WO2017006596A1 - 冷凍サイクル装置 - Google Patents
冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2017006596A1 WO2017006596A1 PCT/JP2016/059861 JP2016059861W WO2017006596A1 WO 2017006596 A1 WO2017006596 A1 WO 2017006596A1 JP 2016059861 W JP2016059861 W JP 2016059861W WO 2017006596 A1 WO2017006596 A1 WO 2017006596A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- refrigerant
- defrost
- heat source
- parallel
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
- F25B47/025—Defrosting cycles hot gas defrosting by reversing the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D21/00—Defrosting; Preventing frosting; Removing condensed or defrost water
- F25D21/002—Defroster control
- F25D21/006—Defroster control with electronic control circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0251—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0253—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0403—Refrigeration circuit bypassing means for the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
- F25B2400/121—Inflammable refrigerants using R1234
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
Definitions
- the present invention relates to a refrigeration cycle apparatus used for an air conditioner, for example.
- Patent Document 1 a part of the refrigerant discharged from the compressor is branched and provided in a defrost pipe and a defrost pipe that flows into a parallel heat exchanger selected as a defrost target among a plurality of parallel heat exchangers, A throttle device that depressurizes the refrigerant discharged from the compressor, and a connection switching device that causes the refrigerant flowing out of the parallel heat exchanger to be defrosted to flow into the main circuit upstream of the parallel heat exchanger other than the defrost target.
- An air conditioning apparatus is described.
- the heating and defrosting simultaneous operation for performing the defrosting of the parallel heat exchanger to be defrosted while operating the parallel heat exchanger other than the defrosting target as an evaporator and continuing the heating operation is performed. Can be executed.
- the heating and defrost simultaneous operation since it is necessary to absorb heat from the outdoor air by a parallel heat exchanger other than the defrost target, it is necessary to operate the outdoor fan. The outdoor air blown by the outdoor fan also flows to the parallel heat exchanger to be defrosted. Thereby, especially when the outside air temperature is lowered, the heat radiation from the parallel heat exchanger to be defrosted to the outdoor air is increased. For this reason, there existed a subject that the heating capability of an air conditioning apparatus might fall.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigeration cycle apparatus capable of suppressing a decrease in heating capacity in simultaneous heating and defrosting operations.
- a refrigeration cycle apparatus includes a main circuit that circulates a refrigerant, a plurality of heat source devices connected in parallel to each other in the main circuit, and a control device that controls the plurality of heat source devices.
- Each of the heat source devices is a compressor that compresses and discharges the refrigerant, a plurality of parallel heat exchangers that operate as at least an evaporator and are connected in parallel with each other in the flow of the refrigerant, and are discharged from the compressor
- a check valve for preventing a reverse flow of the refrigerant, and a refrigerant discharged from the compressor is branched upstream of the check valve, and at least a part of the plurality of parallel heat exchangers.
- a first flow path switching device that switches a flow path of the refrigerant passing through the plurality of parallel heat exchangers
- the control device includes at least one of the plurality of heat source units.
- Some heat source machines a part of the refrigerant discharged from the compressor is supplied to some of the parallel heat exchangers of the plurality of parallel heat exchangers via the defrost circuit, and the plurality of parallel heat exchanges In the first heating and defrost simultaneous operation in which the other parallel heat exchangers of the heaters are operated as an evaporator, and in some heat source machines of the plurality of heat source machines, of the plurality of parallel heat exchangers Supplying the refrigerant discharged from the compressor to all the parallel heat exchangers via the defrost circuit, and in other heat source machines of the plurality of heat source machines, among the plurality of parallel heat exchangers All the parallel heat exchangers of the above are operated as evaporators to continue heating, and the suction pressure of the compressor in some of the plurality of
- FIG. 2 is a Ph diagram during cooling operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- FIG. 3 is a Ph diagram during normal heating operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
- FIG. 6 is a Ph diagram of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention when the heating and defrost simultaneous operation is 2 o'clock.
- FIG. 1 is a circuit configuration diagram showing a configuration of an air conditioner 100 according to the present embodiment.
- the air conditioner 100 includes a plurality of heat source units A-1 and A-2 (heat source side units) connected in parallel to each other in the refrigerant circuit, and a plurality of units connected in parallel to each other in the refrigerant circuit.
- Indoor units B and C use side units.
- the heat source devices A-1 and A-2 are installed outside the room, for example, and the indoor units B and C are installed inside the room, for example.
- the heat source units A-1 and A-2 and the indoor unit B are connected via first extension pipes 11-1 and 11-2b and second extension pipes 12-1 and 12-2b.
- the heat source devices A-1 and A-2 and the indoor unit C are connected via first extension pipes 11-1 and 11-2c and second extension pipes 12-1 and 12-2c.
- the set of the heat source devices A-1 and A-2 and the set of the indoor units B and C include the first extension pipes 11-1, 11-2b, 11-2c and the second extension pipes 12-1, 12-2b. , 12-2c and the like to form a main circuit of the refrigerant circuit.
- the air conditioner 100 further has a control device 30.
- the control device 30 has a function of switching the operation mode by controlling cooling / heating switching devices 2-1, 2-2, a defrost circuit, and the like which will be described later.
- the operation mode of the air conditioner 100 includes at least a cooling operation and a heating operation.
- sub-operation modes include normal heating operation, reverse defrost operation, first heating defrost simultaneous operation (hereinafter sometimes referred to as “heating defrost simultaneous operation 1”), and second heating defrost simultaneous operation (hereinafter referred to as “heating defrost simultaneous operation 1”).
- heating defrost simultaneous operation 1 sometimes referred to as “heating defrost simultaneous operation 1”.
- Heating defrost simultaneous operation 2 Sometimes referred to as “heating and defrost simultaneous operation 2”).
- the control device 30 includes selection means 31 and determination means 32.
- the selection means 31 selects either the 1st heating defrost simultaneous operation or the 2nd heating defrost simultaneous operation as an operation mode in the case of performing a defrost operation.
- the determination means 32 determines whether or not to execute the defrost operation.
- the control device 30 includes, for example, a control arithmetic processing unit such as a CPU (Central Processing Unit), and a storage unit that stores data obtained by programming a processing procedure related to control and the like.
- the selection means 31 and the determination means 32 of this Embodiment are functional blocks implement
- the selection unit 31 is a functional block corresponding to step S6 in FIG. 4 described later
- the determination unit 32 is a functional block corresponding to step S5 in FIG.
- a fluorocarbon refrigerant, an HFO refrigerant, or the like can be used as the refrigerant circulating through the refrigerant circuit.
- the chlorofluorocarbon refrigerant include R32, R125, and R134a that are HFC refrigerants.
- the chlorofluorocarbon refrigerant there are R410A, R407C, R404A and the like which are mixed refrigerants of HFC refrigerant.
- the HFO refrigerant include HFO-1234yf, HFO-1234ze (E), HFO-1234ze (Z), and HFO-1123.
- a CO 2 refrigerant for example, propane, isobutane refrigerant, etc.
- an ammonia refrigerant for example, propane, isobutane refrigerant, etc.
- a mixed refrigerant of the above refrigerants such as a mixed refrigerant of R32 and HFO-1234yf, and the like are vapor compression type.
- Various refrigerants used in the heat pump circuit can be used.
- a refrigerant circuit in which two heat source units A-1 and A-2 and two indoor units B and C are connected will be described as an example.
- the number of connected devices is not limited to this.
- One or three or more indoor units may be connected to the refrigerant circuit, or three or more heat source units may be connected in parallel.
- each indoor unit can perform a cooling and heating simultaneous operation in which cooling or heating is independently selected. It may be a circuit configuration.
- the configuration of the refrigerant circuit in the air conditioning apparatus 100 will be described.
- the heat source units A-1 and A-2 are connected in parallel in the refrigerant circuit, and the refrigerant circuit in the heat source unit A-1 and the refrigerant circuit in the heat source unit A-2 have the same configuration. is doing. Therefore, first, the configuration of the refrigerant circuit including only the heat source unit A-1 among the heat source units A-1 and A-2 will be described, and then the heat source unit A-2 will be briefly described.
- the refrigerant circuit of the air conditioner 100 corresponds to the compressor 1-1, the cooling / heating switching device 2-1, the indoor heat exchangers 3-b and 3-c, and the indoor heat exchangers 3-b and 3-c.
- the flow control devices 4-b and 4-c and the outdoor heat exchanger 5-1 provided in this manner have a main circuit sequentially connected via a refrigerant pipe.
- the refrigerant circuit of the present embodiment is further provided with an accumulator 6-1.
- the accumulator 6-1 is disposed in the suction portion of the compressor 1-1.
- the accumulator 6-1 has a refrigerant storage function for storing surplus refrigerant such as a difference between the required refrigerant amount during cooling and the required refrigerant amount during heating.
- the accumulator 6-1 has a gas-liquid separation function that separates the refrigerant that has flowed into liquid refrigerant and gas refrigerant, and flows out only the gas refrigerant.
- the accumulator 6-1 is not an essential configuration.
- a container for storing the liquid refrigerant may be connected in addition to the suction portion of the compressor 1-1 in the refrigerant circuit.
- the indoor unit B contains an indoor heat exchanger 3-b, a flow rate controller 4-b, and an indoor fan 3f-b that blows air to the indoor heat exchanger 3-b.
- the indoor unit C accommodates an indoor heat exchanger 3-c, a flow rate controller 4-b, and an indoor fan 3f-c that blows air to the indoor heat exchanger 3-c.
- the indoor heat exchangers 3-b and 3-c exchange heat between the refrigerant circulating in the interior and the indoor air blown by the indoor fans 3f-b and 3f-c.
- the indoor heat exchangers 3-b and 3-c operate as an evaporator, and absorb the heat of evaporation of the refrigerant from the indoor air to vaporize the refrigerant.
- the indoor heat exchangers 3-b and 3-c operate as condensers (or radiators), dissipate the heat of condensation of the refrigerant to the indoor air, and liquefy the refrigerant.
- the indoor fans 3f-b and 3f-c generate air flow that sucks indoor air, passes through the indoor heat exchangers 3-b and 3-c, and sends the air again into the room.
- the flow rate control devices 4-b and 4-c are configured by, for example, an electronic expansion valve that can control the flow rate of the refrigerant continuously or in multiple stages by adjusting the opening.
- the flow rate control devices 4-b and 4-c adjust the pressure and temperature of the refrigerant in the indoor heat exchangers 3-b and 3-c, for example, by changing the opening degree based on an instruction from the control device 30. .
- the heat source unit A-1 includes an outdoor fan that blows outdoor air to the compressor 1-1, the cooling / heating switching device 2-1, the outdoor heat exchanger 5-1, the accumulator 6-1 and the outdoor heat exchanger 5-1. 5f-1 is accommodated.
- the compressor 1-1 is a fluid machine that compresses and discharges the sucked refrigerant.
- the compressor 1-1 has a capacity of the compressor 1-1 (a refrigerant discharge amount per unit time) by arbitrarily changing a drive frequency by, for example, an inverter circuit or the like. May be configured to change.
- the cooling / heating switching device 2-1 switches the flow path of the refrigerant discharged from the compressor 1-1.
- the cooling / heating switching device 2-1 is constituted by, for example, a four-way valve.
- the cooling / heating switching device 2-1 is connected between a discharge pipe 1a-1 connected to the discharge side of the compressor 1-1 and a suction pipe 1b-1 connected to the suction side of the compressor 1-1. Is done.
- the cooling / heating switching device 2-1 is controlled by the control device 30.
- the control device 30 moves the flow path of the cooling / heating switching device 2-1 in FIG. 1 so that the refrigerant discharged from the compressor 1-1 flows into the indoor heat exchangers 3-b and 3-c. Switch as shown by the solid line.
- the control device 30 indicates the flow path of the cooling / heating switching device 2-1 by a dotted line in FIG. 1 so that the refrigerant discharged from the compressor 1-1 flows into the outdoor heat exchanger 5-1. Switch as follows.
- the outdoor heat exchanger 5-1 performs heat exchange between the refrigerant circulating inside and the outdoor air blown by the outdoor fan 5f-1.
- the outdoor heat exchanger 5-1 operates as a condenser (or a radiator), dissipates the heat of condensation of the refrigerant to the outdoor air, and liquefies the refrigerant.
- the outdoor heat exchanger 5-1 operates as an evaporator, absorbs the heat of evaporation of the refrigerant from the outdoor air, and vaporizes the refrigerant.
- the outdoor fan 5f-1 blows outdoor air to the outdoor heat exchanger 5-1.
- FIG. 2 is a diagram showing an example of the configuration of the outdoor heat exchanger 5-1 according to the present embodiment.
- the outdoor heat exchanger 5-1 is, for example, a cross-fin type fin tube heat exchanger including a plurality of heat transfer tubes 5a and a plurality of fins 5b.
- the outdoor heat exchanger 5-1 is divided into a plurality of parallel heat exchangers.
- the configuration in which the outdoor heat exchanger 5-1 is divided into two parallel heat exchangers 50-11 and 50-12 is illustrated.
- the parallel heat exchanger 50-11 is disposed above the outdoor heat exchanger 5-1, and the parallel heat exchanger 50-12 is disposed below the parallel heat exchanger 50-11.
- the heat transfer tube 5a allows the refrigerant to pass therethrough.
- the heat transfer tube 5a has a step direction (vertical direction in FIG. 2) perpendicular to the air flow direction (the direction of the white arrow in FIG. 2) and a row direction (in FIG. 2) parallel to the air flow direction. In the left-right direction).
- the fins 5b are spaced apart from each other so as to allow the passage of air.
- the outdoor heat exchanger 5-1 is divided into two parallel heat exchangers 50-11 and 50-12 in the vertical direction.
- the parallel heat exchangers 50-11 and 50-12 are provided in parallel with each other in the refrigerant flow, and are also provided in parallel with each other in the air flow.
- the heat transfer pipe 5a on the windward side is connected to the first connection pipes 13-11 and 13-12 (connection pipes that allow the refrigerant to flow into the outdoor heat exchanger 5-1 during heating operation), and
- the heat transfer pipe 5a on the side is connected to the second connection pipes 14-11 and 14-12 (connection pipes for allowing the refrigerant to flow out of the outdoor heat exchanger 5-1 during the heating operation).
- the leeward heat transfer pipe 5a may be connected to the second connection pipes 14-11 and 14-12, and the leeward heat transfer pipe 5a may be connected to the first connection pipes 13-11 and 13-12.
- the parallel heat exchanger to be defrosted includes the second connection pipe 14 (the second connection pipe 14-11 or the second connection pipe 14). 2 connection pipe 14-12), the refrigerant flows into the first connection pipe 13 (first connection pipe 13-11 or first connection pipe 13-12) from the parallel heat exchanger. .
- the frost-side heat transfer pipe 5a is connected to the second connection pipes 14-11 and 14-12, and the leeward-side heat transfer pipe 5a is connected to the first connection pipes 13-11 and 13-12, thereby defrosting.
- the heat dissipated to the air on the windward side can be used for the defrost on the leeward side.
- FIG. 3 is a diagram showing an example in which the outdoor heat exchangers 5-1 and 5-2 according to the present embodiment are mounted on the heat source devices A- 1 and A- 2.
- the outdoor heat exchanger 5-1 parallel heat exchangers 50-11, 50-12
- the outdoor heat exchanger 5-2 parallel heat exchangers 50-21, 50-22
- Each of the heat source devices A-1 and A-2 is a top flow type in which outdoor air flows in from the side surface of the casing and outdoor air that has passed through the outdoor heat exchangers 5-1 and 5-2 flows out from the upper surface of the casing. is there.
- the upper wind speed is higher than the lower wind speed. Therefore, in order to make the AK values of the parallel heat exchangers 50-11 and 50-12 as equal as possible and the AK values of the parallel heat exchangers 50-21 and 50-22 as equal as possible, the parallel heat exchanger 50 located at the bottom is arranged.
- the heat transfer area of ⁇ 12, 50-22 should be larger than the heat transfer area of the parallel heat exchangers 50-11, 50-21 located at the top.
- the AK value is a product of the heat transfer area of the heat exchanger and the heat passage rate, and is a value [kW / K] representing the ability of the heat passage rate per unit temperature.
- each of the plurality of fins 5b may not be separated on the parallel heat exchanger 50-11 side and the parallel heat exchanger 50-12 side, or each of the parallel heat exchangers 50-11 and 50-12 may be It may be thermally separated to have independent fins.
- the outdoor heat exchanger 5-1 is divided into two parallel heat exchangers 50-11 and 50-12.
- the outdoor heat exchanger 5-1 can be any two or more arbitrary heat exchangers. It can be divided into several parallel heat exchangers.
- the parallel heat exchangers 50-11 and 50-12 and the second extension pipe 12-1 are connected to each other through the first connection pipes 13-11 and 13-12, respectively.
- the first connection pipes 13-11 and 13-12 are provided with second throttle devices 7-11 and 7-12, respectively.
- the exchanger 50-12 is connected via a bypass pipe.
- the bypass pipe is provided with a second expansion device 7-13.
- the second throttle devices 7-11, 7-12, 7-13 are constituted by, for example, electronic expansion valves.
- the second expansion devices 7-11, 7-12, and 7-13 can change the opening degree based on an instruction from the control device 30.
- the parallel heat exchangers 50-11 and 50-12 and the cooling / heating switching device 2-1 are connected via second connection pipes 14-11 and 14-12, respectively.
- First electromagnetic valves 8-11 and 8-12 are provided in the second connection pipes 14-11 and 14-12, respectively.
- the first electromagnetic valves 8-11 and 8-12 open and close the flow path based on instructions from the control device 30.
- a check valve 16-1 that allows the refrigerant discharged from the compressor 1-1 to flow to the cooling / heating switching device 2-1 side during heating operation and prevents backflow is provided. It has been. Since it is only necessary to prevent the backflow when the discharge pressure of the compressor 1-1 is lower than the pressure of the indoor units B and C, an on-off valve such as an electromagnetic valve is used instead of the check valve 16-1. It can also be used.
- an on-off valve such as an electromagnetic valve
- the first electromagnetic valves 8-11 and 8-12 are connected to each other via a defrost pipe 15-1.
- One end side of the defrost pipe 15-1 is connected to the discharge pipe 1a-1, and the other end side is branched and connected to the second connection pipes 14-11 and 14-12, respectively.
- the defrost pipe 15-1 defrosts a part (or all) of the high-temperature and high-pressure refrigerant discharged from the compressor 1-1 to the parallel heat exchangers 50-11 and 50-12 of the outdoor heat exchanger 5-1. For what to supply.
- the defrost pipe 15-1 is provided with a first expansion device 10-1 serving as a decompression device.
- the first expansion device 10-1 is for reducing the high-temperature and high-pressure refrigerant flowing into the defrost pipe 15-1 from the discharge pipe 1a-1 to an intermediate pressure.
- the medium pressure is a pressure that is lower than the high-pressure side pressure (for example, the pressure in the condenser) in the refrigerant circuit and higher than the low-pressure side pressure (for example, the pressure in the evaporator).
- the medium-pressure refrigerant decompressed by the first expansion device 10-1 flows into the parallel heat exchangers 50-11 and 50-12 through the second connection pipes 14-11 and 14-12. As a result, the defrost using the medium-pressure refrigerant is performed in the parallel heat exchangers 50-11 and 50-12.
- the second solenoid valves 9-11 and 9-12 are provided in each of the pipes branched on the other end side of the defrost pipe 15-1.
- the second electromagnetic valves 9-11 and 9-12 control which of the second connection pipes 14-11 and 14-12 allows the medium pressure refrigerant to flow.
- the first solenoid valves 8-11 and 8-12 and the second solenoid valves 9-11 and 9-12 can control the flow of refrigerant, such as a four-way valve, a three-way valve, and a two-way valve. As long as the type is not limited.
- the defrost pipe 15-1, the first electromagnetic valves 8-11 and 8-12, the second electromagnetic valves 9-11 and 9-12, and the second expansion devices 7-11, 7-12 and 7 -13 constitutes a defrost circuit and a flow path switching device.
- the defrost circuit branches a part (or all) of the refrigerant discharged from the compressor 1-1, and selects a part of the plurality of parallel heat exchangers 50-11 and 50-12 selected as a defrost target. It is made to flow into a parallel heat exchanger. Opening and closing of the first solenoid valves 8-11 and 8-12 and the second solenoid valves 9-11 and 9-12 is controlled by the control device 30.
- a fixed restrictor such as a capillary tube may be used as the first restrictor 10-1.
- the second electromagnetic valves 9-11 and 9-12 can be downsized so that the refrigerant pressure decreases to an intermediate pressure at a preset defrost flow rate. Good.
- a flow rate control device capable of controlling the flow rate of the refrigerant continuously or in multiple stages may be installed. In this case, the installation of the first diaphragm device 10-1 can be omitted.
- the heat source machine A-1 is provided with various sensors. Based on detection signals from various sensors, the control device 30 controls devices serving as actuators such as the frequency of the compressor 1-1, the outdoor fan 5f-1, and various flow rate control devices.
- the control device 30 controls devices serving as actuators such as the frequency of the compressor 1-1, the outdoor fan 5f-1, and various flow rate control devices.
- a sensor necessary mainly for execution of defrost or determination of completion of defrost will be described.
- the defrost pipe 15-1 is provided with a pressure sensor 21-11 for detecting the refrigerant pressure in the pipe.
- the pressure sensor 21-11 detects the refrigerant pressure in the parallel heat exchanger 50-11 when the second electromagnetic valve 9-11 is open, and detects when the second electromagnetic valve 9-12 is open.
- the refrigerant pressure in the parallel heat exchanger 50-12 is detected.
- the first connection pipes 13-11 and 13-12 are provided with temperature sensors 22-11 and 22-12 for detecting the temperature of the refrigerant flowing out from the parallel heat exchangers 50-11 and 50-12 when defrosting. It has been. When controlling the pressure of the parallel heat exchangers 50-11 and 50-12 to be defrosted, the detected value of the pressure sensor 21-11 is used.
- the subcool SC of the refrigerant flowing out from the parallel heat exchangers 50-11 and 50-12 is used for determining the end of the defrost.
- the subcool SC is calculated using the temperature difference between the saturated liquid temperature based on the pressure detected by the pressure sensor 21-11 and the temperature detected by the temperature sensors 22-11 and 22-12.
- a pressure sensor may be provided in each of the first connection pipes 13-11 and 13-12.
- Other sensors include a temperature sensor 22-14 that detects the temperature of the refrigerant sucked into the compressor 1-1, a pressure sensor 21-12 that detects the pressure of the refrigerant discharged from the compressor 1-1, and outdoor heat.
- a temperature sensor 22-13 for detecting the temperature of the refrigerant in the gas side pipe connecting between the exchanger 5-1 and the cooling / heating switching device 2-1, a temperature sensor 23 for detecting the outside air temperature, and the like are provided. .
- the control device 30 may acquire information on the outside air temperature from the outside.
- the heat source machine A-2 has the same configuration as the heat source machine A-1. That is, the compressor 1-2, the discharge pipe 1a-2, the suction pipe 1b-2, the cooling / heating switching device 2-2, the outdoor heat exchanger 5-2, the outdoor fan 5f-2, the accumulator 6- of the heat source machine A-2.
- Cooling / heating switching device 2-1 outdoor heat exchanger 5-1, outdoor fan 5f-1, accumulator 6-1
- the temperature sensor 23 for detecting the outside air temperature is provided only in the heat source device A-1.
- FIG. 4 is a flowchart illustrating an example of a control flow executed by the control device 30 of the air-conditioning apparatus 100 according to the present embodiment.
- the control device 30 sets the operation mode of the indoor unit B and the indoor unit C to the cooling operation or the heating operation based on a command from the user using a remote controller or the like.
- Step S2 When the operation mode is set to the cooling operation, the control device 30 performs predetermined cooling control (step S3).
- the control device 30 When the operation mode is set to the heating operation, the control device 30 includes cooling / heating switching devices 2-1, 2-2, flow rate control devices 4-b, 4-c, second expansion devices 7-11, 7-12, 7-21, 7-22, first solenoid valves 8-11, 8-12, 8-21, 8-22, second solenoid valves 9-11, 9-12, 9-21, 9-22, and Controls the first expansion devices 10-1, 10-2, etc., and performs either heating normal operation, heating defrost simultaneous operation 1 (also referred to as continuous heating operation) or heating defrost simultaneous operation 2.
