CN112443996A - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
CN112443996A
CN112443996A CN202011370488.9A CN202011370488A CN112443996A CN 112443996 A CN112443996 A CN 112443996A CN 202011370488 A CN202011370488 A CN 202011370488A CN 112443996 A CN112443996 A CN 112443996A
Authority
CN
China
Prior art keywords
heat exchanger
defrosting
outdoor heat
refrigerant
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011370488.9A
Other languages
English (en)
Inventor
张恒
周敏
邓玉平
高永坤
李廷宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Hisense Hitachi Air Conditioning System Co Ltd
Original Assignee
Qingdao Hisense Hitachi Air Conditioning System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Hisense Hitachi Air Conditioning System Co Ltd filed Critical Qingdao Hisense Hitachi Air Conditioning System Co Ltd
Priority to CN202011370488.9A priority Critical patent/CN112443996A/zh
Publication of CN112443996A publication Critical patent/CN112443996A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了空调器,包括:至少一个室内机;一个室外机模块,包括:压缩机;流路切换装置;两个室外换热器;两个液管节流装置;两个气侧阀,其各自连接流路切换装置和各室外换热器气侧;除霜支路,其将压缩机排出的制冷剂的一部分分支,并对应选择两个室外换热器中的一个而使制冷剂流入;两个节流装置,其各自一端连接对应室外换热器的主气管,另一端连接对应另一室外换热器的液管节流装置连接在另一室外换热器主液管的位置处。本发明能够在保持空调系统的不间断制热及室内机能力最大化的同时,对除霜换热器控压除霜,提升除霜效率室内热舒适性。

Description

空调器
技术领域
本发明涉及空调器技术领域,尤其涉及空调器。
背景技术
空气源热泵多联机的技术日益成熟,其在家用和商用领域得到广泛应用。空气源热泵多联机包括至少一个室内机和至少一个室外机模块,其中在室内机存在两个及以上时,各室内机并列布置且每个室内机具有室内换热器及对应的室内风机,在室外机模块存在两个及以上时,各室外机模块并列布置且每个室外机模块具有通过连接管路相连通的变频压缩机、四通阀、节流元件、至少一个室外换热器及室外风机,在一个室外机模块存在至少两个室外换热器时,各室外换热器并列布置。
空气源热泵在制热运行时存在一个较大的问题:在室外温度和湿度达到一定条件时,室外换热器空气侧会结霜,随着结霜量的增加,蒸发器表面会逐渐被堵塞,导致室外换热器表面换热系数减小,气体流动阻力增大,严重影响机器制热效果,因此,机组需要定期进行除霜。
目前大多采用逆向除霜方式,其主要是通过四通阀打开换向,将室外机切换为冷凝器,利用高温高压制冷剂的显热和冷凝潜热除霜,其化霜速度快且可靠性好。但是除霜时制热运行会停止,同时由于室内机换热器切换为蒸发器,会从室内吸收热量,室内温度下降比较明显,严重影响室内热舒适性。
为解决上述问题,设置热气旁通除霜,即,在不改变系统冷媒流向的条件下,利用旁通支路将压缩机排气引入一台待除霜的室外换热器中进行除霜。
这种除霜方式具有如下不足:1、利用压缩机部分功耗转换的热量除霜,属于低压除霜,热量少且除霜时间长;2、热气旁通除霜时利用低压显热除霜,温度较低,和霜层的换热温差小,除霜可靠性差;3、虽然在除霜时不改变冷媒流向,但是室内机冷媒流量很小,系统不向室内机供热,除霜期间室内温度降低,用户舒适性差。
发明内容
本发明的实施例提供一种空调器,能够在保持空调系统的不间断制热及室内机能力最大化的同时,对除霜换热器进行控压除霜,提升除霜效率,及室内热舒适性。
为实现上述发明目的,本发明采用下述技术方案予以实现:
本申请涉及一种空调器,其特征在于,包括:
至少一个室内机;
一个室外机模块,包括:
压缩机;
流路切换装置,其用于切换从所述压缩机排出的制冷剂的流路;
并列设置的两个室外换热器;
两个液管节流装置,其各自连接各室外换热器和所述室内机;
两个气侧阀,其各自连接所述流路切换装置和各室外换热器气侧;
除霜支路,其将所述压缩机排出的制冷剂的一部分分支,并对应选择两个室外换热器中的一个而使制冷剂流入;
两个节流装置,其各自一端连接对应室外换热器的主气管,另一端连接对应另一室外换热器的液管节流装置连接在所述另一室外换热器主液管的位置处;
控制装置,其控制各流路切换装置、各气侧阀、各液管节流装置、各节流装置及各除霜支路,对待除霜的室外换热器进行轮换除霜,使一个待除霜的室外换热器作为除霜换热器执行,另一个室外换热器作为蒸发器执行;
在轮换除霜时,所述控制装置控制所述流路切换装置上电;控制所述除霜支路使所述压缩机排出的制冷剂与除霜换热器的液侧管连通;控制关闭与所述除霜换热器连通的气侧阀及液管节流装置;控制打开与所述除霜换热器的气管侧连接的节流装置。
本申请涉及的空调器,在空调器进行轮换除霜时,控制装置控制流路切换装置、各液管节流装置、各气侧阀、各节流装置及各除霜支路,在一室外换热器除霜时,同属于同一室外机模块的另一室外换热器能够与室内机形成制热循环,实现除霜同时的不间断制热,提升用户热舒适性,且除霜后室内温度会快速回升。
在本申请中,在对除霜换热器进行除霜时,所述控制装置被配置为:
控制打开与所述除霜换热器连接的节流装置,根据所述除霜换热器的出口过冷度及目标出口过冷度范围,控制调整所述节流装置的开度;
