WO2016166801A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2016166801A1
WO2016166801A1 PCT/JP2015/061392 JP2015061392W WO2016166801A1 WO 2016166801 A1 WO2016166801 A1 WO 2016166801A1 JP 2015061392 W JP2015061392 W JP 2015061392W WO 2016166801 A1 WO2016166801 A1 WO 2016166801A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
source side
heat exchanger
heat
refrigerant
Prior art date
Application number
PCT/JP2015/061392
Other languages
English (en)
French (fr)
Inventor
周平 水谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/061392 priority Critical patent/WO2016166801A1/ja
Priority to JP2017512481A priority patent/JP6377259B2/ja
Priority to GB1710780.6A priority patent/GB2552891C/en
Publication of WO2016166801A1 publication Critical patent/WO2016166801A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner capable of performing a defrosting operation on a heat source side heat exchanger during a heating operation.
  • Patent Document 1 As an air conditioner capable of performing a defrosting operation during heating operation, an air conditioner having a plurality of outdoor heat exchangers stacked in the vertical direction is known (for example, Patent Document 1).
  • the air conditioning apparatus of Patent Document 1 performs a heating operation and a defrosting operation in parallel by flowing hot gas from a compressor to one of a plurality of outdoor heat exchangers.
  • the air conditioner of Patent Document 1 when one outdoor heat exchanger is defrosting, the other outdoor heat exchanger operates as an evaporator. At the boundary between the outdoor heat exchanger during defrosting and the outdoor heat exchanger operating as an evaporator, the defrosting effect of hot gas is offset by the low-temperature refrigerant flowing through the outdoor heat exchanger operating as an evaporator. Therefore, sufficient heat for defrosting may not be ensured. From the above, the air conditioner of Patent Document 1 has a problem that residual frost and icing may occur at the boundary portions of the plurality of outdoor heat exchangers.
  • This invention was made in order to solve the above-mentioned problem, and it aims at providing the air conditioning apparatus which can suppress generation
  • An air conditioner includes a variable frequency compressor, a first heat source side heat exchanger, a second heat source side heat exchanger, and a third heat source side heat exchanger, Two heat source side heat exchangers are fixed between the first heat source side heat exchanger and the third heat source side heat exchanger, and the first heat source side heat exchanger is connected to the third heat source side heat exchanger.
  • the first heat source side heat exchanger, the second heat source side heat exchanger, and the third heat source side heat exchanger are arranged in a vertical direction so as to be disposed below the heat source side heat exchanger.
  • a heat source side heat exchange unit arranged in parallel to the first heat source side heat exchanger, a first heat source side pressure reducing device connected to the first heat source side heat exchanger, the degree of opening of which can be adjusted, and the second heat source side heat exchange.
  • a second heat source side pressure reducing device that can adjust the opening degree, and a third heat source side that can be adjusted for the opening degree, connected to the third heat source side heat exchanger.
  • a first bypass that branches from a discharge-side refrigerant pipe connected to a discharge port of the compressor and the compressor, and is connected between the first heat source-side heat exchanger and the first heat source-side decompressor.
  • a refrigerant branch pipe, a second bypass refrigerant branch pipe branched from the discharge side refrigerant pipe and connected between the second heat source side heat exchanger and the second heat source side pressure reducing device, and the discharge A third bypass refrigerant branch pipe branched from the side refrigerant pipe and connected between the third heat source side heat exchanger and the third heat source side pressure reducing device, and the first bypass refrigerant branch pipe
  • the second heating defrosting parallel operation to be supplied is possible, and the second heat source side decompression device is closed when the first heating defrosting parallel operation or the second heating defrosting parallel operation is performed.
  • the bypass pressure reducing device is opened, the opening degree is adjusted, and the hot gas discharged from the compressor is supplied to the second heat source side heat exchanger.
  • the hot gas can always flow through the second heat source side heat exchanger in the middle position. Therefore, according to this invention, the air conditioning apparatus which can suppress generation
  • FIG. 1 is a schematic refrigerant circuit diagram illustrating an example of the air-conditioning apparatus 1 according to Embodiment 1.
  • FIG. 1 the dimensional relationship and shape of each component may be different from the actual one.
  • the air conditioner 1 includes a heat source side unit 100 (outdoor unit), a first load side unit 200a and a second load side unit 200b (parallel to the heat source side unit 100). Indoor unit).
  • the heat source side unit 100 and the first load side unit 200a and the second load side unit 200b are connected by a first extended refrigerant pipe 300 (liquid line) and a second extended refrigerant pipe 400 (gas line).
  • a first extended refrigerant pipe 300 liquid line
  • second extended refrigerant pipe 400 gas line
  • the air conditioner 1 of the first embodiment includes a compressor 2, a first load side heat exchanger 3a and a second load side heat exchanger 3b, a first load side pressure reducing device 4a, and a second load side.
  • the decompression device 4b, the first heat source side decompression device 5a, the second heat source side decompression device 5b, the third heat source side decompression device 5c, the heat source side heat exchange unit 6, the refrigerant flow switching device 7, and the accumulator 8 It has a refrigeration cycle that sequentially circulates the refrigerant.
  • the compressor 2 is a variable frequency type fluid machine that is housed in the heat source side unit 100, compresses the sucked low-pressure refrigerant, and discharges it as a high-pressure refrigerant.
  • a scroll compressor whose rotation frequency is controlled by an inverter can be used.
  • the first load side heat exchanger 3a and the second load side heat exchanger 3b are heat exchangers that function as a condenser during the heating operation and function as a radiator (evaporator) during the cooling operation.
  • the first load-side heat exchanger 3a and the second load-side heat exchanger 3b include a refrigerant flowing inside the first load-side heat exchanger 3a and the second load-side heat exchanger 3b, and outside air (for example, , Indoor air). For example, it can be configured to release heat to the outside air blown by a load side heat exchanger fan (not shown).
  • the 1st load side heat exchanger 3a and the 2nd load side heat exchanger 3b can be constituted as a cross fin type fin and tube type heat exchanger constituted by a heat exchanger tube and a plurality of fins, for example.
  • the 1st load side heat exchanger 3a is accommodated in the 1st load side unit 200a
  • the 2nd load side heat exchanger 3b is accommodated in the 2nd load side unit 200b.
  • the first load-side decompression device 4a and the second load-side decompression device 4b expand and decompress the high-pressure liquid refrigerant during the cooling operation, so that the first load-side heat exchanger 3a and the second load-side heat exchanger It is made to flow in 3b, respectively.
  • an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously is used.
  • the first load side pressure reducing device 4a is accommodated in the first load side unit 200a
  • the second load side pressure reducing device 4b is accommodated in the second load side unit 200b.
  • the 1st load side decompression device 4a and the 2nd load side decompression device 4b are adjusted to the opening degree of full opening in the case of heating operation.
  • the first heat source side refrigerant pipe 10 accommodated in the heat source side unit 100 is a first extended refrigerant pipe connection valve 9a (liquid line side opening / closing valve) provided on the first heat source side refrigerant pipe 10.
  • the first extended refrigerant pipe 300 is connected.
  • the first extended refrigerant pipe connection valve 9a is composed of, for example, a two-way valve such as a two-way solenoid valve that can be switched between open and closed.
  • the first heat source side decompression device 5a, the second heat source side decompression device 5b, and the third heat source side decompression device 5c expand and decompress the high-pressure liquid refrigerant during heating operation, and flow into the heat source side heat exchange unit 6 And is housed in the heat source side unit 100.
  • the first heat source side decompression device 5 a is provided in a first heat source side refrigerant branch pipe 11 a branched from the first heat source side refrigerant pipe 10.
  • the second heat source side decompression device 5b is provided in the second heat source side refrigerant branch pipe 11b branched from the first heat source side refrigerant pipe 10.
  • the third heat source side decompression device 5 c is provided in a third heat source side refrigerant branch pipe 11 c branched from the first heat source side refrigerant pipe 10.
  • the first heat source side pressure reducing device 5a, the second heat source side pressure reducing device 5b, and the third heat source side pressure reducing device 5c are, for example, electronic expansions such as linear electronic expansion valves whose opening degree can be adjusted in multiple stages or continuously. A valve is used.
  • the first heat source side pressure reducing device 5a, the second heat source side pressure reducing device 5b, and the third heat source side pressure reducing device 5c are adjusted to fully open degrees during the cooling operation.
  • the heat source side heat exchange unit 6 is a heat exchange unit that functions as an evaporator during heating operation and functions as a condenser during cooling operation, and is accommodated in the heat source side unit 100.
  • the heat source side heat exchange unit 6 is configured to exchange heat between the refrigerant flowing inside the heat source side heat exchange unit 6 and the outside air (for example, outdoor air).
  • the heat source side heat exchange unit 6 can be configured to release heat to the outside air blown by a heat source side heat exchanger fan (not shown), for example.
  • the heat source side heat exchange unit 6 can be constituted by, for example, a cross fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a plurality of fins.
  • the heat source side heat exchange unit 6 includes a first heat source side heat exchanger 6a, a second heat source side heat exchanger 6b, and a third heat source side heat exchanger 6c.
  • the second heat source side heat exchanger 6b is fixed between the first heat source side heat exchanger 6a and the third heat source side heat exchanger 6c
  • the first heat source side heat exchanger 6a is the first heat source side heat exchanger 6a.
  • 3 are arranged in parallel in the vertical direction so as to be arranged below the heat source side heat exchanger 6c.
  • the first heat source side heat exchanger 6a is provided in the first heat source side refrigerant branch pipe 11a.
  • the second heat source side heat exchanger 6b is provided in the second heat source side refrigerant branch pipe 11b.
  • the third heat source side heat exchanger 6c is provided in the third heat source side refrigerant branch pipe 11c.
  • the volume ratio in which the second heat source side heat exchanger 6b occupies the heat source side heat exchange unit 6 is the volume ratio in which the first heat source side heat exchanger 6a occupies the heat source side heat exchange unit 6 and the third heat source side heat exchange. It is comprised so that the container 6c may become smaller than the volume ratio which occupies the heat source side heat exchange unit 6.
  • the volume ratio that the second heat source side heat exchanger 6b occupies the heat source side heat exchange unit 6 is configured to be about 10%.
  • the heat source side heat exchange unit 6 is configured by a cross fin type fin-and-tube heat exchanger, the heat source side heat exchange unit 6 is configured to have a height of about four heat transfer tubes.
  • the refrigerant flow switching device 7 switches the refrigerant flow direction in the refrigeration cycle when switching between the cooling operation and the heating operation, and is accommodated in the heat source unit 100.
  • a four-way valve is used as the refrigerant flow switching device 7.
  • Refrigerant flow path switching device 7 each end of the first heat source side refrigerant branch pipe 11a, the second heat source side refrigerant branch pipe 11b, and the third heat source side refrigerant branch pipe 11c on the heat source side heat exchange unit 6 side
  • coolant piping 12 is connected between these parts.
  • a third heat source side refrigerant pipe 14 is connected between the refrigerant flow switching device 7 and the accumulator 8.
  • a fourth heat source side refrigerant pipe 16 is connected between the refrigerant flow switching device 7 and the discharge port of the compressor 2.
  • a fifth heat source side refrigerant pipe 18 is connected between the refrigerant flow switching device 7 and the second extended refrigerant pipe 400.
  • the refrigerant flow switching device 7 causes the refrigerant to flow from the second heat source side refrigerant pipe 12 to the third heat source side refrigerant pipe 14, and from the fourth heat source side refrigerant pipe 16 to the fifth heat source side refrigerant pipe.
  • the refrigerant is configured to flow through 18. Further, the refrigerant flow switching device 7 causes the refrigerant to flow from the fourth heat source side refrigerant pipe 16 to the second heat source side refrigerant pipe 12 during the cooling operation, and from the fifth heat source side refrigerant pipe 18 to the third heat source.
  • the refrigerant is configured to flow through the side refrigerant pipe 14.
  • the second heat source side refrigerant pipe 12, the third heat source side refrigerant pipe 14, the fourth heat source side refrigerant pipe 16, and the fifth heat source side refrigerant pipe 18 are accommodated in the heat source side unit 100.
  • the fifth heat source side refrigerant pipe 18 is a second extended refrigerant pipe connection valve 9b (gas line side opening / closing valve) provided in the fifth heat source side refrigerant pipe 18, and is connected to the second extended refrigerant pipe 400. It is connected.
  • the first extended refrigerant pipe connection valve 9a is composed of, for example, a two-way valve such as a two-way solenoid valve that can be switched between open and closed.
  • the accumulator 8 is configured to prevent a large amount of liquid refrigerant from flowing into the compressor 2 by retaining a refrigerant storage function for storing excess refrigerant and liquid refrigerant that is temporarily generated when the operating state changes. It has a liquid separation function and is accommodated in the heat source unit 100.
  • the bypass refrigerant pipe 20 branches from the fourth heat source side refrigerant pipe 16 (discharge side refrigerant pipe), and further includes a first bypass refrigerant branch pipe 22a, a second bypass refrigerant branch pipe 22b, and a third bypass refrigerant branch. Branches to the pipe 22c.
  • the end of the first bypass refrigerant branch pipe 22a is connected to the first heat source side refrigerant branch pipe 11a at a position between the first heat source side pressure reducing device 5a and the first heat source side heat exchanger 6a.
  • the end of the second bypass refrigerant branch pipe 22b is connected to the second heat source side refrigerant branch pipe 11b at a position between the second heat source side pressure reducing device 5b and the second heat source side heat exchanger 6b.
  • the end of the third bypass refrigerant branch pipe 22c is connected to the third heat source side refrigerant branch pipe 11c at a position between the third heat source side pressure reducing device 5c and the third heat source side heat exchanger 6c.
  • the first electromagnetic valve 24 is arranged in the first bypass refrigerant branch pipe 22a, and the second electromagnetic valve 26 is arranged in the third bypass refrigerant branch pipe 22c.
  • the first solenoid valve 24 and the second solenoid valve 26 are valves that open or close the flow path by supplying power or stopping power.
  • the first solenoid valve 24 and the second solenoid valve 26 convert the hot gas discharged from the compressor 2 during the defrosting operation into the first heat source side heat exchanger 6a and the third heat source side heat exchanger 6c. Are allowed to flow into each.
  • the first solenoid valve 24 and the second solenoid valve 26 have a capacity coefficient (CV value) that can reduce the hot gas discharged from the compressor 2 to a low pressure.
  • the first solenoid valve 24 and the second solenoid valve 26 are constituted by, for example, two-way valves such as a two-way solenoid valve that can be switched between open and closed.
  • the first solenoid valve 24 and the second solenoid valve 26 are adjusted so as to be closed except during the defrosting operation, that is, during the cooling operation and the normal heating operation.
  • bypass pressure reducing device 28 is arranged in the second bypass refrigerant branch pipe 22b.
  • the bypass decompression device 28 expands and decompresses the hot gas discharged from the compressor 2 during the defrosting operation, and causes the hot gas to flow into the second heat source side heat exchanger 6b.
  • an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously is used.
  • the bypass pressure reducing device 28 is adjusted so as to be closed except during the defrosting operation, that is, during the cooling operation and the normal heating operation.
  • the air conditioner 1 includes a first temperature sensor 30, a second temperature sensor 35, a first pressure sensor 40, and a second pressure sensor 45.
  • the first temperature sensor 30 is disposed, for example, upstream of a heat source side blower fan (not shown), is sucked by the heat source side blower fan, and is the temperature of the outside air (outdoor air) blown to the heat source side heat exchange unit 6. It is an outside temperature sensor that detects
  • the second temperature sensor 35 is disposed in the fourth heat source side refrigerant pipe 16 (discharge side refrigerant pipe), and detects the temperature of the refrigerant discharged from the compressor 2 via the fourth heat source side refrigerant pipe 16. This is a discharge temperature sensor.
  • the first pressure sensor 40 is a discharge temperature sensor that is disposed in the fourth heat source side refrigerant pipe 16 and detects the pressure of the refrigerant discharged from the compressor 2.
  • the first pressure sensor 40 is disposed in the fourth heat source side refrigerant pipe 16.
  • the second pressure sensor 45 detects the pressure of the refrigerant flowing out from the outlet of the heat source side heat exchange unit 6 during the heating operation, and the first load side heat exchanger 3a during the cooling operation. And the pressure of the refrigerant
  • the second pressure sensor 45 is disposed in the third heat source side refrigerant pipe 14.
  • the first temperature sensor 30 and the second temperature sensor 35 As a material of the first temperature sensor 30 and the second temperature sensor 35, a semiconductor (for example, a thermistor) or a metal (for example, a resistance temperature detector) is used. Further, as the first pressure sensor 40 and the second pressure sensor 45, a crystal piezoelectric pressure sensor, a semiconductor sensor, a pressure transducer, or the like is used. Note that the first temperature sensor 30 and the second temperature sensor 35 may be made of the same material or different materials. Also, the first pressure sensor 40 and the second pressure sensor 45 may be made of the same type or different types.
  • control device 500 that controls the air-conditioning apparatus 1 according to Embodiment 1 will be described.
  • the control device 500 includes a first control unit 50 that controls the operation of the heat source side unit 100, a second control unit 55a that controls the operation of the first load side unit 200a, And a third control unit 55b that controls the operation of the second load side unit 200b.
  • the first control unit 50, the second control unit 55a, and the third control unit 55b include a microcomputer that includes a CPU, a memory (eg, ROM, RAM, etc.), an I / O port, and the like. .
  • the control device 500 connects the first control unit 50, the second control unit 55a, and the third control unit 55b with a communication line 58 to communicate with each other such as transmission and reception of control signals. Configured to be able to do. In addition, you may comprise so that communication between the 1st control part 50 and the 2nd control part 55a and the 3rd control part 55b can be performed on radio.
  • the first control unit 50 adjusts the opening degree of the first heat source-side decompression device 5a, the second heat source-side decompression device 5b, the third heat source-side decompression device 5c, and the bypass decompression device 28.
  • the electromagnetic valve 24 and the second electromagnetic valve 26 are configured to be opened or closed.
  • the first control unit 50 is configured to be able to adjust the operating frequency of the compressor 2.
  • the first control unit 50 is configured to have a storage unit (not shown) that can store various data such as a control target value.
  • the first control unit 50 includes the electrical signal of the temperature information detected by the first temperature sensor 30 and the second temperature sensor 35, and the pressure information detected by the first pressure sensor 40 and the second pressure sensor 45. It is configured to receive an electrical signal.
  • the first control unit 50 is configured to be able to calculate the condensation temperature (saturation temperature) in the refrigeration cycle from the discharge pressure obtained by the first pressure sensor 40. In addition, the first control unit 50 is configured to calculate the evaporation temperature (saturation temperature) in the refrigeration cycle from the pressure obtained by the second pressure sensor 45.
  • the second control unit 55a is configured to adjust the opening degree of the first load-side decompression device 4a
  • the third control unit 55b adjusts the opening degree of the second load-side decompression device 4b, for example. Configured to do.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the first load-side heat exchanger 3a and the second load-side heat exchanger 3b.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first load-side heat exchanger 3a and the second load-side heat exchanger 3b is heat-exchanged by releasing heat to a low-temperature medium such as indoor air.
  • the high-pressure liquid refrigerant passes through the first load-side decompression device 4a and the second load-side decompression device 4b, joins at the first extended refrigerant pipe 300, and flows into the heat source-side unit 100.
  • the high-pressure liquid refrigerant that has flowed into the heat source side unit 100 flows from the first heat source side refrigerant pipe 10 to the first heat source side refrigerant branch pipe 11a, the second heat source side refrigerant branch pipe 11b, and the third heat source side refrigerant branch. It is divided into the pipe 11c. The divided high-pressure liquid refrigerant flows into the first heat source side decompression device 5a, the second heat source side decompression device 5b, and the third heat source side decompression device 5c, respectively.
  • the high-pressure liquid refrigerant that has flowed into the first heat source-side decompression device 5a, the second heat source-side decompression device 5b, and the third heat source-side decompression device 5c is expanded and decompressed to become a low-temperature and low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant flows into the first heat source side heat exchanger 6a, the second heat source side heat exchanger 6b, and the third heat source side heat exchanger 6c, and from a high temperature medium such as outdoor air. It absorbs heat and evaporates to become a two-phase refrigerant or a low-temperature and low-pressure gas refrigerant with high dryness.
  • the heat source side refrigerant pipe 12 joins.
  • the merged two-phase refrigerant or low-temperature / low-pressure gas refrigerant flows into the accumulator 8 via the refrigerant flow switching device 7 and the third heat source side refrigerant pipe 14.
  • the two-phase refrigerant having a high degree of dryness or the low-temperature and low-pressure gas refrigerant is sucked into the compressor 2 after the liquid phase component is removed by the accumulator 8.
  • the refrigerant sucked into the compressor 2 is compressed to become a high-temperature and high-pressure gas refrigerant and is discharged from the compressor 2.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the fourth heat source side refrigerant pipe 16, the refrigerant flow switching device 7, the fifth heat source side refrigerant pipe 18, and the second extended refrigerant pipe 400. Then, it flows into the first load side heat exchanger 3a and the second load side heat exchanger 3b. In the heating operation of the air conditioner 1, the above cycle is repeated.
  • the flow path inside the refrigerant flow switching device 7 is switched from a solid flow path to a dotted flow path as shown in FIG.
  • the low-temperature and low-pressure two-phase refrigerant flows into the first load-side heat exchanger 3a and the second load-side heat exchanger 3b, absorbs heat from a high-temperature medium such as room air, evaporates and dries. It becomes a high-temperature two-phase refrigerant or a low-temperature and low-pressure gas refrigerant.
  • the indoor air is cooled by the endothermic action of the refrigerant.
  • the control device 500 of the air-conditioning apparatus 1 closes the first heat source side decompression device 5a, opens the first electromagnetic valve 24, and supplies the first heat source side heat exchanger 6a to the first heat source side heat exchanger 6a. Hot gas discharged from the compressor 2 is supplied, the second electromagnetic valve 26 is closed, the third heat source side pressure reducing device 5c is opened, and the low temperature and low pressure two-phase is supplied to the third heat source side heat exchanger 6c.
  • the first heating defrosting parallel operation for supplying the refrigerant is performed, and after the first heating defrosting parallel operation, the first electromagnetic valve 24 is closed, the first heat source side decompression device 5a is opened, The low temperature and low pressure two-phase refrigerant is supplied to the first heat source side heat exchanger 6a, the third heat source side pressure reducing device 5c is closed, the second electromagnetic valve 26 is opened, and the third heat source side heat exchanger is opened.
  • the second heating defrosting parallel operation for supplying the hot gas discharged from the compressor 2 to 6c is performed, and the first heating defrosting parallel operation and the second heating defrosting operation are performed.
  • the second heat source side pressure reducing device 5b is closed, the bypass pressure reducing device 28 is opened, the opening degree is adjusted, and the second heat source side heat exchanger 6b is discharged from the compressor 2 Hot gas is supplied.
  • FIG. 2 is a flowchart illustrating an example of a control process in the control device 500 of the air-conditioning apparatus 1 according to the first embodiment.
  • the control process of FIG. 2 may be performed all the time during the heating operation, or may be performed at any time when a change in the outside air temperature Ta is detected, for example.
  • step S11 the control device 500 determines whether or not the outside air temperature Ta detected by the first temperature sensor 30 is lower than a reference temperature T0 (for example, 0 ° C.) for starting the defrosting operation.
  • a reference temperature T0 for example, 0 ° C.
  • step S12 the control device 500 closes the second heat source side decompression device 5b, opens the bypass decompression device 28, and adjusts the opening degree. As a result, the hot gas discharged from the compressor 2 is supplied to the second heat source side heat exchanger 6b.
  • step S13 the control device 500 closes the first heat source side decompression device 5a and opens the first electromagnetic valve 24. As a result, the hot gas discharged from the compressor 2 is supplied to the first heat source side heat exchanger 6a.
  • step S14 the control device 500 closes the second electromagnetic valve 26 and opens the third heat source side decompression device 5c. As a result, the low-temperature and low-pressure two-phase refrigerant is supplied to the third heat source side heat exchanger 6c.
  • step S12 step S12, step S13, and step S14, in the air conditioning apparatus 1 of this Embodiment 1, 1st heating defrost parallel operation is performed.
  • step S15 the control device 500 determines whether or not the defrosting of the first heat source side heat exchanger 6a by the first heating defrosting parallel operation is completed.
  • the determination as to whether or not the defrosting has been completed can be made based on whether or not a certain time (for example, 60 seconds) has elapsed since the first heating and defrosting parallel operation.
  • a certain time for example, 60 seconds
  • step S16 the control device 500 closes the first electromagnetic valve 24 and opens the first heat source side pressure reducing device 5a. To do. As a result, the low-temperature and low-pressure two-phase refrigerant is supplied to the first heat source side heat exchanger 6a.
  • step S17 the control device 500 closes the third heat source side decompression device 5c and opens the second electromagnetic valve 26. As a result, the hot gas discharged from the compressor 2 is supplied to the third heat source side heat exchanger 6c.
  • step S16 and step S17 in the air conditioning apparatus 1 of the first embodiment, the second heating defrosting parallel operation is performed.
  • the state in which the hot gas discharged from the compressor 2 is supplied continues.
  • step S18 the control device 500 determines whether or not the defrosting of the third heat source side heat exchanger 6c by the second heating defrosting parallel operation is completed.
  • the determination as to whether or not the defrosting is complete can be made based on whether or not a certain time (for example, 60 seconds) has elapsed since the second heating and defrosting parallel operation.
  • a certain time for example, 60 seconds
  • the second heating defrosting parallel operation is continued.
  • the control process ends and a normal heating operation is performed.
  • the air-conditioning apparatus 1 includes the variable frequency compressor 2, the first heat source side heat exchanger 6a, the second heat source side heat exchanger 6b, and the third A heat source side heat exchanger 6c, and the second heat source side heat exchanger 6b is fixed between the first heat source side heat exchanger 6a and the third heat source side heat exchanger 6c,
  • the first heat source side heat exchanger 6a, the second heat source side heat exchanger 6b, and the second heat source side heat exchanger 6a are disposed below the third heat source side heat exchanger 6c.
  • heat source side heat exchangers 6c connected to the heat source side heat exchange unit 6 arranged in parallel in the vertical direction and the first heat source side heat exchanger 6a connected to the first heat source side heat exchanger 6a.
  • the second heat source side pressure reducing device 5b connected to the pressure reducing device 5a and the second heat source side heat exchanger 6b, the degree of opening of which can be adjusted, and the third heat source side heat exchange.
  • a second bypass refrigerant branch pipe 22b branched and connected between the second heat source side heat exchanger 6b and the second heat source side pressure reducing device 5b; and a discharge side refrigerant pipe (fourth heat source side refrigerant pipe).
  • a control device 500 that adjusts the opening degree of the device 5b, the third heat source side decompression device 5c, and the bypass decompression device 28, and opens or closes the first solenoid valve 24 and the second solenoid valve 26;
  • the control device 500 closes the first heat source side pressure reducing device 5a, opens the first electromagnetic valve 24, and supplies the hot gas discharged from the compressor 2 to the first heat source side heat exchanger 6a.
  • 1st heating defrosting parallel operation which closes the 2nd solenoid valve 26, opens the 3rd heat source side decompression device 5c, and supplies a low-temperature low-pressure two-phase refrigerant to the 3rd heat source side heat exchanger 6c
  • the first solenoid valve 24 is closed after the first heating and defrosting parallel operation, and the first heat source
  • the side pressure reducing device 5a is opened, low temperature and low pressure two-phase refrigerant is supplied to the first heat source side heat exchanger 6a, the third heat source side pressure reducing device 5c is closed, and the second electromagnetic valve 26 is opened.
  • the second heating defrosting parallel operation for supplying the hot gas discharged from the compressor 2 to the third heat source side heat exchanger 6c is possible, and the first heating defrosting parallel operation or the second heating is performed.
  • the defrosting parallel operation is performed, the second heat source side decompression device 5b is closed, the bypass decompression device 28 is opened, the opening degree is adjusted, and the second heat source side heat exchanger 6b is discharged from the compressor 2 Hot gas is supplied.
  • a compressor, a four-way valve, two outdoor heat exchangers provided in parallel in the vertical direction, an outdoor unit side expansion device, and an indoor unit provided with an indoor heat exchanger are connected by a gas line and a liquid line.
  • a refrigeration air conditioner Conventionally, one of the two outdoor heat exchangers provided during heating functions as an evaporator, and the other has a function of performing a defrosting operation (so-called “on-diff function”).
  • On-diff function There is a refrigeration air conditioner.
  • a conventional refrigeration air conditioner having a defrosting operation function causes a lower outdoor heat exchanger to perform a defrosting operation and an upper outdoor heat exchanger as an evaporator to perform a heating operation.
  • a conventional refrigeration air conditioner having a defrosting operation function has a solenoid valve in each pipe from the compressor to the upper and lower chamber outdoor heat exchangers, and linear piping in each pipe from the liquid operation valve to the upper and lower chamber outdoor heat exchangers. Some have a valve (LEV).
  • a conventional refrigeration air conditioner having a defrosting operation function for example, an electromagnetic valve connected to a pipe connected to a lower heat exchanger is opened, a linear electromagnetic valve is closed, and a part of hot gas discharged from a compressor is branched. And let it flow into the lower heat exchanger.
  • the upper heat exchanger is an evaporator, so the solenoid valve connected to the pipe connected to the upper heat exchanger remains closed and the linear solenoid valve remains open. State.
  • a conventional refrigeration air conditioner having a defrosting operation function one of the two outdoor heat exchangers provided at the top and bottom is used for the defrosting operation, and the other is used for the heating operation.
  • An outdoor heat exchanger used for heating operation functions as an evaporator, and a low-temperature refrigerant flows inside the outdoor heat exchanger. Therefore, at the boundary between the two outdoor heat exchangers, the outdoor heat exchanger is hot with a low-temperature refrigerant. Gas heat is offset. Therefore, in the conventional refrigeration air conditioner having a defrosting operation function, there is a problem that a sufficient amount of heat for defrosting cannot be secured and residual frost and icing occur.
  • the drain water generated by defrosting during the defrosting operation of the upper outdoor heat exchanger flows into the lower outdoor heat exchanger having a refrigerant temperature below freezing point, and the upper outdoor heat exchanger and the lower outdoor heat There was a problem that the boundary portion with the exchanger (mainly, the uppermost portion of the lower outdoor heat exchanger) was icing.
  • the heating capacity may be reduced due to residual frost and icing, or cracks may occur in the outdoor heat exchanger.
  • the air conditioning apparatus 1 which can suppress generation
  • the defrosting operation of the first heat source side heat exchanger 6a can be performed before the defrosting operation of the third heat source side heat exchanger 6c.
  • the drain water generated during the defrosting operation of the third heat source side heat exchanger 6c becomes the third heat source side heat exchanger. Since it becomes easy to pass through 6c, drain water can be discharged smoothly.
  • the volume ratio of the second heat source side heat exchanger 6b occupying the heat source side heat exchange unit 6 is the same as that of the first heat source side heat exchanger 6a.
  • the volume ratio occupying the unit 6 and the third heat source side heat exchanger 6 c can be configured to be smaller than the volume ratio occupying the heat source side heat exchange unit 6.
  • FIG. 2 an example of the opening degree control process of the bypass pressure reducing device 28 of the control device 500 according to the first embodiment described above will be shown.
  • the control device 500 subtracts the condensing temperature Tc from the discharge temperature Td, which is a control amount, during the first heating defrosting parallel operation and the second heating defrosting parallel operation.
  • the opening degree D of the bypass pressure reducing device 28 is adjusted so that the temperature difference ⁇ T is equal to the first target value T1.
  • FIG. 3 is a flowchart illustrating an example of a control process in the control device 500 of the air-conditioning apparatus 1 according to Embodiment 2.
  • the control process of FIG. 3 may be performed all the time during the defrosting operation, or may be performed at any time when a change in the discharge temperature Td is detected, for example.
  • the opening degree D of the bypass pressure reducing device 28 can be adjusted in the range of 0 ⁇ D ⁇ 1.
  • step S21 the controller 500 determines whether or not the temperature difference ⁇ T obtained by subtracting the condensation temperature Tc from the discharge temperature Td exceeds a first target value T1 (for example, 25 ° C. ⁇ 2 ° C.).
  • the discharge temperature Td is a temperature at which the temperature of the refrigerant discharged from the compressor 2 is detected by the second temperature sensor 35 via the fourth heat source side refrigerant pipe 16. Further, the condensation temperature Tc is calculated by converting the discharge pressure P1 detected by the first pressure sensor 40 into a saturation temperature in the control device 500.
  • step S22 the control device 500 changes the opening D of the bypass pressure reducing device 28 by the first opening difference value ⁇ D1 (for example, 0.1). Open.
  • ⁇ D1 for example, 0.1
  • step S23 the control device 500 determines whether or not the temperature difference ⁇ T is less than the first target value T1.
  • the control process ends.
  • step S24 the control device 500 changes the opening D of the bypass pressure reducing device 28 by the second opening difference value ⁇ D2 (for example, 0.1). Close.
  • the above-described control process is repeated until the temperature difference ⁇ T reaches the first target value T1.
  • the first opening difference value ⁇ D1 is the same numerical value as the second opening difference value ⁇ D2, but may be a different numerical value.
  • the defrosting capability can be increased by flowing an intermediate-pressure hot gas having a higher temperature than the low-pressure gas and a higher condensation temperature into the second heat source side heat exchanger 6b.
  • the above-described control process is performed in order to prevent the liquid refrigerant from flowing excessively into the accumulator 8 due to the medium-pressure hot gas and entering the liquid back state.
  • the opening degree D of the bypass pressure reducing device 28 is adjusted by the temperature difference ⁇ T obtained by subtracting the condensing temperature Tc from the discharge temperature Td, and medium-pressure hot gas is supplied for the defrosting motion. It can flow into the second heat source side heat exchanger 6b. Therefore, according to the structure of this Embodiment 2, the defrosting capability in the 2nd heat source side heat exchanger 6b can be improved.
  • Embodiment 3 In the third embodiment of the present invention, an example of the control process of the motion frequency of the compressor 2 of the control device 500 according to the first embodiment will be described.
  • the compressor 2 that is the operation amount is controlled so that the condensing temperature Tc that is the control amount becomes the second target value T2.
  • the operation frequency f is adjusted, and the operation frequency f of the compressor 2 as the operation amount is adjusted so that the evaporation temperature Te as the control amount becomes the third target value T3 during the second heating and defrosting parallel operation. Configured to do.
  • FIG. 4 is a flowchart illustrating an example of a control process in the control device 500 of the air-conditioning apparatus 1 according to Embodiment 3.
  • the control process of FIG. 4 is performed at the time of the first heating and defrosting parallel operation, and may be always performed at the time of the first heating and defrosting parallel operation. For example, a change in the condensation temperature Tc is detected. It may be performed at any time.
  • step S31 the control device 500 determines that the condensation temperature Tc calculated by converting the discharge pressure P1 detected by the first pressure sensor 40 into a saturation temperature is a second target value T2 (for example, 28 ° C. ⁇ 2 ° C.). ) Is exceeded.
  • a second target value T2 for example, 28 ° C. ⁇ 2 ° C.
  • step S32 the control device 500 decreases the operating frequency f of the compressor 2 by a first frequency difference value ⁇ f1 (for example, 0.1).
  • step S33 the control device 500 determines whether or not the condensation temperature Tc is less than the second target value T2.
  • the condensation temperature Tc is not less than the second target value T2, that is, when the condensation temperature Tc reaches the second target value T2, the control process ends.
  • step S34 the control device 500 increases the operating frequency f of the compressor 2 by a second frequency difference value ⁇ f2 (for example, 0.1). .
  • the above control process is repeated until the condensation temperature Tc reaches the second target value T2.
  • the first frequency difference value ⁇ f1 is the same numerical value as the second frequency difference value ⁇ f2, but may be a different numerical value.
  • FIG. 5 is a flowchart showing an example of control processing in the control device 500 of the air-conditioning apparatus 1 according to Embodiment 3.
  • the control process of FIG. 5 is performed at the time of the second heating and defrosting parallel operation, and may be always performed at the time of the second heating and defrosting parallel operation. For example, a change in the evaporation temperature Te is detected. It may be performed at any time.
  • step S41 the control device 500 determines that the evaporation temperature Te calculated by converting the pressure P2 detected by the second pressure sensor 45 into a saturation temperature is a third target value T3 (for example, 2 ° C. ⁇ 1 ° C.). It is determined whether or not.
  • a third target value T3 for example, 2 ° C. ⁇ 1 ° C.
  • step S42 the control device 500 increases the operating frequency f of the compressor 2 by a third frequency difference value ⁇ f3 (for example, 0.1).
  • step S43 the control device 500 determines whether or not the evaporation temperature Te is lower than the third target value T3.
  • the control process ends.
  • step S44 the control device 500 decreases the operating frequency f of the compressor 2 by a fourth frequency difference value ⁇ f4 (for example, 0.1). .
  • the above control process is repeated until the evaporation temperature Te reaches the third target value T3.
  • the third frequency difference value ⁇ f3 is the same numerical value as the fourth frequency difference value ⁇ f4, but may be a different numerical value.
  • the operation frequency of the compressor 2 during the defrosting operation is controlled so that the condensation temperature becomes the target condensation temperature as in the normal heating operation.
  • the maximum frequency of the compressor 2 is set high compared with the time of the conventional heating operation.
  • the operation frequency f of the compressor 2 is adjusted using the condensation temperature as a control target. Heating capacity can be secured.
  • the operation frequency f is adjusted with the evaporation temperature as a control target, so that the drain water generated by the defrosting of the third heat source side heat exchanger 6c is the first temperature.
  • the operating frequency f of the compressor 2 can be adjusted so that the heat source side heat exchanger 6a is not icing.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the above-described embodiment is not limited to the air conditioner 1 and can be used for a water heater or the like.
  • first load side decompression device 4a, the second load side decompression device 4b, the first heat source side decompression device 5a, the second heat source side decompression device 5b, the third heat source side decompression device 5c, and the bypass decompression device may be composed of the same type of decompression device, or may be composed of different types of devices.
  • a decompression pipe such as a capillary tube may be arranged in the first bypass refrigerant branch pipe 22a and the third bypass refrigerant branch pipe 22c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

本発明の空気調和装置1は、第1の熱源側減圧装置5aを閉止し、第1の電磁弁24を開放して、第1の熱源側熱交換器6aに圧縮機2から吐出したホットガスを供給し、第2の電磁弁26を閉止し、第3の熱源側減圧装置5cを開放して、第3の熱源側熱交換器6cに低温低圧の二相冷媒を供給する第1の暖房除霜並行運転と、第1の電磁弁24を閉止し、第1の熱源側減圧装置5aを開放して、第1の熱源側熱交換器6aに低温低圧の二相冷媒を供給し、第3の熱源側減圧装置5cを閉止し、第2の電磁弁26を開放して、第3の熱源側熱交換器6cに圧縮機2から吐出したホットガスを供給する第2の暖房除霜並行運転とが可能であり、第1の暖房除霜並行運転又は第2の暖房除霜並行運転を行うときに、第2の熱源側減圧装置5bを閉止し、バイパス減圧装置28を開放し開度を調整して、第2の熱源側熱交換器6bに圧縮機2から吐出したホットガスを供給する制御装置500を備える。

Description

空気調和装置
 本発明は、暖房運転中に、熱源側熱交換器に対し除霜運転が可能な空気調和装置に関する。
 従来、暖房運転中に除霜運転が可能な空気調和装置としては、上下方向に積み重ねた複数の室外熱交換器を有する空気調和装置が知られている(例えば、特許文献1)。特許文献1の空気調和装置は、圧縮機からのホットガスを複数の室外熱交換器のうちの1つに流すことにより、暖房運転と除霜運転とを並行して行うものである。
特開平9-318206号公報
 しかしながら、特許文献1の空気調和装置では、1つの室外熱交換器が除霜中の場合に、他の室外熱交換器が蒸発器として動作することとなる。除霜中の室外熱交換器と、蒸発器として動作する室外熱交換器との間の境界部分では、ホットガスの除霜効果は、蒸発器として動作する室外熱交換器を流れる低温冷媒によって相殺されるため、除霜のための十分な熱が確保できない場合がある。以上のことから、特許文献1の空気調和装置では、複数の室外熱交換器の境界部分において、残霜及び着氷が発生する可能性があるという問題点があった。
 本発明は、上述の問題を解決するためになされたものであり、複数の室外熱交換器の境界部分における残霜及び着氷の発生を抑制できる空気調和装置を提供することを目的とする。
 本発明に係る空気調和装置は、周波数可変型の圧縮機と、第1の熱源側熱交換器、第2の熱源側熱交換器、及び第3の熱源側熱交換器を有し、前記第2の熱源側熱交換器が、前記第1の熱源側熱交換器と前記第3の熱源側熱交換器との間に固定され、前記第1の熱源側熱交換器が、前記第3の熱源側熱交換器よりも下方向に配置されるように、前記第1の熱源側熱交換器、前記第2の熱源側熱交換器、及び前記第3の熱源側熱交換器が、上下方向に並列に配置された熱源側熱交換ユニットと、前記第1の熱源側熱交換器に接続された、開度を調整可能な第1の熱源側減圧装置と、前記第2の熱源側熱交換器に接続された、開度を調整可能な第2の熱源側減圧装置と、前記第3の熱源側熱交換器に接続された、開度を調整可能な第3の熱源側減圧装置と、前記圧縮機の吐出口に連結された吐出側冷媒配管から分岐し、前記第1の熱源側熱交換器と第1の熱源側減圧装置との間に連結された第1のバイパス冷媒分岐配管と、前記吐出側冷媒配管から分岐し、前記第2の熱源側熱交換器と前記第2の熱源側減圧装置との間に連結された第2のバイパス冷媒分岐配管と、前記吐出側冷媒配管から分岐し、前記第3の熱源側熱交換器と前記第3の熱源側減圧装置との間に連結された第3のバイパス冷媒分岐配管と、前記第1のバイパス冷媒分岐配管に配置された第1の電磁弁と、前記第2のバイパス冷媒分岐配管に配置された、開度を調整可能なバイパス減圧装置と、前記第3のバイパス冷媒分岐配管に配置された第2の電磁弁と、前記第1の熱源側減圧装置、前記第2の熱源側減圧装置、前記第3の熱源側減圧装置、及び前記バイパス減圧装置の開度調整を行い、前記第1の電磁弁及び前記第2の電磁弁の開放又は閉止を行う制御装置とを備え、前記制御装置は、前記第1の熱源側減圧装置を閉止し、前記第1の電磁弁を開放して、前記第1の熱源側熱交換器に前記圧縮機から吐出したホットガスを供給し、前記第2の電磁弁を閉止し、前記第3の熱源側減圧装置を開放して、前記第3の熱源側熱交換器に低温低圧の二相冷媒を供給する第1の暖房除霜並行運転と、前記第1の電磁弁を閉止し、前記第1の熱源側減圧装置を開放して、前記第1の熱源側熱交換器に低温低圧の二相冷媒を供給し、前記第3の熱源側減圧装置を閉止し、前記第2の電磁弁を開放して、前記第3の熱源側熱交換器に前記圧縮機から吐出したホットガスを供給する第2の暖房除霜並行運転とが可能であり、前記第1の暖房除霜並行運転又は前記第2の暖房除霜並行運転を行うときに、前記第2の熱源側減圧装置を閉止し、前記バイパス減圧装置を開放し開度を調整して、前記第2の熱源側熱交換器に前記圧縮機から吐出したホットガスを供給するものである。
 本発明によれば、空気調和装置の除霜運転時には、中段の位置にある第2の熱源側熱交換器に常にホットガスが流れている構成にできる。したがって、本発明によれば、複数の熱源側熱交換器の境界部分における残霜及び着氷の発生を抑制できる空気調和装置を提供することができる。
本発明の実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。 本発明の実施の形態1に係る空気調和装置1の制御装置500における制御処理の一例を示すフローチャートである。 本発明の実施の形態2に係る空気調和装置1の制御装置500における制御処理の一例を示すフローチャートである。 本発明の実施の形態3に係る空気調和装置1の制御装置500における制御処理の一例を示すフローチャートである。 本発明の実施の形態3に係る空気調和装置1の制御装置500における制御処理の別の一例を示すフローチャートである。
実施の形態1.
 本発明の実施の形態1に係る空気調和装置1について説明する。図1は、本実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。なお、図1を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。
 図1に示すように、空気調和装置1は、熱源側ユニット100(室外機)と、熱源側ユニット100に対し並列に配置された第1の負荷側ユニット200a及び第2の負荷側ユニット200b(室内機)とを備える。熱源側ユニット100と第1の負荷側ユニット200a及び第2の負荷側ユニット200bとの間は、第1の延長冷媒配管300(液ライン)及び第2の延長冷媒配管400(ガスライン)で接続されている。なお、図1には、負荷側ユニットが2台接続された構成としているが、負荷側ユニットの接続台数は1台でもよいし、3台以上としてもよい。
 本実施の形態1の空気調和装置1は、圧縮機2、第1の負荷側熱交換器3a及び第2の負荷側熱交換器3b、第1の負荷側減圧装置4a及び第2の負荷側減圧装置4b、第1の熱源側減圧装置5a、第2の熱源側減圧装置5b、及び第3の熱源側減圧装置5c、熱源側熱交換ユニット6、冷媒流路切替装置7、並びにアキュムレータ8に順次冷媒を循環させる冷凍サイクルを有している。
 圧縮機2は、熱源側ユニット100に収容され、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する周波数可変型の流体機械である。圧縮機2は、例えば、インバータにより回転周波数が制御されるスクロール圧縮機を用いることができる。
 第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bは、暖房運転時には凝縮器として機能し、冷房運転時には放熱器(蒸発器)として機能する熱交換器である。第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bは、第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bの内部を流れる冷媒と、外気(例えば、室内空気)との熱交換を行うように構成される。例えば、負荷側熱交換器用ファン(図示せず)によって送風される外気に対して熱を放出するように構成できる。第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bは、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器として構成できる。なお、第1の負荷側熱交換器3aは、第1の負荷側ユニット200aに収容されており、第2の負荷側熱交換器3bは、第2の負荷側ユニット200bに収容されている。
 第1の負荷側減圧装置4a及び第2の負荷側減圧装置4bは、冷房運転時に高圧液冷媒を膨張及び減圧させて、第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bにそれぞれ流入させるものである。第1の負荷側減圧装置4a及び第2の負荷側減圧装置4bは、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁が用いられる。なお、第1の負荷側減圧装置4aは、第1の負荷側ユニット200aに収容されており、第2の負荷側減圧装置4bは、第2の負荷側ユニット200bに収容されている。また、第1の負荷側減圧装置4a及び第2の負荷側減圧装置4bは、暖房運転の際は全開放の開度に調整される。
 熱源側ユニット100に収容された第1の熱源側冷媒配管10は、第1の熱源側冷媒配管10の上に設けられた第1の延長冷媒配管接続バルブ9a(液ライン側開閉弁)で、第1の延長冷媒配管300に連結されている。第1の延長冷媒配管接続バルブ9aは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。
 第1の熱源側減圧装置5a、第2の熱源側減圧装置5b、及び第3の熱源側減圧装置5cは、暖房運転時に高圧液冷媒を膨張及び減圧させて、熱源側熱交換ユニット6に流入させるものであり、熱源側ユニット100に収容されている。第1の熱源側減圧装置5aは、第1の熱源側冷媒配管10から分岐した第1の熱源側冷媒分岐配管11aに設けられている。第2の熱源側減圧装置5bは、第1の熱源側冷媒配管10から分岐した第2の熱源側冷媒分岐配管11bに設けられている。第3の熱源側減圧装置5cは、第1の熱源側冷媒配管10から分岐した第3の熱源側冷媒分岐配管11cに設けられている。第1の熱源側減圧装置5a、第2の熱源側減圧装置5b、及び第3の熱源側減圧装置5cは、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁等の電子膨張弁が用いられる。また、第1の熱源側減圧装置5a、第2の熱源側減圧装置5b、及び第3の熱源側減圧装置5cは、冷房運転の際は全開放の開度に調整される。
 熱源側熱交換ユニット6は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する熱交換部であり、熱源側ユニット100に収容されている。熱源側熱交換ユニット6は、熱源側熱交換ユニット6の内部を流れる冷媒と、外気(例えば、室外空気)との熱交換を行うように構成される。熱源側熱交換ユニット6は、例えば、熱源側熱交換器用ファン(図示せず)によって送風される外気に対して熱を放出するように構成できる。熱源側熱交換ユニット6は、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成できる。
 熱源側熱交換ユニット6は、第1の熱源側熱交換器6aと、第2の熱源側熱交換器6bと、第3の熱源側熱交換器6cとを備える。第2の熱源側熱交換器6bは、第1の熱源側熱交換器6aと第3の熱源側熱交換器6cとの間に固定されており、第1の熱源側熱交換器6aが第3の熱源側熱交換器6cよりも下方向に配置されるように上下方向に並列に配置されている。第1の熱源側熱交換器6aは、第1の熱源側冷媒分岐配管11aに設けられている。第2の熱源側熱交換器6bは、第2の熱源側冷媒分岐配管11bに設けられている。第3の熱源側熱交換器6cは、第3の熱源側冷媒分岐配管11cに設けられている。
 第2の熱源側熱交換器6bが熱源側熱交換ユニット6を占める容積比は、第1の熱源側熱交換器6aが熱源側熱交換ユニット6を占める容積比及び第3の熱源側熱交換器6cが熱源側熱交換ユニット6を占める容積比よりも小さくなるように構成される。例えば、第2の熱源側熱交換器6bが熱源側熱交換ユニット6を占める容積比は、10%程度となるように構成される。また、熱源側熱交換ユニット6が、クロスフィン式のフィン・アンド・チューブ型熱交換器で構成される場合、伝熱管4本分程度の高さとなるように構成される。
 冷媒流路切替装置7は、冷房運転時と暖房運転時とを切り替える際に、冷凍サイクルにおける冷媒の流れ方向を切り替えるものであり、熱源側ユニット100に収容されている。冷媒流路切替装置7としては、例えば四方弁が用いられる。
 冷媒流路切替装置7と、第1の熱源側冷媒分岐配管11a、第2の熱源側冷媒分岐配管11b、及び第3の熱源側冷媒分岐配管11cの熱源側熱交換ユニット6の側の各末端部との間には、第2の熱源側冷媒配管12が連結されている。冷媒流路切替装置7とアキュムレータ8との間には、第3の熱源側冷媒配管14が連結されている。冷媒流路切替装置7と圧縮機2の吐出口との間には、第4の熱源側冷媒配管16が連結されている。冷媒流路切替装置7と第2の延長冷媒配管400との間には、第5の熱源側冷媒配管18が連結されている。
 冷媒流路切替装置7は、暖房運転において、第2の熱源側冷媒配管12から第3の熱源側冷媒配管14に冷媒が流れ、第4の熱源側冷媒配管16から第5の熱源側冷媒配管18に冷媒が流れるように構成される。また、冷媒流路切替装置7は、冷房運転時において、第4の熱源側冷媒配管16から第2の熱源側冷媒配管12に冷媒が流れ、第5の熱源側冷媒配管18から第3の熱源側冷媒配管14に冷媒が流れるように構成される。
 なお、第2の熱源側冷媒配管12、第3の熱源側冷媒配管14、第4の熱源側冷媒配管16、及び第5の熱源側冷媒配管18は、熱源側ユニット100に収容されている。また、第5の熱源側冷媒配管18は、第5の熱源側冷媒配管18に設けられた第2の延長冷媒配管接続バルブ9b(ガスライン側開閉弁)で、第2の延長冷媒配管400に連結されている。第1の延長冷媒配管接続バルブ9aは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。
 アキュムレータ8は、余剰の冷媒を貯留する冷媒貯留機能と、運転状態が変化する際に一時的に発生する液冷媒を滞留させることにより、圧縮機2に大量の液冷媒が流入するのを防ぐ気液分離機能とを有するものであり、熱源側ユニット100に収容されている。
 次に、本実施の形態1に係る空気調和装置1において除霜運転を行うための、熱源側ユニット100の冷媒回路について説明する。
 バイパス冷媒配管20は、第4の熱源側冷媒配管16(吐出側冷媒配管)から分岐し、更に第1のバイパス冷媒分岐配管22a、第2のバイパス冷媒分岐配管22b、及び第3のバイパス冷媒分岐配管22cに分岐される。第1のバイパス冷媒分岐配管22aの末端部は、第1の熱源側減圧装置5aと第1の熱源側熱交換器6aとの間の位置で、第1の熱源側冷媒分岐配管11aに連結される。第2のバイパス冷媒分岐配管22bの末端部は、第2の熱源側減圧装置5bと第2の熱源側熱交換器6bとの間の位置で、第2の熱源側冷媒分岐配管11bに連結される。第3のバイパス冷媒分岐配管22cの末端部は、第3の熱源側減圧装置5cと第3の熱源側熱交換器6cとの間の位置で、第3の熱源側冷媒分岐配管11cに連結される。
 本実施の形態1では、第1のバイパス冷媒分岐配管22aに第1の電磁弁24が配置されており、第3のバイパス冷媒分岐配管22cに第2の電磁弁26が配置されている。
 第1の電磁弁24及び第2の電磁弁26は、電力供給又は電力停止によって、流路を開放又は閉止するバルブである。第1の電磁弁24及び第2の電磁弁26は、除霜運転時に、圧縮機2から吐出されたホットガスを、第1の熱源側熱交換器6a及び第3の熱源側熱交換器6cにそれぞれ流入させるものである。第1の電磁弁24及び第2の電磁弁26は、圧縮機2から吐出されるホットガスを低圧まで減圧可能な容量係数(CV値)を有する。第1の電磁弁24及び第2の電磁弁26は、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。なお、第1の電磁弁24及び第2の電磁弁26は、除霜運転時以外、すなわち、冷房運転時及び通常の暖房運転時には閉止されるように調整される。
 本実施の形態1では、第2のバイパス冷媒分岐配管22bにバイパス減圧装置28が配置されている。
 バイパス減圧装置28は、除霜運転時に、圧縮機2から吐出されたホットガスを膨張及び減圧させて、第2の熱源側熱交換器6bに流入させるものである。バイパス減圧装置28は、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁が用いられる。なお、バイパス減圧装置28は、除霜運転時以外、すなわち、冷房運転時及び通常の暖房運転時には閉止されるように調整される。
 次に、本実施の形態1に係る空気調和装置1に配置されるセンサについて説明する。
 本実施の形態1に係る空気調和装置1は、第1の温度センサ30と、第2の温度センサ35と、第1の圧力センサ40と、第2の圧力センサ45とを備える。
 第1の温度センサ30は、例えば熱源側送風ファン(図示せず)の上流側に配置され、熱源側送風ファンによって吸い込まれ、熱源側熱交換ユニット6に送風される外気(室外空気)の温度を検知する外気温度センサである。第2の温度センサ35は、第4の熱源側冷媒配管16(吐出側冷媒配管)に配置され、圧縮機2から吐出された冷媒の温度を第4の熱源側冷媒配管16を介して検知する吐出温度センサである。第1の圧力センサ40は、第4の熱源側冷媒配管16に配置され、圧縮機2から吐出された冷媒の圧力を検知する吐出温度センサである。第1の圧力センサ40は、第4の熱源側冷媒配管16に配置されている。第2の圧力センサ45は、暖房運転時においては、熱源側熱交換ユニット6の出口から流出する冷媒の圧力を検知するものであり、冷房運転時においては、第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bの出口から流出し、合流した冷媒の圧力を検知するものである。第2の圧力センサ45は、第3の熱源側冷媒配管14に配置されている。
 第1の温度センサ30及び第2の温度センサ35の材料としては、半導体(例えば、サーミスタ)又は金属(例えば、測温抵抗体)等が用いられる。また、第1の圧力センサ40及び第2の圧力センサ45としては、水晶圧電式圧力センサ、半導体センサ、又は圧力トランスデューサ等が用いられる。なお、第1の温度センサ30及び第2の温度センサ35は、同一の材料で構成してもよいし、異なる材料で構成してもよい。また、第1の圧力センサ40及び第2の圧力センサ45についても、同種類のもので構成してもよいし、異なる種類のもので構成してもよい。
 次に、本実施の形態1に係る空気調和装置1を制御する制御装置500について説明する。
 本実施の形態1に係る制御装置500は、熱源側ユニット100の動作を制御する第1の制御部50と、第1の負荷側ユニット200aの動作を制御する第2の制御部55aと、第2の負荷側ユニット200bの動作を制御する第3の制御部55bとを備える。
 第1の制御部50、第2の制御部55a、及び第3の制御部55bは、CPU、メモリ(例えば、ROM、RAM等)、I/Oポート等を備えたマイクロコンピュータを有している。なお、制御装置500は、第1の制御部50と、第2の制御部55a及び第3の制御部55bとの間を通信線58で接続して、制御信号の送受信等、相互に通信を行うことができるように構成される。なお、第1の制御部50と、第2の制御部55a及び第3の制御部55bとの間の通信は無線で行うことができるように構成してもよい。
 第1の制御部50は、第1の熱源側減圧装置5a、第2の熱源側減圧装置5b、第3の熱源側減圧装置5c、及びバイパス減圧装置28の開度調整を行い、第1の電磁弁24及び第2の電磁弁26の開放又は閉止を行うように構成される。また、第1の制御部50は、圧縮機2の運転周波数を調整できるように構成される。また、第1の制御部50は、制御目標値等の各種データを記憶できる記憶部(図示せず)を有するように構成される。
 第1の制御部50は、第1の温度センサ30及び第2の温度センサ35で検知した温度情報の電気信号、並びに第1の圧力センサ40及び第2の圧力センサ45で検知した圧力情報の電気信号を受信するように構成される。
 第1の制御部50は、第1の圧力センサ40で得られた吐出圧力から、冷凍サイクルにおける凝縮温度(飽和温度)を算出できるように構成される。また、第1の制御部50は、第2の圧力センサ45で得られた圧力から、冷凍サイクルにおける蒸発温度(飽和温度)を算出できるように構成される。
 第2の制御部55aは、例えば第1の負荷側減圧装置4aの開度を調整するように構成され、第3の制御部55bは、例えば第2の負荷側減圧装置4bの開度を調整するように構成される。
 次に、本実施の形態1に係る空気調和装置1の暖房運転時の動作について説明する。
 圧縮機2から吐出された高温高圧のガス冷媒は、第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bへ流入する。第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bに流入した高温高圧のガス冷媒は、室内空気等の低温の媒体に熱を放出することによって熱交換され、高圧の液冷媒となる。高圧の液冷媒は、第1の負荷側減圧装置4a及び第2の負荷側減圧装置4bを通過して、第1の延長冷媒配管300で合流し、熱源側ユニット100に流入する。
 熱源側ユニット100に流入した高圧の液冷媒は、第1の熱源側冷媒配管10から第1の熱源側冷媒分岐配管11a、第2の熱源側冷媒分岐配管11b、及び第3の熱源側冷媒分岐配管11cに分流する。分流した高圧の液冷媒は、第1の熱源側減圧装置5a、第2の熱源側減圧装置5b、及び第3の熱源側減圧装置5cにそれぞれ流入する。第1の熱源側減圧装置5a、第2の熱源側減圧装置5b、及び第3の熱源側減圧装置5cに流入した高圧の液冷媒は、膨張及び減圧されて低温低圧の二相冷媒となる。低温低圧の二相冷媒は、第1の熱源側熱交換器6a、第2の熱源側熱交換器6b、及び第3の熱源側熱交換器6cに流入し、室外空気等の高温の媒体から熱を吸収し、蒸発して乾き度の高い二相冷媒又は低温低圧のガス冷媒となる。第1の熱源側熱交換器6a、第2の熱源側熱交換器6b、及び第3の熱源側熱交換器6cから流出した乾き度の高い二相冷媒又は低温低圧のガス冷媒は、第2の熱源側冷媒配管12で合流する。合流した乾き度の高い二相冷媒又は低温低圧のガス冷媒は、冷媒流路切替装置7及び第3の熱源側冷媒配管14を経由して、アキュムレータ8に流入する。乾き度の高い二相冷媒又は低温低圧のガス冷媒は、アキュムレータ8で液相成分が除去された後に、圧縮機2に吸入される。圧縮機2に吸入された冷媒は圧縮されて、高温高圧のガス冷媒となり、圧縮機2から吐出される。圧縮機2から吐出された高温高圧のガス冷媒は、第4の熱源側冷媒配管16、冷媒流路切替装置7、第5の熱源側冷媒配管18、及び第2の延長冷媒配管400を経由して、第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bへ流入する。空気調和装置1の暖房運転では以上のサイクルが繰り返される。
 なお、冷房運転時においては、冷媒流路切替装置7の内部の流路は、図1に示すように実線の流路から点線の流路に切り替えられる。これによって、第1の負荷側熱交換器3a及び第2の負荷側熱交換器3bに低温低圧の二相冷媒が流入し、室内空気等の高温の媒体から熱を吸収し、蒸発して乾き度の高い二相冷媒又は低温低圧のガス冷媒となる。これによって、室内空気は、冷媒の吸熱作用によって冷却されることとなる。
 次に、本実施の形態1に係る空気調和装置1の制御装置500における制御処理を説明する。
 本実施の形態1に係る空気調和装置1の制御装置500は、第1の熱源側減圧装置5aを閉止し、第1の電磁弁24を開放して、第1の熱源側熱交換器6aに圧縮機2から吐出したホットガスを供給し、第2の電磁弁26を閉止し、第3の熱源側減圧装置5cを開放して、第3の熱源側熱交換器6cに低温低圧の二相冷媒を供給する第1の暖房除霜並行運転を行い、第1の暖房除霜並行運転の後に、第1の電磁弁24を閉止し、第1の熱源側減圧装置5aを開放して、第1の熱源側熱交換器6aに低温低圧の二相冷媒を供給し、第3の熱源側減圧装置5cを閉止し、第2の電磁弁26を開放して、第3の熱源側熱交換器6cに圧縮機2から吐出したホットガスを供給する第2の暖房除霜並行運転を行い、第1の暖房除霜並行運転及び第2の暖房除霜並行運転の時に、第2の熱源側減圧装置5bを閉止し、バイパス減圧装置28を開放し開度を調整して、第2の熱源側熱交換器6bに圧縮機2から吐出したホットガスを供給するものである。
 図2は、本実施の形態1に係る空気調和装置1の制御装置500における制御処理の一例を示すフローチャートである。図2の制御処理は、暖房運転時に常時行うようにしてもよいし、例えば、外気温度Taの変動を検知した際に随時行うようにしてもよい。
 ステップS11において、制御装置500は、第1の温度センサ30で検知した外気温度Taが除霜運転開始のための基準温度T0(例えば、0℃)より低いか否かを判定する。外気温度Taが基準温度T0以上である場合、制御処理は終了し、通常の暖房運転が継続される。
 外気温度Taが基準温度T0未満である場合、ステップS12において、制御装置500は、第2の熱源側減圧装置5bを閉止し、バイパス減圧装置28を開放し開度を調整する。これによって、第2の熱源側熱交換器6bに圧縮機2から吐出したホットガスが供給される。
 次いで、ステップS13において、制御装置500は、第1の熱源側減圧装置5aを閉止し、第1の電磁弁24を開放する。これによって、第1の熱源側熱交換器6aに圧縮機2から吐出したホットガスが供給される。
 次いで、ステップS14において、制御装置500は、第2の電磁弁26を閉止し、第3の熱源側減圧装置5cを開放する。これによって、第3の熱源側熱交換器6cに低温低圧の二相冷媒が供給される。
 以上のステップS12、ステップS13、及びステップS14によって、本実施の形態1の空気調和装置1では、第1の暖房除霜並行運転が行われる。
 次いで、ステップS15において、制御装置500は、第1の暖房除霜並行運転による第1の熱源側熱交換器6aの除霜が完了したか否かが判定される。除霜が完了したか否かの判定は、例えば第1の暖房除霜並行運転から一定の時間(例えば、60秒)経過したか否かで判定できる。第1の熱源側熱交換器6aの除霜が完了していないと判定された場合、第1の暖房除霜並行運転が継続される。
 第1の熱源側熱交換器6aの除霜が完了したと判定された場合、ステップS16において、制御装置500は、第1の電磁弁24を閉止し、第1の熱源側減圧装置5aを開放する。これによって、第1の熱源側熱交換器6aに低温低圧の二相冷媒が供給される。
 次いで、ステップS17において、制御装置500は、第3の熱源側減圧装置5cを閉止し、第2の電磁弁26を開放する。これによって、第3の熱源側熱交換器6cに圧縮機2から吐出したホットガスが供給される。
 以上のステップS16及びステップS17によって、本実施の形態1の空気調和装置1では、第2の暖房除霜並行運転が行われる。なお、第2の熱源側熱交換器6bでは、圧縮機2から吐出したホットガスが供給された状態が継続している。
 次いで、ステップS18において、制御装置500は、第2の暖房除霜並行運転による第3の熱源側熱交換器6cの除霜が完了したか否かが判定される。除霜が完了したか否かの判定は、例えば第2の暖房除霜並行運転から一定の時間(例えば、60秒)経過したか否かで判定できる。第3の熱源側熱交換器6cの除霜が完了していないと判定された場合、第2の暖房除霜並行運転が継続される。第3の熱源側熱交換器6cの除霜が完了したと判定された場合、制御処理は終了し、通常の暖房運転が行われる。
 次に、本実施の形態1による本発明の効果を説明する。
 上述したとおり、本実施の形態1に係る空気調和装置1は、周波数可変型の圧縮機2と、第1の熱源側熱交換器6a、第2の熱源側熱交換器6b、及び第3の熱源側熱交換器6cを有し、第2の熱源側熱交換器6bが、第1の熱源側熱交換器6aと第3の熱源側熱交換器6cとの間に固定され、第1の熱源側熱交換器6aが、第3の熱源側熱交換器6cよりも下方向に配置されるように、第1の熱源側熱交換器6a、第2の熱源側熱交換器6b、及び第3の熱源側熱交換器6cが上下方向に並列に配置された熱源側熱交換ユニット6と、第1の熱源側熱交換器6aに接続された、開度を調整可能な第1の熱源側減圧装置5aと、第2の熱源側熱交換器6bに接続された、開度を調整可能な第2の熱源側減圧装置5bと、第3の熱源側熱交換器6cに接続された、開度を調整可能な第3の熱源側減圧装置5cと、圧縮機2の吐出口に連結された吐出側冷媒配管(第4の熱源側冷媒配管16)から分岐し、第1の熱源側熱交換器6aと第1の熱源側減圧装置5aとの間に連結された第1のバイパス冷媒分岐配管22aと、吐出側冷媒配管(第4の熱源側冷媒配管16)から分岐し、第2の熱源側熱交換器6bと第2の熱源側減圧装置5bとの間に連結された第2のバイパス冷媒分岐配管22bと、吐出側冷媒配管(第4の熱源側冷媒配管16)から分岐し、第3の熱源側熱交換器6cと第3の熱源側減圧装置5cとの間に連結された第3のバイパス冷媒分岐配管22cと、第1のバイパス冷媒分岐配管22aに配置された第1の電磁弁24と、第2のバイパス冷媒分岐配管22bに配置された、開度を調整可能なバイパス減圧装置28と、第3のバイパス冷媒分岐配管22cに配置された第2の電磁弁26と、第1の熱源側減圧装置5a、第2の熱源側減圧装置5b、第3の熱源側減圧装置5c、及びバイパス減圧装置28の開度調整を行い、第1の電磁弁24及び第2の電磁弁26の開放又は閉止を行う制御装置500とを備え、制御装置500は、第1の熱源側減圧装置5aを閉止し、第1の電磁弁24を開放して、第1の熱源側熱交換器6aに圧縮機2から吐出したホットガスを供給し、第2の電磁弁26を閉止し、第3の熱源側減圧装置5cを開放して、第3の熱源側熱交換器6cに低温低圧の二相冷媒を供給する第1の暖房除霜並行運転と、第1の暖房除霜並行運転の後に、第1の電磁弁24を閉止し、第1の熱源側減圧装置5aを開放して、第1の熱源側熱交換器6aに低温低圧の二相冷媒を供給し、第3の熱源側減圧装置5cを閉止し、第2の電磁弁26を開放して、第3の熱源側熱交換器6cに圧縮機2から吐出したホットガスを供給する第2の暖房除霜並行運転とが可能であり、第1の暖房除霜並行運転又は第2の暖房除霜並行運転を行うとき、第2の熱源側減圧装置5bを閉止し、バイパス減圧装置28を開放し開度を調整して、第2の熱源側熱交換器6bに圧縮機2から吐出したホットガスを供給するものである。
 従来、圧縮機、四方弁、上下に並列に2つ設けられた室外熱交換器、室外機側絞り装置、及び室内熱交換器を備えた室内機をガスライン及び液ラインで接続して構成した冷凍空調装置がある。また、従来、暖房中に2つ設けられた室外熱交換器のうちの片方の室外熱交換器が蒸発器として機能し、もう片方が除霜運転する機能(いわゆる、「オンデフ機能」)を有する冷凍空調装置がある。
 例えば、従来の除霜運転機能を有する冷凍空調装置で、下側の室外熱交換器を除霜運転させ、上側の室外熱交換器を蒸発器とし暖房運転させる場合を考える。従来の除霜運転機能を有する冷凍空調装置は、圧縮機から上下室外熱交換器までの配管にそれぞれ電磁弁を有しており、液操作弁から上下室外熱交換器までの配管にそれぞれリニア電磁弁(LEV)を有するものがある。従来の除霜運転機能を有する冷凍空調装置では、例えば、下側熱交換器につながる配管に接続された電磁弁を開け、リニア電磁弁を閉め、圧縮機から吐出したホットガスの一部を分岐させ下側熱交換器に流入させる。従来の除霜運転機能を有する冷凍空調装置では、上側熱交換器は、蒸発器とするため、上側熱交換器につながる配管に接続された電磁弁は閉じたままで、リニア電磁弁は開いたままの状態とする。
 しかしながら、従来の除霜運転機能を有する冷凍空調装置では、上下に2つ設けた室外熱交換器のうち一方が除霜運転に用いられ、他方が暖房運転に用いられる。暖房運転に用いられる室外熱交換器は、蒸発器として機能し、室外熱交換器の内部には低温の冷媒が流れているため、2つの室外熱交換器の境界部では、低温の冷媒でホットガスの熱が相殺される。したがって従来の除霜運転機能を有する冷凍空調装置では、除霜のために十分な熱量を確保できずに残霜及び着氷が発生してしまうという問題点があった。
 また、上側の室外熱交換器の除霜運転時に除霜により生じたドレン水が、氷点下の冷媒温度を有する下側の室外熱交換器に流れ、上側の室外熱交換器と下側の室外熱交換器との境界部分(主に、下側の室外熱交換器の最上部)に着氷してしまうという問題点があった。
 また、残霜及び着氷により、暖房能力が低下する可能性、又は室外熱交換器に亀裂が発生する可能性があるという問題点があった。
 これに対し、本実施の形態1の構成によれば、空気調和装置1の除霜運転時には、中段の位置にある第2の熱源側熱交換器6bに常にホットガスが流れている構成にできる。したがって、本実施の形態1の構成によれば、複数の熱源側熱交換器の境界部分における熱量の相殺がなくなるため、残霜及び着氷の発生を抑制できる空気調和装置1を提供することができる。
 また、本実施の形態1の構成によれば、第1の熱源側熱交換器6aの除霜運転を第3の熱源側熱交換器6cの除霜運転よりも前に行うことができる。第1の熱源側熱交換器6aの着霜及び着氷を最初に融解することで、第3の熱源側熱交換器6cの除霜運転時に生じたドレン水が第3の熱源側熱交換器6cを通過しやすくなるため、ドレン水の排出を円滑に行うことができる。
 以上のとおり、本実施の形態1の構成によれば、残霜及び着氷による、暖房能力の低下を回避できるため、エネルギー消費量を削減可能な空気調和装置1を提供することができる。また、本実施の形態1の構成によれば、残霜及び着氷による熱源側熱交換ユニット6の亀裂の発生を回避できる。
 また、本実施の形態1の空気調和装置1では、第2の熱源側熱交換器6bが熱源側熱交換ユニット6を占める容積比は、第1の熱源側熱交換器6aが熱源側熱交換ユニット6を占める容積比及び第3の熱源側熱交換器6cが熱源側熱交換ユニット6を占める容積比よりも小さくなるように構成できる。
 この構成によれば、第2の熱源側熱交換器6bにより除霜運転時の暖房能力が低下するのを抑制することができる。
実施の形態2.
 本発明の実施の形態2では、上述の実施の形態1に係る制御装置500のバイパス減圧装置28の開度の制御処理の一例を示す。
 本実施の形態2の空気調和装置1では、制御装置500は、第1の暖房除霜並行運転及び第2の暖房除霜並行運転の時に、制御量である吐出温度Tdから凝縮温度Tcを減算した温度差ΔTが第1の目標値T1となるように、バイパス減圧装置28の開度Dを調整するよう構成される。
 図3は、本実施の形態2に係る空気調和装置1の制御装置500における制御処理の一例を示すフローチャートである。図3の制御処理は、除霜運転時に常時行うようにしてもよいし、例えば、吐出温度Tdの変動を検知した際に随時行うようにしてもよい。
 以降の本実施の形態2の制御処理の説明では、バイパス減圧装置28の開度Dは、0≦D≦1の範囲で調整可能なものとする。開度D=0の状態は、バイパス減圧装置28が閉止状態であることを示し、開度D=1の状態は、バイパス減圧装置28が全開放状態であることを示す。
 ステップS21においては、制御装置500は、吐出温度Tdから凝縮温度Tcを減算した温度差ΔTが、第1の目標値T1(例えば、25℃±2℃)を超えるか否かを判定する。
 ここで、吐出温度Tdは、圧縮機2から吐出された冷媒の温度を、第4の熱源側冷媒配管16を介して第2の温度センサ35で検知した温度である。また、凝縮温度Tcは、制御装置500において、第1の圧力センサ40で検知した吐出圧力P1を飽和温度に換算して算出したものである。
 温度差ΔTが、第1の目標値T1を超える場合、ステップS22において、制御装置500は、バイパス減圧装置28の開度Dを、第1の開度差分値ΔD1(例えば、0.1)だけ開放する。
 温度差ΔTが第1の目標値T1以下となる場合、ステップS23において、制御装置500は、温度差ΔTが、第1の目標値T1未満であるか否かを判定する。温度差ΔTが、第1の目標値T1未満でもない場合、すなわち、温度差ΔTが第1の目標値T1に達した場合、制御処理は終了する。
 温度差ΔTが、第1の目標値T1未満の場合、ステップS24において、制御装置500は、バイパス減圧装置28の開度Dを、第2の開度差分値ΔD2(例えば、0.1)だけ閉止する。
 本実施の形態2に係る空気調和装置1の制御装置500では、温度差ΔTが第1の目標値T1に達するまで、以上のような制御処理が繰り返される。なお、上述の制御処理の説明では、第1の開度差分値ΔD1は第2の開度差分値ΔD2と同一の数値としたが、異なる数値であってもよい。
 除霜運転時は、第2の熱源側熱交換器6bに、低圧ガスよりも高温で、凝縮温度が高い中圧のホットガスを流入させることで、除霜能力が上昇させることができる。上述の制御処理は、中圧のホットガスによってアキュムレータ8に液冷媒が過剰に流れ液バック状態となるのを回避するために行われるものである。
 本実施の形態2の構成によれば、吐出温度Tdから凝縮温度Tcを減算した温度差ΔTにより、バイパス減圧装置28の開度Dを調整し、除霜運動のために中圧のホットガスを第2の熱源側熱交換器6bに流入することができる。したがって、本実施の形態2の構成によれば、第2の熱源側熱交換器6bにおける除霜能力を向上させることができる。
実施の形態3.
 本発明の実施の形態3では、上述の実施の形態1に係る制御装置500の圧縮機2の運動周波数の制御処理の例を示す。
 本実施の形態3の空気調和装置1では、第1の暖房除霜並行運転の時には、制御量である凝縮温度Tcが第2の目標値T2となるように、操作量である圧縮機2の運転周波数fを調整し、第2の暖房除霜並行運転の時には、制御量である蒸発温度Teが第3の目標値T3となるように、操作量である圧縮機2の運転周波数fを調整するよう構成される。
 図4は、本実施の形態3に係る空気調和装置1の制御装置500における制御処理の一例を示すフローチャートである。図4の制御処理は、第1の暖房除霜並行運転時に行われるものであり、第1の暖房除霜並行運転時に常時行うようにしてもよいし、例えば、凝縮温度Tcの変動を検知した際に随時行うようにしてもよい。
 ステップS31においては、制御装置500は、第1の圧力センサ40で検知した吐出圧力P1を飽和温度に換算して算出した凝縮温度Tcが、第2の目標値T2(例えば、28℃±2℃)を超えるか否かを判定する。
 凝縮温度Tcが第2の目標値T2を超える場合、ステップS32において、制御装置500は、圧縮機2の運転周波数fを、第1の周波数差分値Δf1(例えば、0.1)だけ減少させる。
 凝縮温度Tcが第2の目標値T2以下となる場合、ステップS33において、制御装置500は、凝縮温度Tcが、第2の目標値T2未満であるか否かを判定する。凝縮温度Tcが、第2の目標値T2未満でもない場合、すなわち、凝縮温度Tcが第2の目標値T2に達した場合、制御処理は終了する。
 凝縮温度Tcが、第2の目標値T2未満の場合、ステップS34において、制御装置500は、圧縮機2の運転周波数fを、第2の周波数差分値Δf2(例えば、0.1)だけ増加させる。
 本実施の形態3に係る空気調和装置1の制御装置500では、凝縮温度Tcが第2の目標値T2に達するまで、以上のような制御処理が繰り返される。なお、上述の制御処理の説明では、第1の周波数差分値Δf1は第2の周波数差分値Δf2と同一の数値としたが、異なる数値であってもよい。
 図5は、本実施の形態3に係る空気調和装置1の制御装置500における制御処理の一例を示すフローチャートである。図5の制御処理は、第2の暖房除霜並行運転時に行われるものであり、第2の暖房除霜並行運転時に常時行うようにしてもよいし、例えば、蒸発温度Teの変動を検知した際に随時行うようにしてもよい。
 ステップS41においては、制御装置500は、第2の圧力センサ45で検知した圧力P2を飽和温度に換算して算出した蒸発温度Teが、第3の目標値T3(例えば、2℃±1℃)を超えるか否かを判定する。
 蒸発温度Teが第3の目標値T3を超える場合、ステップS42において、制御装置500は、圧縮機2の運転周波数fを、第3の周波数差分値Δf3(例えば、0.1)だけ増加させる。
 蒸発温度Teが第3の目標値T3以下となる場合、ステップS43において、制御装置500は、蒸発温度Teが、第3の目標値T3未満であるか否かを判定する。蒸発温度Teが、第3の目標値T3未満でもない場合、すなわち、凝縮温度Tcが第3の目標値T3に達した場合、制御処理は終了する。
 蒸発温度Teが、第3の目標値T3未満の場合、ステップS44において、制御装置500は、圧縮機2の運転周波数fを、第4の周波数差分値Δf4(例えば、0.1)だけ減少させる。
 本実施の形態3に係る空気調和装置1の制御装置500では、蒸発温度Teが第3の目標値T3に達するまで、以上のような制御処理が繰り返される。なお、上述の制御処理の説明では、第3の周波数差分値Δf3は第4の周波数差分値Δf4と同一の数値としたが、異なる数値であってもよい。
 従来、除霜運転時の圧縮機2の運転周波数は、通常暖房運転時と同様に凝縮温度が目標凝縮温度になるように制御されている。また、除霜能力及び暖房能力を確保するために圧縮機2の最大周波数は、従来の暖房運転時に比べ高く設定されている。
 しかしながら、除霜能力の確保のために、圧縮機の運転周波数を過度に増速すると、蒸発温度の低下により残霜及び着氷を助長する可能性があるという問題点があった。特に、下側の室外機熱交換器が蒸発器として機能する場合、上側の室外機熱交換器の除霜により発生したドレン水が流れ落ちてくるため、下側の室外機熱交換器が氷結する可能性があるといった問題があった。
 これに対し、本実施の形態3の構成によれば、第1の暖房除霜並行運転時には、凝縮温度を制御目標として、圧縮機2の運転周波数fが調整されるため、空気調和装置1の暖房能力を確保することができる。また、第2の暖房除霜並行運転時には、蒸発温度を制御目標として、運転周波数fが調整されるため、第3の熱源側熱交換器6cの除霜により発生したドレン水が、第1の熱源側熱交換器6aで着氷しないように圧縮機2の運転周波数fを調整することができる。
 以上のとおり、本実施の形態3の構成によれば、暖房能力及び除霜能力を低下させずに、残霜及び着氷の発生を効率良く抑制することができる。
その他の実施の形態.
 上述の実施の形態に限らず種々の変形が可能である。例えば、上述の実施の形態は、空気調和装置1のみに限られず、給湯器等にも用いることができる。
 また、第1の負荷側減圧装置4a、第2の負荷側減圧装置4b、第1の熱源側減圧装置5a、第2の熱源側減圧装置5b、第3の熱源側減圧装置5c、及びバイパス減圧装置28は同一種類の減圧装置で構成してもよいし、互いに異なる種類の装置で構成してもよい。
 また、第1のバイパス冷媒分岐配管22a及び第3のバイパス冷媒分岐配管22cには、キャピラリーチューブ等の減圧配管を配置してもよい。
 また、上述の実施の形態は互いに組み合わせて用いることが可能である。
 1 空気調和装置、2 圧縮機、3a 第1の負荷側熱交換器、3b 第2の負荷側熱交換器、4a 第1の負荷側減圧装置、4b 第2の負荷側減圧装置、5a 第1の熱源側減圧装置、5b 第2の熱源側減圧装置、5c 第3の熱源側減圧装置、6 熱源側熱交換ユニット、6a 第1の熱源側熱交換器、6b 第2の熱源側熱交換器、6c 第3の熱源側熱交換器、7 冷媒流路切替装置、8 アキュムレータ、9a 第1の延長冷媒配管接続バルブ、9b 第2の延長冷媒配管接続バルブ、10 第1の熱源側冷媒配管、11a 第1の熱源側冷媒分岐配管、11b 第2の熱源側冷媒分岐配管、11c 第3の熱源側冷媒分岐配管、12 第2の熱源側冷媒配管、14 第3の熱源側冷媒配管、16 第4の熱源側冷媒配管、18 第5の熱源側冷媒配管、20 バイパス冷媒配管、22a 第1のバイパス冷媒分岐配管、22b 第2のバイパス冷媒分岐配管、22c 第3のバイパス冷媒分岐配管、24 第1の電磁弁、26 第2の電磁弁、28 バイパス減圧装置、30 第1の温度センサ、35 第2の温度センサ、40 第1の圧力センサ、45 第2の圧力センサ、50 第1の制御部、55a 第2の制御部、55b 第3の制御部、58 通信線、100 熱源側ユニット、200a 第1の負荷側ユニット、200b 第2の負荷側ユニット、300 第1の延長冷媒配管、400 第2の延長冷媒配管、500 制御装置。

Claims (4)

  1.  周波数可変型の圧縮機と、
     第1の熱源側熱交換器、第2の熱源側熱交換器、及び第3の熱源側熱交換器を有し、前記第2の熱源側熱交換器が、前記第1の熱源側熱交換器と前記第3の熱源側熱交換器との間に固定され、前記第1の熱源側熱交換器が、前記第3の熱源側熱交換器よりも下方向に配置されるように、前記第1の熱源側熱交換器、前記第2の熱源側熱交換器、及び前記第3の熱源側熱交換器が、上下方向に並列に配置された熱源側熱交換ユニットと、
     前記第1の熱源側熱交換器に接続された、開度を調整可能な第1の熱源側減圧装置と、
     前記第2の熱源側熱交換器に接続された、開度を調整可能な第2の熱源側減圧装置と、
     前記第3の熱源側熱交換器に接続された、開度を調整可能な第3の熱源側減圧装置と、
     前記圧縮機の吐出口に連結された吐出側冷媒配管から分岐し、前記第1の熱源側熱交換器と第1の熱源側減圧装置との間に連結された第1のバイパス冷媒分岐配管と、
     前記吐出側冷媒配管から分岐し、前記第2の熱源側熱交換器と前記第2の熱源側減圧装置との間に連結された第2のバイパス冷媒分岐配管と、
     前記吐出側冷媒配管から分岐し、前記第3の熱源側熱交換器と前記第3の熱源側減圧装置との間に連結された第3のバイパス冷媒分岐配管と、
     前記第1のバイパス冷媒分岐配管に配置された第1の電磁弁と、
     前記第2のバイパス冷媒分岐配管に配置された、開度を調整可能なバイパス減圧装置と、
     前記第3のバイパス冷媒分岐配管に配置された第2の電磁弁と、
     前記第1の熱源側減圧装置、前記第2の熱源側減圧装置、前記第3の熱源側減圧装置、及び前記バイパス減圧装置の開度調整を行い、前記第1の電磁弁及び前記第2の電磁弁の開放又は閉止を行う制御装置と
    を備え、
     前記制御装置は、
     前記第1の熱源側減圧装置を閉止し、前記第1の電磁弁を開放して、前記第1の熱源側熱交換器に前記圧縮機から吐出したホットガスを供給し、前記第2の電磁弁を閉止し、前記第3の熱源側減圧装置を開放して、前記第3の熱源側熱交換器に低温低圧の二相冷媒を供給する第1の暖房除霜並行運転と、
     前記第1の電磁弁を閉止し、前記第1の熱源側減圧装置を開放して、前記第1の熱源側熱交換器に低温低圧の二相冷媒を供給し、前記第3の熱源側減圧装置を閉止し、前記第2の電磁弁を開放して、前記第3の熱源側熱交換器に前記圧縮機から吐出したホットガスを供給する第2の暖房除霜並行運転とが可能であり、
     前記第1の暖房除霜並行運転又は前記第2の暖房除霜並行運転を行うときに、前記第2の熱源側減圧装置を閉止し、前記バイパス減圧装置を開放し開度を調整して、前記第2の熱源側熱交換器に前記圧縮機から吐出したホットガスを供給するものである
    空気調和装置。
  2.  前記第2の熱源側熱交換器が前記熱源側熱交換ユニットを占める容積比は、前記第1の熱源側熱交換器が前記熱源側熱交換ユニットを占める容積比及び前記第3の熱源側熱交換器が前記熱源側熱交換ユニットを占める容積比よりも小さい
    請求項1に記載の空気調和装置。
  3.  前記制御装置は、
     前記第1の暖房除霜並行運転及び前記第2の暖房除霜並行運転の時に、制御量である吐出温度から凝縮温度を減算した温度差が第1の目標値となるように、前記バイパス減圧装置の開度を調整するものである
    請求項1又は2に記載の空気調和装置。
  4.  前記制御装置は、
     前記第1の暖房除霜並行運転の時には、制御量である凝縮温度が第2の目標値となるように、操作量である前記圧縮機の運転周波数を調整し、
     前記第2の暖房除霜並行運転の時には、制御量である蒸発温度が第3の目標値となるように、操作量である前記圧縮機の運転周波数を調整するものである
    請求項1~3のいずれか1項に記載の空気調和装置。
PCT/JP2015/061392 2015-04-13 2015-04-13 空気調和装置 WO2016166801A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/061392 WO2016166801A1 (ja) 2015-04-13 2015-04-13 空気調和装置
JP2017512481A JP6377259B2 (ja) 2015-04-13 2015-04-13 空気調和装置
GB1710780.6A GB2552891C (en) 2015-04-13 2015-04-13 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061392 WO2016166801A1 (ja) 2015-04-13 2015-04-13 空気調和装置

Publications (1)

Publication Number Publication Date
WO2016166801A1 true WO2016166801A1 (ja) 2016-10-20

Family

ID=57125807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061392 WO2016166801A1 (ja) 2015-04-13 2015-04-13 空気調和装置

Country Status (3)

Country Link
JP (1) JP6377259B2 (ja)
GB (1) GB2552891C (ja)
WO (1) WO2016166801A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088031A (zh) * 2017-12-01 2018-05-29 芜湖美智空调设备有限公司 一拖多空调器的化霜控制方法、一拖多空调器及存储介质
CN108224678A (zh) * 2017-12-28 2018-06-29 青岛海尔空调电子有限公司 一种空调及除霜控制方法
EP3745053A4 (en) * 2018-01-26 2021-01-13 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470023B (zh) * 2019-08-04 2022-03-29 青岛海尔空调器有限总公司 用于空调除霜的控制方法及装置、空调
CN114061030A (zh) * 2021-10-28 2022-02-18 青岛海尔空调器有限总公司 一种空调除霜控制方法、控制装置及空调器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184864A (en) * 1981-05-08 1982-11-13 Ebara Mfg Heat pump device
JP2009047385A (ja) * 2007-08-22 2009-03-05 Hitachi Appliances Inc 冷凍サイクルを用いた機器及び空気調和機
JP2014020568A (ja) * 2012-07-12 2014-02-03 Hitachi Appliances Inc 空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184864A (en) * 1981-05-08 1982-11-13 Ebara Mfg Heat pump device
JP2009047385A (ja) * 2007-08-22 2009-03-05 Hitachi Appliances Inc 冷凍サイクルを用いた機器及び空気調和機
JP2014020568A (ja) * 2012-07-12 2014-02-03 Hitachi Appliances Inc 空気調和機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088031A (zh) * 2017-12-01 2018-05-29 芜湖美智空调设备有限公司 一拖多空调器的化霜控制方法、一拖多空调器及存储介质
CN108088031B (zh) * 2017-12-01 2021-02-26 芜湖美智空调设备有限公司 一拖多空调器的化霜控制方法、一拖多空调器及存储介质
CN108224678A (zh) * 2017-12-28 2018-06-29 青岛海尔空调电子有限公司 一种空调及除霜控制方法
EP3745053A4 (en) * 2018-01-26 2021-01-13 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT DEVICE

Also Published As

Publication number Publication date
GB2552891A (en) 2018-02-14
JP6377259B2 (ja) 2018-08-22
JPWO2016166801A1 (ja) 2017-10-19
GB2552891B (en) 2020-08-12
GB201710780D0 (en) 2017-08-16
GB2552891C (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP6351848B2 (ja) 冷凍サイクル装置
JP3894221B1 (ja) 空気調和装置
JP6377259B2 (ja) 空気調和装置
WO2016171052A1 (ja) 冷凍サイクル装置
EP2375188A1 (en) Air conditioner
JP6501878B2 (ja) 空気調和装置及び運転制御装置
EP3457049B1 (en) Refrigeration cycle device
JP2008232508A (ja) 給湯器
JP6715929B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
JP6878612B2 (ja) 冷凍サイクル装置
EP3690356A1 (en) Refrigeration cycle device
JP6888068B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
EP3499142A1 (en) Refrigeration cycle device
JP2019184207A (ja) 空気調和装置
JP5734205B2 (ja) 空気調和装置
JPWO2020194435A1 (ja) 空気調和装置
JP2011179783A (ja) 冷凍装置
JP6594599B1 (ja) 空気調和装置
JPWO2017037891A1 (ja) 冷凍サイクル装置
JP4999530B2 (ja) 空気調和装置
WO2014103407A1 (ja) 空気調和装置
JPWO2020174618A1 (ja) 空気調和装置
JP2019158308A (ja) 冷凍サイクル装置
JPWO2019064441A1 (ja) 空気調和装置
JPWO2020148826A1 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201710780

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150413

ENP Entry into the national phase

Ref document number: 2017512481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889139

Country of ref document: EP

Kind code of ref document: A1