- the control device 30 when the operation mode is set to the heating operation, the control device 30 first sets the sub operation mode to the heating normal operation, and performs predetermined heating control (step S4).
- the normal heating operation is a sub-operation in which all of the parallel heat exchangers 50-11, 50-12, 50-21, 50-22 constituting the outdoor heat exchangers 5-1, 5-2 operate as normal evaporators. Mode.
- the control device 30 determines whether or not the defrost execution condition is satisfied (step S5).
- the determination as to whether or not the defrost implementation condition is satisfied is performed using, for example, the outside air temperature and the low-pressure side pressure of the refrigeration cycle.
- the control apparatus 30 selects and performs either heating defrost simultaneous operation 1 or heating defrost simultaneous operation 2 as a defrost execution method, for example (step S6).
- the control device 30 continues until it determines that the defrost end condition is satisfied (steps S7 to S10).
- step S5 if it is determined in step S5 that the defrosting execution condition is not satisfied, the process returns to step S4, the predetermined heating control is continued, and the determination as to whether the defrosting execution condition is satisfied is repeated at a predetermined time interval.
- a part of the plurality of parallel heat exchangers 50-11, 50-12, 50-21, 50-22 (for example, one for each heat source unit) is connected.
- This is a sub operation mode that is sequentially selected as a defrost target.
- Part of the refrigerant discharged from the compressor flows into the parallel heat exchanger selected as the defrost target by the defrost circuit.
- the parallel heat exchanger other than the defrost target operates as a normal evaporator.
- the heating and defrost simultaneous operation while performing the heating operation by operating one parallel heat exchanger 50-11 of the heat source machine A-1 (outdoor heat exchanger 5-1) as an evaporator, Defrost the heat exchanger 50-12.
- the parallel heat exchanger 50-12 is operated as an evaporator to perform the heating operation, and the parallel heat exchanger 50-11 is defrosted.
- the defrosting of the parallel heat exchangers 50-11 and 50-12 is alternately performed, and the defrosting of the parallel heat exchangers 50-21 and 50-22 is alternately performed. It is possible.
- Heating defrost simultaneous operation 2 is performed by defrosting all parallel heat exchangers (hereinafter referred to as “entire defrosting”) of some of the heat source devices A-1 and A-2 (for example, one heat source device). Is a sub operation mode in which the parallel heat exchanger of other heat source devices is operated as an evaporator to perform the heating operation. That is, in the heating and defrost simultaneous operation 2, the entire surface defrosting for each of the heat source devices A-1 and A-2 is alternately performed while continuing the heating operation. For example, all the parallel heat exchangers 50-11 and 50-12 of one heat source machine A-1 are operated as evaporators to perform the heating operation, while all the parallel heat exchanges of the other heat source machine A-2 are performed.
- the defrosting of the containers 50-21 and 50-22 is performed simultaneously.
- the heating operation is executed by operating all the parallel heat exchangers 50-21 and 50-22 of the heat source machine A-2 as evaporators.
- the defrosting of all the parallel heat exchangers 50-11 and 50-12 of the heat source machine A-1 is performed simultaneously.
- the low-pressure side pressure of the refrigeration cycle the detected temperature of the outdoor heat exchangers 5-1, 5-2, etc. are reduced. -1, 5-2 is performed when it is determined that frost formation has occurred.
- the method of selecting either the heating defrost simultaneous operation 1 or the heating defrost simultaneous operation 2 will be described later with reference to FIG.
- FIG. 5 is a diagram illustrating an example of the state of each valve in each operation mode of the air-conditioning apparatus 100 according to the present embodiment.
- the symbols -b and 4-c are shown as “valve numbers”.
- “ON” of the cooling / heating switching devices 2-1 and 2-2 indicates a state where the flow path is switched as shown by a solid line in FIG.
- FIG. 6 is a diagram illustrating the refrigerant flow during the cooling operation of the air-conditioning apparatus 100 according to the present embodiment.
- the part through which the refrigerant flows is represented by a thick line
- the part through which the refrigerant does not flow is represented by a thin line.
- FIG. 7 is a Ph diagram during the cooling operation of the air-conditioning apparatus 100 according to the present embodiment. Points (a) to (d) in FIG. 7 indicate the states of the refrigerant at the portions (a) to (d) in FIG. 6, respectively.
- the compressor 1-1 of the heat source device A-1 sucks and compresses the low-temperature and low-pressure gas refrigerant and discharges the high-temperature and high-pressure gas refrigerant (point (a) in FIG. ) To (b)).
- Part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1-1 passes through the cooling / heating switching device 2-1, the first electromagnetic valve 8-11, and the second connection pipe 14-11, and the parallel heat exchanger 50. Flows into -11.
- Another part of the high-temperature and high-pressure gas refrigerant passes through the cooling / heating switching device 2-1, the first electromagnetic valve 8-12, and the second connection pipe 14-12 and flows into the parallel heat exchanger 50-12.
- the gas refrigerant flowing into the parallel heat exchangers 50-11 and 50-12 dissipates the heat of condensation in the outdoor air blown by the outdoor fan 5f-1 and condenses into a medium-temperature high-pressure liquid refrigerant (FIG. 7). Points (b) to (c)).
- the medium-temperature and high-pressure liquid refrigerant that has flowed out of the parallel heat exchangers 50-11 and 50-12 includes the first connection pipes 13-11 and 13-12, the second expansion devices 7-11 and 7-12 that are fully opened, 2 Combines with the medium-temperature and high-pressure liquid refrigerant flowing out of the heat source machine A-2 through the extension pipe 12-1. Note that the flow of the refrigerant in the heat source device A-2 is the same as that of the heat source device A-1, and thus the description thereof is omitted.
- the medium-temperature and high-pressure liquid refrigerant branches to the second extension pipes 12-2b and 12-2c and passes through the flow rate control devices 4-b and 4-c.
- the refrigerant that has passed through the flow rate control devices 4-b and 4-c expands and is depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant (points (c) to (d) in FIG. 7).
- the low-temperature and low-pressure gas-liquid two-phase refrigerant flowing out of the flow control devices 4-b and 4-c flows into the indoor heat exchangers 3-b and 3-c, absorbs the heat of evaporation from the indoor air, and evaporates. It becomes a low-temperature and low-pressure gas refrigerant (points (d) to (a) in FIG. 7).
- the control device 30 sets the flow rate control devices 4-b and 4-c so that the superheat (superheat degree) of the low-temperature and low-pressure gas refrigerant shown at point (a) in FIG. 7 is about 2K to 5K. Control.
- the low-temperature and low-pressure gas refrigerant that has flowed out of the indoor heat exchangers 3-b and 3-c passes through the first extension pipes 11-2b and 11-2c and joins them.
- the current is divided into each of A-1 and A-2.
- the gas refrigerant branched to the heat source device A-1 side is sucked into the compressor 1-1 through the cooling / heating switching device 2-1 and the accumulator 6-1.
- FIG. 8 is a diagram showing a refrigerant flow during normal heating operation of the air-conditioning apparatus 100 according to the present embodiment.
- the part through which the refrigerant flows is represented by a thick line
- the part through which the refrigerant does not flow is represented by a thin line.
- FIG. 9 is a Ph diagram during normal heating operation of the air-conditioning apparatus 100 according to the present embodiment. Points (a) to (e) in FIG. 9 indicate the states of the refrigerant at the portions (a) to (e) in FIG. 8, respectively.
- the compressor 1-1 of the heat source machine A-1 sucks and compresses the low-temperature and low-pressure gas refrigerant and discharges the high-temperature and high-pressure gas refrigerant (point (a) in FIG. ) To (b)).
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 1-1 passes through the cooling / heating switching device 2-1 and the first extension pipe 11-1, and merges with the gas refrigerant flowing out from the heat source machine A-2.
- the high-temperature and high-pressure gas refrigerant branches into the first extension pipes 11-2b and 11-2c and flows into the indoor heat exchangers 3-b and 3-c of the indoor units B and C.
- the gas refrigerant that has flowed into the indoor heat exchangers 3-b and 3-c is condensed by releasing heat of condensation to the indoor air blown by the indoor fans 3f-b and 3f-c, and becomes a medium-temperature and high-pressure liquid refrigerant. (Points (b) to (c) in FIG. 9).
- the medium-temperature and high-pressure liquid refrigerant flowing out of the indoor heat exchangers 3-b and 3-c passes through the flow rate control devices 4-b and 4-c.
- the liquid refrigerant that has passed through the flow rate control devices 4-b and 4-c expands and is depressurized, and enters an intermediate-pressure gas-liquid two-phase state (points (c) to (d) in FIG. 9).
- the control device 30 controls the flow rate control devices 4-b and 4-c so that the subcooling (supercooling degree) of the medium-temperature and high-pressure liquid refrigerant indicated by the point (c) in FIG. 9 is about 5K to 20K. To do.
- the medium-pressure gas-liquid two-phase refrigerant that has flowed out of the flow rate control devices 4-b and 4-c passes through the second extension pipes 12-2b and 12-2c to join, and further passes through the second extension pipe 12-1.
- the flow is divided into each of the heat source devices A-1 and A-2.
- a part of the gas-liquid two-phase refrigerant that is branched to the heat source unit A-1 passes through the first connection pipe 13-11 and the second expansion device 7-11.
- the other part of the gas-liquid two-phase refrigerant branched to the heat source unit A-2 side passes through the first connection pipe 13-12 and the second expansion device 7-12.
- the refrigerant that has passed through the second expansion devices 7-11 and 7-12 is expanded and depressurized to become a low-pressure gas-liquid two-phase refrigerant (points (d) to (e) in FIG. 9).
- the control device 30 controls the second expansion devices 7-11 and 7-12 so as to be fixed at a constant opening (for example, fully open), or in the second extension pipe 12-1 or the like.
- the saturation temperature of the pressure and pressure is controlled to be about 0 ° C to 20 ° C.
- the low-temperature and low-pressure gas refrigerant flowing out from the parallel heat exchangers 50-11 and 50-12 joins through the second connection pipes 14-11 and 14-12 and the first electromagnetic valves 8-11 and 8-12, It passes through the cooling / heating switching device 2-1 and the accumulator 6-1 and is sucked into the compressor 1-1.
- reverse defrost operation In this embodiment, the reverse defrost operation is not normally performed. However, while the cycle of normal heating operation, heating defrost simultaneous operation 1 and heating defrost simultaneous operation 2 is repeated, the outside air temperature is greatly reduced, or the suction pressures of the compressors 1-1 and 1-2 are greatly reduced. In the case of a decrease, reverse defrosting operation may be performed to make the outdoor heat exchangers 5-1, 5-2 non-frosting.
- the control device 30 switches the flow path of the cooling / heating switching device 2-1 in the same manner as in the cooling operation.
- the high-temperature gas refrigerant discharged from the compressor 1-1 flows into the parallel heat exchangers 50-11 and 50-12.
- the refrigerant is cooled while melting the frost stacked on the fins 5b.
- the refrigerant flowing out from the parallel heat exchangers 50-11 and 50-12 passes through the second expansion devices 7-11 and 7-12 and the second extension pipe 12-1, and flows out from the heat source machine A-2. To join.
- the merged refrigerant includes the second extension pipes 12-2b and 12-2c, the flow rate control devices 4-b and 4-c, the indoor heat exchangers 3-b and 3-c, and the first extension pipes 11-2b and 11-. 2c and 11-1 are divided into heat source devices A-1 and A-2, respectively.
- the refrigerant branched to the heat source device A-1 side passes through the cooling / heating switching device 2-1 and the accumulator 6-1 and is sucked into the compressor 1-1.
- control device 30 stops the indoor fans 3f-b and 3f-c in order to prevent cold air from being blown into the room from the indoor units B and C.
- control device 30 includes a second expansion device 7-11, 7-12, 7-21, 7-22, and a flow rate control device so that the suction pressure of the compressors 1-1, 1-2 is not reduced as much as possible. Control is performed so that 4-b and 4-c are fully opened.
- Heating defrost simultaneous operation 1 (continuous heating operation)
- the heating and defrost simultaneous operation 1 when it is determined that the defrosting execution condition is satisfied in step S5 of FIG. 4 during the normal heating operation (for example, that the outdoor heat exchangers 5-1 and 5-2 are frosted). This is performed when the heating and defrost simultaneous operation 1 is selected in step S6.
- the configuration of the present embodiment there are two types of operation methods as heating and defrost simultaneous operation 1.
- the first operation method a part of the plurality of heat source units A-1 and A-2 is operated as a defrost target, and the remaining parallel heat exchanger is operated as an evaporator.
- the second operation method only some parallel heat exchangers of some of the heat source machines A-1 and A-2 are defrosted, and the remaining parallel heat exchangers are used as evaporators. It is what makes it work. That is, in the second operation method, in some of the plurality of heat source units A-1 and A-2, a parallel heat exchanger operating as an evaporator and a defrosted parallel heat exchanger are mixed. . On the other hand, in heat source machines other than the some heat source machines, all the parallel heat exchangers operate as evaporators as in the normal heating operation.
- the refrigerant flow in the heating and defrost simultaneous operation 1 by the second operation method is a combination of the refrigerant flow by the first operation method and the refrigerant flow in the heating normal operation described above. That is, depending on which parallel heat exchanger is to be defrosted, the open / close state of the first solenoid valves 8-11 and 8-12 and the open / close state of the second solenoid valves 9-11 and 9-12 are reversed. The other operations are the same except that the refrigerant flows in the parallel heat exchanger 50-11 and the parallel heat exchanger 50-12 are switched.
- the parallel heat exchanger 50-12 of the heat source unit A-1 and the parallel heat exchanger 50-22 of the heat source unit A-2 are to be defrosted, and the parallel heat of the heat source unit A-1 is set.
- An operation when the exchanger 50-11 and the parallel heat exchanger 50-21 of the heat source machine A-2 are operated as an evaporator will be described. The same applies to the following description of the embodiments.
- FIG. 10 is a diagram showing the flow of the refrigerant at the time of the heating and defrost simultaneous operation 1 of the air-conditioning apparatus 100 according to the present embodiment.
- the part through which the refrigerant flows is represented by a thick line, and the part through which the refrigerant does not flow is represented by a thin line.
- FIG. 11 is a Ph diagram of the air-conditioning apparatus 100 according to the present embodiment at the time of simultaneous heating and defrost operation 1. Points (a) to (g) in FIG. 11 indicate the state of the refrigerant at the portions (a) to (g) in FIG. 10, respectively.
- an isotherm of 0 ° C., which is the melting point of frost is indicated by a broken line.
- the control device 30 determines that the defrost that eliminates the frosting state of the parallel heat exchanger is necessary during the heating normal operation and selects the heating and defrost simultaneous operation 1, the parallel heat exchange of the defrost target is performed.
- the first electromagnetic valve 8-12 and the second expansion device 7-12 corresponding to the heat exchanger (for example, the parallel heat exchanger 50-12) are controlled to be fully closed.
- the control device 30 also opens the second electromagnetic valve 9-12 corresponding to the parallel heat exchanger 50-12 to be defrosted and controls the opening of the first expansion device 10-1 to a preset opening. I do.
- the compressor 1-1, the first expansion device 10-1, the second electromagnetic valve 9-12, the parallel heat exchanger 50-12, and the second expansion device 7-13 are sequentially connected.
- a defrost circuit is formed.
- the parallel heat exchanger 50-11 operates as an evaporator of the main circuit as in the normal heating operation. Thereby, heating defrost simultaneous operation 1 is performed.
- the heat source device A-2 is controlled so as to be symmetric with the heat source device A-1. That is, in the heat source machine A-2, a defrost circuit passing through one of the parallel heat exchangers 50-21 and 50-22 is formed, and the other of the parallel heat exchangers 50-21 and 50-22 is an evaporation of the main circuit. Operates as a vessel.
- the pressure of the medium pressure refrigerant in the parallel heat exchanger 50-12 to be defrosted is 0 ° C. to 10 ° C., which is equal to or higher than the frost temperature (0 ° C.) in terms of saturation temperature. It is controlled so as to be about °C. That is, the second expansion device 7-13 is controlled so that the pressure of the medium pressure refrigerant is 0.80 MPa to 1.09 MPa when R410 is used as the refrigerant, and the medium pressure refrigerant when R32 is used as the refrigerant. The pressure of the medium pressure refrigerant is controlled to be 0.32 MPa to 0.44 MPa when HFO-1234yf is used as the refrigerant.
- the refrigerant pressure (point (d)) in the (d) part of the main circuit is determined by controlling the opening degree of the second expansion device 7-11.
- the refrigerant that has flowed out of the parallel heat exchanger 50-12 is decompressed by the second expansion device 7-13, and joins the main circuit through the first connection pipe 13-11 (point (e)).
- the merged refrigerant flows into the parallel heat exchanger 50-11 operating as an evaporator, and is evaporated by heat exchange with outdoor air.
- the flow of the refrigerant in the heat source unit A-2 is the same as that in the heat source unit A-1.
- the pressure of the intermediate pressure refrigerant flowing into the parallel heat exchanger to be defrosted is controlled to be higher than 0 ° C. and 10 ° C. or lower in terms of saturation temperature.
- the target of the subcool SC in the parallel heat exchanger to be defrosted is considered. It is optimal to set the value to 0 K (the dryness of the refrigerant is 0).
- the medium pressure refrigerant flowing into the parallel heat exchanger to be defrosted so that the subcool SC is about 0K to 5K is preferably controlled to be higher than 0 ° C. and 6 ° C. or lower in terms of saturation temperature.
- Heating defrost simultaneous operation 2 In the heating and defrost simultaneous operation 2, during the normal heating operation, when it is determined in step S 5 in FIG. 4 that the defrosting execution condition is satisfied (for example, the outdoor heat exchangers 5-1 and 5-2 are frosted). This is performed when the heating and defrost simultaneous operation 2 is selected in step S6.
- heating and defrost simultaneous operation 2 select some of the heat source machines A-1 and A-2 that perform full defrosting (if not all heat source machines, multiple heat source machines may be used). In other heat source machines, normal heating operation is performed. Depending on which heat source device is selected as the defrost target, the open / close state of the first solenoid valves 8-11 and 8-12 and the open / close state of the second solenoid valves 9-11 and 9-12 are reversed. Other operations are the same except that the refrigerant flows in the exchanger 50-11 and the parallel heat exchanger 50-12 are switched. Therefore, in the following description, a case where the heating operation is performed by the heat source device A-1 while performing the entire surface defrosting of the heat source device A-2 will be described.
- the control device 30 stops the outdoor fan of the heat source unit in order to reduce heat radiation to the outdoor air as much as possible.
- FIG. 12 is a diagram showing the flow of the refrigerant when the air-conditioning apparatus 100 according to the present embodiment is simultaneously operated by heating and defrosting 2 o'clock.
- the part through which the refrigerant flows is represented by a thick line
- the part through which the refrigerant does not flow is represented by a thin line.
- FIG. 13 is a Ph diagram when the air-conditioning apparatus 100 according to the present embodiment is in the heating and defrost simultaneous operation 2 o'clock. Points (a) to (h) in FIG. 13 indicate the state of the refrigerant at the portions (a) to (h) in FIG. 12, respectively. Points (a) to (e) in FIG.
- FIG. 13 represent the cycle of the main circuit formed by the heat source unit A-1 and the indoor units B and C, and points (f) to (h) represent the heat source unit.
- the cycle of the defrost circuit formed by A-2 is shown.
- FIG. 13 the isotherm of 0 degreeC which is melting
- the controller 30 determines that the defrost that eliminates the frosted state of the parallel heat exchanger is necessary during the heating normal operation and selects the heating and defrost simultaneous operation 2
- the heat source machine In this example, the first electromagnetic valve 8-21 corresponding to one of the parallel heat exchangers 50-21 and 50-22 (in this example, the parallel heat exchanger 50-21) of the heat source machine A-2) is connected in parallel. Control is performed to fully close the second expansion devices 7-21 and 7-22 corresponding to both the heat exchangers 50-21 and 50-22. In addition, the control device 30 performs control to open the second electromagnetic valve 9-21 corresponding to one parallel heat exchanger 50-21 and fully open the opening of the second expansion device 7-23.
- the control device 30 determines that the discharge pressure of the compressor 1-2 (for example, the detected pressure of the pressure sensor 21-22) is the pressure of the first extension pipe 11-1 (for example, the discharge pressure and pressure of the compressor 1-1).
- the opening degree of the first throttling device 10-2 is controlled so as not to exceed the detection pressure of the sensor 21-12. This is because when the discharge pressure of the compressor 1-2 exceeds the pressure of the first extension pipe 11-1, the cycle of the defrost circuit cannot be closed in the heat source unit A-2, and the refrigerant is transferred from the defrost circuit to the main circuit. This is because of leaking.
- the discharge pressure of the compressor 1-2 increases as the opening of the first expansion device 10-2 decreases, and decreases as the opening of the first expansion device 10-2 increases.
- the compressor 1-2, the first expansion device 10-2, the second electromagnetic valve 9-21, the parallel heat exchanger 50-21, the second expansion are separated from the main circuit that performs the heating operation.
- a defrost circuit is formed in which the device 7-23, the parallel heat exchanger 50-22, the first electromagnetic valve 8-22, the cooling / heating switching device 2-2, and the accumulator 6-2 are sequentially connected in an annular shape. Thereby, heating defrost simultaneous operation 2 is performed.
- the refrigerant flows as follows.
- the gas refrigerant discharged from the compressor 1-2 (point (g) in FIG. 13) flows into the defrost pipe 15-2 and is depressurized by the first expansion device 10-2 (point (h) in FIG. 13).
- the discharge pressure of the compressor 1-2 is lower than the pressure of the first extension pipe 11-1
- the gas refrigerant discharged from the compressor 1-2 flows into the first extension pipe 11-1. do not do.
- the check pipe 16-2 is provided in the discharge pipe 1a-2, the backflow of the high-pressure refrigerant from the first extension pipe 11-1 to the discharge pipe 1a-2 of the heat source machine A-2 does not occur. .
- the gas refrigerant decompressed by the first expansion device 10-2 passes through the parallel heat exchanger 50-21, the second expansion device 7-23, and the parallel heat exchanger 50-22 in this order, and the parallel heat exchanger 50- Dissipates heat to frost attached to 21, 50-22. Thereby, the frost adhering to the parallel heat exchangers 50-21 and 50-22 can be melted.
- the refrigerant that has passed through the parallel heat exchangers 50-21 and 50-22 is cooled to a temperature higher than the frost temperature (0 ° C. or less), and remains as a gas refrigerant or becomes a two-phase refrigerant in a parallel heat exchanger. 50-22 (point (f) in FIG. 13).
- the refrigerant flowing out of the parallel heat exchanger 50-22 flows into the accumulator 6-2 through the second connection pipe 14-22, the first electromagnetic valve 8-22, and the suction pipe 1b-2. From the accumulator 6-2, a gas refrigerant having a temperature slightly higher than 0 ° C. and having a dryness of 1 is sucked into the compressor 1-2.
- the defrost circuit is completely separated from the main circuit by the second expansion devices 7-21 and 7-22 and the check valve 16-2 in the refrigerant flow. That is, since the refrigerant does not enter and exit between the defrost circuit and the main circuit, the operation can be continued while preventing the defrost circuit from running out of the refrigerant.
- the suction pressure (point (f) in FIG. 13) of the compressor 1-2 is about 0 ° C., which is the melting point of frost in terms of saturation temperature.
- the suction pressure of the compressor 1-2 becomes higher than the suction pressure of the normal heating operation (for example, the suction pressure of the compressor 1-1 (point (a) in FIG. 13)), and the refrigerant density increases.
- the defrost flow rate can be increased and the defrost ability can be increased. Therefore, although the latent heat is not necessarily used for the defrost, the defrost can be completed in a short time. Further, since the heat source unit A-2 does not have a parallel heat exchanger that operates as an evaporator, the outdoor fan 5f-2 can be stopped. Therefore, even when the outside air temperature is low, the amount of heat released to the outdoor air in the parallel heat exchangers 50-21 and 50-22 can be suppressed.
- the control device 30 detects the temperature detected by the temperature sensor 22-23 provided in the gas side pipe between the outdoor heat exchanger 5-2 and the cooling / heating switching device 2-2. When the temperature rises to about 0 ° C., the heating and defrost simultaneous operation 2 is finished.
- the points (f) to (h) are all in the gas region.
- the necessary amount of refrigerant is smaller than that in the normal heating operation, so that excess refrigerant is accumulated in the accumulator 6-2.
- the refrigerant condensed in the parallel heat exchangers 50-21 and 50-22 is accumulated in the parallel heat exchangers 50-21 and 50-22 at the beginning of the defrost operation. There is a possibility that the refrigerant will run out.
- the suction superheat is calculated based on the suction pressure of the compressor 1-2 and the suction temperature of the compressor 1-2 (for example, the temperature detected by the temperature sensor 22-24), and the suction superheat is set to be higher than a preset threshold value.
- the second expansion devices 7-21 and 7-22 may be opened with a small opening so that the liquid refrigerant is supplied from the main circuit to the defrost circuit.
- FIG. 14 is a graph showing the heating capacity of the heating and defrost simultaneous operation 1 with respect to the outside air temperature in the air-conditioning apparatus 100 according to the present embodiment.
- the horizontal axis of the graph represents the outside air temperature (° C.), and the vertical axis represents the heating capacity.
- heating defrost simultaneous operation 1 the sum of the heat absorption from the outside air of the parallel heat exchanger operating as an evaporator and the compressor input (the uppermost broken line in the graph) is the heating capacity of the indoor unit, the defrost capacity, and It will be distributed to the amount of heat released to the outside air.
- the amount of heat released to the outside air is a negative value.
- the absolute value of the amount of heat released can also be referred to as the amount of heat collected from the outside air.
- the outdoor fans 5f-1 and 5f-2 operate in order to absorb heat from the outside air by the parallel heat exchanger operating as an evaporator.
- the air blown by the outdoor fans 5f-1 and 5f-2 flows not only in the parallel heat exchanger operating as an evaporator but also in the parallel heat exchanger to be defrosted. For this reason, the amount of heat released to the outside air (or the amount of heat collected from the outside air) in the parallel heat exchanger increases as the temperature difference between the melting point of frost (0 ° C.) and the outside air temperature increases.
- the heating capacity of the indoor unit in the heating and defrost simultaneous operation 1 is a value obtained by subtracting the defrosting capacity and the heat radiation amount to the outside air from the sum of the heat absorption amount from the outside air and the compressor input in the evaporator. It is represented by a bold line.
- the heating and defrost simultaneous operation 2 for example, one of two heat source machines performs full-surface defrosting.
- the refrigerant flow rate is half that in normal heating operation.
- the heating and defrost simultaneous operation 2 unlike the heating and defrost simultaneous operation 1, the outdoor fan of the heat source machine to be defrosted is stopped. For this reason, the influence of the outside air temperature on the heating capacity is only the amount of heat absorbed from the outside air in the evaporator.
- FIG. 15 is a graph showing the heating capacity of the simultaneous heating and defrosting operation 1 and the heating capacity of the simultaneous heating and defrosting operation 2 in the air-conditioning apparatus 100 according to the present embodiment.
- the horizontal axis of the graph represents the outside air temperature (° C.), and the vertical axis represents the heating capacity.
- the inclination of the change in the heating capacity of the simultaneous heating and defrosting operation 2 with respect to the outside air temperature is smaller than the inclination of the change in the heating capacity of the simultaneous heating and defrosting operation 1 with respect to the outside air temperature. For this reason, when the outside air temperature becomes lower than the predetermined threshold temperature, the heating capacity of the simultaneous heating and defrosting operation 2 becomes higher than the heating capacity of the simultaneous heating and defrosting operation 1.
- the threshold temperature is in a region where the outside air temperature is 0 ° C. or lower, and is generally included in a temperature range of ⁇ 10 ° C. to ⁇ 2 ° C. However, this threshold temperature may vary slightly depending on the system configuration.
- a threshold temperature is set in advance within the temperature range of ⁇ 10 ° C. to ⁇ 2 ° C. and it is determined that defrosting is necessary, either the heating defrost simultaneous operation 1 or the heating defrost simultaneous operation 2 is set to the outside air temperature.
- the selection may be made based on the above. For example, when it is determined that defrost is necessary during normal heating operation, the control device 30 performs the heating defrost simultaneous operation 1 when the outside air temperature is equal to or higher than the threshold temperature, and simultaneously performs heating defrost when the outside air temperature is lower than the threshold temperature. Run 2
- control device 30 may perform the heating and defrost simultaneous operation 2 when the suction pressure during the heating operation is lower than a preset value.
- the heating and defrost simultaneous operation 1 that can perform defrost with a small refrigerant flow rate by using the condensation latent heat of the refrigerant, and the outdoor fan It is possible to select and execute the heating and defrost simultaneous operation 2 that can reduce the amount of heat released to the outside air by stopping the operation, and the one that can ensure a high heating capacity. Therefore, according to this Embodiment, the fall of the heating capability in heating defrost simultaneous operation
- FIG. 16 is a circuit configuration diagram showing the configuration of the air-conditioning apparatus 101 according to the present embodiment. As shown in FIG. 16, in the present embodiment, the refrigerant inlet and outlet for the parallel heat exchanger to be defrosted are different from those in the first embodiment.
- one end side of the defrost pipe 15-1 is connected to the discharge pipe 1a-1, and the other end side is branched and connected to the first connection pipes 13-11 and 13-12, respectively. ing.
- the heat source machine A-1 is provided with a defrost pipe 20-1 different from the defrost pipe 15-1.
- One end side of the defrost pipe 20-1 is upstream of the second expansion device 7-11 in the refrigerant flow in the normal heating operation of the first connection pipe 13-11 and of the first connection pipe 13-12.
- the refrigerant flow during normal heating operation is connected to both the upstream side and the upstream side of the second expansion device 7-12.
- the other end side of the defrost pipe 20-1 is branched and connected to the second connection pipes 14-11 and 14-12, respectively.
- the defrost pipe 20-1 is provided with a second expansion device 7-13.
- Third solenoid valves 18-11 and 18-12 are provided in the respective branches branched on the other end side of the defrost pipe 20-1.
- the heat source machine A-2 has the same configuration as the heat source machine A-1. That is, the third electromagnetic valves 18-21 and 18-22 and the defrost pipe 20-2 of the heat source machine A-2 are the same as the third electromagnetic valves 18-11 and 18-12 and the defrost pipe 20-1 of the heat source machine A-1. It corresponds to each.
- FIG. 17 is a diagram showing the flow of the refrigerant at the time of the heating and defrost simultaneous operation 1 of the air-conditioning apparatus 101 according to the present embodiment.
- the part through which the refrigerant flows is represented by a thick line
- the part through which the refrigerant does not flow is represented by a thin line.
- FIG. 18 is a Ph diagram of the air-conditioning apparatus 101 according to the present embodiment at the time of simultaneous heating and defrost operation 1. Points (a) to (g) in FIG. 18 indicate the state of the refrigerant at the portions (a) to (g) in FIG. 17, respectively.
- the control device 30 determines that the defrost that eliminates the frosting state of the parallel heat exchanger is necessary during the heating normal operation and selects the heating and defrost simultaneous operation 1, the parallel heat exchange of the defrost target is performed.
- the first electromagnetic valve 8-12 and the second expansion device 7-12 corresponding to the heat exchanger (for example, the parallel heat exchanger 50-12) are controlled to be fully closed.
- the control device 30 opens the second electromagnetic valve 9-12 and the third electromagnetic valve 18-12 corresponding to the parallel heat exchanger 50-12 to be defrosted, and the opening degree of the first expansion device 10-1 is increased. Control to set a predetermined opening.
- control device 30 controls the second throttling device 7-13 so that the pressure of the refrigerant flowing out from the second throttling device 7-13 approaches the pressure of the refrigerant in the main circuit joined at the portion (d) in FIG. To control the opening degree.
- the compressor 1-1, the first throttle device 10-1, the second electromagnetic valve 9-12, the parallel heat exchanger 50-12, the third electromagnetic valve 18-12, the second throttle A defrost circuit in which the devices 7-13 are sequentially connected is formed.
- the parallel heat exchanger 50-11 operates as an evaporator of the main circuit as in the normal heating operation. Thereby, heating defrost simultaneous operation 1 is performed.
- the heat source device A-2 is controlled so as to be symmetric with the heat source device A-1. That is, in the heat source machine A-2, a defrost circuit passing through one of the parallel heat exchangers 50-21 and 50-22 is formed, and the other of the parallel heat exchangers 50-21 and 50-22 is an evaporation of the main circuit. Operates as a vessel.
- FIG. 19 is a diagram showing the refrigerant flow during the heating and defrost simultaneous operation 2 of the air-conditioning apparatus 101 according to the present embodiment.
- the part through which the refrigerant flows is represented by a thick line
- the part through which the refrigerant does not flow is represented by a thin line.
- FIG. 20 is a Ph diagram when the air-conditioning apparatus 101 according to the present embodiment is in the heating and defrost simultaneous operation 2 o'clock.
- Points (a) to (h) in FIG. 20 indicate the state of the refrigerant at the portions (a) to (h) in FIG. 19, respectively.
- Points (a) to (e) in FIG. 20 represent the cycle of the main circuit formed by the heat source unit A-1 and the indoor units B and C
- points (f) to (h) represent the heat source unit.
- the cycle of the defrost circuit formed by A-2 is shown.
- the controller 30 determines that the defrost that eliminates the frosted state of the parallel heat exchanger is necessary during the heating normal operation and selects the heating and defrost simultaneous operation 2, the heat source machine ( In this example, control is performed to fully close the second expansion devices 7-21 and 7-22 and the third electromagnetic valves 18-21 and 18-22 of the heat source device A-2). In addition, the control device 30 performs control to open the first electromagnetic valves 8-21 and 8-22 and the second electromagnetic valves 9-21 and 9-22. Further, the control device 30 controls the opening degree of the first expansion device 10-2 so that the discharge pressure of the compressor 1-2 does not exceed the pressure of the first extension pipe 11-1.
- the first defrost circuit includes a compressor 1-2, a first expansion device 10-2, a second electromagnetic valve 9-21, a parallel heat exchanger 50-21, a first electromagnetic valve 8-21, and a cooling / heating switching device 2.
- accumulator 6-2 is sequentially connected in a ring shape.
- the second defrost circuit includes a compressor 1-2, a first expansion device 10-2, a second electromagnetic valve 9-22, a parallel heat exchanger 50-22, a first electromagnetic valve 8-22, and a cooling / heating switching device 2.
- accumulator 6-2 is sequentially connected in a ring shape.
- the refrigerant flow and the air flow are opposite flows, but in the configuration of the present embodiment, the refrigerant flow and the air flow are different. It is a parallel flow.
- FIG. 21 is a circuit configuration diagram showing the configuration of the air-conditioning apparatus 102 according to the present embodiment.
- the refrigerant of the defrost circuit flowing out from the parallel heat exchanger for example, the parallel heat exchanger 50-12
- the indoor unit B The position where the refrigerant of the main circuit that has returned from C to the heat source device (for example, heat source device A-1) joins is different from that of the second embodiment.
- one end side of the defrost pipe 20-1 is located downstream of the second expansion device 7-11 in the refrigerant flow during the normal heating operation of the first connection pipe 13-11,
- the connecting pipe 13-12 is branched and connected to the downstream side of the second expansion device 7-12 in the refrigerant flow during normal heating operation.
- a check valve 24-11, 24-12 is provided in each pipe branched on the other end side of the defrost pipe 20-1. The check valves 24-11 and 24-12 allow the refrigerant to flow from the defrost pipe 20-1 to the first connection pipes 13-11 and 13-12, and the first connection pipes 13-11 and 13-. The refrigerant flow from each of 12 to the defrost pipe 20-1 is blocked.
- the heat source machine A-2 has the same configuration as the heat source machine A-1. That is, the check valves 24-21, 24-22 of the heat source machine A-2 correspond to the check valves 24-11, 24-12 of the heat source machine A-1.
- the refrigerant that is depressurized by the second expansion device 7-13 of the heat source unit A-1 and flows out from the defrost pipe 20-1 is supplied to the second expansion devices 7-11 and 7-7. Join the main circuit downstream of -12.
- the refrigerant that is depressurized by the second expansion device 7-23 of the heat source device A-2 and flows out from the defrost pipe 20-2 enters the main circuit downstream of the second expansion devices 7-21 and 7-22. Join.
- the Ph diagram at the time of simultaneous heating and defrost operation 1 is the same as the Ph diagram of the first embodiment shown in FIG. Therefore, the controllability of the second diaphragm devices 7-13 and 7-23 is improved.
- FIG. 22 is a circuit configuration diagram showing the configuration of the air-conditioning apparatus 103 according to the present embodiment.
- a plurality of indoor units B and C that can independently select a heating operation or a cooling operation are connected to the refrigerant circuit of the air conditioning apparatus 103. That is, the air conditioning apparatus 103 has a configuration that allows simultaneous cooling and heating.
- a relay unit D is provided between the heat source units A-1 and A-2 and the indoor units B and C in the refrigerant circuit.
- the cooling and heating simultaneous operation is possible if the number of indoor units is two or more, three or more indoor units may be connected in parallel to the refrigerant circuit.
- Heat source machines A-1 and A-2 are usually installed outside the building. Indoor units B and C are usually installed indoors.
- the relay machine D is installed, for example, in a machine room of a building that is away from any of the heat source machines A-1 and A-2 and the indoor units B and C.
- the heat source devices A-1 and A-2 and the relay device D are connected via the first extension pipes 11-1H and 11-1L and the second extension pipe 12-1.
- the relay unit D and the indoor unit B are connected via the first extension pipe 11-2b and the second extension pipe 12-2b.
- the relay unit D and the indoor unit C are connected via the first extension pipe 11-2c and the second extension pipe 12-2c.
- the first extension pipes 11-1H and 11-1L and the second extension pipe 12-1 are branched and connected to the heat source devices A-1 and A-2, respectively.
- the branch portions of the first extension pipes 11-1H and 11-1L and the second extension pipe 12-1 may be provided in the middle of each extension pipe as shown in FIG. 1 or A-2, or may be accommodated in the repeater D.
- the first extension pipe 11-1 includes a first extension pipe 11-1H and a first extension pipe 11-1L.
- the first extension pipe 11-1H is a high-pressure gas pipe connected to the discharge pipes 1a-1 and 1a-2 of the compressors 1-1 and 1-2.
- the first extension pipe 11-1L is a low-pressure gas pipe connected to the suction pipes 1b-1 and 1b-2 of the compressors 1-1 and 1-2.
- the first extension pipe 11-1H and the first extension pipe 11-1L are connected to the gas side pipes of the indoor units B and C via a flow path switching device described later.
- the second extension pipe 12-1 is a liquid pipe similar to those in the first to third embodiments.
- the relay machine D accommodates switching valves 25-1b, 25-2b, 25-1c, and 25-2c as flow path switching devices.
- the switching valves 25-1b, 25-2b, 25-1c, and 25-2c switch the operation mode of each indoor unit between the cooling operation and the heating operation by opening and closing the flow path under the control of the control device 30. It is.
- the switching valve 25-1b opens and closes the flow path between the first extension pipe 11-1H and the first extension pipe 11-2b.
- the switching valve 25-2b opens and closes the flow path between the first extension pipe 11-1L and the first extension pipe 11-2b.
- the switching valve 25-1b is opened and the switching valve 25-2b is closed, the high pressure discharged from the compressors 1-1 and 1-2 is supplied to the first extension pipe 11-2b connected to the indoor unit B. Gas refrigerant flows. Thereby, in the indoor unit B, the heating operation is performed.
- the switching valve 25-1b is closed and the switching valve 25-2b is opened, the low-pressure gas refrigerant drawn into the compressors 1-1 and 1-2 flows through the first extension pipe 11-2b. . Thereby, the cooling operation is performed in the indoor unit B.
- the switching valve 25-1c opens and closes the flow path between the first extension pipe 11-1H and the first extension pipe 11-2c.
- the switching valve 25-2c opens and closes the flow path between the first extension pipe 11-1L and the first extension pipe 11-2c.
- the switching valve 25-1c is opened and the switching valve 25-2c is closed, the high pressure discharged from the compressors 1-1 and 1-2 is fed to the first extension pipe 11-2c connected to the indoor unit C. Gas refrigerant flows. Thereby, in the indoor unit C, the heating operation is performed.
- the switching valve 25-1c is closed and the switching valve 25-2c is opened, the low-pressure gas refrigerant sucked into the compressors 1-1 and 1-2 flows through the first extension pipe 11-2c. . Thereby, the cooling operation is performed in the indoor unit C.
- the indoor unit that performs the cooling operation and the indoor unit that performs the heating operation Can be performed simultaneously with cooling and heating (for example, cooling main operation or heating main operation).
- frost formation may occur on the fins 5 b of the outdoor heat exchangers 5-1 and 5-2.
- controller 30 determines that defrosting of outdoor heat exchangers 5-1 and 5-2 is necessary during the heating operation, the control device 30 continues the heating operation and is the same as in the first to third embodiments.
- the heating defrost simultaneous operation 1 or the heating defrost simultaneous operation 2 is executed.
- the control device 30 continues the heating main operation while the first to third embodiments.
- the heating defrost simultaneous operation 1 or the heating defrost simultaneous operation 2 is executed in the same manner as described above. Especially during the heating-main operation, there is an indoor unit that performs cooling operation (that is, an indoor unit that operates as an evaporator and absorbs heat from indoor air). Defrosting can be performed efficiently while performing.
- FIG. 23 is a circuit configuration diagram showing a configuration of the air-conditioning apparatus 104 according to the present embodiment.
- a plurality of indoor units B and C that can independently select a heating operation or a cooling operation are connected to the refrigerant circuit of the air conditioner 104. That is, the air conditioning apparatus 103 has a configuration that allows simultaneous cooling and heating.
- a relay unit D is provided between the heat source units A-1 and A-2 and the indoor units B and C in the refrigerant circuit.
- the cooling and heating simultaneous operation is possible if the number of indoor units is two or more, three or more indoor units may be connected in parallel to the refrigerant circuit.
- the indoor unit that performs the heating operation and the indoor unit that performs the cooling operation are connected in series with each other in the refrigerant flow during the simultaneous cooling and heating operation. That is, the refrigerant condenses into liquid refrigerant while warming the indoor air through the indoor unit that performs the heating operation, and evaporates into the gas refrigerant while cooling the indoor air through the indoor unit that performs the cooling operation. As a result, exhaust heat recovery can be performed and operation can be performed efficiently.
- the outdoor heat exchanger when the heating load is greater than the sum of the cooling load and the compressor input, it is necessary to collect heat from the outside air, so the outdoor heat exchanger operates as an evaporator.
- the heating load is less than the sum of the cooling load and the compressor input, it is necessary to release heat to the outside air, so the outdoor heat exchanger operates as a condenser.
- connection method between the outdoor heat exchanger, the indoor unit that performs the heating operation, and the indoor unit that performs the cooling operation is different between the fourth embodiment and the present embodiment.
- Embodiment 4 described above when the outdoor heat exchanger operates as a condenser, the outdoor heat exchanger is connected in parallel with the indoor unit that performs the heating operation, and the refrigerant condensed in the respective heat exchangers merges, Supplied to the indoor unit. Further, when the outdoor heat exchanger operates as an evaporator, the outdoor heat exchanger is connected in parallel with the indoor unit that performs the cooling operation, and the refrigerant condensed in the indoor unit that performs heating is branched, and the indoor unit that performs cooling Supplied to the outdoor heat exchanger.
- the outdoor heat exchanger when the outdoor heat exchanger operates as a condenser, the outdoor heat exchanger is connected in series upstream of the indoor unit that performs heating operation, and the indoor unit that performs heating with the outdoor heat exchanger.
- the refrigerant condensed in the above is supplied to an indoor unit that performs cooling.
- the outdoor heat exchanger operates as an evaporator, the outdoor heat exchanger is connected in series downstream of the indoor unit that performs cooling operation, and the refrigerant condensed in the indoor unit that performs heating passes through the indoor unit that performs cooling. After that, it is supplied to the outdoor heat exchanger, completes the evaporation, and is sucked into the compressor.
- the heat source machine A-1 is provided with check valves 16-1a, 16-1b, 16-1c, and 16-1d.
- the check valve 16-1a is provided in the refrigerant pipe that connects the cooling / heating switching device 2-1 and the first extension pipe 11-1H, and goes from the cooling / heating switching apparatus 2-1 to the first extension pipe 11-1H. Only the flow of the refrigerant is allowed.
- the check valve 16-1b is provided in a refrigerant pipe connecting the outdoor heat exchanger 5-1 and the first extension pipe 11-1H, and is connected to the first extension pipe 11-1H from the outdoor heat exchanger 5-1. Only the flow of the refrigerant toward is allowed.
- the check valve 16-1c is provided in the refrigerant pipe connecting the cooling / heating switching device 2-1 and the first extension pipe 11-1L, and goes from the first extension pipe 11-1L to the cooling / heating switching device 2-1. Only the flow of the refrigerant is allowed.
- the check valve 16-1d is provided in a refrigerant pipe connecting the outdoor heat exchanger 5-1 and the first extension pipe 11-1L, and the outdoor heat exchanger 5-1 is connected to the first extension pipe 11-1L. Only the flow of the refrigerant toward is allowed.
- the outdoor heat exchanger 5-1 operates as a condenser or an evaporator when the flow path is switched by the cooling / heating switching device 2-1. Since the check valves 16-1a, 16-1b, 16-1c, and 16-1d are provided as described above, the outdoor heat exchanger 5-1 operates as a condenser and the outdoor heat exchanger 5 -1 operates as an evaporator, the refrigerant flows from the heat source unit A-1 to the relay unit E in the first extension pipe 11-1H, and the relay unit in the first extension pipe 11-1L. The refrigerant flows from E toward the heat source device A-1.
- the heat source machine A-2 has the same configuration as the heat source machine A-1. That is, the check valves 16-2a, 16-2b, 16-2c, 16-2d of the heat source device A-2 are the check valves 16-1a, 16-1b, 16-1c, 16 of the heat source device A-1. -1d, respectively.
- the relay machine E is provided with a first branch part E-1, a second branch part E-2, and a third branch part E-3.
- the first branch E-1 is connected to the first extension pipe 11-1H and the first extension pipes 11-2b and 11-2c.
- a high-pressure refrigerant flows through the first branch part E-1.
- the second branch E-2 is connected to the first extension pipe 11-1L and the first extension pipes 11-2b and 11-2c.
- a low-pressure refrigerant flows through the second branch E-2.
- the third branch E-3 is connected to the first branch E-1, the second branch E-2, and the second extension pipes 12-2b and 12-2c.
- a medium-pressure refrigerant that is a pressure between a high pressure and a low pressure flows through the third branch E-3.
- a third expansion device 26-1 is provided in the refrigerant pipe connecting the first branch part E-1 and the third branch part E-3.
- a refrigerant pipe connecting the second branch part E-2 and the third branch part E-3 is provided with a fourth expansion device 26-2.
- the third expansion device 26-1 and the fourth expansion device 26-2 are constituted by, for example, an electronic expansion valve.
- the third expansion device 26-1 and the fourth expansion device 26-2 can change the opening degree based on an instruction from the control device 30.
- the third diaphragm device 26-1 and the fourth diaphragm device 26-2 are accommodated in the relay unit E.
- relay device E is provided with switching valves 25-1b, 25-2b, 25-1c, and 25-2c similar to those in the fourth embodiment.
- the outdoor heat exchanger 5-1 in the heating only operation and the heating main operation in which the outdoor heat exchangers 5-1, 5-2 operate as an evaporator, the outdoor heat exchanger 5-1, There is a case where frost is formed on the fin 5b of 5-2. If controller 30 determines that defrosting of outdoor heat exchangers 5-1 and 5-2 is necessary during the heating operation, the control device 30 continues the heating operation and is the same as in the first to third embodiments. The heating defrost simultaneous operation 1 or the heating defrost simultaneous operation 2 is executed. In addition, when it is determined that defrosting of the outdoor heat exchangers 5-1 and 5-2 is necessary during the execution of the heating main operation, the control device 30 continues the heating main operation while the first to third embodiments.
- the heating defrost simultaneous operation 1 or the heating defrost simultaneous operation 2 is executed in the same manner as described above.
- the heating main operation since there are indoor units that perform the cooling operation, it is possible to efficiently perform the defrost while performing the exhaust heat recovery operation.
- the refrigeration cycle apparatus includes the main circuit for circulating the refrigerant, the plurality of heat source devices A-1 and A-2 connected in parallel to each other in the main circuit, and the plurality of heat sources.
- a control device 30 for controlling the machines A-1 and A-2, and each of the plurality of heat source machines A-1 and A-2 compresses and discharges the refrigerant (for example, the compressor 1- 1), a plurality of parallel heat exchangers operating as at least an evaporator and connected in parallel with each other in the refrigerant flow (for example, parallel heat exchangers 50-11 and 50-12) and discharged from the compressor
- a check valve for example, check valve 16-1) for preventing the reverse flow of the refrigerant, branching the refrigerant discharged from the compressor upstream of the check valve, and at least one of the plurality of parallel heat exchangers
- a defrost circuit for example, supplying to some parallel heat exchangers
- a first flow path switching device for example, the first electromagnetic valves 8-11 and
- control device 30 includes at least some of the heat source devices ( For example, in all of the heat source devices A-1, A-2), some of the plurality of parallel heat exchangers are compressed into a parallel heat exchanger (for example, the parallel heat exchangers 50-12, 50-22). A part of the refrigerant discharged from the machine is supplied via a defrost circuit, and other parallel heat exchangers (for example, parallel heat exchangers 50-11 and 50-21) among a plurality of parallel heat exchangers are supplied.
- a parallel heat exchanger for example, parallel heat exchangers 50-11 and 50-21
- First heating / defrost simultaneous operation (heating / defrost simultaneous operation 1) to be operated as an evaporator
- all the parallel heat exchangers for example, the parallel heat exchanger 50-21, 50-22
- the other heat source unit for example, heat source unit A-1
- All the parallel heat exchangers (for example, parallel heat exchangers 50-11 and 50-12) of the heat exchangers are operated as evaporators to continue heating, and some heat source devices (for example, heat source device A-2) ) In which the suction pressure of the compressor 1-2 is operated to be higher than the suction pressure of the compressor 1-1 in another heat source device (for example, the heat source device A-1). Switching between heating and defrost simultaneous operation 2) It is.
- the control device 30 may select either the first heating / defrost simultaneous operation or the second heating / defrost simultaneous operation based on the outside air temperature. Good. In the refrigeration cycle apparatus according to the above embodiment, the control device 30 selects the first heating and defrost simultaneous operation when the outside air temperature is equal to or higher than a preset threshold temperature, and the outside air temperature is higher than the threshold temperature. If it is lower, the second heating and defrost simultaneous operation may be selected.
- each of the plurality of heat source devices A-1 and A-2 is provided in a defrost circuit (for example, defrost pipe 15-1), and refrigerant discharged from the compressor In the first simultaneous operation of the first expansion device (for example, the first expansion device 10-1) for decompressing the refrigerant before being supplied to at least some of the parallel heat exchangers and the first heating defrost simultaneous operation. It may further include a second expansion device (for example, the second expansion device 7-13) that further depressurizes the refrigerant that has flowed out of the heat exchanger before returning to the main circuit.
- a defrost circuit for example, defrost pipe 15-1
- the parallel heat exchanger in which defrosting is performed is discharged from the compressor in both the first heating defrost simultaneous operation and the second heating defrost simultaneous operation.
- the refrigerant may flow in through the first throttle device.
- the first throttle device and the second throttle device are designed in advance so that the flow rate and pressure of the defrost become predetermined values by limiting the range of the outside air temperature that can be operated simultaneously with heating and defrost.
- a capillary tube that does not require opening control or a small solenoid valve may be used.
- the defrost circuits of some heat source units include check valves (for example, check valves). 16-2) and the first flow path switching device (for example, the second expansion devices 7-22 and 7-23) are separated from the main circuit of the other heat source device (for example, the heat source device A-1),
- the simultaneous heating and defrosting operation of No. 2 the refrigerant discharged from the compressors of some of the heat source devices is decompressed by a first expansion device (for example, the first expansion device 10-2) and then all the parallel heat exchangers ( For example, it may be supplied to parallel heat exchangers 50-21 and 50-22) connected in series.
- the control device 30 sets the discharge pressure of the compressor of some heat source units (for example, the heat source unit A-2) to the other It may be controlled to be lower than the discharge pressure of the compressor of the heat source machine (for example, heat source machine A-1).
- the first flow path switching device includes a second expansion device (for example, the second expansion device 7-23), and the second expansion device may be closed in the second simultaneous heating and defrosting operation. .
- the control device 30 determines that the suction superheat of the compressors of some heat source units (for example, the heat source unit A-2) When it becomes larger than the set threshold value, the liquid refrigerant is returned from the main circuit of another heat source device (for example, heat source device A-1) to the defrost circuit of some heat source devices (for example, heat source device A-2). Control may be performed.
- the main circuit is connected to a plurality of indoor units B and C that can each select heating operation or cooling operation, and each of the plurality of indoor units B and C is connected to the main circuit.
- the gas side pipes (for example, the first extension pipes 11-2b and 11-2c) connected to the second flow path switching device (for example, the switching valves 25-1b, 25-1c, 25-2b, and 25-2c). ) are connected to both the discharge pipes 1a-1, 1a-2 and the suction pipes 1b-1, 1b-2 of the compressors 1-1, 1-2.
- a high-pressure refrigerant is circulated to an indoor unit that has selected a cooling operation among a plurality of indoor units B and C.
- the flow path is switched so that the low-pressure refrigerant sucked into the compressors 1-1 and 1-2 through the suction pipes 1b-1 and 1b-2 is circulated to the gas side pipe connected to the control side.
- the first heating / defrosting simultaneous operation or the second heating / defrosting simultaneous operation may be executed while continuing the cooling / heating simultaneous operation.
- the present invention is not limited to the above embodiment, and various modifications can be made.
- the air conditioners 100, 101, and 102 that can perform both cooling and heating have been described as examples.
- the present invention can be applied to any air conditioner that can perform at least heating. it can.
- air conditioning apparatus 100, 101, 102 provided with the refrigerating cycle apparatus was mentioned as an example, this invention is not limited to this.
- the refrigeration cycle apparatus of the present invention can also be used for other apparatuses such as a refrigeration apparatus or a refrigeration apparatus.
- the outdoor heat exchangers 5-1 and 5-2 are each divided into two parallel heat exchangers.
- the outdoor heat exchanger has three or more parallel heat exchangers. It may be divided into exchangers.
- a configuration in which the outdoor heat exchanger 5-1 of the heat source apparatus A-1 according to Embodiment 1 is divided into four parallel heat exchangers will be described.
- FIG. 24 is a diagram showing a modification of the configuration of the heat source device A-1 according to the first embodiment.
- FIG. 24 shows only the outdoor heat exchanger 5-1 and the circuit configuration in the vicinity thereof in the heat source device A-1.
- the outdoor heat exchanger 5-1 of this example is divided into four parallel heat exchangers 50-31, 50-32, 50-33, and 50-34.
- the parallel heat exchangers 50-31, 50-32, 50-33, and 50-34 are connected to each other in parallel in the refrigerant circuit.
- the first connection pipes 13-31, 13-32, 13-33, and 13-34 are connected to the parallel heat exchangers 50-31, 50-32, 50-33, and 50-34, respectively.
- the first connecting pipes 13-31, 13-32, 13-33, 13-34 are provided with second throttle devices 7-31, 7-32, 7-33, 7-34, respectively. Assuming that the first connection pipes 13-31, 13-32, 13-33, and 13-34 are arranged in a positional relationship as shown in FIG. 24, the first connection pipes adjacent to each other pass through the bypass pipe. Connected. The connection position of the bypass pipe in each of the first connection pipes is between the second expansion device and the parallel heat exchanger. Second bypass devices 7-41, 7-42 and 7-43 are provided in the bypass pipes, respectively.
- n is an integer of 2 or more parallel heat exchangers, (n ⁇ 1) bypass pipes and (n ⁇ 1) A second diaphragm device is provided.
- the refrigerant flowing out from the parallel heat exchanger to be defrosted is used as a parallel heat exchanger other than the defrost target (parallel heat exchanger that operates as an evaporator). ).
- n parallel heat exchangers can be defrosted one by one.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
暖房デフロスト同時運転における暖房能力の低下を抑えることができる冷凍サイクル装置を提供する。 制御装置は、複数の並列熱交換器(50-11,50-12,50-21,50-22)のうちの一部の並列熱交換器(50-12,50-22)に、圧縮機(1-1,1-2)から吐出された冷媒の一部をデフロスト回路(15-1,15-2)を介して供給するとともに、他の並列熱交換器(50-11,50-21)を蒸発器として動作させる第1の暖房デフロスト同時運転と、 複数の熱源機のうちの一部の熱源機(A-2)において、複数の並列熱交換器のうちの全ての並列熱交換器(50-21,50-22)に、圧縮機から吐出された冷媒をデフロスト回路を介して供給するとともに、他の熱源機(A-1)において、複数の並列熱交換器のうちの全ての並列熱交換器(50-11,50-12)を蒸発器として動作させる第2の暖房デフロスト同時運転と、を切り替えて実行する。
Description
本発明は、例えば空気調和装置等に用いられる冷凍サイクル装置に関するものである。
特許文献1には、圧縮機が吐出した冷媒の一部を分岐し、複数の並列熱交換器のうちデフロスト対象として選択された並列熱交換器に流入させるデフロスト配管と、デフロスト配管に設けられ、圧縮機が吐出した冷媒を減圧する絞り装置と、デフロスト対象の並列熱交換器から流出した冷媒を、デフロスト対象以外の並列熱交換器の上流側の主回路に流入させる接続切替装置と、を備えた空気調和装置が記載されている。
特許文献1に記載された空気調和装置では、デフロスト対象以外の並列熱交換器を蒸発器として動作させて暖房運転を継続しながら、デフロスト対象の並列熱交換器のデフロストを行う暖房デフロスト同時運転を実行することができる。しかしながら、暖房デフロスト同時運転では、デフロスト対象以外の並列熱交換器で室外空気から吸熱する必要があるため、室外ファンを動作させる必要がある。室外ファンにより送風される室外空気は、デフロスト対象の並列熱交換器にも流れる。これにより、特に外気温度が低下したときには、デフロスト対象の並列熱交換器から室外空気への放熱が多くなってしまう。このため、空気調和装置の暖房能力が低下してしまう可能性があるという課題があった。
本発明は、上述のような課題を解決するためになされたものであり、暖房デフロスト同時運転における暖房能力の低下を抑えることができる冷凍サイクル装置を提供することを目的とする。
本発明に係る冷凍サイクル装置は、冷媒を循環させる主回路と、前記主回路において互いに並列に接続された複数の熱源機と、前記複数の熱源機を制御する制御装置と、を備え、前記複数の熱源機のそれぞれは、冷媒を圧縮して吐出する圧縮機と、少なくとも蒸発器として動作し、冷媒の流れにおいて互いに並列に接続された複数の並列熱交換器と、前記圧縮機から吐出された冷媒の逆流を阻止する逆止弁と、前記圧縮機から吐出された冷媒を前記逆止弁よりも上流側で分岐させ、前記複数の並列熱交換器のうちの少なくとも一部の並列熱交換器に供給するデフロスト回路と、前記複数の並列熱交換器を通る冷媒の流路を切り替える第1流路切替装置と、を有しており、前記制御装置は、前記複数の熱源機のうちの少なくとも一部の熱源機において、前記複数の並列熱交換器のうちの一部の並列熱交換器に、前記圧縮機から吐出された冷媒の一部を前記デフロスト回路を介して供給するとともに、前記複数の並列熱交換器のうちの他の並列熱交換器を蒸発器として動作させる第1の暖房デフロスト同時運転と、前記複数の熱源機のうちの一部の熱源機において、前記複数の並列熱交換器のうちの全ての並列熱交換器に、前記圧縮機から吐出された冷媒を前記デフロスト回路を介して供給するとともに、前記複数の熱源機のうちの他の熱源機において、前記複数の並列熱交換器のうちの全ての並列熱交換器を蒸発器として動作させて暖房を継続し、前記複数の熱源機のうちの一部の熱源機における前記圧縮機の吸入圧力が、前記複数の熱源機のうちの他の熱源機における前記圧縮機の吸入圧力よりも高くなるように運転する第2の暖房デフロスト同時運転と、を切り替えて実行するものである。
本発明によれば、高い暖房能力を確保できるデフロスト方法を選択できるため、暖房デフロスト同時運転における暖房能力の低下を抑えることができる。
以下、本発明の実施の形態に係る冷凍サイクル装置について、冷凍サイクル装置を備えた空気調和装置を例に挙げて図面に基づき説明する。ここで、図1を含む以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表されている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。また、構成要素の組合せは、各実施の形態における組合せのみに限定されるものではない。各実施の形態に記載した構成要素は、他の実施の形態に適用することができる。さらに、添字又は枝番で区別している複数の同種の構成要素について、特に区別したり特定したりする必要がない場合には、添字又は枝番を省略して記載することがある。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、温度、圧力等の高低は、特に絶対的な値との関係で定まるものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。
実施の形態1.
本発明の実施の形態1に係る空気調和装置について説明する。図1は、本実施の形態に係る空気調和装置100の構成を示す回路構成図である。図1に示すように、空気調和装置100は、冷媒回路において互いに並列に接続された複数の熱源機A-1、A-2(熱源側ユニット)と、冷媒回路において互いに並列に接続された複数の室内機B、C(利用側ユニット)と、を有している。熱源機A-1、A-2は例えば室外に設置されており、室内機B、Cは例えば室内に設置されている。熱源機A-1、A-2と室内機Bとの間は、第1延長配管11-1、11-2b及び第2延長配管12-1、12-2bを介して接続されている。熱源機A-1、A-2と室内機Cとの間は、第1延長配管11-1、11-2c及び第2延長配管12-1、12-2cを介して接続されている。熱源機A-1、A-2の組と、室内機B、Cの組とが、第1延長配管11-1、11-2b、11-2c及び第2延長配管12-1、12-2b、12-2c等を介して環状に接続されることにより、冷媒回路の主回路が構成されている。
本発明の実施の形態1に係る空気調和装置について説明する。図1は、本実施の形態に係る空気調和装置100の構成を示す回路構成図である。図1に示すように、空気調和装置100は、冷媒回路において互いに並列に接続された複数の熱源機A-1、A-2(熱源側ユニット)と、冷媒回路において互いに並列に接続された複数の室内機B、C(利用側ユニット)と、を有している。熱源機A-1、A-2は例えば室外に設置されており、室内機B、Cは例えば室内に設置されている。熱源機A-1、A-2と室内機Bとの間は、第1延長配管11-1、11-2b及び第2延長配管12-1、12-2bを介して接続されている。熱源機A-1、A-2と室内機Cとの間は、第1延長配管11-1、11-2c及び第2延長配管12-1、12-2cを介して接続されている。熱源機A-1、A-2の組と、室内機B、Cの組とが、第1延長配管11-1、11-2b、11-2c及び第2延長配管12-1、12-2b、12-2c等を介して環状に接続されることにより、冷媒回路の主回路が構成されている。
空気調和装置100は、さらに制御装置30を有している。制御装置30は、後述する冷暖切替装置2-1、2-2及びデフロスト回路等を制御することにより、運転モードを切り替える機能を有している。空気調和装置100の運転モードには、少なくとも冷房運転及び暖房運転がある。暖房運転には、サブ運転モードとして、暖房通常運転、リバースデフロスト運転、第1の暖房デフロスト同時運転(以下、「暖房デフロスト同時運転1」という場合がある)及び第2の暖房デフロスト同時運転(以下、「暖房デフロスト同時運転2」という場合がある)が含まれる。
制御装置30は、選択手段31及び判定手段32を備えている。選択手段31は、デフロスト運転を行う場合の運転モードとして、第1の暖房デフロスト同時運転又は第2の暖房デフロスト同時運転のいずれかを選択するものである。判定手段32は、デフロスト運転を実行するか否かを判定するものである。制御装置30は、例えば、CPU(Central Processing Unit)等の制御演算処理部と、制御等に係る処理手順をプログラムとしたデータを記憶する記憶部と、を有している。本実施の形態の選択手段31及び判定手段32は、記憶部に記憶されたプログラムを制御演算処理部が実行することにより実現される機能ブロックである。例えば、選択手段31は、後述する図4のステップS6に対応する機能ブロックであり、判定手段32は、図4のステップS5に対応する機能ブロックである。
冷媒回路を循環させる冷媒としては、例えば、フロン冷媒、HFO冷媒等を用いることができる。フロン冷媒としては、例えば、HFC系冷媒であるR32、R125、R134a等がある。また、フロン冷媒としては、HFC系冷媒の混合冷媒であるR410A、R407C、R404A等がある。また、HFO冷媒としては、例えば、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)、HFO-1123等がある。また、その他の冷媒としては、CO2冷媒、HC冷媒(例えば、プロパン、イソブタン冷媒等)、アンモニア冷媒、R32とHFO-1234yfとの混合冷媒のような上記冷媒の混合冷媒等、蒸気圧縮式のヒートポンプ回路に用いられる種々の冷媒を用いることができる。
なお、本実施の形態では、2台の熱源機A-1、A-2と2台の室内機B、Cとが接続された冷媒回路を例に挙げて説明するが、熱源機及び室内機の接続台数はこれに限られない。冷媒回路には、1台又は3台以上の室内機が接続されていてもよいし、3台以上の熱源機が並列に接続されていてもよい。また、延長配管を3本並列に接続したり、室内機側に切替弁を設けたりすることにより、それぞれの室内機が独立して冷房又は暖房を選択する冷暖同時運転を実行できるようにした冷媒回路構成であってもよい。
次に、本実施の形態に係る空気調和装置100における冷媒回路の構成について説明する。ここで、熱源機A-1、A-2は冷媒回路において互いに並列に接続されており、熱源機A-1内の冷媒回路と熱源機A-2内の冷媒回路とは同一の構成を有している。このため、まず熱源機A-1、A-2のうち熱源機A-1のみを含む冷媒回路の構成について説明し、その後、熱源機A-2について簡単に説明する。
空気調和装置100の冷媒回路は、圧縮機1-1と、冷暖切替装置2-1と、室内熱交換器3-b、3-cと、室内熱交換器3-b、3-cに対応して設けられた流量制御装置4-b、4-cと、室外熱交換器5-1とが、冷媒配管を介して順次接続された主回路を有している。また、本実施の形態の冷媒回路には、さらにアキュムレータ6-1が設けられている。アキュムレータ6-1は、圧縮機1-1の吸入部に配置されている。アキュムレータ6-1は、冷房時の必要冷媒量と暖房時の必要冷媒量との差分などの余剰冷媒を溜める冷媒貯留機能を有している。また、アキュムレータ6-1は、流入した冷媒を液冷媒とガス冷媒とに分離し、ガス冷媒のみを流出させる気液分離機能を有している。ただし、アキュムレータ6-1は必須の構成ではない。例えば、冷媒回路中における圧縮機1-1の吸入部以外に、液冷媒を溜める容器が接続されていればよい。
室内機Bには、室内熱交換器3-b、流量制御装置4-b、及び室内熱交換器3-bに空気を送風する室内ファン3f-bが収容されている。室内機Cには、室内熱交換器3-c、流量制御装置4-b、及び室内熱交換器3-cに空気を送風する室内ファン3f-cが収容されている。
室内熱交換器3-b、3-cは、内部を流通する冷媒と、室内ファン3f-b、3f-cにより送風される室内空気と、の熱交換を行うものである。例えば冷房運転時には、室内熱交換器3-b、3-cは蒸発器として動作し、冷媒の蒸発熱を室内空気から吸熱して冷媒を気化させる。暖房運転時には、室内熱交換器3-b、3-cは凝縮器(又は放熱器)として動作し、冷媒の凝縮熱を室内空気に放熱し、冷媒を液化させる。
室内ファン3f-b、3f-cは、それぞれ室内の空気を吸い込んで室内熱交換器3-b、3-cを通過させ、再度室内に送り込む空気の流れを生成するものである。
流量制御装置4-b、4-cは、例えば、開度の調整により冷媒の流量を連続的に又は多段階で制御可能な電子膨張弁等により構成されている。流量制御装置4-b、4-cは、制御装置30からの指示に基づき開度を変化させることにより、例えば室内熱交換器3-b、3-c内の冷媒の圧力及び温度を調整する。
熱源機A-1には、圧縮機1-1、冷暖切替装置2-1、室外熱交換器5-1、アキュムレータ6-1、及び室外熱交換器5-1に室外空気を送風する室外ファン5f-1が収容されている。
圧縮機1-1は、吸入した冷媒を圧縮して吐出する流体機械である。ここで、特に限定するものではないが、圧縮機1-1は、例えばインバータ回路等によって駆動周波数を任意に変化させることにより、圧縮機1-1の容量(単位時間あたりの冷媒の吐出量)が変化するように構成されていてもよい。
冷暖切替装置2-1は、圧縮機1-1から吐出された冷媒の流路を切り替えるものである。冷暖切替装置2-1は、例えば四方弁により構成されている。冷暖切替装置2-1は、圧縮機1-1の吐出側に接続される吐出配管1a-1と、圧縮機1-1の吸入側に接続される吸入配管1b-1と、の間に接続される。冷暖切替装置2-1は、制御装置30によって制御される。暖房運転時には、制御装置30は、圧縮機1-1から吐出された冷媒が室内熱交換器3-b、3-cに流入するように、冷暖切替装置2-1の流路を図1中の実線で示すように切り替える。冷房運転時には、制御装置30は、圧縮機1-1から吐出された冷媒が室外熱交換器5-1に流入するように、冷暖切替装置2-1の流路を図1中の点線で示すように切り替える。
室外熱交換器5-1は、内部を流通する冷媒と、室外ファン5f-1により送風される室外空気と、の熱交換を行うものである。例えば冷房運転時には、室外熱交換器5-1は凝縮器(又は放熱器)として動作し、冷媒の凝縮熱を室外空気に放熱して冷媒を液化させる。暖房運転時には、室外熱交換器5-1は蒸発器として動作し、冷媒の蒸発熱を室外空気から吸熱し、冷媒を気化させる。
室外ファン5f-1は、室外の空気を室外熱交換器5-1に送風するものである。
図2は、本実施の形態に係る室外熱交換器5-1の構成の一例を示す図である。図2に示すように、室外熱交換器5-1は、例えば、複数の伝熱管5aと複数のフィン5bとを備えるクロスフィン式のフィンチューブ型熱交換器である。室外熱交換器5-1は、複数の並列熱交換器に分割されている。本例では、室外熱交換器5-1が2つの並列熱交換器50-11、50-12に分割されている構成を例示している。並列熱交換器50-11は室外熱交換器5-1の上部に配置されており、並列熱交換器50-12は並列熱交換器50-11よりも下方に配置されている。
伝熱管5aは、内部に冷媒を通過させるものである。伝熱管5aは、空気の流通方向(図2中の白抜き矢印の方向)に対して垂直な段方向(図2中の上下方向)、及び空気の流通方向に平行な列方向(図2中の左右方向)にそれぞれ複数設けられている。フィン5bは、空気の通過を許容するように互いに間隔を空けて配置されている。
室外熱交換器5-1は、上下方向に2つの並列熱交換器50-11、50-12に分割されている。並列熱交換器50-11、50-12は、冷媒の流れにおいて互いに並列に設けられるとともに、空気の流れにおいても互いに並列に設けられる。図2に示す構成では、風上側の伝熱管5aが第1接続配管13-11、13-12(暖房運転時において室外熱交換器5-1に冷媒を流入させる接続配管)に接続され、風下側の伝熱管5aが第2接続配管14-11、14-12(暖房運転時において室外熱交換器5-1から冷媒を流出させる接続配管)に接続されている。しかしながら、風上側の伝熱管5aが第2接続配管14-11、14-12に接続され、風下側の伝熱管5aが第1接続配管13-11、13-12に接続されてもよい。後述するように、並列熱交換器50-11、50-12の一方又は双方がデフロストされる際、デフロストされる並列熱交換器には第2接続配管14(第2接続配管14-11又は第2接続配管14-12)から冷媒が流入し、当該並列熱交換器からは第1接続配管13(第1接続配管13-11又は第1接続配管13-12)に冷媒が流出する場合がある。このため、風上側の伝熱管5aを第2接続配管14-11、14-12に接続し、風下側の伝熱管5aを第1接続配管13-11、13-12に接続することにより、デフロスト時に風上側で空気に放熱された熱を、風下側のデフロストに用いることができる。
図3は、本実施の形態に係る室外熱交換器5-1、5-2の熱源機A-1、A-2への搭載例を示す図である。図3に示すように、室外熱交換器5-1(並列熱交換器50-11、50-12)及び室外熱交換器5-2(並列熱交換器50-21、50-22)は、熱源機A-1、A-2にそれぞれ搭載される。熱源機A-1、A-2のそれぞれは、室外空気を筐体側面から流入させ、室外熱交換器5-1、5-2を通過した室外空気を筐体上面から流出させるトップフロー型である。トップフロー型の熱源機A-1、A-2の場合、上部の風速が下部の風速よりも大きくなる。したがって、並列熱交換器50-11、50-12のAK値をできるだけ等しくし、並列熱交換器50-21、50-22のAK値をできるだけ等しくするため、下部に位置する並列熱交換器50-12、50-22の伝熱面積は、上部に位置する並列熱交換器50-11、50-21の伝熱面積よりも大きくした方がよい。ここで、AK値とは、熱交換器の伝熱面積と熱通過率との積であり、単位温度あたりの熱通過率の能力を表す値[kW/K]である。
複数のフィン5bのそれぞれは、並列熱交換器50-11側と並列熱交換器50-12側とで分離されていなくてもよいし、並列熱交換器50-11、50-12のそれぞれが独立したフィンを有するように熱的に分離されていてもよい。また、本実施の形態では、室外熱交換器5-1が2つの並列熱交換器50-11、50-12に分割されているが、室外熱交換器5-1は、2以上の任意の数の並列熱交換器に分割することができる。
図1に戻り、並列熱交換器50-11、50-12と第2延長配管12-1とは、それぞれ第1接続配管13-11、13-12を介して接続されている。第1接続配管13-11、13-12には、それぞれ第2絞り装置7-11、7-12が設けられている。第1接続配管13-11のうちの第2絞り装置7-11と並列熱交換器50-11との間と、第1接続配管13-12のうちの第2絞り装置7-12と並列熱交換器50-12との間とは、バイパス配管を介して接続されている。このバイパス配管には、第2絞り装置7-13が設けられている。第2絞り装置7-11、7-12、7-13は、例えば電子膨張弁により構成されている。第2絞り装置7-11、7-12、7-13は、制御装置30からの指示に基づいて開度を変化させることができる。
並列熱交換器50-11、50-12と冷暖切替装置2-1とは、それぞれ第2接続配管14-11、14-12を介して接続されている。第2接続配管14-11、14-12には、それぞれ第1電磁弁8-11、8-12が設けられている。第1電磁弁8-11、8-12は、制御装置30からの指示に基づいて流路を開閉するものである。
吐出配管1a-1には、例えば暖房運転時において圧縮機1-1から吐出された冷媒が冷暖切替装置2-1側に流れるのを許容し、逆流を阻止する逆止弁16-1が設けられている。なお、圧縮機1-1の吐出圧力が室内機B、Cの圧力よりも低くなった場合の逆流を防ぐことができればよいため、逆止弁16-1に代えて電磁弁などの開閉弁を用いることもできる。吐出配管1a-1のうち逆止弁16-1の上流側(圧縮機1-1側)と、第2接続配管14-11、14-12のうち並列熱交換器50-11、50-12と第1電磁弁8-11、8-12との間とは、それぞれデフロスト配管15-1を介して接続されている。デフロスト配管15-1の一端側は吐出配管1a-1に接続されており、他端側は分岐して第2接続配管14-11、14-12のそれぞれに接続されている。デフロスト配管15-1は、圧縮機1-1から吐出された高温高圧の冷媒の一部(又は全部)を、室外熱交換器5-1の並列熱交換器50-11、50-12にデフロストのために供給するものである。
デフロスト配管15-1には、減圧装置となる第1絞り装置10-1が設けられている。第1絞り装置10-1は、吐出配管1a-1からデフロスト配管15-1に流入した高温高圧の冷媒を中圧に減圧するものである。ここで、中圧とは、冷媒回路内の高圧側圧力(例えば、凝縮器内の圧力)よりも低く、低圧側圧力(例えば、蒸発器内の圧力)よりも高い圧力である。第1絞り装置10-1で減圧された中圧冷媒は、第2接続配管14-11、14-12を通って並列熱交換器50-11、50-12に流入する。これにより、並列熱交換器50-11、50-12では、中圧冷媒を用いたデフロストが行われる。
デフロスト配管15-1の他端側において分岐したそれぞれの配管には、第2電磁弁9-11、9-12が設けられている。第2電磁弁9-11、9-12は、中圧冷媒を第2接続配管14-11、14-12のいずれに流入させるかを制御する。ここで、第1電磁弁8-11、8-12及び第2電磁弁9-11、9-12は、例えば、四方弁、三方弁、二方弁等のように冷媒の流れが制御できるものであれば種類については限定されない。
本実施の形態では、デフロスト配管15-1、第1電磁弁8-11、8-12、第2電磁弁9-11、9-12、及び第2絞り装置7-11、7-12、7-13は、デフロスト回路及び流路切替装置を構成している。デフロスト回路は、圧縮機1-1から吐出された冷媒の一部(又は全部)を分岐させ、複数の並列熱交換器50-11、50-12のうちからデフロスト対象として選択された一部の並列熱交換器に流入させるものである。第1電磁弁8-11、8-12、及び第2電磁弁9-11、9-12の開閉は、制御装置30により制御される。
なお、必要なデフロスト能力(デフロストに必要な冷媒流量)が予め決まっている場合には、第1絞り装置10-1として毛細管等の固定絞りを用いてもよい。また、第1絞り装置10-1を設けることに代えて、予め設定したデフロスト流量時に冷媒の圧力が中圧まで低下するように、第2電磁弁9-11、9-12を小型化してもよい。また、第2電磁弁9-11、9-12に代えて、冷媒の流量を連続的に又は多段階で制御可能な流量制御装置を設置してもよい。この場合、第1絞り装置10-1の設置を省略することができる。
また、熱源機A-1には各種センサが設けられている。制御装置30は、各種センサからの検出信号に基づき、圧縮機1-1の周波数、室外ファン5f-1及び各種流量制御装置等、アクチュエータとなる機器を制御する。ここでは、各種センサの一部として、主にデフロストの実行又はデフロストの終了判定に必要なセンサについて説明する。
デフロスト配管15-1には、当該配管内の冷媒圧力を検出する圧力センサ21-11が設けられている。圧力センサ21-11では、第2電磁弁9-11が開いている場合には並列熱交換器50-11内の冷媒圧力が検出され、第2電磁弁9-12が開いている場合には並列熱交換器50-12内の冷媒圧力が検出される。第1接続配管13-11、13-12には、デフロストを行う際に並列熱交換器50-11、50-12から流出する冷媒の温度を検出する温度センサ22-11、22-12が設けられている。デフロスト対象の並列熱交換器50-11、50-12の圧力を制御する際には、圧力センサ21-11の検出値が用いられる。また、デフロストの終了判定には、並列熱交換器50-11、50-12から流出する冷媒のサブクールSCが用いられる。サブクールSCは、圧力センサ21-11の検出圧力に基づく飽和液温度と、温度センサ22-11、22-12の検出温度と、の温度差を用いて算出される。デフロスト対象の並列熱交換器内の冷媒圧力を検出するため、圧力センサ21-11に代えて、例えば第1接続配管13-11、13-12のそれぞれに圧力センサが設けられていてもよい。
その他のセンサとしては、圧縮機1-1に吸入される冷媒の温度を検出する温度センサ22-14、圧縮機1-1から吐出される冷媒の圧力を検出する圧力センサ21-12、室外熱交換器5-1と冷暖切替装置2-1との間を接続するガス側配管内の冷媒の温度を検出する温度センサ22-13、外気温度を検出する温度センサ23、等が設けられている。なお、制御装置30は、外気温度の情報を外部から取得するようにしてもよい。
熱源機A-2は、熱源機A-1と同様の構成を有している。すなわち、熱源機A-2の圧縮機1-2、吐出配管1a-2、吸入配管1b-2、冷暖切替装置2-2、室外熱交換器5-2、室外ファン5f-2、アキュムレータ6-2、第2絞り装置7-21、7-22、7-23、第1電磁弁8-21、8-22、第2電磁弁9-21、9-22、第1絞り装置10-2、第1接続配管13-21、13-22、第2接続配管14-21、14-22、デフロスト配管15-2、逆止弁16-2、圧力センサ21-21、21-22、温度センサ22-21、22-22、22-23、22-24、並列熱交換器50-21、50-22は、熱源機A-1の圧縮機1-1、吐出配管1a-1、吸入配管1b-1、冷暖切替装置2-1、室外熱交換器5-1、室外ファン5f-1、アキュムレータ6-1、第2絞り装置7-11、7-12、7-13、第1電磁弁8-11、8-12、第2電磁弁9-11、9-12、第1絞り装置10-1、第1接続配管13-11、13-12、第2接続配管14-11、14-12、デフロスト配管15-1、逆止弁16-1、圧力センサ21-11、21-12、温度センサ22-11、22-12、22-13、22-14、並列熱交換器50-11、50-12にそれぞれ対応している。なお、本実施の形態では、外気温度を検出する温度センサ23は熱源機A-1のみに設けられている。
次に、空気調和装置100の各種運転モードにおける運転動作について説明する。図4は、本実施の形態に係る空気調和装置100の制御装置30で実行される制御の流れの一例を示すフローチャートである。空気調和装置100の運転が開始されると(ステップS1)、制御装置30は、リモコン等によるユーザーからの指令に基づき、室内機B及び室内機Cの運転モードを冷房運転又は暖房運転に設定する(ステップS2)。運転モードが冷房運転に設定された場合、制御装置30は所定の冷房制御を行う(ステップS3)。運転モードが暖房運転に設定された場合、制御装置30は、冷暖切替装置2-1、2-2、流量制御装置4-b、4-c、第2絞り装置7-11、7-12、7-21、7-22、第1電磁弁8-11、8-12、8-21、8-22、第2電磁弁9-11、9-12、9-21、9-22、及び第1絞り装置10-1、10-2等を制御し、暖房通常運転、暖房デフロスト同時運転1(連続暖房運転とも称する)又は暖房デフロスト同時運転2のいずれかを実行する。本例では、運転モードが暖房運転に設定された場合、制御装置30は、サブ運転モードをまず暖房通常運転に設定し、所定の暖房制御を行う(ステップS4)。暖房通常運転は、室外熱交換器5-1、5-2を構成する並列熱交換器50-11、50-12、50-21、50-22の全てが通常の蒸発器として動作するサブ運転モードである。
暖房通常運転時には、制御装置30は、デフロスト実施条件を満たすか否かを判定する(ステップS5)。デフロスト実施条件を満たすか否かの判定は、例えば、外気温度及び冷凍サイクルの低圧側圧力等を用いて行われる。デフロスト実施条件を満たすと判定した場合には、制御装置30は、デフロスト実施方法として、例えば暖房デフロスト同時運転1又は暖房デフロスト同時運転2のいずれかを選択して実行する(ステップS6)。暖房デフロスト同時運転1又は暖房デフロスト同時運転2の実行が開始されると、制御装置30がデフロスト終了条件を満たすと判定するまで継続される(ステップS7~S10)。一方、ステップS5でデフロスト実施条件を満たさないと判定した場合には、ステップS4に戻り、所定の暖房制御を継続するとともに、デフロスト実施条件を満たすか否かの判定を所定の時間間隔で繰り返す。
暖房デフロスト同時運転1は、複数の並列熱交換器50-11、50-12、50-21、50-22のうちの一部(例えば、熱源機毎にそれぞれ1つ)の並列熱交換器がデフロスト対象として順次選択されるサブ運転モードである。デフロスト対象として選択された並列熱交換器には、上記のデフロスト回路によって、圧縮機から吐出された冷媒の一部が流入する。これに対し、デフロスト対象以外の並列熱交換器は、通常の蒸発器として動作する。例えば、暖房デフロスト同時運転1では、熱源機A-1(室外熱交換器5-1)の一方の並列熱交換器50-11を蒸発器として動作させて暖房運転を実行しつつ、他方の並列熱交換器50-12のデフロストを行う。並列熱交換器50-12のデフロストが終了すると、今度は並列熱交換器50-12を蒸発器として動作させて暖房運転を実行しつつ、並列熱交換器50-11のデフロストを行う。暖房デフロスト同時運転1では、暖房運転を継続しながら、並列熱交換器50-11、50-12のデフロストを交互に行うとともに、並列熱交換器50-21、50-22のデフロストを交互に行うことが可能である。
暖房デフロスト同時運転2は、複数の熱源機A-1、A-2のうちの一部の熱源機(例えば、1台の熱源機)の全ての並列熱交換器のデフロスト(以下、「全面デフロスト」という場合がある)を行い、それ以外の熱源機の並列熱交換器を蒸発器として動作させて暖房運転を実行するサブ運転モードである。つまり、暖房デフロスト同時運転2では、暖房運転を継続しながら、熱源機A-1、A-2毎の全面デフロストを交互に行う。例えば、一方の熱源機A-1の全ての並列熱交換器50-11、50-12を蒸発器として動作させて暖房運転を実行しつつ、他方の熱源機A-2の全ての並列熱交換器50-21、50-22のデフロストを同時に行う。並列熱交換器50-21、50-22のデフロストが終了すると、今度は熱源機A-2の全ての並列熱交換器50-21、50-22を蒸発器として動作させて暖房運転を実行しつつ、熱源機A-1の全ての並列熱交換器50-11、50-12のデフロストを同時に行う。
暖房デフロスト同時運転1及び暖房デフロスト同時運転2は、暖房通常運転中、冷凍サイクルの低圧側圧力及び室外熱交換器5-1、5-2の検知温度等が低下して、室外熱交換器5-1、5-2に着霜が生じていると判断された場合に行われる。なお、暖房デフロスト同時運転1又は暖房デフロスト同時運転2のいずれかを選択する手法については、図15を用いて後述する。
図5は、本実施の形態に係る空気調和装置100の各運転モードにおける各バルブの状態の例を示す図である。図5では、冷暖切替装置2-1、2-2、第2絞り装置7-11、7-12、7-13、7-21、7-22、7-23、第1電磁弁8-11、8-12、8-21、8-22、第2電磁弁9-11、9-12、9-21、9-22、第1絞り装置10-1、10-2、及び流量制御装置4-b、4-cのそれぞれの符号を「バルブ番号」として示している。例えば、冷暖切替装置2-1、2-2の「ON」は、図1中に実線で示すように流路が切り替えられた状態を示し、「OFF」は、図1中に点線で示すように流路が切り替えられた状態を示す。また例えば、第1電磁弁8-11、8-12、8-21、8-22、及び第2電磁弁9-11、9-12、9-21、9-22の「ON」は、弁が開放されて冷媒を流通させる状態を示し、「OFF」は、弁が閉じられて冷媒を流通させない状態を示す。また例えば、第2絞り装置7-13、7-23の「デフロスト熱交圧力」は、デフロスト対象の並列熱交換器内の冷媒圧力が所定の圧力範囲となるように第2絞り装置7-13、7-23の開度が制御されることを示す。
以下に説明する各運転モードでは、制御装置30の制御により、各バルブの状態が図5に示すように設定される。
[冷房運転]
図6は、本実施の形態に係る空気調和装置100の冷房運転時における冷媒の流れを示す図である。図6では、冷媒が流れる部分を太線で表し、冷媒が流れない部分を細線で表している。図7は、本実施の形態に係る空気調和装置100の冷房運転時におけるP-h線図である。図7中の点(a)~(d)は、それぞれ図6中の(a)~(d)部での冷媒の状態を示している。
図6は、本実施の形態に係る空気調和装置100の冷房運転時における冷媒の流れを示す図である。図6では、冷媒が流れる部分を太線で表し、冷媒が流れない部分を細線で表している。図7は、本実施の形態に係る空気調和装置100の冷房運転時におけるP-h線図である。図7中の点(a)~(d)は、それぞれ図6中の(a)~(d)部での冷媒の状態を示している。
図6及び図7に示すように、熱源機A-1の圧縮機1-1は、低温低圧のガス冷媒を吸入して圧縮し、高温高圧のガス冷媒を吐出する(図7の点(a)~(b))。圧縮機1-1から吐出された高温高圧のガス冷媒の一部は、冷暖切替装置2-1、第1電磁弁8-11及び第2接続配管14-11を通過して並列熱交換器50-11に流入する。高温高圧のガス冷媒の他の一部は、冷暖切替装置2-1、第1電磁弁8-12及び第2接続配管14-12を通過して並列熱交換器50-12に流入する。並列熱交換器50-11、50-12に流入したガス冷媒は、室外ファン5f-1により送風される室外空気に凝縮熱を放熱して凝縮し、中温高圧の液冷媒となる(図7の点(b)~(c))。
並列熱交換器50-11、50-12から流出した中温高圧の液冷媒は、第1接続配管13-11、13-12、全開状態の第2絞り装置7-11、7-12、及び第2延長配管12-1を通り、熱源機A-2から流出した中温高圧の液冷媒と合流する。なお、熱源機A-2における冷媒の流れは熱源機A-1と同様であるため、説明を省略する。中温高圧の液冷媒は、第2延長配管12-2b、12-2cに分岐して、流量制御装置4-b、4-cを通過する。流量制御装置4-b、4-cを通過した冷媒は、膨張して減圧され、低温低圧の気液二相冷媒となる(図7の点(c)~(d))。
流量制御装置4-b、4-cから流出した低温低圧の気液二相冷媒は、室内熱交換器3-b、3-cに流入し、室内空気から蒸発熱を吸熱して蒸発し、低温低圧のガス冷媒となる(図7の点(d)~(a))。ここで、制御装置30は、図7の点(a)で示す低温低圧のガス冷媒のスーパーヒート(過熱度)が2K~5K程度になるように、流量制御装置4-b、4-cを制御する。
室内熱交換器3-b、3-cから流出した低温低圧のガス冷媒は、第1延長配管11-2b、11-2cを通過して合流し、さらに第1延長配管11-1で熱源機A-1、A-2のそれぞれに分流する。熱源機A-1側に分流したガス冷媒は、冷暖切替装置2-1及びアキュムレータ6-1を通って圧縮機1-1に吸入される。
[暖房通常運転]
図8は、本実施の形態に係る空気調和装置100の暖房通常運転時における冷媒の流れを示す図である。図8では、冷媒が流れる部分を太線で表し、冷媒が流れない部分を細線で表している。図9は、本実施の形態に係る空気調和装置100の暖房通常運転時におけるP-h線図である。図9中の点(a)~(e)は、それぞれ図8中の(a)~(e)部での冷媒の状態を示している。
図8は、本実施の形態に係る空気調和装置100の暖房通常運転時における冷媒の流れを示す図である。図8では、冷媒が流れる部分を太線で表し、冷媒が流れない部分を細線で表している。図9は、本実施の形態に係る空気調和装置100の暖房通常運転時におけるP-h線図である。図9中の点(a)~(e)は、それぞれ図8中の(a)~(e)部での冷媒の状態を示している。
図8及び図9に示すように、熱源機A-1の圧縮機1-1は、低温低圧のガス冷媒を吸入して圧縮し、高温高圧のガス冷媒を吐出する(図9の点(a)~(b))。圧縮機1-1から吐出された高温高圧のガス冷媒は、冷暖切替装置2-1及び第1延長配管11-1を通過し、熱源機A-2から流出したガス冷媒と合流する。高温高圧のガス冷媒は、第1延長配管11-2b、11-2cに分岐して、室内機B、Cの室内熱交換器3-b、3-cに流入する。室内熱交換器3-b、3-cに流入したガス冷媒は、室内ファン3f-b、3f-cにより送風される室内空気に凝縮熱を放熱して凝縮し、中温高圧の液冷媒となる(図9の点(b)~(c))。
室内熱交換器3-b、3-cから流出した中温高圧の液冷媒は、流量制御装置4-b、4-cを通過する。流量制御装置4-b、4-cを通過した液冷媒は、膨張して減圧され、中圧の気液二相状態になる(図9の点(c)~(d))。ここで、制御装置30は、図9の点(c)で示す中温高圧の液冷媒のサブクール(過冷却度)が5K~20K程度になるように流量制御装置4-b、4-cを制御する。
流量制御装置4-b、4-cから流出した中圧の気液二相冷媒は、第2延長配管12-2b、12-2cを通過して合流し、さらに第2延長配管12-1で熱源機A-1、A-2のそれぞれに分流する。熱源機A-1側に分流した気液二相冷媒の一部は、第1接続配管13-11及び第2絞り装置7-11を通過する。熱源機A-2側に分流した気液二相冷媒の他の一部は、第1接続配管13-12及び第2絞り装置7-12を通過する。第2絞り装置7-11、7-12を通過した冷媒は、膨張して減圧され、低圧の気液二相冷媒となる(図9の点(d)~(e))。ここで、制御装置30は、第2絞り装置7-11、7-12を、一定開度(例えば、全開)で固定されるように制御するか、又は第2延長配管12-1等における中圧圧力の飽和温度が0℃~20℃程度となるように制御する。
第2絞り装置7-11、7-12から流出した低圧の気液二相冷媒は、並列熱交換器50-11、50-12に流入する。並列熱交換器50-11、50-12に流入した気液二相冷媒は、室外ファン5f-1により送風される室外空気から蒸発熱を吸熱して蒸発し、低温低圧のガス冷媒となる(図9の点(e)~(a))。
並列熱交換器50-11、50-12から流出した低温低圧のガス冷媒は、第2接続配管14-11、14-12及び第1電磁弁8-11、8-12を通って合流し、冷暖切替装置2-1及びアキュムレータ6-1を通過して圧縮機1-1に吸入される。
[リバースデフロスト運転]
本実施の形態では、通常はリバースデフロスト運転を行わない。しかしながら、暖房通常運転、暖房デフロスト同時運転1及び暖房デフロスト同時運転2のサイクルを繰り返しているうちに、外気温度が大幅に低下したり、圧縮機1-1、1-2の吸入圧力が大幅に低下したりした場合には、室外熱交換器5-1、5-2を無着霜の状態にするためにリバースデフロスト運転を行ってもよい。
本実施の形態では、通常はリバースデフロスト運転を行わない。しかしながら、暖房通常運転、暖房デフロスト同時運転1及び暖房デフロスト同時運転2のサイクルを繰り返しているうちに、外気温度が大幅に低下したり、圧縮機1-1、1-2の吸入圧力が大幅に低下したりした場合には、室外熱交換器5-1、5-2を無着霜の状態にするためにリバースデフロスト運転を行ってもよい。
リバースデフロスト運転を行う場合、制御装置30は、冷暖切替装置2-1の流路を冷房運転時と同様に切り替える。これにより、圧縮機1-1から吐出された高温のガス冷媒は、並列熱交換器50-11、50-12に流入する。並列熱交換器50-11、50-12において、冷媒は、フィン5bに積層した霜を融かしながら冷却される。その後、並列熱交換器50-11、50-12から流出した冷媒は、第2絞り装置7-11、7-12及び第2延長配管12-1を通り、熱源機A-2から流出した冷媒と合流する。合流した冷媒は、第2延長配管12-2b、12-2c、流量制御装置4-b、4-c、室内熱交換器3-b、3-c、第1延長配管11-2b、11-2c、11-1を通過し、熱源機A-1、A-2のそれぞれに分流する。熱源機A-1側に分流した冷媒は、冷暖切替装置2-1及びアキュムレータ6-1を通過して、圧縮機1-1に吸入される。
リバースデフロスト運転時には、室内機B、Cから室内に冷風が吹き出されるのを防ぐため、制御装置30は、室内ファン3f-b、3f-cを停止させる。また、制御装置30は、圧縮機1-1、1-2の吸入圧力ができるだけ低下しないように、第2絞り装置7-11、7-12、7-21、7-22、及び流量制御装置4-b、4-cが全開となるように制御する。
[暖房デフロスト同時運転1(連続暖房運転)]
暖房デフロスト同時運転1は、暖房通常運転中に、図4のステップS5でデフロスト実施条件を満たすと判定された場合(例えば、室外熱交換器5-1、5-2に霜が付いたことを検知した場合)であって、ステップS6で暖房デフロスト同時運転1が選択された場合に行われる。
暖房デフロスト同時運転1は、暖房通常運転中に、図4のステップS5でデフロスト実施条件を満たすと判定された場合(例えば、室外熱交換器5-1、5-2に霜が付いたことを検知した場合)であって、ステップS6で暖房デフロスト同時運転1が選択された場合に行われる。
本実施の形態の構成では、暖房デフロスト同時運転1として、2種類の運転方法がある。第1の運転方法は、複数の熱源機A-1、A-2のそれぞれ一部の並列熱交換器をデフロスト対象とし、残りの並列熱交換器を蒸発器として動作させるものである。第2の運転方法は、複数の熱源機A-1、A-2のうち一部の熱源機のさらに一部の並列熱交換器のみをデフロスト対象とし、残りの並列熱交換器を蒸発器として動作させるものである。すなわち、第2の運転方法では、複数の熱源機A-1、A-2のうち一部の熱源機において、蒸発器として動作する並列熱交換器とデフロストされる並列熱交換器とが混在する。一方、上記一部の熱源機以外の熱源機では、暖房通常運転と同様に全ての並列熱交換器が蒸発器として動作する。
本実施の形態では、第1の運転方法による暖房デフロスト同時運転1での冷媒の流れについて説明する。第2の運転方法による暖房デフロスト同時運転1での冷媒の流れは、第1の運転方法による冷媒の流れと、上述の暖房通常運転での冷媒の流れとを組み合わせたものである。すなわち、どの並列熱交換器がデフロスト対象となるかによって、第1電磁弁8-11、8-12の開閉状態、及び第2電磁弁9-11、9-12の開閉状態などが逆になり、並列熱交換器50-11と並列熱交換器50-12との冷媒の流れが入れ替わるだけで、その他の動作は同様となる。よって、以下の説明では、熱源機A-1の並列熱交換器50-12と、熱源機A-2の並列熱交換器50-22と、をデフロスト対象とし、熱源機A-1の並列熱交換器50-11と、熱源機A-2の並列熱交換器50-21と、を蒸発器として動作させる場合の運転について説明する。以降の実施の形態の説明においても同様である。
図10は、本実施の形態に係る空気調和装置100の暖房デフロスト同時運転1時における冷媒の流れを示す図である。図10では、冷媒が流れる部分を太線で表し、冷媒が流れない部分を細線で表している。図11は、本実施の形態に係る空気調和装置100の暖房デフロスト同時運転1時におけるP-h線図である。図11中の点(a)~(g)は、それぞれ図10中の(a)~(g)部での冷媒の状態を示している。図11では、霜の融点である0℃の等温線を破線で示している。
制御装置30は、暖房通常運転を行っている際に、並列熱交換器の着霜状態を解消するデフロストが必要と判定し、かつ暖房デフロスト同時運転1を選択した場合、デフロスト対象の並列熱交換器(例えば、並列熱交換器50-12)に対応する第1電磁弁8-12及び第2絞り装置7-12を全閉にする制御を行う。また、制御装置30は、デフロスト対象の並列熱交換器50-12に対応する第2電磁弁9-12を開くとともに、第1絞り装置10-1の開度を予め設定した開度にする制御を行う。これによって、主回路の他に、圧縮機1-1、第1絞り装置10-1、第2電磁弁9-12、並列熱交換器50-12、第2絞り装置7-13が順次接続されたデフロスト回路が形成される。一方、並列熱交換器50-11は、暖房通常運転と同様に、主回路の蒸発器として動作する。これにより、暖房デフロスト同時運転1が行われる。
本実施の形態の暖房デフロスト同時運転1では、熱源機A-2は、熱源機A-1と対称な運転状態となるように制御される。すなわち、熱源機A-2では、並列熱交換器50-21、50-22の一方を通るデフロスト回路が形成されるとともに、並列熱交換器50-21、50-22の他方が主回路の蒸発器として動作する。
暖房デフロスト同時運転1が開始されると、圧縮機1-1から吐出された高温高圧のガス冷媒の一部は、デフロスト配管15-1に流入し、第1絞り装置10-1で中圧まで減圧される。このときの冷媒の状態変化は、図11中の点(b)~(f)で表される。中圧まで減圧されたガス冷媒は、第2電磁弁9-12を通り、並列熱交換器50-12に流入する。並列熱交換器50-12に流入したガス冷媒は、並列熱交換器50-12に付着した霜との熱交換により、冷却されて凝縮する。このように、中圧のガス冷媒を並列熱交換器50-12に流入させることにより、並列熱交換器50-12に付着した霜を中圧冷媒の凝縮潜熱を利用して融かすことができる。このときの冷媒の状態変化は、図11中の点(f)~(g)で表される。
ここで、第2絞り装置7-13は、デフロスト対象の並列熱交換器50-12内の中圧冷媒の圧力が、飽和温度換算で、霜の温度(0℃)以上である0℃~10℃程度となるように制御される。すなわち、第2絞り装置7-13は、冷媒としてR410が用いられる場合、中圧冷媒の圧力が0.80MPa~1.09MPaとなるように制御され、冷媒としてR32が用いられる場合、中圧冷媒の圧力が0.81MPa~1.11MPaとなるように制御され、冷媒としてHFO-1234yfが用いられる場合、中圧冷媒の圧力が0.32MPa~0.44MPaとなるように制御される。
一方、主回路の(d)部における冷媒の圧力(点(d))は、第2絞り装置7-11の開度を制御することで決まる。
並列熱交換器50-12から流出した冷媒は、第2絞り装置7-13で減圧され、第1接続配管13-11で主回路に合流する(点(e))。合流した冷媒は、蒸発器として動作する並列熱交換器50-11に流入し、室外空気との熱交換により蒸発する。
なお、熱源機A-2の冷媒の流れは熱源機A-1と同様である。熱源機A-2の冷媒の流れについては、上記記載の「圧縮機1-1」、「デフロスト配管15-1」、「第1絞り装置10-1」、「並列熱交換器50-12」、「第2絞り装置7-11」、「第2絞り装置7-13」等をそれぞれ、「圧縮機1-2」、「デフロスト配管15-2」、「第1絞り装置10-2」、「並列熱交換器50-22」、「第2絞り装置7-21」、「第2絞り装置7-23」等と読み替えればよい。
上述の通り、本実施の形態では、デフロスト対象の並列熱交換器に流入する中圧冷媒の圧力は、飽和温度換算で0℃よりも高くかつ10℃以下となるように制御される。ここで、中圧冷媒の潜熱を利用するデフロストを最大限活かしつつ、デフロスト中の冷媒の移動を抑え、霜の融けムラをなくすことを考えると、デフロスト対象の並列熱交換器におけるサブクールSCの目標値を0K(冷媒の乾き度は0)とすることが最適である。ただし、サブクールSCを演算するために必要な温度センサ及び圧力センサ等の精度を考慮に入れると、サブクールSCが0K~5K程度になるように、デフロスト対象の並列熱交換器に流入する中圧冷媒の圧力は、飽和温度換算で0℃よりも高くかつ6℃以下となるように制御されることが望ましい。
[暖房デフロスト同時運転2]
暖房デフロスト同時運転2は、暖房通常運転中に、図4のステップS5でデフロスト実施条件を満たすと判定された場合(例えば、室外熱交換器5-1、5-2に霜が付いたことを検知した場合)であって、ステップS6で暖房デフロスト同時運転2が選択された場合に行われる。
暖房デフロスト同時運転2は、暖房通常運転中に、図4のステップS5でデフロスト実施条件を満たすと判定された場合(例えば、室外熱交換器5-1、5-2に霜が付いたことを検知した場合)であって、ステップS6で暖房デフロスト同時運転2が選択された場合に行われる。
暖房デフロスト同時運転2では、複数台の熱源機A-1、A-2のうちから全面デフロストを行う一部の熱源機(全ての熱源機でなければ複数台の熱源機でも可)を選定し、その他の熱源機では通常の暖房運転を行う。デフロスト対象としてどの熱源機を選定するかによって、第1電磁弁8-11、8-12の開閉状態、及び第2電磁弁9-11、9-12の開閉状態などが逆になり、並列熱交換器50-11と並列熱交換器50-12との冷媒の流れが入れ替わるだけで、その他の動作は同様となる。よって、以下の説明では、熱源機A-2の全面デフロストを行いながら熱源機A-1で暖房運転を行う場合について説明する。なお、熱源機の全面デフロストを行う場合には、制御装置30は、室外空気への放熱を極力低減するために当該熱源機の室外ファンを停止させる。
図12は、本実施の形態に係る空気調和装置100の暖房デフロスト同時運転2時における冷媒の流れを示す図である。図12では、冷媒が流れる部分を太線で表し、冷媒が流れない部分を細線で表している。図13は、本実施の形態に係る空気調和装置100の暖房デフロスト同時運転2時におけるP-h線図である。図13中の点(a)~(h)は、それぞれ図12中の(a)~(h)部での冷媒の状態を示している。図13中の点(a)~(e)は、熱源機A-1及び室内機B、Cにより形成される主回路のサイクルを表しており、点(f)~(h)は、熱源機A-2により形成されるデフロスト回路のサイクルを表している。図13では、霜の融点である0℃の等温線を破線で示している。
制御装置30は、暖房通常運転を行っている際に、並列熱交換器の着霜状態を解消するデフロストが必要と判定し、かつ暖房デフロスト同時運転2を選択した場合、デフロスト対象の熱源機(本例では、熱源機A-2)の並列熱交換器50-21、50-22の一方(本例では、並列熱交換器50-21)に対応する第1電磁弁8-21と、並列熱交換器50-21、50-22の双方に対応する第2絞り装置7-21、7-22と、を全閉にする制御を行う。また、制御装置30は、一方の並列熱交換器50-21に対応する第2電磁弁9-21を開くとともに、第2絞り装置7-23の開度を全開にする制御を行う。さらに、制御装置30は、圧縮機1-2の吐出圧力(例えば、圧力センサ21-22の検出圧力)が第1延長配管11-1の圧力(例えば、圧縮機1-1の吐出圧力、圧力センサ21-12の検出圧力)を超えないように、第1絞り装置10-2の開度を制御する。これは、圧縮機1-2の吐出圧力が第1延長配管11-1の圧力を超えてしまうと、デフロスト回路のサイクルが熱源機A-2内で閉じられなくなり、デフロスト回路から主回路に冷媒が流出してしまうためである。例えば、圧縮機1-2の吐出圧力は、第1絞り装置10-2の開度が小さくなるほど上昇し、第1絞り装置10-2の開度が大きくなるほど低下する。
これによって、暖房運転を行う主回路とは切り離された形で、圧縮機1-2、第1絞り装置10-2、第2電磁弁9-21、並列熱交換器50-21、第2絞り装置7-23、並列熱交換器50-22、第1電磁弁8-22、冷暖切替装置2-2、アキュムレータ6-2が順次環状に接続されたデフロスト回路が形成される。これにより、暖房デフロスト同時運転2が行われる。
暖房デフロスト同時運転2が開始されると、熱源機A-1及び室内機B、Cにより形成される主回路では、通常の暖房運転が行われる。
一方、熱源機A-2により形成されるデフロスト回路では、以下のように冷媒が流れる。圧縮機1-2から吐出されたガス冷媒(図13の点(g))は、デフロスト配管15-2に流入し、第1絞り装置10-2で減圧される(図13の点(h))。ここで、圧縮機1-2の吐出圧力が第1延長配管11-1の圧力よりも低くなるため、圧縮機1-2から吐出されたガス冷媒は、第1延長配管11-1には流入しない。また、吐出配管1a-2には逆止弁16-2が設けられているため、第1延長配管11-1から熱源機A-2の吐出配管1a-2への高圧冷媒の逆流は生じない。
第1絞り装置10-2で減圧されたガス冷媒は、並列熱交換器50-21、第2絞り装置7-23、並列熱交換器50-22をこの順に通過し、並列熱交換器50-21、50-22に付着した霜に放熱する。これにより、並列熱交換器50-21、50-22に付着した霜を融かすことができる。並列熱交換器50-21、50-22を通過した冷媒は、霜の温度(0℃以下)よりも高い温度まで冷却され、ガス冷媒のままで、又は二相冷媒となって並列熱交換器50-22から流出する(図13の点(f))。並列熱交換器50-22から流出した冷媒は、第2接続配管14-22、第1電磁弁8-22、吸入配管1b-2を通ってアキュムレータ6-2に流入する。アキュムレータ6-2からは、温度が0℃よりも少し高くほぼ乾き度1のガス冷媒が圧縮機1-2に吸入される。
デフロスト回路は、冷媒の流れにおいて、第2絞り装置7-21、7-22及び逆止弁16-2により主回路から完全に切り離される。すなわち、デフロスト回路と主回路との間で冷媒の出入りがないため、デフロスト回路で冷媒不足になるのを防ぎつつ運転を継続することができる。また、圧縮機1-2の吸入圧力(図13の点(f))は、飽和温度換算で霜の融点である0℃程度となる。これにより、圧縮機1-2の吸入圧力が通常の暖房運転の吸入圧力(例えば、圧縮機1-1の吸入圧力(図13の点(a)))よりも高くなり、冷媒密度が増加するため、デフロスト流量を増加させることができ、デフロスト能力を高くすることができる。したがって、デフロストに必ずしも潜熱を利用しないものの、短い時間でデフロストを完了させることができる。また、熱源機A-2には蒸発器として動作する並列熱交換器がないため、室外ファン5f-2を停止させることができる。したがって、外気温度が低い場合であっても、並列熱交換器50-21、50-22における室外空気への放熱量を抑えることができる。
制御装置30は、暖房デフロスト同時運転2の実行中に、室外熱交換器5-2と冷暖切替装置2-2との間のガス側配管に設けられた温度センサ22-23の検出温度が10℃程度にまで上昇したら、暖房デフロスト同時運転2を終了する。
なお、図13に示すように、点(f)~(h)はいずれもガス領域にある。これにより、暖房デフロスト同時運転2のデフロスト回路では、必要な冷媒量が通常の暖房運転時よりも少なくなるため、余剰冷媒がアキュムレータ6-2に溜まることになる。しかしながら、外気温度が低い場合には、デフロスト運転の開始初期に、並列熱交換器50-21、50-22で凝縮した冷媒が並列熱交換器50-21、50-22に溜まってしまうことにより、冷媒が不足してしまう可能性がある。そこで、圧縮機1-2の吸入圧力及び圧縮機1-2の吸入温度(例えば、温度センサ22-24の検出温度)に基づいて吸入スーパーヒートを算出し、予め設定された閾値よりも吸入スーパーヒートが大きい場合には第2絞り装置7-21、7-22を微小開度で開き、主回路からデフロスト回路に液冷媒が供給されるようにしてもよい。
次に、暖房デフロスト同時運転1及び暖房デフロスト同時運転2の運転特性について、図14及び図15を用いて検討する。図14は、本実施の形態に係る空気調和装置100における外気温度に対する暖房デフロスト同時運転1の暖房能力を示すグラフである。グラフの横軸は外気温度(℃)を表しており、縦軸は暖房能力を表している。暖房デフロスト同時運転1では、蒸発器として動作する並列熱交換器の外気からの吸熱量と圧縮機入力との和(グラフ中の最も上の破線)が、室内機の暖房能力、デフロスト能力、及び外気への放熱量に分配されることになる。ここで、外気温度が0℃以上の場合には、0℃の霜に外気から熱が与えられるので、外気への放熱量は負の値となる。外気への放熱量が負の値となる場合、当該放熱量の絶対値を外気からの採熱量ということもできる。
外気温度が低下するに従って、蒸発器での外気からの吸熱量は減少する。一方、デフロスト開始時の着霜量は外気温度によらずほぼ一定であるので、グラフ中の灰色部分で示すように、霜を融かすデフロスト能力は外気温度によらずほぼ一定となる。室内機の暖房能力と外気への放熱量との和は、グラフ中の上から2番目の破線で表される。
暖房デフロスト同時運転1では、蒸発器として動作する並列熱交換器で外気から吸熱するために、室外ファン5f-1、5f-2が動作する。このとき、室外ファン5f-1、5f-2により送風される空気は、蒸発器として動作する並列熱交換器だけでなく、デフロスト対象の並列熱交換器にも流れる。このため、並列熱交換器での外気への放熱量(又は外気からの採熱量)は、霜の融点(0℃)と外気温度との温度差が大きくなるほど大きくなる。暖房デフロスト同時運転1における室内機の暖房能力は、蒸発器での外気からの吸熱量と圧縮機入力との和から、デフロスト能力と外気への放熱量とを差し引いた値であるため、グラフ中の太線で表される。
これに対し、暖房デフロスト同時運転2では、例えば2台の熱源機のうちの1台で全面デフロストが行われる。2台の熱源機に同能力の圧縮機が搭載されている場合、冷媒流量は通常の暖房運転時の半分となる。ただし、暖房デフロスト同時運転2では、暖房デフロスト同時運転1と異なり、デフロスト対象となる熱源機の室外ファンは停止する。このため、暖房能力に対する外気温度の影響は、蒸発器での外気からの吸熱量のみとなる。
図15は、本実施の形態に係る空気調和装置100における暖房デフロスト同時運転1の暖房能力と暖房デフロスト同時運転2の暖房能力とを示すグラフである。グラフの横軸は外気温度(℃)を表しており、縦軸は暖房能力を表している。図15に示すように、暖房デフロスト同時運転2の暖房能力の外気温度に対する変化の傾きは、暖房デフロスト同時運転1の暖房能力の外気温度に対する変化の傾きよりも小さい。このため、外気温度が所定の閾値温度よりも低くなると、暖房デフロスト同時運転2の暖房能力の方が暖房デフロスト同時運転1の暖房能力よりも高くなる。閾値温度は、外気温度0℃以下の領域にあり、概ね-10℃~-2℃の温度範囲に含まれる。ただし、この閾値温度は、システムの構成により若干異なる場合がある。
そこで、-10℃~-2℃の温度範囲内で予め閾値温度を設定しておき、デフロストが必要と判定した場合には、暖房デフロスト同時運転1又は暖房デフロスト同時運転2のいずれかを外気温度に基づいて選択すればよい。例えば、制御装置30は、暖房通常運転時においてデフロストが必要と判定した場合、外気温度が閾値温度以上であるときには暖房デフロスト同時運転1を実行し、外気温度が閾値温度よりも低いときには暖房デフロスト同時運転2を実行する。
なお、着霜などにより室外熱交換器が閉塞している場合には、吸入圧力が低下する。このため、制御装置30は、暖房運転時の吸入圧力が予め設定された値よりも低い場合には、暖房デフロスト同時運転2を行うようにしてもよい。
以上のように、本実施の形態では、中圧方式のデフロスト運転を行う際に、冷媒の凝縮潜熱を利用することによって少ない冷媒流量でデフロストを行うことができる暖房デフロスト同時運転1と、室外ファンを停止させることにより外気への放熱量を低減できる暖房デフロスト同時運転2と、のうちの高い暖房能力を確保できる方を選択して実行することができる。したがって、本実施の形態によれば、暖房デフロスト同時運転における暖房能力の低下を抑えることができる。
実施の形態2.
本発明の実施の形態2に係る空気調和装置について説明する。図16は、本実施の形態に係る空気調和装置101の構成を示す回路構成図である。図16に示すように、本実施の形態では、デフロスト対象の並列熱交換器に対する冷媒の入口及び出口が実施の形態1と異なっている。
本発明の実施の形態2に係る空気調和装置について説明する。図16は、本実施の形態に係る空気調和装置101の構成を示す回路構成図である。図16に示すように、本実施の形態では、デフロスト対象の並列熱交換器に対する冷媒の入口及び出口が実施の形態1と異なっている。
熱源機A-1において、デフロスト配管15-1の一端側は吐出配管1a-1に接続されており、他端側は分岐して第1接続配管13-11、13-12のそれぞれに接続されている。
また、熱源機A-1には、デフロスト配管15-1とは別のデフロスト配管20-1が設けられている。デフロスト配管20-1の一端側は、第1接続配管13-11のうち暖房通常運転時の冷媒の流れにおいて第2絞り装置7-11よりも上流側と、第1接続配管13-12のうち暖房通常運転時の冷媒の流れにおいて第2絞り装置7-12よりも上流側と、の双方に接続されている。デフロスト配管20-1の他端側は、分岐して第2接続配管14-11、14-12のそれぞれに接続されている。デフロスト配管20-1には、第2絞り装置7-13が設けられている。デフロスト配管20-1の他端側において分岐したそれぞれの配管には、第3電磁弁18-11、18-12が設けられている。
熱源機A-2は、熱源機A-1と同様の構成を有している。すなわち、熱源機A-2の第3電磁弁18-21、18-22、デフロスト配管20-2は、熱源機A-1の第3電磁弁18-11、18-12、デフロスト配管20-1にそれぞれ対応している。
図17は、本実施の形態に係る空気調和装置101の暖房デフロスト同時運転1時における冷媒の流れを示す図である。図17では、冷媒が流れる部分を太線で表し、冷媒が流れない部分を細線で表している。図18は、本実施の形態に係る空気調和装置101の暖房デフロスト同時運転1時におけるP-h線図である。図18中の点(a)~(g)は、それぞれ図17中の(a)~(g)部での冷媒の状態を示している。
制御装置30は、暖房通常運転を行っている際に、並列熱交換器の着霜状態を解消するデフロストが必要と判定し、かつ暖房デフロスト同時運転1を選択した場合、デフロスト対象の並列熱交換器(例えば、並列熱交換器50-12)に対応する第1電磁弁8-12及び第2絞り装置7-12を全閉にする制御を行う。また、制御装置30は、デフロスト対象の並列熱交換器50-12に対応する第2電磁弁9-12及び第3電磁弁18-12を開くとともに、第1絞り装置10-1の開度を予め設定した開度にする制御を行う。さらに、制御装置30は、第2絞り装置7-13から流出した冷媒の圧力が、図17の(d)部で合流する主回路の冷媒の圧力に近づくように、第2絞り装置7-13の開度を制御する。
これによって、主回路の他に、圧縮機1-1、第1絞り装置10-1、第2電磁弁9-12、並列熱交換器50-12、第3電磁弁18-12、第2絞り装置7-13が順次接続されたデフロスト回路が形成される。一方、並列熱交換器50-11は、暖房通常運転と同様に、主回路の蒸発器として動作する。これにより、暖房デフロスト同時運転1が行われる。
本実施の形態の暖房デフロスト同時運転1では、熱源機A-2は、熱源機A-1と対称な運転状態となるように制御される。すなわち、熱源機A-2では、並列熱交換器50-21、50-22の一方を通るデフロスト回路が形成されるとともに、並列熱交換器50-21、50-22の他方が主回路の蒸発器として動作する。
図19は、本実施の形態に係る空気調和装置101の暖房デフロスト同時運転2時における冷媒の流れを示す図である。図19では、冷媒が流れる部分を太線で表し、冷媒が流れない部分を細線で表している。図20は、本実施の形態に係る空気調和装置101の暖房デフロスト同時運転2時におけるP-h線図である。図20中の点(a)~(h)は、それぞれ図19中の(a)~(h)部での冷媒の状態を示している。図20中の点(a)~(e)は、熱源機A-1及び室内機B、Cにより形成される主回路のサイクルを表しており、点(f)~(h)は、熱源機A-2により形成されるデフロスト回路のサイクルを表している。
制御装置30は、暖房通常運転を行っている際に、並列熱交換器の着霜状態を解消するデフロストが必要と判定し、かつ暖房デフロスト同時運転2を選択した場合、デフロスト対象の熱源機(本例では、熱源機A-2)の第2絞り装置7-21、7-22及び第3電磁弁18-21、18-22を全閉にする制御を行う。また、制御装置30は、第1電磁弁8-21、8-22及び第2電磁弁9-21、9-22を開く制御を行う。さらに、制御装置30は、圧縮機1-2の吐出圧力が第1延長配管11-1の圧力を超えないように、第1絞り装置10-2の開度を制御する。
これによって、主回路とは切り離された形で、互いに並列に接続される2つのデフロスト回路が形成される。第1のデフロスト回路には、圧縮機1-2、第1絞り装置10-2、第2電磁弁9-21、並列熱交換器50-21、第1電磁弁8-21、冷暖切替装置2-2、アキュムレータ6-2が順次環状に接続される。第2のデフロスト回路には、圧縮機1-2、第1絞り装置10-2、第2電磁弁9-22、並列熱交換器50-22、第1電磁弁8-22、冷暖切替装置2-2、アキュムレータ6-2が順次環状に接続される。
暖房デフロスト同時運転1において、上記実施の形態1の構成では、冷媒の流れと空気の流れとが対向流になっていたが、本実施の形態の構成では、冷媒の流れと空気の流れとが並行流になっている。これにより、空気に放熱した熱を空気の流れにおいて下流側にある霜に与えることができるため、デフロストの効率をより向上させることができる。
また、暖房デフロスト同時運転2において、上記実施の形態1の構成では、2つの並列熱交換器50-21、50-22がデフロスト回路において直列に接続されていたが、本実施の形態の構成では、2つの並列熱交換器50-21、50-22をデフロスト回路において並列に接続することができる。したがって、本実施の形態によれば、デフロストのための冷媒を並列熱交換器50-21、50-22に並列に流入させることができるため、暖房デフロスト同時運転2における冷媒の圧力損失を減らすことができる。
実施の形態3.
本発明の実施の形態3に係る空気調和装置について説明する。図21は、本実施の形態に係る空気調和装置102の構成を示す回路構成図である。図21に示すように、本実施の形態では、暖房デフロスト同時運転1において、デフロスト対象の並列熱交換器(例えば、並列熱交換器50-12)から流出したデフロスト回路の冷媒と、室内機B、Cから熱源機(例えば、熱源機A-1)に戻った主回路の冷媒とが合流する位置が、実施の形態2と異なる。
本発明の実施の形態3に係る空気調和装置について説明する。図21は、本実施の形態に係る空気調和装置102の構成を示す回路構成図である。図21に示すように、本実施の形態では、暖房デフロスト同時運転1において、デフロスト対象の並列熱交換器(例えば、並列熱交換器50-12)から流出したデフロスト回路の冷媒と、室内機B、Cから熱源機(例えば、熱源機A-1)に戻った主回路の冷媒とが合流する位置が、実施の形態2と異なる。
熱源機A-1において、デフロスト配管20-1の一端側は、第1接続配管13-11のうち暖房通常運転時の冷媒の流れにおいて第2絞り装置7-11よりも下流側と、第1接続配管13-12のうち暖房通常運転時の冷媒の流れにおいて第2絞り装置7-12よりも下流側と、のそれぞれに分岐して接続されている。デフロスト配管20-1の他端側において分岐したそれぞれの配管には、逆止弁24-11、24-12が設けられている。逆止弁24-11、24-12は、デフロスト配管20-1から第1接続配管13-11、13-12のそれぞれに向かう冷媒の流れを許容し、第1接続配管13-11、13-12のそれぞれからデフロスト配管20-1に向かう冷媒の流れを阻止するものである。
熱源機A-2は、熱源機A-1と同様の構成を有している。すなわち、熱源機A-2の逆止弁24-21、24-22は、熱源機A-1の逆止弁24-11、24-12に対応している。
本実施の形態では、暖房デフロスト同時運転1において、熱源機A-1の第2絞り装置7-13で減圧されてデフロスト配管20-1から流出する冷媒は、第2絞り装置7-11、7-12よりも下流側で主回路に合流する。同様に、熱源機A-2の第2絞り装置7-23で減圧されてデフロスト配管20-2から流出する冷媒は、第2絞り装置7-21、7-22よりも下流側で主回路に合流する。これにより、暖房デフロスト同時運転1時のP-h線図は、図11に示した実施の形態1のP-h線図と同様になる。したがって、第2絞り装置7-13、7-23の制御性が向上する。
実施の形態4.
本発明の実施の形態4に係る空気調和装置について説明する。図22は、本実施の形態に係る空気調和装置103の構成を示す回路構成図である。図22に示すように、空気調和装置103の冷媒回路には、暖房運転又は冷房運転をそれぞれ独立して選択可能な複数の室内機B、Cが接続されている。すなわち、空気調和装置103は、冷暖同時運転が可能な構成を有している。冷媒回路において熱源機A-1、A-2と室内機B、Cとの間には、中継機Dが設けられている。なお、室内機の台数が2台以上であれば冷暖同時運転が可能であるため、冷媒回路には3台以上の室内機が並列に接続されていてもよい。
本発明の実施の形態4に係る空気調和装置について説明する。図22は、本実施の形態に係る空気調和装置103の構成を示す回路構成図である。図22に示すように、空気調和装置103の冷媒回路には、暖房運転又は冷房運転をそれぞれ独立して選択可能な複数の室内機B、Cが接続されている。すなわち、空気調和装置103は、冷暖同時運転が可能な構成を有している。冷媒回路において熱源機A-1、A-2と室内機B、Cとの間には、中継機Dが設けられている。なお、室内機の台数が2台以上であれば冷暖同時運転が可能であるため、冷媒回路には3台以上の室内機が並列に接続されていてもよい。
熱源機A-1、A-2は通常、建物の外に設置される。室内機B、Cは通常、室内に設置される。中継機Dは、例えば、熱源機A-1、A-2及び室内機B、Cのいずれからも離れた、建物の機械室などに設置される。熱源機A-1、A-2と中継機Dとは、第1延長配管11-1H、11-1L及び第2延長配管12-1を介して接続される。中継機Dと室内機Bとは、第1延長配管11-2b及び第2延長配管12-2bを介して接続される。中継機Dと室内機Cとは、第1延長配管11-2c及び第2延長配管12-2cを介して接続される。なお、第1延長配管11-1H、11-1L及び第2延長配管12-1のそれぞれは、熱源機A-1、A-2のそれぞれに対して分岐して接続されている。第1延長配管11-1H、11-1L及び第2延長配管12-1のそれぞれの分岐部は、図22に示すように各延長配管の途中に設けられていてもよいし、熱源機A-1、A-2のいずれか、又は中継機Dに収容されていてもよい。
本実施の形態では、上記実施の形態1~3と異なり、第1延長配管11-1が、第1延長配管11-1Hと第1延長配管11-1Lとで構成される。第1延長配管11-1Hは、各圧縮機1-1、1-2の吐出配管1a-1、1a-2に接続される高圧ガス配管である。第1延長配管11-1Lは、各圧縮機1-1、1-2の吸入配管1b-1、1b-2に接続される低圧ガス配管である。第1延長配管11-1H及び第1延長配管11-1Lは、後述する流路切替装置を介して、室内機B、Cのそれぞれのガス側配管に接続されている。第2延長配管12-1は、上記実施の形態1~3と同様の液配管である。
中継機Dには、流路切替装置として、切換弁25-1b、25-2b、25-1c、25-2cが収容されている。切換弁25-1b、25-2b、25-1c、25-2cは、制御装置30の制御によって流路を開閉することにより、各室内機の運転モードを冷房運転及び暖房運転の間で切り換えるものである。
切換弁25-1bは、第1延長配管11-1Hと第1延長配管11-2bとの間の流路を開閉するものである。切換弁25-2bは、第1延長配管11-1Lと第1延長配管11-2bとの間の流路を開閉するものである。切換弁25-1bが開となり、切換弁25-2bが閉となると、室内機Bに接続された第1延長配管11-2bには、圧縮機1-1、1-2から吐出された高圧ガス冷媒が流通する。これにより、室内機Bでは暖房運転が行われる。一方、切換弁25-1bが閉となり、切換弁25-2bが開となると、第1延長配管11-2bには、圧縮機1-1、1-2に吸入される低圧ガス冷媒が流通する。これにより、室内機Bでは冷房運転が行われる。
切換弁25-1cは、第1延長配管11-1Hと第1延長配管11-2cとの間の流路を開閉するものである。切換弁25-2cは、第1延長配管11-1Lと第1延長配管11-2cとの間の流路を開閉するものである。切換弁25-1cが開となり、切換弁25-2cが閉となると、室内機Cに接続された第1延長配管11-2cには、圧縮機1-1、1-2から吐出された高圧ガス冷媒が流通する。これにより、室内機Cでは暖房運転が行われる。一方、切換弁25-1cが閉となり、切換弁25-2cが開となると、第1延長配管11-2cには、圧縮機1-1、1-2に吸入される低圧ガス冷媒が流通する。これにより、室内機Cでは冷房運転が行われる。
本実施の形態では、上記のような構成を備えることにより、実施の形態1~3と同様の全冷房運転及び全暖房運転に加えて、冷房運転を行う室内機と暖房運転を行う室内機とが同時に存在する冷暖同時運転(例えば、冷房主体運転又は暖房主体運転)を行うことができる。
室外熱交換器5-1、5-2が蒸発器として動作する全暖房運転及び暖房主体運転では、室外熱交換器5-1、5-2のフィン5bに着霜が生じる場合がある。制御装置30は、全暖房運転の実行中に室外熱交換器5-1、5-2のデフロストが必要と判断した場合には、全暖房運転を継続しながら、実施の形態1~3と同様に暖房デフロスト同時運転1又は暖房デフロスト同時運転2を実行する。また、制御装置30は、暖房主体運転の実行中に室外熱交換器5-1、5-2のデフロストが必要と判断した場合には、暖房主体運転を継続しながら、実施の形態1~3と同様に暖房デフロスト同時運転1又は暖房デフロスト同時運転2を実行する。特に暖房主体運転の実行中には、冷房運転を行う室内機(すなわち、蒸発器として動作して室内空気から吸熱する室内熱交換器を備える室内機)が存在することから、排熱回収運転を行いながら効率良くデフロストを行うことができる。
実施の形態5.
本発明の実施の形態5に係る空気調和装置について説明する。図23は、本実施の形態に係る空気調和装置104の構成を示す回路構成図である。図23に示すように、空気調和装置104の冷媒回路には、暖房運転又は冷房運転をそれぞれ独立して選択可能な複数の室内機B、Cが接続されている。すなわち、空気調和装置103は、冷暖同時運転が可能な構成を有している。上記実施の形態4と同様に、冷媒回路において熱源機A-1、A-2と室内機B、Cとの間には、中継機Dが設けられている。なお、室内機の台数が2台以上であれば冷暖同時運転が可能であるため、冷媒回路には3台以上の室内機が並列に接続されていてもよい。
本発明の実施の形態5に係る空気調和装置について説明する。図23は、本実施の形態に係る空気調和装置104の構成を示す回路構成図である。図23に示すように、空気調和装置104の冷媒回路には、暖房運転又は冷房運転をそれぞれ独立して選択可能な複数の室内機B、Cが接続されている。すなわち、空気調和装置103は、冷暖同時運転が可能な構成を有している。上記実施の形態4と同様に、冷媒回路において熱源機A-1、A-2と室内機B、Cとの間には、中継機Dが設けられている。なお、室内機の台数が2台以上であれば冷暖同時運転が可能であるため、冷媒回路には3台以上の室内機が並列に接続されていてもよい。
上記実施の形態4及び本実施の形態では、冷暖同時運転時に、暖房運転を行う室内機と冷房運転を行う室内機とが冷媒の流れにおいて互いに直列に接続される。すなわち、冷媒は、暖房運転を行う室内機を通って室内の空気を暖めながら液冷媒に凝縮し、冷房運転を行う室内機を通って室内の空気を冷やしながらガス冷媒に蒸発する。これにより排熱回収を行うことができ、効率よく運転できる。
ここで、暖房負荷が冷房負荷と圧縮機入力との合計より多い場合は、外気から熱を収集する必要があるため、室外熱交換器は蒸発器として動作する。また、暖房負荷が冷房負荷と圧縮機入力との合計より少ない場合は、外気に熱を放出する必要があるため、室外熱交換器は凝縮器として動作する。
上記実施の形態4と本実施の形態では、室外熱交換器と、暖房運転を行う室内機及び冷房運転を行う室内機との接続方法が異なる。
上記実施の形態4では、室外熱交換器が凝縮器として動作する場合、室外熱交換器は暖房運転を行う室内機と並列に接続され、それぞれの熱交換器で凝縮した冷媒が合流し、冷房を行う室内機に供給される。また、室外熱交換器が蒸発器として動作する場合、室外熱交換器は冷房運転を行う室内機と並列に接続され、暖房を行う室内機で凝縮した冷媒が分岐され、冷房を行う室内機と室外熱交換器に供給される。
これに対し、本実施の形態では、室外熱交換器が凝縮器として動作する場合、室外熱交換器は暖房運転を行う室内機の上流に直列接続され、室外熱交換器と暖房を行う室内機とで凝縮した冷媒が、冷房を行う室内機に供給される。また、室外熱交換器が蒸発器として動作する場合、室外熱交換器は冷房運転を行う室内機の下流に直列接続され、暖房を行う室内機で凝縮した冷媒が、冷房を行う室内機を通った後、室外熱交換器に供給され、蒸発を完了し、圧縮機に吸入される。
熱源機A-1には、逆止弁16-1a、16-1b、16-1c、16-1dが設けられている。逆止弁16-1aは、冷暖切替装置2-1と第1延長配管11-1Hとの間を接続する冷媒配管に設けられ、冷暖切替装置2-1から第1延長配管11-1Hに向かう冷媒の流動のみを許容するものである。逆止弁16-1bは、室外熱交換器5-1と第1延長配管11-1Hとの間を接続する冷媒配管に設けられ、室外熱交換器5-1から第1延長配管11-1Hに向かう冷媒の流動のみを許容するものである。逆止弁16-1cは、冷暖切替装置2-1と第1延長配管11-1Lとの間を接続する冷媒配管に設けられ、第1延長配管11-1Lから冷暖切替装置2-1に向かう冷媒の流動のみを許容するものである。逆止弁16-1dは、室外熱交換器5-1と第1延長配管11-1Lとの間を接続する冷媒配管に設けられ、第1延長配管11-1Lから室外熱交換器5-1に向かう冷媒の流動のみを許容するものである。
室外熱交換器5-1は、冷暖切替装置2-1によって流路が切り替えられることにより、凝縮器又は蒸発器として動作する。上記のように逆止弁16-1a、16-1b、16-1c、16-1dが設けられていることにより、室外熱交換器5-1が凝縮器として動作する場合及び室外熱交換器5-1が蒸発器として動作する場合のいずれであっても、第1延長配管11-1Hでは熱源機A-1から中継機Eに向かって冷媒が流れ、第1延長配管11-1Lでは中継機Eから熱源機A-1に向かって冷媒が流れる。
熱源機A-2は、熱源機A-1と同様の構成を有している。すなわち、熱源機A-2の逆止弁16-2a、16-2b、16-2c、16-2dは、熱源機A-1の逆止弁16-1a、16-1b、16-1c、16-1dにそれぞれ対応している。
中継機Eには、第1分岐部E-1、第2分岐部E-2及び第3分岐部E-3が設けられている。第1分岐部E-1は、第1延長配管11-1Hと、第1延長配管11-2b、11-2cのそれぞれと、に接続されている。第1分岐部E-1には、高圧の冷媒が流れる。第2分岐部E-2は、第1延長配管11-1Lと、第1延長配管11-2b、11-2cのそれぞれと、に接続されている。第2分岐部E-2には、低圧の冷媒が流れる。第3分岐部E-3は、第1分岐部E-1と、第2分岐部E-2と、第2延長配管12-2b、12-2cのそれぞれと、に接続されている。第3分岐部E-3には、高圧と低圧の間の圧力である中圧の冷媒が流れる。
第1分岐部E-1と第3分岐部E-3とを接続する冷媒配管には、第3絞り装置26-1が設けられている。第2分岐部E-2と第3分岐部E-3とを接続する冷媒配管には、第4絞り装置26-2が設けられている。第3絞り装置26-1及び第4絞り装置26-2は、例えば電子膨張弁により構成されている。第3絞り装置26-1及び第4絞り装置26-2は、制御装置30からの指示に基づいて開度を変化させることができる。第3絞り装置26-1及び第4絞り装置26-2は、中継機Eに収容されている。
また、中継機Eには、上記実施の形態4と同様の切換弁25-1b、25-2b、25-1c、25-2cが設けられている。
本実施の形態においても、上記実施の形態4と同様に、室外熱交換器5-1、5-2が蒸発器として動作する全暖房運転及び暖房主体運転では、室外熱交換器5-1、5-2のフィン5bに着霜が生じる場合がある。制御装置30は、全暖房運転の実行中に室外熱交換器5-1、5-2のデフロストが必要と判断した場合には、全暖房運転を継続しながら、実施の形態1~3と同様に暖房デフロスト同時運転1又は暖房デフロスト同時運転2を実行する。また、制御装置30は、暖房主体運転の実行中に室外熱交換器5-1、5-2のデフロストが必要と判断した場合には、暖房主体運転を継続しながら、実施の形態1~3と同様に暖房デフロスト同時運転1又は暖房デフロスト同時運転2を実行する。特に暖房主体運転の実行中には、冷房運転を行う室内機が存在することから、排熱回収運転を行いながら効率良くデフロストを行うことができる。
以上説明したように、上記実施の形態に係る冷凍サイクル装置は、冷媒を循環させる主回路と、主回路において互いに並列に接続された複数の熱源機A-1、A-2と、複数の熱源機A-1、A-2を制御する制御装置30と、を備え、複数の熱源機A-1、A-2のそれぞれは、冷媒を圧縮して吐出する圧縮機(例えば、圧縮機1-1)と、少なくとも蒸発器として動作し、冷媒の流れにおいて互いに並列に接続された複数の並列熱交換器(例えば、並列熱交換器50-11、50-12)と、圧縮機から吐出された冷媒の逆流を阻止する逆止弁(例えば、逆止弁16-1)と、圧縮機から吐出された冷媒を逆止弁よりも上流側で分岐させ、複数の並列熱交換器のうちの少なくとも一部の並列熱交換器に供給するデフロスト回路(例えば、デフロスト配管15-1等)と、複数の並列熱交換器を通る冷媒の流路を切り替える第1流路切替装置(例えば、第1電磁弁8-11、8-12、第2電磁弁9-11、9-12、第2絞り装置7-11、7-12、7-13等)と、を有しており、制御装置30は、複数の熱源機のうちの少なくとも一部の熱源機(例えば、全ての熱源機A-1、A-2)において、複数の並列熱交換器のうちの一部の並列熱交換器(例えば、並列熱交換器50-12、50-22)に、圧縮機から吐出された冷媒の一部をデフロスト回路を介して供給するとともに、複数の並列熱交換器のうちの他の並列熱交換器(例えば、並列熱交換器50-11、50-21)を蒸発器として動作させる第1の暖房デフロスト同時運転(暖房デフロスト同時運転1)と、複数の熱源機のうちの一部の熱源機(例えば、熱源機A-2)において、複数の並列熱交換器のうちの全ての並列熱交換器(例えば、並列熱交換器50-21、50-22)に、圧縮機から吐出された冷媒をデフロスト回路を介して供給するとともに、複数の熱源機のうちの他の熱源機(例えば、熱源機A-1)において、複数の並列熱交換器のうちの全ての並列熱交換器(例えば、並列熱交換器50-11、50-12)を蒸発器として動作させて暖房を継続し、一部の熱源機(例えば、熱源機A-2)における圧縮機1-2の吸入圧力が、他の熱源機(例えば、熱源機A-1)における圧縮機1-1の吸入圧力よりも高くなるように運転する第2の暖房デフロスト同時運転(暖房デフロスト同時運転2)と、を切り替えて実行するものである。
この構成によれば、第1の暖房デフロスト同時運転及び第2の暖房デフロスト同時運転のうち高い暖房能力を確保できる方を選択して実行することができる。したがって、暖房デフロスト同時運転における暖房能力の低下を抑えることができる。
また、上記実施の形態に係る冷凍サイクル装置において、制御装置30は、外気温度に基づいて、第1の暖房デフロスト同時運転又は第2の暖房デフロスト同時運転のいずれかを選択するものであってもよい。また、上記実施の形態に係る冷凍サイクル装置において、制御装置30は、外気温度が予め設定された閾値温度以上である場合には第1の暖房デフロスト同時運転を選択し、外気温度が閾値温度よりも低い場合には第2の暖房デフロスト同時運転を選択するものであってもよい。
この構成によれば、外気温度に基づいて効率の高い暖房デフロスト同時運転を選択できるため、暖房デフロスト同時運転における暖房能力の低下をより確実に抑えることができる。
また、上記実施の形態に係る冷凍サイクル装置において、複数の熱源機A-1、A-2のそれぞれは、デフロスト回路(例えば、デフロスト配管15-1)に設けられ、圧縮機から吐出された冷媒が少なくとも一部の並列熱交換器に供給される前に当該冷媒を減圧する第1絞り装置(例えば、第1絞り装置10-1)と、第1の暖房デフロスト同時運転において、一部の並列熱交換器から流出した冷媒が主回路に戻る前に当該冷媒をさらに減圧する第2絞り装置(例えば、第2絞り装置7-13)と、をさらに有していてもよい。
また、上記実施の形態に係る冷凍サイクル装置において、第1の暖房デフロスト同時運転及び第2の暖房デフロスト同時運転のいずれにおいても、デフロストが行われる並列熱交換器には、圧縮機から吐出された冷媒が第1絞り装置を介して流入するようにしてもよい。また、第1絞り装置や第2絞り装置は、暖房デフロスト同時運転の運転できる外気温度の範囲を限定することで、デフロストの流量及び圧力が所定値になるように流路抵抗をあらかじめ設計しておき、開度制御の不要な毛細管や小型の電磁弁を用いても良い。
また、上記実施の形態に係る冷凍サイクル装置において、第2の暖房デフロスト同時運転では、一部の熱源機(例えば、熱源機A-2)のデフロスト回路は、逆止弁(例えば、逆止弁16-2)及び第1流路切替装置(例えば、第2絞り装置7-22、7-23)によって他の熱源機(例えば、熱源機A-1)の主回路から切り離されており、第2の暖房デフロスト同時運転において、一部の熱源機の圧縮機から吐出された冷媒は、第1絞り装置(例えば、第1絞り装置10-2)で減圧された後に全ての並列熱交換器(例えば、直列に接続された並列熱交換器50-21、50-22)に供給されてもよい。
また、上記実施の形態に係る冷凍サイクル装置において、第2の暖房デフロスト同時運転では、制御装置30は、一部の熱源機(例えば、熱源機A-2)の圧縮機の吐出圧力を他の熱源機(例えば、熱源機A-1)の圧縮機の吐出圧力よりも低く制御するものであってもよい。
第1流路切替装置は、第2絞り装置(例えば、第2絞り装置7-23)を含んでおり、第2の暖房デフロスト同時運転では、第2絞り装置が閉止されるようにしてもよい。
また、上記実施の形態に係る冷凍サイクル装置において、第2の暖房デフロスト同時運転では、制御装置30は、一部の熱源機(例えば、熱源機A-2)の圧縮機の吸入スーパーヒートが予め設定された閾値よりも大きくなった場合、他の熱源機(例えば、熱源機A-1)の主回路から一部の熱源機(例えば、熱源機A-2)のデフロスト回路に液冷媒を戻す制御を行うものであってもよい。
また、上記実施の形態に係る冷凍サイクル装置において、主回路には、暖房運転又は冷房運転をそれぞれ選択可能な複数の室内機B、Cが接続されており、複数の室内機B、Cのそれぞれに接続されたガス側配管(例えば、第1延長配管11-2b、11-2c)は、第2流路切替装置(例えば、切換弁25-1b、25-1c、25-2b、25-2c)を介して、圧縮機1-1、1-2の吐出配管1a-1、1a-2及び吸入配管1b-1、1b-2の双方に接続されており、第2流路切替装置は、複数の室内機B、Cのうち暖房運転を選択した室内機に接続されたガス側配管に、圧縮機1-1、1-2から吐出配管1a-1、1a-2を介して吐出される高圧冷媒を流通させ、複数の室内機B、Cのうち冷房運転を選択した室内機に接続されたガス側配管に、圧縮機1-1、1-2に吸入配管1b-1、1b-2を介して吸入される低圧冷媒を流通させるように流路を切り替えるものであり、制御装置30は、暖房運転を選択した室内機と冷房運転を選択した室内機とが存在する冷暖同時運転(例えば、暖房主体運転)の実行中において、複数の並列熱交換器のデフロストが必要と判断した場合、冷暖同時運転を継続しながら第1の暖房デフロスト同時運転又は第2の暖房デフロスト同時運転を実行するようにしてもよい。
その他の実施の形態.
本発明は、上記実施の形態に限らず種々の変形が可能である。
例えば、上記実施の形態では、冷房及び暖房の双方を実行できる空気調和装置100、101、102を例に挙げたが、少なくとも暖房を実行できる空気調和装置であれば、本発明を適用することができる。
本発明は、上記実施の形態に限らず種々の変形が可能である。
例えば、上記実施の形態では、冷房及び暖房の双方を実行できる空気調和装置100、101、102を例に挙げたが、少なくとも暖房を実行できる空気調和装置であれば、本発明を適用することができる。
また、上記実施の形態では、冷凍サイクル装置を備えた空気調和装置100、101、102を例に挙げたが、本発明はこれに限られない。本発明の冷凍サイクル装置は、例えば、冷蔵装置又は冷凍装置等の他の装置にも用いることができる。
また、上記実施の形態では、室外熱交換器5-1、5-2がそれぞれ2つの並列熱交換器に分割された構成を例に挙げたが、室外熱交換器は3つ以上の並列熱交換器に分割されていてもよい。一例として、実施の形態1に係る熱源機A-1の室外熱交換器5-1が4つの並列熱交換器に分割された構成について説明する。
図24は、上記実施の形態1に係る熱源機A-1の構成の変形例を示す図である。図24では、熱源機A-1のうち室外熱交換器5-1及びその近傍の回路構成のみを示している。図24に示すように、本例の室外熱交換器5-1は、4つの並列熱交換器50-31、50-32、50-33、50-34に分割されている。並列熱交換器50-31、50-32、50-33、50-34は、冷媒回路において互いに並列に接続されている。並列熱交換器50-31、50-32、50-33、50-34には、それぞれ第1接続配管13-31、13-32、13-33、13-34が接続されている。第1接続配管13-31、13-32、13-33、13-34には、それぞれ第2絞り装置7-31、7-32、7-33、7-34が設けられている。第1接続配管13-31、13-32、13-33、13-34が図24に示すような位置関係で配列しているとすると、互いに隣り合う第1接続配管同士は、バイパス配管を介して接続されている。第1接続配管のそれぞれにおけるバイパス配管の接続位置は、第2絞り装置と並列熱交換器との間である。バイパス配管には、それぞれ第2絞り装置7-41、7-42、7-43が設けられている。
このように、室外熱交換器がn個(nは2以上の整数)の並列熱交換器に分割されている場合には、(n-1)本のバイパス配管と(n-1)個の第2絞り装置とが設けられる。この構成によれば、どの並列熱交換器がデフロスト対象となっても、デフロスト対象の並列熱交換器から流出した冷媒を、デフロスト対象以外の並列熱交換器(蒸発器として動作する並列熱交換器)に流入させることができる。これにより、暖房デフロスト同時運転1において、n個の並列熱交換器を1つずつデフロストすることができる。
また、上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
1-1、1-2 圧縮機、1a-1、1a-2 吐出配管、1b-1、1b-2 吸入配管、2-1、2-2 冷暖切替装置、3-b、3-c 室内熱交換器、3f-b、3f-c 室内ファン、4-b、4-c 流量制御装置、5-1、5-2 室外熱交換器、5a 伝熱管、5b フィン、5f-1、5f-2 室外ファン、6-1、6-2 アキュムレータ、7-11、7-12、7-13、7-21、7-22、7-23、7-31、7-32、7-33、7-34、7-41、7-42、7-43 第2絞り装置、8-11、8-12、8-21、8-22 第1電磁弁、9-11、9-12、9-21、9-22 第2電磁弁、10-1、10-2 第1絞り装置、11-1、11-1H、11-1L、11-2b、11-2c 第1延長配管、12-1、12-2b、12-2c 第2延長配管、13-11、13-12、13-21、13-22、13-31、13-32、13-33、13-34 第1接続配管、14-11、14-12、14-21、14-22 第2接続配管、15-1、15-2 デフロスト配管、16-1、16-2、16-1a、16-1b、16-1c、16-1d、16-2a、16-2b、16-2c、16-2d 逆止弁、18-11、18-12、18-21、18-22 第3電磁弁、20-1、20-2 デフロスト配管、21-11、21-12、21-21、21-22 圧力センサ、22-11、22-12、22-13、22-14、22-21、22-22、22-23、22-24、23 温度センサ、24-11、24-12、24-21、24-22 逆止弁、25-1b、25-1c、25-2b、25-2c 切換弁、26-1 第3絞り装置、26-2 第4絞り装置、30 制御装置、31 選択手段、32 判定手段、50-11、50-12、50-21、50-22、50-31、50-32、50-33、50-34 並列熱交換器、100、101、102、103、104 空気調和装置、A-1、A-2 熱源機、B、C 室内機、D 中継機、E-1 第1分岐部、E-2 第2分岐部、E-3 第3分岐部。
Claims (10)
- 冷媒を循環させる主回路と、
前記主回路において互いに並列に接続された複数の熱源機と、
前記複数の熱源機を制御する制御装置と、
を備え、
前記複数の熱源機のそれぞれは、
冷媒を圧縮して吐出する圧縮機と、
少なくとも蒸発器として動作し、冷媒の流れにおいて互いに並列に接続された複数の並列熱交換器と、
前記圧縮機から吐出された冷媒の逆流を阻止する逆止弁と、
前記圧縮機から吐出された冷媒を前記逆止弁よりも上流側で分岐させ、前記複数の並列熱交換器のうちの少なくとも一部の並列熱交換器に供給するデフロスト回路と、
前記複数の並列熱交換器を通る冷媒の流路を切り替える第1流路切替装置と、
を有しており、
前記制御装置は、
前記複数の熱源機のうちの少なくとも一部の熱源機において、前記複数の並列熱交換器のうちの一部の並列熱交換器に、前記圧縮機から吐出された冷媒の一部を前記デフロスト回路を介して供給するとともに、前記複数の並列熱交換器のうちの他の並列熱交換器を蒸発器として動作させる第1の暖房デフロスト同時運転と、
前記複数の熱源機のうちの一部の熱源機において、前記複数の並列熱交換器のうちの全ての並列熱交換器に、前記圧縮機から吐出された冷媒を前記デフロスト回路を介して供給するとともに、前記複数の熱源機のうちの他の熱源機において、前記複数の並列熱交換器のうちの全ての並列熱交換器を蒸発器として動作させて暖房を継続し、前記複数の熱源機のうちの一部の熱源機における前記圧縮機の吸入圧力が、前記複数の熱源機のうちの他の熱源機における前記圧縮機の吸入圧力よりも高くなるように運転する第2の暖房デフロスト同時運転と、
を切り替えて実行するものである冷凍サイクル装置。 - 前記制御装置は、外気温度に基づいて、前記第1の暖房デフロスト同時運転又は前記第2の暖房デフロスト同時運転のいずれかを選択するものである請求項1に記載の冷凍サイクル装置。
- 前記制御装置は、前記外気温度が予め設定された閾値温度以上である場合には前記第1の暖房デフロスト同時運転を選択し、前記外気温度が前記閾値温度よりも低い場合には前記第2の暖房デフロスト同時運転を選択するものである請求項2に記載の冷凍サイクル装置。
- 前記複数の熱源機のそれぞれは、
前記デフロスト回路に設けられ、前記圧縮機から吐出された冷媒が前記少なくとも一部の並列熱交換器に供給される前に当該冷媒を減圧する第1絞り装置と、
前記第1の暖房デフロスト同時運転において、前記一部の並列熱交換器から流出した冷媒が前記主回路に戻る前に当該冷媒をさらに減圧する第2絞り装置と、
をさらに有する請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。 - 前記第1の暖房デフロスト同時運転及び前記第2の暖房デフロスト同時運転のいずれにおいても、デフロストが行われる前記並列熱交換器には、前記圧縮機から吐出された冷媒が前記第1絞り装置を介して流入する請求項4に記載の冷凍サイクル装置。
- 前記第2の暖房デフロスト同時運転において、前記一部の熱源機の前記デフロスト回路は、前記逆止弁及び前記第1流路切替装置によって前記他の熱源機の前記主回路から切り離されており、
前記第2の暖房デフロスト同時運転において、前記一部の熱源機の前記圧縮機から吐出された冷媒は、前記第1絞り装置で減圧された後に前記全ての並列熱交換器に供給される請求項4又は請求項5に記載の冷凍サイクル装置。 - 前記第2の暖房デフロスト同時運転において、前記制御装置は、前記一部の熱源機の前記圧縮機の吐出圧力を前記他の熱源機の前記圧縮機の吐出圧力よりも低く制御するものである請求項6に記載の冷凍サイクル装置。
- 前記第1流路切替装置は、前記第2絞り装置を含んでおり、
前記第2の暖房デフロスト同時運転では、前記第2絞り装置が閉止される請求項6又は請求項7に記載の冷凍サイクル装置。 - 前記第2の暖房デフロスト同時運転において、前記制御装置は、前記一部の熱源機の前記圧縮機の吸入スーパーヒートが予め設定された閾値よりも大きくなった場合、前記他の熱源機の前記主回路から前記一部の熱源機の前記デフロスト回路に液冷媒を戻す制御を行うものである請求項6~請求項8のいずれか一項に記載の冷凍サイクル装置。
- 前記主回路には、暖房運転又は冷房運転をそれぞれ選択可能な複数の室内機が接続されており、
前記複数の室内機のそれぞれに接続されたガス側配管は、第2流路切替装置を介して、前記圧縮機の吐出配管及び吸入配管の双方に接続されており、
前記第2流路切替装置は、前記複数の室内機のうち暖房運転を選択した室内機に接続されたガス側配管に、前記圧縮機から前記吐出配管を介して吐出される高圧冷媒を流通させ、前記複数の室内機のうち冷房運転を選択した室内機に接続されたガス側配管に、前記圧縮機に前記吸入配管を介して吸入される低圧冷媒を流通させるように流路を切り替えるものであり、
前記制御装置は、暖房運転を選択した室内機と冷房運転を選択した室内機とが存在する冷暖同時運転の実行中において、前記複数の並列熱交換器のデフロストが必要と判断した場合、前記冷暖同時運転を継続しながら前記第1の暖房デフロスト同時運転又は前記第2の暖房デフロスト同時運転を実行する請求項1~請求項9のいずれか一項に記載の冷凍サイクル装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017527093A JP6351848B2 (ja) | 2015-07-06 | 2016-03-28 | 冷凍サイクル装置 |
US15/571,393 US10415861B2 (en) | 2015-07-06 | 2016-03-28 | Refrigeration cycle apparatus |
CN201680038558.6A CN107709900B (zh) | 2015-07-06 | 2016-03-28 | 制冷循环装置 |
EP16821067.2A EP3321606B1 (en) | 2015-07-06 | 2016-03-28 | Refrigeration cycle device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015135038 | 2015-07-06 | ||
JP2015-135038 | 2015-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017006596A1 true WO2017006596A1 (ja) | 2017-01-12 |
Family
ID=57684997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/059861 WO2017006596A1 (ja) | 2015-07-06 | 2016-03-28 | 冷凍サイクル装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10415861B2 (ja) |
EP (1) | EP3321606B1 (ja) |
JP (1) | JP6351848B2 (ja) |
CN (1) | CN107709900B (ja) |
WO (1) | WO2017006596A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019073621A1 (ja) * | 2017-10-12 | 2019-04-18 | 三菱電機株式会社 | 空気調和装置 |
WO2019224944A1 (ja) * | 2018-05-23 | 2019-11-28 | 三菱電機株式会社 | 空気調和機 |
CN112432373A (zh) * | 2020-11-26 | 2021-03-02 | 珠海格力电器股份有限公司 | 热泵系统和空调 |
JPWO2021053710A1 (ja) * | 2019-09-17 | 2021-03-25 | ||
WO2021255816A1 (ja) * | 2020-06-16 | 2021-12-23 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和装置 |
JP7565784B2 (ja) | 2020-12-23 | 2024-10-11 | 東芝ライフスタイル株式会社 | 空気調和機 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6707192B2 (ja) * | 2017-05-19 | 2020-06-10 | 三菱電機株式会社 | チリングユニット及び水循環温調システム |
JP6477802B2 (ja) * | 2017-08-08 | 2019-03-06 | ダイキン工業株式会社 | 冷凍装置 |
US11226149B2 (en) * | 2017-11-29 | 2022-01-18 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
JP6823681B2 (ja) * | 2018-03-30 | 2021-02-03 | ダイキン工業株式会社 | 冷凍装置 |
US10890366B2 (en) * | 2018-10-16 | 2021-01-12 | Tiax, Llc | Systems and methods for making ice |
KR102688990B1 (ko) * | 2019-05-23 | 2024-07-29 | 엘지전자 주식회사 | 공기조화장치 및 그 제어방법 |
WO2020255192A1 (ja) * | 2019-06-17 | 2020-12-24 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP6866910B2 (ja) * | 2019-09-30 | 2021-04-28 | ダイキン工業株式会社 | 熱源ユニット及び冷凍装置 |
JP7183447B2 (ja) * | 2019-11-12 | 2022-12-05 | 三菱電機株式会社 | 冷凍サイクル装置 |
KR20210104476A (ko) * | 2020-02-17 | 2021-08-25 | 엘지전자 주식회사 | 공기조화기 |
US11466910B2 (en) * | 2020-05-11 | 2022-10-11 | Rheem Manufacturing Company | Systems and methods for reducing frost accumulation on heat pump evaporator coils |
CN111664549B (zh) * | 2020-06-10 | 2023-09-12 | 青岛海信日立空调系统有限公司 | 空调器 |
CN113776162A (zh) * | 2020-06-10 | 2021-12-10 | 青岛海信日立空调系统有限公司 | 空调器 |
CN111780362B (zh) * | 2020-07-03 | 2022-03-11 | 海信(山东)空调有限公司 | 一种空调器及其控制方法 |
US11761687B2 (en) | 2020-11-19 | 2023-09-19 | Rolls-Royce North American Technologies Inc. | Refrigeration or two phase pump loop cooling system |
CN112444002A (zh) * | 2020-11-30 | 2021-03-05 | 青岛海信日立空调系统有限公司 | 空调器 |
WO2022204546A1 (en) * | 2021-03-26 | 2022-09-29 | First Co. | Independent temperature control for rooms |
US20220412619A1 (en) * | 2021-06-24 | 2022-12-29 | Booz Allen Hamilton Inc. | Thermal management systems |
US12114626B2 (en) * | 2021-09-09 | 2024-10-15 | Haier Us Appliance Solutions, Inc. | Indoor garden center environmental control system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006194526A (ja) * | 2005-01-14 | 2006-07-27 | Sanyo Electric Co Ltd | 空気調和装置 |
JP2008157557A (ja) * | 2006-12-25 | 2008-07-10 | Daikin Ind Ltd | 空気調和装置 |
WO2010082325A1 (ja) * | 2009-01-15 | 2010-07-22 | 三菱電機株式会社 | 空気調和装置 |
JP2011052883A (ja) * | 2009-09-01 | 2011-03-17 | Mitsubishi Electric Corp | 空気調和機 |
WO2013111177A1 (ja) * | 2012-01-24 | 2013-08-01 | 三菱電機株式会社 | 空気調和装置 |
WO2014020651A1 (ja) * | 2012-08-03 | 2014-02-06 | 三菱電機株式会社 | 空気調和装置 |
WO2014083867A1 (ja) * | 2012-11-29 | 2014-06-05 | 三菱電機株式会社 | 空気調和装置 |
WO2014192140A1 (ja) * | 2013-05-31 | 2014-12-04 | 三菱電機株式会社 | 空気調和装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4850204A (en) * | 1987-08-26 | 1989-07-25 | Paragon Electric Company, Inc. | Adaptive defrost system with ambient condition change detector |
US4884414A (en) * | 1987-08-26 | 1989-12-05 | Paragon Electric Company, Inc. | Adaptive defrost system |
US5694782A (en) * | 1995-06-06 | 1997-12-09 | Alsenz; Richard H. | Reverse flow defrost apparatus and method |
US5954127A (en) * | 1997-07-16 | 1999-09-21 | International Business Machines Corporation | Cold plate for dual refrigeration system |
JP4923794B2 (ja) * | 2006-07-06 | 2012-04-25 | ダイキン工業株式会社 | 空気調和装置 |
JP5634682B2 (ja) * | 2009-04-24 | 2014-12-03 | 日立アプライアンス株式会社 | 空気調和機 |
CN102667366B (zh) * | 2009-10-28 | 2015-10-07 | 三菱电机株式会社 | 空调装置 |
EP2600082B1 (en) | 2010-07-29 | 2018-09-26 | Mitsubishi Electric Corporation | Heat pump |
CN103597292B (zh) * | 2011-02-28 | 2016-05-18 | 艾默生电气公司 | 用于建筑物的供暖、通风和空调hvac系统的监视系统和监视方法 |
EP2757326B1 (en) * | 2011-09-13 | 2020-04-22 | Mitsubishi Electric Corporation | Refrigeration and air-conditioning device |
KR101319687B1 (ko) * | 2011-10-27 | 2013-10-17 | 엘지전자 주식회사 | 멀티형 공기조화기 및 그의 제어방법 |
JP2013155964A (ja) * | 2012-01-31 | 2013-08-15 | Fujitsu General Ltd | 空気調和装置 |
JP6017058B2 (ja) * | 2013-10-24 | 2016-10-26 | 三菱電機株式会社 | 空気調和装置 |
CN104154672B (zh) * | 2014-08-06 | 2016-08-17 | 广东美的暖通设备有限公司 | 并联多联机系统及化霜控制方法 |
-
2016
- 2016-03-28 JP JP2017527093A patent/JP6351848B2/ja active Active
- 2016-03-28 US US15/571,393 patent/US10415861B2/en active Active
- 2016-03-28 EP EP16821067.2A patent/EP3321606B1/en active Active
- 2016-03-28 WO PCT/JP2016/059861 patent/WO2017006596A1/ja unknown
- 2016-03-28 CN CN201680038558.6A patent/CN107709900B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006194526A (ja) * | 2005-01-14 | 2006-07-27 | Sanyo Electric Co Ltd | 空気調和装置 |
JP2008157557A (ja) * | 2006-12-25 | 2008-07-10 | Daikin Ind Ltd | 空気調和装置 |
WO2010082325A1 (ja) * | 2009-01-15 | 2010-07-22 | 三菱電機株式会社 | 空気調和装置 |
JP2011052883A (ja) * | 2009-09-01 | 2011-03-17 | Mitsubishi Electric Corp | 空気調和機 |
WO2013111177A1 (ja) * | 2012-01-24 | 2013-08-01 | 三菱電機株式会社 | 空気調和装置 |
WO2014020651A1 (ja) * | 2012-08-03 | 2014-02-06 | 三菱電機株式会社 | 空気調和装置 |
WO2014083867A1 (ja) * | 2012-11-29 | 2014-06-05 | 三菱電機株式会社 | 空気調和装置 |
WO2014192140A1 (ja) * | 2013-05-31 | 2014-12-04 | 三菱電機株式会社 | 空気調和装置 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11268743B2 (en) | 2017-10-12 | 2022-03-08 | Mitsubishi Electric Corporation | Air-conditioning apparatus having heating-defrosting operation mode |
JPWO2019073621A1 (ja) * | 2017-10-12 | 2020-04-02 | 三菱電機株式会社 | 空気調和装置 |
EP3696480A4 (en) * | 2017-10-12 | 2020-12-16 | Mitsubishi Electric Corporation | AIR CONDITIONING DEVICE |
WO2019073621A1 (ja) * | 2017-10-12 | 2019-04-18 | 三菱電機株式会社 | 空気調和装置 |
WO2019224944A1 (ja) * | 2018-05-23 | 2019-11-28 | 三菱電機株式会社 | 空気調和機 |
JPWO2019224944A1 (ja) * | 2018-05-23 | 2021-03-25 | 三菱電機株式会社 | 空気調和機 |
JP7042906B2 (ja) | 2018-05-23 | 2022-03-28 | 三菱電機株式会社 | 空気調和機 |
JPWO2021053710A1 (ja) * | 2019-09-17 | 2021-03-25 | ||
WO2021053710A1 (ja) * | 2019-09-17 | 2021-03-25 | 東芝キヤリア株式会社 | 空気調和装置及び制御方法 |
JP7210756B2 (ja) | 2019-09-17 | 2023-01-23 | 東芝キヤリア株式会社 | 空気調和装置及び制御方法 |
JP7341341B2 (ja) | 2020-06-16 | 2023-09-08 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和装置 |
WO2021255816A1 (ja) * | 2020-06-16 | 2021-12-23 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和装置 |
JPWO2021255816A1 (ja) * | 2020-06-16 | 2021-12-23 | ||
CN112432373A (zh) * | 2020-11-26 | 2021-03-02 | 珠海格力电器股份有限公司 | 热泵系统和空调 |
CN112432373B (zh) * | 2020-11-26 | 2021-10-15 | 珠海格力电器股份有限公司 | 热泵系统和空调 |
JP7565784B2 (ja) | 2020-12-23 | 2024-10-11 | 東芝ライフスタイル株式会社 | 空気調和機 |
Also Published As
Publication number | Publication date |
---|---|
US10415861B2 (en) | 2019-09-17 |
CN107709900A (zh) | 2018-02-16 |
EP3321606B1 (en) | 2021-10-20 |
EP3321606A1 (en) | 2018-05-16 |
JPWO2017006596A1 (ja) | 2017-10-26 |
CN107709900B (zh) | 2020-04-24 |
US20190154321A1 (en) | 2019-05-23 |
JP6351848B2 (ja) | 2018-07-04 |
EP3321606A4 (en) | 2019-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6351848B2 (ja) | 冷凍サイクル装置 | |
US10508826B2 (en) | Refrigeration cycle apparatus | |
JP6022058B2 (ja) | 熱源側ユニット及び冷凍サイクル装置 | |
CN111201410B (zh) | 空气调节装置 | |
JP5968534B2 (ja) | 空気調和装置 | |
JP5992112B2 (ja) | 空気調和装置 | |
US9683768B2 (en) | Air-conditioning apparatus | |
WO2009150761A1 (ja) | 冷凍サイクル装置、並びにその制御方法 | |
JP2007064510A (ja) | 空気調和装置 | |
JP2007240025A (ja) | 冷凍装置 | |
JP5274174B2 (ja) | 空気調和装置 | |
WO2017138108A1 (ja) | 空気調和装置 | |
JP2011179697A (ja) | 冷凍サイクル装置および冷温水装置 | |
WO2020194435A1 (ja) | 空気調和装置 | |
JP5855284B2 (ja) | 空気調和装置 | |
WO2017037891A1 (ja) | 冷凍サイクル装置 | |
JP4462436B2 (ja) | 冷凍装置 | |
WO2016166801A1 (ja) | 空気調和装置 | |
WO2015029223A1 (ja) | 空気調和装置 | |
JP6042037B2 (ja) | 冷凍サイクル装置 | |
JP5826722B2 (ja) | 二元冷凍装置 | |
JP2016151372A (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16821067 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017527093 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |