WO2009150761A1 - 冷凍サイクル装置、並びにその制御方法 - Google Patents

冷凍サイクル装置、並びにその制御方法 Download PDF

Info

Publication number
WO2009150761A1
WO2009150761A1 PCT/JP2008/070445 JP2008070445W WO2009150761A1 WO 2009150761 A1 WO2009150761 A1 WO 2009150761A1 JP 2008070445 W JP2008070445 W JP 2008070445W WO 2009150761 A1 WO2009150761 A1 WO 2009150761A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
expansion valve
refrigeration cycle
pipe
Prior art date
Application number
PCT/JP2008/070445
Other languages
English (en)
French (fr)
Inventor
慎一 若本
史武 畝崎
威 倉持
等 飯嶋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN200880129793XA priority Critical patent/CN102066851B/zh
Priority to US12/995,343 priority patent/US9163865B2/en
Priority to EP08874614.4A priority patent/EP2314953B1/en
Priority to JP2010516723A priority patent/JP5318099B2/ja
Publication of WO2009150761A1 publication Critical patent/WO2009150761A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/064Superheater expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0419Refrigeration circuit bypassing means for the superheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus that uses a refrigerant having a small global warming potential.
  • a conventional refrigeration cycle apparatus includes a compressor that compresses a medium-temperature and low-pressure refrigerant (hereinafter referred to as “medium-temperature and low-pressure” for convenience of explanation), and a condensation that condenses the compressed refrigerant (hereinafter referred to as “high-temperature and high-pressure refrigerant”). And an evaporator for expanding the condensed refrigerant (hereinafter referred to as “medium-temperature high-pressure refrigerant”) and an evaporator for evaporating the expanded refrigerant (hereinafter referred to as “low-temperature low-pressure refrigerant”). It is formed by being connected (hereinafter, this configuration is referred to as “main circuit”). At this time, in order to increase the refrigeration effect on the load side, an invention is disclosed in which the medium temperature and high pressure refrigerant is cooled to a “supercooled” state and then supplied to the expansion valve (see, for example, Patent Document 1). ).
  • the conventional refrigeration cycle apparatus uses a nonflammable HFC (hydrofluorocarbon) refrigerant such as R410A, the greenhouse effect of the refrigerant is as large as about 2000 times that of carbon dioxide. It has been pointed out that if refrigerant leaks inadvertently during repair or the like, it will drift into the atmosphere without being decomposed for a long time, thus accelerating global warming.
  • HFC hydrofluorocarbon
  • Patent Document 1 The invention disclosed in Patent Document 1 is provided with a bypass pipe that bypasses the expansion valve and the evaporator (the same as the shortcut pipe that directly connects the upstream of the expansion valve and the upstream of the compressor), and the bypass pipe is expanded in the bypass pipe.
  • a refrigeration effect is increased by providing heat exchange between the low-temperature and low-pressure refrigerant after passing through the bypass expansion valve and the medium-temperature and high-pressure refrigerant flowing directly into the expansion valve.
  • Allowable refrigerant amount [kg] lower limit of combustion [kg / m 3 ] ⁇ 4 [m 3 ] The following are stipulated.
  • This allowable refrigerant amount is, for example, about 150 g for strongly flammable propane (global warming potential is about 1/600 of R410A), and about 1200 g for weakly flammable dichloromethane or tetrafluoropropylene.
  • refrigerants with low GWP are limited to applications such as household refrigerators that use very little refrigerant.
  • low GWP refrigerants refrigerants with low combustion lower limit
  • assuming that the flammable refrigerant leaks into the air-conditioned space where the indoor unit is installed or the indoor space where a refrigeration system such as a showcase is installed The amount of refrigerant that is originally necessary for exhibiting the required refrigeration capacity cannot be enclosed, and the amount of refrigerant in the refrigeration cycle apparatus is insufficient compared to the conventional HFC refrigerant.
  • gas density difference when the gas density is small and the difference in density between the liquid phase and the gas phase (hereinafter referred to as “gas density difference”) is large, the low GWP refrigerant flows in a gas-liquid two-phase state, and the liquid evaporates.
  • gas density difference the difference in density between the liquid phase and the gas phase
  • the liquid evaporates.
  • the flow rate of the refrigerant in the gas-liquid two-phase state in the evaporator increases, and the performance due to an increase in the pressure loss of the refrigerant in the evaporator increases.
  • the “pressure difference” between the liquid pressure at the inlet and the gas pressure at the outlet of the evaporator needs to be set to a predetermined value for suppressing the decrease in efficiency that causes the decrease (Problem 2).
  • the present invention has been made to solve the above-mentioned problem 1 or problem 2, and can reduce the greenhouse effect due to refrigerant leakage and the like, and the refrigerant at the outlet of the condenser is gas-liquid.
  • An object of the present invention is to provide a refrigeration cycle apparatus capable of performing stable refrigerant flow control for bringing the refrigerant at the inlet of an expansion valve into a supercooled state even in an operation that is in a two-phase state, and a control method therefor.
  • a refrigeration cycle apparatus capable of setting the “evaporator pressure difference” between the liquid pressure at the inlet and the gas pressure at the outlet of the evaporator, which can prevent an increase in pressure loss in the evaporator, and a control method thereof. The purpose is to provide.
  • a refrigeration cycle apparatus supercharges a compressor that compresses a combustible refrigerant, a condenser that condenses the combustible refrigerant compressed in the compressor, and the combustible refrigerant discharged from the condenser.
  • Control means for controlling the heat exchange amount of the heat exchanger according to the temperature or the refrigerant pressure.
  • control method uses a flammable refrigerant or a toxic refrigerant as a refrigerant, exposes the refrigerant piping to the cooled space, and the refrigerant concentration when the refrigerant leaks and diffuses into the cooled space is the flammable concentration.
  • a method for controlling a refrigeration cycle in which the charging amount of the refrigerant is limited so that it is less than or less than the toxic permissible concentration for the human body the detection step detecting the state of the refrigerant condensed in the condenser, and the detection step Based on the state of the refrigerant detected in step 1, the refrigerant that has become a gas-liquid two-phase state on the outlet side of the condenser due to the condensation pressure that depends on the refrigerant charge amount in the refrigeration cycle is supercooled, and before the expansion valve. And a step of suppressing pressure pulsation.
  • the refrigeration cycle apparatus supercools the refrigerant on the upstream side of the expansion valve even in an operation in which there is a restriction on the refrigerant charging amount due to the flammability of the refrigerant and the heat dissipation amount of the condenser is reduced. Since it can be in a state, the refrigeration cycle apparatus can be stably operated. Further, by providing the bypass pipe and the superheat control unit, it is possible to prevent an increase in pressure loss in the evaporator.
  • FIG. 2 is a ph diagram (Mollier diagram) showing the transition of the refrigerant for explaining the operation in the refrigeration cycle apparatus according to the first embodiment of the present invention.
  • the refrigerant circuit figure explaining the structure of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention.
  • coolant The schematic diagram explaining the relationship between the length of the flow direction of the heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention, and the temperature of a refrigerant
  • the refrigerant circuit figure which shows an example of the flow path of the refrigerant
  • FIG. 1 is a refrigerant circuit diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • a refrigeration cycle apparatus 100 includes a compressor 1 that compresses a refrigerant, a condenser 2 that condenses the compressed refrigerant, an expansion valve that expands the condensed refrigerant (a flow control valve such as an electronic expansion valve, a capillary, and the like.
  • the main circuit includes a low-temperature and low-pressure pipe 34 that connects the expansion valve 3 and the evaporator 4, and an intermediate-temperature and low-pressure pipe 41 that connects the evaporator 4 and the compressor 1.
  • bypass circuit (to be precise, a circuit is configured) including a bypass pipe 5 that connects to 41 and a bypass expansion valve (a flow control valve such as an electronic expansion valve, a capillary tube, etc.) 6 installed in the bypass pipe 5. It is partly called “circuit” for convenience of explanation.
  • “high temperature, medium temperature, low temperature” and “high pressure, low pressure”, which modify high-temperature and high-pressure piping and low-temperature and low-pressure refrigerant, are used for convenience of description, and are classified according to predetermined absolute values. Is not to be done.
  • the pressure in the high-temperature high-pressure pipe 12 and the pressure in the medium-temperature high-pressure pipe 23 are the same or different, and the temperature in the medium-temperature high-pressure pipe 23 and the temperature in the medium-temperature low-pressure pipe 41 are the same or different.
  • the pipes constituting the main circuit such as the high-temperature and high-pressure pipe 12 are collectively or referred to as “circulation pipes”.
  • the refrigeration cycle shown in FIG. 1 is used for a domestic air conditioner, a commercial air conditioner having a plurality of indoor units, a refrigeration apparatus installed in a showcase or a refrigeration facility, and the like.
  • the load side device having the evaporator 4 is provided in an air-conditioned space or an indoor installation space that is a cooled space, and the evaporator 4 and its connection pipe are exposed to the cooled space via a grill or the like.
  • the heat source side device having the compressor 1, the condenser 2, the expansion valve 3, the bypass pipe 5, and the like is typically installed outdoors, and the load side device and the heat source side device have various short and long lengths according to the installation conditions. Connected by piping.
  • the expansion valve 3 can be provided not on the heat source side device but on the load side device.
  • the refrigerant charge amount is designed to reduce the volume of the air-conditioned space or the space to be frozen and the combustion of the refrigerant to be used.
  • a value obtained by multiplying the limit (combustion lower limit concentration) or the toxic concentration allowable value considering the influence on the human body is the allowable refrigerant amount.
  • the assumed volume is set to 4 [m 3 ] which is equal to or less than the volume of the air-conditioned space in consideration of the local accumulation of refrigerant. Accordingly, the amount of refrigerant that can be charged in the refrigeration cycle apparatus is limited, and in the conventional refrigeration cycle apparatus, a sufficient refrigerant charging amount cannot be secured, and a gas-liquid two-phase refrigerant tends to flow from the condenser outlet.
  • Heat exchanger Further, heat for exchanging heat between the medium temperature and high pressure refrigerant flowing through the medium temperature and high pressure pipe 23 and the refrigerant flowing downstream of the bypass expansion valve 6 of the bypass pipe 5 (hereinafter also referred to as “bypass low temperature and low pressure refrigerant”).
  • An exchanger 7 is provided.
  • a supercooling degree sensor T73 (supercooling degree detection unit) is provided upstream of the expansion valve 3 (downstream of the heat exchanger 7 of the medium temperature and high pressure pipe 23).
  • the supercooling degree sensor T73 may be any sensor as long as it can measure the degree of supercooling of the refrigerant (main flow) flowing through the intermediate temperature / intermediate pressure pipe 23.
  • a pressure sensor that detects the refrigerant pressure and a temperature sensor that detects the refrigerant temperature can be used.
  • the supercooling degree control unit 11a controls the degree of supercooling upstream of the expansion valve 3 by controlling the opening degree of the expansion valve 3 from the detection value of the supercooling degree sensor T73.
  • the evaporator inlet pressure sensor P34 is upstream of the evaporator 4 (downstream of the expansion valve 3 of the low-temperature low-pressure pipe 34), and the evaporator outlet pressure is downstream of the evaporator 4 (upstream of the compressor 1 of the medium-temperature low-pressure pipe 41).
  • Each sensor P41 is installed.
  • the bypass pipe 5 is provided with a superheat degree sensor T71 downstream of the heat exchanger 7 (upstream of the junction with the main circuit).
  • the superheat degree sensor T71 (superheat degree detection unit) may be any sensor as long as it can detect the superheat degree of the refrigerant (secondary flow) flowing through the bypass pipe 5.
  • the outlet side bypass pipe 5 is provided with a temperature sensor for detecting the refrigerant temperature and a pressure sensor for measuring the refrigerant pressure, and the degree of superheat is measured from these detected values.
  • the superheat degree control part 11b controls the superheat degree of the bypass pipe 5 by adjusting the opening degree of the bypass expansion valve 6 from the detection value of the superheat degree sensor T71.
  • the supercooling degree control unit 11a and the superheat degree control unit 11b are part of the control means for controlling the refrigeration cycle apparatus, and need not be separate from each other. Group).
  • the refrigerant used in the refrigeration cycle apparatus 100 is a refrigerant having a small global warming potential and having a greenhouse effect smaller than that of the HFC refrigerant, such as propane, dichloromethane, chloromethane, difluoroethane, tetrafluoropropylene, and the like. It is the refrigerant
  • the “tetrafluoropropylene” refers to all tetrafluoropropylene including various isomers.
  • FIG. 2 is a flowchart for explaining the control method of the refrigeration cycle apparatus according to Embodiment 2 of the present invention, and shows the supercooling degree control and the superheat degree control of the control means.
  • This initial value is a value (a positive value of 0 or more) that is appropriately adjusted according to the installation conditions and the type of the refrigeration apparatus, and is stored in advance in a nonvolatile memory or the like.
  • the superheat degree control unit 11b sets the evaporator pressure difference target value ⁇ Po to a value suitable for the system specifications of the refrigeration cycle apparatus, that is, a value at which the performance is (highest) according to the refrigeration capacity of the evaporator. .
  • the supercooling degree control unit 11a is connected to the temperature sensor and pressure sensor of the supercooling degree sensor T73 installed on the path from the heat exchanger 7 to the expansion valve 3 (downstream from the branch point of the bypass pipe 5 of the medium temperature high pressure pipe 23).
  • the detected values of the condenser outlet temperature Th and the condenser temperature outlet pressure Pc are acquired as refrigerant state information (S2).
  • the condensation outlet saturation temperature Tcs may be stored in advance in a table having Th and Pc as parameters from the ph diagram as shown in FIG. You may obtain
  • the degree of supercooling control unit 11a increases the opening of the expansion valve 3 (S7).
  • the degree of supercooling SC is close to the target value, the process proceeds to the next superheat degree control.
  • the supercooling degree control unit 11a restricts the opening of the expansion valve 3 to increase the pressure difference between the inlet and outlet of the expansion valve and condense.
  • the vessel outlet pressure Pc increases.
  • the temperature difference between the refrigerant and the medium to be heated in the condenser 2 and the heat exchanger becomes large, and in the condenser 2 and the heat exchanger 7, the temperature of the medium-temperature high-pressure refrigerant is decreased and the cold heat is transferred in the heat exchanger 7.
  • the amount increases, the temperature of the medium temperature and high pressure refrigerant decreases, and the degree of supercooling increases.
  • the degree of supercooling is greater than a predetermined value
  • the opposite operation is performed to lower the degree of supercooling of the medium temperature and high pressure refrigerant.
  • the gas phase and liquid phase are passed when the refrigerant passes through the expansion valve 3. It is possible to effectively suppress the pressure pulsation generated by alternately repeating the above.
  • a control means performs superheat degree control by the superheat degree control part 11b which is demonstrated below.
  • the superheat degree control part 11b acquires the detected values of the outlet temperature Tl and the outlet pressure Pl on the low pressure side of the heat exchanger 7 as refrigerant state information from the temperature sensor and pressure sensor of the superheat degree sensor T71 (S8).
  • the superheat degree control unit 11b acquires the low pressure side outlet saturation temperature Tls of the heat exchanger 7 from the low pressure side outlet pressure Pl of the heat exchanger (S9), and the low pressure side outlet superheat degree SH of the heat exchanger 7 is obtained.
  • SH Tls ⁇ Tl
  • the saturation temperature Tls can be calculated from Tl and Pl based on the ph diagram or can be calculated by a predetermined calculation algorithm.
  • the degree control unit 11b decreases the opening of the bypass expansion valve 6 and adjusts the opening from the current opening to a slightly smaller opening (S12).
  • the degree of superheat control unit 11b increases the opening of the bypass expansion valve 6 (S13).
  • the process proceeds to the next superheat degree target value control.
  • the control means performs superheat degree target value control for reducing pressure loss following the superheat degree control.
  • the superheat degree control unit 11b sends the evaporator inlet pressure (Pein) from the evaporator inlet pressure sensor P34 installed in the path (low temperature and low pressure pipe 34) leading to the evaporator 4, and reaches the compressor 1 from the evaporator 4.
  • the detected value of the evaporator outlet pressure (Peout) is acquired from the evaporator outlet pressure sensor P41 installed in the path (medium temperature low pressure pipe 41) (S14).
  • the superheat degree control unit 11b decreases the superheat degree target value SHo by a predetermined value (for example, 1 ° C.) and is close to the target value. If so, the current superheat degree target value SHo is maintained, and the superheat degree target value control is terminated.
  • the control means determines whether or not to stop the operation from the presence or absence of an operation switch (not shown) or an operation stop command through the network (S19), and if not, returns to step S2.
  • the above supercooling control, superheat degree control, and superheat degree target control are repeated.
  • the superheat degree target control when the evaporator pressure difference ⁇ P becomes larger than the target value, the superheat degree target value Sho is set smaller, and the opening degree of the bypass expansion valve 6 controlled by the superheat degree control becomes larger.
  • the amount of refrigerant flowing through the bypass pipe 5 increases, and the amount of refrigerant flowing through the main circuit (low-temperature and low-pressure refrigerant that has passed through the expansion valve 3) decreases accordingly. As a result, the evaporator inlet pressure Pein is reduced and the pressure loss can be reduced.
  • the adjustment range of the superheat degree target value SHo is a fixed value, and a method of gradually adjusting the superheat degree target value SHo while observing the situation is used.
  • the degree of opening may be increased.
  • the superheat degree target value SHo is set to be larger than the current superheat degree, and the opening of the bypass expansion valve 6 is reduced to suppress the flow of excess refrigerant.
  • FIG. 3 is a refrigerant circuit diagram showing the refrigerant flow
  • FIG. 4 is a p- It is an h diagram (Mollier diagram).
  • 1 to FIG. 4 parts that are the same as the parts in FIG. 1 to FIG. 4 are given the same reference numerals and explanations thereof are omitted, and the refrigerant states a to f shown in FIG.
  • coolant state in the location shown by is shown.
  • a medium-temperature and low-pressure vapor refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure vapor refrigerant.
  • the refrigerant compression process of the compressor 1 is represented by an isentropic curve shown from the state a to the state b in FIG. 4 assuming that heat does not enter and leave the surroundings.
  • the high-temperature and high-pressure refrigerant discharged from the compressor flows into the condenser 2 and condenses while dissipating heat to air and water, and becomes a medium-temperature and high-pressure refrigerant in a gas-liquid two-phase state.
  • the change of the refrigerant in the condenser is performed under a substantially constant pressure.
  • the refrigerant change at this time is represented by a slightly inclined straight line that is inclined slightly from the state b to the state c in FIG. 4 in consideration of the pressure loss due to the pipe resistance in the condenser.
  • the medium-temperature high-pressure refrigerant in the gas-liquid two-phase state that has flowed out of the condenser 2 flows into the heat exchanger 7 and exchanges heat with the low-temperature and low-pressure refrigerant flowing in the bypass pipe 5 (the cold heat from the refrigerant expanded in the bypass expansion valve 6).
  • the product is further condensed and becomes a liquid medium temperature / high pressure refrigerant.
  • the change of the medium temperature and high pressure refrigerant in the heat exchanger 7 is performed under a substantially constant pressure.
  • This change in the refrigerant is represented by a slightly inclined straight line that is slightly inclined from the state c to the state d in FIG. 4 in consideration of the pressure loss of the heat exchanger 7.
  • the low-temperature and low-pressure refrigerant in the gas-liquid two-phase state that has exited the bypass expansion valve 6 flows into the heat exchanger 7 and exchanges heat with the intermediate-temperature and high-pressure refrigerant that has exited from the condenser 2, and is deprived of cold heat to become a vapor-like medium temperature. It becomes a low-pressure refrigerant.
  • the change of the low-temperature and low-pressure refrigerant in the heat exchanger 7 is performed under a substantially constant pressure.
  • the refrigerant change at this time is represented by a slightly inclined horizontal line shown in FIG. 4 from state f to state a in consideration of the pressure loss of the heat exchanger 7.
  • the low-temperature and low-pressure refrigerant in the gas-liquid two-phase state that exits the expansion valve 3 flows into the evaporator 4 and evaporates and gasifies while exchanging heat with air or the like, and becomes a vapor-like medium-temperature and low-pressure refrigerant.
  • the change of the refrigerant in the evaporator 4 is performed under a substantially constant pressure.
  • the change in the refrigerant at this time is represented by a slightly inclined straight line that is slightly inclined from the state e to the state a in FIG. 4 in consideration of the pressure loss of the evaporator 4.
  • the vapor-shaped medium temperature and low-pressure refrigerant discharged from the evaporator 4 is mixed with the vapor-shaped refrigerant discharged from the bypass pipe 5 and flows into the compressor 1 to be compressed. Note that the vapor-like medium-temperature low-pressure refrigerant immediately before flowing into the compressor 1 passes through the medium-temperature low-pressure pipe 41, so that the pressure is slightly lower than that of the medium-temperature low-pressure refrigerant just after leaving the evaporator 4, but in FIG. It is represented by the same state a.
  • the liquid medium-temperature high-pressure refrigerant immediately before flowing into the expansion valve 3 radiates a little while passing between the heat exchanger 7 of the medium-temperature high-pressure pipe 23 and the expansion valve 3, so that it is discharged from the heat exchanger 7.
  • the pressure is slightly lower than that immediately after the medium-temperature high-pressure liquid, it is represented by the same state c in FIG. Since the pressure loss due to the pressure drop of the refrigerant caused by the passage of the pipe is the same in the following embodiments, the description is omitted except when necessary.
  • the medium-temperature high-pressure refrigerant at the outlet of the condenser 2 may be in a gas-liquid two-phase state.
  • the medium-temperature high-pressure refrigerant at the inlets of the expansion valve 3 and the bypass expansion valve 6 is also in operation where the medium-temperature high-pressure refrigerant at the outlet of the condenser 2 is in a gas-liquid two-phase state. Since it is possible to control to be in a supercooled state, stable refrigerant flow rate control (expansion) can be performed.
  • the heat exchange amount per unit area is about 2 to 8 times larger in the heat exchanger 7, so that a large heat exchange can be performed with a smaller amount of refrigerant, and the medium temperature and high pressure refrigerant is supercooled while being a short pipe.
  • the degree can be increased.
  • an increase in the evaporator pressure difference ( ⁇ P, the pressure difference at the inlet / outlet of the evaporator 4) can be suppressed. Further, when the flow rate of the evaporator 4 is reduced, the flow rate of the refrigerant flowing through the bypass pipe 5 can be reduced, and the reduction in the heat exchange performance of the evaporator 4 can be suppressed. The effect which can drive the apparatus 100 is also acquired.
  • the target value of the superheat degree is set based on the evaporator pressure difference ( ⁇ P) using the evaporator inlet pressure sensor P34 and the evaporator outlet pressure sensor P41 as in the first embodiment.
  • ⁇ P evaporator pressure difference
  • the present invention is not limited to this.
  • the same effect can be obtained by setting the frequency according to the frequency of the compressor 1 and the suction pressure of the compressor 1.
  • the supercooling degree sensor T73 and the superheating degree sensor T71 have the same effect even when the superheating degree is obtained from the saturation temperature in the condenser 2 or the heat exchanger 7 and the outlet temperature, for example. can get.
  • the supercooling degree control is performed by controlling the opening degree of the expansion valve 3, but the supercooling degree control is not limited to this method. You may implement by rotation frequency control of the compressor 1. FIG. Furthermore, it is also possible to combine these with the rotation speed control of the fan of the condenser 2. Further, the superheat degree control is not limited to the method of adjusting the opening degree of the bypass expansion valve 6, and may be performed by adjusting the opening degree of the expansion valve 3 or controlling the rotation frequency of the compressor 1. Furthermore, it is also possible to combine these with the rotation speed control of the fan of the condenser 2.
  • the supercooling degree can be controlled by the bypass expansion valve 6 or the like, and a throttling device such as a capillary tube can be used for the expansion valve 3. Further, a temperature type expansion valve is used as the expansion valve 3, and the upstream side piping and other temperatures of the temperature type expansion valve are detected by a temperature sensing cylinder, and the opening of the temperature type expansion valve is physically driven. Is also possible. In this case, the supercooling degree control is performed by a combination of the temperature type expansion valve and the bypass expansion valve 6 whose opening degree is controlled by the control means.
  • a throttle device with a fixed opening such as a capillary tube for the bypass expansion valve 6 and perform supercooling control with the expansion valve 3, and a temperature type expansion valve may be used.
  • priority may be given to suppression of pressure pulsation, etc.
  • supercooling control may be given priority, or pressure loss reduction.
  • the superheat degree control may be performed with emphasis.
  • Each set value described in the flowchart shown in FIG. 2 is an example, and an appropriate value may be set according to the system specifications, assumed use conditions, and the like.
  • the evaporator pressure difference target value ⁇ Po is not a fixed value, and it is better to dynamically calculate a value according to the current refrigerating capacity of the evaporator 4 from the compressor frequency and the evaporator air volume (fan rotation speed).
  • the superheat degree control unit 11b sets the evaporator pressure difference target value ⁇ Po that matches the current refrigeration capacity before S16 in FIG. 1a.
  • FIG. 5 is a refrigerant circuit diagram illustrating the configuration of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • the refrigeration cycle apparatus 200 is provided with a gas-liquid separator 8 in addition to the low-temperature low-pressure pipe 34 in the refrigeration cycle apparatus 100 (Embodiment 1), and the gas (vapor) separated in the gas-liquid separator 8 is provided.
  • Is supplied to the compressor 1 hereinafter referred to as “gas pipe” 10.
  • a flow rate control valve (hereinafter referred to as “gas flow rate control valve”) 9 is provided in the middle of the gas pipe 10.
  • a gas flow rate control valve inlet pressure sensor P89 and a gas flow rate control upstream of the gas flow rate control valve 9 are provided.
  • a gas flow control valve outlet pressure sensor P91 is provided on the downstream side of the valve 9, respectively.
  • bypass piping That is, a bypass expansion valve 6 is installed in a bypass pipe 5 that bypasses the expansion valve 3 and the evaporator 4, and a part of the bypass pipe 5 forms a heat exchanger 7 downstream of the bypass expansion valve 6. A superheat degree sensor T71 is installed downstream of the heat exchanger 7.
  • the bypass pipe 5 including these is the same as the bypass pipe 5 of the refrigeration cycle apparatus 100.
  • the gas-liquid separator 8 separates the low-temperature and low-pressure refrigerant that has flowed out of the expansion valve 3 into steam and liquid.
  • the separated steam is supplied to the gas pipe 10, and the separated liquid is supplied to the low-temperature and low-pressure pipe 34.
  • the gas pipe 10 is provided with a gas flow control valve 9 in the middle thereof.
  • the upstream gas flow control valve inlet pressure sensor P89 detects the pressure of the vapor separated in the gas-liquid separator 8, and the downstream gas flow control valve outlet pressure sensor P91 is detected in the gas flow control valve 9. The pressure of the expanded refrigerant is detected.
  • the expansion valve 3 is a medium-temperature / high-pressure refrigerant excess detected by a supercooling degree sensor T73 installed downstream of the heat exchanger 7 in the path from the heat exchanger 7 to the expansion valve 3 (part of the medium-temperature / high-pressure pipe 23). Control is performed so that the degree of cooling is equal to or greater than a predetermined value. That is, when the degree of supercooling is smaller than a predetermined value, the opening degree of the expansion valve 3 is narrowed.
  • the bypass expansion valve 6 controls the degree of superheat of the low-temperature and low-pressure refrigerant downstream of the heat exchanger 7 of the bypass pipe 5 detected by the superheat degree sensor T71.
  • the opening degree of the bypass expansion valve 6 is reduced as the degree of superheat is smaller, and conversely, the opening degree is increased as it is larger.
  • FIG. 6 is a refrigerant circuit diagram showing the refrigerant flow
  • FIG. 7 is a p- It is an h diagram (Mollier diagram).
  • the same parts as those in FIG. 5 are denoted by the same reference numerals, and a part of the description is omitted.
  • the refrigerant states a to h shown in FIG. 7 are shown by a to h in FIG. Is the refrigerant state.
  • a vaporous medium temperature and low pressure refrigerant is compressed in the compressor 1 and discharged as a high temperature and high pressure refrigerant.
  • the refrigerant compression process in the compressor 1 is represented by an isentropic line shown from the state a to the state b in FIG. 7 assuming that heat does not enter and leave the surroundings.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the condenser 2, condenses while releasing heat (dissipating heat) to air and water, and becomes a medium-temperature and high-pressure refrigerant in a gas-liquid two-phase state.
  • the change of the refrigerant in the condenser 2 is performed under a substantially constant pressure.
  • the refrigerant change at this time is represented by a slightly inclined horizontal line shown in the state b to the state c in FIG. 7 in consideration of the pressure loss of the condenser.
  • the medium-temperature and high-pressure refrigerant in the gas-liquid two-phase state that has come out of the condenser 2 flows into the heat exchanger 7 and further condenses while exchanging heat with the low-temperature and low-pressure refrigerant flowing through the bypass pipe 5 (receives cold heat), and further the temperature It becomes a low temperature medium and high pressure liquid refrigerant.
  • the change of the medium temperature and high pressure refrigerant in the heat exchanger 7 is performed under a substantially constant pressure. This change in the refrigerant is represented by a slightly inclined straight line that is slightly inclined from the state c to the state d in FIG. 7 in consideration of the pressure loss of the heat exchanger 7.
  • the low-temperature and low-pressure refrigerant in the gas-liquid two-phase state that has exited the bypass expansion valve 6 flows into the heat exchanger 7, while taking away the heat of the intermediate-temperature and low-pressure refrigerant that has exited from the condenser 2 (while exchanging heat), It becomes a high vapor-like medium temperature and low pressure refrigerant.
  • the change of the low-temperature and low-pressure refrigerant in the heat exchanger 7 is performed under a substantially constant pressure.
  • the refrigerant change at this time is represented by a slightly inclined horizontal line shown in FIG. 7 from state g to state a, considering the pressure loss of the heat exchanger 7.
  • the remaining high-pressure liquid refrigerant exiting the heat exchanger 7 is throttled and expanded (depressurized) in the expansion valve 3 to be in a low-temperature low-pressure gas-liquid two-phase state.
  • the refrigerant change in the expansion valve 3 is performed under a constant enthalpy.
  • the refrigerant change at this time is represented by a vertical line shown from the state d to the state e in FIG.
  • the low-temperature low-pressure refrigerant in the gas-liquid two-phase state that has exited the expansion valve 3 flows into the gas-liquid separator 8 and is separated into vapor and liquid.
  • the vapor at this time is represented by a state h on the saturated vapor line
  • the liquid is represented by a state f on the saturated liquid line.
  • the separated liquid low-temperature and low-pressure refrigerant flows into the evaporator 4, evaporates while being deprived of heat (air exchange) by air or the like, gasifies, and becomes a vapor-like medium-temperature low-pressure refrigerant.
  • the change of the refrigerant in the evaporator 4 is performed under a substantially constant pressure.
  • the change of the refrigerant at this time is represented by a slightly inclined straight line that is slightly inclined from the state f to the state a in FIG. 7 in consideration of the pressure loss of the evaporator 4.
  • the vapor separated in the gas-liquid separator 8 is throttled and decompressed (depressurized) in the gas flow control valve 9 to become a low-temperature and low-pressure vapor refrigerant.
  • the change of the refrigerant in the gas flow control valve 9 is performed under a constant enthalpy.
  • the change of the refrigerant at this time is performed under a constant enthalpy shown from the state h to the state a in FIG.
  • the vaporous medium temperature and low pressure refrigerant discharged from the evaporator 4 is mixed with the medium temperature and low pressure refrigerant discharged from the bypass pipe 5 and the low temperature and low pressure refrigerant discharged from the gas pipe 10 and flows into the compressor 1 and compressed.
  • the flow rate of the refrigerant vapor flowing into the evaporator can be reduced, the pressure loss of the refrigerant in the evaporator can be reduced, and the efficiency of the refrigeration cycle apparatus is improved. .
  • FIG. 8 is a refrigerant circuit diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • the refrigeration cycle apparatus 300 is installed in the evaporator inlet pressure sensor P34 and the evaporator outlet pressure sensor P41 installed in the main circuit of the refrigeration cycle apparatus 100 (Embodiment 1), and in the bypass pipe 5.
  • the superheat degree sensor T71 and the superheat degree control part 11b are removed.
  • symbol is attached
  • bypass piping That is, a bypass expansion valve 6 is installed in a bypass pipe 5 that bypasses the expansion valve 3 and the evaporator 4, and a part of the bypass pipe 5 forms a heat exchanger 7 downstream of the bypass expansion valve 6.
  • the expansion valve 3 is a medium-temperature / high-pressure refrigerant excess detected by a supercooling degree sensor T73 installed downstream of the heat exchanger 7 in the path from the heat exchanger 7 to the expansion valve 3 (part of the medium-temperature / high-pressure pipe 23). Control is performed so that the degree of cooling is equal to or greater than a predetermined value. That is, when the degree of supercooling is smaller than a predetermined value, the opening degree of the expansion valve 3 is narrowed. At this time, the bypass expansion valve 6 may be controlled instead of the expansion valve 3.
  • the opening degree of the bypass expansion valve 6 is opened, and on the contrary, when the degree of supercooling is larger, the opening degree is closed.
  • both the expansion valve 3 and the bypass expansion valve 6 may be controlled. For example, when the degree of supercooling is smaller than a predetermined value, the opening degree of the expansion valve 3 is reduced and the opening degree of the bypass expansion valve 6 is opened. Conversely, when the degree of supercooling is larger, the former is opened and the latter is closed.
  • the medium-temperature high-pressure refrigerant at the inlets of the expansion valve 3 and the bypass expansion valve 6 is also in operation where the medium-temperature high-pressure refrigerant at the outlet of the condenser 2 is in a gas-liquid two-phase state. Since it is possible to control to be in a supercooled state, stable refrigerant flow rate control (expansion) can be performed.
  • control that is performed by setting the target value of the superheat degree based on the evaporator pressure difference ( ⁇ P) is not executed, but instead of the evaporator pressure difference ( ⁇ P), the compressor 1 Depending on the frequency and the suction pressure of the compressor 1, the target value of the degree of superheat may be set.
  • the present invention is not limited to the embodiments described in the first to fourth embodiments, and includes the following variations.
  • the expansion valve 3 is controlled so that the degree of supercooling of the medium-temperature and high-pressure refrigerant detected by the supercooling degree sensor T73 is equal to or higher than a predetermined value.
  • an upper limit and a lower limit of the opening degree may be provided. According to such a configuration, in addition to the effects described above, it is possible to prevent excessive refrigerant from flowing into the bypass pipe 5 and malfunction of the refrigeration cycle due to excessive throttling and liquid back to the compressor 1. Can be prevented.
  • the control target value of the degree of supercooling or the pressure difference may be changed depending on the refrigerant to be charged or the length of the extension pipe. For example, when the refrigerant charging amount decreases or the extension pipe becomes longer, the control target value of the degree of supercooling is set to a small value. On the contrary, when the refrigerant charging amount increases or when the extension pipe becomes shorter, the control target value of the degree of supercooling may be set to a large value. (5) When a refrigerant having a different gas density on the low-pressure side is charged, the control target value of the pressure difference may be changed. According to the refrigeration cycle apparatus configured as described above, the same effects as those of Embodiments 1 to 3 can be obtained even when different low GWP refrigerants are used or when the lengths of the extension pipes are different.
  • the medium-temperature and low-pressure refrigerant that has flowed out of the evaporator 4 is directly sucked into the compressor 1, but the compressor for preventing liquid back to the compressor 1 is used.
  • a strainer that traps dust in the refrigerant a dryer that traps moisture in the refrigerant, an oil separator that separates refrigeration oil discharged from the compressor 1 and returns it to the compressor 1, and a circulation “Refrigerant circuit components” such as stop valves (open / close valves) for connection work such as piping are not provided, but these refrigerant circuit components are provided to ensure the reliability of the refrigeration cycle apparatus 100, 200, 300.
  • the auxiliary machine may be provided.
  • Embodiments 1 and 2 do not particularly describe the flow direction of the refrigerant in the heat exchanger 7, the flow direction may be switched according to the type of refrigerant.
  • 9 and 10 are schematic diagrams for explaining the relationship between the flow direction length of the heat exchanger 7 of the refrigeration cycle apparatus according to Embodiment 1 of the present invention and the temperature of the refrigerant.
  • FIG. 10 is a parallel flow.
  • FIG. 9 shows the behavior of a counter-flow type heat exchanger in a refrigerant in which the temperature of the refrigerant rises while evaporating
  • the horizontal axis represents the length of the pipe constituting the heat exchanger 7 (the length in the refrigerant flow direction).
  • the vertical axis schematically shows the temperature of the refrigerant. That is, the high-temperature side refrigerant flows from the inlet b, is deprived of heat, is cooled, and eventually flows out from the outlet b.
  • the refrigerant on the low temperature side flows in from the inlet C, evaporates while receiving the heat, rises in temperature, and eventually flows out from the outlet D.
  • the low-temperature side refrigerant in the late stage of temperature rise exchanges heat with the high-temperature side refrigerant in the early stage of temperature fall
  • the low-temperature side refrigerant in the early stage of temperature rise exchanges heat with the high-temperature side refrigerant in the late stage of temperature fall.
  • the temperature difference between the high-temperature (high-pressure) side refrigerant and the low-temperature (low-pressure) side refrigerant is reduced (substantially constant) in the entire area of the piping constituting the heat exchanger 7 (the same as in all heat exchange processes). )
  • efficient heat exchange becomes possible. Note that although two parallel straight lines are shown in FIG. 9, the straight lines may not be parallel or may have an arc shape. In addition, since it is the same in the refrigerating cycle apparatuses 200 and 300, description is abbreviate
  • FIG. 10 shows a capillary tube for expanding the refrigerant downstream of the bypass expansion valve 6 of the bypass pipe 5 of the refrigeration cycle apparatus according to Embodiment 1 of the present invention, and the heat exchanger 7 is connected to the capillary tube and the medium temperature and high pressure pipe 23.
  • the behavior in the case of being configured with a part of is shown. That is, in the bypass pipe 5, the low-temperature and low-pressure refrigerant flowing out from the bypass expansion valve 6 flows into the capillary tube (the same as the heat exchanger 7) from the inlet ho and eventually flows out from the outlet while gradually decreasing the temperature and pressure. To do.
  • medium-temperature high-pressure pipe 23 medium-temperature high-pressure refrigerant flows in from the inlet a and flows out from the outlet b.
  • the medium-temperature high-pressure refrigerant receives cold from the low-temperature low-pressure refrigerant, so that the temperature gradually decreases. Therefore, the temperature difference between the high-temperature (high-pressure) side refrigerant and the low-temperature (low-pressure) side refrigerant is reduced (substantially constant) in the entire area of the piping constituting the heat exchanger 7 (the same as in all heat exchange processes). ) And efficient heat exchange becomes possible.
  • the straight lines may not be parallel or may have an arc shape.
  • description is abbreviate
  • FIG. 11 is a refrigerant circuit diagram illustrating an example of a refrigerant flow path in the heat exchanger of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the medium temperature and high pressure pipe 23 meanders and flows along a dashed path in the direction of the arrow (in the figure, generally from the top to the bottom while interweaving a horizontal flow).
  • the downstream side of the bypass expansion valve 6 of the bypass pipe 5 through which the low-temperature and low-pressure refrigerant flows is branched. That is, the bypass pipe 5 branches into a heat transfer pipe 5a and a heat transfer pipe 5d at the inlet of the heat exchanger 7.
  • the heat transfer pipe 5d is provided with an on-off valve 5e, and is branched into a heat transfer pipe 5b and a heat transfer pipe 5c downstream of the on-off valve 5e.
  • the heat transfer tube 5a and the heat transfer tube 5b are integrated at the outlet of the heat exchanger 7 with the heat transfer tube 5g provided with the on-off valve 5f. Furthermore, the heat transfer tube 5g is integrated with the heat transfer tube 5h downstream of the on-off valve 5f, and the heat transfer tube 5h forms a downstream portion of the bypass pipe 5 from the heat exchanger 7.
  • the on-off valve 5e and the on-off valve 5f are opened, and the low-temperature and low-pressure refrigerant is branched into three paths of the heat transfer pipe 5a, the heat transfer pipe 5b, and the heat transfer pipe 5c.
  • the three paths are made to flow in parallel ((a) of FIG. 11).
  • the on-off valve 5e and the on-off valve 5f are closed so that the low-temperature and low-pressure refrigerant flows through one path in order through the heat transfer pipe 5a, the heat transfer pipe 5b, and the heat transfer pipe 5c.
  • FIG. 12 is a graph showing the relationship between the flow rate of the refrigerant flowing into the evaporator of the refrigeration cycle apparatus according to Embodiment 1 of the present invention and the coefficient of performance of the refrigeration cycle apparatus.
  • the coefficient of performance indicates the ratio of the refrigeration capacity to the electric input to the refrigeration cycle apparatus 100.
  • the heat transfer performance of the evaporator 4 and the pressure loss of the evaporator 4 are proportional to the refrigerant flow rate flowing into the evaporator 4, and the heat transfer performance increases and the pressure loss increases as the refrigerant flow rate increases.
  • FIG. 12 is a graph showing the relationship between the flow rate of the refrigerant flowing into the evaporator of the refrigeration cycle apparatus according to Embodiment 1 of the present invention and the coefficient of performance of the refrigeration cycle apparatus.
  • the coefficient of performance indicates the ratio of the refrigeration capacity to the electric input to the refrigeration cycle apparatus 100.
  • the heat transfer performance of the evaporator 4 and the pressure loss of the evaporator 4 are proportional to the refriger
  • the pressure sensor and the temperature sensor are used in combination as the supercooling degree sensor.
  • any supercooling degree sensor can be used as long as it can directly detect or indirectly estimate the supercooling degree. You may use something. For example, when the use environment is relatively stable, either pressure or temperature may be measured, and the other may use an estimated value in the use environment.
  • the compressor rotation speed, discharge pressure and discharge temperature detection values, and condensation temperature can be used to calculate the degree of supercooling, and the compressor suction pressure, evaporator outlet pressure or evaporation temperature detection value, etc. It can also be used for calculations.
  • the supercooling degree control is performed as long as the supercooling degree is controlled to an appropriate range based on the refrigerant state such as the detection value of the temperature sensor or the pressure sensor, or the operating state of the refrigeration cycle. Is not necessarily calculated. For superheat degree control, it is not essential to calculate this value as long as the superheat degree can be similarly controlled.
  • the heat exchanger that performs supercooling may be a means other than the bypass pipe as long as the refrigerant can be supercooled. For example, an additional device such as a method of exchanging heat with other cold parts in the refrigeration cycle or an economizer using another refrigeration cycle may be used.
  • the refrigeration cycle apparatus according to the present invention can be stably operated even when the refrigerant charging amount is limited, it is widely used as various refrigeration cycle apparatuses using various low GMP refrigerants. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 可燃性の冷媒が循環する冷凍サイクル装置100において、凝縮器2から流量制御弁3に至る循環配管を流れる冷媒の一部が流量制御弁3および蒸発器4をバイパスするように接続されたバイパス配管5と、バイパス配管5を流れる冷媒の流量を制御するバイパス流量制御弁6と、バイパス流量制御弁6から流出してバイパス配管5を流れる冷媒と凝縮器2から流出して循環配管を流れる冷媒とを熱交換させる熱交換器7と、流量制御弁3の入口における冷媒の過冷却度を検出する過冷却度センサーT73とを備え、流量制御弁3の入口における冷媒の過冷却度が所定の値以上になるように流量制御弁3またはバイパス流量制御弁6の少なくとも一方が制御される。

Description

冷凍サイクル装置、並びにその制御方法
 この発明は冷凍サイクル装置、特に、地球温暖化係数の小さい冷媒を使用する冷凍サイクル装置に関するものである。 
 従来の冷凍サイクル装置は、中温低圧の冷媒(以下、説明の便宜上「中温低圧」と称す)を圧縮する圧縮機と、圧縮された冷媒(以下、「高温高圧冷媒」と称す)を凝縮する凝縮器と、凝縮した冷媒(以下、「中温高圧冷媒」と称す)を膨張させる膨張弁と、膨張した冷媒(以下、「低温低圧冷媒」と称す)を蒸発させる蒸発器と、が順に冷媒配管によって接続されることによって形成されている(以下、かかる構成を「主回路」と称す)。このとき、負荷側における冷凍効果を増大させるため中温高圧冷媒を冷却して「過冷却(サブクール)」の状態にした後、膨張弁に供給させる発明が開示されている(例えば、特許文献1参照)。
 一方、従来の冷凍サイクル装置は、R410Aなどの不燃性のHFC(ハイドロフルオロカーバン)冷媒を利用しているため、冷媒の温室効果が二酸化炭素の2000倍程度と大きく、冷凍サイクルの廃棄時や補修時等に冷媒が誤って漏洩してしまうと、長期間分解されずに大気中に漂うため地球温暖化を加速することが指摘されている。
特開平6-331223号公報(第3-4頁、図1)
 特許文献1に開示された発明は、膨張弁および蒸発器をバイパスするバイパス配管(膨張弁の上流と圧縮機の上流とを直結するショートカット配管に同じ)を設けると共に、該バイパス配管にバイパスの膨張弁を設け、該バイパスの膨張弁を通過した後の低温低圧の冷媒と、膨張弁に直接流入する中温高圧冷媒との間で熱交換させ冷凍効果を増大せるものである。
 しかしながら、特許文献1に開示された冷凍サイクル装置では、冷凍効果を増大することはできても、冷媒の温室効果については一切考慮されていない。
 前述のように、HFC冷媒は漏洩した場合、その化学的安定性から長期間大気中に分解されずに滞留し温室効果を発揮するという問題があり、地球環境を守る観点から、万が一大気中に放出されても比較的早く分解されるような地球温暖化係数(地球温暖化可能性に同じ、二酸化炭素の温室効果を基準にした温室効果の度合いを示す値、Global Warming Potential(以下、「GWP」と称す))の値が小さい冷媒を使用することが望ましい。一方で、大気中での分解速度が速いということは、大気中の酸素と反応し分解しやすいという側面を持ち、その性質上、可燃性があるという問題がある。
 可燃性の冷媒を利用する場合、その可燃性の度合いに応じて、冷凍サイクル装置の空調面積や換気設備の仕様、あるいは換気設備の有無などの条件が定められている。たとえば、国際規格では設置上の制約がない場合、冷媒充填量(以下、「許容冷媒量」という)を、
   許容冷媒量[kg]=燃焼下限界[kg/m3]×4[m3
以下にすることが定められている。
 この許容冷媒量は、たとえば、強燃性のプロパン(地球温暖化係数がR410Aの1/600程度)では約150g程度、弱燃性のジクロロメタンやテトラフルオロプロピレンでは約1200g程度である。
 このため、GWPの低い冷媒(以下、「低GWP冷媒」と称す)は、冷媒の使用量が極めて少ない家庭用冷蔵庫のような用途に限定されている。燃焼下限界が低い値である可燃性冷媒の場合、室内機が設置された被空調空間やショーケースなどの冷凍装置が設置された屋内空間に万が一、可燃性冷媒が漏洩した場合を想定すると、要求される冷凍能力を発揮するために本来必要な量の冷媒を封入することはできず、従来のHFC冷媒よりも冷凍サイクル装置内の冷媒量が不足してしまう。すると、凝縮器の出口で過冷却状態とならず、気液二相状態のまま膨張弁に流入し、膨張弁のノド部をガスと液が時間的に不均一な割合で流動することによる膨張弁の出入口圧力差の変動が発生し、冷凍サイクル装置の運転が不安定になるという問題点がある(問題点1)。
 また、低GWP冷媒は、気体密度が小さく液相と気相との密度差(以下、「ガス密度差」と称す)が大きい場合、気液二相状態で流入し液が蒸発して空気や水などを冷却する蒸発器においては所定の熱交換効率を保証しようとすると、蒸発器内の気液二相状態の冷媒の流速が増大し、蒸発器内の冷媒の圧力損失の増加による性能の低下を引き起こす効率の低下を抑制するの入口における液圧力と蒸発器の出口における気体圧力との「圧力差」を所定の値に設定する必要があるという問題がある(問題点2)。
 この発明は、上記のような問題点1又は問題点2を解決するためになされたものであって、冷媒漏洩などによる温室効果を小さくすることができると共に、凝縮器の出口の冷媒が気液二相状態になるような運転においても、膨張弁の入口の冷媒を過冷却状態にするための安定した冷媒の流量制御を行なうことができ冷凍サイクル装置、並びにその制御方法を提供することを目的とする。
 また、蒸発器における圧力損失の増大を防止できる入口における液圧力と蒸発器の出口における気体圧力との「蒸発器圧力差」を最適な値にすることができる冷凍サイクル装置、並びにその制御方法を提供することを目的とする。
 この発明に係る冷凍サイクル装置は、可燃性冷媒を圧縮する圧縮機と、この圧縮機において圧縮された可燃性冷媒を凝縮させる凝縮器と、この凝縮器から吐出された可燃性冷媒を過冷却する熱交換器と、この熱交換器により過冷却された可燃性冷媒を膨張させる膨張弁と、この膨張弁において膨張した可燃性冷媒を蒸発させる蒸発器と、凝縮器と膨張弁との間の冷媒温度若しくは冷媒圧力に応じて熱交換器の熱交換量を制御する制御手段と、を備えたものである。
 また、この発明に係る制御方法は、可燃性冷媒又は有毒性冷媒を冷媒として用い、被冷却空間へ冷媒配管を露出させるとともに、被冷却空間に冷媒が漏洩し拡散したときの冷媒濃度が可燃濃度未満又は人体への有毒許容濃度以下となるように、冷媒の充填量が制限された冷凍サイクルの制御方法であって、凝縮器で凝縮された冷媒の状態を検出する検出ステップと、この検出ステップで検出された冷媒の状態に基づき、冷凍サイクル内の冷媒充填量に依存する凝縮圧力に起因して凝縮器出口側で気液二相状態となった冷媒を過冷却し、膨張弁手前での圧力脈動を抑制するステップと、を備えたものである。
 したがって、この発明に係る冷凍サイクル装置は、冷媒の可燃性に起因する冷媒充填量の制約があって、凝縮器の放熱量が下がるような運転においても、膨張弁の上流側における冷媒を過冷却状態にすることができるため、冷凍サイクル装置を安定に運転することができる。
 また、バイパス配管と過熱度制御部を設けることにより、蒸発器における圧力損失の増大を防止できる。
本発明の実施形態1に係る冷凍サイクル装置の構成を説明する冷媒回路図。 本発明の実施形態2に係る冷凍サイクル装置の制御方法を説明するものであって、制御手段の過冷却度制御及び過熱度制御を示すフローチャート。 本発明の実施形態1に係る冷凍サイクル装置における運転動作を説明する冷媒流れを表す冷媒回路図。 本発明の実施形態1に係る冷凍サイクル装置における運転動作を説明する冷媒の変遷を表すp-h線図(モリエル線図)。 本発明の実施形態3に係る冷凍サイクル装置の構成を説明する冷媒回路図。 本発明の実施形態3に係る冷凍サイクル装置における運転動作を説明する冷媒流れを表す冷媒回路図。 本発明の実施形態3に係る冷凍サイクル装置における運転動作を説明する冷媒の変遷を表すp-h線図(モリエル線図)。 本発明の実施形態4に係る冷凍サイクル装置の構成を説明する冷媒回路図。 本発明の実施形態1に係る冷凍サイクル装置の熱交換器の流れ方向の長さと冷媒の温度との関係を説明する模式図。 本発明の実施形態1に係る冷凍サイクル装置の熱交換器の流れ方向の長さと冷媒の温度との関係を説明する模式図。 本発明の実施形態1に係る冷凍サイクル装置の熱交換器内における冷媒の流路の一例を示す冷媒回路図。 本発明の実施形態1に係る冷凍サイクル装置の蒸発器へ流入する冷媒の流量と冷凍サイクル装置の成績係数との関係を示すグラフ。
符号の説明
 1:圧縮機、2:凝縮器、3:膨張弁、4:蒸発器、5:バイパス配管、5a:伝熱管、5b:伝熱管、5c:伝熱管、5d:伝熱管、5e:開閉弁、5f:開閉弁、5g:伝熱管、5h:伝熱管、6:バイパス膨張弁、7:熱交換器、8:気液分離器、9:ガス流量制御弁、10:ガス配管、11:過熱度制御部、12:高温高圧配管、23:中温高圧配管、34:低温低圧配管、41:中温低圧配管、100:冷凍サイクル装置(実施の形態1)、200:冷凍サイクル装置(実施の形態3)、300:冷凍サイクル装置(実施の形態4)、P34:蒸発器入口圧力センサー、P41:蒸発器出口圧力センサー、P89:ガス流量制御弁入口圧力センサー、P91:ガス流量制御弁出口圧力センサー、T71:過熱度センサー、T73:過冷却度センサー。
 [実施の形態1]
 (冷凍サイクル)
 図1は本発明の実施形態1に係る冷凍サイクル装置の構成を説明する冷媒回路図である。図1において、冷凍サイクル装置100は、冷媒を圧縮する圧縮機1と、圧縮された冷媒を凝縮する凝縮器2と、凝縮した冷媒を膨張させる膨張弁(電子膨張弁などの流量制御弁、キャピラリーチューブ等)3と、膨張した冷媒を蒸発させる蒸発器4と、圧縮機1と凝縮器2とを連結する高温高圧配管12と、凝縮器2と膨張弁3とを連結する中温高圧配管23と、膨張弁3と蒸発器4とを連結する低温低圧配管34と、蒸発器4と圧縮機1とを連結する中温低圧配管41と、を具備する主回路を有している。
 また、前記主回路に追加して、膨張弁3および蒸発器4をバイパスする(凝縮器2の下流と圧縮機1の上流とを直結するに同じ)、すなわち、中温高圧配管23と中温低圧配管41とを連結するバイパス配管5と、バイパス配管5に設置されたバイパス膨張弁(電子膨張弁などの流量制御弁、キャピラリーチューブ等)6と、を具備するバイパス回路(正確には回路を構成する一部であるが、説明の便宜上「回路」と称す)を有している。
 なお、本説明において、高温高圧配管や低温低圧冷媒等を修飾する「高温、中温、低温」や「高圧、低圧」は説明の便宜上用いるものであって、それぞれが所定の絶対的な値によって区分けされるものではない。また、高温高圧配管12における圧力と中温高圧配管23における圧力とは同一あるいは相違するものであって、中温高圧配管23における温度と中温低圧配管41における温度とは同一あるいは相違するものである。また、高温高圧配管12等の主回路を構成する配管を、まとめてあるいはそれぞれを「循環配管」と称す。
 図1に示される冷凍サイクルは、家庭用空気調和機、複数の室内機を有する業務用空気調和機、ショーケースや冷蔵施設に設置される冷凍装置等に使用される。蒸発器4を有する負荷側装置は、被空調空間、若しくは、被冷却空間である屋内設置空間に設けられ、蒸発器4及びその接続配管は、被冷却空間にグリル等を介して露出している。圧縮機1、凝縮器2、膨張弁3、バイパス配管5等を有する熱源側装置は、典型的には屋外に設置され、負荷側装置と熱源側装置とは、設置条件に合わせた長短いろいろの配管によって接続されている。なお、膨張弁3は、熱源側装置ではなく負荷側装置に設けることも可能である。
 このような冷凍サイクル装置において、万が一冷媒漏洩し被冷却空間内に拡散した場合の安全性を考慮し、冷媒充填量を設計すると、被空調空間若しくは被冷凍空間の容積と使用する冷媒の燃焼下限界(燃焼下限濃度)又は人体に与える影響を考慮した毒性濃度許容値とを乗算した値が許容冷媒量となる。さらに、安全度の高い設計では、局所的に冷媒が溜まることを考慮し、想定容積を被空調空間の容積以下の4[m3]にする場合もある。従って、冷凍サイクル装置に充填できる冷媒量は制約があり、従来の冷凍サイクル装置では、十分な冷媒充填量を確保できず、凝縮器出口から気液二相の冷媒が流れるという状態になりやすい。
 (熱交換器)
 さらに、中温高圧配管23を流れる中温高圧冷媒と、バイパス配管5のバイパス膨張弁6の下流を流れる冷媒(以下「バイパス低温低圧冷媒」と称す場合がある)との間で熱交換するための熱交換器7が、設けられている。
 (制御手段)
 また、主回路において、膨張弁3の上流(中温高圧配管23の熱交換器7の下流)には過冷却度センサーT73(過冷却度検出部)が設けられている。過冷却度センサーT73は、中温中圧配管23を流れる冷媒(主流)の過冷却度を測定できるものであればどのようなものを用いても構わないが、例えば、中温中圧配管23内の冷媒圧力を検知する圧力センサーと冷媒温度を検知する温度センサーとを用いて構成することができる。過冷却度制御部11aは、過冷却度センサーT73の検出値から、膨張弁3の開度を制御するなどして膨張弁3の上流の過冷却度を制御する。
 蒸発器4の上流(低温低圧配管34の膨張弁3の下流)には蒸発器入口圧力センサーP34が、蒸発器4の下流(中温低圧配管41の圧縮機1の上流)には蒸発器出口圧力センサーP41が、それぞれ設置されている。
 また、バイパス配管5には、熱交換器7の下流(主回路との合流点の上流)に過熱度センサーT71が設置されている。過熱度センサーT71(過熱度検出部)は、バイパス配管5を流れる冷媒(副流)の過熱度を検出できるものであれば、どのようなものを用いても良いが、例えば、熱交換器7の出口側バイパス配管5に冷媒温度を検知する温度センサーと冷媒圧力を測定する圧力センサーとを備え、これらの検出値から過熱度を測定する。過熱度制御部11bは、過熱度センサーT71の検出値から、バイパス膨張弁6の開度を調整する等してバイパス配管5の過熱度を制御する。
 なお、過冷却度制御部11aと過熱度制御部11bは、冷凍サイクル装置を制御する制御手段の一部であり、それぞれ装置として別体である必要はなく、1つの制御装置(マイクロコンピュータとソフトウェア群)にまとめることができる。
 (冷媒)
 冷凍サイクル装置100に使用される冷媒は、地球温暖化係数の小さい冷媒であって、HFC冷媒よりも温室効果が小さい可燃性の冷媒、たとえば、プロパン、ジクロロメタン、クロロメタン、ジフルオロエタンやテトラフルオロプロピレンなどを主成分とする冷媒である。なお、前記「テトラフルオロプロピレン」とは、各種異性体を含む全てのテトラフルオロプロピレンを指すものである。
 [実施の形態2:制御方法]
 次に、実施形態1に示す冷凍サイクル装置の制御手段による膨張弁3およびバイパス膨張弁6の制御について、図2に基づき説明する。
 図2は本発明の実施形態2に係る冷凍サイクル装置の制御方法を説明するものであって、制御手段の過冷却度制御及び過熱度制御を示すフローチャートである。
 図2において、まず、過冷却度制御部11aと過熱度制御部11bは、それぞれ過冷却度目標値SCo、過熱度目標値SHoに初期値(例えば、SCo=5℃,SHo=2℃)を設定する(S1)。この初期値は、設置条件や冷凍装置のタイプにより適切に調整される値(0以上の正値)であり予め不揮発メモリ等に記憶されているものである。また、過熱度制御部11bは、蒸発器圧力差目標値ΔPoを、冷凍サイクル装置のシステム仕様に適した値、すなわち、特に蒸発器の冷凍能力に応じ性能が(最も)高くなる値に設定する。
 (過冷却度制御)
 次に、過冷却度制御部11aは、以下に説明する過冷却度制御を行う。過冷却度制御部11aは、熱交換器7から膨張弁3に至る経路(中温高圧配管23のバイパス配管5の分岐点よりも下流)に設置した過冷却度センサーT73の温度センサーと圧力センサーから凝縮器出口温度Thと凝縮器温度出口圧力Pcの検出値を冷媒状態の情報として取得する(S2)。過冷却度制御部11aは、取得した凝縮器温度出口圧力Pcに基づき、凝縮出口飽和温度Tcsを算出し(S3)、この値と凝縮器出口温度Thから過冷却度SC(=Tcs-Th)を求める(S4)。なお、凝縮出口飽和温度Tcsは、図4に示すようなp-h線図から飽和液線に相当するポイントをTh,Pcをパラメータとするテーブルに予め記憶しておいてもよいし、所定のアルゴリズム(計算式)にTh,Pcを代入することにより求めてもよい。また、凝縮器出口飽和温度Tcsは、凝縮器2内の気液二相部の温度から飽和温度Tcを求めることにより特定するようにしてもよい。
 次に、過冷却度制御部11aは、検出した過冷却度SCと過冷却度目標値SCoとの差に基づき、冷媒の過冷却度を制御する(S5~7)。具体的には、過冷却度SCの目標値との差ΔSC(=SC-SCo)を算出し(S5)、過冷却度SCが目標値より低い場合(例えば、ΔSC≦-1℃)には、過冷却度制御部11aは、膨張弁3の開度を減少させ、現在の開度から若干小さい開度に調整する(S6)。逆に、過冷却度SCが目標値より高い場合(例えば、ΔSC≧1℃)には、過冷却度制御部11aは、膨張弁3の開度を増加させる(S7)。一方、過冷却度SCが目標値に近い場合には、そのまま次の過熱度制御に移行する。
 以上の過冷却度制御により、過冷却度制御部11aは、過冷却度が所定の値より小さいときは、膨張弁3の開度を絞り、膨張弁の出入口の圧力差が増加して、凝縮器出口圧力Pcが上昇する。すると、凝縮器2と熱交換器における冷媒と被加熱媒体との温度差が大きくなり、凝縮器2と熱交換器7とにおいて、中温高圧冷媒の温度低下とともに、熱交換器7における冷熱の受け渡し量が増し、中温高圧冷媒の温度は下がり過冷却度が上昇する。一方、前記過冷却度が所定の値より大きいときは、これと反対の動作を行い、中温高圧冷媒の過冷却度が下がる。このように、冷凍サイクル内の冷媒充填量の不足などによって凝縮器出口側で気液二相状態となった冷媒を過冷却するため、膨張弁3を冷媒が通過する際に気相と液相とを交互に繰り返すことにより発生する圧力脈動を効果的に抑制できる。
 (過熱度制御)
 次に、制御手段は、以下に説明するような過熱度制御部11bによる過熱度制御を行う。過熱度制御部11bは、過熱度センサーT71の温度センサー及び圧力センサーから熱交換器7の低圧側の出口温度Tlと出口圧力Plの検出値を冷媒状態の情報として取得する(S8)。続いて、過熱度制御部11bは、熱交換器の低圧側の出口圧力Plから熱交換器7の低圧側出口飽和温度Tlsを取得し(S9)、熱交換器7の低圧側出口過熱度SH(SH=Tls-Tl)を検出する(S10)。ここで、飽和温度Tlsの算出は、凝縮器飽和温度Tcsと同様にTl,Plからp-h線図に基づき特定するか、所定の算出アルゴリズムにより算出することができる。
 次に、過熱度制御部11bは、検出した過熱度SHと過熱度目標値SHoとの差に基づき、冷媒の過熱度を制御する(S11~13)。具体的には、過熱度SHの目標値との差ΔSH(=SH-SHo)を検出し(S11)、過熱度SHが目標値より低い場合(例えば、ΔSH≦-1℃)には、過熱度制御部11bは、バイパス膨張弁6の開度を減少させ、現在の開度から若干小さい開度に調整する(S12)。逆に、過熱度SHが目標値より高い場合(例えば、ΔSH≧1℃)には、過熱度制御部11bは、バイパス膨張弁6の開度を増加させる(S13)。一方、過熱度SHが目標値に近い場合には、そのまま次の過熱度目標値制御に移行する。
 以上のような過熱度制御を行うことにより、圧縮機1に液冷媒が戻ることを抑制し、さらに以下に説明するような過熱度目標の調整を行なうことにより、蒸発器4や延長配管で生じる圧力損失の問題を低減することができる。
 (過熱度目標値制御)
 続いて、過熱度目標値制御について説明する。制御手段は、過熱度制御に続き、圧力損失を軽減するための過熱度目標値制御を行なう。まず、過熱度制御部11bは、蒸発器4に至る経路(低温低圧配管34)に設置された蒸発器入口圧力センサーP34から蒸発器入口圧力(Pein)を、蒸発器4から圧縮機1に至る経路(中温低圧配管41)に設置された蒸発器出口圧力センサーP41から蒸発器出口圧力(Peout)の検出値を取得する(S14)。なお、蒸発器の入口温度から飽和圧力を算出する方法で取得してもよい。
 そして、これらの検出値から蒸発器圧力差ΔPe(ΔPe=Pein-Peout)を検出し(S15)、この蒸発圧力差ΔPeが蒸発器圧力差目標値ΔPoに近づくように、過熱度目標値を調整する。すなわち、過熱度制御部11bは、蒸発圧力差ΔPの目標値との差Δ(ΔP)=ΔPe-ΔPoを判断し(S16)、差Δ(ΔP)が所定の値より小さいとき(Δ(ΔP)≦-0.01Mpa)、過熱度目標値SHoを所定値分(例えば、1℃)増加させる(S17)。また、差Δ(ΔP)が所定の値より大きいとき(ΔP≧0.01Mpa)、過熱度制御部11bは過熱度目標値SHoを所定値分(例えば、1℃)減少させ、目標値に近いときは、現在の過熱度目標値SHoを維持して過熱度目標値制御を終了する。
 過熱度目標値制御が終了すると、制御手段は図示しない運転スイッチやネットワークを通じた運転停止指令の有無から、運転を停止するかを判断し(S19)、停止しない場合には、ステップS2に戻り、上述の過冷却制御、過熱度制御、及び過熱度目標制御を繰り返す。
 この過熱度目標制御によれば、蒸発器圧力差ΔPが目標値より大きくなると、過熱度目標値SHoがより小さく設定され、過熱度制御で制御されるバイパス膨張弁6の開度が大きくなるため、バイパス配管5を流れる冷媒量が増し、その分だけ主回路を流れる冷媒(膨張弁3を通過した低温低圧冷媒)の量が減少する。その結果、蒸発器入口圧力Peinが下がり、圧力損失を低減できる。
 なお、上述の説明では、過熱度目標値SHoの調整幅は固定値で、状況をみながら序々に調整する方法をとったが、蒸発器入口圧力(Pe)と蒸発器出口圧力(Pa)との差である蒸発器圧力差(ΔP=Pein-Peout)が大きいほど、過熱度目標値SHoをより小さく設定し(すなわち、調整幅を大きくし)、過熱度制御で制御されるバイパス膨張弁6の開度を大きくするようにしてもよい。また、蒸発器圧力差(ΔP)が小さい場合には、過熱度目標値SHoは現在の過熱度よりも大きく設定され、バイパス膨張弁6の開度を絞って余分な冷媒の流れを抑制する。
 (運転動作)
 次に、実施の形態1に示す冷凍サイクル装置100の運転動作を説明する。
 図3および図4は、本発明の実施形態1に係る冷凍サイクル装置における運転動作を説明するものであり、図3は冷媒の流れを表す冷媒回路図、図4は冷媒の変遷を表すp-h線図(モリエル線図)である。なお、図1~図4における部分と同じ部分にはこれと同じ符号を付し、一部の説明を省略するとともに、図4に示すa~fの冷媒状態は、それぞれ図3にa~fで示す箇所における冷媒状態を示している。
 (圧縮動作)
 まず、中温低圧の蒸気状冷媒が圧縮機1によって圧縮され、高温高圧の蒸気状冷媒となって吐出される。この圧縮機1の冷媒圧縮過程は、周囲との熱の出入はないものとすると、図4の状態aから状態bに示す等エントロピ線で表される。
 (凝縮動作)
 圧縮機から吐出された高温高圧冷媒は、凝縮器2に流入し、空気や水に放熱しながら凝縮し、気液二相状態の中温高圧冷媒となる。凝縮器における冷媒の変化は、ほぼ圧力一定のもとで行われる。このときの冷媒変化は、凝縮器における配管抵抗による圧力損失を考慮すると、図4の状態bから状態cに示すやや傾いた水平に近い直線で表される。
 (過冷却動作)
 凝縮器2から出た気液二相状態の中温高圧冷媒は、熱交換器7に流入し、バイパス配管5を流れる低温低圧の冷媒と熱交換(バイパス膨張弁6において膨張した冷媒からの冷熱の受け取り)をしながら、さらに凝縮し、液状の中温高圧冷媒になる。このとき、熱交換器7における中温高圧冷媒の変化は、ほぼ圧力一定のもとで行なわれる。この冷媒の変化は、熱交換器7の圧力損失を考慮すると、図4の状態cから状態dに示すやや傾いた水平に近い直線で表される。
 (膨張動作)
 この液状の中温高圧冷媒の一部は、バイパス配管5に流入しバイパス膨張弁6において絞られて膨張(減圧)し、低温低圧の気液二相状態になる。バイパス膨張弁6における冷媒変化は、エンタルピ一定のもとで行われる。このときの冷媒変化は、図4の状態dから状態fに示す垂直線で表される。
 一方、熱交換器7を出た液状の中温高圧冷媒のうちバイパス配管5に流入しないものは、膨張弁3において絞られて膨張(減圧)し、低温低圧の気液二相状態になる。膨張弁3における冷媒変化は、エンタルピ一定のもとで行われる。このときの冷媒変化は、図4の状態dから状態eに示す垂直線で表される。
 (蒸発動作)
 バイパス膨張弁6を出た気液二相状態の低温低圧冷媒は、熱交換器7に流入し、凝縮器2から出た中温高圧冷媒と熱交換しながら、冷熱を奪われて蒸気状の中温低圧冷媒となる。熱交換器7における低温低圧冷媒の変化は、ほぼ圧力一定のもとで行われる。このときの冷媒変化は、熱交換器7の圧力損失を考慮すると、図4の状態fから状態aに示すやや傾いた水平に近い直線で表される。
 一方、膨張弁3を出た気液二相状態の低温低圧冷媒は、蒸発器4に流入し、空気などと熱交換しながら蒸発してガス化し、蒸気状の中温低圧冷媒となる。蒸発器4における冷媒の変化は、ほぼ圧力一定のもとで行なわれる。このときの冷媒の変化は、蒸発器4の圧力損失を考慮すると、図4の状態eから状態aに示すやや傾いた水平に近い直線で表される。
 (圧力低下)
 蒸発器4から出た蒸気状の中温低圧冷媒は、バイパス配管5から出た蒸気状冷媒と混合して圧縮機1に流入し、圧縮される。
 なお、圧縮機1に流入する直前の蒸気状の中温低圧冷媒は、中温低圧配管41を通るため、蒸発器4を出た直後の中温低圧冷媒に比べて若干圧力が低下するが、図4では同じ状態aで表している。同様に、膨張弁3に流入する直前の液状の中温高圧冷媒は、中温高圧配管23の熱交換器7と膨張弁3との間を通る間に僅かに放熱するため、熱交換器7から出た直後の中温高圧液状に比べて若干圧力が低下するが、図4では同じ状態cで表している。
 このような配管通過に起因する冷媒の圧力低下などによる圧力損失は、以下の実施の形態についても同様であるので、必要な場合を除いて説明を省略する。
 (流量制御)
 前記のように、冷凍サイクル装置に使用する低GWP冷媒が可燃性または弱燃性の性質を有する場合、許容冷媒量が抑えられて凝縮器2の熱交換量(配管長さ等)が小さいことから、凝縮器2の出口の中温高圧冷媒が気液二相状態になってしまう可能性がある。
 しかしながら、前記構成の冷凍サイクル装置100においては、凝縮器2の出口の中温高圧冷媒が気液二相状態になるような運転においても、膨張弁3およびバイパス膨張弁6の入口における中温高圧冷媒が、過冷却状態になるように制御することが可能であるから、安定した冷媒の流量制御(膨張)を行なうことができる。
 これは、高温高圧冷媒と空気等との熱交換をする凝縮器2と、中温高圧冷媒と低温低圧冷媒との熱交換をする熱交換器7とにおける、単位冷媒量あたりの熱交換能力の差に起因している。たとえば、夏季の運転の場合、凝縮器2における高温高圧冷媒と空気との温度差は、おおよそ5~15℃程度、それに対して、熱交換器7における中温高圧冷媒と低温低圧冷媒との温度差はおおよそ30~40℃程度である。したがって、単位面積あたりの熱交換量は熱交換器7の方が2~8倍程度大きいから、より少ない冷媒量で大きな熱交換を行なうことができ、短い配管でありながら中温高圧冷媒の過冷却度を大きくすることができる。
 また、冷媒の膨張弁3、7の通過が気相と液相を繰り返すと、気相と液相におけるオリフィス等の通過抵抗の違いから、圧力脈動が発生してしまう。この圧力脈動は、冷媒流動音の増大や圧力損失増加による冷凍サイクル装置の性能低下を引き起こすとともに、脈動が大きい場合には、圧縮機1、凝縮器2、膨張弁3、熱交換器7、それらの接続配管や接続部に断続的に負荷を掛け、この圧力脈動に起因する接続部の疲労等から冷媒が漏洩することが懸念される。可燃性や毒性を有する冷媒を作動冷媒として使用する場合、冷媒漏洩の対策は非常に重要であり、これらの部品の耐久度を高める必要があるが、この実施形態の過冷却制御により、膨張弁3、7での圧力脈動を抑制し、冷媒漏洩の危険性を効果的に低減でき、また、配管接続部等の耐久仕様を高い安全率を見越して過度にする必要がなくなる。
 また、この実施形態によれば、蒸発器圧力差(ΔP、蒸発器4の出入口の圧力差)の増大を抑制することができる。
 さらに、蒸発器4の流量が低下した場合には、バイパス配管5を流れる冷媒の流量を小さくすることができ、蒸発器4の熱交換性能の低下を抑制することができるから、効率よく冷凍サイクル装置100を運転することができる効果も得られる。
 また、過熱度の目標値は、実施の形態1のように蒸発器入口圧力センサーP34および蒸発器出口圧力センサーP41を用いた蒸発器圧力差(ΔP)に基づいて設定しているが、本発明はこれに限定するものではなく、たとえば、圧縮機1の周波数と圧縮機1の吸入圧力などに応じて設定しても同様の効果が得られる。
 また、実施の形態1では、過冷却度センサーT73と過熱度センサーT71は、たとえば、凝縮器2内や熱交換器7内の飽和温度と出口の温度から過熱度を求めても同様の効果が得られる。
 なお、上述の実施の形態では、膨張弁3の開度を制御することにより過冷却度制御を行ったが、過冷却度制御はこの方法に限定されず、バイパス膨張弁6の開度調整や圧縮機1の回転周波数制御によって実施しても構わない。さらに、これらと凝縮器2のファンの回転数制御を組み合わせることも可能である。
 また、過熱度制御は、バイパス膨張弁6の開度を調整する方法に限らず、膨張弁3の開度調整や圧縮機1の回転周波数制御によって実施しても構わない。さらに、これらと凝縮器2のファンの回転数制御を組み合わせることも可能である。
 過冷却度制御を行う場合、過冷却度をバイパス膨張弁6等で制御し、膨張弁3にキャピラリチューブ等の絞り装置を使用することも可能である。また、膨張弁3として温度式膨張弁を使用し、この温度式膨張弁の上流側配管やその他の温度を感温筒により検知して、温度式膨張弁の開口部を物理的に駆動することも可能である。この場合、過冷却度制御は、温度式膨張弁と制御手段により開度を制御するバイパス膨張弁6との組合せにより行なう。
 また、逆にバイパス膨張弁6にキャピラリチューブ等の開度固定の絞り装置を使用し、膨張弁3で過冷却制御を行うことも可能であり、温度式膨張弁を使用してもよい。
 膨張弁3、バイパス膨張弁6のどちらかの開度で、過冷却度制御及び過熱度制御を行う場合、圧力脈動抑制等を重視し過冷却制御を優先してもよいし、圧力損失低減を重視して過熱度制御を行なってもよい。
 図2に示すフローチャートで説明した各設定値は一例であり、システムの仕様、想定する使用条件等により、適切な値を設定するとよい。
 また、蒸発器圧力差目標値ΔPoは固定値ではなく、現在の蒸発器4の冷凍能力に応じた値を圧縮機周波数及び蒸発器風量(ファン回転数)から動的に計算するとさらに良い。この場合、過熱度制御部11bは図1aのS16の前において、現在の冷凍能力にあった蒸発器圧力差目標値ΔPoを設定する。
 [実施の形態3]
 (冷凍サイクル)
 図5は本発明の実施形態3に係る冷凍サイクル装置の構成を説明する冷媒回路図である。図5において、冷凍サイクル装置200は、 冷凍サイクル装置100(実施の形態1)における低温低圧配管34に気液分離器8を追加して設けると共に、気液分離器8において分離されたガス(蒸気)を圧縮機1に供給する配管(以下、「ガス配管」と称す)10を設けたものである。
 そして、ガス配管10の途中に流量制御弁(以下、「ガス流量制御弁」と称す)9が設けられ、ガス流量制御弁9の上流側にガス流量制御弁入口圧力センサーP89と、ガス流量制御弁9の下流側にガス流量制御弁出口圧力センサーP91と、がそれぞれ設置されている。
 なお、前記を除くその他の構成については、冷凍サイクル装置100(実施の形態1)と同じであるから、同じ符号を付し、説明を省略する。
 (バイパス配管)
 すなわち、膨張弁3および蒸発器4をバイパスするバイパス配管5にバイパス膨張弁6が設置され、バイパス配管5の一部はバイパス膨張弁6の下流において熱交換器7を形成し、バイパス配管5の熱交換器7の下流に過熱度センサーT71が設置されている。これらを具備するバイパス配管5は、冷凍サイクル装置100のバイパス配管5に同じである。
 (ガス配管)
 気液分離器8は、膨張弁3から流出した低温低圧冷媒を、蒸気と液とに分離するものであって、分離された蒸気をガス配管10に、分離された液を低温低圧配管34を経由して蒸発器4に送るものである。
 ガス配管10には、その途中にガス流量制御弁9が設置されている。そして、上流側のガス流量制御弁入口圧力センサーP89は、気液分離器8において分離された蒸気の圧力を検出し、下流側のガス流量制御弁出口圧力センサーP91は、ガス流量制御弁9において膨張した冷媒の圧力を検出する。
 (制御要領)
 次に、膨張弁3、バイパス膨張弁6、およびガス流量制御弁9の動作について説明する。
 膨張弁3は、熱交換器7から膨張弁3に至る経路(中温高圧配管23の一部)の熱交換器7の下流に設置された過冷却度センサーT73によって検出された中温高圧冷媒の過冷却度が所定の値以上になるように制御する。すなわち、前記過冷却度が所定の値より小さいときは、膨張弁3の開度を絞り、反対に、大きいときは開度を開く。
 また、バイパス膨張弁6は、過熱度センサーT71で検知するバイパス配管5の熱交換器7の下流における低温低圧冷媒の過熱度に応じて制御する。過熱度が小さいほど、バイパス膨張弁6の開度を絞り、反対に、大きいほど開度を大きくする。
 また、ガス流量制御弁9は、ガス流量制御弁9の前後(出入口)にそれぞれ設置したガス流量制御弁入口圧力センサーP89の検出した圧力値(p1)およびガス流量制御弁出口圧力センサーP91の検出した圧力値(p2)に応じて制御する。
 すなわち、両者の圧力差(以下、便宜上「ガス流量制御弁圧力差」と称す)Δpを演算にて求め、ガス流量制御弁圧力差(Δp=p1-p2)が大きいほど、ガス流量制御弁9の開度を開き、反対に、圧力差が小さいほど開度を絞る。
 (運転動作)
 次に、冷凍サイクル装置200の運転動作を説明する。
 図6および図7は、本発明の実施形態3に係る冷凍サイクル装置における運転動作を説明するものであって、図6は冷媒流れを表す冷媒回路図、図7は冷媒の変遷を表すp-h線図(モリエル線図)である。なお、図5における部分と同じ部分にはこれと同じ符号を付し、一部の説明を省略するとともに、図7に示すa~hの冷媒状態は、それぞれ図6にa~hで示す箇所における冷媒状態である。
 (圧縮動作)
 まず、蒸気状の中温低圧冷媒が圧縮機1において圧縮され、高温高圧冷媒となって吐出される。圧縮機1における冷媒圧縮過程は、周囲との熱の出入はないものとすると、図7の状態aから状態bに示す等エントロピ線で表される。
 (凝縮動作)
 圧縮機1から吐出された高温高圧冷媒は、凝縮器2に流入し、空気や水に温熱を放出(放熱)しながら凝縮し、気液二相状態の中温高圧冷媒となる。凝縮器2における冷媒の変化は、ほぼ圧力一定のもとで行われる。このときの冷媒変化は、凝縮器の圧力損失を考慮すると、図7の状態bから状態cに示すやや傾いた水平に近い直線で表される。
 (熱交換動作)
 凝縮器2から出た気液二相状態の中温高圧冷媒は、熱交換器7に流入し、バイパス配管5を流れる低温低圧冷媒と熱交換し(冷熱を受け取り)ながら、さらに凝縮し、さらに温度の低い中温高圧の液状冷媒になる。熱交換器7における中温高圧冷媒の変化は、ほぼ圧力一定のもとで行なわれる。この冷媒の変化は、熱交換器7の圧力損失を考慮すると、図7の状態cから状態dに示すやや傾いた水平に近い直線で表される。
 (バイパス配管における膨張動作)
 熱交換器7から流出した液状の中温高圧冷媒の一部は、バイパス配管5に流入する。そして、バイパス膨張弁6において絞られ膨張(減圧)し、気液二相状態の低温低圧冷媒になる。バイパス膨張弁6における冷媒変化は、エンタルピ一定のもとで行われる。このときの冷媒変化は、図7の状態dから状態gに示す垂直線で表される。
 バイパス膨張弁6を出た気液二相状態の低温低圧冷媒は、熱交換器7に流入し、凝縮器2から出た中温低圧冷媒の温熱を奪いながら(熱交換しながら)、より温度の高い蒸気状の中温低圧冷媒になる。
 熱交換器7における低温低圧冷媒の変化は、ほぼ圧力一定のもとで行われる。このときの冷媒変化は、熱交換器7の圧力損失を考慮すると、図7の状態gから状態aに示すやや傾いた水平に近い直線で表される。
 (主回路における膨張動作)
 一方、熱交換器7を出た残りの高圧の液状冷媒は、膨張弁3において絞られ膨張(減圧)し、低温低圧の気液二相状態になる。膨張弁3における冷媒変化は、エンタルピ一定のもとで行われる。このときの冷媒変化は、図7の状態dから状態eに示す垂直線で表される。
 (気液分離動作)
 膨張弁3を出た気液二相状態の低温低圧冷媒は、気液分離器8に流入し、蒸気と液とに分離される。このときの蒸気は飽和蒸気線上の状態hで表され、液は飽和液線上の状態fで表される。
 分離された液状の低温低圧冷媒は蒸発器4に流入し、空気などに冷熱を奪われ(熱交換し)ながら蒸発して、ガス化し、蒸気状の中温低圧冷媒となる。蒸発器4における冷媒の変化は、ほぼ圧力一定のもとで行なわれる。このときの冷媒の変化は、蒸発器4の圧力損失を考慮すると、図7の状態fから状態aに示すやや傾いた水平に近い直線で表される。
 一方、気液分離器8において分離された蒸気は、ガス流量制御弁9において絞られて膨張(減圧)し、低温低圧の蒸気状冷媒になる。ガス流量制御弁9における冷媒の変化は、エンタルピ一定のもとで行なわれる。このときの冷媒の変化は図7の状態hから状態aに示すエンタルピ一定のもとで行なわれる。
 蒸発器4から出た蒸気状の中温低圧冷媒は、バイパス配管5を出た中温低圧冷媒およびガス配管10から出た低温低圧冷媒と混合し、圧縮機1に流入し、圧縮される。
 このように構成された冷凍サイクル装置においては、蒸発器に流入する冷媒蒸気の流量を低減することができ、蒸発器における冷媒の圧力損失を低減することができ、冷凍サイクル装置の効率が向上する。
 [実施の形態4]
 (冷凍サイクル)
 図8は本発明の実施形態4に係る冷凍サイクル装置の構成を説明する冷媒回路図である。図8において、冷凍サイクル装置300は、冷凍サイクル装置100(実施の形態1)が具備する主回路に設置された蒸発器入口圧力センサーP34および蒸発器出口圧力センサーP41と、バイパス配管5に設置された過熱度センサーT71と、過熱度制御部11bと、を撤去したものである。そして、前記を除くその他の構成については、冷凍サイクル装置100と同じであるから、同じ符号を付し、説明を省略する。
 (バイパス配管)
 すなわち、膨張弁3および蒸発器4をバイパスするバイパス配管5にバイパス膨張弁6が設置され、バイパス配管5の一部はバイパス膨張弁6の下流において熱交換器7を形成している。
 (制御要領)
 次に、膨張弁3、バイパス膨張弁6の動作について説明する。
 膨張弁3は、熱交換器7から膨張弁3に至る経路(中温高圧配管23の一部)の熱交換器7の下流に設置された過冷却度センサーT73によって検出された中温高圧冷媒の過冷却度が所定の値以上になるように制御する。すなわち、前記過冷却度が所定の値より小さいときは、膨張弁3の開度を絞り、反対に、大きいときは開度を開く。
 このとき、膨張弁3に替えてバイパス膨張弁6を制御してもよい。たとえば、前記過冷却度が所定の値より小さいときは、バイパス膨張弁6の開度を開き、反対に、大きいときは開度を閉じる。
 さらに、膨張弁3とバイパス膨張弁6との両方を制御してもよい。たとえば、前記過冷却度が所定の値より小さいときは、膨張弁3の開度を絞ると共にバイパス膨張弁6の開度を開き、反対に、大きいときは前者を開くと共に後者を閉じる。
 (運転動作)
 冷凍サイクル装置300の運転動作は、冷凍サイクル装置100に同じであるから、説明を省略する(図3および図4参照)。
 したがって、前記のように、冷凍サイクル装置300に使用する低GWP冷媒が可燃性または弱燃性の性質を有する場合、許容冷媒量が抑えられて凝縮器2の熱交換量(配管長さ等)が小さいことから、凝縮器2の出口の中温高圧冷媒が気液二相状態になることが予測される。しかしながら、前記構成の冷凍サイクル装置300においては、凝縮器2の出口の中温高圧冷媒が気液二相状態になるような運転においても、膨張弁3およびバイパス膨張弁6の入口における中温高圧冷媒が、過冷却状態になるように制御することが可能であるから、安定した冷媒の流量制御(膨張)を行なうことができる。
 なお、冷凍サイクル装置300では、蒸発器圧力差(ΔP)に基づいて過熱度の目標値を設定して行うような制御は実行しないが、蒸発器圧力差(ΔP)に替えて、圧縮機1の周波数と圧縮機1の吸入圧力などに応じて、過熱度の目標値設定するようにしてもよい。
 [その他の実施の形態]
 本発明は実施の形態1~4に説明した形態に限定されるものではなく、以下のようなバリエーションを含むものである。
 (1)実施の形態1~4では、可燃性冷媒が循環する形態について説明したが、本発明はこれに限定するものではなく、可燃性を理由とする規制に替えて、毒性や温室効果などの程度に応じて冷媒の充填量が規制されている他の低GWP冷媒を利用してもよい。このとき、前記実施の形態1~4に説明した効果と同様の効果が得られるものである。
 (2)実施の形態1~4では、バイパス配管5の下流側またはガス配管10の下流側をそれぞれ圧縮機1の上流側(中温低圧配管41に同じ)に接続する形態を説明しているが、本発明はこれに限定するものではなく、圧縮機1内の圧縮過程の途中に接続して、バイパス配管5またはガス配管10から流れてきた冷媒を混合して圧縮機1の内部に戻す、すなわち、中温低圧配管41を流れてきた既にある程度圧縮されている状態の冷媒に、バイパス配管5またはガス配管10から流れてきた冷媒を混合しても、同様の効果が得られるものである。
 (3)実施の形態1~4では、膨張弁3を過冷却度センサーT73によって検出された中温高圧冷媒の過冷却度が所定の値以上になるように制御するものであって、検出した値に応じて制御したが、開度の上限と下限とを設けてもよい。このような構成によれば、上記の効果に加えて、過剰な冷媒のバイパス配管5への流入や、絞り過ぎによる冷凍サイクルの動作不良を防止することができるとともに、圧縮機1への液バックを防止することができる。
 (4)充填する冷媒を変更する場合や延長配管の長さなどに応じて、過冷却度や圧力差の制御目標値を変更してもよい。たとえば、冷媒充填量が少なくなる場合や、延長配管が長くなる場合には、過冷却度の制御目標値を小さい値に設定する。反対に、冷媒充填量が多くなる場合や、延長配管が短くなる場合には、過冷却度の制御目標値を大きい値に設定してもよい。
 (5)低圧側の冷媒のガス密度が異なる冷媒を充填した場合には、圧力差の制御目標値を変更してもよい。このように構成した冷凍サイクル装置によれば、異なる低GWP冷媒を利用する場合や、延長配管の長さが異なる場合においても、実施の形態1~3の効果と同様の効果が得られる。
 (6)実施の形態1~3では、蒸発器4から流出した中温低圧冷媒が、圧縮機1に直接吸入されるように構成したが、圧縮機1への液バックを防止するための圧縮機1の上流(中温低圧配管41)にアキュムレータを設けてもよい。
 (7)実施形態1~3では、冷媒中のごみを捕捉するストレーナ、冷媒中の水分を捕捉するドライヤ、圧縮機1から吐出される冷凍機油を分離し圧縮機1に戻す油分離器、循環配管等の接続工事のためのストップ弁(開閉弁)等の「冷媒回路部品」を設けていないが、これらの冷媒回路部品を設けて 冷凍サイクル装置100、200、300の信頼性を確保するための補機を備えてもよい。
 (8)実施の形態1~2では、特に、熱交換器7における冷媒の流れ方向について説明していないが、流れ方向を冷媒の種類に応じて切り替えるように構成してもよい。
 図9および図10は、本発明の実施形態1に係る冷凍サイクル装置の熱交換器7の流れ方向の長さと冷媒の温度との関係を説明する模式図であて、図9は対向流、図10は並行流である。
 図9は、蒸発しながら冷媒の温度が上昇する冷媒における対向流形式の熱交換器の挙動であって、横軸は熱交換器7を構成する配管の長さ(冷媒の流れ方向の長さに同じ)であり、縦軸は冷媒の温度を模式的に示している。すなわち、高温側の冷媒は入口イから流入して、温熱を奪わて冷却され、やがて、出口ロから流出する。
 一方、低温側の冷媒は入口ハから流入して、温熱を受け取りながら蒸発して温度が上昇し、やがて、出口ニから流出する。したがって、昇温後期段階の低温側の冷媒は降温初期段階の高温側の冷媒と熱交換し、昇温初期段階の低温側の冷媒は降温後期段階の高温側の冷媒と熱交換することになる。
 よって、熱交換器7を構成する配管の全域(熱交換の全工程に同じ)において、高温(高圧)側の冷媒と低温(低圧)側の冷媒との温度差を少なくする(ほぼ一定にする)ことができ、効率よく熱交換することが可能になる。なお、図9では平行する2本の直線が示されているが、当該直線は平行でない場合、あるいは、円弧状である場合がある。なお、冷凍サイクル装置200、300において同じであるから、説明を省略する。
 図10は、本発明の実施形態1に係る冷凍サイクル装置のバイパス配管5のバイパス膨張弁6の下流に冷媒を膨張させるキャピラリーチューブが配置され、熱交換器7が当該キャピラリーチューブと中温高圧配管23の一部とによって構成された場合の、挙動を示している。すなわち、バイパス配管5において、バイパス膨張弁6から流出した低温低圧冷媒は、入口ホから前記キャピラリーチューブ(熱交換器7に同じ)に流入し、除々に温度および圧力を下げながら、やがて出口から流出する。
 一方、中温高圧配管23では、中温高圧冷媒が入口イから流入して出口ロから流出する。この間、中温高圧冷媒は低温低圧冷媒から冷熱を受け取るから、除々に温度を下げることになる。
 よって、熱交換器7を構成する配管の全域(熱交換の全工程に同じ)において、高温(高圧)側の冷媒と低温(低圧)側の冷媒との温度差を少なくする(ほぼ一定にする)ことができ、効率よく熱交換することが可能になる。なお、図9では平行する2本の直線が示されているが、当該直線は平行でない場合、あるいは、円弧状である場合がある。なお、冷凍サイクル装置200、300において同じであるから、説明を省略する。
 (9)実施の形態1~3では、熱交換器7内における冷媒の分岐について説明していないが、低温低圧冷媒を通すバイパス配管5の一部を複数の伝熱管に分岐して、実際に冷媒が流れる伝熱管(伝熱管の数に同じ)を変更する分岐数可変部を有する熱交換器にしてもよい。図11は、本発明の実施形態1に係る冷凍サイクル装置の熱交換器内における冷媒の流路の一例を示す冷媒回路図である。
 図11の(a)において、中温高圧配管23は、蛇行しながら破線の経路を矢印方向(図中、水平方向の流れを織り交ぜながら概ね上から下の方向)に流れている。
 一方、低温低圧冷媒が流れるバイパス配管5のバイパス膨張弁6の下流側は分岐している。すなわち、バイパス配管5は熱交換器7の入口において、伝熱管5aと伝熱管5dに分岐している。伝熱管5dには開閉弁5eが設置され、開閉弁5eの下流で伝熱管5bと伝熱管5cとに分岐している。また、伝熱管5aと伝熱管5bとは熱交換器7の出口において、開閉弁5fが設置された伝熱管5gに統合されている。さらに、伝熱管5gは開閉弁5fの下流において伝熱管5hに統合され、かかる伝熱管5hがバイパス配管5の熱交換器7から下流の部分を形成している。
 したがって、低温低圧冷媒の圧力損失が大きい場合には、開閉弁5eと開閉弁5fとを開き、低温低圧冷媒が、伝熱管5a、伝熱管5bおよび伝熱管5cの3つの経路に分岐され、該3径路を並行して流すようにする(図11の(a))。
 一方、低温低圧冷媒の圧力損失が小さい場合には、開閉弁5eと開閉弁5fとを閉じ、低温低圧冷媒が、伝熱管5a、伝熱管5bおよび伝熱管5cを順番に1つの経路を流れるようにする(図11の(b))。
 このように構成した冷凍サイクル装置によれば、熱交換器7における低温低圧冷媒の圧力損失の増大を防止できるとともに、流量が少なく圧力損失が小さい場合には、分岐数を減らして流速をあげ熱交換効率を向上させることができる。
 なお、以上は3つの経路に分岐される場合を示しているが、これに限定するものではない。また、伝熱管5a、5b、5cを流れる冷媒の方向と中温高圧配管23を流れる冷媒の方向とは図示するものに限定するものではなく、適宜、対向流あるいは並行流になるようにすればよい。なお、冷凍サイクル装置200、300において同じであるから、説明を省略する。
 (10)次に、実施の形態1~4の蒸発器4における伝熱と圧力損失との関係について説明する。
 図12は、本発明の実施形態1に係る冷凍サイクル装置の蒸発器へ流入する冷媒の流量と冷凍サイクル装置の成績係数との関係を示すグラフである。なお、成績係数は、冷凍サイクル装置100への電気入力に対する冷凍能力の比を示す。
 蒸発器4の伝熱性能と蒸発器4の圧力損失は、蒸発器4へ流入する冷媒流量と比例関係であり、冷媒流量が増加するほど、伝熱性能は高く、圧力損失は大きくなる。図12において2つの実線は、冷凍サイクル装置100の冷凍能力が100%の場合の成績係数と冷媒流量の関係と、冷凍サイクル装置100の冷凍能力が50%の場合の成績係数と冷媒流量の関係と、をそれぞれ示している。冷媒流量が大きくなるほど蒸発器の伝熱性能が高くなり、性能が向上するが、圧力損失も高くなり、結果として、各冷凍能力に対応した最適な動作点(圧力損失)が存在する(図中黒丸にて最適動作点を示している)。なお、冷凍サイクル装置200、300において同じであるから、説明を省略する。
 なお、上述の実施形態では、過冷却度センサーとして圧力センサーと温度センサーとを組み合わせて使用したが、過冷却度センサーは過冷却度を直接検知又は間接的に推定できるものであれば、どのようなものを用いても良い。例えば、使用環境が比較的安定している場合に、圧力又は温度のいずれか一方を測定し、他方はその使用環境での推定値を使用するようにしても良い。また、圧縮機回転数、吐出圧力や吐出温度の検出値、凝縮温度を過冷却度の計算に使用したり、圧縮機の吸入圧力、蒸発器出口圧力若しくは蒸発温度の検出値等を過熱度の計算に使用することも可能である。
 また、過冷却度制御は、温度センサーや圧力センサーの検出値等の冷媒状態、又は冷凍サイクルの運転状態に基づき結果として過冷却度が適切な範囲に制御さればよいのであって、過冷却度は必ずしも計算する必要はない。過熱度制御についても同様に過熱度を制御できる限りにおいて、この値を計算することは必須ではない。
 過冷却を行なう熱交換器は、冷媒を過冷却にできる手段であればバイパス配管以外を用いてもよい。例えば、冷凍サイクル内の他の冷温部分と熱交換する方法、別の冷凍サイクルによるエコノマイザーのような付加装置を使用しても構わない。
 この発明に係る冷凍サイクル装置は、冷媒充填量に制約があるような場合であっても、安定した運転をすることができるから、様々な低GMP冷媒を使用する各種冷凍サイクル装置として広く利用することができる。

Claims (17)

  1.  可燃性冷媒を圧縮する圧縮機と、この圧縮機において圧縮された可燃性冷媒を凝縮させる凝縮器と、この凝縮器から吐出された可燃性冷媒を過冷却する熱交換器と、この熱交換器により過冷却された可燃性冷媒を膨張させる膨張弁と、この膨張弁において膨張した可燃性冷媒を蒸発させる蒸発器と、前記凝縮器と前記膨張弁との間の冷媒温度若しくは冷媒圧力に応じて前記熱交換器の熱交換量を制御する制御手段と、を備えた冷凍サイクル装置。
  2.  可燃性冷媒の燃焼下限界により定められる被空調空間の許容冷媒量以下の冷媒が封入されていることを特徴とする請求項1記載の冷凍サイクル装置。
  3.  可燃性冷媒の燃焼下限界により定められる冷凍サイクル装置の被冷凍空間の許容冷媒量以下の冷媒が封入されていることを特徴とする請求項1記載の冷凍サイクル装置。
  4.  前記圧縮機の上流配管と前記熱交換器の下流配管とを接続するバイパス配管と、このバイパス配管に設けられ、前記下流配管を流れる可燃性冷媒の主流から分岐した副流を膨張させるバイパス膨張弁と、
     前記膨張弁の入口側における可燃性冷媒の主流の過冷却度を検出する過冷却度検出部を備え、
     前記熱交換器は前記バイパス配管のバイパス膨張弁下流側に熱的に接続され、
     前記制御手段は、前記過冷却度検出部の検出結果に基づき、前記主流の過冷却度が所定の値以上になるように、前記膨張弁または前記バイパス膨張弁の少なくとも一方の開度を制御することを特徴とする請求項1乃至3のいずれか1項に記載の冷凍サイクル装置。
  5.  前記圧縮機の上流配管と前記熱交換器の下流配管とを接続するバイパス配管と、このバイパス配管に設けられ、前記下流配管を流れる可燃性冷媒の主流から分岐した副流を膨張させるバイパス膨張弁と、を備え、
     前記熱交換器は前記バイパス配管のバイパス膨張弁下流側に熱的に接続され、
     前記制御手段は、前記主流に対して過冷却度制御を行い、前記副流に対して過熱度制御を行なうことを特徴とする請求項1乃至3のいずれか1項に記載の冷凍サイクル装置。
  6.  前記制御手段は、前記主流の温度に基づき前記膨張弁の開度を制御し、前記副流の温度に基づき前記バイパス膨張弁の開度を制御することを特徴とする請求項5記載の冷凍サイクル装置。
  7.  前記制御手段は、前記主流の過冷却度に基づき前記膨張弁の開度を制御し、前記副流の加熱度に基づき前記バイパス膨張弁の開度を制御することを特徴とする請求項5記載の冷凍サイクル装置。
  8.  前記制御手段は、前記バイパス配管に流れる可燃性冷媒の流量を増大させ、前記熱交換器出口と前記膨張弁との間の可燃性冷媒の過冷却度を上昇させることを特徴とする請求項5記載の冷凍サイクル装置。
  9.  前記蒸発器の上流側配管内の冷媒圧力を検知する蒸発器上流圧力センサーと、前記蒸発器の下流側配管内の冷媒圧力を検知する蒸発器下流圧力センサーと、前記バイパス配管内の前記熱交換器の下流における可燃性冷媒の過熱度を検知する過熱度検知部とを備え、
     前記制御手段は、前記蒸発器上流圧力センサーの検知した圧力値と前記蒸発器下流圧力センサーの検知した圧力値とに応じて、前記バイパス配管内の可燃性冷媒の過熱度の制御目標値を設定する過熱度制御部を備え、前記過熱度検知部の検知した過熱度が前記過熱度制御部の設定した制御目標値になるように、前記バイパス流量制御弁を制御することを特徴とする請求項4記載の冷凍サイクル装置。
  10.  可燃性冷媒の種類または延長配管の長さの一方または両方に応じて、前記膨張弁の入口における可燃性冷媒の過冷却度の制御目標値を変更する過冷却度制御部を有することを特徴とする請求項1記載の冷凍サイクル装置。
  11.  前記制御手段は、前記バイパス膨張弁が、前記バイパス配管の入口における可燃性冷媒の圧力と前記バイパス配管の出口における可燃性冷媒の圧力との圧力差、または前記蒸発器の入口における可燃性冷媒の圧力と前記蒸発器の出口における可燃性冷媒の圧力との圧力差の一方または両方が大きいほど、
     前記バイパス配管を流れる可燃性冷媒の流量を増加させるように前記バイパス配管を流れる可燃性冷媒の流量を制御することを特徴とする請求項4記載の冷凍サイクル装置。
  12.  前記熱交換器における前記副流の流れ方向と前記主流の流れ方向とが対向していることを特徴とする請求項4記載の冷凍サイクル装置。
  13.  前記バイパス配管の前記バイパス膨張弁の下流に可燃性冷媒を膨張させるキャピラリーチューブが配置され、前記熱交換器が前記キャピラリーチューブと前記凝縮器及び前記膨張弁を接続する接続配管の一部とによって構成され、
     前記キャピラリーチューブを流れる可燃性冷媒の流れ方向と前記接続配管を流れる可燃性冷媒の流れ方向とが並行していることを特徴とする請求項4記載の冷凍サイクル装置。
  14.  前記バイパス配管の一部が、前記熱交換器の入口において複数の伝熱管に分岐され、
     前記熱交換器の出口において前記複数の伝熱管が統合され、
     前記複数の伝熱管のうち可燃性冷媒が通過する伝熱管を変更する分岐数可変部を有することを特徴とする請求項4記載の冷凍サイクル装置。
  15.  前記膨張弁と前記蒸発器との間に設置された気液分離器と、
     該気液分離器によって分離された蒸気状の可燃性冷媒を前記圧縮機に流入させるガス配管と、
     該ガス配管に設置され、可燃性冷媒の流量を制御するガス流量制御弁と、
    を有することを特徴とする請求項4記載の冷凍サイクル装置。
  16.  前記ガス配管の前記ガス流量制御弁の上流における可燃性冷媒の圧力を検知するガス流量制御弁上流圧力センサーと、前記ガス配管の前記ガス流量制御弁の下流における可燃性冷媒の圧力を検知するガス流量制御弁下流圧力センサーと、を備え、
     前記ガス流量制御弁上流圧力センサーの検知した圧力値と前記ガス流量制御弁下流圧力センサーの検知した圧力値とに応じて、前記ガス流量制御弁が制御されることを特徴とする請求項15記載の冷凍サイクル装置。
  17.  可燃性冷媒又は有毒性冷媒を冷媒として用い、被冷却空間へ冷媒配管を露出させるとともに、前記被冷却空間に冷媒が漏洩し拡散したときの冷媒濃度が可燃濃度未満又は人体への有毒許容濃度以下となるように、冷媒の充填量が制限された冷凍サイクルの制御方法であって、
     凝縮器で凝縮された冷媒の状態を検出する検出ステップと、
     この検出ステップで検出された冷媒の状態に基づき、前記冷凍サイクル内の冷媒充填量に依存する凝縮圧力に起因して前記凝縮器出口側で気液二相状態となった冷媒を過冷却し、前記膨張弁手前での圧力脈動を抑制するステップと、
    を備えた冷凍サイクルの制御方法。
PCT/JP2008/070445 2008-06-13 2008-11-11 冷凍サイクル装置、並びにその制御方法 WO2009150761A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880129793XA CN102066851B (zh) 2008-06-13 2008-11-11 冷冻循环装置及其控制方法
US12/995,343 US9163865B2 (en) 2008-06-13 2008-11-11 Refrigeration cycle device and method of controlling the same
EP08874614.4A EP2314953B1 (en) 2008-06-13 2008-11-11 Refrigeration cycle device and control method therefor
JP2010516723A JP5318099B2 (ja) 2008-06-13 2008-11-11 冷凍サイクル装置、並びにその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008155520 2008-06-13
JP2008-155520 2008-06-13

Publications (1)

Publication Number Publication Date
WO2009150761A1 true WO2009150761A1 (ja) 2009-12-17

Family

ID=41416480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070445 WO2009150761A1 (ja) 2008-06-13 2008-11-11 冷凍サイクル装置、並びにその制御方法

Country Status (5)

Country Link
US (1) US9163865B2 (ja)
EP (1) EP2314953B1 (ja)
JP (1) JP5318099B2 (ja)
CN (1) CN102066851B (ja)
WO (1) WO2009150761A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179764A (ja) * 2010-03-02 2011-09-15 Panasonic Corp 冷凍サイクル装置
JP2011252637A (ja) * 2010-06-01 2011-12-15 Panasonic Corp 冷凍サイクル装置及びその制御方法
CN102419024A (zh) * 2010-09-24 2012-04-18 松下电器产业株式会社 制冷循环装置和热水采暖装置
JP2013088032A (ja) * 2011-10-18 2013-05-13 Sanden Corp 冷凍機、冷蔵ショーケース及び自動販売機
WO2013099898A1 (ja) * 2011-12-28 2013-07-04 ダイキン工業株式会社 冷凍装置
JP2014153036A (ja) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp 冷凍装置
JP2016020760A (ja) * 2014-07-14 2016-02-04 株式会社富士通ゼネラル 空気調和装置
WO2016103702A1 (ja) * 2014-12-26 2016-06-30 ダイキン工業株式会社 蓄熱式空気調和機
JP2016151372A (ja) * 2015-02-17 2016-08-22 株式会社富士通ゼネラル 空気調和装置
WO2017002377A1 (ja) * 2015-07-01 2017-01-05 三菱電機株式会社 冷凍サイクル装置
JP2017053598A (ja) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 冷凍装置
JPWO2015136703A1 (ja) * 2014-03-14 2017-04-06 三菱電機株式会社 冷凍サイクル装置
JPWO2017064755A1 (ja) * 2015-10-13 2018-01-11 三菱電機株式会社 空気調和機および空気調和機の制御方法
JPWO2017195368A1 (ja) * 2016-05-13 2018-08-30 三菱電機株式会社 空気調和機
JP2020024085A (ja) * 2014-11-18 2020-02-13 三菱電機株式会社 空気調和装置の冷媒量設定方法
WO2020188756A1 (ja) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN113915804A (zh) * 2021-06-21 2022-01-11 中南大学 一种用于热力膨胀阀掺汽超空化喷射噪声抑制装置
JPWO2022013975A1 (ja) * 2020-07-15 2022-01-20
JP7369030B2 (ja) 2019-12-26 2023-10-25 株式会社前川製作所 冷凍システム及び冷凍システムの制御方法
WO2024095446A1 (ja) * 2022-11-04 2024-05-10 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270775A (ja) * 2008-05-08 2009-11-19 Sanden Corp 冷凍サイクル
CN103097835B (zh) * 2010-06-30 2016-01-20 丹福斯有限公司 使用过冷值操作蒸汽压缩系统的方法
CN102345949A (zh) * 2011-09-05 2012-02-08 青岛海信日立空调系统有限公司 一种多联式空调换热器冷媒流量调节系统及其调节方法
JP5594267B2 (ja) * 2011-09-12 2014-09-24 ダイキン工業株式会社 冷凍装置
US20130333402A1 (en) * 2012-06-18 2013-12-19 GM Global Technology Operations LLC Climate control systems for motor vehicles and methods of operating the same
JP6064412B2 (ja) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル 空気調和装置
KR20140022619A (ko) * 2012-08-14 2014-02-25 삼성전자주식회사 공기조화기 및 공기조화기의 제어방법
US10288335B2 (en) * 2012-09-28 2019-05-14 Electrolux Home Products Corporation N.V. Refrigerator having a refrigeration system with first and second conduit paths
GB2524184B (en) * 2013-01-07 2019-11-20 Mitsubishi Electric Corp Air conditioning apparatus
JP6086746B2 (ja) * 2013-02-14 2017-03-01 アネスト岩田株式会社 動力発生装置及びその運転方法
FR3004784B1 (fr) * 2013-04-18 2015-04-10 Air Liquide Procede et installation d'alimentation d'au moins un poste d'usinage en liquide cryogenique sous-refroidi
ITVI20130257A1 (it) * 2013-10-18 2015-04-19 Carel Ind Spa Metodo di azionamento di una macchina frigorifera dotata di apparato economizzatore
CN104633979B (zh) * 2013-11-13 2017-03-29 珠海格力电器股份有限公司 空调器及其控制方法
CN104729161B (zh) * 2013-12-19 2018-08-24 珠海格力电器股份有限公司 空调器及其控制方法
KR102240070B1 (ko) * 2014-03-20 2021-04-13 엘지전자 주식회사 공기조화기 및 그 제어방법
WO2015151238A1 (ja) * 2014-04-02 2015-10-08 三菱電機株式会社 空気調和装置およびその設置方法
CN104101128B (zh) * 2014-07-09 2017-01-25 华中科技大学 一种适应于可燃制冷剂的制冷系统及其控制方法
CN104567125B (zh) * 2014-11-26 2017-08-22 青岛澳柯玛超低温冷冻设备有限公司 一种用于单机自复叠制冷的旁通制冷换热系统
KR101632013B1 (ko) * 2014-12-08 2016-06-21 엘지전자 주식회사 히트펌프 사이클을 구비한 응축식 의류 건조기 및 이의 제어방법
CN107208937A (zh) * 2015-01-23 2017-09-26 三菱电机株式会社 空气调节装置
JP6642903B2 (ja) * 2015-03-31 2020-02-12 三菱重工サーマルシステムズ株式会社 冷媒循環装置、冷媒循環方法、冷媒充填方法および冷媒循環装置の運転方法
JP2017053566A (ja) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 冷凍サイクル装置
CN105115352B (zh) * 2015-09-29 2017-02-01 江苏永盛传热科技有限公司 管壳式换热机组
CN105627612B (zh) * 2016-01-04 2018-05-25 广东美的暖通设备有限公司 室外机冷媒管路系统、空调器及空调器的制冷控制方法
CN105627613B (zh) * 2016-01-04 2018-01-23 广东美的暖通设备有限公司 空调器的室外机及空调器
CN106196430A (zh) * 2016-06-30 2016-12-07 珠海格力电器股份有限公司 定频空调自动调整制冷量的系统及方法
CN106382777A (zh) * 2016-08-29 2017-02-08 珠海格力电器股份有限公司 一种空调系统及过冷器回流冷媒的回流控制方法
CN106969557A (zh) * 2017-03-20 2017-07-21 山东大学 一种带经济器的双温co2跨临界增压制冷系统
AU2017413868B2 (en) * 2017-05-09 2020-11-26 Mitsubishi Electric Corporation Air-conditioning system and refrigerant-amount setting method for the same
US11243016B2 (en) 2017-09-12 2022-02-08 Hill Phoenix, Inc. Refrigeration system with combined superheat and subcooling control
JP6935720B2 (ja) * 2017-10-12 2021-09-15 ダイキン工業株式会社 冷凍装置
US10677679B2 (en) 2017-12-01 2020-06-09 Johnson Controls Technology Company Refrigerant leak detection and management based on condensation from air samples
CN108332285B (zh) * 2017-12-29 2019-12-06 青岛海尔空调器有限总公司 空调器系统
JP6540872B1 (ja) * 2018-01-15 2019-07-10 ダイキン工業株式会社 製氷システム
WO2020063678A1 (zh) 2018-09-25 2020-04-02 杭州三花研究院有限公司 空调系统及其控制方法
CN110953699B (zh) * 2018-09-26 2021-05-18 杭州三花研究院有限公司 一种空调系统及其控制方法
KR102002016B1 (ko) * 2018-09-28 2019-10-21 한영테크노켐(주) 가연성 냉매를 이용하는 냉동시스템의 안전운전방법 및 안전운전장치
EP3933301A4 (en) * 2019-02-27 2022-03-09 Mitsubishi Electric Corporation AIR CONDITIONING DEVICE
IT201900021534A1 (it) * 2019-11-19 2021-05-19 Carel Ind Spa Apparato frigorifero monovalvola a co2 e metodo di regolazione dello stesso
CN111407123A (zh) * 2020-04-24 2020-07-14 珠海格力电器股份有限公司 降低温度波动的控制方法、控温装置及陈列柜
CN111436803A (zh) * 2020-06-05 2020-07-24 珠海格力电器股份有限公司 冷藏陈列柜
CN112178871A (zh) * 2020-09-21 2021-01-05 广东Tcl智能暖通设备有限公司 一种空调控制方法、空调及存储介质
CN113108420B (zh) * 2021-03-30 2022-11-11 深圳市共济科技股份有限公司 一种空调的控制方法及空调系统
CN113739416A (zh) * 2021-09-08 2021-12-03 耿现军 一种热泵开水设备
CN114413404B (zh) * 2021-12-20 2023-05-26 青岛海尔空调电子有限公司 用于降低空调冷媒噪音的方法及装置、空调、存储介质
CN114264032B (zh) * 2021-12-30 2023-03-24 广东Tcl智能暖通设备有限公司 过冷阀控制方法、装置、空调器及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265232A (ja) * 1993-03-11 1994-09-20 Mitsubishi Electric Corp 空気調和装置
JPH06331223A (ja) 1993-05-21 1994-11-29 Mitsubishi Electric Corp 冷凍サイクル
JPH074756A (ja) * 1993-06-18 1995-01-10 Mitsubishi Electric Corp 空気調和装置
JPH10318614A (ja) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd 空気調和機
JP2004108312A (ja) * 2002-09-20 2004-04-08 Hitachi Home & Life Solutions Inc 密閉形圧縮機
JP2004175998A (ja) * 2002-11-28 2004-06-24 Nichirei Corp 冷媒組成物
JP2005083609A (ja) * 2003-09-05 2005-03-31 Daikin Ind Ltd 冷凍装置
JP2008051373A (ja) * 2006-08-23 2008-03-06 Daikin Ind Ltd 気液分離器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039941A (en) * 1958-03-24 1962-06-19 Phillips Petroleum Co Method and apparatus for controlling a distillation system
US5392612A (en) * 1984-08-08 1995-02-28 Richard H. Alsenz Refrigeration system having a self adjusting control range
JP3655681B2 (ja) * 1995-06-23 2005-06-02 三菱電機株式会社 冷媒循環システム
US6413297B1 (en) * 2000-07-27 2002-07-02 Northland Energy Corporation Method and apparatus for treating pressurized drilling fluid returns from a well
JP3838008B2 (ja) * 2000-09-06 2006-10-25 松下電器産業株式会社 冷凍サイクル装置
US6474087B1 (en) * 2001-10-03 2002-11-05 Carrier Corporation Method and apparatus for the control of economizer circuit flow for optimum performance
KR20040094790A (ko) * 2002-03-13 2004-11-10 마쓰시타 레키 가부시키가이샤 냉장고
US7424807B2 (en) * 2003-06-11 2008-09-16 Carrier Corporation Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
US7526942B2 (en) * 2003-06-12 2009-05-05 Riken Keiki Co., Ltd. Contact combustion gas sensor
JP3757967B2 (ja) * 2003-08-25 2006-03-22 ダイキン工業株式会社 冷凍装置
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
JP2006199143A (ja) 2005-01-20 2006-08-03 Sanden Corp 車両用空調装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265232A (ja) * 1993-03-11 1994-09-20 Mitsubishi Electric Corp 空気調和装置
JPH06331223A (ja) 1993-05-21 1994-11-29 Mitsubishi Electric Corp 冷凍サイクル
JPH074756A (ja) * 1993-06-18 1995-01-10 Mitsubishi Electric Corp 空気調和装置
JPH10318614A (ja) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd 空気調和機
JP2004108312A (ja) * 2002-09-20 2004-04-08 Hitachi Home & Life Solutions Inc 密閉形圧縮機
JP2004175998A (ja) * 2002-11-28 2004-06-24 Nichirei Corp 冷媒組成物
JP2005083609A (ja) * 2003-09-05 2005-03-31 Daikin Ind Ltd 冷凍装置
JP2008051373A (ja) * 2006-08-23 2008-03-06 Daikin Ind Ltd 気液分離器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2314953A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179764A (ja) * 2010-03-02 2011-09-15 Panasonic Corp 冷凍サイクル装置
JP2011252637A (ja) * 2010-06-01 2011-12-15 Panasonic Corp 冷凍サイクル装置及びその制御方法
CN102419024A (zh) * 2010-09-24 2012-04-18 松下电器产业株式会社 制冷循环装置和热水采暖装置
CN102419024B (zh) * 2010-09-24 2015-02-25 松下电器产业株式会社 制冷循环装置和热水采暖装置
JP2013088032A (ja) * 2011-10-18 2013-05-13 Sanden Corp 冷凍機、冷蔵ショーケース及び自動販売機
WO2013099898A1 (ja) * 2011-12-28 2013-07-04 ダイキン工業株式会社 冷凍装置
JP2013139924A (ja) * 2011-12-28 2013-07-18 Daikin Industries Ltd 冷凍装置
CN104024764A (zh) * 2011-12-28 2014-09-03 大金工业株式会社 制冷装置
CN104024764B (zh) * 2011-12-28 2015-05-20 大金工业株式会社 制冷装置
JP2014153036A (ja) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp 冷凍装置
US10508848B2 (en) 2014-03-14 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2015136703A1 (ja) * 2014-03-14 2017-04-06 三菱電機株式会社 冷凍サイクル装置
JP2016020760A (ja) * 2014-07-14 2016-02-04 株式会社富士通ゼネラル 空気調和装置
JP2020024085A (ja) * 2014-11-18 2020-02-13 三菱電機株式会社 空気調和装置の冷媒量設定方法
JP2016125715A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 蓄熱式空気調和機
WO2016103702A1 (ja) * 2014-12-26 2016-06-30 ダイキン工業株式会社 蓄熱式空気調和機
JP2016151372A (ja) * 2015-02-17 2016-08-22 株式会社富士通ゼネラル 空気調和装置
WO2017002377A1 (ja) * 2015-07-01 2017-01-05 三菱電機株式会社 冷凍サイクル装置
WO2017002238A1 (ja) * 2015-07-01 2017-01-05 三菱電機株式会社 冷凍サイクル装置
JPWO2017002377A1 (ja) * 2015-07-01 2017-11-02 三菱電機株式会社 冷凍サイクル装置
JP2017053598A (ja) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 冷凍装置
JPWO2017064755A1 (ja) * 2015-10-13 2018-01-11 三菱電機株式会社 空気調和機および空気調和機の制御方法
JPWO2017195368A1 (ja) * 2016-05-13 2018-08-30 三菱電機株式会社 空気調和機
WO2020188756A1 (ja) * 2019-03-19 2020-09-24 日立ジョンソンコントロールズ空調株式会社 空気調和機
JPWO2020188756A1 (ja) * 2019-03-19 2021-04-30 日立ジョンソンコントロールズ空調株式会社 ルームエアコン
JP7369030B2 (ja) 2019-12-26 2023-10-25 株式会社前川製作所 冷凍システム及び冷凍システムの制御方法
JPWO2022013975A1 (ja) * 2020-07-15 2022-01-20
WO2022013975A1 (ja) * 2020-07-15 2022-01-20 三菱電機株式会社 冷熱源ユニットおよび冷凍サイクル装置
JP7438363B2 (ja) 2020-07-15 2024-02-26 三菱電機株式会社 冷熱源ユニットおよび冷凍サイクル装置
CN113915804A (zh) * 2021-06-21 2022-01-11 中南大学 一种用于热力膨胀阀掺汽超空化喷射噪声抑制装置
WO2024095446A1 (ja) * 2022-11-04 2024-05-10 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2009150761A1 (ja) 2011-11-10
CN102066851A (zh) 2011-05-18
US20110083456A1 (en) 2011-04-14
US9163865B2 (en) 2015-10-20
EP2314953B1 (en) 2018-06-27
CN102066851B (zh) 2013-03-27
EP2314953A1 (en) 2011-04-27
EP2314953A4 (en) 2015-04-29
JP5318099B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
KR100856991B1 (ko) 냉동 공조장치, 냉동 공조장치의 운전 제어 방법, 냉동공조장치의 냉매량 제어 방법
JP6058145B2 (ja) 空気調和装置
JP5627713B2 (ja) 空気調和装置
JP5992089B2 (ja) 空気調和装置
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
WO2013111176A1 (ja) 空気調和装置
WO2014141375A1 (ja) 空気調和装置
WO2014141374A1 (ja) 空気調和装置
JP2011052884A (ja) 冷凍空調装置
WO2007110908A9 (ja) 冷凍空調装置
CN103733005B (zh) 空调装置
WO2014128831A1 (ja) 空気調和装置
WO2014141373A1 (ja) 空気調和装置
JP5908183B1 (ja) 空気調和装置
JP2007240025A (ja) 冷凍装置
JP6038382B2 (ja) 空気調和装置
EP2902726A1 (en) Combined air-conditioning and hot-water supply system
JP6080939B2 (ja) 空気調和装置
JP2009257756A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP6758506B2 (ja) 空気調和装置
JP2009243881A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP2009293887A (ja) 冷凍装置
JP2013053849A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP5194842B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129793.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516723

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12995343

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008874614

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE