WO2014192140A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014192140A1
WO2014192140A1 PCT/JP2013/065210 JP2013065210W WO2014192140A1 WO 2014192140 A1 WO2014192140 A1 WO 2014192140A1 JP 2013065210 W JP2013065210 W JP 2013065210W WO 2014192140 A1 WO2014192140 A1 WO 2014192140A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
outdoor heat
pressure
air
Prior art date
Application number
PCT/JP2013/065210
Other languages
English (en)
French (fr)
Inventor
直史 竹中
若本 慎一
渡辺 和也
山下 浩司
傑 鳩村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13885959.0A priority Critical patent/EP3006866B1/en
Priority to CN201380077052.2A priority patent/CN105247302B/zh
Priority to US14/894,151 priority patent/US10465968B2/en
Priority to PCT/JP2013/065210 priority patent/WO2014192140A1/ja
Priority to JP2015519579A priority patent/JP5968534B2/ja
Publication of WO2014192140A1 publication Critical patent/WO2014192140A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to an air conditioner.
  • heat pump type air conditioners that use air as a heat source have been introduced in cold regions in place of boiler-type heaters that use fossil fuels for heating.
  • the heat pump type air conditioner can efficiently perform heating as much as heat is supplied from the air in addition to the electric input to the compressor.
  • the heat pump type air conditioner is more likely to be frosted on the outdoor heat exchanger as the evaporator as the temperature of the air (outside air temperature) in the outdoors becomes lower. For this reason, it is necessary to perform defrost (defrosting) to melt the frost on the outdoor heat exchanger.
  • defrost defrosting
  • As a method of performing defrosting for example, there is a method of reversing a refrigerant flow in heating and supplying refrigerant from a compressor to an outdoor heat exchanger.
  • this method has a problem that comfort is impaired because the indoor heating may be stopped during defrosting.
  • outdoor heat exchangers are divided so that heating can be performed even during defrosting, and while some outdoor heat exchangers are defrosting, other outdoor heat exchangers are operated as evaporators and air Has been proposed (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • the outdoor heat exchanger is divided into two heat exchanger sections. And when defrosting one heat exchanger part, the electronic expansion valve installed upstream of the heat exchanger part of defrost object is closed. Furthermore, by opening an electromagnetic on-off valve in the bypass pipe that bypasses the refrigerant from the compressor discharge pipe to the inlet of the heat exchanger section, a part of the high-temperature refrigerant discharged from the compressor is directly exchanged heat for defrosting. It flows into the vessel. And when defrosting of one heat exchanger part is completed, defrosting of the other heat exchanger part is performed. At this time, in the heat exchanger part to be defrosted, defrost is performed in a state where the pressure of the internal refrigerant is equal to the suction pressure of the compressor (low pressure defrost).
  • the outdoor heat exchanger is divided into a plurality of outdoor heat exchangers, and a part of the high-temperature refrigerant discharged from the compressor is alternately allowed to flow into each outdoor heat exchanger, Each outdoor heat exchanger is defrosted alternately. For this reason, heating can be performed continuously without reversing the refrigeration cycle. Further, the refrigerant supplied to the outdoor heat exchanger to be defrosted is injected from the injection port of the compressor. At this time, in the outdoor heat exchanger to be defrosted, the internal refrigerant pressure is lower than the discharge pressure of the compressor and higher than the suction pressure (pressure that is slightly higher than 0 ° C. in terms of saturation temperature). Defrost is performed (medium pressure defrost).
  • JP 2009-085484 A (paragraph [0019], FIG. 3) JP 2007-271094 A (paragraph [0007], FIG. 2) WO2012 / 014345 (paragraph [0006], FIG. 1)
  • the heat exchanger part to be defrosted and the heat exchanger part functioning as an evaporator operate in the same pressure band.
  • coolant absorbs heat from outside air.
  • the saturation temperature of the refrigerant may be 0 ° C. or less. Therefore, even if the frost (0 ° C.) is melted, the latent heat of condensation of the refrigerant cannot be used, and the defrost efficiency may be deteriorated.
  • the subcool (degree of supercooling) of the refrigerant at the outlet of the heat source side heat exchanger after the defrost is increased. Therefore, a temperature distribution is generated in the heat source side heat exchanger to be defrosted, and efficient defrosting cannot be performed.
  • the amount of liquid refrigerant in the heat source side heat exchanger to be defrosted increases by the amount of subcool, and it may take time to move the liquid refrigerant.
  • latent heat of condensation is utilized by controlling the saturation temperature of the refrigerant to a slightly higher temperature (about 0 ° C. to 10 ° C.) than 0 ° C. .
  • This intermediate pressure defrost can efficiently defrost the entire outdoor heat exchanger with less temperature unevenness compared to the low pressure defrost and the high pressure defrost.
  • there is an upper limit to the amount of refrigerant that can be injected into the compressor and there is a limit to the flow rate of refrigerant that can be supplied to the outdoor heat exchanger to be defrosted.
  • the pressure of the defrost outdoor heat exchanger may be influenced by the injection pressure in the injection compressor. For this reason, there is a limit to the defrosting ability, and the defrosting time cannot be shortened.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can efficiently defrost.
  • the air conditioner according to the present invention enables a refrigerant to be injected into an intermediate portion of a compression stroke, heats the air to be air-conditioned and the compressor, a compressor that sucks and compresses the low-pressure refrigerant, and discharges the high-pressure refrigerant.
  • An indoor heat exchanger to be exchanged An indoor heat exchanger to be exchanged, a first flow rate control device for adjusting and controlling the flow rate of the refrigerant passing through the indoor heat exchanger, and a plurality of outdoor heats connected in parallel to each other to exchange heat between the external air and the refrigerant
  • a main refrigerant circuit in which the refrigerant circulates is configured by connecting the exchanger to the pipe, and a part of the refrigerant discharged from the compressor branches and passes through, and flows into the outdoor heat exchanger to be defrosted.
  • a first pressure adjusting device that adjusts the refrigerant passing through the first defrost pipe to an intermediate pressure that is higher than low pressure and lower than high pressure, and refrigerant that has passed through an outdoor heat exchanger to be defrosted Inject into the compressor
  • a second defrosting pipe to tio down in which the refrigerant passing through the second defrosting pipe and a second pressure regulator for pressure control to the injection pressure.
  • the defrosting is performed by flowing the refrigerant through the path different from the main refrigerant circuit with the pressure adjusted by the first pressure adjusting device and the second pressure adjusting device in the outdoor heat exchanger to be defrosted. Therefore, for example, an air conditioner that can perform defrosting efficiently without stopping heating of the indoor unit can be obtained.
  • FIG. 1 It is a figure which shows the structure of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. It is a figure which shows an example of a structure of the outdoor heat exchanger which the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention has. It is a figure which shows the table
  • FIG. 2 is a Ph diagram during cooling operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. It is a figure which shows the flow of the refrigerant
  • FIG. 3 is a Ph diagram during normal heating operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. It is a figure which shows the flow of the refrigerant
  • FIG. 1 is a diagram showing a configuration of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the air conditioning apparatus 100 includes an outdoor unit 10 and a plurality of indoor units 30a and 30b.
  • the outdoor unit 10 and the indoor units 30a and 30b are connected via the first extension pipes 40, 41a and 41b and the second extension pipes 50, 51a and 51b to constitute a refrigerant circuit.
  • the indoor unit 30a and the indoor unit 30b are connected to the outdoor unit 10 in parallel with each other.
  • the air conditioner 100 also has a control device 60.
  • the control device 60 performs processing based on temperature, pressure, and the like detected by various detection devices (sensors) attached to the air conditioner 100, for example, and controls equipment in the air conditioner 100, Cooling and heating of the air-conditioning target space performed by at least one of the indoor units 30a and 30b are controlled.
  • the outdoor temperature sensor 61 is a temperature detection device that detects the outdoor temperature.
  • the air conditioner of the present embodiment also has a pressure sensor and a temperature sensor that detect the pressure and temperature of the refrigerant discharged and sucked by the compressor 11. Moreover, it has the temperature sensor etc. which detect the temperature etc. of the refrigerant
  • a fluorocarbon refrigerant for example, a fluorocarbon refrigerant, an HFO refrigerant, or the like is used.
  • the CFC refrigerant include R410A, R407c, and R404A, which are mixed refrigerants such as R32 refrigerant, R125, and R134a, which are HFC refrigerants.
  • the HFO refrigerant include HFO-1234yf, HFO-1234ze (E), and HFO-1234ze (Z).
  • refrigerants examples include CO 2 refrigerants, HC refrigerants (for example, propane and isobutane refrigerants), ammonia refrigerants, and refrigerants used in vapor compression heat pump devices such as a mixed refrigerant of R32 and HFO-1234yf.
  • an air conditioner 100 in which two indoor units 30a and 30b are connected to one outdoor unit 10 will be described as an example.
  • one indoor unit 30 may be used, Three or more units may be connected in parallel.
  • Two or more outdoor units 10 may be connected in parallel.
  • a refrigerant circuit that connects three extension pipes in parallel, and that is provided with a switching valve on the indoor unit 30 side, etc., so that each indoor unit 30 can select cooling or heating individually and can perform simultaneous cooling and heating operations. It may be configured.
  • the refrigerant circuit of the air conditioner 100 includes a compressor 11 of the outdoor unit 10, a cooling / heating switching device 12 that switches between cooling and heating, an outdoor heat exchanger 13, an indoor heat exchanger 31 of the indoor unit 30, and a first openable and closable. It has a main refrigerant circuit (main refrigerant circuit) by connecting the flow rate control device 32 with a pipe.
  • the accumulator 14 is also connected to the main refrigerant circuit, but since it is not necessarily an essential device, it may be configured not to be connected.
  • Compressor 11 sucks and compresses refrigerant and discharges it in a gas state of high temperature and high pressure.
  • the compressor 11 of the present embodiment has a port that enables injection (refrigerant introduction) into an intermediate portion of a compression stroke in a compression chamber (not shown).
  • the discharge temperature can be suppressed by injecting a liquid refrigerant at a predetermined pressure (injection pressure).
  • the compressor 11 is a compressor of a type that can change the refrigerant discharge amount (discharge capacity) by controlling the rotation speed (drive frequency) by an inverter circuit or the like, for example.
  • the cooling / heating switching device 12 is connected between the discharge pipe 22 and the suction pipe 23 of the compressor 11 and switches the flow direction of the refrigerant.
  • the cooling / heating switching device 12 is constituted by a four-way valve, for example. And based on the instruction
  • FIG. 2 is a diagram illustrating an example of the configuration of the outdoor heat exchanger 13 included in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the outdoor heat exchanger of this Embodiment is comprised with the fin tube type heat exchanger which has the some heat exchanger tube 5a and the some fin 5b, for example.
  • a plurality of the heat transfer tubes 5a are provided in the step direction perpendicular to the air passage direction and the row direction that is the air passage direction.
  • the fins 5b are arranged at intervals so that air passes in the air passage direction.
  • one outdoor heat exchanger has a plurality of independent flow paths.
  • the inlet and outlet of each flow path is connected in parallel to the refrigerant main circuit by dividing it into a plurality of outdoor heat exchangers 13.
  • segmented into the two outdoor heat exchangers 13a and 13b is demonstrated to an example.
  • the number of divisions is not limited to two.
  • the dividing direction may be divided into left and right (dividing with respect to the horizontal direction), but when divided into left and right, the respective refrigerant inlets of the outdoor heat exchangers 13a and 13b are located at both left and right ends of the outdoor unit 10. Dividing and complicating piping connections.
  • the outdoor heat exchangers 13a and 13b of the present embodiment share the fins 5b and are not divided.
  • the refrigerant melts frost so that the high-temperature refrigerant flows through the heat transfer tubes 5 a to heat the fins 5 b, and in the other outdoor heat exchanger 13,
  • the refrigerant flowing through the heat transfer tube 5a absorbs heat through the fins 5b. Therefore, the fins 5b may be divided for each outdoor heat exchanger 13 in order to prevent heat leakage between the outdoor heat exchangers 13.
  • the outdoor fan 21 allows outdoor air (outside air) to pass through the outdoor heat exchangers 13a and 13b to promote heat exchange with the refrigerant.
  • one outdoor fan 21 is installed for the outdoor heat exchangers 13a and 13b.
  • the outdoor fan 21 is installed corresponding to each of the outdoor heat exchangers 13a and 13b. Also good.
  • the first connection pipes 24a and 24b are connected to the outdoor heat exchangers 13a and 13b, respectively. In this Embodiment, it connects on the refrigerant
  • the flow paths of the first connection pipes 24a and 24b have second flow rate control devices 15a and 15b, respectively.
  • the second flow rate control devices 15a and 15b are constituted by electronically controlled expansion valves, for example. Then, the flow rate of the refrigerant can be controlled by varying the opening degree based on a command from the control device 60 and adjusting the pressure.
  • the second flow rate control devices 15a and 15b in the first embodiment correspond to the “third pressure adjusting device” of the present invention.
  • the second connection pipes 25a and 25b are connected to the outdoor heat exchangers 13a and 13b, respectively, on the side opposite to the first connection pipes 24a and 24b. In this Embodiment, it connects on the refrigerant
  • the flow paths of the second connection pipes 25a and 25b have first electromagnetic valves 16a and 16b, respectively.
  • the first solenoid valves 16a and 16b switch whether or not to allow the refrigerant to flow into and out of the outdoor heat exchangers 13a and 13b by opening and closing based on an instruction from the control device 60.
  • the air conditioning apparatus 100 of the present embodiment further includes a first defrost pipe 26 as a flow path different from the refrigerant main circuit.
  • the first defrost pipe 26 has one end connected to the discharge pipe 22 and the other end branched to connect to the second connection pipes 25a and 25b.
  • the first defrost pipe 26 supplies a part of the high-temperature and high-pressure refrigerant discharged from the compressor 11 to at least one of the outdoor heat exchangers 13a and 13b for defrosting.
  • the first defrost pipe 26 has a throttle device 18.
  • the expansion device 18 reduces a part of the high-temperature and high-pressure refrigerant discharged from the compressor 11 to an intermediate pressure based on an instruction from the control device 60.
  • the intermediate pressure is a pressure lower than the high pressure (discharge pressure) and higher than the injection pressure and the low pressure (suction pressure). Therefore, in the defrost, the refrigerant reduced to the medium pressure is supplied to the outdoor heat exchangers 13a and 13b.
  • the second electromagnetic valves 17a and 17b are provided at branch portions of the first defrost pipe 26, respectively. Whether the refrigerant flows from the discharge pipe 22 through the first defrost pipe 26 to the second connection pipes 25a and 25b is switched.
  • the expansion device 18 corresponds to the “first pressure adjusting device” of the present invention.
  • the first solenoid valves 16a and 16b and the second solenoid valves 17a and 17b only need to be able to switch the flow path between the main refrigerant circuit and the first defrost pipe 26. For this reason, you may make it comprise using a four-way valve, a three-way valve, a two-way valve, etc.
  • the front and rear pressures of the first electromagnetic valves 16a and 16b are reversed due to different directions in which the refrigerant passes depending on the operation.
  • a general solenoid valve may not be used if the front and rear pressures are reversed.
  • a four-way valve or the like in which the high pressure side of the valve is connected to the discharge pipe 22 and the low pressure side of the valve is connected to the suction pipe 23 may have the same function as the first electromagnetic valves 16a and 16b. Further, since the second solenoid valves 17a and 17b are always at a high pressure on the side of the discharge pipe 22 connected to the first defrost pipe 26, a two-way valve that is a one-way valve can be used.
  • the expansion device 18 may be configured by a capillary tube. Further, the second electromagnetic valves 17a and 17b may be reduced in size so that the pressure is reduced to an intermediate pressure without providing the expansion device 18 at a preset defrost flow rate. Further, the expansion device 18 may be eliminated, and a flow rate control device may be provided instead of the second electromagnetic valves 17a and 17b. In such a case, the second electromagnetic valves 17a and 17b, the flow rate control device, and the like correspond to the “first pressure adjusting device” of the present invention.
  • the second defrost pipe 27 is also a flow path different from the refrigerant main circuit.
  • the second defrost pipe 27 has one end connected to a port in the injection portion of the compressor 11 and the other end branched to connect to the first connection pipes 24a and 24b.
  • the second defrost pipe 27 has the expansion device 20 and the third electromagnetic valves 19a and 19b.
  • the expansion device 20 reduces a part of the medium-temperature and medium-pressure refrigerant that has flowed out of the outdoor heat exchanger 13a or 13b to the injection pressure during the heating defrost operation described later.
  • the decompressed refrigerant is injected into the compressor 11.
  • the third solenoid valves 19a and 19b are provided at the branch portions of the second defrost pipe 27, respectively, and switch whether or not the refrigerant flows from the first connection pipes 24a and 24b to the second defrost pipe 27.
  • the expansion device 20 corresponds to a “second pressure adjusting device” of the present invention.
  • the operation of the air conditioner 100 has two types of operation modes, a cooling operation and a heating operation.
  • the heating operation further includes a normal heating operation and a heating defrost operation (also referred to as continuous heating operation).
  • a heating defrost operation also referred to as continuous heating operation.
  • both the outdoor heat exchangers 13a and 13b constituting the outdoor heat exchanger 13 operate as an evaporator.
  • the heating defrost operation is an operation of alternately defrosting the outdoor heat exchanger 13a and the outdoor heat exchanger 13b while continuing the heating operation.
  • defrosting of the other outdoor heat exchanger 13 is performed while performing heating operation by operating one outdoor heat exchanger 13 as an evaporator.
  • the other outdoor heat exchanger is operated as an evaporator this time to perform a heating operation, and the defrosting of the one outdoor heat exchanger 13 is performed.
  • FIG. 3 is a diagram showing a table relating to the state of ON / OFF (opening / closing) or opening adjustment in a device (valve) having a valve during each operation in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the cooling / heating switching device 12 is shown as ON when connected in the direction of the solid line in FIG. 1 and OFF when connected in the direction of the dotted line.
  • the case where the valve is opened to allow the refrigerant to flow is ON, and the case where the valve is closed to prevent the refrigerant from flowing is shown as OFF. ing.
  • FIG. 4 is a diagram showing the refrigerant flow during the cooling operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the part through which the refrigerant flows during the cooling operation is indicated by a thick line, and the part where the refrigerant does not flow is indicated by a thin line.
  • FIG. 5 is a Ph diagram during the cooling operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Point (a) to point (d) in FIG. 5 show the state of the refrigerant at the locations marked with the same symbols in FIG.
  • the compressor 11 When the compressor 11 starts operation, the compressor 11 sucks the low-temperature and low-pressure gas refrigerant through the suction pipe 23, compresses it, and discharges the high-temperature and high-pressure gas refrigerant.
  • the refrigerant compression process of the compressor 11 is compressed so as to be heated by an amount equivalent to the heat insulation efficiency of the compressor 11 as compared with the case of adiabatic compression with an isentropic line, and the point from point (a) in FIG. It is represented by the line shown in (b).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 passes through the cooling / heating switching device 12 and branches into two. One passes through the first electromagnetic valve 16a and flows into the outdoor heat exchanger 13a from the second connection pipe 25a. The other passes through the first electromagnetic valve 16b and flows into the outdoor heat exchanger 13b from the second connection pipe 25b.
  • the refrigerant that has flowed into the outdoor heat exchangers 13a and 13b is cooled while heating the outdoor air by heat exchange with the outdoor air, and becomes a medium-temperature and high-pressure liquid refrigerant.
  • the refrigerant change in the outdoor heat exchangers 13a and 13b is expressed by a slightly inclined straight line that is slightly inclined from the point (b) to the point (c) in FIG. 5 in consideration of the pressure loss of the outdoor heat exchanger 13. .
  • heat exchange is performed in both the outdoor heat exchangers 13a and 13b.
  • the first electromagnetic valve 16b is closed to perform outdoor heat. It is possible to prevent the refrigerant from flowing into the exchanger 13b. By preventing the refrigerant from flowing, the heat transfer area of the outdoor heat exchanger 13 can be reduced as a result, and a stable cycle operation can be performed.
  • the refrigerant When passing through the first flow control devices 32a and 32b, the refrigerant is expanded and depressurized to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the change of the refrigerant in the first flow control devices 32a and 32b is performed under a constant enthalpy.
  • the refrigerant change at this time is represented by the vertical line shown from the point (c) to the point (d) in FIG.
  • the refrigerant flowing into the indoor heat exchangers 31a and 31b is heated while cooling the indoor air by heat exchange with the indoor air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the control device 60 has the first flow rate control devices 32a and 32b described above so that the superheat (superheat degree) of the low-temperature and low-pressure gas refrigerant flowing out from the indoor heat exchangers 31a and 31b becomes about 2K to 5K.
  • the change of the refrigerant in the indoor heat exchangers 31a and 31b is represented by a slightly inclined straight line that is slightly inclined from the point (e) to the point (a) in FIG.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the indoor heat exchangers 31a and 31b flows out of the indoor units 30a and 30b. Then, it passes through the first extension pipes 41 a, 41 b and 40 and flows into the outdoor unit 10. Further, the air is sucked into the compressor 11 through the suction pipe 23 through the cooling / heating switching device 12 and the accumulator 14.
  • FIG. 6 is a diagram showing a refrigerant flow during normal heating operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the part through which the refrigerant flows during the normal heating operation is a thick line
  • the part through which the refrigerant does not flow is a thin line.
  • FIG. 7 is a Ph diagram during normal heating operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Point (a) to point (e) in FIG. 7 show the state of the refrigerant in the portion given the same symbol in FIG.
  • the compressor 11 When the compressor 11 starts operation, the compressor 11 sucks the low-temperature and low-pressure gas refrigerant through the suction pipe 23, compresses it, and discharges the high-temperature and high-pressure gas refrigerant.
  • the refrigerant compression process of the compressor 11 is represented by the line shown from the point (a) to the point (b) in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 after passing through the cooling / heating switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 10 flows into the indoor units 30a and 30b through the first extension pipes 40, 41a, and 41b. And it flows in into the indoor heat exchangers 31a and 31b.
  • the refrigerant flowing into the indoor heat exchangers 31a and 31b is cooled while heating the indoor air by heat exchange with the indoor air, and becomes a medium-temperature and high-pressure liquid refrigerant.
  • the change of the refrigerant in the indoor heat exchangers 31a and 31b is represented by a slightly inclined straight line that is inclined slightly from the point (b) to the point (c) in FIG.
  • the medium-temperature and high-pressure liquid refrigerant that has flowed out of the indoor heat exchangers 31a and 31b passes through the first flow control devices 32a and 32b.
  • the refrigerant When passing through the first flow control devices 32a and 32b, the refrigerant is expanded and depressurized to be in an intermediate-pressure gas-liquid two-phase state.
  • the refrigerant change at this time is represented by the vertical line shown from the point (c) to the point (d) in FIG.
  • the control device 60 controls the opening degree of the first flow rate control devices 32a and 32b so that the subcool (supercooling degree) of the medium temperature and high pressure liquid refrigerant is about 5K to 20K.
  • the medium-pressure gas-liquid two-phase refrigerant flowing out of the first flow control devices 32a and 32b flows out of the indoor units 30a and 30b.
  • the refrigerant that has flowed out of the indoor units 30a and 30b flows into the outdoor unit 10 through the second extension pipes 51a, 51b, and 50.
  • the refrigerant that has flowed into the outdoor unit 10 flows into the first connection pipes 24a and 24b.
  • the refrigerant flowing into the first connection pipes 24a and 24b passes through the second flow rate control devices 15a and 15b.
  • the refrigerant is expanded and depressurized to be in a low-pressure gas-liquid two-phase state.
  • the change of the refrigerant at this time is changed from the point (d) to the point (e) in FIG.
  • the control device 60 is fixed at a constant opening (for example, in a fully open state), or the second flow rate control device 15a is set so that the saturation temperature of the intermediate pressure of the second extension pipe 50 or the like becomes about 0 ° C. to 20 ° C. And the opening degree of 15b is controlled.
  • the refrigerant that has passed through the second flow rate control devices 15a and 15b flows into the outdoor heat exchangers 13a and 13b.
  • the refrigerant flowing into the outdoor heat exchangers 13a and 13b is heated while cooling the outdoor air by heat exchange with the outdoor air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the refrigerant change in the outdoor heat exchangers 13a and 13b is represented by a slightly inclined straight line that is slightly inclined from the point (e) to the point (a) in FIG.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the outdoor heat exchangers 13a and 13b flows into the second connection pipes 25a and 25b, and merges after passing through the first electromagnetic valves 16a and 16b. Further, the air is sucked into the compressor 11 through the suction pipe 23 through the cooling / heating switching device 12 and the accumulator 14.
  • the heating defrost operation is performed when the control device 60 determines that the outdoor heat exchanger 13 is frosted during the normal heating operation.
  • the outdoor heat exchanger 13a in the heating defrost operation, functions as an evaporator and continues heating while the outdoor heat exchanger 13b performs defrosting. Can do. Conversely, while the outdoor heat exchanger 13a is defrosting, the outdoor heat exchanger 13b can function as an evaporator and continue heating.
  • the open / close states of the first electromagnetic valve 16, the second electromagnetic valve 17, and the third electromagnetic valve 19 are reversed. Although the refrigerant flow in the outdoor heat exchanger 13 is different, the other operations are the same.
  • FIG. 8 is a diagram showing the refrigerant flow during the heating defrost operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the part through which the refrigerant flows during defrosting of the outdoor heat exchanger 13b is indicated by a thick line, and the part where the refrigerant does not flow is indicated by a thin line.
  • FIG. 9 is a Ph diagram during heating / defrost operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Point (a) to point (i) in FIG. 9 indicate the state of the refrigerant in the portion denoted by the same symbol in FIG.
  • Control device 60 determines whether or not to perform defrost in any of the outdoor heat exchangers 13 during normal heating operation. And if it determines with performing defrost of the outdoor heat exchanger 13b, the 1st solenoid valve 16b corresponding to the outdoor heat exchanger 13b will be closed. Further, the control device 60 opens the second electromagnetic valve 17b and the third electromagnetic valve 19b, and causes the expansion device 18 and the expansion device 20 to have a preset opening degree.
  • the refrigerant path (first refrigerant path) that becomes the compressor 11 ⁇ the expansion device 18 ⁇ the second electromagnetic valve 17b ⁇ the outdoor heat exchanger 13b ⁇ the second flow rate control device 15b ⁇ the second flow rate control device 15a.
  • the refrigerant path (medium pressure defrost circuit, which serves as an injection unit of the compressor 11 ⁇ the expansion device 18 ⁇ the second electromagnetic valve 17 b ⁇ the outdoor heat exchanger 13 b ⁇ the third electromagnetic valve 19 b ⁇ the expansion device 20 ⁇ the compressor 11.
  • a second refrigerant path is formed. Then, the heating defrost operation is started.
  • coolant decompressed to the intermediate pressure shown by the point (f) passes the 2nd solenoid valve 17b and the 2nd connection piping 25b, and flows in into the outdoor heat exchanger 13b.
  • the refrigerant that has flowed into the outdoor heat exchanger 13b is cooled by exchanging heat with frost attached to the outdoor heat exchanger 13b.
  • frost adhering to the outdoor heat exchanger 13b can be melted by flowing the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 into the outdoor heat exchanger 13b.
  • the change of the refrigerant at this time is represented by a change from the point (f) to the point (g) in FIG.
  • the refrigerant that performs defrosting is higher than the frost temperature (0 ° C.) and has a saturation temperature of 10 ° C. or less.
  • Part of the refrigerant after defrosting passes through the second flow control device 15b.
  • the refrigerant that has passed joins the refrigerant that has flowed into the outdoor unit 10 from the indoor unit 30 via the second extension pipes 51a, 51b, and 50 (point (h)).
  • the merged refrigerant flows into the outdoor heat exchanger 13a through the second flow rate control device 15a and the first connection pipe 24a.
  • the refrigerant flowing into the outdoor heat exchanger 13a is heated while cooling the outdoor air by heat exchange with the outdoor air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the remaining refrigerant that has not passed through the second flow rate control device 15b passes through the third electromagnetic valve 19b through the above-described intermediate pressure defrost circuit as a path. Then, the pressure is reduced to the injection pressure by the expansion device 20 (point (i)) and injected into the compressor 11.
  • FIGS. 10 to 14 are graphs when the refrigerant pressure (converted to the saturated liquid temperature in the figure) in the outdoor heat exchanger 13 to be defrosted is changed while fixing the defrost capability.
  • R410A refrigerant is used as the refrigerant in the refrigerant circuit.
  • FIG. 10 shows a change in heating capacity with respect to a change in refrigerant pressure.
  • FIG. 11 shows a change in the enthalpy difference of the refrigerant before and after the inflow / outflow of the outdoor heat exchanger 13 to be defrosted with respect to the refrigerant pressure change.
  • FIG. 12 shows the change in the refrigerant flow rate necessary for defrosting with respect to the refrigerant pressure change.
  • FIG. 10 shows a change in heating capacity with respect to a change in refrigerant pressure.
  • FIG. 11 shows a change in the enthalpy difference of the refrigerant before and after the inflow / outflow of the outdoor heat exchanger 13
  • FIG. 13 shows a change in the refrigerant amount in the accumulator 14 and the defrost target outdoor heat exchanger 13 with respect to a refrigerant pressure change.
  • FIG. 14 shows the change in the subcool SC at the refrigerant outlet of the outdoor heat exchanger 13 to be defrosted with respect to the refrigerant pressure change.
  • the heating capacity is increased when the saturated liquid temperature of the refrigerant is higher than 0 ° C. and lower than 10 ° C., and the heating capacity is decreased in other cases.
  • the reason why the heating capacity is lowered when the saturated liquid temperature is 0 ° C. or less will be described.
  • the temperature of the refrigerant needs to be higher than 0 ° C.
  • the position of the point (g) in FIG. 9 becomes higher than the saturated gas enthalpy.
  • the condensation latent heat of the refrigerant cannot be used, and the enthalpy difference before and after the outdoor heat exchanger 13 to be defrosted becomes small (FIG. 11).
  • the saturation temperature is higher than 0 ° C. and an attempt is made to exert the same defrosting ability as that of the refrigerant of 10 ° C. or less
  • the outdoor heat exchanger 13 to be defrosted has a saturation temperature higher than 0 ° C.
  • coolant amount which can be supplied to the indoor unit 30 which heats decreases, and a heating capability falls. Therefore, when the saturated liquid temperature is set to 0 ° C. or lower, the heating capacity is reduced as in the low pressure defrost of the prior art document 1. Therefore, the pressure of the outdoor heat exchanger 13 to be defrosted needs to be higher than 0 ° C. in terms of saturated liquid temperature.
  • the refrigerant in the refrigeration cycle becomes insufficient, the suction density of the compressor 11 decreases, and the heating capacity decreases.
  • the upper limit of the saturation temperature can be increased by overfilling the refrigerant, the reliability of the air conditioner may be reduced due to liquid overflow from the accumulator 14 during other operations. . Therefore, it is better to properly fill the refrigerant.
  • the saturation temperature increases, the temperature difference between the refrigerant in the outdoor heat exchanger 13 and the frost becomes more uneven, and there is a problem that a place where the frost can be melted and a place where the frost can be melted quickly can be formed.
  • the pressure in the outdoor heat exchanger 13 to be defrosted should be higher than 0 ° C. and 10 ° C. or lower in terms of saturation temperature.
  • the subcool SC at the outlet of the outdoor heat exchanger 13 to be defrosted is 0K.
  • the case is the optimal target value.
  • the pressure of the outdoor heat exchanger 13 to be defrosted is 0 ° C. in terms of saturation temperature so that the subcool SC is about 0K to 5K. It is desirable that the temperature be higher and 6 ° C. or lower.
  • the control device 60 sets the opening of the second flow control device 15b so that the pressure of the outdoor heat exchanger 13b to be defrosted is higher than 0 ° C. and lower than 10 ° C. in terms of saturation temperature. Control.
  • the opening degree of the second flow rate control device 15a is set to a fully opened state in order to improve the controllability by applying a differential pressure before and after the second flow rate control device 15b.
  • the opening degree of the expansion device 18 may be fixed in accordance with a necessary defrost flow rate designed in advance.
  • the expansion device 20 has an opening degree at which the refrigerant is not compressed in the compressor 11 in order to maintain reliability. Further, in order to control the discharge temperature, discharge superheat, etc. of the compressor 11 in order to increase the refrigerant flow rate to the indoor heat exchanger 31 serving as a condenser, for example, compression is performed until the discharge superheat reaches about 10K to 20K. What is necessary is just to set it as the opening which can inject a refrigerant
  • the control device 60 may control the expansion device 18 and the second flow rate control device 15b so that the defrost flow rate increases as the outside air temperature decreases.
  • the amount of heat given to the frost can be made constant regardless of the outside air temperature, and the time taken for defrosting can be made constant.
  • control device 60 may change the saturation temperature threshold, the normal operation time, and the like used when determining the presence or absence of frost according to the outside air temperature. For example, the operation time is shortened so as to reduce the amount of frost formation at the start of defrost as the outside air temperature decreases so that the amount of heat applied to the defrost by the refrigerant during the heating defrost operation becomes constant. Thereby, the resistance of the expansion device 18 can be made constant. And an inexpensive capillary tube can be used. Further, the control device 60 may set a threshold value for the outside air temperature.
  • the outside air temperature is equal to or higher than a threshold temperature (for example, the outside temperature is ⁇ 5 ° C., ⁇ 10 ° C., etc.) In this case, heating of the indoor unit 30 is stopped, and all outdoor heat exchangers are defrosted.
  • a threshold temperature for example, the outside temperature is ⁇ 5 ° C., ⁇ 10 ° C., etc.
  • the outside air temperature is 0 ° C. or lower, such as ⁇ 5 ° C. or ⁇ 10 ° C.
  • the absolute humidity of the outside air is originally low and the amount of frost formation is small. For this reason, the time of normal operation until the amount of frost formation becomes a constant value becomes long.
  • a heating stop defrost operation mode in which full defrosting is performed may be selected. For example, it is possible to efficiently defrost by making it possible to select an operation mode related to defrost based on the outside air temperature.
  • the fan is used as the outside air temperature decreases.
  • the fan output may be changed so as to reduce the output. For this reason, it is possible to reduce the amount of heat released from the outdoor heat exchanger 13 to be defrosted during the heating defrost operation.
  • FIG. 15 is a diagram showing a flowchart relating to control of the control device 60 in the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, based on FIG. 15, the control processing performed by the control device 60 in the present embodiment will be further described. Here, FIG. 15 demonstrates the case where only heating defrost operation is performed.
  • the heating defrost operation for defrosting the outdoor heat exchanger 13 is started.
  • the control in the case of defrosting in order of the lower-stage outdoor heat exchanger 13b and the upper-stage outdoor heat exchanger 13a in FIG. 2 will be described as an example. Accordingly, first, defrost (intermediate pressure defrost) is performed on the outdoor heat exchanger 13b (S6).
  • the order of defrosting may be reversed.
  • each valve in the normal heating operation before the heating defrost operation is the state shown in the column “normal heating operation” in FIG. And from this state, each valve is changed to a state as shown in the column of “13a: evaporator 13b: defrost” of “heating defrost operation” in FIG. 3 to perform the heating defrost operation (S7).
  • the heating defrost operation which uses the outdoor heat exchanger 13b as a defrost, and uses the outdoor heat exchanger 13a as an evaporator will be performed. For example, if the frost adhering to the outdoor heat exchanger 13b is melted by continuing the heating defrost operation, the refrigerant temperature in the first connection pipe 24b rises.
  • a defrost termination condition for example, a temperature sensor is attached to the first connection pipe 24b, and it is determined that the defrost termination condition is satisfied when the sensor temperature exceeds a threshold as shown in the following equation (2).
  • x2 is set to 3 to 10 ° C., for example. (Refrigerant temperature of first connecting pipe 24)> x2 (2)
  • each valve is changed to a state as shown in the column “13a: Defrost 13b: Evaporator” of “Heating defrost operation” in FIG. 3 to perform the defrost operation of the outdoor heat exchanger 13a.
  • S10 to S13 are the same as S6 to S9 described above, although the valve numbers are different.
  • the plurality of outdoor heat exchangers 13 are defrosted at least once in order. For example, when the last outdoor heat exchanger 13 finishes defrosting, the first defrosted outdoor heat exchanger 13 is frosted by the temperature sensor or the like installed in the refrigerant circuit and the heat transfer performance is reduced. If it judges, you may perform the 2nd defrost for the outdoor heat exchanger 13 defrosted initially for a short time.
  • the refrigerant can be sent to the indoor unit 30 side while performing the defrost operation by the heating defrost operation. It can be carried out. At this time, a part or all of the refrigerant flowing out from the outdoor heat exchanger 13 performing defrosting by adjusting the opening degree of at least one of the expansion device 20 and the second flow rate control device 15 (mainly the expansion device 20). Since it can inject into the compressor 11, the refrigerant
  • the refrigerant flowing out of the outdoor heat exchanger 13 performing defrosting by adjusting the opening degree of at least one of the expansion device 20 and the second flow control device 15 (mainly the second flow control device 15). Can flow into the main refrigerant circuit upstream of the outdoor heat exchanger 13 functioning as an evaporator. For this reason, the efficiency of defrost can be improved, the refrigerant
  • the throttle device 20 is controlled to the opening degree for injecting the refrigerant so that the superheat of the refrigerant discharged from the compressor 11 is about 10K to 20K.
  • the refrigerant flow rate to the indoor heat exchanger 31 that operates as a condenser can be increased while maintaining reliability so that the refrigerant does not liquid-compress in the compressor 11, and the heating capacity can be improved.
  • a part of the high-temperature and high-pressure gas refrigerant branched from the discharge pipe 22 is higher than 0 ° C. and 10 ° C. or lower, which is higher than the frost temperature in terms of saturation temperature. Since the pressure is reduced to the pressure (medium pressure) and the outdoor heat exchanger 13 to be defrosted is allowed to flow, defrosting using the latent heat of condensation of the refrigerant can be performed.
  • the saturation temperature is higher than 0 ° C. and not higher than 10 ° C., so that the temperature difference from the frost temperature is reduced.
  • the subcool (supercooling degree) of the refrigerant at the outlet of the exchanger 13 can be reduced to about 5K. For this reason, the amount of refrigerant necessary for defrosting is reduced, and the shortage of refrigerant circulating in the main refrigerant circuit can be avoided.
  • the refrigerant in the heat transfer tube of the outdoor heat exchanger 13 to be defrosted has a large gas-liquid two-phase region, and a region where the temperature difference from the frost is constant increases, thereby making the defrost amount of the entire heat exchanger uniform. be able to.
  • coolant which flowed out from the outdoor heat exchanger 13 of defrost object is made to flow in into the other outdoor heat exchanger 13 which is functioning as an evaporator, and a refrigerating cycle. It is possible to suppress the decrease in the suction pressure by maintaining the evaporation capability. Further, liquid back to the compressor 11 can be prevented. Further, when the flow control of the expansion device 18 is performed, the defrosting capability can be made variable. For this reason, for example, the time taken for defrosting can be made constant by increasing the flow rate of the expansion device 18 as the outside air temperature becomes lower.
  • the air conditioning apparatus 100 of the present embodiment for example, by changing the reference for determining whether to perform the heating defrost operation based on the outside air temperature, the time taken for the defrost is made constant even if the defrost capability is constant. can do. Furthermore, since the heating defrost operation and the heating stop defrost operation can be selected based on the outside air temperature, an efficient defrost can be selected and performed. Further, since the output of the outdoor fan 21 is changed based on the outside air temperature, it is possible to reduce the amount of heat that the refrigerant performing defrost radiates to the outside air.
  • FIG. FIG. 16 is a diagram showing a configuration of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
  • devices and the like having the same reference numerals as those in FIG. 1 perform operations similar to those described in the first embodiment.
  • the air conditioning apparatus 101 will be described focusing on the differences from the air conditioning apparatus 100 of the first embodiment.
  • the air conditioner 101 according to the second embodiment includes a third flow control device 15c and a refrigerant-refrigerant heat exchanger 28 (hereinafter referred to as an inter-refrigerant heat exchanger) in addition to the configuration of the air conditioner 100 according to the first embodiment. 28).
  • the third flow rate control device 15c is provided in a pipe that bypasses the first connection pipe 24a and the first connection pipe 24b.
  • the 3rd flow control device 15c comprises a valve which can change the opening degree like an electronically controlled expansion valve, for example.
  • the third flow rate control device 15c in the present embodiment corresponds to the “third pressure adjustment device” of the present invention. Therefore, although the air conditioner 101 of FIG. 16 has the second flow rate control devices 15a and 15b, there is no need to install them in some cases.
  • FIG. 17 is a diagram showing a table relating to the state of ON / OFF (opening / closing) or opening adjustment in a device (valve) having a valve during each operation in the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
  • the operations of the second flow rate control devices 15a and 15b and the third flow rate control device 15c in the air conditioning apparatus 101 of the present embodiment are different from those of the first embodiment.
  • the third flow control device 15c causes the refrigerant that has flowed out of the outdoor heat exchanger 13 to be defrosted to flow upstream of the outdoor heat exchanger 13 that operates as an evaporator during the heating defrost operation.
  • the third flow rate control device 15c is controlled by the control device 60 so that the pressure of the outdoor heat exchanger 13 to be defrosted becomes an intermediate pressure that is higher than 0 ° C. and lower than or equal to 10 ° C.
  • the second flow rate control device 15a or 15b that has controlled the pressure of the outdoor heat exchanger 13 to be defrosted is closed.
  • the second flow rate control device 15a or 15b which is fully open in the first embodiment, controls so that the saturation temperature of the intermediate pressure of the second extension pipe 50 and the like becomes an opening degree of about 0 ° C. to 20 ° C. Is done.
  • FIG. 18 is a diagram showing a refrigerant flow during the heating defrost operation of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
  • the part through which the refrigerant flows during the heating defrost operation is indicated by a thick line
  • the part where the refrigerant does not flow is indicated by a thin line.
  • FIG. 19 is a Ph diagram during heating / defrost operation of the air-conditioning apparatus 101 according to Embodiment 2 of the present invention.
  • the points (a) to (i) in FIG. 19 show the state of the refrigerant in the part marked with the same symbol in FIG.
  • the controller 60 determines that a defrost that eliminates the frosting state is necessary during the heating normal operation, the first electromagnetic valve 16b and the second flow rate control corresponding to the outdoor heat exchanger 13b to be defrosted are determined.
  • the device 15b is closed.
  • the control device 60 opens the second electromagnetic valve 17b and the third electromagnetic valve 19b, and causes the apertures of the expansion device 18 and the expansion device 20 to be set in advance.
  • the opening degree of the third flow control device 15c is set to a predetermined opening degree.
  • a refrigerant path (first refrigerant path) is formed which is the compressor 11 ⁇ the expansion device 18 ⁇ the second electromagnetic valve 17b ⁇ the outdoor heat exchanger 13b ⁇ the third flow rate control device 15c. Further, the compressor 11 ⁇ the expansion device 18 ⁇ the second electromagnetic valve 17b ⁇ the outdoor heat exchanger 13b ⁇ the third electromagnetic valve 19b ⁇ the intercoolant heat exchanger 28 ⁇ the expansion device 20 ⁇ the refrigerant serving as the injection unit of the compressor 11 A path (medium pressure defrost circuit, second refrigerant path) is formed. Then, the heating defrost operation is started.
  • coolant decompressed to the intermediate pressure shown by a point (f) passes the 2nd solenoid valve 17b and the 2nd connection piping 25b, and flows in into the outdoor heat exchanger 13b.
  • the refrigerant that has flowed into the outdoor heat exchanger 13b is cooled by exchanging heat with frost attached to the outdoor heat exchanger 13b.
  • the change in the refrigerant at this time is represented by a change from point (f) to point (g) in FIG.
  • the refrigerant that performs defrosting has a saturation temperature higher than the frost temperature (0 ° C.) and lower than 10 ° C.
  • the refrigerant after defrosting in the outdoor heat exchanger 13b branches into two.
  • One refrigerant passes through the third flow control device 15c and joins the main refrigerant circuit from the first connection pipe 24a between the second flow control device 15a and the outdoor heat exchanger 13a (point (e)).
  • the merged refrigerant flows into the outdoor heat exchanger 13a functioning as an evaporator and evaporates.
  • the other refrigerant passes through the third electromagnetic valve 19b and exchanges heat in the inter-refrigerant heat exchanger 28 with the heating refrigerant that flows at an intermediate pressure higher than the intermediate pressure indicated by the point (f). .
  • the refrigerant heated by the heat exchange is reduced to the injection pressure by the expansion device 20 (point (i)).
  • the heating refrigerant is cooled by heat exchange.
  • the change of the refrigerant at this time is represented by the point (h) from the point (d) in FIG.
  • the refrigerant that has passed through the outdoor heat exchanger 13 to be defrosted is caused to flow into a low pressure (corresponding to the suction pressure of the compressor 11).
  • the control device 60 can perform the control of the intermediate pressure (point (d)) and the control of the intermediate pressure (point (f)) separately.
  • the intermediate pressure may be higher than the intermediate pressure, a small valve having a small Cv value can be used for the second flow rate control devices 15a and 15b.
  • the refrigerant injected into the compressor 11 after passing through the outdoor heat exchanger 13 to be defrosted is returned to the outdoor unit 10 from the indoor units 30a and 30b.
  • Heat is exchanged between the refrigerant and the inter-refrigerant heat exchanger 28, the injected refrigerant is heated, and the refrigerant flowing through the main refrigerant circuit is cooled (supercooled). For this reason, the enthalpy difference can be widened in the outdoor heat exchanger 13 operating as an evaporator, the amount of heat absorbed from the outside air can be increased, and the heating capacity can be improved.
  • the intermediate pressure (the pressure of the second extension pipe 50) is changed to the intermediate pressure in order to return the refrigerant that has passed through the outdoor heat exchanger 13 to be defrosted to the mainstream. It is necessary to lower compared with (pressure of the refrigerant flowing into the outdoor heat exchanger 13 to be defrosted).
  • FIG. FIG. 20 is a diagram showing a configuration of the air-conditioning apparatus 102 according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIGS. 1 and 16, etc. perform the same operations as those described in the first embodiment or the second embodiment. Therefore, the following description will focus on the differences between the air conditioner 102 of the present embodiment and the air conditioner 101 described in the second embodiment.
  • the air conditioner 102 has a pipe (second extension pipe 50 and a second flow control device) that has an intermediate pressure in the main refrigerant circuit.
  • a fourth flow rate control device 29 is installed to adjust the pressure so that the refrigerant flows into the upstream side of the inter-refrigerant heat exchanger 28 in the second defrost pipe 27 from the pipe between the pipes 15a and 15b.
  • the third flow rate control device 15c corresponds to the “third throttling device” of the present invention.
  • the fourth flow control device 29 corresponds to the “fourth pressure adjusting device” of the present invention.
  • a refrigerant path (first refrigerant path) is formed.
  • the third flow control device 15c and the fourth flow control device 29 control the intermediate pressure.
  • the control device 60 adjusts the opening degree of the fourth flow control device 29 when the third flow control device 15c is fully closed when the refrigerant flow to be defrosted is small and the intermediate pressure is to be controlled. Then, control is performed to increase the intermediate pressure.
  • the refrigerant that has passed through the third electromagnetic valve 19b exchanges heat with the refrigerant for heating in the inter-refrigerant heat exchanger 28, as in the second embodiment.
  • coolant for heating can be increased, the heat absorption amount in the outdoor heat exchanger 13 which operate
  • the fourth flow control device 29 is opened to allow the intermediate pressure refrigerant to flow in.
  • the intermediate pressure control for the outdoor heat exchanger 13 to be defrosted can be performed stably.
  • the degree of supercooling of the refrigerant for heating can be increased by heat exchange in the inter-refrigerant heat exchanger 28, the amount of heat absorbed from the outside air is increased in the outdoor heat exchanger 13 functioning as an evaporator, thereby increasing the heating capacity. Can be improved.
  • FIG. FIG. 21 is a diagram showing the configuration of the air-conditioning apparatus 103 according to Embodiment 4 of the present invention.
  • devices and the like having the same reference numerals as those in FIG. 20 perform operations similar to those described in the first to third embodiments.
  • the air conditioning apparatus 103 will be described focusing on the differences from the air conditioning apparatus 102 of the third embodiment.
  • one end of the first defrost pipe 26 is connected to the first connection pipes 24a and 24b. Connecting. Also, one end of the second defrost pipe 27 is connected to the second connection pipes 25a and 25b.
  • the third flow rate control device is installed so as to bypass the first connection pipes 24a and 24b.
  • the defrosted refrigerant passes through the second defrost pipe 27 and the third defrost pipe 71 and flows toward the first connection pipe 24a or 24b.
  • the third flow control device 15c and the check valves 70a and 70b are installed in the second.
  • the third flow rate control device 15c of the air conditioner 104 and the fourth flow rate control device 29 of the air conditioner 103 according to the fourth embodiment are the “third throttling device” and “third” of the present invention. 4 throttling device ”.
  • FIG. 22 is a diagram showing the configuration of the air-conditioning apparatus 104 according to Embodiment 4 of the present invention.
  • the air conditioner 104 in FIG. 22 is obtained by removing the third flow control device 15c and the check valves 70a and 70b from the air conditioner 103.
  • the refrigerant flow in the outdoor heat exchanger 13 of the air conditioners 103 and 104 of the present embodiment is the same as that of the air conditioners 100 to 100 of the first to third embodiments.
  • the direction of the refrigerant flows in the opposite direction.
  • the control device 60 closes the first electromagnetic valve 16b corresponding to the outdoor heat exchanger 13b to be defrosted when it is detected that defrost for eliminating the frost state is necessary during normal heating operation.
  • the second flow control device 15b is fully closed.
  • the control device 60 opens the second electromagnetic valve 17b and the third electromagnetic valve 19b, and opens the opening of the expansion device 18 to a preset opening.
  • the control apparatus 60 opens the opening degree of the 3rd flow control apparatus 15c in the air conditioning apparatus 104, and opens the opening degree of the 4th flow control apparatus 29 in the air conditioning apparatus 103.
  • the compressor 11 the expansion device 18 ⁇ the second electromagnetic valve 17b ⁇ the outdoor heat exchanger 13b ⁇ the third electromagnetic valve 19b ⁇ the third flow control device 15c, and the first connection pipe.
  • a refrigerant path (first refrigerant path) to be 24a is formed.
  • the compressor 11 ⁇ the expansion device 18 ⁇ the second electromagnetic valve 17b ⁇ the outdoor heat exchanger 13b ⁇ the third electromagnetic valve 19b ⁇ the fourth flow control device 29 ⁇ the refrigerant heat exchanger 28 ⁇ the second. 2 forms a refrigerant path (first refrigerant path) that becomes the first flow rate control device 15a ⁇ the first connection pipe 24a.
  • a refrigerant path (medium pressure defrost circuit, second refrigerant path) to be a part (port) is formed. Then, the heating defrost operation is started.
  • the control device 60 determines the opening degree of the third flow rate control device 15c or the fourth flow rate control device 29 so that the pressure (medium pressure) of the outdoor heat exchanger 13b to be defrosted is converted into a saturated temperature. Control to be higher than 0 ° C and lower than 10 ° C.
  • the expansion device 20 has an opening degree at which the refrigerant can be injected into the compressor 11 until the discharge superheat reaches about 10K to 20K, for example, so as to control the discharge temperature, the discharge superheat, and the like of the compressor 11.
  • the first connection pipes 24a and 24b are connected to the heat transfer pipe 5a on the upstream side in the air flow direction in the outdoor heat exchangers 13a and 13b.
  • the heat transfer tubes 5a of the outdoor heat exchangers 13a and 13b are provided in a plurality of rows in the air flow direction, and sequentially flow to the downstream row. For this reason, the refrigerant supplied to the outdoor heat exchanger 13b to be defrosted flows from the upstream heat transfer pipe 5a in the air flow direction to the downstream direction, and the refrigerant flow direction and the air flow direction are different from each other. Matched parallel flow can be achieved.
  • the direction of the refrigerant flow and the direction of the air flow can be matched. Further, by making the refrigerant flow parallel, the heat radiated to the air at the time of defrosting can be used for the defrosting of frost adhering to the downstream fins 5b, so that the defrosting efficiency can be increased.
  • Embodiment 5 FIG.
  • the case where the outdoor heat exchanger 13 is divided into two outdoor heat exchangers 13a and 13b has been described, but the present invention is not limited to this.
  • a part of the outdoor heat exchangers 13 can be defrosted, and the other part or all of the outdoor heat exchangers 13 The heating operation can be continued.
  • the present invention is not limited to this. Even in a configuration including a plurality of separate outdoor heat exchangers 13 connected in parallel to each other, by applying the inventive idea described above, some of the outdoor heat exchangers 13 can be defrosted, and some of the other outdoor heats The exchanger 13 can be operated to continue the heating operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 冷媒をインジェクション可能とし、低圧の冷媒を吸入して圧縮して高圧の冷媒を吐出する圧縮機11と、空調対象の空気と冷媒とを熱交換する室内熱交換器31と、室内熱交換器31を通過する冷媒の流量を調整制御する第1の流量制御装置32と、互いに並列に接続され、外部の空気と冷媒とを熱交換する複数の室外熱交換器13とを配管で接続して主冷媒回路を構成し、圧縮機11が吐出した冷媒の一部が分岐して通過し、デフロスト対象となる室外熱交換器13に流入させる第1のデフロスト配管26と、第1のデフロスト配管26を通過する冷媒を、低圧よりも高く、高圧よりも低い中圧に圧力調整する絞り装置18と、デフロスト対象の室外熱交換器13を通過した冷媒を、圧縮機11にインジェクションさせる第2のデフロスト配管27と、第2のデフロスト配管27を通過する冷媒をインジェクション圧まで圧力調整する絞り装置20とを備えたものである。

