二节点B又通过第八开关晶体管T8控制第一节点的电位为低电位,第二节点B又通过第四开关晶体管T4控制驱动信号输出端Output输出低电位信号,从而有效地消除了第一时钟信号会对第一节点A和驱动信号输出端Output产生的噪声。
另外,在此阶段,由于节点控制信号为时钟信号,因此只有在节点控制信号为高电位的时候,第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8和第四开关晶体管T4处于导通状态,从而避免上述4个开关晶体管在第四阶段一直处于导通状态,进而可以延长其使用寿命。
在第六实施例中,第一复位控制信号端Rst1的第一复位控制信号比第二复位控制信号端Rst2的第二复位控制信号延迟0.5个脉冲宽度,节点控制信号端VHD的节点控制信号为第二时钟信号,第一时钟信号的周期宽度与第二时钟信号的周期宽度相等,对应的输入输出时序图如图5b所示。具体地,选取如图5b所示的输入输出时序图中的T1、T2、T3和T4四个阶段。
在第一阶段T1,Input=1,Rst1=0,Rst2=0,CK1=0,CKB1=1,VHD=0或1。
在T1阶段,具体工作过程与第五实施例中的T1阶段相同,在此不作赘述。
在第二阶段T2,Input=0,Rst1=0,Rst2=0,CK1=1,CKB=0,VHD=1或0。
在T2阶段,具体工作过程与第五实施例中的T2阶段相同,在此不作赘述。
在第三阶段T3,Input=0,Rst1=0或1,Rst2=1,CK1=0,CKB=1,VHD=0或1。
在T3阶段,由于Input保持低电位,第一开关晶体管T1、第十二开关晶体管T12和第十三开关晶体管T13保持截止;由于CKB1变为高电位,第十五开关晶体管T15变为导通,参考信号通过第十五开关晶体管T15传输至驱动信号输出端Output,驱动信号输出端Output的 电位变为低电位,驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。由于Rst2变为高电位,第五开关晶体管T5导通,参考信号通过第五开关晶体管T5传输至驱动信号输出端Output,进一步保证了驱动信号输出端Output的电位为低电位。在Rst1为低电位时,第二开关晶体管T2截止,由于CK1变为低电位,以及电容器C1的作用,第一节点A的电位被拉低,但是仍为高电位,第三开关晶体管T3保持导通,第一时钟信号通过第三开关晶体管T3传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位;此时,在节点控制信号端VHD为低电位时,第二节点B和第三节点C均为低电位,第七开关晶体管T7、第四开关晶体管T4和第八开关晶体管T8截止;在节点控制信号端VHD为高电位时,第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位为低电位,电容器C1处于放电状态,第三开关晶体管T3变为截止;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位。在Rst1为高电位时,第二开关晶体管T2导通,参考信号通过第二开关晶体管T2传输至第一节点A,第一节点A的电位变为低电位,电容器C1处于放电状态,第三开关晶体管T3变为截止;此时,在节点控制信号端VHD为低电位时,第二节点B和第三节点C均为低电位,第七开关晶体管T7、第四开关晶体管T4和第八开关晶体管T8截止;在节点控制信号端VHD为高电位时,第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点A,进一步保证第一节点A的电位为低电位;参考信号Vref通过第四开关晶体管T4传输至驱动信号输出端Output,进一步保证驱动信号输出端Output的电位为低电位。
在第四阶段T4,Input=0,Rst1=1或0,Rst2=0,CK1=1或0,CKB1=0 或1,VHD=1或0。
在T4阶段,由于Input保持低电位,第一开关晶体管T1、第十二开关晶体管T12和第十三开关晶体管T13保持截止;由于Rst2变为低电位,第五开关晶体管T5变截止;在Rst1为高电位时,第二开关晶体管T2导通,参考信号通过第二开关晶体管T2传输至第一节点A,第一节点A的电位为低电位,电容器C1保持放电状态,第三开关晶体管T3保持截止;因此由于第三开关晶体管T3截止,无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;由于节点控制信号端VHD为高电位时,第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点A,进一步保证第一节点A的电位为低电位,参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,驱动信号输出端Output的电位为低电位,驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。由于CKB为低电位,因此第十五开关晶体管T15截止。在Rst1变为低电位时,第二开关晶体管T2变为截止,在CKB1为低电位时:第十五开关晶体管T15截止,在节点控制信号端VHD为高电位时第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位为低电位,电容器C1处于放电状态,第三开关晶体管T3变为截止;由于第三开关晶体管T3截止,因此无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位为低电位;在节点控制信号端VHD为低电位时第六开关晶体管T6截止,第三节点C的电位为低电位,第七开关晶体管T7截止,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管T8截止;驱动信号输出端Output处于浮接状态,驱动信号输出端Output的电位为低电位,驱动信号输出端Output控制第十一 开关晶体管T11和第十四开关晶体管T14变为截止。在CKB1为高电位时:第十五开关晶体管T15导通,参考信号通过第十五开关晶体管T15传输至驱动信号输出端Output,驱动信号输出端Output的电位为低电位,驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。在节点控制信号端VHD为高电位时第六开关晶体管T6导通,节点控制信号通过第六开关晶体管T6传输至第三节点C,第三节点C的电位为高电位,第七开关晶体管T7导通,第二节点B的电位为高电位,第二节点B控制第八开关晶体管T8和第四开关晶体管T4导通,参考信号通过第八开关晶体管T8传输至第一节点A,使第一节点A的电位为低电位,电容器C1保持放电状态,第三开关晶体管T3变为截止;由于第三开关晶体管T3截止,因此无论CK1为高电位还是低电位,对驱动信号输出端Output均无影响;参考信号通过第四开关晶体管T4传输至驱动信号输出端Output,使驱动信号输出端Output的电位为低电位,驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。在节点控制信号端VHD为低电位时,第六开关晶体管T6截止,第三节点C的电位为低电位,第七开关晶体管T7截止,第二节点B的电位为低电位,因此第四开关晶体管T4和第八开关晶体管T8截止;驱动信号输出端Output处于浮接状态,驱动信号输出端Output的电位为低电位,驱动信号输出端Output控制第十一开关晶体管T11和第十四开关晶体管T14变为截止。
之后,移位寄存器一直重复上述第四阶段的工作状态,直至移位寄存器开始接收到下一帧的输入信号为止。这样,在一帧时间中,从第四阶段至下一帧开始的时间段内,在第一时钟信号为上升沿时,会对第一节点A和驱动信号输出端Output产生噪声,但是由于在第一时钟信号为上升沿时节点控制信号为高电位信号,节点控制信号通过第六开关晶体管T6和第七开关晶体管T7控制第二节点B的电位为高电位,而第二节点B又通过第八开关晶体管T8控制第一节点A的电位为低电位,第二节点B又通过第四开关晶体管T4控制驱动信号输出端Output输出低电位信号,从而有效地消除了第一时钟信号CK1会对第一节点A和驱动信号输出端Output产生的噪声。
另外,在此阶段,由于节点控制信号为时钟信号,因此只有在节 点控制信号端VHD为高电位的时候,第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8和第四开关晶体管T4处于导通状态,从而避免上述4个开关晶体管在第四阶段一直处于导通状态,进而可以延长其使用寿命。
上述六个实施例均是以N型开关晶体管为例进行说明,具体对于P型开关晶体管的工作原理与上述N型开关晶体管的工作原理相似,区别仅在于P型开关晶体管是低电平导通,在此不再赘述。
基于同一发明构思,本公开实施例还提供了一种栅极驱动电路,如图6所示,包括级联的多个移位寄存器:SR(1)、SR(2)...SR(n)...SR(N-1)、SR(N)(共N个移位寄存器,1≤n≤N),其中,针对各级移位寄存器,当第一复位控制信号端Rst1与第二复位控制信号端Rst2为同一信号端时:
除第一级移位寄存器SR(1)之外,其余每一级移位寄存器SR(n)的驱动信号输出端Output_n分别与相邻的上一级移位寄存器SR(n-1)的第一复位控制信号端Rst1和第二复位控制信号端Rst2相连;
除最后一级移位寄存器SR(N)之外,其余每一级移位寄存器SR(n)的驱动信号输出端Output_n分别与相邻的下一级移位寄存器SR(n+1)的输入信号端Input相连;
第一级移位寄存器SR(1)的输入信号端Input与帧起始信号端STV相连。
进一步地,最后一级移位寄存器SR(N)的第一复位控制信号端Rst1和第二复位控制信号端Rst2均与复位控制端Reset相连,用于在最后一级移位寄存器SR(N)输出扫描信号之后使最后一级移位寄存器SR(N)的第一节点和驱动信号输出端复位。本实施例中的复位控制端Reset可以单独设置,也可以根据情况与其他端共用,只要满足能够保证最后一级移位寄存器SR(N)正常复位即可。
具体地,上述栅极驱动电路中的每个移位寄存器的具体结构与本公开上述移位寄存器在功能和结构上均相同,重复之处不再赘述。
具体地,在本公开实施例提供的上述移位寄存器中,如图6所示,各级移位寄存器的参考信号端Verf均连接同一参考信号端Verf;奇数级移位寄存器的第一时钟信号端CK1与偶数级移位寄存器的第三时钟信号端CKB1均连接同一时钟信号端CLK;奇数级移位寄存器的第三 时钟信号端CKB1与偶数级移位寄存器的第一时钟信号端CK1均连接同一时钟信号端CLKB;当节点控制信号端VHD的节点控制信号为直流信号时,各级移位寄存器的节点控制信号端VHD均连接同一节点控制信号端VHD。
可选地,在本公开实施例提供的上述栅极驱动电路中,除第一级移位寄存器之外,其余每一级移位寄存器还包括:帧初始化模块7;其中,如图7所示,帧初始化模块7的输入端与帧起始信号端STV相连;输出端与第二节点B相连;
帧初始化模块7用于在帧起始信号端STV的控制下,对移位寄存器的驱动信号输出端进行初始化。这样当第一级移位寄存器和第二级移位寄存器接收到输入信号时,通过其它级移位寄存器的帧初始化模块控制其它级移位寄存器的第二节点B的电位复位,从而对移位寄存器的驱动信号输出端进行初始化。
在本公开实施例提供的上述栅极驱动电路中,如图8a和图8b所示,帧初始化模块7具体包括:第十六开关晶体管T16,其中,
第十六开关晶体管T16的栅极和源极均与帧起始信号端STV相连,漏极与第二节点B相连。
在具体实施时,第十六开关晶体管T16可以为N型晶体管,也可以为P型晶体管,在此不作限定。
以上仅是举例说明移位寄存器中帧初始化模块的具体结构,在具体实施时,帧初始化模块的具体结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
基于同一发明构思,本公开实施例还提供了一种栅极驱动电路,如图9所示,包括级联的多个移位寄存器:SR(1)、SR(2)...SR(n)...SR(N-1)、SR(N)(共N个移位寄存器,1≤n≤N),图9中仅示出SR(1)、SR(2)、SR(3)和SR(4)的连接关系,其中,针对各级移位寄存器,当第一复位控制信号端Rst1的信号比第二复位控制信号端Rst2的信号延迟大于0且小于1个脉冲宽度时:
除第一级移位寄存器SR(1)和第二级移位寄存器SR(2)之外,其余每一级移位寄存器SR(n)的驱动信号输出端Output_n分别与相邻的上两级移位寄存器SR(n-2)的第二复位控制信号端Rst2相连;
除第一级移位寄存器SR(1)之外,其余每一级移位寄存器SR(n)的 第二复位控制信号端Rst2分别与相邻的上一级移位寄存器SR(n-1)的第一复位控制信号端Rst1相连;
除最后两级移位寄存器之外,其余每一级移位寄存器SR(n)的驱动信号输出端Output_n分别与相邻的下两级移位寄存器SR(n+2)的输入信号端Input相连;
第一级移位寄存器SR(1)和第二级移位寄存器SR(2)的输入信号端Input与帧起始信号端STV相连。
进一步地,如图9所示,倒数第二级移位寄存器SR(N-1)的第二复位控制信号端Rst2与第一复位控制端Reset1相连,倒数第二级移位寄存器SR(N-1)的第一复位控制信号端Rst1与第二复位控制端Reset2相连,用于在倒数第二级移位寄存器SR(N-1)输出扫描信号之后使最后一级移位寄存器SR(N)的第一节点和驱动信号输出端复位。最后一级移位寄存器SR(N)的第一复位控制信号端Rst1与第三复位控制端Reset3相连,最后一级移位寄存器SR(N)的第二复位控制信号端Rst2与第二复位控制端Reset2相连,用于在最后一级移位寄存器SR(N)输出扫描信号之后使最后一级移位寄存器SR(N)的第一节点和驱动信号输出端复位。
具体地,上述栅极驱动电路中的每个移位寄存器的具体结构与本公开上述移位寄存器在功能和结构上均相同,重复之处不再赘述。
具体地,在本公开实施例提供的上述移位寄存器中,如图9所示,各级移位寄存器的参考信号端Verf均连接同一参考信号端Verf;第4n+1级(n=0,1,2,3......)移位寄存器的第一时钟信号端CK1与第4n+3级移位寄存器的第三时钟信号端CKB1均连接同一时钟信号端CLK1;第4n+1级移位寄存器的第三时钟信号端CKB1与第4n+3级移位寄存器的第一时钟信号端CK1均连接同一时钟信号端CLK1B;第4n+2级移位寄存器的第一时钟信号端CK1与第4n+4级移位寄存器的第三时钟信号端CKB1均连接同一时钟信号端CLK2;第4n+2级移位寄存器的第三时钟信号端CKB1与第4n+4级移位寄存器的第一时钟信号端CK1均连接同一时钟信号端CLK2B;当节点控制信号端VHD的节点控制信号为直流信号时,各级移位寄存器的节点控制信号端VHD均连接同一节点控制信号端VHD。
可选地,在本公开实施例提供的上述栅极驱动电路中,除第一级 移位寄存器和第二级移位寄存器之外,其余每一级移位寄存器还包括:帧初始化模块7;其中,
如图7所示,帧初始化模块7的输入端与帧起始信号端STV相连;输出端与第二节点B相连;
帧初始化模块7用于在帧起始信号端STV的控制下,对移位寄存器的驱动信号输出端进行初始化。这样当第一级移位寄存器和第二级移位寄存器接收到输入信号时,通过其它级移位寄存器的帧初始化模块控制其它级移位寄存器的第二节点B的电位复位,从而对移位寄存器的驱动信号输出端进行初始化。
可选地,在本公开实施例提供的上述栅极驱动电路中,如图8a和图8b所示,帧初始化模块7具体包括:第十六开关晶体管T16,其中,
第十六开关晶体管T16的栅极和源极均与帧起始信号端STV相连,漏极与第二节点B相连。
在具体实施时,第十六开关晶体管T16可以为N型晶体管,也可以为P型晶体管,在此不作限定。
以上仅是举例说明移位寄存器中帧初始化模块的具体结构,在具体实施时,帧初始化模块的具体结构不限于本公开实施例提供的上述结构,还可以是本领域技术人员可知的其他结构,在此不做限定。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括上述的栅极驱动电路,通过该栅极驱动电路为显示装置中阵列基板上的各栅线提供扫描信号,其具体实施可参见上述栅极驱动电路的描述,相同之处不再赘述。
基于同一发明构思,本公开实施例还提供了一种任一种移位寄存器的驱动方法,包括:输入阶段、输出阶段、复位阶段和复位保持阶段;其中,
在复位保持阶段,下拉驱动模块在节点控制信号端的控制下消除由第一时钟信号变化引起的第一节点上的噪声。
具体地,在本公开实施例提供的上述驱动方法中,输入阶段对应上述第一实施例至第六实施例中的T1阶段,输出阶段对应上述第一实施例至第六实施例中的T2阶段,复位阶段对应上述第一实施例至第六实施例中的T3阶段,复位保持阶段对应上述第一实施例至第六实施例中的T4阶段,具体过程不再详述。
可选地,在本公开实施例提供的上述驱动方法中,当输入信号端的有效脉冲信号为高电位信号时,节点控制信号至少在第一时钟信号为上升沿时为高电位信号。
可选地,在本公开实施例提供的上述驱动方法中,当输入信号端的有效脉冲信号为低电位信号时,节点控制信号至少在第一时钟信号为下降沿时为低电位信号。
本公开实施例提供了一种移位寄存器、其驱动方法、栅极驱动电路及显示装置,所述移位寄存器包括输入模块、第一复位模块、第二复位模块、下拉驱动模块、第一输出模块和第二输出模块。其中,输入模块用于在输入信号端的控制下,控制第一节点的电位;第一复位模块用于在第一复位控制信号端的控制下,将参考信号端的参考信号提供给第一节点;第二复位模块用于在第二复位控制信号端的控制下,将参考信号提供给驱动信号输出端;第一输出模块用于在第一节点的控制下,将第一时钟信号端的第一时钟信号提供给驱动信号输出端;第二输出模块用于在第二节点的控制下,将参考信号提供给驱动信号输出端;下拉驱动模块用于在第一节点的电位为第一电位时,控制第二节点的电位为第二电位,在第二节点的电位为第一电位时,控制第一节点的电位为第二电位,以及在节点控制信号端的电位为第一电位、且第一节点的电位为第二电位时,控制第二节点的电位为第一电位。由于节点控制信号端的节点控制信号可以消除由第一时钟信号变化引起的第一节点上的噪声,因此可以提高该移位寄存器的输出稳定性。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (26)

  1. 一种移位寄存器,包括:输入模块、第一复位模块、第二复位模块、第一输出模块、第二输出模块和下拉驱动模块;其中,
    所述输入模块的第一端与输入信号端相连,第二端与第一节点相连;所述输入模块用于在所述输入信号端的控制下,控制所述第一节点的电位;
    所述第一复位模块的第一端与参考信号端相连,第二端与第一复位控制信号端相连,第三端与所述第一节点相连;所述第一复位模块用于在所述第一复位控制信号端的控制下,将所述参考信号端的参考信号提供给所述第一节点;
    所述第二复位模块的第一端与第二复位控制信号端相连,第二端与所述参考信号端相连,第三端与驱动信号输出端相连;所述第二复位模块用于在所述第二复位控制信号端的控制下,将所述参考信号提供给所述驱动信号输出端;
    所述第一输出模块的第一端与第一时钟信号端相连,第二端与所述第一节点相连,第三端与所述驱动信号输出端相连;所述第一输出模块用于在所述第一节点的控制下,将所述第一时钟信号端的第一时钟信号提供给所述驱动信号输出端;
    所述第二输出模块的第一端与所述参考信号端相连,第二端与第二节点相连,第三端与所述驱动信号输出端相连;所述第二输出模块用于在所述第二节点的控制下,将所述参考信号提供给所述驱动信号输出端;
    所述下拉驱动模块的第一端与节点控制信号端相连,第二端与所述参考信号端相连,第三端与所述第一节点相连,第四端与所述第二节点相连;所述下拉驱动模块用于在所述第一节点的电位为第一电位时,控制所述第二节点的电位为第二电位,在所述第二节点的电位为第一电位时,控制所述第一节点的电位为第二电位;
    当所述输入信号端的有效脉冲信号为高电位信号时,所述第一电位为高电位,所述第二电位为低电位;当所述输入信号端的有效脉冲信号为低电位信号时,所述第一电位为低电位,所述第二电位为高电位;所述节点控制信号端的节点控制信号用于消除由所述第一时钟信 号变化引起的所述第一节点上的噪声。
  2. 如权利要求1所述的移位寄存器,其中,当所述输入信号端的有效脉冲信号为高电位信号时,所述节点控制信号至少在所述第一时钟信号为上升沿时为高电位信号。
  3. 如权利要求1所述的移位寄存器,其中,当所述输入信号端的有效脉冲信号为低电位信号时,所述节点控制信号至少在所述第一时钟信号为下降沿时为低电位信号。
  4. 如权利要求1所述的移位寄存器,其中,所述节点控制信号为第二时钟信号。
  5. 如权利要求1所述的移位寄存器,其中,所述节点控制信号为直流信号。
  6. 如权利要求4所述的移位寄存器,其中,所述第二时钟信号的占空比为2%~50%。
  7. 如权利要求1所述的移位寄存器,其中,所述输入模块包括:第一开关晶体管;其中,
    所述第一开关晶体管的栅极和源极均与所述输入信号端相连,漏极与所述第一节点相连。
  8. 如权利要求1所述的移位寄存器,其中,所述第一复位模块,包括:第二开关晶体管;其中,
    所述第二开关晶体管的栅极与所述第一复位控制信号端相连,源极与所述第一节点相连,漏极与所述参考信号端相连。
  9. 如权利要求1所述的移位寄存器,其中,所述第一输出模块,包括:第三开关晶体管和电容器;其中,
    所述第三开关晶体管的栅极与所述第一节点相连,源极与所述第一时钟信号端相连,漏极与所述驱动信号输出端相连;
    所述电容器连接于所述第三开关晶体管的栅极与漏极之间。
  10. 如权利要求1所述的移位寄存器,其中,所述第二输出模块,包括:第四开关晶体管;其中,
    所述第四开关晶体管的栅极与所述第二节点相连,源极与所述驱动信号输出端相连,漏极与所述参考信号端相连。
  11. 如权利要求1所述的移位寄存器,其中,所述第二复位模块,包括:第五开关晶体管;其中,
    所述第五开关晶体管的栅极与所述第二复位控制信号端相连,源极与所述驱动信号输出端相连,漏极与所述参考信号端相连。
  12. 如权利要求1所述的移位寄存器,其中,所述下拉驱动模块,包括:第六开关晶体管、第七开关晶体管、第八开关晶体管、第九开关晶体管和第十开关晶体管;其中,
    所述第六开关晶体管的栅极和源极均与所述节点控制信号端相连,漏极分别与所述第七开关晶体管的栅极和所述第九开关晶体管的源极相连;
    所述第七开关晶体管的源极与所述节点控制信号端相连,漏极与所述第二节点相连;
    所述第八开关晶体管的栅极与所述第二节点相连,源极与所述第一节点相连,漏极与所述参考信号端相连;
    所述第九开关晶体管的栅极与所述第一节点相连,漏极与所述参考信号端相连;
    所述第十开关晶体管的栅极与所述第一节点相连,源极与所述第二节点相连,漏极与所述参考信号端相连。
  13. 如权利要求1所述的移位寄存器,其中,所述下拉驱动模块还包括:与所述输入信号端相连的第五端,与所述驱动信号输出端相连的第六端,以及与第三时钟信号端相连的第七端。
  14. 如权利要求13所述的移位寄存器,其中,所述下拉驱动模块,包括:第六开关晶体管、第七开关晶体管、第八开关晶体管、第十一开关晶体管、第十二开关晶体管、第十三开关晶体管、第十四开关晶体管和第十五开关晶体管;其中,
    所述第六开关晶体管的栅极和源极均与所述节点控制信号端相连,漏极分别与所述第七开关晶体管的栅极、所述第十一开关晶体管的源极和所述第十二开关晶体管的源极相连;
    所述第七开关晶体管的源极与所述节点控制信号端相连,漏极与所述第二节点相连;
    所述第八开关晶体管的栅极与所述第二节点相连,源极所述第一节点相连,漏极与所述参考信号端相连;
    所述第十一开关晶体管的栅极与所述驱动信号输出端相连,漏极与所述参考信号端相连;
    所述第十二开关晶体管的栅极与所述输入信号端相连,漏极与所述参考信号端相连;
    所述第十三开关晶体管的栅极与所述输入信号端相连,源极所述第二节点相连,漏极与所述参考信号端相连;
    所述第十四开关晶体管的栅极与所述驱动信号输出端相连,源极与所述第二节点相连,漏极与所述参考信号端相连;
    所述第十五开关晶体管的栅极与所述第三时钟信号端相连,源极所述驱动信号输出端相连,漏极与所述参考信号端相连。
  15. 如权利要求1-14任一项所述的移位寄存器,其中,所述第一复位控制信号端与所述第二复位控制信号端为同一信号端。
  16. 如权利要求1-14任一项所述的移位寄存器,其中,所述第一复位控制信号端的信号比所述第二复位控制信号端的信号延迟大于0且小于1个脉冲宽度。
  17. 一种如权利要求1-16任一项所述的移位寄存器的驱动方法,包括:输入阶段、输出阶段、复位阶段和复位保持阶段;其中,
    在复位保持阶段,所述下拉驱动模块在所述节点控制信号端的控制下消除由所述第一时钟信号变化引起的所述第一节点上的噪声。
  18. 如权利要求17所述的驱动方法,其中,当所述输入信号端的有效脉冲信号为高电位信号时,所述节点控制信号至少在所述第一时钟信号为上升沿时为高电位信号。
  19. 如权利要求17所述的驱动方法,其中,当所述输入信号端的有效脉冲信号为低电位信号时,所述节点控制信号至少在所述第一时钟信号为下降沿时为低电位信号。
  20. 一种栅极驱动电路,包括级联的多个如权利要求15所述的移位寄存器;其中,
    除第一级移位寄存器之外,其余每一级移位寄存器的驱动信号输出端分别与相邻的上一级移位寄存器的第一复位控制信号端和第二复位控制信号端相连;
    除最后一级移位寄存器之外,其余每一级移位寄存器的驱动信号输出端分别与相邻的下一级移位寄存器的输入信号端相连;
    第一级移位寄存器的输入信号端与帧起始信号端相连。
  21. 如权利要求20所述的栅极驱动电路,其中,除第一级移位寄 存器之外,其余每一级移位寄存器还包括:帧初始化模块;其中,
    所述帧初始化模块的输入端与所述帧起始信号端相连;输出端与所述第二节点相连;
    所述帧初始化模块用于在所述帧起始信号端的控制下,对移位寄存器的驱动信号输出端进行初始化。
  22. 如权利要求21所述的栅极驱动电路,其中,所述帧初始化模块包括:第十六开关晶体管,其中,
    所述第十六开关晶体管的栅极和源极均与所述帧起始信号端相连,漏极与所述第二节点相连。
  23. 一种栅极驱动电路,包括级联的多个如权利要求16所述的移位寄存器;其中,
    除第一级移位寄存器和第二级移位寄存器之外,其余每一级移位寄存器的驱动信号输出端分别与相邻的上两级移位寄存器的第二复位控制信号端相连;
    除第一级移位寄存器之外,其余每一级移位寄存器的第二复位控制信号端分别与相邻的上一级移位寄存器的第一复位控制信号端相连;
    除最后两级移位寄存器之外,其余每一级移位寄存器的驱动信号输出端分别与相邻的下两级移位寄存器的输入信号端相连;
    第一级移位寄存器和第二级移位寄存器的输入信号端与帧起始信号端相连。
  24. 如权利要求23所述的栅极驱动电路,其中,除第一级移位寄存器之外,其余每一级移位寄存器还包括:帧初始化模块;其中,
    所述帧初始化模块的输入端与所述帧起始信号端相连,输出端与所述第二节点相连;
    所述帧初始化模块用于在所述帧起始信号端的控制下,对移位寄存器的驱动信号输出端进行初始化。
  25. 如权利要求24所述的栅极驱动电路,其中,所述帧初始化模块包括:第十六开关晶体管,其中,
    所述第十六开关晶体管的栅极和源极均与所述帧起始信号端相连,漏极与所述第二节点相连。
  26. 一种显示装置,其中,包括如权利要求20-25任一项所述的栅极驱动电路。
PCT/CN2016/074136 2015-09-28 2016-02-19 一种移位寄存器, 其驱动方法, 栅极驱动电路及显示装置 WO2017054399A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/512,284 US10186221B2 (en) 2015-09-28 2016-02-19 Shift register, driving method thereof, gate driving circuit and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510627519.7A CN105096902B (zh) 2015-09-28 2015-09-28 一种移位寄存器、其驱动方法、栅极驱动电路及显示装置
CN201510627519.7 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017054399A1 true WO2017054399A1 (zh) 2017-04-06

Family

ID=54577194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074136 WO2017054399A1 (zh) 2015-09-28 2016-02-19 一种移位寄存器, 其驱动方法, 栅极驱动电路及显示装置

Country Status (3)

Country Link
US (1) US10186221B2 (zh)
CN (1) CN105096902B (zh)
WO (1) WO2017054399A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616618B (zh) * 2015-03-09 2017-04-26 京东方科技集团股份有限公司 移位寄存器单元、移位寄存器、显示面板及显示装置
CN104867439B (zh) * 2015-06-24 2017-04-05 合肥京东方光电科技有限公司 移位寄存器单元及其驱动方法、栅极驱动电路及显示装置
CN105096803B (zh) * 2015-08-26 2017-11-14 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动电路、显示装置
CN105096902B (zh) 2015-09-28 2018-09-11 京东方科技集团股份有限公司 一种移位寄存器、其驱动方法、栅极驱动电路及显示装置
CN105185345B (zh) * 2015-10-23 2018-09-07 京东方科技集团股份有限公司 一种栅极驱动电路及其驱动方法、显示面板
CN105185349B (zh) * 2015-11-04 2018-09-11 京东方科技集团股份有限公司 一种移位寄存器、栅极集成驱动电路及显示装置
CN105448259B (zh) * 2015-12-25 2018-03-30 上海中航光电子有限公司 栅极驱动器以及显示面板
CN105632563B (zh) * 2016-01-05 2019-06-07 京东方科技集团股份有限公司 一种移位寄存器、栅极驱动电路及显示装置
CN105632562B (zh) * 2016-01-05 2019-08-06 京东方科技集团股份有限公司 一种移位寄存器、栅极驱动电路、显示面板及显示装置
CN105469736B (zh) * 2016-01-07 2018-03-23 京东方科技集团股份有限公司 一种goa单元及其驱动方法、goa电路、显示装置
CN105469738B (zh) * 2016-01-19 2017-12-12 京东方科技集团股份有限公司 一种移位寄存器、栅极驱动电路及显示装置
CN105575315B (zh) 2016-02-26 2018-01-23 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极扫描电路和显示装置
CN105702222B (zh) * 2016-04-18 2018-06-08 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动装置、显示装置和驱动方法
CN105938711B (zh) 2016-06-06 2018-07-06 京东方科技集团股份有限公司 阵列栅极驱动电路及其驱动方法
CN106098011A (zh) * 2016-08-17 2016-11-09 京东方科技集团股份有限公司 双向扫描goa单元、驱动方法和goa电路
KR102581490B1 (ko) * 2016-08-30 2023-09-21 삼성디스플레이 주식회사 표시 장치
CN107871468B (zh) 2016-09-28 2023-09-26 合肥鑫晟光电科技有限公司 输出复位电路、栅极集成驱动电路、驱动方法及显示装置
CN108022560B (zh) * 2016-11-01 2023-10-10 合肥鑫晟光电科技有限公司 栅极驱动电路及其驱动方法、显示基板和显示装置
CN108417183B (zh) * 2017-02-10 2020-07-03 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动电路、显示装置
CN108573667B (zh) * 2017-03-09 2019-11-15 合肥鑫晟光电科技有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
CN106997753B (zh) * 2017-04-07 2019-07-12 深圳市华星光电技术有限公司 一种goa驱动电路
CN107274856A (zh) * 2017-08-22 2017-10-20 京东方科技集团股份有限公司 一种移位寄存器及其驱动方法、栅极驱动电路
CN107393461B (zh) * 2017-08-30 2020-07-03 京东方科技集团股份有限公司 栅极驱动电路及其驱动方法和显示装置
KR102612946B1 (ko) * 2017-09-26 2023-12-11 엘지디스플레이 주식회사 게이트 구동부 및 이를 포함하는 표시패널
CN107492338A (zh) * 2017-10-13 2017-12-19 京东方科技集团股份有限公司 一种栅极驱动电路及显示装置
KR20190053989A (ko) * 2017-11-10 2019-05-21 삼성디스플레이 주식회사 게이트 구동회로 및 그것을 포함하는 표시 장치
CN108053794A (zh) * 2018-01-02 2018-05-18 京东方科技集团股份有限公司 一种移位寄存器及其驱动方法、栅极驱动电路
CN107945762A (zh) * 2018-01-03 2018-04-20 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
CN108062938B (zh) * 2018-01-05 2020-06-19 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置
CN108564980B (zh) * 2018-01-29 2020-11-24 京东方科技集团股份有限公司 移位寄存单元及其驱动方法、栅极驱动电路和显示装置
CN108257568B (zh) * 2018-02-01 2020-06-12 京东方科技集团股份有限公司 移位寄存器、栅极集成驱动电路、显示面板及显示装置
CN108389539B (zh) * 2018-03-15 2020-06-16 京东方科技集团股份有限公司 移位寄存器单元、驱动方法、栅极驱动电路及显示装置
CN108877716B (zh) * 2018-07-20 2021-01-26 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
KR20220022526A (ko) * 2020-08-18 2022-02-28 삼성디스플레이 주식회사 게이트 구동부 및 이를 포함하는 표시 장치
CN116030766A (zh) * 2021-10-26 2023-04-28 武汉京东方光电科技有限公司 移位寄存器单元、栅极驱动电路及显示装置
CN114093296B (zh) * 2021-11-09 2022-12-02 合肥维信诺科技有限公司 扫描电路及其驱动方法、显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012591A (zh) * 2009-09-04 2011-04-13 北京京东方光电科技有限公司 移位寄存器单元及液晶显示器栅极驱动装置
US8059780B2 (en) * 2010-03-19 2011-11-15 Au Optronics Corp. Shift register circuit and gate driving circuit
CN102629444A (zh) * 2011-08-22 2012-08-08 北京京东方光电科技有限公司 栅极集成驱动电路、移位寄存器及显示屏
CN102682699A (zh) * 2012-04-20 2012-09-19 京东方科技集团股份有限公司 栅极驱动电路及显示器
CN102945657A (zh) * 2012-10-29 2013-02-27 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路、阵列基板和显示装置
CN105096902A (zh) * 2015-09-28 2015-11-25 京东方科技集团股份有限公司 一种移位寄存器、其驱动方法、栅极驱动电路及显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501048B2 (ja) * 2000-12-28 2010-07-14 カシオ計算機株式会社 シフトレジスタ回路及びその駆動制御方法並びに表示駆動装置、読取駆動装置
JP5079301B2 (ja) * 2006-10-26 2012-11-21 三菱電機株式会社 シフトレジスタ回路およびそれを備える画像表示装置
CN101383133B (zh) * 2008-10-20 2010-12-01 友达光电股份有限公司 一种用于消除残影的移位缓存器单元
US9373414B2 (en) * 2009-09-10 2016-06-21 Beijing Boe Optoelectronics Technology Co., Ltd. Shift register unit and gate drive device for liquid crystal display
CN101783124B (zh) * 2010-02-08 2013-05-08 北京大学深圳研究生院 栅极驱动电路单元、栅极驱动电路及显示装置
CN102237029B (zh) * 2010-04-23 2013-05-29 北京京东方光电科技有限公司 移位寄存器、液晶显示器栅极驱动装置和数据线驱动装置
CN102651238B (zh) * 2011-04-18 2015-03-25 京东方科技集团股份有限公司 移位寄存器单元、移位寄存器、显示面板及显示器
KR101768485B1 (ko) * 2011-04-21 2017-08-31 엘지디스플레이 주식회사 쉬프트 레지스터
CN202363089U (zh) * 2011-12-19 2012-08-01 京东方科技集团股份有限公司 移位寄存器和阵列基板栅极驱动电路
CN102654969B (zh) * 2011-12-31 2013-07-24 京东方科技集团股份有限公司 移位寄存器单元、移位寄存器电路、阵列基板及显示器件
CN202487125U (zh) * 2012-01-06 2012-10-10 京东方科技集团股份有限公司 移位寄存器和阵列基板栅极驱动电路
CN105493195B (zh) * 2013-07-25 2019-08-02 夏普株式会社 移位寄存器和显示装置
CN104157248A (zh) * 2014-05-08 2014-11-19 京东方科技集团股份有限公司 栅极驱动电路、栅极驱动方法和显示装置
CN104282283B (zh) * 2014-10-21 2016-09-28 重庆京东方光电科技有限公司 一种移位寄存器单元、栅极驱动电路及显示装置
CN104299594B (zh) * 2014-11-07 2017-02-15 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路及显示装置
CN104464600B (zh) * 2014-12-26 2017-02-01 合肥鑫晟光电科技有限公司 移位寄存器单元及其驱动方法、移位寄存器电路以及显示装置
CN104715734B (zh) * 2015-04-14 2017-08-08 京东方科技集团股份有限公司 移位寄存器、栅极驱动电路及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012591A (zh) * 2009-09-04 2011-04-13 北京京东方光电科技有限公司 移位寄存器单元及液晶显示器栅极驱动装置
US8059780B2 (en) * 2010-03-19 2011-11-15 Au Optronics Corp. Shift register circuit and gate driving circuit
CN102629444A (zh) * 2011-08-22 2012-08-08 北京京东方光电科技有限公司 栅极集成驱动电路、移位寄存器及显示屏
CN102682699A (zh) * 2012-04-20 2012-09-19 京东方科技集团股份有限公司 栅极驱动电路及显示器
CN102945657A (zh) * 2012-10-29 2013-02-27 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动电路、阵列基板和显示装置
CN105096902A (zh) * 2015-09-28 2015-11-25 京东方科技集团股份有限公司 一种移位寄存器、其驱动方法、栅极驱动电路及显示装置

Also Published As

Publication number Publication date
US10186221B2 (en) 2019-01-22
CN105096902B (zh) 2018-09-11
CN105096902A (zh) 2015-11-25
US20170278473A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2017054399A1 (zh) 一种移位寄存器, 其驱动方法, 栅极驱动电路及显示装置
US10622081B2 (en) Shift register, gate driving circuit and display device
US10262615B2 (en) Shift register, driving method, and gate electrode drive circuit
CN108597437B (zh) 一种移位寄存器、栅极驱动电路及其驱动方法、显示装置
US10283030B2 (en) Shift register, gate driver, display panel and driving method
JP5859275B2 (ja) シフト・レジスタユニット、ゲート駆動装置及び液晶ディスプレー
JP6239325B2 (ja) ゲート駆動回路、アレイ基板及び表示装置
EP3709287B1 (en) Gate drive circuit and drive method therefor, and display device
JP4912186B2 (ja) シフトレジスタ回路およびそれを備える画像表示装置
WO2017020549A1 (zh) 移位寄存器、栅极驱动电路、显示面板的驱动方法、显示装置
US10204694B2 (en) Shift register, gate driving circuit and display apparatus
EP2498260A1 (en) Shift register and the scanning signal line driving circuit provided there with, and display device
EP3217387A1 (en) Shift register unit, gate driving circuit and display device
US10403188B2 (en) Shift register unit, gate driving circuit and display device
KR20130043637A (ko) 게이트 드라이버 온 어레이, 시프팅 레지스터 및 디스플레이 스크린
JP2016517607A (ja) シフトレジスタ、表示装置、ゲート駆動回路及び駆動方法
TWI473069B (zh) 閘極驅動裝置
KR20100083370A (ko) 게이트 구동회로 및 이를 갖는 표시장치
CN109410811B (zh) 一种移位寄存器、栅极驱动电路及显示装置
JP2009049985A (ja) 電子回路のブートストラップポイント電圧を低下する方法、及びその方法を用いた装置
WO2018126754A1 (zh) 一种移位寄存器、其驱动方法、栅极驱动电路及显示装置
WO2018161806A1 (zh) 移位寄存器、其驱动方法、栅线集成驱动电路及显示装置
CN109427409B (zh) 移位寄存器、栅极驱动电路、显示面板及驱动方法
CN110782940A (zh) 移位寄存单元、栅极驱动电路、阵列基板及显示装置
WO2019223550A1 (zh) 移位寄存器、栅极驱动电路和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850028

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16850028

Country of ref document: EP

Kind code of ref document: A1