WO2017022474A1 - 車両用操舵支援制御装置 - Google Patents

車両用操舵支援制御装置 Download PDF

Info

Publication number
WO2017022474A1
WO2017022474A1 PCT/JP2016/071197 JP2016071197W WO2017022474A1 WO 2017022474 A1 WO2017022474 A1 WO 2017022474A1 JP 2016071197 W JP2016071197 W JP 2016071197W WO 2017022474 A1 WO2017022474 A1 WO 2017022474A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
steering
driver
lane
control device
Prior art date
Application number
PCT/JP2016/071197
Other languages
English (en)
French (fr)
Inventor
亮介 清水
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/579,446 priority Critical patent/US10421491B2/en
Priority to EP16832753.4A priority patent/EP3330161B1/en
Priority to CN201680027829.8A priority patent/CN107531280B/zh
Priority to JP2017532475A priority patent/JP6584509B2/ja
Publication of WO2017022474A1 publication Critical patent/WO2017022474A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0255Automatic changing of lane, e.g. for passing another vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Definitions

  • the present invention relates to a vehicle steering assist control device.
  • the position and shape of the white line are detected using devices such as radar, camera, navigation, and in-vehicle communication device, and steering torque is given to the electric power steering.
  • a steering assist control device provided with an automatic steering operation as an additional function for maintaining a lane.
  • the steering torque is generally calculated by using PID control or the like from the center position in the lane, the position and direction of the host vehicle.
  • control is performed by offsetting the center position in the target lane according to a road environment that can be detected in advance using an in-vehicle device such as a GPS or a camera such as a road shape or construction.
  • an in-vehicle device such as a GPS or a camera such as a road shape or construction.
  • a technique is known (for example, refer to Patent Document 1).
  • driver steering intervention is determined when the steering angle, steering angle speed, and steering torque sensor values exceed a driver steering intervention threshold (see, for example, Patent Documents 2 and 3 below).
  • the control of the steering assist control device may be released, but there is a problem in that convenience is reduced because support by the control cannot be received.
  • An object of the present invention is to provide a vehicle capable of obtaining assistance for traveling at an appropriate position by steering assist control when the driver intends to travel at a position offset to the left or right from the center of the lane.
  • An object of the present invention is to provide a steering assist control device for a vehicle.
  • the vehicle steering assist control device has a position where the driver intentionally offsets from the center of the lane to the left or right when traveling while performing the steering assist control.
  • a vehicle steering assist control device wherein when driving, a center position of a lane targeted for steering assist control is offset to either the left or right intended by the driver.
  • a vehicle steering assist control apparatus characterized by requiring an algorithm aiming to detect that the driver intends to drive a position offset to the left or right from the center of the lane.
  • the steering assist control device of the present invention when the driver intends to travel at a position offset to the left or right from the center of the lane, the steering assist control is used to travel an appropriate position. You can get help.
  • the driver of the own vehicle 100 travels over the puddle, and the driver generates the puddle W ⁇ b> 1 so that the pedestrian P is not covered with water by rolling up the water.
  • Steering operation is performed to travel away from the roadside belt at the recognized point X, and when the vehicle travels without leaving the puddles W1, W2, and W3, it moves away from the puddles A1, W2, and W3.
  • the steering operation is performed to correct the travel route to the travel route B of the host vehicle 100 when traveling. At this time, right steering is performed at the point X and left steering is performed at the point Y, so that the vehicle tries to travel on a route away from the roadside belt L1.
  • FIG. 2 shows a situation where a large vehicle is traveling in front of the host vehicle.
  • the driver may monitor that there is no oncoming vehicle or obstacle in the oncoming lane, and may overtake the vehicle in time. At this time, if the driver's field of view is obstructed by the vehicle 200 traveling in the front, the vehicle may intentionally travel near the center line L2 in order to facilitate monitoring.
  • the right route is performed at the point X in order to correct the traveling route from the traveling route A of the own vehicle to the traveling route B approaching the center line L2, and the point Y
  • the vehicle tries to travel at a position close to the center line L2.
  • a method of improving the fuel efficiency by driving directly behind the vehicle 200 by continuing to travel on the travel route A and reducing the air resistance may be selected.
  • the vehicle continues to travel on the travel route A without overtaking from the consciousness.
  • FIG. 3 shows a situation in which a vehicle that approaches the side of the vehicle is running.
  • the driver may want to travel in a position close to the opposite direction.
  • the width-shifting vehicle at the point X that recognized the width-shifting
  • in order to correct the travel route from the travel route A of the host vehicle to the travel route B left steering at the point X, Steer right at point Y.
  • the bicycle C is traveling on the side of the roadside belt L1 or when it is determined that the width of the vehicle 300 is a temporary situation for obstacle avoidance, In some cases, the vehicle continues to travel on the travel route A without correcting the route.
  • FIG. 4 shows a steering torque waveform performed by the driver and the control before applying the present invention when a suitable traveling pattern changes as described above.
  • the waveform shown in FIG. 4 will be described with reference to FIG. 1 as an example.
  • the value of the steering torque is taken on the vertical axis, and when the value increases upward, the left steering torque is obtained, and when the value increases downward, the right steering torque is obtained.
  • the value of the origin is taken, it indicates that there is no steering torque.
  • the horizontal axis indicates the position of the host vehicle 100 in the front-rear direction
  • the point X shown in FIG. 1 matches X on the horizontal axis of the graph
  • the point Y matches Y on the horizontal axis of the graph.
  • the waveform TD1 in FIG. 4 indicates the driver steering torque when the steering assist is not controlled
  • the waveform TD2 indicates the driver steering torque during the steering assist control
  • the waveform TC2 indicates the control steering torque during the steering assist control.
  • the driver steering torque TD1 when the steering assist is not controlled is generated only for the right steering torque at the point X shown in FIG. 1 and the left steering torque at the point Y, and the yaw angle of the vehicle with respect to the lane is set to zero degrees.
  • the driver steering torque TD2 at the time of steering assistance control performs the right steering by the driver at the point X like the driver steering torque TD1.
  • the host vehicle travels in the center of the lane and moves away from the travel route A, the control tries to return to the travel route A, and the steering assist torque TC2 by the control is generated in the left direction.
  • the driver increases the right-hand driver steering torque so as to balance the control steering torque in order to travel on the travel route B. Further, since the control steering torque increases in the left direction accordingly, the driver steering torque TD2 and the control steering torque TC2 continue to increase until the driver performs a steering return operation. After the driver steering switchback operation, the driver performs left steering toward the point Y, and the yaw angle of the vehicle with respect to the lane is set to zero degrees. At this time, the driver steering torque TD2 tries to change toward zero as the yaw angle with respect to the lane approaches zero degrees at this time, but the traveling route of the own vehicle moves toward the center of the lane. The control steering torque TC2 increases the steering torque in the left direction.
  • the driver increases the steering torque in the right direction in order to keep the yaw angle with respect to the lane at zero degrees.
  • the driver must always keep the steering torque in the right direction while increasing the steering torque while the vehicle is traveling from the point Y where the yaw angle with respect to the lane is zero degrees. This may cause fatigue due to driver steering.
  • the radius of rotation of the host vehicle 100 at this time is R in the figure and is calculated by the following formula.
  • the lateral movement distance of the host vehicle 100 at this time is defined as Ym
  • the longitudinal movement distance is defined as Xm.
  • a line indicating the center position of the lane drawn in parallel from the lane markings L1 and L2 is shown as A in the figure, and a line moved parallel through the center of the host vehicle 100 is shown as A 'in the figure.
  • the angle taken by A and the direction Vx of the own vehicle in the figure is ⁇ d
  • the angle taken by A ′ and the direction Vx of the own vehicle in the figure is ⁇ d ′. Since A and A ′ are parallel, ⁇ d and ⁇ d ′ have the same value.
  • the lateral distance from the line A indicating the center position of the lane to the center of the host vehicle is Yi in the figure, and the value of Yi ′ that has been translated is equal to Yi.
  • the distance of Ym + Ys moves from the initial position of the host vehicle 100 in the horizontal direction from the initial direction.
  • the lateral movement distance offset amount Ys from the central position which is added to the lateral movement distance Ym of the host vehicle 100 from the line A indicating the central position, is calculated by the following expression.
  • the lane width is shown as W.
  • FIG. 6 shows a control block diagram as an example when this patent is applied.
  • the own vehicle 100 acquires the road shape by the lane marking and curb on the own vehicle traveling path as lane information from the external recognition device 200 such as a camera connected to the vehicle steering assist control device 1000, and calculates the road curvature from the information.
  • the road curvature 1 ⁇ R is obtained.
  • the lane width W of the roadway is obtained from the lane information by the lane width calculation processing 1110.
  • the lateral position Yi from the center of the lane is obtained from the lane information and the lane width W by the lateral position calculation processing 1120.
  • the yaw angle ⁇ d with respect to the lane is obtained by the yaw angle calculation processing 1130 of the own vehicle.
  • the vehicle speed acquisition 1150 acquires the vehicle speed v based on the vehicle speed sensor value obtained from the vehicle speed sensor 300 connected to the vehicle steering assist control device 1000. Furthermore, the acceleration a of the own vehicle is calculated by calculating the amount of time change using the acceleration conversion processing 1155 with respect to the acquired speed v.
  • the steering angle acquisition 1160 acquires the steering angle ⁇ str of the host vehicle. Further, the steering angular velocity ⁇ str is calculated by calculating the amount of time change with respect to the acquired steering angle ⁇ str using the steering angular velocity conversion 1165. Further, the yaw rate ⁇ h of the own vehicle is acquired by the yaw rate acquisition 1170 based on the yaw rate sensor value obtained from the yaw rate sensor 500 connected to the vehicle steering assist control device 1000.
  • the driver steering torque TD is acquired by the steering torque acquisition 1180 based on the steering torque sensor value obtained from the steering torque sensor 600 connected to the vehicle steering assist control device 1000.
  • the control amount calculation 1400 is processed based on the information obtained above.
  • the control amount calculation 1400 is divided into a predicted target lateral position calculation 1300 and a steering control amount calculation 1500. First, the predicted target lateral position calculation 1300 calculates the predicted target lateral position Ytgt.
  • the steering control amount calculation 1500 is performed based on the predicted target lateral position Ytgt, the host vehicle lateral position Yi, the yaw rate ⁇ h, the host vehicle speed v, the yaw angle ⁇ d with respect to the lane, the yaw angle change amount ⁇ h of the host vehicle, and the rotation radius R.
  • the torque control amount TC is calculated.
  • the vehicle steering assist control apparatus 1000 performs steering control of the host vehicle by giving the steering torque control amount TC calculated by the control amount calculation 1400 to a steering actuator 900 such as an electric power steering as a command value.
  • FIG. 7 is a flowchart showing details of the predicted target lateral position calculation 1300.
  • the predicted target lateral position calculation 1300 is repeatedly executed while the vehicle is running, thereby performing steering control of the vehicle.
  • the predicted target lateral position calculation 1300 first confirms whether or not all of the following conditions are satisfied as a precondition in the straight path stable travel determination 1310.
  • the absolute value of (1 ⁇ R) is less than the straight road stable running threshold.
  • the absolute value of ⁇ str is less than the straight road stable running threshold.
  • the absolute value of ⁇ str is less than the straight road stable running threshold.
  • the absolute value of TD is the sudden steering determination threshold. Less than ⁇
  • the absolute value of ⁇ d is less than the stable running threshold ⁇
  • the absolute value of Yi is more than the stable running threshold ⁇ v is more than the control threshold ⁇ v is less than the upper control threshold ⁇ No failure detection of related device If it is determined that the vehicle is not stable, the center position (zero value) in the lane is set as Ytgt.
  • the target lateral position is set to the center of the lane, so if you are running in a situation where stability is not secured, Safety is ensured so that the vehicle will not run out of the lane due to disturbances caused by steps on the road.
  • the lane lateral position change request determination 1320 indicates that there is a change request if a predetermined time has passed while all of the following conditions are satisfied. If not, it is determined that there is no change request.
  • the target lateral position change request determination 1320 when the driver steering torque is generated so as to match the control steering torque after the point Y shown in FIG. 4 by switching the processing, that is, the driver intentionally It is possible to detect whether the vehicle is going to run at a position that is either left or right from the center of the lane, and when the vehicle temporarily deviates from the center of the lane, the target lateral position can be switched naturally without changing the target position.
  • FIG. 8 is a flowchart showing details of the target lateral position correction processing 1340.
  • the change rate limit process 1341 performs a change rate limit process on Ytgt_tmp to calculate Ytgt_ratelim.
  • the change rate limit value at this time is set to a large value so that the fatigue of the driver can be reduced as much as possible while preventing the TC from changing suddenly and giving the driver a sense of incongruity in response to a sudden change in Ytgt.
  • This value is tuned according to the characteristics of the vehicle and the electric power steering, and depending on the current host vehicle speed, it is dynamically switched as a small value when the speed is high and a large value when the speed is low. It is desirable that this is possible.
  • a target lateral position upper limit value is calculated.
  • the target lateral position upper limit value is set to a value obtained by subtracting the safety ensuring distance margin from the lane line from the value of lane width ⁇ 2.
  • the safety ensuring distance margin from the lane marking is calculated in inverse proportion to the vehicle speed v.
  • the target lateral position upper limit value calculated in process 1342 is inverted between the positive and negative values to obtain the target lateral position lower limit value.
  • Ytgt_lim is obtained by subjecting Ytgt_ratelim calculated in process 1341 to a limit process using the target lateral position upper and lower limit values obtained in process 1342 and process 1343.
  • Ytgt_lim is set as the result of the target lateral position correction process 1340.
  • FIG. 9 is a flowchart showing details of the calculation 1500 of the steering torque control amount.
  • the calculation 1500 of the steering torque control amount it is estimated to which position the host vehicle 100 has moved in the state where the control target time th [s] has first elapsed. Therefore, in process 1501, ⁇ h is multiplied by th to calculate the relative yaw angle ⁇ h of the host vehicle after the control target time with respect to the current time.
  • v is multiplied by th to obtain the movement distance lh at the control target time.
  • the turning radius R of the host vehicle is obtained by dividing lh calculated in process 1501 by ⁇ h calculated in process 1502.
  • the lateral movement distance Ym after the control target time is calculated by the following equation.
  • the longitudinal movement distance Xm after the control target time is calculated by the following equation.
  • the lateral position Ys after the control target time is calculated by the following equation.
  • a lateral position deviation Ydiff to be used for calculation of the control value is calculated by the following equation.
  • step 1520 to 1523 the proportional term TCp, integral term TCi, and derivative term TCd of PID control are respectively calculated by adjusting the gain, and the control steering torque TC is calculated by taking the sum in step 1524. .
  • FIG. 10 shows the waveform of the steering torque by the driver and the steering assist control when the present invention is applied to the first embodiment.
  • a waveform TD1 in FIG. 10 indicates a driver steering torque at the time of steering assist non-control
  • a waveform TD2 indicates a driver steering torque at the time of steering assist control
  • a waveform TC2 ' indicates a control steering torque at the time of steering assist control.
  • the steering assist torque TC2 ′ at the time of sudden application is steered when the vehicle starts traveling parallel to the lane line after passing through the point Y with respect to the control steering torque TC2 before application of the present invention shown in FIG.
  • the assist torque gradually returns to zero. Therefore, the driver steering torque becomes zero. Therefore, after passing through the point Y, there is no need to issue a driver steering torque for traveling straight ahead at a position deviated from the center of the lane, and the burden on the driver can be reduced.
  • FIG. 11 is an example in which the control block diagram of FIG. 6 described in the first embodiment is modified.
  • the own vehicle 100 is provided with a driver switch 700 for reflecting the position the driver wants to travel in the roadway in addition to the steering, the blinker lever, etc., in addition to the configuration described in the first embodiment.
  • the switch information Sw from the driver is obtained by the operation acquisition 1190. Sw takes five types of values according to the driver's switch operation: current position, right shift, left shift, center shift, and no operation. The obtained Sw is used for the predicted target lateral position calculation, and the flowchart shown in FIG. 7 is transformed into the predicted target lateral position calculation flowchart by the switch operation shown in FIG.
  • the condition of the in-lane lateral position change request determination 1320 is set to the driver switch determination 1321 so as to switch the process to be executed according to the value of Sw. If the determination result of the driver switch determination 1321 is the current position, the vehicle lateral position Yi is set to the predicted target lateral position temporary value Ytgt_tmp in step 1330, and the vehicle travels while maintaining the current position. If the determination result is rightward movement, the lateral movement amount offset YOffset is subtracted from the previous target lateral position in step 1331 to obtain the predicted target lateral position temporary value Ytgt_tmp, thereby changing the target position to the right. .
  • the horizontal shift amount offset YOffset is added to the previous target horizontal position in processing 1332 to obtain the predicted target horizontal position temporary value Ytgt_tmp, thereby moving the target position to the left. Change.
  • step 1333 the predicted target lateral position that has been moved to the left or right by the right or left switch operation is set by setting the center position in the lane to the predicted target lateral position temporary value Ytgt_tmp. Can be returned to the center. If the result of the determination is that there is no operation, the value of Ytgt_tmp is held in processing 1350, so that if the switch operation is a rightward movement last time, the value is the value that moves to the right position. A value that moves to the left position. With this configuration, the travel position intended by the driver can be reflected more directly, so that the driver can easily understand.
  • the predicted target lateral position is switched in consideration of the driver torque and driver switch of FIG. 13 by combining the functions shown in the flowchart of FIG. 7 and the flowchart of FIG.
  • the predicted target lateral position is switched in consideration of the driver torque and the driver switch, if there is no operation as a result of the determination of 1321 shown in FIG. 12, the determination 1320 of FIG.
  • the predicted target lateral position is changed by driver steering.
  • the predicted target lateral position can be changed without operating the switch, so that it is possible to convey the intention when the target lateral position is directly switched while reducing the troublesomeness of operating the switch. become.
  • the driver switch determination 1321 it is possible to reflect the intention by the switch operation in which the driver's prediction more strongly reflects the intention to switch the target lateral position in the control.
  • a display signal generation 1600 generates and transmits a Disp based on Ytgt generated by the predicted target lateral position calculation processing 1300, and the display device 800
  • the display device 800 is provided for the purpose of giving a notification to the driver.
  • the driver determines whether the control device has accepted the switch operation or whether it has not been accepted due to the influence of the driver's unintended disturbance. It is preferable to provide.
  • the host vehicle 100 includes either the communication device 210 or the GPS 220 or both of the configurations described in the first embodiment, and the map information matching 250 is combined with information obtained from the external recognition device 200.
  • a mechanism that can generate the position, orientation, and map information of the vehicle from each information is added. By generating the position, direction, and map information of the host vehicle from a plurality of information sources, the accuracy of information used for control is improved, and it is possible to perform control suitable for more patterns.
  • Safety can be improved by correcting the lateral position of the vehicle in the lane so as to return to the center of the lane before.
  • the center position of the lane can be obtained from the map information even in a situation where the lane marking cannot be detected by the camera due to snow accumulation or aging deterioration, and control can be performed.
  • Road information LoadInfo indicating whether the road is a one-way street or an expressway is obtained.
  • the obtained LoadInfo is used in the processing 1342 of the target lateral position correction process shown in FIG. 8, and when calculating the safety distance margin from the lane marking, either offset addition or gain multiplication according to the value of LoadInfo, or Try to do both.
  • the safety distance margin from the lane line is set to a value close to zero.
  • the safety distance margin from the center line can be improved by increasing the distance from the center line to the host vehicle and providing a margin.
  • the host vehicle 100 uses the information obtained from the communication device 210 and the detected object information from the external environment recognition device 200 to obtain obstacle information in the surrounding obstacle detection 260 with respect to the configuration described in the first embodiment. To be obtained.
  • the obtained obstacle information is converted by the obstacle information acquisition 1140 and becomes ObjectInfo.
  • ObjectInfo includes the type of obstacle, the moving direction, the moving speed, and the relative position from the host vehicle 100.
  • ObjectInfo is used in the target lateral position correction processing 1342 shown in FIG. 8 in the same manner as LoadInfo, and when calculating the safety distance margin from the lane marking, offset addition and gain multiplication according to the value of each information of ObjectInfo Try to do either or both.
  • the safety distance margin from the lane line is increased to increase safety.
  • a part of or all of these mechanisms can be selected according to the performance of each sensor, the vehicle design concept, and the cost conception stage, and the functions according to the driver's preference can be provided.
  • SYMBOLS 1000 Vehicle steering assistance control apparatus, 200 ... External field recognition apparatus, 300 ... Vehicle speed sensor, 400 ... Steering angle sensor, 500 ... Yaw rate sensor, 600 ... Steering torque sensor, 900 ... Steering actuator, 1300 ... Prediction target lateral position calculation, 1400 ... control amount calculation, 1500 ... steering control amount calculation,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