Description

空気調和装置
 本発明は、空気調和装置に関するものである。
 近年、地球環境保護の観点から、化石燃料を燃やして暖房を行うボイラ式の暖房器具に代わって、寒冷地域にも空気を熱源とするヒートポンプ式の空気調和装置が導入される事例が増えている。ヒートポンプ式の空気調和装置は、圧縮機への電気入力に加えて空気から熱が供給される分だけ効率よく暖房を行うことができる。
 しかし、この反面、ヒートポンプ式の空気調和装置は、屋外等における空気の温度(外気温度)が低温になるほど、蒸発器となる室外熱交換器に着霜しやすくなる。このため、室外熱交換器についた霜を融かすデフロスト(除霜)を行う必要がある。デフロストを行う方法として、例えば、暖房における冷媒の流れを逆転させ、圧縮機からの冷媒を室外熱交換器に供給する方法がある。ただ、この方法は、デフロスト中、室内の暖房を停止して行う場合があるため、快適性が損なわれる課題があった。
 そこで、デフロスト中でも暖房を行うことができるように、例えば室外熱交換器を分割し、一部の室外熱交換器がデフロストしている間、他の室外熱交換器を蒸発器として動作させて空気から熱を吸熱し、暖房を行う方法が提案されている(例えば、特許文献1、特許文献2及び特許文献3参照)。
 例えば、特許文献1に記載の技術では、室外熱交換器を2つの熱交換器部に分割する。そして、一方の熱交換器部をデフロストする場合に、デフロスト対象の熱交換器部の上流に設置された電子膨張弁を閉止する。更に、圧縮機の吐出配管から熱交換器部の入口に冷媒をバイパスするバイパス配管の電磁開閉弁を開くことで、圧縮機から吐出された高温の冷媒の一部を直接、デフロスト対象の熱交換器部に流入させている。そして、一方の熱交換器部のデフロストが完了したら他方の熱交換器部のデフロストを行うようにしている。このとき、デフロスト対象の熱交換器部では、内部の冷媒の圧力が圧縮機の吸入圧力と同等となる状態でデフロストが行われる(低圧デフロスト)。
 また、特許文献2に記載の技術では、複数台の熱源機と、少なくとも1台以上の室内機とを備え、デフロスト対象の熱源側熱交換器を備えた熱源機のみ、四方弁の接続を暖房時と逆転させ、圧縮機から吐出された冷媒を直接、熱源機側熱交換器に流入させている。このとき、デフロスト対象の熱源機側熱交換器では、内部の冷媒の圧力が圧縮機の吐出圧力と同等となる状態でデフロストが行われる(高圧デフロスト)。
 さらに、特許文献3に記載の技術では、室外熱交換器を複数の室外熱交換器に分割し、圧縮機から吐出された高温の冷媒の一部を各室外熱交換器に交互に流入させ、各室外熱交換器を交互にデフロストする。このため、冷凍サイクルを逆転させることなく連続して暖房を行うことができるようにしている。また、デフロスト対象の室外熱交換器に供給した冷媒を、圧縮機のインジェクションポートからインジェクションしている。このとき、デフロスト対象の室外熱交換器では、内部の冷媒の圧力が、圧縮機の吐出圧力より低く吸入圧力より高い圧力(飽和温度換算で0℃よりやや高い温度となる圧力)となる状態でデフロストが行われる(中圧デフロスト)。
特開2009-085484号公報(段落[0019]、図3) 特開2007-271094号公報(段落[0007]、図2) WO2012/014345号公報(段落[0006]、図1)
 特許文献1に記載の低圧デフロストでは、デフロスト対象の熱交換器部と、蒸発器として機能する熱交換器部(デフロストを行っていない熱交換器部)とが同じ圧力帯で動作する。そして、蒸発器として機能する熱交換器部において、冷媒は外気から吸熱することになる。このため、冷媒の蒸発温度を外気温度と比較して低い温度にする必要がある。このため、デフロスト対象の熱交換器部においても、冷媒の飽和温度が0℃以下となる場合がある。したがって、霜(0℃)を融かそうとしても冷媒の凝縮潜熱を利用することができず、デフロストの効率が悪くなることがあった。
 また、特許文献2に記載の高圧デフロストでは、デフロストを終えた熱源側熱交換器出口の冷媒のサブクール(過冷却度)が大きくなる。そのため、デフロスト対象の熱源側熱交換器内に温度分布が発生し、効率のよいデフロストができなくなっていた。また、サブクールが大きい分だけデフロスト対象の熱源側熱交換器内の液冷媒の量が増大し、液冷媒の移動に時間がかかる場合があった。
 そして、特許文献3に記載の中圧デフロストでは、冷媒の飽和温度を0℃と比較してやや高い温度となる状態(0℃~10℃程度)に制御することで、凝縮潜熱を利用している。この中圧デフロストは、低圧デフロスト及び高圧デフロストと比較して、室外熱交換器全体を温度ムラが少なく、効率よくデフロストすることができる。しかし、圧縮機にインジェクションできる冷媒の液量には上限があり、デフロスト対象の室外熱交換器に供給できる冷媒の流量には限界がある。また、デフロスト室外熱交換器の圧力がインジェクション圧縮機におけるインジェクション圧に左右される可能性がある。そのため、デフロスト能力に限界があり、デフロスト時間を短くすることができなかった。
 本発明は、上記のような課題を解決するためになされたもので、効率よくデフロストすることができる空気調和装置を提供することを目的とする。
 本発明に係る空気調和装置は、圧縮行程の中間部分に冷媒をインジェクション可能とし、低圧の冷媒を吸入して圧縮して高圧の冷媒を吐出する圧縮機と、空調対象の空気と冷媒とを熱交換する室内熱交換器と、室内熱交換器を通過する冷媒の流量を調整制御する第1の流量制御装置と、互いに並列に接続され、外部の空気と冷媒とを熱交換する複数の室外熱交換器とを配管で接続して、冷媒が循環する主冷媒回路を構成し、圧縮機が吐出した冷媒の一部が分岐して通過し、デフロスト対象となる室外熱交換器に流入させる第1のデフロスト配管と、第1のデフロスト配管を通過する冷媒を、低圧よりも高く、高圧よりも低い中圧に圧力調整する第1の圧力調整装置と、デフロスト対象の室外熱交換器を通過した冷媒を、圧縮機にインジェクションさせる第2のデフロスト配管と、第2のデフロスト配管を通過する冷媒をインジェクション圧まで圧力調整する第2の圧力調整装置とを備えたものである。
 本発明によれば、デフロスト対象の室外熱交換器に第1の圧力調整装置及び第2の圧力調整装置で調整した圧力で、主冷媒回路とは別経路で冷媒を流してデフロストを行うようにしたので、例えば室内機の暖房を停止させずに効率よくデフロストを行うことができる空気調和装置を得ることができる。
本発明の実施の形態1に係る空気調和装置100の構成を示す図である。 本発明の実施の形態1に係る空気調和装置100が有する室外熱交換器の構成の一例を示す図である。 本発明の実施の形態1に係る空気調和装置100における弁を有する装置におけるON/OFF(開閉)又は開度調整の状態に関する表を示す図である。 本発明の実施の形態1に係る空気調和装置100の冷房運転時の冷媒の流れを示す図である。 本発明の実施の形態1に係る空気調和装置100の冷房運転時のP-h線図である。 本発明の実施の形態1に係る空気調和装置100の暖房通常運転時の冷媒の流れを示す図である。 本発明の実施の形態1に係る空気調和装置100の暖房通常運転時のP-h線図である。 本発明の実施の形態1に係る空気調和装置100の暖房デフロスト運転時の冷媒の流れを示す図である。 本発明の実施の形態1に係る空気調和装置100の暖房デフロスト運転時のP-h線図である。 本発明の実施の形態1に係る空気調和装置100におけるデフロスト対象の室外熱交換器13の圧力(飽和液温度換算)に対する暖房能力比である。 本発明の実施の形態1に係る空気調和装置100におけるデフロスト対象の室外熱交換器13の圧力(飽和液温度換算)に対するデフロスト対象の室外熱交換器の前後エンタルピ差である。 本発明の実施の形態1に係る空気調和装置100におけるデフロスト対象の室外熱交換器13の圧力(飽和液温度換算)に対するデフロスト流量比である。 本発明の実施の形態1に係る空気調和装置100におけるデフロスト対象の室外熱交換器13の圧力(飽和液温度換算)に対する冷媒量である。 本発明の実施の形態1に係る空気調和装置100におけるデフロスト対象の室外熱交換器13の圧力(飽和液温度換算)に対するデフロスト対象の室外熱交換器出口の冷媒のサブクールSCである。 本発明の実施の形態1に係る空気調和装置100における制御装置60の制御に係るフローチャートを示す図である。 本発明の実施の形態2に係る空気調和装置101の構成を示す図である。 本発明の実施の形態2に係る空気調和装置100における弁を有する装置におけるON/OFF(開閉)又は開度調整の状態に関する表を示す図である。 本発明の実施の形態2に係る空気調和装置101の暖房デフロスト運転時の冷媒の流れを示す図である。 本発明の実施の形態2に係る空気調和装置101の暖房デフロスト運転時のP-h線図である。 本発明の実施の形態3に係る空気調和装置102の構成を示す図である。 本発明の実施の形態4に係る空気調和装置103の構成を示す図である。 本発明の実施の形態4に係る空気調和装置104の構成を示す図である。
 以下、図面に基づいて、本発明の実施の形態について説明する。各図において、同一の符号を付した機器等については、同一の又はこれに相当する機器を表すものであって、これは明細書の全文において共通している。また、明細書全文に表れている構成要素の形態は、あくまで例示であって、本発明は明細書内の記載のみに限定されるものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。さらに、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。また、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置100の構成を示す図である。本実施の形態の空気調和装置100は、室外機10と複数の室内機30a及び30bとを備えている。室外機10と室内機30a及び30bとの間は、第1の延長配管40、41a及び41b並びに第2の延長配管50、51a及び51bとを介して接続され、冷媒回路を構成する。ここで、冷媒回路において、室内機30aと室内機30bとは、互いに並列に室外機10と接続されている。また、空気調和装置100は制御装置60を有している。制御装置60は、 制御装置60は、例えば空気調和装置100に取り付けられた各種検出装置(センサ)が検出した温度、圧力等に基づいて処理を行い、空気調和装置100内の機器を制御し、室内機30a及び30bの少なくとも一方が行う空調対象空間の冷房、暖房を制御する。また、外気温度センサ61は室外の温度を検出する温度検出装置である。本実施の形態の空気調和装置は、他にも、圧縮機11が吐出及び吸入する冷媒の圧力及び温度を検出する圧力センサ及び温度センサを有している。また、室外熱交換器13及び室内熱交換器31における冷媒の温度等を検出する温度センサ等も有している。
 冷媒回路内を循環する冷媒としては、例えばフロン冷媒、HFO冷媒等を用いる。フロン冷媒としては、例えば、HFC系冷媒のR32冷媒、R125、R134a等、これらの混合冷媒となるR410A、R407c、R404A等がある。また、HFO冷媒としては、例えば、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)等がある。そして、他の冷媒としては、CO冷媒、HC冷媒(例えばプロパン、イソブタン冷媒)、アンモニア冷媒、R32とHFO-1234yfとの混合冷媒等、蒸気圧縮式のヒートポンプ装置に用いる冷媒がある。
 ここで、本実施の形態1では、1台の室外機10に、2台の室内機30a、30bを接続した空気調和装置100を例として説明するが、室内機30は1台でもよいし、3台以上を並列に接続してもよい。また、2台以上の室外機10を並列に接続するようにしてもよい。さらに、延長配管を3本並列に接続する、室内機30側で切替弁を設ける等して、各室内機30がそれぞれ冷房又は暖房を選択することができる冷暖同時運転ができるようにした冷媒回路構成にしてもよい。
 次に空気調和装置100における冷媒回路の構成について説明する。空気調和装置100の冷媒回路は、室外機10の圧縮機11、冷房と暖房とを切り替える冷暖切替装置12及び室外熱交換器13並びに室内機30の室内熱交換器31及び開閉自在な第1の流量制御装置32を配管で接続して主となる冷媒回路(主冷媒回路)を有している。ここで、本実施の形態では、主冷媒回路にアキュムレータ14も接続しているが、必ずしも必須の機器ではないため、接続されていない構成としてもよい。
 圧縮機11は、冷媒を吸入して圧縮し、高温・高圧のガス状態にして吐出する。ここで、本実施の形態の圧縮機11は、圧縮室(図示せず)における圧縮行程の中間部分にインジェクション(冷媒導入)することを可能にするポートを有している。例えば液状の冷媒を所定の圧力(インジェクション圧)でインジェクションすることで、吐出温度を抑える等することができる。また、圧縮機11は、例えばインバータ回路等により回転数(駆動周波数)を制御し、冷媒の吐出量(吐出容量)を変化させることができるタイプの圧縮機である。冷暖切替装置12は、圧縮機11の吐出配管22及び吸入配管23の間に接続され、冷媒の流れ方向を切り替える。冷暖切替装置12は例えば四方弁で構成される。そして、制御装置60の指示に基づいて、冷暖切替装置12内においては、暖房運転においては図1の実線のように配管接続し、冷房運転では図1の点線のように配管接続するように切り替える。
 図2は、本発明の実施の形態1に係る空気調和装置100が有する室外熱交換器13の構成の一例を示す図である。図2に示すように、本実施の形態の室外熱交換器は、例えば複数の伝熱管5aと複数のフィン5bとを有するフィンチューブ型の熱交換器で構成される。伝熱管5aは、内部を冷媒が通過し、空気通過方向に対して垂直方向の段方向及び空気通過方向である列方向に複数設けられている。また、フィン5bは、空気通過方向に空気が通過するように間隔を空けて配置されている。
 ここで、本実施の形態の室外熱交換器13は、図2に示すように、1台の室外熱交換器が複数の独立した流路を有している。冷媒主回路に対して各流路の流入出口を並列に配管接続することで複数の室外熱交換器13に分割して構成している。ここでは、2つの室外熱交換器13a及び13bに分割している場合を例に説明する。ただ、分割数は2に限るものではない。また、分割する方向について、左右に分割(水平方向に対する分割)するようにしてもよいが、左右に分割すると、室外熱交換器13a及び13bのそれぞれの冷媒流入口が室外機10の左右両端に分かれてしまい、配管接続が複雑になる。そこで、図2に示すように上下方向(垂直方向)に分割することが望ましい。さらに、本実施の形態の室外熱交換器13a及び13bは、図2のように、フィン5bは共通しており、分割していない。このため、後述する暖房デフロスト運転において、一方の室外熱交換器13では冷媒は霜を融かすために高温の冷媒が伝熱管5aを流れてフィン5bを加熱し、他方の室外熱交換器13では伝熱管5aを流れる冷媒がフィン5bを通して吸熱することになる。そこで、室外熱交換器13間の熱の漏洩を防ぐために、フィン5bを室外熱交換器13毎に分割するようにしてもよい。
 室外ファン21は、室外熱交換器13a及び13bに室外の空気(外気)を通過させて、冷媒との熱交換を促す。図1では、室外熱交換器13a及び13bに対して1台の室外ファン21を設置しているが、室外熱交換器13aと13bとのそれぞれに対応して室外ファン21を設置するようにしてもよい。
 また、第1の接続配管24a及び24bは、それぞれ室外熱交換器13aと13bとに接続されている。本実施の形態では、暖房運転における室外熱交換器13a及び13bへの冷媒流入側において接続されている。第1の接続配管24a及び24bの流路には、それぞれ第2の流量制御装置15aと15bとを有している。第2の流量制御装置15a及び15bは、例えば、電子制御式膨張弁で構成される。そして、制御装置60からの指令に基づいて開度を可変させ、圧力調整して冷媒の流量を制御することができる。ここで、本実施の形態1における第2の流量制御装置15a及び15bは、本発明の「第3の圧力調整装置」に相当する。