根据除霜压力及目标除霜压力范围,控制调整所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量。
在本申请中,控制打开所述节流装置,根据所述除霜换热器的出口过冷度及目标出口过冷度范围,控制调整所述节流装置的开度,具体为:
设定所述目标出口过冷度范围;
计算所述除霜换热器的出口过冷度;
比较所述出口过冷度是否位于所述目标出口过冷度范围内,若是,保持当前所述节流装置的开度,若否,调节所述节流装置的开度。
在本申请中,根据除霜压力及目标除霜压力范围,控制调整所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量,具体为:
设定目标除霜压力范围;
计算所述待除霜换热器的除霜压力;
比较所述除霜压力是否位于所述目标除霜压力范围内,若是,保持通过所述除霜支路的制冷剂的量,若否,调节所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量。
在本申请中,调节所述节流装置的开度,具体为:
在所述出口过冷度大于所述目标出口过冷度范围的上限值时,增大所述节流装置的开度;
在所述出口过冷度小于所述目标出口过冷度范围的下限值时,减小所述节流装置的开度。
在本申请中,调节通过所述除霜支路的制冷剂的量,具体为:
在所述除霜压力大于所述目标除霜压力范围的上限值时,减小所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量;
在所述除霜压力小于所述目标除霜压力范围的下限值时,增加所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量。
在本申请中,在对除霜换热器进行除霜时,若达到第一预设除霜时间,或者
若所述除霜换热器的出口温度大于等于第一温度预设值且维持一定时间段,所述除霜换热器退出除霜过程而进入通常制热运行过程。
在本申请中,所述目标除霜压力范围与环境温度有关。
在本申请中,每个室外换热器包括:
换热器本体;
第一分流组件和第二分流组件,其并行位于所述换热器本体液侧,所述换热器本体的对应所述第一分流组件的部分所在的风速大于对应所述第二分流头所在的风速,所述第一分流组件的自由端和所述第二分流组件的自由端分别连接所述室外换热器的主液管;
第一节流件,其设置在所述第二分流组件的自由端至所述主液管之间的管路上。
在本申请中,所述空调器还包括过冷器,且包括:
主路冷媒通道,其与所述压缩机、室外换热器及室内机形成制冷循环主路;
第二节流件,其连接在补气回气管路上,所述补气回气管路的一端连接所述主路冷媒通道的上游或下游;
辅路冷媒通道,其一端连接所述补气回气管路的另一端,另一端与所述压缩机或气液分离器连接。
在本申请中,所述室外机模块还包括:
两个室外风机,其各自对应两个室外换热器且与所述控制装置连接,各室外风机分别与其对应的室外换热器形成一风场,;
分隔装置,其用于分隔相邻风场;
在轮换除霜时,所述控制装置控制关闭与所述除霜换热器对应的室外风机。
在本申请中,在所述室外机模块中一个室外换热器正在除霜时,提高所述室外机模块中另一个室外换热器对应的室外风机的转速。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提出的空调器一实施例的系统结构图;
图2是本发明提出的空调器另一实施例的系统结构图;
图3是本发明提出的空调器又一实施例的系统结构图;
图4是本发明提出的空调器实施例处于轮换除霜运行模式时除霜换热器正在进行除霜时的流程图;
图5是本发明提出的空调器再一实施例的系统结构图;
图6是本发明提出的空调器再一实施例中的室外换热器的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
[空调器的基本运行原理]
空调的制冷循环包括压缩机、冷凝器、膨胀阀和蒸发器。制冷循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向已被调节和热交换的空气供应制冷剂。
压缩机压缩处于高温高压状态的制冷剂气体并排出压缩后的制冷剂气体。所排出的制冷剂气体流入冷凝器。冷凝器将压缩后的制冷剂冷凝成液相,并且热量通过冷凝过程释放到周围环境。
膨胀阀使在冷凝器中冷凝的高温高压状态的液相制冷剂膨胀为低压的液相制冷剂。蒸发器蒸发在膨胀阀中膨胀的制冷剂,并使处于低温低压状态的制冷剂气体返回到压缩机。蒸发器可以通过利用制冷剂的蒸发的潜热与待冷却的材料进行热交换来实现制冷效果。在整个循环中,空调器可以调节室内空间的温度。
空调室外机是指包括制冷循环的压缩机的部分以及包括室外热交换器,空调室内机包括室内热交换器,并且膨胀阀可以提供在空调室内机或室外机中。
室内热交换器和室外热交换器用作冷凝器或蒸发器。当室内热交换器用作冷凝器时,空调器用作制热模式的加热器,当室内热交换器用作蒸发器时,空调器用作制冷模式的冷却器。
[空调器]
在本申请中,室外机模块类似于如上所述的空调室外机。
本申请设计的空调器为多联机空调器。
空调器包括至少一个室内机,其均并列布置。
每个室内机分别包括室内换热器11-1和11-2(即如上所述室内热交换器)以及室内风机(未示出),室内风机用于分别将室内换热器11-1和11-2产生的冷气或热气吹向室内空间。
当然,室内机的数量不限于如上所述的数量,且每个室内机中的室内换热器及室内风机的数量也不限于如上所述的数量。
空调器可以包括至少一个室外机模块,各室外机模块均并列布置。
本申请中主要涉及一个室外机模块,其包括压缩机、流路切换装置、并列设置的两个室外换热器、两个液管节流装置、两个室外风机、除霜支路、两个气侧阀及气液分离器。
参见图1,室外机模块包括压缩机1、单向阀2、流路切换装置3、并列设置的两个室外换热器4-1和4-2、两个液管节流装置6-1和6-2、两个室外风机5-1和5-2、除霜支路、两个气侧阀20-1和20-2、气液分离器14。
流路切换装置3切换从压缩机1排出的制冷剂至室内机或室外换热器的流路。在本申请中,流路切换装置3为四通阀,其具有四个端子C、D、S和E。
在流路切换装置3断电时,默认C和D相连,S和E相连,使室内机换热器11-1和11-2用作蒸发器,而室外换热器4-1和4-2用作冷凝器,空调器制冷。
在流路切换装置3上电换向时,C和S相连,D和E相连,使室内机换热器11-1和11-2用作冷凝器,而室外换热器4-1和4-2用作蒸发器,空调器制热。
参见图1,室外换热器的数量与室外风机的数量相同且一一对应。