ドライバが意図して車線の中央より、左右のいずれかにオフセットした位置を走行したい場合に、操舵支援制御により、適切な位置を走行するための支援を得ること。 車線の所定位置を走行するように自車両を制御する車両用操舵支援制御装置において、ドライバの意図に応じて操舵制御量を調整する。

Description

車両用操舵支援制御装置
 本発明は、車両用操舵支援制御装置に関する。
 車両の運転操作において、運転者の負担を軽減するため、レーダーやカメラ、ナビ、車載通信装置などの装置を用いて白線の位置や形状を検出し、電動式パワーステアリングに、操舵トルクを与えて、車線を保持するため自動ステアリング操作を付加機能として備える操舵支援制御装置がある。
 前記操舵支援制御装置において、操舵トルクの算出には車線内の中央位置と、自車の位置、及び向きからPID制御などを用いて算出されるのが一般的である。
 また、前記操舵支援制御装置において、道路の形状や工事など、GPSやカメラなどの車載装置を用いて、あらかじめ検出できる道路環境に応じて、目標とする車線内の中央位置をオフセットさせて制御する技術が知られている(例えば特許文献1を参照。)。
 また、前記操舵支援制御装置において、ドライバの操舵を優先させるために、ドライバの操舵介入が検出された場合は操舵支援制御を解除させる技術がある。ドライバの操舵介入は、ステアリング舵角、ステアリング舵角速度、ステアリングトルクセンサの値がドライバ操舵介入閾値を超えた場合に判断されるものがある(例えば下記特許文献2、3を参照。)。
特開2003-44137号公報 特開平10-203394号公報 特開平11-286280号公報
 しかしながら、前記従来の技術では、車載装置を用いて検出が困難な、ドライバが意図的に車線中央から左右いずれかにオフセットした位置を走行しようとした場合、例えば、路側帯周辺の水溜りの上など走行する場合に発生する水はねを嫌い、車線内を路側帯より反対側に寄って走行しようとした際に、ドライバは路側帯より反対側に向かってステアリング操作を行う。この際に操舵支援制御装置から車線の中央に戻ろうとする、ドライバの意図とは逆方向の操舵トルクが発生してしまい、かえってドライバの操舵の負担を増加させてしまうという問題がある。
 もしくは、ドライバの操舵の負担増加を防ぐために、操舵支援制御装置の制御を解除させてしまう場合もあるが、制御による支援を受けられなくなってしまうため利便性が低下してしまうという問題がある。
 本発明の目的は、ドライバが意図して車線の中央より、左右のいずれかにオフセットした位置を走行したい場合に、操舵支援制御により、適切な位置を走行するための支援を得ることが出来る車両用操舵支援制御装置を提供することにある。
 前記の問題に対して、本発明に係る車両用操舵支援制御装置は、操舵支援制御を行いながら走行している場合に、ドライバが意図して車線の中央から左右のいずれかにオフセットした位置を走行しようとした場合、操舵支援制御の目標とする車線中央位置をドライバの意図している左右のいずれかにオフセットさせることを特徴とする車両用操舵支援制御装置。
 また、ドライバが意図して車線の中央から左右いずれかにオフセットした位置を走行しようとしていることを検出することを目的としたアルゴリズムを要することを特徴とする車両用操舵支援制御装置。
 本発明の車両用操舵支援制御装置によれば、ドライバが意図して車線の中央より、左右のいずれかにオフセットした位置を走行したい場合に、操舵支援制御により、適切な位置を走行するための支援を得ることが出来る。
自車両の走行経路上の路側帯側に水溜りが発生している状況 自車両の前方に大型車両が走行している状況 自車両の横に幅寄せする車両が走行している状況 本発明を適用する前のドライバ及び制御が行う操舵トルクの波形 本実施例を説明するための各記号を示す図 本発明を適用する場合の一例としての制御ブロック図 予測目標横位置計算処理のフローチャート 目標横位置補正処理のフローチャート 操舵トルク制御量算出のフローチャート 本発明適用時のドライバ及び制御が行う操舵トルクの波形 本発明を適用する場合の2つ目の例としての制御ブロック図 予測目標横位置計算処理をドライバスイッチにより変形したフローチャート 予測目標横位置計算処理にドライバスイッチ条件を複合したフローチャート
 以下、図面を参照しながら本発明の一実施形態である車両用操舵支援制御装置を説明する。
 図1に示されるように、自車両100のドライバは水溜りの上を走行して、水を巻き上げて歩行者Pに対して水をかけてしまわないように、水溜りW1の発生をドライバが認知した地点Xで路側帯から離れて走行しようとステアリング操作を行い、水溜りW1、W2、W3から離れずに走行した場合の自車の走行経路Aから、水溜りW1、W2、W3から離れて走行する場合の自車両100の走行経路Bに走行経路を修正しようとステアリング操作を行う。この際、地点Xで右操舵し、地点Yで左操舵を行うことで、路側帯L1から離れた位置の経路を走行しようとする。
 図2は、自車両の前方に大型車両が走行している状況を示す。ドライバは自車両100の前方を走行する車両200が低速で走行している場合、対向車線に対向車や障害物が無いことを監視し、タイミングを見計らって追い抜きを行うことがある。この際、ドライバの視界が、前方を走る車両200により遮られている場合は、監視を行いやすくするために、あえて中央線L2に寄って走行を行う場合がある。この場合、ドライバが追い抜きを行うことを決定したタイミングで、自車の走行経路Aから、中央線L2に寄った走行経路Bへ走行経路を修正するため、地点Xで右操舵を行い、地点Yで左操舵を行うことで中央線L2に寄った位置を走行しようとする。ただし、ドライバによっては追い抜きを行わず、走行経路Aを走行し続けることで車両200の真後ろを走行し、空気抵抗を下げることで燃費を良くする方法を選ぶ場合もあり、また、単に運転の苦手意識から追い抜きを行わず、走行経路Aを走行し続ける場合もある。
 図3は、自車両の横に幅寄せする車両が走行している状況を示す。ドライバは自車両100に対して幅寄せしてくる車両300が存在している場合、その逆方向に寄った位置を走行したくなる場合がある。その場合、幅寄せを認知した地点Xで幅寄せ車両から逆方向に位置取りを行うため、自車の走行経路Aから走行経路Bへ走行経路を修正するため、地点Xで左操舵を行い、地点Yで右操舵を行う。ただし、周辺環境によっては路側帯L1側に自転車Cが走行している場合や車両300の幅寄せが障害物回避のための一時的な状況だと判断できた場合には、走行経路Bへの経路修正を行うことなく、走行経路Aを走行し続ける場合もある。
 前述のように、カメラやレーダーなどのセンサを用いても検出が困難な状況や、ドライバの判断によって適した走行パターンが変化してしまう場合がある。適した走行パターンが変化してしまう場合は、他にも以下のような状況が挙げられる。
 ・自車両後方から接近するバイクなどを左から追い抜きさせないようにするため、車線内の左よりを走る場合
 ・自車両後方から接近するバイクなどを追い越しさせやするするために車線内の右よりを走る場合
 ・見通しの悪い交差点を走行する際に中央線に近い位置を走る場合
 ・対向車がライトをハイビームにしているため、対向車とは逆の位置取りをして走りたい場合
 ・渋滞路の横を走行する際に飛び出しを警戒して渋滞路の逆側に寄って走りたい場合
 ・橋の上などの強い横風が吹く場所を走行している時、対向車線側から距離をとりたい場合
 前述のように、適した走行パターンが変化してしまう場合での、本発明を適用する前のドライバ及び制御が行う操舵トルクの波形を図4に示す。図4で示す波形は、例として図1を用いて説明する。図4に示すグラフは、縦軸に操舵トルクの値を取り、上方向に値が大きくなると、左操舵トルクとなり、下方向に値が大きくなると、右操舵トルクとなる。また、原点の値をとっているときは、操舵トルクが無いことを示す。横軸には自車両100の前後方向の位置を示しており、図1で示した地点Xは、グラフ横軸のXと、地点Yはグラフ横軸のYと一致する。また、図4の波形TD1は操舵支援非制御時のドライバ操舵トルク、波形TD2は操舵支援制御時のドライバ操舵トルク、波形TC2は操舵支援制御時の制御操舵トルクを示す。
 操舵支援非制御時のドライバ操舵トルクTD1は図1で示した地点Xにおける右操舵トルクと、地点Yにおける左操舵トルクのみ発生させ、車線に対する自車のヨー角をゼロ度にする。操舵支援非制御時のドライバ操舵トルクTD1に対して、操舵支援制御時のドライバ操舵トルクTD2は、ドライバ操舵トルクTD1同様に地点Xのドライバによる右操舵を行う。ただし、自車両は車線の中央を走行する、走行経路Aから離れていくため制御が走行経路Aに戻ろうとして、制御による操舵支援トルクTC2を左方向に発生させる。対してドライバは走行経路Bを走行するために制御操舵トルクにつりあうように右向きのドライバ操舵トルクを増加させる。また、それに応じて制御操舵トルクが左向きに増加するため、ドライバが操舵の切り戻し操作を行うまで、ドライバ操舵トルクTD2及び、制御操舵トルクTC2は増加し続ける。ドライバ操舵の切り戻し操作後は、地点Yに向かってドライバが左操舵を行い、車線に対する自車のヨー角をゼロ度にする。この時、自車両の向きが車線に対してのヨー角がゼロ度に近づいてくるにつれ、ドライバ操舵トルクTD2はゼロに向かって変化させようとするが、自車両の走行経路が車線の中央へ向かわないと判断され、制御操舵トルクTC2が左方向への操舵トルク増加を行う。ただし、ドライバは車線に対するヨー角をゼロ度で保とうとさせるため、右方向へ操舵トルク増加を増加させる。そして、自車両の向きが車線に対してのヨー角がゼロ度のまま走る地点Yからの位置を走行する間、ドライバは常に右方向へ操舵トルクを増加させたまま維持しなければならず、ドライバの操舵による疲労の要因となってしまう。
 以下実施形態を説明するにおいて、自車両100と車線の関係を示す記号を、図5を用いて説明する。現在の自車両100の速度をv[m/s]、ヨーレートをωh [rad/s]として、一定速度且つ、一定ステアリング角を保った状態でのt時間後の自車の移動距離を図中lhとすると、以下が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 また、t時間後の自車のヨー角変化量を図中θhとすると、以下が成り立つ。
Figure JPOXMLDOC01-appb-M000002
 また、この時の自車両100の回転半径を図中Rとし、以下の式で算出される。
Figure JPOXMLDOC01-appb-M000003
 また、この時の自車両100の横方向移動距離をYmとして定義し、前後方向移動距離をXmとして定義する。
 区画線L1及びL2から平行に引かれた、車線の中央位置を示す線を図中Aとして示し、自車両100の中央を通るように平行に移動した線を図中A’として示す。図中Aと自車の向きVxが取る角度をθdとし、図中A’と自車の向きVxが取る角度をθd’とする。AとA’は平行であるため、θdとθd’は等しい値をとる。車線の中央位置を示す線Aから、自車の中央までの横方向距離を図中Yiとし、平行移動したYi’の値とYiは等しい。
 現在の自車両100の速度をv[m/s]、ヨーレートをωh[rad/s]として、一定速度且つ、一定ステアリング角を保った状態でt時間走行した場合、車線の中央位置を示す線Aからは、自車両100の初期位置、初期方向から横方向にYm+Ysの距離を移動することになる。この時、中央位置を示す線Aから、自車両100の横方向移動距離Ymに加算される、中央位置からの横方向移動距離オフセット量Ysは、以下の式で算出される。
Figure JPOXMLDOC01-appb-M000004
 また、車線の幅をWとして示す。
 (実施形態1)
 以下、図面を参照しながら本発明の一実施形態である車両用操舵支援制御装置を説明する。
 図6に本特許を適用する場合の一例としての制御ブロック図を記載する。
 自車両100は車両用操舵支援制御装置1000に接続された、カメラなどの外界認識装置200から、自車走行路における区画線や縁石による道路形状を車線情報として取得し、その情報から道路曲率計算処理1100によって、道路の曲率1÷Rを得る。同様に、車線情報から、車線幅計算処理1110により車道の車線幅Wを得る。車線情報と、車線幅Wから、横位置計算処理1120により、車線中央からの横位置Yiを得る。車線情報から、自車のヨー角計算処理1130によって車線に対するヨー角θdを得る。
 また、車両用操舵支援制御装置1000に接続された車速センサ300から得た車速センサ値を元に自車速取得1150で自車の速度vを取得する。更に、取得した速度vに対して、加速度変換処理1155を用いて時間変化量を計算することで自車の加速度aを計算する。
 また、車両用操舵支援制御装置1000に接続されたステアリング角センサ400から得られたステアリング角センサ値を元に、ステアリング角取得1160で自車のステアリング角θstrを取得する。更に、取得した操舵角θstrに対してステアリング角速度変換1165を用いて時間変化量を計算することでステアリング角速度ωstrを計算する。また、車両用操舵支援制御装置1000に接続されたヨーレートセンサ500から得たヨーレートセンサ値を元にヨーレート取得1170で自車のヨーレートωhを取得する。
 車両用操舵支援制御装置1000に接続された操舵トルクセンサ600から得られた操舵トルクセンサ値を元に、操舵トルク取得1180でドライバ操舵トルクTDを取得する。前記で得られた情報を元に制御量演算1400が処理される。制御量演算1400は、予測目標横位置計算1300と、操舵制御量算出1500に分かれており、最初に予測目標横位置計算1300で、予測目標横位置Ytgtを計算する。
 更に、予測目標横位置Ytgt、自車横位置Yi、ヨーレートωh、自車速v、車線に対するヨー角θd、自車のヨー角変化量θh、回転半径Rを元に操舵制御量算出1500で、操舵トルク制御量TCの算出を行う。
 車両用操舵支援制御装置1000は、制御量演算1400で算出された操舵トルク制御量TCを指令値として電動式パワーステアリングなどの操舵アクチュエータ900に与えることで自車両の操舵制御を行う。
  図7に予測目標横位置計算1300の詳細を示すフローチャートを示す。予測目標横位置計算1300は、車両が走行している間、繰り返し実行されることで、車両の操舵制御を行う。予測目標横位置計算1300は、最初に、直進路安定走行判定1310で、前提として以下の条件を全て満たしているのかを確認する。
 ・(1÷R)の絶対値が直線路安定走行閾値未満
 ・θstrの絶対値が直線路安定走行閾値未満
 ・ωstrの絶対値が直線路安定走行閾値未満
 ・TDの絶対値が急操舵判定閾値未満
 ・θdの絶対値が安定走行閾値未満
 ・Yiの絶対値が安定走行閾値以上
 ・vが制御閾値以上
 ・vが制御上限閾値未満
 ・関連する装置の故障検出なし
 直進安定走行判定1310の結果、安定でないと判定された場合は、車線内の中央位置(ゼロ値)をYtgtとして設定する。こうすることで、不安定な走行を行っている場合は目標とする横位置を車線内の中央にすることで、安定性が確保できていない状況で走行を行っている場合に、車線内の左右いずれかに寄った位置を走行してしまい、路上の段差などによる外乱などによって車線を逸脱してしまわないように安全性を確保している。
 また、直進路安定走行判定1310で、安定であると判定された場合は、車線内横位置変更要求判定1320で、以下の条件を全て満たしたまま、一定時間経過していれば、変更要求有りと判定し、そうでない場合は変更要求なしと判定する。
 ・(TD-TC)の絶対値<ドライバトルク拮抗閾値
 ・θdの絶対値が直線走行閾値未満
 車線内横位置変更要求判定1320で、横位置変更要求ありと判定された場合は、処理1330で、予測目標横位置仮値Ytgt_tmpに自車横位置Yiを設定し、車線内横位置変更要求判定1320で、横位置変更要求なしと判定された場合は、処理1350に進み、Ytgt_tmpの値を前回値のまま保持する。その後、Ytgt_tmpに対して、目標横位置補正処理1340を行って、予測目標横位置に設定する。
 車線内横位置変更要求判定1320で、処理を切り替えすることで、図4に示した地点Y以降の制御操舵トルクにつりあうようにドライバ操舵トルクを発生させている場合、つまり、ドライバが意図的に車線の中央から左右いずれかに寄った位置を走行しようとしているかを検出し、一時的に車線中央からずれた場合は目標位置を変更しないことで自然に目標横位置を切り替えすることが出来る。
 また、図8に目標横位置補正処理1340の詳細を表すフローチャートを示す。目標横位置補正処理1340では、変化率リミット処理1341にて、Ytgt_tmpに対して、変化率リミット処理を行い、Ytgt_ratelimを算出する。この時の変化率リミット値はYtgtが急変することに応じて、TCが急変してドライバに違和感を与えてしまわないようにしつつ、ドライバの疲労がなるべく軽減できるように大きな値を設定する。この値は車両や電動パワーステアリングの特性に応じてチューニングされるようになっており、現在の自車速に応じて、速度が高いときは小さく、速度が低いときは大きな値として、動的に切り替えが可能になっていることが望ましい。次に、処理1342で目標横位置上限値を算出する。目標横位置上限値は、車線幅÷2の値から区画線からの安全確保距離マージンを引いた値を設定する。区画線からの安全確保距離マージンは、自車速度vに逆比例させて算出する。処理1343では、処理1342で算出した目標横位置上限値を正負反転し、目標横位置下限値とする。その後、処理1344では、前記処理1341で算出したYtgt_ratelimに、処理1342及び、処理1343で得られた目標横位置上下限値によってリミット処理を施すことによってYtgt_limを得る。最後に、処理1345でYtgt_limを目標横位置補正処理1340の結果として設定する。こうすることで想定外の操舵が発生しても、車線逸脱までの制御やドライバが介入可能な時間に猶予が出来るため、安全性が向上される。
 図9に操舵トルク制御量の算出1500の詳細を表すフローチャートを示す。操舵トルク制御量の算出1500では、最初に制御目標時間th[s]が経過した状態で、自車両100がどの位置に移動しているかを推定する。そのため、処理1501で、ωhにthを乗算し、現在に対しての制御目標時間後の自車両の相対ヨー角θhを算出する。次に、処理1502でvにthを乗算することで、制御目標時間での移動距離lhを求める。フローチャートへの記載は省いているが、処理1501及び処理1502においては、現在の加速度aの値に基づいて補正値を設けることで、より制御性能が向上するため、考慮されるのが望ましい。次に、処理1503において、処理1501で算出したlhを処理1502で算出したθhで割ることで自車両の回転半径Rを得る。更に、処理1504において、以下の式によって、制御目標時間後の横方向移動距離Ymを算出する。
Figure JPOXMLDOC01-appb-M000005
 更に、処理1505において、以下の式によって制御目標時間後の縦方向移動距離Xmを算出する。
Figure JPOXMLDOC01-appb-M000006
 更に、処理1506において、以下の式によって制御目標時間後の横位置Ysを算出する。
Figure JPOXMLDOC01-appb-M000007
 次に、処理1510において、制御値の算出に用いるための横位置偏差Ydiffを、以下の式にて算出する。
Figure JPOXMLDOC01-appb-M000008
 次に、処理1520~1523によって、それぞれPID制御の比例項TCp、積分項TCi、微分項TCdをそれぞれゲイン調整して算出し、処理1524にて総和をとることで、制御操舵トルクTCを算出する。
 図10に実施例1の本発明適用時のドライバ、及び操舵支援制御による操舵トルクの波形を示す。図10の波形TD1は操舵支援非制御時のドライバ操舵トルク、波形TD2は操舵支援制御時のドライバ操舵トルク、波形TC2’は操舵支援制御時の制御操舵トルクを示す。本件急適用時の操舵支援トルクTC2’は、図4で示した本発明の適用前の制御操舵トルクTC2に対して、地点Yを通過したあと、区画線と平行に走行を開始した場合に操舵支援トルクが徐々にゼロに戻る。そのため、ドライバ操舵トルクもゼロになる。そのため、地点Yを通過した後に、車線の中央からずれた位置を、直進走行するためのドライバ操舵トルクを出す必要が無くなり、ドライバの負担を軽減することが出来る。
 (実施形態2)
 次に、本発明の他の実施形態に係る車両用危険報知制御装置について変形例を示す。図11は、実施形態1に記載の図6の制御ブロック図を変形させた一例である。
 自車両100は、実施形態1に記載の構成に対して、ステアリングやウィンカーレバーなどに併設して、ドライバが車道内のどの位置を走行したいかを反映するためのドライバスイッチ700を設置し、スイッチ操作取得1190によってドライバからのスイッチ情報Swを得る。Swは、ドライバのスイッチ操作に応じて、現在位置、右移動、左移動、中央移動、操作なしの5種類の値をとる。得られたSwは予測目標横位置計算に用いられ、図7で示すフローチャートを、図12で示すスイッチ操作による予測目標横位置計算フローチャートへ変形させる。
 スイッチ操作による予測目標横位置計算では、車線内横位置変更要求判定1320の条件を、Swの値によって実行する処理を切り替えするようにドライバスイッチ判定1321にする。ドライバスイッチ判定1321の判定結果が、現在位置の場合は処理1330で予測目標横位置仮値Ytgt_tmpに自車横位置Yiを設定し、現在の位置を維持して走行する。判定結果が、右移動の場合は、処理1331で前回の目標横位置に横移動量オフセットYOffsetを減算し、予測目標横位置仮値Ytgt_tmpとすることで、目標となる位置を右方向に変化させる。逆に、判定結果が左移動の場合は処理1332で、前回の目標横位置に横移動量オフセットYOffsetを加算し、予測目標横位置仮値Ytgt_tmpとすることで、目標となる位置を左方向に変化させる。
 判定結果が中央移動の場合は処理1333で、予測目標横位置仮値Ytgt_tmpに車線内の中央位置を設定することで、右移動、左移動のスイッチ操作で左右に移動していた予測目標横位置を中央に戻すことが出来る。判定結果が、操作なしだった場合は処理1350で、Ytgt_tmpの値を保持することで、前回右移動のスイッチ操作であれば右の位置に移動する値のまま、左移動のスイッチ操作であれば左の位置に移動する値とする。この構成とすることで、ドライバの意図する走行位置をより直接的に反映することが出来るので、ドライバにとってのわかりやすさが向上する。
 また、図7のフローチャートと図12のフローチャートで示す機能を複合させて、図13のドライバトルクとドライバスイッチを考慮して予測目標横位置を切り替えする場合の変形もある。ドライバトルクとドライバスイッチを考慮して予測目標横位置を切り替えする場合は、図12で示す1321の判定の結果、操作なしであった場合は、図7の判定1320を行い、スイッチ操作が無くとも、ドライバの操舵により予測目標横位置を変更するようにしている。
 こうすることで、スイッチを操作せずとも予測目標横位置を変更できるため、スイッチを操作するわずらわしさを軽減しつつも、直接的に目標横位置を切り替えたい場合の意図を伝えることも出来るようになる。また、ドライバスイッチ判定1321の判定を判定1320より優先させることで、ドライバの予測も目標横位置の切り替え意図をより強く反映させた、スイッチ操作による意図を制御に反映させることが可能になる。
 更に、実施形態1に記載の図6の制御ブロック図に対して、予測目標横位置計算処理1300で生成したYtgtを元に、表示信号生成1600で、Dispを生成、送信し、表示装置800に与えることで、ドライバに対して通知を行うことを目的とした、表示装置800を備える。特にドライバスイッチにて横位置の切り替えを行うような場合、制御装置がスイッチの操作を受け付けたのか、それともドライバの意図しない外乱の影響で受け付けられなかったかをドライバが判断する上で、表示装置を備えることが好ましい。
 また、自車両100は、実施形態1に記載の構成に対して通信装置210かGPS220のいずれか、または、その両方を備え、外界認識装置200から得られる情報と合わせて地図情報マッチング250にて、各情報から自車両の位置、方位、地図情報を生成できる機構を加えている。複数の情報源から、自車両の位置、方位、地図情報を生成することにより、制御に用いる情報の精度が向上し、より多くのパターンに対して適した制御を行うことが出来るようになる。
 例えば、外界認識装置200のみでは検出できなかった、カメラやレーダーの死角となる領域のカーブを早めに検出して、直進安定走行判定1310の条件を早めに安定でいないと判定させ、カーブ進入より前に車線の中央に戻るように車線内の自車両横位置を修正することで、安全性を向上できる。また、区画線が積雪や経年劣化によりカメラで検出できないような状況下でも地図情報から車線の中央位置を得ることが出来るようになり、制御が出来るようになる。
 また、地図情報マッチング250によって、道路種別取得処理1105を追加で設けることにより、右左折路までの距離や該道路の走行上限速度、事故多発地点なのか、踏み切りなのか、追い越し禁止道路なのか、一方通行路なのか、高速道路上なのかといった道路情報RoadInfoを得る。得られたRoadInfoは図8に示す目標横位置補正処理の処理1342で用いられ、区画線からの安全距離マージンの算出の際に、RoadInfoの値に応じたオフセット加算、ゲイン乗算のいずれか、またはその両方を行うようにする。そうすることで、例えば、高速道路上を走行しているのであれば、区画線に近い位置を走行しても危険性が少ないため、区画線からの安全距離マージンをゼロに近い値にして、車道内のより自由な位置を走行できるようにし、逆に対向車の存在するような追い越し禁止道路であれば、誤って中央線を踏み越えてしまわないように中央線からの安全距離マージンを大きくして、中央線から自車両までの距離を開いて余裕を持たせることにより、安全性を高めることが出来る。
 また、自車両100は、実施形態1に記載の構成に対して、通信装置210から得られる情報や、外界認識装置200からの検出物情報を用いて、周辺障害物検出260で障害物情報を得られるようにする。得られた障害物情報は、障害物情報取得1140によって変換され、ObjectInfoとなる。ObjectInfoには、障害物の種類、移動方向、移動速度、自車両100からの相対位置が含まれる。ObjectInfoはRoadInfoと同様に、図8に示す目標横位置補正処理の処理1342で用いられ、区画線からの安全距離マージンの算出の際に、ObjectInfoの各情報の値に応じたオフセット加算、ゲイン乗算のいずれか、またはその両方を行うようにする。そうすることで、例えば、自車両の前方で、区画線より外側から、歩行者が車道に向かって移動している場合、区画線からの安全距離マージンを大きくして、安全性を高める。同様に、自車両の後方から追い越し車両が接近していることを検出した場合は、区画線からの安全距離マージンを大きくして、安全性を高めることが可能になる。
 これらの機構の一部、もしくは全てを各センサの性能や車両のデザインコンセプト、コスト構想段階で取捨選択して搭載することで、ドライバの嗜好に応じた機能を提供することが出来る。
1000…車両用操舵支援制御装置、200…外界認識装置、300…車速センサ、400…ステアリング角センサ、500…ヨーレートセンサ、600…操舵トルクセンサ、900…操舵アクチュエータ、1300…予測目標横位置計算、1400…制御量演算、1500…操舵制御量算出、

Claims (9)

  1.  車線の所定位置を走行するように自車両を制御する車両用操舵支援制御装置において、
     ドライバの意図に応じて操舵制御量を調整することを特徴とする車両用操舵支援制御装置。
  2.  請求項1に記載の車両用操舵支援制御装置において、
     自車両が車線内のどの位置に存在するかを検出するための手段と、
     自車両が車線に対してどの方向を向いているかを検出するための手段と、
     自車両の速度を検出するための手段と、
     自車両の操舵方向を検出する手段と、
     ドライバの操舵意図を検出するための手段と、
     自動で自車両の操舵を制御するためのアクチュエータと、を備えたことを特徴とする車両用操舵支援制御装置。
  3.  請求項2に記載の車両用操舵支援制御装置において、
     自車両が車線に対してどの方向を向いているかを検出するための手段は、カメラやレーダーなどの外界認識センサによって車線を区切る中央線、または区画線、または縁石、またはガードレールから自車の走行している車線の両端から自車の走行している位置と車線に対する向きを検出する手段、あるいは、GPS情報と地図情報を照合し、自車の走行している位置と車線に対する向きを検出する手段であることを特徴とする車両用操舵支援制御装置。
  4.  請求項1に記載の車両用操舵支援制御装置において、
     前記ドライバの意図に応じて操舵制御量を調整するとは、ドライバの車線変更または右左折または衝突回避行動のための操舵意図無く、自動制御によって車線から逸脱しないように操舵制御量を調整することであることを特徴とする車両用操舵支援制御装置。
  5.  請求項1に記載の車両用操舵支援制御装置において、
     前記ドライバの意図に応じて操舵制御量を調整するとは、目標とする車線の所定位置を算出し、算出された目標とする車線の所定位置に移動するための操舵制御量を算出することであることを特徴とする車両用操舵支援制御装置。
  6.  請求項1に記載の車両用操舵支援制御装置において、
     前記ドライバの意図に応じて操舵制御量を調整するとは、ドライバの操舵意図の継続時間に応じて、操舵制御量を調整することであることを特徴とする車両用操舵支援制御装置。
  7.  請求項1に記載の車両用操舵支援制御装置において、
     前記ドライバの意図に応じて操舵制御量が調整されていることを、ドライバに通知するための表示装置を有することを特徴とする車両用操舵支援制御装置。
  8.  請求項1に記載の車両用操舵支援制御装置において、
     前記ドライバの意図に応じて操舵制御量を調整するとは、カメラやレーダーなどの外界認識装置、及び、通信装置によって自車両周辺の障害物を、検出し、障害物と自車両の位置関係の結果に応じて操舵制御量を調整することであることを特徴とする車両用操舵支援制御装置。
  9.  請求項1に記載の車両用操舵支援制御装置において、
     前記ドライバの意図に応じて操舵制御量を調整するとは、ドライバの意図より優先して、システムが安全に車道内の左右いずれかに寄った位置を走行できないと判断した場合に、ドライバの意図に夜操舵制御量の調整を無効化することであることを特徴とする車両用操舵支援制御装置。
PCT/JP2016/071197 2015-07-31 2016-07-20 車両用操舵支援制御装置 WO2017022474A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/579,446 US10421491B2 (en) 2015-07-31 2016-07-20 Vehicular steering assistance control device
EP16832753.4A EP3330161B1 (en) 2015-07-31 2016-07-20 Vehicular steering assistance control device
CN201680027829.8A CN107531280B (zh) 2015-07-31 2016-07-20 车辆用操舵辅助控制装置
JP2017532475A JP6584509B2 (ja) 2015-07-31 2016-07-20 車両用操舵支援制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015151448 2015-07-31
JP2015-151448 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017022474A1 true WO2017022474A1 (ja) 2017-02-09

Family

ID=57943276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071197 WO2017022474A1 (ja) 2015-07-31 2016-07-20 車両用操舵支援制御装置

Country Status (5)

Country Link
US (1) US10421491B2 (ja)
EP (1) EP3330161B1 (ja)
JP (1) JP6584509B2 (ja)
CN (1) CN107531280B (ja)
WO (1) WO2017022474A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003295A1 (ja) * 2017-06-27 2019-01-03 本田技研工業株式会社 走行制御システムおよび車両の制御方法
WO2019016917A1 (ja) * 2017-07-20 2019-01-24 日産自動車株式会社 車両走行制御方法及び車両走行制御装置
JP2019028027A (ja) * 2017-08-03 2019-02-21 株式会社Subaru 車両用運転支援装置
WO2019080810A1 (en) * 2017-10-26 2019-05-02 Ningbo Geely Automobile Research & Development Co., Ltd. AUTONOMOUS DRIVING VEHICLE
GB2570683A (en) * 2018-02-02 2019-08-07 Jaguar Land Rover Ltd A Controller and Method for Controlling the Driving Direction of a Vehicle
WO2020161928A1 (ja) * 2019-02-06 2020-08-13 三菱電機株式会社 車両用制御装置および車両用制御方法
JP2020131820A (ja) * 2019-02-15 2020-08-31 三菱電機株式会社 車両用制御装置および車両用制御方法
US11335134B2 (en) 2018-01-18 2022-05-17 Honda Motor Co., Ltd. Driving evaluation system and storage medium
JP2022531031A (ja) * 2020-04-10 2022-07-06 バイドゥ.コム タイムズ テクノロジー(ベイジン) カンパニー リミテッド 経路計画のための二次計画法に基づき、片側に寄せる方法
TWI793482B (zh) * 2020-12-19 2023-02-21 荷蘭商荷蘭移動驅動器公司 輔助駕駛方法及車輛

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL287819B (en) * 2017-01-12 2022-07-01 Mobileye Vision Technologies Ltd Navigation based on vehicle activity
JP7103753B2 (ja) * 2017-03-16 2022-07-20 トヨタ自動車株式会社 衝突回避装置
CA3059863C (en) * 2017-04-14 2023-08-08 Nissan Motor Co., Ltd. Vehicle control method and vehicle control device
SE541795C2 (en) * 2017-09-22 2019-12-17 Sentient Ip Ab Method and system for controlling vehicle lane holding
DE102017223431B4 (de) * 2017-12-20 2022-12-29 Audi Ag Verfahren zum Assistieren eines Fahrers eines Kraftfahrzeugs bei einem Überholvorgang; Kraftfahrzeug; sowie System
DE102018209183A1 (de) * 2018-06-08 2019-12-12 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Unterstützen eines Fahrers in einem Fahrzeug
WO2020016621A1 (ja) * 2018-07-16 2020-01-23 日産自動車株式会社 走行支援方法及び走行支援装置
JP7360269B2 (ja) * 2019-08-01 2023-10-12 株式会社Subaru 車両の走行制御装置
CN112407046B (zh) * 2019-08-20 2022-03-08 宏碁股份有限公司 车辆控制方法与车辆控制系统
JP2022154836A (ja) * 2021-03-30 2022-10-13 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
FR3142731A1 (fr) * 2022-12-05 2024-06-07 Renault S.A.S. Procédé de pilotage d’un véhicule dans sa voie de circulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198458A (ja) * 1999-01-08 2000-07-18 Mazda Motor Corp 車両の制御装置
JP2012232639A (ja) * 2011-04-28 2012-11-29 Toyota Motor Corp 走行支援装置及び方法
JP2013177055A (ja) * 2012-02-28 2013-09-09 Nippon Soken Inc 車両制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183164B2 (ja) * 1996-05-23 2001-07-03 トヨタ自動車株式会社 車両用操舵制御装置
JP3575206B2 (ja) 1997-01-23 2004-10-13 トヨタ自動車株式会社 車両の操舵制御装置
JPH11286380A (ja) * 1998-03-31 1999-10-19 Nohmi Bosai Ltd 防犯装置
JPH11286280A (ja) 1998-04-03 1999-10-19 Mitsubishi Electric Corp 車両の自動走行制御装置
JP4734795B2 (ja) 2001-07-31 2011-07-27 いすゞ自動車株式会社 自動操舵装置
JP2004231096A (ja) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd 車線追従装置
JP4638370B2 (ja) * 2006-03-29 2011-02-23 富士重工業株式会社 車線逸脱防止装置
JP4582052B2 (ja) 2006-06-07 2010-11-17 トヨタ自動車株式会社 走行支援装置
DE102006027325A1 (de) 2006-06-13 2007-12-20 Robert Bosch Gmbh Spurhalteassistent mit Spurwechselfunktion
DE102007027495A1 (de) * 2007-06-14 2008-12-18 Daimler Ag Verfahren zur Unterstützung des Fahrers eines Kraftfahrzeuges bei der Querführung des Kraftfahrzeugs
RU2566175C1 (ru) * 2011-08-31 2015-10-20 Ниссан Мотор Ко., Лтд. Устройство помощи при вождении транспортного средства
KR101779962B1 (ko) * 2013-10-31 2017-09-20 한국전자통신연구원 운전자의 의지 판단을 포함하는 조향 제어 장치 및 이의 작동 방법
JP5915681B2 (ja) * 2014-03-20 2016-05-11 トヨタ自動車株式会社 操舵意思判定装置及び車両制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198458A (ja) * 1999-01-08 2000-07-18 Mazda Motor Corp 車両の制御装置
JP2012232639A (ja) * 2011-04-28 2012-11-29 Toyota Motor Corp 走行支援装置及び方法
JP2013177055A (ja) * 2012-02-28 2013-09-09 Nippon Soken Inc 車両制御装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110740915A (zh) * 2017-06-27 2020-01-31 本田技研工业株式会社 行驶控制系统以及车辆的控制方法
WO2019003295A1 (ja) * 2017-06-27 2019-01-03 本田技研工業株式会社 走行制御システムおよび車両の制御方法
CN110740915B (zh) * 2017-06-27 2022-11-15 本田技研工业株式会社 行驶控制系统以及车辆的控制方法
US11285945B2 (en) 2017-06-27 2022-03-29 Honda Motor Co., Ltd. Traveling control system and control method of vehicle
JPWO2019003295A1 (ja) * 2017-06-27 2020-03-26 本田技研工業株式会社 走行制御システムおよび車両の制御方法
JPWO2019016917A1 (ja) * 2017-07-20 2020-08-06 日産自動車株式会社 車両走行制御方法及び車両走行制御装置
CN110892465A (zh) * 2017-07-20 2020-03-17 日产自动车株式会社 车辆行驶控制方法以及车辆行驶控制装置
WO2019016917A1 (ja) * 2017-07-20 2019-01-24 日産自動車株式会社 車両走行制御方法及び車両走行制御装置
US11077879B2 (en) 2017-07-20 2021-08-03 Nissan Motor Co., Ltd. Vehicle travel control method and vehicle travel control device
US10604139B2 (en) 2017-08-03 2020-03-31 Subaru Corporation Drive assist apparatus for vehicle
CN109383376A (zh) * 2017-08-03 2019-02-26 株式会社斯巴鲁 车辆用驾驶辅助装置
JP2019028027A (ja) * 2017-08-03 2019-02-21 株式会社Subaru 車両用運転支援装置
WO2019080810A1 (en) * 2017-10-26 2019-05-02 Ningbo Geely Automobile Research & Development Co., Ltd. AUTONOMOUS DRIVING VEHICLE
CN111315624A (zh) * 2017-10-26 2020-06-19 宁波吉利汽车研究开发有限公司 一种自动驾驶车辆
US11958484B2 (en) 2017-10-26 2024-04-16 Ningbo Geely Automobile Research & Dev. Co., Ltd. Autonomous driving vehicle
CN111315624B (zh) * 2017-10-26 2023-01-03 宁波吉利汽车研究开发有限公司 一种自动驾驶车辆
US11335134B2 (en) 2018-01-18 2022-05-17 Honda Motor Co., Ltd. Driving evaluation system and storage medium
GB2570683A (en) * 2018-02-02 2019-08-07 Jaguar Land Rover Ltd A Controller and Method for Controlling the Driving Direction of a Vehicle
GB2570683B (en) * 2018-02-02 2020-06-10 Jaguar Land Rover Ltd A Controller and Method for Controlling the Driving Direction of a Vehicle
US11345343B2 (en) 2018-02-02 2022-05-31 Jaguar Land Rover Limited Controller and method for controlling the driving direction of a vehicle
JP2020125062A (ja) * 2019-02-06 2020-08-20 三菱電機株式会社 車両用制御装置および車両用制御方法
DE112019006831T5 (de) 2019-02-06 2021-10-28 Mitsubishi Electric Corporation Fahrzeugsteuerungsvorrichtung und Fahrzeugsteuerungsverfahren
US11939015B2 (en) 2019-02-06 2024-03-26 Mitsubishi Electric Corporation Vehicle control device and vehicle control method
WO2020161928A1 (ja) * 2019-02-06 2020-08-13 三菱電機株式会社 車両用制御装置および車両用制御方法
DE112019006831B4 (de) 2019-02-06 2024-04-25 Mitsubishi Electric Corporation Fahrzeugsteuerungsvorrichtung und Fahrzeugsteuerungsverfahren
JP2020131820A (ja) * 2019-02-15 2020-08-31 三菱電機株式会社 車両用制御装置および車両用制御方法
JP2022531031A (ja) * 2020-04-10 2022-07-06 バイドゥ.コム タイムズ テクノロジー(ベイジン) カンパニー リミテッド 経路計画のための二次計画法に基づき、片側に寄せる方法
JP7229278B2 (ja) 2020-04-10 2023-02-27 バイドゥ.コム タイムズ テクノロジー(ベイジン) カンパニー リミテッド 経路計画のための二次計画法に基づき、片側に寄せる方法
TWI793482B (zh) * 2020-12-19 2023-02-21 荷蘭商荷蘭移動驅動器公司 輔助駕駛方法及車輛

Also Published As

Publication number Publication date
EP3330161A1 (en) 2018-06-06
CN107531280A (zh) 2018-01-02
EP3330161A4 (en) 2019-03-20
JPWO2017022474A1 (ja) 2018-06-21
US10421491B2 (en) 2019-09-24
EP3330161B1 (en) 2020-09-09
CN107531280B (zh) 2019-08-30
JP6584509B2 (ja) 2019-10-02
US20180141588A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6584509B2 (ja) 車両用操舵支援制御装置
US10345814B2 (en) Control system and control method for guiding a motor vehicle along a path
US10246088B2 (en) Control system and control method for guiding a motor vehicle along a path and for avoiding a collision with another motor vehicle
CN110650877B (zh) 车辆控制装置
JP6447639B2 (ja) 目標経路生成装置および走行制御装置
KR102560700B1 (ko) 차량의 주행 지원장치 및 방법
US7617037B2 (en) System for automatically monitoring a motor vehicle
WO2018101253A1 (ja) 車両制御装置
US9014917B2 (en) Method and device for adjusting an intervention torque of a steering assistance system
WO2012105030A1 (ja) 車両制御装置
CN111132883A (zh) 车辆控制装置
JP6521487B2 (ja) 車両制御装置
JP7049283B2 (ja) 車両制御装置
JP6376523B2 (ja) 車両制御装置
WO2016110732A1 (ja) 目標経路生成装置および走行制御装置
JP2023071812A (ja) 自転車に接近する車両の追越し操作を確実にするための方法および装置
CN111674456A (zh) 提供公路车辆转向扭矩管理器中的基于场景的叠加扭矩请求信号的方法
US20190256098A1 (en) Vehicle control device
JP6376520B2 (ja) 車両制御装置
JP6376521B2 (ja) 車両制御装置
JP7226544B2 (ja) 車両の走行制御方法及び走行制御装置
JP6432584B2 (ja) 車両制御装置
JP6525404B1 (ja) 車両制御装置
JP7471150B2 (ja) 走行支援方法、及び、走行支援装置
JP7208106B2 (ja) 走行支援方法および走行支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579446

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017532475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016832753

Country of ref document: EP