 また、第2の接続配管25a及び25bは、第1の接続配管24a及び24bとは反対側において、それぞれ室外熱交換器13aと13bとに接続されている。本実施の形態では、暖房運転における室外熱交換器13a及び13bへの冷媒流出側において接続されている。第2の接続配管25a及び25bの流路には、それぞれ第1の電磁弁16a及び16bを有している。第1の電磁弁16a及び16bは、制御装置60の指示に基づいて、開閉により、主冷媒回路から室外熱交換器13a及び13bに冷媒を流入出させるか否かを切り替える。
 また、本実施の形態の空気調和装置100は、さらに、冷媒主回路とは別の流路として第1のデフロスト配管26を有している。第1のデフロスト配管26は、一端が吐出配管22と接続し、他端を分岐されて各々が第2の接続配管25a及び25bと接続している。そして、第1のデフロスト配管26は、圧縮機11から吐出した高温高圧の冷媒の一部をデフロストのために室外熱交換器13a及び13bの少なくとも一方に供給する。また、第1のデフロスト配管26は絞り装置18を有している。絞り装置18は、制御装置60の指示に基づいて、圧縮機11から吐出した高温及び高圧の冷媒の一部を中圧に減圧する。ここで、中圧とは高圧(吐出圧力)より低く、インジェクション圧及び低圧(吸入圧力)よりも高い圧力であるものとする。したがって、デフロストにおいては、中圧に減圧した冷媒を室外熱交換器13a及び13bに供給することになる。第2の電磁弁17a及び17bは、第1のデフロスト配管26における分岐部分にそれぞれ設けられる。吐出配管22から第1のデフロスト配管26を通過して第2の接続配管25a及び25bに冷媒を流入させるか否かを切り替える。絞り装置18は、本発明の「第1の圧力調整装置」に相当する。
 ここで、第1の電磁弁16a及び16b並びに第2の電磁弁17a及び17bは、主冷媒回路と第1のデフロスト配管26との流路を切り替えできればよい。このため、四方弁、三方弁、二方弁等を用いて構成するようにしてもよい。例えば、第1の電磁弁16a及び16bは、運転によって冷媒の通過する方向が異なることにより、前後の圧力が逆転する。一般的な電磁弁では前後の圧力が逆転すると使用できない場合がある。そこで、弁の高圧側を吐出配管22と接続し、弁の低圧側を吸入配管23と接続する四方弁等で第1の電磁弁16a及び16bと同じ機能をもたせるようにすればよい。また、第2の電磁弁17a及び17bは吐出配管22側において第1のデフロスト配管26と接続している側は常に高圧であるため、一方向の弁である二方弁を用いることができる。
 また、絞り装置18について、必要なデフロスト能力(デフロストをするために第1のデフロスト配管26に流す冷媒流量)が決まっていれば、絞り装置18を毛細管により構成してもよい。また、絞り装置18を設けず、予め設定したデフロスト流量時に中圧まで圧力が低下するように、第2の電磁弁17a及び17bを小型化してもよい。また、絞り装置18をなくして、第2の電磁弁17a及び17bの代わりに流量制御装置をつけても良い。このような場合には、第2の電磁弁17a及び17b、流量制御装置等が本発明の「第1の圧力調整装置」に相当することになる。
 第2のデフロスト配管27についても、冷媒主回路とは別の流路となる。第2のデフロスト配管27は、一端を圧縮機11のインジェクション部にあるポートと接続し、他端を分岐されて各々が第1の接続配管24a及び24bと接続している。第2のデフロスト配管27は、絞り装置20並びに第3の電磁弁19a及び19bを有している。絞り装置20は後述する暖房デフロスト運転時において、室外熱交換器13a又は13bから流出した中温及び中圧の冷媒の一部をインジェクション圧に減圧する。減圧した冷媒は、圧縮機11にインジェクションされる。また、第3の電磁弁19a及び19bは、第2のデフロスト配管27における分岐部分にそれぞれ設けられ、第1の接続配管24a及び24bから第2のデフロスト配管27に冷媒を流すか否かを切り替える。ここで、絞り装置20は、本発明の「第2の圧力調整装置」に相当する。
 次に、本実施の形態の空気調和装置100が実行する各種運転の運転動作について説明する。空気調和装置100の運転には、冷房運転と暖房運転との2種類の運転モードがある。また、暖房運転には、さらに暖房通常運転と暖房デフロスト運転(連続暖房運転とも称する)とがある。暖房通常運転は、室外熱交換器13を構成する室外熱交換器13a及び13bの両方が蒸発器として動作する。暖房デフロスト運転は、暖房運転を継続しながら、室外熱交換器13aと室外熱交換器13bとを交互にデフロストする運転である。例えば、一方の室外熱交換器13を蒸発器として動作させて暖房運転を行いながら、他方の室外熱交換器13のデフロストを行う。そして、他方の室外熱交換器13のデフロストが終了すると、他方の室外熱交換器を今度は蒸発器として動作させて暖房運転させ、一方の室外熱交換器13のデフロストを行う。
 図3は、本発明の実施の形態1に係る空気調和装置100における各運転時の弁を有する装置(バルブ)におけるON/OFF(開閉)又は開度調整の状態に関する表を示す図である。図3において、冷暖切替装置12については、図1の実線の向きに接続した場合をONとし、点線の向きに接続した場合をOFFとして示している。また、各電磁弁16a、16b、17a、17b、19a、19bについては、弁を開いて冷媒が流れるようにした場合をONとし、弁を閉じて冷媒が流れないようにした場合をOFFとして示している。
[冷房運転]
 図4は、本発明の実施の形態1に係る空気調和装置100の冷房運転時の冷媒の流れを示す図である。ここで、図4においては、冷房運転時に冷媒が流れる部分を太線で示し、冷媒が流れない部分を細線としている。また、図5は、本発明の実施の形態1に係る空気調和装置100の冷房運転時のP-h線図である。図5の点(a)~点(d)は図4の同じ記号を付した箇所における冷媒の状態を示す。
 圧縮機11は運転を開始すると、吸入配管23を介して低温低圧のガス冷媒を吸入し、圧縮して高温高圧のガス冷媒を吐出する。この圧縮機11の冷媒圧縮過程は、圧縮機11の断熱効率の分だけ、等エントロピ線で断熱圧縮される場合と比較して加熱されるように圧縮され、図5の点(a)から点(b)に示す線で表される。圧縮機11から吐出された高温高圧のガス冷媒は冷暖切替装置12を通過して2つに分岐する。一方は第1の電磁弁16aを通過して第2の接続配管25aから室外熱交換器13aに流入する。他方は第1の電磁弁16bを通過して第2の接続配管25bから室外熱交換器13bに流入する。
 室外熱交換器13a及び13bに流入した冷媒は、室外空気との熱交換により室外空気を加熱しながら冷却され、中温高圧の液冷媒となる。室外熱交換器13a及び13bでの冷媒変化は、室外熱交換器13の圧力損失を考慮すると、図5の点(b)から点(c)に示すやや傾いた水平に近い直線で表される。ここでは、室外熱交換器13a及び13bの両方において熱交換を行うようにしたが、例えば室内機30a及び30bの運転容量が小さい場合等においては、第1の電磁弁16bを閉止して室外熱交換器13bに冷媒が流れないようにすることができる。冷媒が流れないようにすることで、結果的に室外熱交換器13の伝熱面積を小さくし、安定したサイクルの運転を行うことができる。
 室外熱交換器13a及び13bから流出した中温高圧の液冷媒は、それぞれ第1の接続配管24a及び24bに流入し、全開状態の第2の流量制御装置15a及び15bを通過した後、合流する。合流した冷媒は、室外機10から流出する。そして、第2の延長配管50、51a及び51bを通り、室内機30a及び30bに流入する。そして、第1の流量制御装置32a及び32bを通過する。第1の流量制御装置32a及び32bを通過する際、冷媒は膨張及び減圧され、低温低圧の気液二相状態の冷媒になる。第1の流量制御装置32a及び32bでの冷媒の変化はエンタルピーが一定のもとで行われる。このときの冷媒変化は、図5の点(c)から点(d)に示す垂直線で表される。
 第1の流量制御装置32a及び32bから流出した低温低圧の気液二相状態の冷媒は、室内熱交換器31a及び31bに流入する。室内熱交換器31a、31bに流入した冷媒は、室内空気との熱交換により、室内空気を冷却しながら加熱され、低温低圧のガス冷媒となる。ここで、制御装置60は、室内熱交換器31a及び31bから流出した低温低圧のガス冷媒のスーパーヒート(過熱度)が2K~5K程度になるように前述した第1の流量制御装置32a及び32bの開度を制御する。室内熱交換器31a、31bでの冷媒の変化は、圧力損失を考慮すると、図5の点(e)から点(a)に示すやや傾いた水平に近い直線で表される。
 室内熱交換器31a及び31bを流出した低温低圧のガス冷媒は、室内機30a及び30bから流出する。そして、第1の延長配管41a、41b及び40を通過して室外機10に流入する。さらに、冷暖切替装置12及びアキュムレータ14を通って、吸入配管23を介して圧縮機11に吸入される。
[暖房通常運転]
 図6は、本発明の実施の形態1に係る空気調和装置100の暖房通常運転時の冷媒の流れを示す図である。ここで、図6においては暖房通常運転時に冷媒が流れる部分を太線とし、冷媒が流れない部分を細線としている。また、図7は、本発明の実施の形態1に係る空気調和装置100の暖房通常運転時のP-h線図である。図7の点(a)~点(e)は図6の同じ記号を付した部分での冷媒の状態を示す。
 圧縮機11は運転を開始すると、吸入配管23を介して低温低圧のガス冷媒を吸入し、圧縮して高温高圧のガス冷媒を吐出する。圧縮機11の冷媒圧縮過程は図7の点(a)から点(b)に示す線で表される。
 圧縮機11から吐出された高温高圧のガス冷媒は、冷暖切替装置12を通過した後、室外機10から流出する。室外機10を流出した高温高圧のガス冷媒は、第1の延長配管40、41a及び41bを介して室内機30a及び30bに流入する。そして、室内熱交換器31a及び31bに流入する。室内熱交換器31a及び31bに流入した冷媒は、室内空気との熱交換により室内空気を加熱しながら冷却され、中温高圧の液冷媒となる。室内熱交換器31a及び31bでの冷媒の変化は、図7の点(b)から点(c)に示すやや傾いた水平に近い直線で表される。
 室内熱交換器31a及び31bから流出した中温高圧の液冷媒は、第1の流量制御装置32a及び32bを通過する。第1の流量制御装置32a及び32bを通過する際、冷媒は膨張及び減圧され、中圧の気液二相状態になる。このときの冷媒変化は図7の点(c)から点(d)に示す垂直線で表される。制御装置60は、中温高圧の液冷媒のサブクール(過冷却度)が5K~20K程度になるように第1の流量制御装置32a及び32bの開度を制御する。第1の流量制御装置32a及び32bから流出した中圧の気液二相状態の冷媒は、室内機30a及び30bから流出する。
 室内機30a及び30bから流出した冷媒は、第2の延長配管51a、51b及び50を介して室外機10に流入する。室外機10に流入した冷媒は第1の接続配管24a及び24bに流入する。第1の接続配管24a及び24bに流入した冷媒は、第2の流量制御装置15a及び15bを通過する。第2の流量制御装置15a及び15bを通過する際、冷媒は膨張及び減圧され、低圧の気液二相状態になる。このときの冷媒の変化は図7の点(d)から点(e)となる。制御装置60は、一定開度(例えば全開の状態)で固定するか、第2の延長配管50等の中間圧の飽和温度が0℃~20℃程度になるように第2の流量制御装置15a及び15bの開度を制御する。
 第2の流量制御装置15a及び15bを通過した冷媒は、室外熱交換器13a及び13bに流入する。室外熱交換器13a及び13bに流入した冷媒は、室外空気との熱交換により室外空気を冷却しながら加熱され、低温低圧のガス冷媒となる。室外熱交換器13a及び13bでの冷媒変化は、図7の点(e)から点(a)に示すやや傾いた水平に近い直線で表される。
 室外熱交換器13a及び13bから流出した低温低圧のガス冷媒は、第2の接続配管25a及び25bに流入し、第1の電磁弁16a及び16bを通過した後に合流する。さらに、冷暖切替装置12及びアキュムレータ14を通って、吸入配管23を介して圧縮機11に吸入される。
[暖房デフロスト運転(連続暖房運転)]
 暖房デフロスト運転は、暖房通常運転中に、制御装置60が室外熱交換器13に着霜したものと判定した場合に行われる。室外熱交換器13における着霜の有無の判定については複数の判定方法がある。例えば圧縮機11の吸入圧力から換算される飽和温度が、予め設定した外気温度と比較して大幅に低下したと判断した場合に着霜したものと判定することができる。また、例えば、外気温度と室外熱交換器13における蒸発温度との温度差が、一定時間以上予め設定した差以上であると判断すると着霜したものと判定することができる。
 本実施の形態1に係る空気調和装置100の構成では、暖房デフロスト運転において、室外熱交換器13bがデフロストを行っている間、室外熱交換器13aが蒸発器として機能して暖房を継続することができる。また、その逆に、室外熱交換器13aがデフロストを行っている間、室外熱交換器13bが蒸発器として機能して暖房を継続することができる。室外熱交換器13aがデフロストを行う場合と室外熱交換器13bがデフロストを行う場合とでは、第1の電磁弁16、第2の電磁弁17及び第3の電磁弁19における開閉状態が逆転し、室外熱交換器13における冷媒の流れが異なるが、その他の動作は同じとなる。よって、以下の説明では、暖房デフロスト運転において、室外熱交換器13bがデフロストを行い、室外熱交換器13aが蒸発器として機能して暖房を継続する場合について説明する。以降の実施の形態の説明においても同様である。
 図8は、本発明の実施の形態1に係る空気調和装置100の暖房デフロスト運転時の冷媒の流れを示す図である。ここで、図8において室外熱交換器13bのデフロスト時に冷媒が流れる部分を太線とし、冷媒が流れない部分を細線としている。また、図9は、本発明の実施の形態1に係る空気調和装置100の暖房デフロスト運転時のP-h線図である。図9の点(a)~点(i)は、図8の同じ記号を付した部分での冷媒の状態を示す。
 制御装置60は、暖房通常運転を行っているときに、いずれかの室外熱交換器13において、デフロストを行うかどうかを判定する。そして、室外熱交換器13bのデフロストを行うものと判定すると、室外熱交換器13bに対応する第1の電磁弁16bを閉止させる。また、制御装置60は、第2の電磁弁17b及び第3の電磁弁19bを開放させ、絞り装置18、絞り装置20を予め設定した開度にさせる。
 これによって、圧縮機11→絞り装置18→第2の電磁弁17b→室外熱交換器13b→第2の流量制御装置15b→第2の流量制御装置15aとなる冷媒経路(第1の冷媒経路)を形成する。また、圧縮機11→絞り装置18→第2の電磁弁17b→室外熱交換器13b→第3の電磁弁19b→絞り装置20→圧縮機11のインジェクション部となる冷媒経路(中圧デフロスト回路、第2の冷媒経路)を形成する。そして、暖房デフロスト運転を開始する。
 暖房デフロスト運転を開始すると、圧縮機11から吐出された高温高圧のガス冷媒の一部は、第1のデフロスト配管26に流入し、絞り装置18で中圧まで減圧される。このときの冷媒の変化は図9中の点(b)から点(f)で表される。
 そして、図9において、点(f)で示される中圧まで減圧された冷媒は、第2の電磁弁17b及び第2の接続配管25bを通過して室外熱交換器13bに流入する。室外熱交換器13bに流入した冷媒は、室外熱交換器13bに付着した霜と熱交換することによって冷却される。このように、圧縮機11から吐出された高温高圧のガス冷媒を室外熱交換器13bに流入させることで、室外熱交換器13bに付着した霜を融かすことができる。このときの冷媒の変化は図9中の点(f)から点(g)の変化で表される。ここで、デフロストを行う冷媒は、霜の温度(0℃)より高く、かつ10℃以下の飽和温度になっている。
 デフロストを行った後の冷媒の一部は、第2の流量制御装置15bを通過する。通過した冷媒は、室内機30から第2の延長配管51a、51b及び50を介して室外機10に流入した冷媒と合流する(点(h))。合流した冷媒は、第2の流量制御装置15a及び第1の接続配管24aを介して室外熱交換器13aに流入する。室外熱交換器13aに流入した冷媒は、室外空気との熱交換により室外空気を冷却しながら加熱され、低温低圧のガス冷媒となる。一方、デフロストを行った後に、第2の流量制御装置15bを通過しなかった残りの冷媒は、前述した中圧デフロスト回路を経路として、第3の電磁弁19bを通過する。そして、絞り装置20でインジェクション圧まで減圧され(点(i))、圧縮機11にインジェクションされる。
 次に、デフロストを行う冷媒の飽和温度を0℃より高く、かつ10℃以下にする理由について説明する。
 図10~図14は、デフロスト能力を固定しながらデフロスト対象の室外熱交換器13における冷媒の圧力(図中では飽和液温度に換算済)を変化させたときのグラフを示す図である。ここでは、冷媒回路内の冷媒としてR410A冷媒を用いている。図10は冷媒の圧力変化に対する暖房能力の変化を示している。また、図11は冷媒の圧力変化に対するデフロスト対象の室外熱交換器13の流入出前後における冷媒のエンタルピ差の変化を示している。図12は冷媒の圧力変化に対するデフロストに必要な冷媒の流量の変化を示している。図13は冷媒の圧力変化に対するアキュムレータ14とデフロスト対象の室外熱交換器13とにおける冷媒量の変化を示している。そして、図14は冷媒の圧力変化に対するデフロスト対象の室外熱交換器13の冷媒流出口におけるサブクールSCの変化を示している。
 図10において、デフロスト対象の室外熱交換器13において冷媒の飽和液温度が0℃より高く、10℃以下となる場合に暖房能力が高くなり、それ以外の場合に暖房能力が低下していることがわかる。まず、飽和液温度が0℃以下の場合に暖房能力が低下する原因を説明する。霜を融かすには冷媒の温度を0℃より高くする必要がある。図10からわかるように、飽和液温度を0℃以下にして、霜を融かそうとすると、図9における点(g)の位置が飽和ガスエンタルピよりも高くなる。そのため、冷媒の凝縮潜熱を利用することができず、デフロスト対象の室外熱交換器13前後のエンタルピ差は小さくなる(図11)。このとき、飽和温度が0℃より高く、かつ10℃以下の冷媒と同程度のデフロストの能力を発揮させようとすると、デフロスト対象の室外熱交換器13には、飽和温度が0℃より高く、かつ10℃以下の冷媒の3~4倍程度の量の冷媒を流入させる必要がある。このため、暖房を行う室内機30に供給できる冷媒量が減少して暖房能力が低下する。したがって、飽和液温度を0℃以下にすると先行文献1の低圧デフロストと同じく暖房能力が低下することになる。そこで、デフロスト対象の室外熱交換器13の圧力は飽和液温度換算で0℃よりも高くする必要がある。
 一方、デフロスト対象の室外熱交換器13の圧力を高くしていくと、図14に示すように、デフロスト対象の室外熱交換器13の冷媒流出口におけるサブクールSCが増える。このため、液冷媒の量が増えて冷媒密度が高くなる。通常のビル用マルチエアコンは冷房時のほうが暖房時よりも必要な冷媒量が多い。したがって、通常は、暖房運転時にはアキュムレータ14のような液だめに余剰冷媒が存在する。ただ、図13に示すように、圧力の増大にしたがってデフロスト対象の室外熱交換器13で必要な冷媒量が増えると、アキュムレータ14にたまっている冷媒量は減少し、飽和温度が10℃程度でアキュムレータ14が空になる。アキュムレータ14に余剰冷媒がなくなると、冷凍サイクルの冷媒が不足し、圧縮機11の吸入密度が下がる等して、暖房能力が低下する。ここで、冷媒を過充填することで、飽和温度の上限を高くすることはできるが、その他の運転時にアキュムレータ14から液があふれる等して、空気調和装置の信頼性が低下する可能性がある。そこで、冷媒は適正に充填しておいたほうがよい。また、飽和温度が高くなるほど、室外熱交換器13内の冷媒と霜との温度差に温度ムラができ、すぐに霜が融けきる場所となかなか融けない場所ができるという課題もある。
 以上のような理由より、デフロスト対象の室外熱交換器13における圧力を飽和温度換算で0℃より高く、かつ10℃以下にするとよい。ここで、潜熱を利用する中圧デフロストを最大限活かしつつ、デフロスト中の冷媒の移動を抑え、融けムラをなくすことを考えると、デフロスト対象の室外熱交換器13の出口のサブクールSCが0Kの場合が最適な目標値である。サブクールを検知するための温度計、圧力計等の精度を考慮に入れると、サブクールSCが0Kから5K程度になるように、デフロスト対象の室外熱交換器13の圧力を、飽和温度換算で0℃より高くかつ6℃以下にすることが望ましい。
 次に、暖房デフロスト運転中の絞り装置18及び20並びに第2の流量制御装置15a及び15bの動作の一例について説明する。暖房デフロスト運転中、制御装置60は、第2の流量制御装置15bの開度を、デフロスト対象となる室外熱交換器13bの圧力が飽和温度換算で0℃より高くかつ10℃以下になるように制御する。一方、第2の流量制御装置15aの開度は、第2の流量制御装置15bの前後の差圧をつけて制御性を向上させるため、全開状態にする。また、絞り装置18の開度は、事前に設計した必要なデフロスト流量に合わせて、開度を固定したままにすればよい。暖房デフロスト運転中、圧縮機11の吐出圧力とデフロスト対象となる室外熱交換器13bの圧力との差は大きく変化しないためである。さらに、絞り装置20は、信頼性を維持するために圧縮機11において冷媒が液圧縮しない開度とする。また、凝縮器となる室内熱交換器31への冷媒流量を増大させるために圧縮機11の吐出温度、吐出スーパーヒート等を制御するように、例えば吐出スーパーヒートが10K~20K程度になるまで圧縮機11に冷媒をインジェクションできる開度とすればよい。ここで、デフロストを行う冷媒から放出された熱は、室外熱交換器13bに付着した霜に移動するだけでなく、一部は外気に移動される場合がある。このため、制御装置60は、外気温度が低下するにしたがってデフロスト流量が増加するように、絞り装置18及び第2の流量制御装置15bを制御するようにしてもよい。これによって、外気温度にかかわらず、霜に与える熱量を一定にし、デフロストにかかる時間を一定にすることができる。
 また、制御装置60は、外気温度に応じて着霜の有無を判定する際に用いる飽和温度の閾値、通常運転の時間等を変更してもよい。例えば、暖房デフロスト運転中に冷媒がデフロストにかける熱量が一定になるように、外気温度が低下するにつれてデフロスト開始時の着霜量を減らすように運転時間を短くする。これにより、絞り装置18の抵抗を一定にすることができる。そして、安価な毛細管を用いることができる。また、制御装置60は、外気温度に閾値を設定するようにしてもよい。例えば外気温度が閾値となる温度(例えば外気温度が-5℃や-10℃等)以上であると判断した場合には、暖房デフロスト運転を行うようにし、閾値となる温度より低いと判断した場合には室内機30の暖房を止めて、全室外熱交換器をデフロストする。例えば外気温度が-5℃、-10℃等のように、0℃以下の場合には、もともと外気の絶対湿度が低く、着霜量が少ない。このため、着霜量が一定値になるまでの通常運転の時間が長くなる。したがって、室内機30の暖房を止めてすべての室外熱交換器13のデフロスト(全面デフロスト)を行っても室内機30の暖房が停止する時間の割合は小さい。暖房デフロスト運転をした場合、デフロスト対象の室外熱交換器13から外気へ放熱することも考慮に入れると、例えば、暖房運転を停止して全面デフロストを行う方が効率がよい場合がある。そこで、暖房デフロスト運転モードの他に、全面デフロストを行う暖房停止デフロスト運転モードを選択できるようにしてもよい。例えば、外気温度に基づいて、デフロストに係る運転モードを選択することができるようにすることで効率よくデフロストすることができる。
 また、本実施の形態のように、室外熱交換器13a、13bを一体型で構成し、デフロスト対象の室外熱交換器13に室外ファン21によって外気を搬送する場合、外気温度が低下するにつれてファン出力を落とすようにファン出力を変更するようにしてもよい。このため、暖房デフロスト運転時にデフロスト対象の室外熱交換器13からの放熱量を減らすことができる。
[制御フロー]
 図15は、本発明の実施の形態1に係る空気調和装置100における制御装置60の制御に係るフローチャートを示す図である。次に、図15に基づいて、本実施の形態において制御装置60が行う制御処理についてさらに説明する。ここで、図15では、暖房デフロスト運転のみを行う場合について説明する。
 空気調和装置100が運転を開始すると(S1)、室内機30a及び30bが暖房を行っているかどうか(運転モードが暖房であるかどうか)を判定する(S2)。運転モードが冷房を行っていると判定すると、通常の冷房運転の制御を行う(S3)。
 一方、運転モードが暖房であると判定すると、通常の暖房運転の制御を行う(S4)。そして、通常暖房運転中において、例えば着霜による伝熱、風量等の低下による室外熱交換器13の伝熱性能の低下を考慮し、式(1)に基づいて暖房デフロスト運転の開始条件を満たすか否か(着霜しているか否か)の判定を行う(S5)。式(1)におけるx1は5K~20K程度の値を設定すればよい。ここで、例えば温度センサ、圧力センサ、着霜量を測定するセンサ等を用いて、着霜の有無を判定することができれば、デフロスト開始条件については、吸入圧力に基づく判定を行うものでなくてもよい。
 (吸入圧力の飽和温度)<(外気温度)-x1     …(1)
 例えば式(1)に基づく等して、暖房デフロスト運転開始条件を満たしたものと判定すると、室外熱交換器13をデフロストする暖房デフロスト運転を開始する。ここでは、例えば図2において室外熱交換器13の下段側の室外熱交換器13b、上段側の室外熱交換器13aの順にデフロストする場合の制御を一例として説明する。したがって、まず、室外熱交換器13bに対してデフロスト(中圧デフロスト)を行う(S6)。ここで、デフロストを行う順を逆にしてもよい。
 上述したように、暖房デフロスト運転を行う前の暖房通常運転での各バルブの状態は、図3の「暖房通常運転」の欄に示した状態である。そして、この状態から、図3の「暖房デフロスト運転」の「13a:蒸発器 13b:デフロスト」の欄に示すような状態に各バルブを変更して暖房デフロスト運転を行う(S7)。
 (a)第1の電磁弁16b    OFF
 (b)第2の電磁弁17b    ON
 (c)第3の電磁弁19b    ON
 (d)絞り装置18       所定の開度に開く
 (e)絞り装置20       所定の開度に開く
 (f)第2の流量制御装置15a 全開にする
 (g)第2の流量制御装置15b 制御開始
 (h)絞り装置20       制御開始
 デフロスト対象の室外熱交換器13bに着いた霜が融けることにより、デフロスト終了条件を満たしたかどうかを判定する(S8)。満たしていないと判定すると、室外熱交換器13bをデフロスト、室外熱交換器13aを蒸発器とする暖房デフロスト運転を行う。例えば、暖房デフロスト運転を継続して室外熱交換器13bに付着した霜が融けてくると、第1の接続配管24b内の冷媒温度が上昇する。このため、デフロスト終了条件としては、例えば第1の接続配管24bに温度センサを取り付け、次式(2)に示すようにセンサ温度が閾値を超えた場合にデフロスト終了条件を満たしたと判定すればよい。ここで、x2は、例えば3~10℃に設定する。
 (第1の接続配管24の冷媒温度)>x2   …(2)
 式(2)を満たし、デフロスト終了条件を満たしたものと判定すると、室外熱交換器13bのデフロストを終了する(S9)。このとき、各バルブの状態を次のように変更する
 (a)第2の電磁弁17b        OFF
 (b)第3の電磁弁19b        OFF
 (c)第1の電磁弁16b        ON
 (d)第2の流量制御装置15a、15b 通常の中間圧制御
 さらに、各バルブを図3の「暖房デフロスト運転」の「13a:デフロスト 13b:蒸発器」の欄に示すような状態に各バルブを変更して、室外熱交換器13aのデフロストを行う暖房デフロスト運転を開始する(S10)。S10~S13は、上述したS6~S9の処理とバルブの番号が異なるが処理は同じである。
 以上のように下段側の室外熱交換器13bと上段側の室外熱交換器13aの両方のデフロストを完了して、S6~S13に示す暖房デフロスト運転が終了すると、S4に戻って暖房通常運転を行う。
 ここで、暖房デフロスト運転を行うと、複数の室外熱交換器13を、順に最低1回デフロストすることになる。例えば最後の室外熱交換器13がデフロストを終了したときに、冷媒回路中に設置された温度センサ等により、最初にデフロストした室外熱交換器13が着霜して伝熱性能が下がっていると判断すると、最初にデフロストした室外熱交換器13に対して2回目のデフロストを短時間行ってもよい。
 以上説明したように、本実施の形態1の空気調和装置100によれば、暖房デフロスト運転によって、デフロストを行いつつ、室内機30側に冷媒を送ることができるので、連続して室内の暖房を行うことができる。このとき、絞り装置20及び第2の流量制御装置15の少なくとも一方(主として絞り装置20)の開度を調整してデフロストを行っている室外熱交換器13から流出した冷媒の一部又は全部を圧縮機11にインジェクションすることができるので、室内機30に送り込む冷媒量を増大させ、暖房能力の向上を図ることができる。このとき、すべての室外熱交換器13を少なくとも1回はデフロストするようにすることで、通常暖房運転における効率を高めることができる。
 また、絞り装置20及び第2の流量制御装置15の少なくとも一方(主として第2の流量制御装置15)の開度を調整することでデフロストを行っている室外熱交換器13から流出した冷媒の一部を、蒸発器として機能する室外熱交換器13の上流側の主冷媒回路へ流入させることができる。このため、デフロストの効率を向上させることができ、蒸発器として機能する室外熱交換器13に流入する冷媒量が増え、外気からの吸熱量を多くすることができる。圧縮機11の吸入圧力の低下を抑えることができる。
 さらに、圧縮機11が吐出する冷媒の吐出スーパーヒートが10K~20K程度になるように、冷媒をインジェクションする開度に絞り装置20を制御するようにしたので。圧縮機11において冷媒が液圧縮しないように信頼性を維持しつつ、凝縮器として動作する室内熱交換器31への冷媒流量を増大させることができ、暖房能力を向上させることができる。
 また、本実施の形態の空気調和装置100においては、吐出配管22から分岐した高温高圧のガス冷媒の一部を、飽和温度換算で霜の温度と比較して高い0℃より高くかつ10℃以下になる圧力(中圧)まで減圧し、デフロスト対象の室外熱交換器13に流入させるようにしたので、冷媒の凝縮潜熱を利用したデフロストを行うことができる。
 また、本実施の形態の空気調和装置100においては、飽和温度は0℃より高くかつ10℃以下とすることで、霜の温度との温度差が小さくなるようにしたので、デフロスト対象の室外熱交換器13の流出口における冷媒のサブクール(過冷却度)は5K程度と小さくすることができる。このため、デフロストを行うために必要な冷媒量が少なくなり、主冷媒回路を循環する冷媒不足を回避することができる。また、デフロスト対象の室外熱交換器13の伝熱管内の冷媒は気液二相の領域が大きくなり、霜との温度差が一定な領域が増え、熱交換器全体のデフロスト量を均一化することができる。
 また、本実施の形態の空気調和装置100においては、デフロスト対象の室外熱交換器13から流出した冷媒を、蒸発器として機能している他の室外熱交換器13に流入させることで、冷凍サイクルにおける蒸発能力を維持して吸入圧力の低下を抑えることができる。また、圧縮機11への液バックを防ぐことができる。また、絞り装置18の流量制御を行うと、デフロスト能力を可変にすることができる。このため、例えば低外気温度になるほど絞り装置18の流量を増やすようにすることで、デフロストにかかる時間を一定にすることができる。