室外机模块具有室外换热器4-1/4-2、室外风机5-1/5-2、连接室内换热器11-1/11-2的液管和室外换热器4-1/4-2的液管的液管节流装置6-1/6-2、连接室外换热器4-1/4-2的气管和流路切换装置3之间的气侧阀20-1/20-2、设置在室外换热器4-1的主气管和液管节流装置6-2连接室外换热器4-2主液管的位置之间的节流装置19-1、以及设置在室外换热器4-2的主气管和液管节流装置6-1连接室外换热器4-1主液管的位置之间的节流装置19-2。
在对压缩机1排出的制冷剂的一部分分支后,不同时分别通过除霜支路流入室外换热器4-1和4-2,即轮换流入室外换热器4-1和4-2。
参考图1,在压缩机1的排气口和室外换热器4-1的液管侧之间的管路上设置有除霜支路18-1',且在压缩机1的排气口和室外换热器4-2的液管侧之间的管路上设置有除霜支路18-2'。
在除霜支路18-1'上设置有气管节流装置18-1,用于在打开时压缩机1排出的部分制冷剂能够通过该气管节流装置18-1节流到合适的压力而进入室外换热器4-1进行热交换除霜。
在除霜支路18-2'上设置有气管节流装置18-2,用于在打开时压缩机1排出的部分制冷剂能够通过该气管节流装置18-2节流到合适的压力而进入室外换热器4-2进行热交换除霜。
为了避免在对室外换热器4-1或4-2进行除霜而不间断制热时,流经室内换热器11-1和11-2的制冷剂经过热交换后再流入室外换热器4-1或4-2,该除霜支路18-1'和18-2'的一端分别形成在压缩机1的排出口(具体在单向阀2的排出口)处,除霜支路18-1'的另一端连接液管节流装置6-1连接室外换热器4-1的主液管的位置处,该除霜支路18-2'的另一端连接液管节流装置6-2连接室外换热器4-2的主液管的位置处。
节流装置19-1一端连接室外换热器4-1的主气管,另一端设置在除霜支路18-2'与室外换热器4-2的主液管连接的汇合位置和液管节流装置6-2之间的管路上。
节流装置19-2一端连接室外换热器4-2的主气管,另一端设置在除霜支路18-1'与室外换热器4-1的主液管连接的汇合位置和液管节流装置6-1之间的管路上。
控制装置用于控制室外机模块中的流路切换装置3、气侧阀20-1和20-2、液管节流装置6-1和6-2、节流装置19-1和19-2、以及各除霜支路18-1'和18-2'的通断(即控制气管节流装置18-1和18-2的通断)。
在本申请中,气侧阀20-1和20-2为电磁阀、大口径两通阀(例如阻力极小的可逆两通阀)等可控阀,但不具有节流功能。
液管节流装置6-1/6-2、节流装置19-1/19-2、室内侧液管节流装置10-1/10-2、气管节流装置18-1和18-2均可以采用电子膨胀阀、双向热力膨胀阀等。
参见图2及图3,其均示出了含有过冷器7的空调器的结构。
过冷器7可以为板式换热器和套筒式换热器,用于提升空调机组制热能效。
参见图2及图3,过冷器7包括主路冷媒通道和辅路冷媒通道。
主路冷媒通道包括第一端口a1和第二端口a2,第一端口a1与室内侧连接,第二端口a2与室外侧连接。
参见图2,辅路冷媒通道包括第一端口b1和第二端口b2,第一端口b1通过电磁阀17与压缩机1的补气口连通或通过电磁阀16与气液分离器14连通。
补气回气管路连接主路冷媒通道的第一端口a1和辅路冷媒通道的第二端口b2。
节流件15设置在该补气回气管路上。
参见图3,补气回气管路也可以连接主路冷媒通道的第二端口a2和辅路冷媒通道的第二端口b2;且节流件15设置在该补气回气管路上。
上述的压缩机1、室外换热器4-1/4-2、过冷器7的第一换热通道、以及室内换热器11-1/11-2组成制冷剂主循环回路。
参见图1至图3,这三种结构下的空调器,空调器的运行模式(即,通常制热运行模式、通常制冷运行模式、逆向除霜运行模式及轮换除霜运行模式)及控制方式没有存在不同。具体详细介绍如下文。
空调器设置过冷器7,可以对压缩机1进行补气,能够提高机组制热能效,提升室内热舒适性。
[空调器的运行模式]
空调器具有通常制热运行模式、通常制冷运行模式、逆向除霜运行模式、以及轮换除霜运行模式。
通常制热运行模式
通常制热运行模式与空调器的普通制热运行模式无异。
在一些实施例中,在空调器处于通常制热运行模式时,参考图1,室外机模块中的气侧阀20-1和20-2均打开,气管节流装置18-1和18-2均关闭,液管节流装置6-1和6-2均打开,节流装置19-1和19-2均关闭,节流件15打开,电磁阀17打开,电磁阀16关闭,室外风机19-1和19-2均打开。
在一些实施例中,流路切换装置3上电换向,使D和E连通且C和S连通,压缩机1将低温低压的冷媒压缩成高温高压状态,经过单向阀2及D和E将压缩机1排出的制冷剂经过气侧截止阀13和第一延长配管12进入室内换热器11-1和11-2。
在室内换热器11-1和11-2内部热交换后冷凝放热,成为液态冷媒,随后冷媒经过室内机侧节流装置10-1和10-2、第二延长配管9和液侧截止阀8,进入液管节流装置6-1和6-2节流至低温低压气液两态。
两相态冷媒进入室外换热器4-1和4-2内蒸发吸热,变为气态,室外换热器4-1和4-2出来的冷媒经过气侧阀20-1和20-2后通过C和S进入气液分离器14,最后被吸入压缩机1压缩,完成制热循环。
通常制热运行模式中的冷媒流向如图1中虚线箭头所示方向。
在整个通常制热运行模式中,室外风机5-1和5-2始终打开。
参见图2,与图1中通常制热运行模式的区别在于如下。
在室内换热器11-1和11-2内部热交换后冷凝放热,成为液态冷媒,此后分成为两路。
一路辅路冷媒经节流件15节流后进入过冷器7的低压侧并与高压侧换热后经过电磁阀17进入压缩机1的补气口、
另一路主路冷媒进入过冷器7与辅路冷媒换热后,经过液管节流装置6-1和6-2节流至低温低压气液两态,两相态冷媒进入室外换热器4-1和4-2内蒸发吸热,变为气态,室外换热器4-1和4-2出来的冷媒经过气侧阀20-1和20-2后通过C和S进入气液分离器14,最后被吸入压缩机1压缩,完成制热循环。
参见图3,与图1中通常制热运行模式的区别在于如下。
在室内换热器11-1和11-2内部热交换后冷凝放热,成为液态冷媒,此后进入过冷器7后分成为两路。
一路辅路冷媒经节流件15节流后进入过冷器7的低压侧并与高压侧换热后经过电磁阀17进入压缩机1的补气口、
另一路主路冷媒与辅路冷媒换热后,经过液管节流装置6-1和6-2节流至低温低压气液两态,两相态冷媒进入室外换热器4-1和4-2内蒸发吸热,变为气态,室外换热器4-1和4-2出来的冷媒经过气侧阀20-1和20-2后通过C和S进入气液分离器14,最后被吸入压缩机1压缩,完成制热循环。
通常制冷运行模式
通常制冷运行模式与空调器的普通制冷运行模式无异。
在一些实施例中,在空调器处于通常制冷运行模式时,参考图1,室外机模块中的气侧阀20-1和20-2均打开,气管节流装置18-1和18-2均关闭,液管节流装置6-1和6-2均打开,节流装置19-1和19-2均关闭,节流件15打开,电磁阀17关闭,电磁阀16打开,室外风机5-1和5-2均打开。
流路切换装置2断电,默认D和C连通且E和S连通,压缩机1将低温低压的冷媒压缩成高温高压状态,经过单向阀2及D和C将压缩机1排出的制冷剂经过气侧阀20-1和20-2后进入室外换热器4-1和4-2。
在室外换热器4-1和4-2热交换后冷凝放热,成为液态冷媒,随后冷媒经过液管节流装置6-1和6-2节流后,经过液侧截止阀8和第二延长配管9,进入室内换热器11-1和11-2内蒸发吸热,变为气态。
室内换热器11-1和11-2出来的冷媒经过第一延长配管12、气侧截止阀13和四通阀的E和S进入气液分离器14,最后被吸入压缩机1压缩,完成制冷循环。
在整个通常制冷运行模式中,室外风机5-1和5-2始终打开。
参见图2,与图1中通常制冷运行模式的区别在于如下。
经过液管节流装置6-1和6-2节流后的冷媒进入过冷器7后分为两路。
一路辅路冷媒经过节流件15进入过冷器7,并与主路冷媒热交换后经过电磁阀16进入气液分离器14。
一路主路冷媒经过液侧截止阀8和第二延长配管9,进入室内换热器11-1和11-2内蒸发吸热,变为气态,室内换热器11-1和11-2出来的冷媒经过第一延长配管12、气侧截止阀13和四通阀的E和S进入气液分离器14,最后被吸入压缩机1压缩,完成制冷循环。
参见图3,与图1中通常制冷运行模式的区别在于如下。
经过液管节流装置6-1和6-2节流后的冷媒分为两路。
一路辅路冷媒经过节流件15进入过冷器7,并与主路冷媒热交换后经过电磁阀16进入气液分离器14。
一路主路冷媒经过液侧截止阀8和第二延长配管9,进入室内换热器11-1和11-2内蒸发吸热,变为气态,室内换热器11-1和11-2出来的冷媒经过第一延长配管12、气侧截止阀13和四通阀的E和S进入气液分离器14,最后被吸入压缩机1压缩,完成制冷循环。
逆向除霜运行模式
空调器的控制装置检测判定室外换热器4-1和/或4-2需要除霜时,压缩机1首先降频或直接停机,室内风机及室外风机停止运行。
然后,四通阀断电换向,压缩机1启动,室外换热器4-1和4-2作为冷凝器执行,开始化霜,即停止对所有室内机的制热而对所有的室外换热器4-1和4-2进行除霜。
在完成除霜后,空调器重新进入通常制热运行模式。
该逆向除霜运行模式的优点是除霜干净,但也存在多个缺点(1)由于除霜期间制热运行停止,室内温度下降比较明显,从而影响用户使用的舒适性;(2)除霜时需要改变冷媒流向,特别是除霜后转制热运行时,由于除霜过程中气液分离器14中储存有大量冷媒,除霜后启动高低压压差建立缓慢,制热能力低下,严重影响制热周期能力。
轮换除霜运行模式
该轮换除霜运行模式是在需要对室外换热器进行除霜,且仍希望室内机具有一定制热能力的情况下运行的,使得在对待除霜的室外换热器(即,除霜换热器)进行除霜的同时,空调器可以保持不间断制热,减小室内温度波动,增强用户制热舒适性。
且在除霜过程中,通过控制除霜换热器的除霜压力,利用制冷剂的潜热进行除霜,相比热气旁通除霜利用显热除霜来说,除霜效率高,除霜时间短,且室内机获取的热量大,用户舒适度高。
在对室外机模块中两个室外换热器进行除霜时,两个待除霜的室外换热器执行轮换除霜运行模式,即两室外换热器4-1和4-2同一时刻只能选择一个进行除霜,另一个作为蒸发器执行。
对室外换热器4-1和4-2进行轮换除霜时,根据除霜条件进入除霜过程,并例如按照预设顺序开始除霜,在除霜过程中,控制装置执行对除霜换热器及其余室外换热器的控制。
对于除霜条件的判断,可根据现有判断依据来进行,例如,根据压缩机的运行时间以及环境温度与室外机盘管温度之间的温差作为判据来判断。
在一些实施例中,参见图1,对室外换热器4-1和4-2轮换除霜进行说明。
S1:流程开始。
S2:空调器执行通常制热运行模式。
S3:判断室外换热器4-1和4-2是否满足除霜条件,若是,进入S4,若否,继续执行S2的通常制热运行模式。
S4:针对多个除霜换热器依次执行轮换除霜运行模式。
根据待除霜的室外换热器4-1和4-2的结霜量,对室外换热器4-1和4-2进行轮换除霜。
可以根据结霜量从大到小的顺序对室外换热器4-1和4-2依次进行除霜。
可通过检测装置(未示出)检测表征结霜量的指标进行结霜量的判断,例如室外换热器4-1和4-2的加热能力、制冷剂的蒸发温度、室内机吹出温度、室外换热器的液管温度等中的至少一个进行检测,并根据检测值得变化来预测室外换热器4-2和4-2的结霜量。
例如,利用室外换热器的液管温度来判断结霜量,在室外换热器的液管温度越小时,其结霜量越大。
假设室外换热器4-1的结霜量大于室外换热器4-2的结霜量,应首先对室外换热器4-1进行除霜,以避免因室外换热器4-1过度结霜而影响其正常运行。此时室外换热器4-2处于通常制热运行模式。
即,室外换热器4-1作为除霜换热器执行,而室外换热器4-2作为蒸发器执行。
在完成对室外换热器4-1的除霜而进入通常制热运行模式后,再对室外换热器4-2进行除霜。
即,切换室外换热器4-1作为除霜换热器执行,而室外换热器4-2作为蒸发器执行。
在一些实施例中,也可以不判断结霜量,而是根据预设顺序进行轮换除霜。
可以选择多次对室外换热器4-1和4-2进行轮换除霜后,进行一次逆向除霜运行模式,以对室外换热器4-1和4-2进行彻底除霜。当然,也可以在其他条件下选择逆向除霜运行模式。
除霜换热器进行除霜的过程描述如下。
S41:控制流路切换装置2上电,控制除霜支路使压缩机1排出的制冷剂与除霜换热器连通,控制关闭与除霜换热器连通的液管节流装置及气侧阀,控制打开与除霜换热器的气管侧连接的节流装置,剩余室外换热器作为蒸发器执行。
以室外机模块中的室外换热器4-1作为除霜换热器执行,进入除霜过程,而室外换热器4-2作为蒸发器执行,保持通常制热运行过程。
保持流路切换装置2处于上电,控制除霜支路18-1'上的气管节流装置18-1打开,关闭室外风机5-1,关闭液管节流装置6-1、关闭气侧阀20-1,打开节流装置19-1,其余装置保持与通常制热运行模式中的状态相同。
参见图1,实线箭头表示室外换热器4-1除霜过程时的冷媒流向。
在进入轮换除霜运行模式时,压缩机1将低温低压的冷媒压缩成高温高压状态,并经过单向阀2排出高温高压制冷剂。
其中一部分高温高压制冷剂经过流路切换装置2的D和E、气侧截止阀13和第一延长配管12进入室内换热器11-1和11-2。
在室内换热器11-1和11-2内部热交换后冷凝放热,成为液态冷媒,随后冷媒经过室内机侧节流装置10-1和10-2、第二延长配管9和液侧截止阀8,进入液管节流装置6-2节流至低温低压气液两态。
其中另一部分高温高压制冷剂经过除霜支路18-1'上的气管节流装置18-1节流到合适压力,随后进入室外换热器4-1内换热除霜。
除霜后的冷媒经过节流装置19-1节流后,与液管节流装置6-2节流后的冷媒汇合,随后一起进入室外换热器4-2换热,此后经过气侧阀20-2和流路切换装置2的C和S进入气液分离器14,最后被吸入压缩机1。
参见图2,与图1中轮换除霜运行模式的区别在于如下。
保持流路切换装置2处于上电,控制除霜支路18-1'上的气管节流装置18-1打开,关闭室外风机5-1,关闭液管节流装置6-1、关闭气侧阀20-1,打开节流装置19-1及节流件15,其余装置保持与通常制热运行模式中的状态相同。
参见图2,在进入轮换除霜运行模式时,压缩机1将低温低压的冷媒压缩成高温高压状态,并经过单向阀2排出高温高压制冷剂。
其中一部分高温高压制冷剂经过流路切换装置2的D和E、气侧截止阀13和第一延长配管12进入室内换热器11-1和11-2。
在室内换热器11-1和11-2内部热交换后冷凝放热,成为液态冷媒,随后冷媒经过室内机侧节流装置10-1和10-2、第二延长配管9和液侧截止阀8后分为两路。
一路主路冷媒经过液管节流装置6-2节流至低温低压气液两态后流出。
另一路辅路冷媒经节流件15节流后进入过冷器7的低压侧并与高压侧换热后经过电磁阀17进入压缩机1的补气口。
其中另一部分高温高压制冷剂经过除霜支路18-1'上的气管节流装置18-1节流到合适压力,随后进入室外换热器4-1内换热除霜。
除霜后的冷媒经过节流装置19-1节流后,与液管节流装置6-2节流后的冷媒汇合,随后一起进入室外换热器4-2换热,此后经过气侧阀20-2和流路切换装置2的C和S进入气液分离器14,最后被吸入压缩机1。
参见图3,与图1中轮换除霜运行模式的区别在于如下。
保持流路切换装置2处于上电,控制除霜支路18-1'上的气管节流装置18-1打开,关闭室外风机5-1,关闭液管节流装置6-1、关闭气侧阀20-1,打开节流装置19-1及节流件15,其余装置保持与通常制热运行模式中的状态相同。
参见图3,在进入轮换除霜运行模式时,压缩机1将低温低压的冷媒压缩成高温高压状态,并经过单向阀2排出高温高压制冷剂。
其中一部分高温高压制冷剂经过流路切换装置2的D和E、气侧截止阀13和第一延长配管12进入室内换热器11-1和11-2。
在室内换热器11-1和11-2内部热交换后冷凝放热,成为液态冷媒,随后冷媒经过室内机侧节流装置10-1和10-2、第二延长配管9和液侧截止阀8后进入过冷器7后分为两路。
一路主路冷媒经过液管节流装置6-2节流至低温低压气液两态后流出。
另一路辅路冷媒经节流件15节流后进入过冷器7的低压侧并与高压侧换热后经过电磁阀17进入压缩机1的补气口。
其中另一部分高温高压制冷剂经过除霜支路18-1'上的气管节流装置18-1节流到合适压力,随后进入室外换热器4-1内换热除霜。
除霜后的冷媒经过节流装置19-1节流后,与液管节流装置6-2节流后的冷媒汇合,随后一起进入室外换热器4-2换热,此后经过气侧阀20-2和流路切换装置2的C和S进入气液分离器14,最后被吸入压缩机1。
在本申请中,根据室外换热器4-1出口过冷度和目标出口过冷度范围,控制调整节流装置19-1的开度,使室外换热器4-1出口过冷度趋向维持在目标出口过冷度范围内。
根据室外换热器4-1的除霜压力及目标除霜压力范围,控制调整气管节流装置18-1的开度保证除霜换热器4-1的除霜压力趋向维持在目标除霜压力范围内,保证除霜压力,利用潜热除霜,提高除霜速度及效率,且保证室内机能力最大化,有助于提高用户室内热舒适性。
在对室外换热器4-1进行除霜时,参见图4,具体描述如何控制节流装置19-1的开度、以及气管节流装置18-1的开度。
进入除霜过程之前,需要设定除霜时节流装置19-1和气管节流装置18-1的初始开度。
例如,由于除霜前节流装置19-1和气管节流装置18-1均是断开的,因此,在除霜之前,需要设定除霜时节流装置19-1的初始开度(例如,全开)和气管节流装置18-1的开度(例如,全开)。
S1':设定室外换热器4-1的目标出口过冷度范围、以及设定目标除霜压力范围。
在本申请中,目标出口过冷度Te1sco存在一个范围,例如0℃≤Te1sco≤10℃。
根据目标出口过冷度Te1sco,设定目标出口过冷度范围(Te1sco-λ,Te1sco+λ],例如0℃<λ<3℃。
在本申请中,目标除霜压力Pfo为环境温度Ta的函数Pfo=f(Ta),函数Pfo=f(Ta)可以是在空调器进行调试时确定的预设函数。
在环境温度传感器检测环境温度Ta时,根据函数f(Ta)可以获知目标除霜压力Pfo的范围。
根据目标除霜压力Pfo,设定目标除霜压力范围(Pfo-δ,Pfo+δ],例如0MPa<δ<0.5MPa。
S2':计算室外换热器4-1的出口过冷度Te1sc。
室外换热器4-1的出口过冷度Te1sc通过(由压力传感器222检测的)除霜压力Pm和室外换热器4-1的(由温度传感器233检测的)出口温度Te1计算。
即,Te1sc=Te1-Tec,其中Tec为除霜压力Pm下对应的饱和温度,可通过现有技术查询获得。
S3':比较出口过冷度Te1sc是否位于目标出口过冷度范围内;
S31':若出口过冷度Te1sc位于目标出口过冷度范围内,保持节流装置19-1的当前开度,并执行至S4';若否,调节节流装置19-1的当前开度,并执行到S4'。
具体调节节流装置19-1的当前开度的过程如下描述。
S32':若出口过冷度Te1sc大于目标出口过冷度范围的上限值时,增大节流装置19-1的开度达一个调节步数,并执行至S4'。
即,节流装置19-1的下次开度EV19-1(n+1)=EV19-1(n)+ΔEV19-1,其中ΔEV19-1是调节步数,其中调节步数可以选择为总开度的0.1%-10% pls(即步数)。
S33':若出口过冷度Te1sc小于目标出口过冷度范围的下限值时,减小节流装置19-1的开度达一个调节步数,并执行至S4'。
即,节流装置19-1的下次开度EV19-1(n+1)=EV19-1(n)-ΔEV19-1,其中ΔEV19-1是调节步数,其中调节步数可以选择为总开度的0.1%-10% pls(即步数)。
S4':比较除霜压力Pm是否位于目标除霜压力范围内,若是,保持通过除霜支路18-1'的制冷剂的量,并执行到S42,若否,调节压缩机1排出的制冷剂的一部分进入除霜换热器4-1的液管侧的制冷剂的量,即调节通过除霜支路18-1'的制冷剂的量,并执行到S42。
通过控制除霜支路18-1'上的气管节流装置18-1的开度来调节通过除霜支路18-1'的制冷剂的量,具体调节如下。
S41':若除霜压力Pm位于目标除霜压力范围内时,保持气管节流装置18-1的开度,并执行到S42。
S42':若除霜压力Pm大于目标除霜压力范围的上限值时,减小气管节流装置18-1的开度达一个调节步数,并执行到S42。
即,气管节流装置18-1的下次开度EV18-1(n+1)=EV18-1(n)-ΔEV18-1,其中ΔEV18-1是调节步数,其中调节步数可以选择为总开度的0.1%-10% pls(即步数)。
S43':若除霜压力Pm小于目标除霜压力范围的下限值时,增大气管节流装置18-1的开度达一个调节步数,并执行到S42。
即,气管节流装置18-1的下次开度EV18-1(n+1)=EV18-1(n)+ΔEV18-1,其中ΔEV18-1是调节步数,其中调节步数可以选择为总开度的0.1%-10% pls(即步数)。
S42:判断除霜是否结束,若是,则退出除霜过程,若否,返回至S2',重新进行调整节流装置19-1和气管节流装置18-1的开度。
作为除霜结束条件可以判断除霜时长t1是否达到第一预设时间T1,或者室外换热器4-1的出口温度Te1是否大于等于第一温度预设值Tef(例如,2℃<Tef<20℃)且维持一定时间段T;若满足两个条件中的其中一个条件,则表示除霜结束,否则继续进行判断。
当然,除霜结束条件也不局限于此,例如也可以使用室外换热器4-1的气管温度Tg是否大于等于设定温度Tn且压缩机1的吸气压力Ps是否大于等于设定压力Po来进行判断;或者也可以使用调整节流装置19-1和气管节流装置18-1的开度的调整次数,等等。
尽管如上所述的S3'在S4'之前执行,但是S3'和S4'的先后顺序不限定,即S4'也可以在S3'之前执行。
在室外换热器4-1除霜结束后,退出除霜过程,并此后进入通常制热运行过程。
室外换热器4-1退出除霜过程而进入通常制热运行过程,包括:
(1)控制除霜支路18-1'上的气管节流装置18-1关闭;
(2)打开室外风机5-1;
(3)打开液管节流装置6-1;
(4)打开气侧阀20-1;
(5)关闭节流装置19-1。
此后,室外换热器4-2作为除霜换热器,进入除霜过程,而室外换热器4-1作为蒸发器,保持通常制热运行过程。
保持流路切换装置3上电,控制除霜支路18-2'上的气管节流装置18-2打开、节流装置19-2,关闭室外风机5-2、液管节流装置6-2及气侧阀20-2,其余装置保持与通常制热运行模式中的状态相同。
室外换热器4-2的除霜过程参见室外换热器4-1的除霜过程,在此不做赘述。
[风场隔离]
室外机模块设置有两个室外风机5-1和5-2,其分别对应于室外换热器4-1和4-2。
室外风机5-1和5-2分别独立地受控制装置控制,且室外换热器4-1及其室外风机5-1形成第一风场,且室外换热器4-2及其室外风机5-2形成第二风场。
由于在室外换热器4-1进行除霜时,室外风机5-2保持运行状态,因此,为了避免该室外风机5-2产生的风场吹过室外换热器4-1,而使室外换热器4-1无法有效除霜的情况,在本申请中,设置有用于分隔风场的分隔装置(未示出)(此部分可参见申请号为202010279447.2、发明名称为“空调室外机”的专利文件)。
分隔装置用于分离第一风场和第二风场。
即,在室外风机5-1运行而室外风机5-2不运行时,其不会将风吹向室外换热器4-2,而室外风机5-2运行且室外风机5-1不运行时,其不会将风吹向室外换热器4-1。
这样,在室外换热器4-1进行除霜时,由于分隔装置分离第一风场和第二风场,因此,即使室外风机5-2仍运行,对第一风场也不会产生影响。
由此,有效避免在室外换热器4-1进行除霜时其表面有风吹过,进而防止在室外温度较低时出现冷凝负荷过大而无法有效除霜的情况,可以实现全温区不间断制热。
此外,在室外风机5-1停止运行(即室外换热器4-1正在除霜)时,可以适当提高室外风机5-2的转速,进一步增强制热效果,减小室内温度波动,大大改善空调器制热能力及用户制热舒适性。
且在室外换热器4-1退出除霜过程而进入通常制热运行过程时,对应打开室外风机5-1而关闭室外风机5-2,并且可以适当提高室外风机5-1的转速。
[均匀除霜]
图5示出了室外换热器一种实施例的结构图。
图6示出了空调器又一实施例的系统结构图,其中空调器中的室外换热器采用图5中室外换热器的结构。
参见图5,室外换热器4-1和4-2的结构相同,如下以室外换热器4-1的结构为例进行说明。
室外换热器4-1包括换热器本体41、与换热器本体41连通的主气管42、与换热器本体41连通的第一分流组件和第二分流组件、与第一分流组件连接的液管L1和与第二分流组件连接的液管L2汇合形成主液管43。
其中主气管42的主气管连接管与气侧阀20-1以及节流装置19-1的一端连接。
其中第一分流组件包括与换热器本体41连通的第一分流毛细管41A和与第一分流毛细管41A连通的第一分流头41A'。
第二分流组件包括与换热器本体41连通的第二分流毛细管41B和与第二分流毛细管41B连通的第二分流头41B'。
与第一分流头41A连接的液管L1和与第二分流头41B'连接的液管L2汇合形成主液管43。
一般地,在空调器通常制热运行时,与第一分流组件连接的换热器本体41的一部分4-1A所在的风速大于与第二分流组件连接的换热器本体41的一部分4-1B所在的风速,因此,室外换热器4-1的部分4-1A的结霜量小于室外换热器4-1的部分4-1B的结霜量。
且又基于空调器通常制热时,考虑风场与冷媒量匹配,以实现制热最优的效果,一般地,风量较大的地方毛细管的阻力会设计的小一些,以便通过较多的冷媒量,而风量较小的地方毛细管的阻力会设计的大一些,以便通过较少的冷媒量。
即,进入室外换热器4-1的部分4-1A的阻力小于进入室外换热器4-1的部分4-1B的阻力。
在轮换除霜时,室外换热器4-1的部分4-1A的结霜量小、对应的阻力却小,且进入的冷媒量较多;而室外换热器4-1的部分4-1B的结霜量大、对应的阻力却大,且进入的冷媒量较少。
这样,会导致室外换热器4-1的部分4-1A的除霜速度快,而室外换热器4-1的部分4-1B的除霜速度慢,延长整个除霜时间,且浪费除霜时的冷媒能量,增加除霜功耗,不节能。
为此,在室外换热器4-1的第二分流头41B'至主液管43之间的管路L2上设置有节流件21-1。
该节流件21-1不受外界控制,其开度一定,可以选择具有固定开度的节流毛细管,也可以选择节流毛细管和单向阀的组合、或节流毛细管和电磁阀的组合等。
具有如上结构的室室外换热器4-1结构的空调器进行通常制热运行模式时,节流件21-1和室外换热器4-1的第二分流毛细管41B串联,其阻力仍大于室外换热器4-1的第一分流毛细管41A的阻力,能够实现图1中同等的制热节能阻力效果,保证制热分流均匀,实现制热最优。
在进行如上所述的轮换除霜运行模式时,经过气管节流装置18-1节流后的制冷剂分为两路。
一路制冷剂经过室外换热器4-1的第一分流头41A'和第一分流毛细管41A进入换热器本体41换热。
另一路制冷剂经过室外换热器4-1的第二分流头41B'和第二分流毛细管41B进入换热器本体41换热。此时,由于第二分流毛细管41B的阻力小于节流件21-1的阻力和第一分流毛细管41B的阻力之和,因此,此路制冷剂仅流向第二分流头41B'。
这样,由于除霜时不经过节流件21-1,因此,降低除霜时进入室外换热器4-1的部分4-1B的阻力,增大室外换热器4-1的部分4-1B内的冷媒流量,从而提升室外换热器4-1的部分4-1B的除霜速度,实现室外换热器4-1均匀除霜,提升整体除霜速度、降低除霜功耗、实现节能。
参见图5,除霜支路18-1'/18-2'将压缩机1排出的制冷剂的一部分分支,并对应选择室外换热器4-1/4-2,而使制冷剂分别通过第一分流头41A'和第二分流头41B'流入室外换热器4-1。
一般地,室外风机5-1设置在室外换热器4-1的上方,因此,室外换热器4-1的一部分4-1A为室外换热器4-1的上部,室外换热器4-1的一部分4-1B为室外换热器4-1的下部。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

1.一种空调器,其特征在于,包括:
至少一个室内机;
一个室外机模块,包括:
压缩机;
流路切换装置,其用于切换从所述压缩机排出的制冷剂的流路;
并列设置的两个室外换热器;
两个液管节流装置,其各自连接各室外换热器和所述室内机;
两个气侧阀,其各自连接所述流路切换装置和各室外换热器气侧;
除霜支路,其将所述压缩机排出的制冷剂的一部分分支,并对应选择两个室外换热器中的一个而使制冷剂流入;
两个节流装置,其各自一端连接对应室外换热器的主气管,另一端连接对应另一室外换热器的液管节流装置连接在所述另一室外换热器主液管的位置处;
控制装置,其控制各流路切换装置、各气侧阀、各液管节流装置、各节流装置及各除霜支路,对待除霜的室外换热器进行轮换除霜,使一个待除霜的室外换热器作为除霜换热器执行,另一个室外换热器作为蒸发器执行;
在轮换除霜时,所述控制装置控制所述流路切换装置上电;控制所述除霜支路使所述压缩机排出的制冷剂与除霜换热器的液侧管连通;控制关闭与所述除霜换热器连通的气侧阀及液管节流装置;控制打开与所述除霜换热器的气管侧连接的节流装置。
2.根据权利要求1所述的空调器,其特征在于,
在对除霜换热器进行除霜时,所述控制装置被配置为:
控制打开与所述除霜换热器连接的节流装置,根据所述除霜换热器的出口过冷度及目标出口过冷度范围,控制调整所述节流装置的开度;
根据除霜压力及目标除霜压力范围,控制调整所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量。
3.根据权利要求2所述的空调器,其特征在于,
控制打开所述节流装置,根据所述除霜换热器的出口过冷度及目标出口过冷度范围,控制调整所述节流装置的开度,具体为:
设定所述目标出口过冷度范围;
计算所述除霜换热器的出口过冷度;
比较所述出口过冷度是否位于所述目标出口过冷度范围内,若是,保持当前所述节流装置的开度,若否,调节所述节流装置的开度;
根据除霜压力及目标除霜压力范围,控制调整所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量,具体为:
设定目标除霜压力范围;
计算所述待除霜换热器的除霜压力;
比较所述除霜压力是否位于所述目标除霜压力范围内,若是,保持通过所述除霜支路的制冷剂的量,若否,调节所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量。
4.根据权利要求3所述的空调器,其特征在于,
调节所述节流装置的开度,具体为:
在所述出口过冷度大于所述目标出口过冷度范围的上限值时,增大所述节流装置的开度;
在所述出口过冷度小于所述目标出口过冷度范围的下限值时,减小所述节流装置的开度;
调节通过所述除霜支路的制冷剂的量,具体为:
在所述除霜压力大于所述目标除霜压力范围的上限值时,减小所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量;
在所述除霜压力小于所述目标除霜压力范围的下限值时,增加所述压缩机排出的制冷剂的一部分进入所述除霜换热器的液管侧的制冷剂的量。
5.根据权利要求1至4中任一项所述的空调器,其特征在于,
在对除霜换热器进行除霜时,若达到第一预设除霜时间,或者
若所述除霜换热器的出口温度大于等于第一温度预设值且维持一定时间段,所述除霜换热器退出除霜过程而进入通常制热运行过程。
6.根据权利要求2至4中任一项所述的空调器,其特征在于,
所述目标除霜压力范围与环境温度有关。
7.根据权利要求1所述的空调器,其特征在于,每个室外换热器包括:
换热器本体;
第一分流组件和第二分流组件,其并行位于所述换热器本体液侧,所述换热器本体的对应所述第一分流组件的部分所在的风速大于对应所述第二分流头所在的风速,所述第一分流组件的自由端和所述第二分流组件的自由端分别连接所述室外换热器的主液管;
第一节流件,其设置在所述第二分流组件的自由端至所述主液管之间的管路上。
8.根据权利要求1至4、7中任一项所述的空调器,其特征在于,所述空调器还包括过冷器,且包括:
主路冷媒通道,其与所述压缩机、室外换热器及室内机形成制冷循环主路;
第二节流件,其连接在补气回气管路上,所述补气回气管路的一端连接所述主路冷媒通道的上游或下游;
辅路冷媒通道,其一端连接所述补气回气管路的另一端,另一端与所述压缩机或气液分离器连接。
9.根据权利要求1至4、7中任一项所述的空调器,其特征在于,所述室外机模块还包括:
两个室外风机,其各自对应两个室外换热器且与所述控制装置连接,各室外风机分别与其对应的室外换热器形成一风场;
分隔装置,其用于分隔相邻风场;
在轮换除霜时,所述控制装置控制关闭与所述除霜换热器对应的室外风机。
10.根据权利要求9所述的空调器,其特征在于,
在所述室外机模块中一个室外换热器正在除霜时,提高所述室外机模块中另一室外换热器对应的室外风机的转速。
CN202011370488.9A 2020-11-30 2020-11-30 空调器 Pending CN112443996A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011370488.9A CN112443996A (zh) 2020-11-30 2020-11-30 空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011370488.9A CN112443996A (zh) 2020-11-30 2020-11-30 空调器

Publications (1)

Publication Number Publication Date
CN112443996A true CN112443996A (zh) 2021-03-05

Family

ID=74737690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011370488.9A Pending CN112443996A (zh) 2020-11-30 2020-11-30 空调器

Country Status (1)

Country Link
CN (1) CN112443996A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100081621A (ko) * 2009-01-06 2010-07-15 엘지전자 주식회사 공기조화기 및 공기조화기의 제상운전방법
JP2013122354A (ja) * 2011-12-12 2013-06-20 Samsung Electronics Co Ltd 空気調和装置
CN104236185A (zh) * 2013-06-19 2014-12-24 珠海格力电器股份有限公司 空调系统
CN104764112A (zh) * 2015-04-19 2015-07-08 上海交通大学 一种除霜过程中室内不间断制热的空调系统
CN204943718U (zh) * 2015-03-30 2016-01-06 特灵空调系统(中国)有限公司 换热系统
CN105247302A (zh) * 2013-05-31 2016-01-13 三菱电机株式会社 空调装置
CN107144036A (zh) * 2017-05-19 2017-09-08 青岛海信日立空调系统有限公司 补气增焓的制冷剂循环系统、空调器及空调器控制方法
CN109154463A (zh) * 2016-05-16 2019-01-04 三菱电机株式会社 空气调节装置
CN111664549A (zh) * 2020-06-10 2020-09-15 青岛海信日立空调系统有限公司 空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100081621A (ko) * 2009-01-06 2010-07-15 엘지전자 주식회사 공기조화기 및 공기조화기의 제상운전방법
JP2013122354A (ja) * 2011-12-12 2013-06-20 Samsung Electronics Co Ltd 空気調和装置
CN105247302A (zh) * 2013-05-31 2016-01-13 三菱电机株式会社 空调装置
CN104236185A (zh) * 2013-06-19 2014-12-24 珠海格力电器股份有限公司 空调系统
CN204943718U (zh) * 2015-03-30 2016-01-06 特灵空调系统(中国)有限公司 换热系统
CN104764112A (zh) * 2015-04-19 2015-07-08 上海交通大学 一种除霜过程中室内不间断制热的空调系统
CN109154463A (zh) * 2016-05-16 2019-01-04 三菱电机株式会社 空气调节装置
CN107144036A (zh) * 2017-05-19 2017-09-08 青岛海信日立空调系统有限公司 补气增焓的制冷剂循环系统、空调器及空调器控制方法
CN111664549A (zh) * 2020-06-10 2020-09-15 青岛海信日立空调系统有限公司 空调器

Similar Documents

Publication Publication Date Title
CN213841110U (zh) 空调器
CN111664549B (zh) 空调器
US5388422A (en) Air-conditioning system
US20230184471A1 (en) Air conditioning system with capacity control and controlled hot water generation
CN213841111U (zh) 空调器
WO2010082325A1 (ja) 空気調和装置
CN112444000A (zh) 空调器
CN112444001A (zh) 空调器
CN112443997A (zh) 空调器
CN113154522B (zh) 一种多联空调机系统及除霜控制方法
CN108151350B (zh) 三管制多联机系统及其控制方法
CN114151934B (zh) 空调器
WO2022110761A1 (zh) 一种空调器
CN112443998A (zh) 空调器
CN112444002A (zh) 空调器
CN112444003A (zh) 空调器
CN213089945U (zh) 一种空调装置
CN112443996A (zh) 空调器
CN111928343A (zh) 一种热泵空调系统及其除霜方法
CN112728800A (zh) 空调器
CN214501455U (zh) 空调器
CN216814403U (zh) 空气源热泵系统
CN114812017B (zh) 喷气增焓系统及其运行方法
US20240133602A1 (en) Air conditioner
US20240027077A1 (en) Hybrid multi-air conditioning system and method for controlling a hybrid multi-air conditioning system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210305