 また、本実施の形態の空気調和装置100においては、例えば、外気温度に基づいて暖房デフロスト運転を行うかどうかを判定する基準を変更することで、デフロスト能力が一定でもデフロストにかかる時間を一定にすることができる。さらに、外気温度に基づいて暖房デフロスト運転と暖房停止デフロスト運転とを選択できるようにしたので、効率のよいデフロストを選択して行うことができる。また、外気温度に基づいて室外ファン21の出力を変更するようにしたので、デフロストを行う冷媒が外気に放熱する熱量を減らすことができる。
実施の形態2.
 図16は、本発明の実施の形態2に係る空気調和装置101の構成を示す図である。図16において、図1と同じ符号を付している機器等については、実施の形態1で説明したことと同様の動作等を行う。以下、空気調和装置101が実施の形態1の空気調和装置100と異なる部分を中心に説明する。
 実施の形態2に係る空気調和装置101は、上記実施の形態1の空気調和装置100の構成に加え、第3の流量制御装置15c及び冷媒-冷媒熱交換器28(以下、冷媒間熱交換器28という)を有している。第3の流量制御装置15cは、第1の接続配管24aと第1の接続配管24bとをバイパスする配管に設けられている。第3の流量制御装置15cは、例えば、電子制御式膨張弁のような開度を可変できる弁で構成している。ここで、本実施の形態における第3の流量制御装置15cは、本発明の「第3の圧力調整装置」に相当する。したがって、図16の空気調和装置101では、第2の流量制御装置15a及び15bを有しているが、場合によっては設置する必要はない。
 図17は本発明の実施の形態2に係る空気調和装置101における各運転時の弁を有する装置(バルブ)におけるON/OFF(開閉)又は開度調整の状態に関する表を示す図である。本実施の形態の空気調和装置101における第2の流量制御装置15a及び15b並びに第3の流量制御装置15cの動作が実施の形態1と異なる。
 第3の流量制御装置15cは、暖房デフロスト運転時に、デフロスト対象の室外熱交換器13から流出した冷媒を、蒸発器として動作する室外熱交換器13の上流に流入させる。第3の流量制御装置15cは、デフロスト対象の室外熱交換器13の圧力が0℃より高くかつ10℃以下になる中圧になるように制御装置60により制御される。一方、実施の形態1において、デフロスト対象の室外熱交換器13の圧力を制御していた第2の流量制御装置15a又は15bは閉止する。さらに、実施の形態1では全開であった第2の流量制御装置15a又は15bは、第2の延長配管50等の中間圧の飽和温度が0℃~20℃程度の開度になるように制御される。
 図18は、本発明の実施の形態2に係る空気調和装置101の暖房デフロスト運転時の冷媒の流れを示す図である。ここで、図18においては、暖房デフロスト運転時に冷媒が流れる部分を太線とし、冷媒が流れない部分を細線としている。また、図19は、本発明の実施の形態2に係る空気調和装置101の暖房デフロスト運転時のP-h線図である。図19の点(a)~点(i)は図18の同じ記号を付した部分での冷媒の状態を示す。
 制御装置60は、暖房通常運転を行っている際に着霜状態を解消するデフロストが必要と判定すると、デフロスト対象の室外熱交換器13bに対応する第1の電磁弁16b及び第2の流量制御装置15bを閉止させる。また、制御装置60は、第2の電磁弁17b及び第3の電磁弁19bを開き、絞り装置18及び絞り装置20の開度を予め設定した開度にさせる。そして、第3の流量制御装置15cの開度は、所定開度に設定する。
 これによって、圧縮機11→絞り装置18→第2の電磁弁17b→室外熱交換器13b→第3の流量制御装置15cとなる冷媒経路(第1の冷媒経路)を形成する。また、圧縮機11→絞り装置18→第2の電磁弁17b→室外熱交換器13b→第3の電磁弁19b→冷媒間熱交換器28→絞り装置20→圧縮機11のインジェクション部となる冷媒経路(中圧デフロスト回路、第2の冷媒経路)を形成する。そして、暖房デフロスト運転を開始する。
 暖房デフロスト運転を開始すると、圧縮機11から吐出された高温高圧のガス冷媒の一部は、第1のデフロスト配管26に流入し、絞り装置18で中圧まで減圧される。このときの冷媒の変化は図19中の点(b)から点(f)で表される。
 そして、図19において、点(f)で示される中圧まで減圧された冷媒は、第2の電磁弁17b及び第2の接続配管25bを通過して室外熱交換器13bに流入する。室外熱交換器13bに流入した冷媒は、室外熱交換器13bに付着した霜と熱交換することによって冷却される。このときの冷媒の変化は図19中の点(f)から点(g)の変化で表される。ここで、デフロストを行う冷媒は、霜の温度(0℃)以上のより高くかつ10℃以下の飽和温度になっている。
 室外熱交換器13bにおいてデフロストを行った後の冷媒は2つに分岐する。一方の冷媒は第3の流量制御装置15cを通り、第2の流量制御装置15aと室外熱交換器13aとの間の第1の接続配管24aから主冷媒回路に合流する(点(e))。合流した冷媒は、蒸発器として機能している室外熱交換器13aに流入し、蒸発する。
 また、他方の冷媒は、第3の電磁弁19bを通り、点(f)で示される中圧よりも飽和温度が高い中間圧で流れる暖房用の冷媒と冷媒間熱交換器28において熱交換する。熱交換によって加熱された冷媒は絞り装置20でインジェクション圧に減圧される(点(i))。このとき、暖房用の冷媒は熱交換により冷却される。このときの冷媒の変化は図19中の点(d)から点(h)で表される。
 以上説明したように、本実施の形態2の空気調和装置101によれば、デフロスト対象の室外熱交換器13を通った冷媒を、低圧(圧縮機11の吸入圧力相当)に流入させている。このため、制御装置60は、中間圧(点(d))の制御と、中圧(点(f))の制御とを分けて行うことができる。また、中間圧が中圧と比較して高くなってもよいため、第2の流量制御装置15a及び15bにCv値が小さな小型の弁を用いることができる。
 また、中間圧が中圧よりも高い場合、デフロスト対象の室外熱交換器13を通った後、圧縮機11にインジェクションされる冷媒が室内機30a、30bから室外機10に戻ってきた中間圧の冷媒と冷媒間熱交換器28で熱交換し、インジェクションされる冷媒が加熱され、主冷媒回路を流れる冷媒が冷却(過冷却)される。このため、蒸発器として動作する室外熱交換器13においてエンタルピ差を広げ、外気からの吸熱量を増やすことができ、暖房能力を向上させることができる。この点、上述した実施の形態1の空気調和装置100では、デフロスト対象の室外熱交換器13を通った冷媒を主流に戻すため、中間圧(第2の延長配管50の圧力)を、中圧(デフロスト対象の室外熱交換器13に流入する冷媒の圧力)と比較して下げる必要がある。
実施の形態3.
 図20は、本発明の実施の形態3に係る空気調和装置102の構成を示す図である。図20において、図1、図16等と同じ符号を付している機器等については、実施の形態1又は実施の形態2で説明したことと同様の動作を行う。そこで、以下、本実施の形態の空気調和装置102が実施の形態2で説明した空気調和装置101と異なる部分を中心に説明する。
 実施の形態3に係る空気調和装置102は、上記実施の形態2の空気調和装置101の構成に加え、主冷媒回路において中間圧となる配管(第2の延長配管50と第2の流量制御装置15a及び15bとの間の配管)から第2のデフロスト配管27の冷媒間熱交換器28の上流側に冷媒が流入するように圧力調整する第4の流量制御装置29が設置されている。ここで、実施の形態3においても、第3の流量制御装置15cが、本発明の「第3の絞り装置」に相当する。また、第4の流量制御装置29が、本発明の「第4の圧力調整装置」に相当する。
 本実施の形態3の暖房デフロスト運転においても、実施の形態2と同様に、圧縮機11→絞り装置18→第2の電磁弁17b→室外熱交換器13b→第3の流量制御装置15cとなる冷媒経路(第1の冷媒経路)を形成する。また、圧縮機11→絞り装置18→第2の電磁弁17b→室外熱交換器13b→第3の電磁弁19b→冷媒間熱交換器28→絞り装置20→圧縮機11のインジェクション部(ポート)となる冷媒経路(中圧デフロスト回路、第2の冷媒経路)を形成する。
 本実施の形態3の暖房デフロスト運転では、第3の流量制御装置15cと第4の流量制御装置29とにより中圧の制御を行うものである。例えば、制御装置60は、デフロストする冷媒流量が少なく中圧を制御しようとすると、第3の流量制御装置15cが全閉となってしまう場合に、第4の流量制御装置29の開度を調整して中圧を上昇させる制御を行う。
 第3の電磁弁19bを通過した冷媒は、実施の形態2と同じく、冷媒間熱交換器28において暖房用の冷媒と熱交換する。そして、暖房用の冷媒の過冷却度を増大させ、蒸発器として動作する室外熱交換器13における吸熱量を増やし、暖房能力を向上することができる。
 以上説明したように、本実施の形態3の空気調和装置102によれば、デフロストする冷媒流量が少ない場合にも第4の流量制御装置29を開くことで圧力調整した中間圧の冷媒を流入させ、デフロスト対象の室外熱交換器13に対する中圧制御を安定して行うことができる。また、冷媒間熱交換器28における熱交換により、暖房用の冷媒の過冷却度を大きくすることができるので、蒸発器として機能する室外熱交換器13において外気からの吸熱量を増やして暖房能力を向上することができる。
実施の形態4.
 図21は、本発明の実施の形態4に係る空気調和装置103の構成を示す図である。図21において、図20と同じ符号を付している機器等については、実施の形態1~3で説明したことと同様の動作等を行う。以下、空気調和装置103が実施の形態3の空気調和装置102と異なる部分を中心に説明する。
 実施の形態4に係る空気調和装置103は、上述した実施の形態3の空気調和装置102の構成に代えて、第1のデフロスト配管26の一方の端部を第1の接続配管24a及び24bと接続する。また、第2のデフロスト配管27の一方の端部を第2の接続配管25a及び25bと接続する。
 また、実施の形態3の空気調和装置102では、第1の接続配管24aと24bとをバイパスするように第3の流量制御装置を設置していた。しかし、本実施の形態の空気調和装置103では、デフロストを行った冷媒が、第2のデフロスト配管27及び第3のデフロスト配管71を通過して、第1の接続配管24a又は24b側に流れるように第3の流量制御装置15c並びに逆止弁70a及び70bを設置している。ここで、本実施の形態4における空気調和装置104の第3の流量制御装置15cと空気調和装置103の第4の流量制御装置29とは、本発明の「第3の絞り装置」と「第4の絞り装置」とに相当する。
 図22は、本発明の実施の形態4に係る空気調和装置104の構成を示す図である。図22の空気調和装置104は、空気調和装置103から第3の流量制御装置15c並びに逆止弁70a及び70bを除いたものである。
 図21及び図22のような構成とすることで、本実施の形態の空気調和装置103及び104の室外熱交換器13内における冷媒の流れは、実施の形態1~3の空気調和装置100~102における冷媒の流れとは逆方向となる。
 制御装置60は、通常暖房運転を行っているときに、着霜状態を解消するデフロストが必要と検知した場合、デフロスト対象の室外熱交換器13bに対応する第1の電磁弁16bを閉止し、第2の流量制御装置15bを全閉状態にする。また、制御装置60は、第2の電磁弁17b、第3の電磁弁19bを開き、絞り装置18の開度を予め設定した開度に開く。そして、制御装置60は、空気調和装置104では、第3の流量制御装置15cの開度を開き、空気調和装置103では、第4の流量制御装置29の開度を開く。
 これによって、空気調和装置103では、圧縮機11→絞り装置18→第2の電磁弁17b→室外熱交換器13b→第3の電磁弁19b→第3の流量制御装置15c→第1の接続配管24aとなる冷媒経路(第1の冷媒経路)を形成する。また、空気調和装置104では圧縮機11→絞り装置18→第2の電磁弁17b→室外熱交換器13b→第3の電磁弁19b→第4の流量制御装置29→冷媒熱交換器28→第2の流量制御装置15a→第1の接続配管24aとなる冷媒経路(第1の冷媒経路)を形成する。そして、第2の経路として圧縮機11→絞り装置18→第2の電磁弁17b→室外熱交換器13b→第3の電磁弁19b→冷媒熱交換器28→絞り装置20→圧縮機11のインジェクション部(ポート)となる冷媒経路(中圧デフロスト回路、第2の冷媒経路)を形成する。そして、暖房デフロスト運転を開始する。
 暖房デフロスト運転中、制御装置60は、第3の流量制御装置15c又は第4の流量制御装置29の開度を、デフロスト対象の室外熱交換器13bの圧力(中圧)が、飽和温度換算で0℃より高くかつ10℃以下になるように制御する。絞り装置20は、圧縮機11の吐出温度、吐出スーパーヒート等を制御するように、例えば吐出スーパーヒートが10K~20K程度になるまで圧縮機11に冷媒をインジェクションできる開度とする。
 ここで、図2に示すように、第1の接続配管24a及び24bは、室外熱交換器13a及び13bにおける空気の流れ方向の上流側の伝熱管5aに接続されている。室外熱交換器13a及び13bの伝熱管5aは、空気の流れ方向に複数列設けられており、下流側の列へ順次流れる。このため、デフロスト対象の室外熱交換器13bへ供給される冷媒は、空気の流れ方向の上流側の伝熱管5aから下流側の方向に流れることとなり、冷媒の流れ方向と空気の流れ方向とが一致した並行流とすることができる。
 以上説明したように、本実施の形態4によれば、デフロスト対象の室外熱交換器13において、冷媒の流れの方向と空気の流れの方向を一致させることができる。また、冷媒の流れを並行流にすることで、デフロスト時に空気に放熱した熱を下流のフィン5bに付着している霜のデフロストに使うことができるので、デフロストの効率を上げることができる。
 実施の形態5.
 実施の形態1から実施の形態4においては、室外熱交換器13が2つの室外熱交換器13a、13bに分割されている場合を説明したが、本発明はこれに限定されない。3つ以上の室外熱交換器を備える構成においても、上述した発明思想を適用することで、一部の室外熱交換器13をデフロスト対象とし、他の一部又は全部の室外熱交換器13で暖房運転を継続するように動作させることができる。
 また、実施の形態1から実施の形態4においては、1台の室外熱交換器を分割して複数の室外熱交換器13とする場合を説明したが、本発明はこれに限定されない。互いに並列に接続された別個の室外熱交換器13を複数備える構成においても、上述した発明思想を適用することで、一部の室外熱交換器13をデフロスト対象とし、他の一部の室外熱交換器13で暖房運転を継続するように動作させることができる。
 5a 伝熱管、5b フィン、10 室外機、11 圧縮機、12 冷暖切替装置、13,13a,13b 室外熱交換器、14 アキュムレータ、15a,15b 第2の流量制御装置、15c 第3の流量制御装置、16,16a,16b 第1の電磁弁、17,17a,17b 第2の電磁弁、18,20 絞り装置、19,19a,19b 第3の電磁弁、21 室外ファン、22 吐出配管、23 吸入配管、24,24a,24b 第1の接続配管、25,25a,25b 第2の接続配管、26 第1のデフロスト配管、27 第2のデフロスト配管、28 冷媒間熱交換器、29 第4の流量制御装置、30,30a,30b 室内機、31,31a,31b 室内熱交換器、32,32a,32b 第1の流量制御装置、40,41a,41b 第1の延長配管、50,51a,51b 第2の延長配管、60 制御装置、70a,70b 逆止弁、71 第3のデフロスト配管、100,101,102,103,104 空気調和装置。

Claims (14)

  1.  圧縮行程の中間部分に冷媒をインジェクション可能とし、低圧の冷媒を吸入して圧縮して高圧の冷媒を吐出する圧縮機と、
     空調対象の空気と前記冷媒とを熱交換する室内熱交換器と、
     該室内熱交換器を通過する前記冷媒の流量を調整制御する第1の流量制御装置と、
     互いに並列に接続され、外部の空気と前記冷媒とを熱交換する複数の室外熱交換器とを配管で接続して、前記冷媒が循環する主冷媒回路を構成し、
     前記圧縮機が吐出した冷媒の一部が分岐して通過し、デフロスト対象となる前記室外熱交換器に流入させる第1のデフロスト配管と、
     前記第1のデフロスト配管を通過する冷媒を、前記低圧よりも高く、前記高圧よりも低い中圧に圧力調整する第1の圧力調整装置と、
     前記デフロスト対象の前記室外熱交換器を通過した冷媒を、前記圧縮機にインジェクションさせる第2のデフロスト配管と、
     前記第2のデフロスト配管を通過する冷媒をインジェクション圧まで圧力調整する第2の圧力調整装置と
    を備えた空気調和装置。
  2.  前記複数の室外熱交換器のうち、デフロスト対象となる前記室外熱交換器以外の前記室外熱交換器の少なくとも1つを蒸発器として機能させて前記デフロストを行うと共に暖房を行う請求項1に記載の空気調和装置。
  3.  前記デフロスト対象となる前記室外熱交換器から流出した冷媒を圧力調整して、蒸発器となる前記室外熱交換器の上流側の前記主冷媒回路へ流入させる第3の圧力調整装置をさらに備えた請求項2に記載の空気調和装置。
  4.  前記主冷媒回路を流れて前記蒸発器として機能する室外熱交換器に流入する冷媒と前記第2のデフロスト配管を流れる冷媒とを熱交換する冷媒間熱交換器をさらに備えた請求項3に記載の空気調和装置。
  5.  前記主冷媒回路を流れる冷媒を圧力調整して前記第2のデフロスト配管に流入させる第4の圧力調整装置をさらに備えた請求項1~4の何れか一項に記載の空気調和装置。
  6.  前記室外熱交換器は、内部を冷媒が通過し、空気通過方向に対して垂直方向の段方向及び前記空気通過方向である列方向に複数設けられた伝熱管と、
     前記空気通過方向に空気が通過するように間隔を空けて配置された複数のフィンとを有し、
     前記空気通過方向の風上側の列の前記伝熱管に接続された配管と前記第1のデフロスト配管とを接続し、
     前記空気通過方向の風下側の列の前記伝熱管に接続された配管と前記第2のデフロスト配管とを接続する請求項1~5の何れか一項に記載の空気調和装置。
  7.  前記第3の圧力調整装置は、前記デフロスト対象となる室外熱交換器から流出する冷媒の圧力を制御する請求項3~6の何れか一項に記載の空気調和装置。
  8.  前記第3の圧力調整装置は、飽和温度換算で0℃より高くかつ10℃以下の範囲内となるように、前記デフロスト対象の室外熱交換器から流出する冷媒の圧力を制御する請求項7に記載の空気調和装置。
  9.  前記第2の圧力調整装置の圧力調整により、前記圧縮機が吐出する冷媒の吐出温度又は吐出スーパーヒートを制御する請求項1~8の何れか一項に記載の空気調和装置。
  10.  空調対象空間外の空気である外気温度を検出する外気温度検出装置をさらに備え、
     前記第1の圧力調整装置は、前記外気温度に基づいて流量制御を行う請求項1~9の何れか一項に記載の空気調和装置。
  11.  空調対象空間外の空気である外気温度を検出する外気温度検出装置をさらに備え、
     前記外気温度に基づいて、デフロスト運転を開始するか否かの判定基準を変更する請求項1~10の何れか一項に記載の空気調和装置。
  12.  空調対象空間外の空気である外気温度を検出する外気温度検出装置をさらに備え、
     デフロスト対象の前記室外熱交換器を選択してデフロストし、他の前記室外熱交換器を蒸発器として機能させて暖房を継続する暖房デフロスト運転モードと、すべての前記室外熱交換器をデフロストする暖房停止デフロスト運転モードとを、前記外気温度に基づいて選択する請求項1~11の何れか一項に記載の空気調和装置。
  13.  空調対象空間外の空気である外気温度を検出する外気温度検出装置と、前記複数の室外熱交換器に前記外気を送り込む室外ファンとをさらに備え、
     前記デフロスト対象の前記室外熱交換器をデフロストしているときに、前記外気温度に基づいて前記室外ファンの出力を変更する請求項1~12の何れか一項に記載の空気調和装置。
  14.  デフロスト運転モードにおいて、各室外熱交換器を少なくとも1回以上デフロストする請求項1~13の何れか一項に記載の空気調和装置。
PCT/JP2013/065210 2013-05-31 2013-05-31 空気調和装置 WO2014192140A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13885959.0A EP3006866B1 (en) 2013-05-31 2013-05-31 Air-conditioning apparatus
CN201380077052.2A CN105247302B (zh) 2013-05-31 2013-05-31 空调装置
US14/894,151 US10465968B2 (en) 2013-05-31 2013-05-31 Air-conditioning apparatus having first and second defrosting pipes
PCT/JP2013/065210 WO2014192140A1 (ja) 2013-05-31 2013-05-31 空気調和装置
JP2015519579A JP5968534B2 (ja) 2013-05-31 2013-05-31 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065210 WO2014192140A1 (ja) 2013-05-31 2013-05-31 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014192140A1 true WO2014192140A1 (ja) 2014-12-04

Family

ID=51988208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065210 WO2014192140A1 (ja) 2013-05-31 2013-05-31 空気調和装置

Country Status (5)

Country Link
US (1) US10465968B2 (ja)
EP (1) EP3006866B1 (ja)
JP (1) JP5968534B2 (ja)
CN (1) CN105247302B (ja)
WO (1) WO2014192140A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588359A (zh) * 2015-01-30 2016-05-18 海信(山东)空调有限公司 一种空调系统
WO2016113851A1 (ja) * 2015-01-13 2016-07-21 三菱電機株式会社 冷凍サイクル装置
EP3040651A3 (en) * 2014-12-09 2016-09-14 Lennox Industries Inc. Variable refrigerant flow system operation in low ambient conditions
WO2017002618A1 (ja) * 2015-07-01 2017-01-05 三菱重工業株式会社 空気調和システム、制御方法及びプログラム
WO2017006596A1 (ja) * 2015-07-06 2017-01-12 三菱電機株式会社 冷凍サイクル装置
CN113614463A (zh) * 2019-03-25 2021-11-05 三菱电机株式会社 空调装置
CN115419965A (zh) * 2022-09-14 2022-12-02 珠海格力电器股份有限公司 空调器及其控制方法及装置
CN115717787A (zh) * 2022-11-09 2023-02-28 珠海格力电器股份有限公司 空调控制方法、装置及空调

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104813123B (zh) * 2012-11-29 2017-09-12 三菱电机株式会社 空气调节装置
US10155430B2 (en) * 2012-11-30 2018-12-18 Sanden Holdings Corporation Vehicle air-conditioning device
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调系统有限公司 热回收变频多联式热泵系统及其控制方法
JP6201872B2 (ja) * 2014-04-16 2017-09-27 三菱電機株式会社 空気調和機
JP5949831B2 (ja) * 2014-05-28 2016-07-13 ダイキン工業株式会社 冷凍装置
JP6252606B2 (ja) * 2016-01-15 2017-12-27 ダイキン工業株式会社 冷凍装置
US10670292B2 (en) 2016-03-03 2020-06-02 Carrier Corporation Fluid pressure calibration in climate control system
US10808976B2 (en) * 2016-05-16 2020-10-20 Mitsubishi Electric Corporation Air-conditioning apparatus
US10774837B2 (en) * 2016-08-22 2020-09-15 Mitsubishi Electric Corporation Heat pump apparatus, air conditioner, and water heater
CN106871382B (zh) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 空调器不停机除霜运行方法
CN107023944B (zh) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 空调器不停机除霜运行方法
CN106918122B (zh) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 空调器不停机除霜运行方法
CN107160972B (zh) * 2017-06-19 2023-05-23 珠海格力电器股份有限公司 一种电动汽车、电动汽车热泵空调总成及其控制方法
US10704847B2 (en) * 2017-09-20 2020-07-07 Hamilton Sunstrand Corporation Rotating heat exchanger/bypass combo
CN108019972A (zh) * 2017-12-04 2018-05-11 珠海格力电器股份有限公司 空气源热泵机组及其化霜控制方法和装置
WO2019146070A1 (ja) * 2018-01-26 2019-08-01 三菱電機株式会社 冷凍サイクル装置
WO2020066015A1 (ja) * 2018-09-28 2020-04-02 三菱電機株式会社 空気調和機
US11885518B2 (en) * 2018-12-11 2024-01-30 Mitsubishi Electric Corporation Air-conditioning apparatus
US11137185B2 (en) * 2019-06-04 2021-10-05 Farrar Scientific Corporation System and method of hot gas defrost control for multistage cascade refrigeration system
JP7210756B2 (ja) * 2019-09-17 2023-01-23 東芝キヤリア株式会社 空気調和装置及び制御方法
JP7183447B2 (ja) * 2019-11-12 2022-12-05 三菱電機株式会社 冷凍サイクル装置
DE102020130285B4 (de) 2019-12-10 2022-06-09 Hanon Systems Druckentlastungsanordnung in Kältemittelkreisläufen
KR20210100461A (ko) * 2020-02-06 2021-08-17 엘지전자 주식회사 공기 조화 장치
CN111271906A (zh) * 2020-03-18 2020-06-12 广东欧亚制冷设备制造有限公司 空气源热泵系统和控制方法
CN111426010B (zh) * 2020-04-13 2021-10-26 广东美的暖通设备有限公司 空调系统的控制方法、空调系统和计算机存储介质
CN112443998A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调系统有限公司 空调器
CN112443996A (zh) * 2020-11-30 2021-03-05 青岛海信日立空调系统有限公司 空调器
CN112880132B (zh) * 2021-01-29 2023-03-21 青岛海尔空调器有限总公司 用于空调系统除霜控制的方法及装置、空调系统
CN115031439B (zh) * 2022-06-16 2023-07-14 江苏省华扬太阳能有限公司 高效化霜的热泵式大中型空调装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108558A (en) * 1980-12-25 1982-07-06 Ebara Mfg Heat pump apparatus
JP2007271094A (ja) 2006-03-30 2007-10-18 Mitsubishi Electric Corp 空気調和装置
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2009085484A (ja) 2007-09-28 2009-04-23 Daikin Ind Ltd 空気調和機用室外機
JP2011052883A (ja) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp 空気調和機
WO2012014345A1 (ja) 2010-07-29 2012-02-02 三菱電機株式会社 ヒートポンプ

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139356A (en) * 1976-12-06 1979-02-13 Taisei Kogyo Kabushiki Kaisha Refrigerating apparatus
US4389851A (en) * 1980-01-17 1983-06-28 Carrier Corporation Method for defrosting a heat exchanger of a refrigeration circuit
JPS59131863A (ja) * 1983-01-17 1984-07-28 株式会社東芝 空気調和装置
US4565070A (en) * 1983-06-01 1986-01-21 Carrier Corporation Apparatus and method for defrosting a heat exchanger in a refrigeration circuit
FR2579531B1 (fr) * 1985-03-26 1989-05-26 Abg Semca Procede et dispositif de chauffage pour vehicules a besoin de puissance limitee
JPS61235644A (ja) * 1985-04-09 1986-10-20 株式会社荏原製作所 ヒ−トポンプ装置
JPH07111288B2 (ja) * 1985-09-20 1995-11-29 株式会社日立製作所 空気調和機
US4833893A (en) * 1986-07-11 1989-05-30 Kabushiki Kaisha Toshiba Refrigerating system incorporating a heat accumulator and method of operating the same
US4914926A (en) * 1987-07-29 1990-04-10 Charles Gregory Hot gas defrost system for refrigeration systems and apparatus therefor
US4850197A (en) * 1988-10-21 1989-07-25 Thermo King Corporation Method and apparatus for operating a refrigeration system
US4942743A (en) * 1988-11-08 1990-07-24 Charles Gregory Hot gas defrost system for refrigeration systems
US4949551A (en) * 1989-02-06 1990-08-21 Charles Gregory Hot gas defrost system for refrigeration systems
US5174123A (en) * 1991-08-23 1992-12-29 Thermo King Corporation Methods and apparatus for operating a refrigeration system
US5319940A (en) * 1993-05-24 1994-06-14 Robert Yakaski Defrosting method and apparatus for a refrigeration system
KR100186526B1 (ko) * 1996-08-31 1999-10-01 구자홍 히트 펌프의 적상 방지장치
US5794452A (en) * 1997-05-01 1998-08-18 Scotsman Group, Inc. Hot gas bypass system for an icemaker
AU740993B2 (en) 1997-11-17 2001-11-22 Daikin Industries, Ltd. Refrigerating apparatus
US6244057B1 (en) * 1998-09-08 2001-06-12 Hitachi, Ltd. Air conditioner
US20040168451A1 (en) * 2001-05-16 2004-09-02 Bagley Alan W. Device and method for operating a refrigeration cycle without evaporator icing
DE60227520D1 (de) * 2001-07-02 2008-08-21 Sanyo Electric Co Wärmepumpenvorrichtung
WO2003004947A1 (fr) * 2001-07-02 2003-01-16 Sanyo Electric Co., Ltd. Pompe de chaleur
KR100463548B1 (ko) * 2003-01-13 2004-12-29 엘지전자 주식회사 공기조화기용 제상장치
US6883334B1 (en) * 2003-11-05 2005-04-26 Preyas Sarabhai Shah Cold plate temperature control method and apparatus
US7222496B2 (en) * 2004-06-18 2007-05-29 Winiamando Inc. Heat pump type air conditioner having an improved defrosting structure and defrosting method for the same
JP2006105560A (ja) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd 空気調和装置
US7461515B2 (en) * 2005-11-28 2008-12-09 Wellman Keith E Sequential hot gas defrost method and apparatus
US7614249B2 (en) * 2005-12-20 2009-11-10 Lung Tan Hu Multi-range cross defrosting heat pump system and humidity control system
DE102007028252B4 (de) * 2006-06-26 2017-02-02 Denso Corporation Kältemittelkreisvorrichtung mit Ejektorpumpe
KR100821728B1 (ko) * 2006-08-03 2008-04-11 엘지전자 주식회사 공기 조화 시스템
US20080190131A1 (en) * 2007-02-09 2008-08-14 Lennox Manufacturing., Inc. A Corporation Of Delaware Method and apparatus for removing ice from outdoor housing for an environmental conditioning unit
KR20100081621A (ko) * 2009-01-06 2010-07-15 엘지전자 주식회사 공기조화기 및 공기조화기의 제상운전방법
CN102272534B (zh) * 2009-01-15 2014-12-10 三菱电机株式会社 空气调节装置
WO2010117973A2 (en) * 2009-04-09 2010-10-14 Carrier Corporation Refrigerant vapor compression system with hot gas bypass
JP5634682B2 (ja) * 2009-04-24 2014-12-03 日立アプライアンス株式会社 空気調和機
FR2950423B1 (fr) * 2009-09-22 2012-11-16 Valeo Systemes Thermiques Dispositif de conditionnement d'air pour une installation de chauffage,ventilation et/ou climatisation.
JP2011094810A (ja) * 2009-09-30 2011-05-12 Fujitsu General Ltd ヒートポンプサイクル装置
EP2339265B1 (en) * 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Refrigerating apparatus
US9046284B2 (en) * 2011-09-30 2015-06-02 Fujitsu General Limited Air conditioning apparatus
KR101319687B1 (ko) * 2011-10-27 2013-10-17 엘지전자 주식회사 멀티형 공기조화기 및 그의 제어방법
KR101872784B1 (ko) * 2012-02-03 2018-06-29 엘지전자 주식회사 실외 열교환기
WO2014101225A1 (en) * 2012-12-31 2014-07-03 Trane International Inc. Heat pump water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108558A (en) * 1980-12-25 1982-07-06 Ebara Mfg Heat pump apparatus
JP2007271094A (ja) 2006-03-30 2007-10-18 Mitsubishi Electric Corp 空気調和装置
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2009085484A (ja) 2007-09-28 2009-04-23 Daikin Ind Ltd 空気調和機用室外機
JP2011052883A (ja) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp 空気調和機
WO2012014345A1 (ja) 2010-07-29 2012-02-02 三菱電機株式会社 ヒートポンプ

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3040651A3 (en) * 2014-12-09 2016-09-14 Lennox Industries Inc. Variable refrigerant flow system operation in low ambient conditions
US10337780B2 (en) 2014-12-09 2019-07-02 Lennox Industries Inc. Variable refrigerant flow system operation in low ambient conditions
CN107110547B (zh) * 2015-01-13 2019-08-20 三菱电机株式会社 制冷循环装置
WO2016113851A1 (ja) * 2015-01-13 2016-07-21 三菱電機株式会社 冷凍サイクル装置
JPWO2016113851A1 (ja) * 2015-01-13 2017-06-29 三菱電機株式会社 冷凍サイクル装置
CN107110547A (zh) * 2015-01-13 2017-08-29 三菱电机株式会社 制冷循环装置
US10508826B2 (en) 2015-01-13 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP3246635A4 (en) * 2015-01-13 2018-09-05 Mitsubishi Electric Corporation Refrigeration cycle device
CN105588359A (zh) * 2015-01-30 2016-05-18 海信(山东)空调有限公司 一种空调系统
WO2017002618A1 (ja) * 2015-07-01 2017-01-05 三菱重工業株式会社 空気調和システム、制御方法及びプログラム
JP2017015333A (ja) * 2015-07-01 2017-01-19 三菱重工業株式会社 空気調和システム、制御方法及びプログラム
WO2017006596A1 (ja) * 2015-07-06 2017-01-12 三菱電機株式会社 冷凍サイクル装置
JPWO2017006596A1 (ja) * 2015-07-06 2017-10-26 三菱電機株式会社 冷凍サイクル装置
CN113614463A (zh) * 2019-03-25 2021-11-05 三菱电机株式会社 空调装置
CN115419965A (zh) * 2022-09-14 2022-12-02 珠海格力电器股份有限公司 空调器及其控制方法及装置
CN115717787A (zh) * 2022-11-09 2023-02-28 珠海格力电器股份有限公司 空调控制方法、装置及空调

Also Published As

Publication number Publication date
EP3006866A1 (en) 2016-04-13
US10465968B2 (en) 2019-11-05
EP3006866B1 (en) 2020-07-22
JPWO2014192140A1 (ja) 2017-02-23
US20160116202A1 (en) 2016-04-28
CN105247302A (zh) 2016-01-13
JP5968534B2 (ja) 2016-08-10
CN105247302B (zh) 2017-10-13
EP3006866A4 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
JP5968534B2 (ja) 空気調和装置
JP6021940B2 (ja) 空気調和装置
EP3062045B1 (en) Air conditioner
JP6022058B2 (ja) 熱源側ユニット及び冷凍サイクル装置
US11268743B2 (en) Air-conditioning apparatus having heating-defrosting operation mode
JP6320568B2 (ja) 冷凍サイクル装置
JP6085255B2 (ja) 空気調和装置
JP5791807B2 (ja) 空気調和装置
CN107110546B (zh) 空气调节装置
WO2015140951A1 (ja) 空気調和装置
JP6161741B2 (ja) 空気調和装置
WO2020208776A1 (ja) 空気調和装置
JP6017048B2 (ja) 空気調和装置
JP6017049B2 (ja) 空気調和装置
JP2009293887A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519579

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013885959

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14894151

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE