WO2017006553A1 - プリント配線基板 - Google Patents

プリント配線基板 Download PDF

Info

Publication number
WO2017006553A1
WO2017006553A1 PCT/JP2016/003169 JP2016003169W WO2017006553A1 WO 2017006553 A1 WO2017006553 A1 WO 2017006553A1 JP 2016003169 W JP2016003169 W JP 2016003169W WO 2017006553 A1 WO2017006553 A1 WO 2017006553A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
printed circuit
signal wiring
gnd
electric cable
Prior art date
Application number
PCT/JP2016/003169
Other languages
English (en)
French (fr)
Inventor
和弘 柏倉
文子 上村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201680040236.5A priority Critical patent/CN107852812A/zh
Priority to US15/738,218 priority patent/US20180184516A1/en
Priority to JP2017527079A priority patent/JPWO2017006553A1/ja
Publication of WO2017006553A1 publication Critical patent/WO2017006553A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0224Patterned shielding planes, ground planes or power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0251Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance related to vias or transitions between vias and transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09609Via grid, i.e. two-dimensional array of vias or holes in a single plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1003Non-printed inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10189Non-printed connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10356Cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers

Definitions

  • the present invention relates to a printed wiring board that suppresses EMI (Electromagnetic Interference) radiation, and more particularly to a printed wiring board that suppresses EMI radiation from an electric cable.
  • EMI Electromagnetic Interference
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-254759 discloses a technique in which GND wiring is arranged in a ring shape on the outer periphery of an LSI circuit board and connected to a GND layer inside the board via a plurality of GND vias. (Paragraphs [0014] to [0019], FIG. 1, etc.). Although the GND vias are arranged to have a certain degree of EMI suppression effect, the GND wiring is ring-shaped and has a large gap, and electromagnetic waves leak from the gap, so that the effect of blocking electromagnetic waves inside the substrate is poor. Furthermore, there is no disclosure of a technique for blocking electromagnetic waves generated on a printed board from riding on an electric cable and radiating EMI from the electric cable.
  • Patent Document 2 Japanese Patent Laid-Open No. 10-270862
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-53449
  • an LSI (Large Scale Integration) power supply wiring is provided with an inductor to increase impedance with an external power source.
  • Patent Document 2 Patent Document 2 in [0023] and [0025] paragraphs, FIGS. 2 and 3.
  • Patent Document 3 Patent Document 3 in [0036] to [0037] paragraphs and FIG. 3,).
  • power supply noise is caused by the propagation of electromagnetic waves around the power line and GND as a transmission line. Therefore, fundamental EMI suppression is difficult.
  • Patent Document 4 International Publication No. 2014/080610 discloses a technique for analyzing electromagnetic waves propagating from a printed circuit board to an electric cable. However, there is no disclosure regarding techniques for suppressing radiation.
  • Patent Document 5 Japanese Patent Laid-Open No. 2000-216509 discloses that the signal wiring conductor is vertically arranged on both the upper and lower sides and the both sides so that electromagnetic waves generated from the signal wiring conductor formed on the insulating base do not leak to the outside.
  • a ground layer is formed, and at least two rows of through conductors (through holes) are formed so as to sandwich the signal wiring conductor from both sides (in FIG. 1, the through holes are formed in the entire substrate). Further, it is described that the interval between the through conductors in the first row and the second row is set to 1/4 or less of the wavelength ⁇ of the high-frequency signal propagated to the signal wiring conductor. (References [0017] to [0018], [0023], FIGS. 1, 3, and 4) However, this Patent Document 5 aims to reduce leakage of electromagnetic waves from the insulating base to the outside, and does not disclose a technique for blocking electromagnetic waves from the insulating base to the electric cable.
  • Patent Document 6 Japanese Patent Laid-Open No. 11-220263
  • a power supply layer and a signal layer are sandwiched between a ground layer and a top and bottom ground layers are connected by a plurality of through holes.
  • this Patent Document 6 aims to reduce leakage of electromagnetic waves from the printed wiring board to the outside, and does not disclose a technique for blocking electromagnetic waves from the insulating base to the electric cable.
  • Patent Documents 1 to 8 described above have solved the problem of electromagnetic waves generated on a printed circuit board riding on an electric cable and EMI radiating from the electric cable.
  • An object of the present invention is to solve the above-described problems and provide a printed circuit board that can suppress EMI radiation from an electric cable.
  • the present invention is a printed circuit board provided with signal wiring to which an electric cable is connected, wherein both sides of the signal wiring to which the electric cable is connected are vertically sandwiched between ground layers, and the upper and lower ground layers are provided with a plurality of through holes. And the through holes are provided in the signal wiring and in the vicinity thereof with an interval corresponding to the wavelength corresponding to the maximum frequency of the electromagnetic wave to be suppressed.
  • EMI radiation from the electric cable can be suppressed.
  • FIG. 4 shows the result of analyzing the relationship between the frequency and the electric field strength at the observation point outside the substrate when the GND through hole of FIG. 4 is not formed.
  • FIGS. 1A and 1B are a plan view and a sectional view showing a first embodiment of the present invention.
  • the cross-sectional view shows a cross section taken along one-dot chain line AA ′ shown in the plan view. Further, the cross-sectional view shows the signal wiring 6 and the power supply layer 5 passing between the GND through holes 3.
  • the signal wiring 6 connected to the signal terminal of the IC 2 is connected to the pulse transformer 8 through the substrate and connected to the electric cable 100.
  • the signal wiring 62 and the signal wiring 63 that are not connected to the electric cable 100 are also formed on and in the substrate.
  • the printed circuit board 1 is a multilayer printed circuit board, on which a power supply layer 5 and a signal wiring 6 connected to an electric cable are formed with an insulating layer interposed therebetween.
  • the signal wiring 6 is specifically the cable transmission differential wirings 61 and 61 'shown in FIG.
  • Between the IC 2 and the pulse transformer 8 is a cable transmission differential wiring 61, and between the pulse transformer 8 and the connector 7 is a cable transmission differential wiring 61 '.
  • FIG. 3 is a plan view showing the wiring state of the differential signal wirings 61 and 61 'for cable transmission.
  • Cable transmission differential signal wirings 61 and 61 ′ are connected to the signal through hole 31 connected to the IC 2, and the GND through holes 3 arranged in a lattice pattern are connected in parallel in close proximity in the same layer. .
  • Two rows of GND through holes 3 for impedance control are placed on both sides of the differential signal wirings 61 and 61 'for cable transmission.
  • GND layers 41 and 43 are respectively formed immediately below the component surface which is the front surface of the printed circuit board 1 in FIG. 1 and directly above the solder surface which is the back surface, and a power source layer 42 is also formed in the middle of the substrate 1. Yes.
  • the GND layers 41, 42, and 43 are solid GND, that is, the entire ground. In FIG. 1, solder is not shown.
  • the IC 2 is mounted on the printed circuit board 1 to drive an electric cable such as an ether, and is connected to the electric cable (copper cable) 100 and the signal wiring 6 via a connector 7 such as RJ45.
  • This IC 2 is generally called a PHY (Physical Layer) chip.
  • a pulse transformer 8 is mounted between the PHY and the RJ45 connector, and direct current cut or noise suppression by CMC (Common mode choke-coil) is performed.
  • CMC Common mode choke-coil
  • the upper and lower layers of the signal wiring 6 are GND layers (ground layers) 41 and 42, and a GND through hole 3 for connecting at least the two GND layers is arranged around the substrate.
  • the GND through hole 3 connects all the GND layers 41, 42, and 43.
  • the GND through-holes 3 are arranged in a grid pattern at intervals d (the condition of d will be described later).
  • FIG. 2 is a diagram showing an analysis model for electromagnetic field analysis in the present embodiment. With reference to FIG. 2, an EMI radiation mechanism in which electromagnetic waves travel from the printed circuit board 1 to the electric cable 100 will be described.
  • the substrate configuration applied in this embodiment is a power supply layer 5 sandwiched between GND layers.
  • An electromagnetic wave is generated by changing the electric potential between the power supply layer 5 and the GND layer 4, that is, changing the electric field so that the power supply current changes and follows the operation of the IC 21.
  • a change in power supply current is simulated by a noise source 9.
  • the amplifier 22 corresponds to IC2 in FIG.
  • the electromagnetic wave generated by the noise source 9 is transmitted between the power supply layer 5 and the GND layer 4 as a transmission path in all directions.
  • the spread electromagnetic waves spread, for example, between the GND layer 4 and the GND layer 4, or between another power supply layer-GND layer, or between the power supply layer and the power supply layer as a transmission line, and further spread to the edge of the substrate.
  • the electromagnetic wave propagated from the substrate end to the outside of the substrate is EMI radiation.
  • a differential wiring 61 for cable transmission is arranged between the GND layer 4 and the GND layer 4.
  • the electromagnetic wave generated by the noise source 9 is excited to the cable transmission differential wiring 61. Therefore, the electromagnetic wave propagates from the signal wiring 6 to the outside of the printed circuit board 1 via the connector 7 and the electric cable 100, and becomes EMI radiation.
  • electromagnetic waves also affect the pulse transformer itself, so that a significant effect cannot be expected with the pulse transformer or CMC.
  • An electromagnetic wave having a wavelength longer than ⁇ / 2 cannot pass through the grid of the GND through hole 3.
  • FIG. 4 a model as shown in FIG. 4 was created, and the effects were confirmed by electromagnetic field analysis.
  • a power supply layer and a signal wiring sandwiched between two GND layers 4 are arranged.
  • the cable is simulated by the wiring 65.
  • the signal wiring 6 in the printed circuit board 1 is coupled by a capacitor 200. This simulates the capacitive coupling between the primary side (IC side) and the secondary side (electric cable side) of the pulse transformer 8.
  • a model of the pulse transformer 8 portion is shown on the right side of FIG. The electric field distribution and the electric field strength in the vicinity are calculated by electromagnetic field analysis by adding the presence or absence of GND through holes to the model shown in FIG.
  • Figures 5 to 10 show the results of these analyses.
  • 5 and 6 show the case where there is no GND through hole in the printed circuit board.
  • 7 and 8 show a case where a GND through hole is provided only around the printed circuit board.
  • 9 and 10 show a case where GND through holes are arranged both around the printed circuit board and around the cable signal wiring.
  • 6, 8, and 10 are diagrams showing the relationship between the frequency and the electric field intensity at the observation point (marked with x in the figure) outside the substrate in the case of FIGS. 5, 7, and 9, respectively. .
  • the actual power supply layer (power supply line) is usually an elongated shape, but here it is analyzed as a square to simplify the analysis.
  • the scales in the upper right of FIGS. 5, 7, and 9 are scales from zero to minus, with the electric field strength decreasing toward minus and increasing the electric field strength toward zero.
  • the unit is dB ⁇ V / m, but in FIGS. 5, 7 and 9, the injected energy is plotted as a relative value with max (0 dB or 1), so the unit in the scale is “max dB ⁇ V. / M ".
  • FIG. 5 shows an analysis result in the case where the GND through hole 3 is not formed.
  • the shape of the electric cable 100 can be clearly seen, and the electric field strength around the electric cable 100 is higher than other places outside the substrate. It is clear.
  • the electric field strength exceeds ⁇ 20 dB ⁇ V / m at 1 GHz or more and reaches 20 dB / m at the maximum (1.3 to 1.6 GHz).
  • FIG. 7 shows an analysis result when the GND through hole 3 is formed only once (one row) on the outer periphery of the printed circuit board, and EMI radiation to the outside of the circuit board can be suppressed to some extent.
  • the electric field strength around the electric cable 100 is higher than in other places, and radiation from the electric cable 100 cannot be suppressed.
  • FIG. 8 the electric field intensity reaches 0 dB ⁇ V / m at the maximum (around 1.7 GHz), and the suppression of electromagnetic waves is insufficient.
  • FIG. 9 shows a case where GND through holes are formed both around the printed circuit board and around the signal wiring for the cable, and it is impossible to distinguish between radiation from the electric cable 100 and other locations outside the board.
  • the electric field strength is as low as ⁇ 20 dB ⁇ V / m even at the maximum (around 2 GHz), and it can be seen that electromagnetic waves can be suppressed. That is, it can be seen that the GND through hole around the cable signal wiring suppresses the radiation from the electric cable 100.
  • FIG. 11 shows the result of analyzing the relationship between frequency and electric field strength in the case of the same row, two rows, and three rows without GND through holes.
  • FIG. 6 shows that there is no GND through hole
  • FIG. 8 shows one row
  • FIG. 10 shows three rows.
  • the electric field strength is as low as ⁇ 40 dB ⁇ V / m even at the maximum (near 2 GHz), which shows that the two rows are sufficiently effective.
  • FIG. 11 compared with FIGS. 6, 8 and 10
  • the electric field strengths in the case of one row and three rows without GND through holes are slightly different as absolute values. This is due to a difference in conditions of the substrate to be measured. However, the conditions for the two-row case are the same, and the data can be used for sufficient comparison.
  • a GND through hole is formed around the periphery of the printed circuit board for the following reason.
  • the GND through hole 3 is arranged around the signal wiring 6 connected to the electric cable, the electromagnetic wave from the printed circuit board 1 is completely cut off from the electric cable 100. This result clearly shows that the EMI radiation from the electric cable 100 can be sufficiently suppressed. If the printed circuit board 1 of this embodiment is used, the design and development of the product can be facilitated.
  • EMI radiation from the power supply layer 5 can be considered, a GND layer 42 is provided on the power supply layer 5. Therefore, electromagnetic waves do not propagate from the power supply layer 5 to the signal wiring 6.
  • FIG. 12 shows a second embodiment of the present invention.
  • a two-story board such as a daughter board 15 (daughter card, sub card, etc.) is formed inside the device.
  • a portion indicated by a broken line in FIG. 12 is a sub board 15, on which a connector 7 connected to a cable (not shown), signal wiring 61, and IC 2 are mounted.
  • This embodiment is a case where the wiring for connecting the IC 2 and the connector 7 is formed on the sub board 15, but it can also be applied to such a case.
  • the GND through holes 3 are arranged in parallel with the signal wiring 6.
  • the GND through holes 3 may be arranged in a zigzag manner, that is, in a staggered manner with respect to the direction in which the signal wiring 6 runs. This arrangement can narrow the interval between the through holes. Therefore, the area of the region where the through hole is formed can be reduced.
  • the present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention. This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2015-137092 for which it applied on July 8, 2015, and takes in those the indications of all here.

Abstract

本発明の目的は電気ケーブルからのEMI放射を抑制できるプリント基板を提供することである。そのために本発明のプリント基板は、電気ケーブルが接続される信号配線を備えたプリント基板であって、前記電気ケーブルが接続される信号配線の両側を上下にグランド層で挟み、前記上下のグランド層を複数のスルーホールで接続し、前記スルーホールは前記信号配線とその近傍に、抑制したい電磁波の最大周波数に対応する波長に応じた間隔を開けて設ける。

Description

プリント配線基板
 本発明は、EMI(Electromagnetic Interference)放射を抑制するプリント配線基板に関し、特に電気ケーブルからのEMI放射を抑制するプリント配線基板に関する。
 情報通信機器のEMI対策は万全な対策を施していても、電気信号ケーブルや給電用ケーブルをプリント基板に接続すると著しく劣化することが経験的に知られており、その都度対策を施すということを繰り返していた。
 近年、情報通信機器の大容量化は、信号の高速化や機器の大型化を招き電源雑音の高周波化、機器内部の共振モードの多用化を引き起こし、VCCI(Voluntary Control Council for Interference by Information Technology Equipment)などのEMI規格を準拠するのが困難になっている。特に情報通信機器では電気ケーブルで機器間を接続することが多いため、プリント基板内部で発生した電磁波が電気ケーブルに伝搬しプリント基板外部に電磁波として放射される(EMI放射される)現象が抑えきれていない。
 以下に説明するようにEMI低減技術が次の通り提案されているが、解決に至っていない。
 特許文献1(特開2013-254759号公報)には、LSI回路基板の外周にGND配線をリング状に配し、基板内部にあるGND層と複数箇所のGNDビアを介して接続する技術が開示されている(同文献[0014]~[0019]段落、図1等)。GNDビアが配置されているのである程度のEMIの抑制効果はあるものの、GND配線がリング状で大きな隙間がありその隙間から電磁波が漏れるので、基板内部において電磁波の遮断には効果が乏しい。更に、プリント基板で発生した電磁波が電気ケーブルに乗り、電気ケーブルからEMI放射されることを遮断する手法の開示はない。
 また特許文献2(特開平10-270862号公報)及び特許文献3(特開2001-53449号公報)には、LSI(Large Scale Integration)の給電配線にインダクタを持たせ外部電源とのインピーダンスを高め電源雑音の外部への伝搬を抑制する技術が開示されている(特許文献2では[0023]、[0025]段落、図2、3。特許文献3では[0036]~[0037]段落、図2、3。)。しかし電源雑音は電源-GND間が伝送線路と化し周囲に電磁波を伝搬させることで生じる。そのため根本的なEMI抑制は難しい。また上記特許文献1と同じく、プリント基板から電気ケーブルへの電磁波遮断についての開示はない。
 また特許文献4(国際公開第2014/080610号)には、プリント基板から電気ケーブルへ伝搬する電磁波を解析する手法が開示されている。しかし放射を抑制する手法に関する開示はない。
 また特許文献5(特開2000-216509号公報)には、絶縁基体上に形成した信号用配線導体から発生する電磁波が外部に漏れ出さないように、信号用配線導体の上下と両側に上下にグランド層を形成し、信号用配線導体を両側から挟むように貫通導体(スルーホール)を少なくとも2列形成している(同文献図1ではスルーホールを基板全体に形成している)。さらに、1列目と2列目の貫通導体の間隔を、信号用配線導体に伝搬させる高周波信号の波長λの1/4以下にすることが記載されている。(同文献[0017]~[0018]、[0023]、図1、3、4)
 しかしこの特許文献5は、絶縁基体から外部へ電磁波の漏出を小さくすることを目的としており、絶縁基体から電気ケーブルへの電磁波を遮断する手法の開示はない。
 また特許文献6(特開平11-220263号公報)では、電源層と信号層を上下にグラウンド層で挟み、上下のグラウンド層を複数のスルーホールで接続している。([0008]~[0009]、図1、2)
 しかしこの特許文献6は、プリント配線板から外部へ電磁波の漏出を小さくすることを目的としており、絶縁基体から電気ケーブルへの電磁波を遮断する手法の開示はない。
特開2013-254759号公報 特開平10-270862号公報 特開2001-53449号公報 国際公開第2014/080610号 特開2000-216509号公報 特開平11-220263号公報 特開平09-266370号公報 特開平07-321429号公報
 以上述べた特許文献1~8はいずれも、プリント基板で発生した電磁波が電気ケーブルに乗り、電気ケーブルからEMI放射される問題について解決できていない。
 本発明の目的は、以上述べた問題点を解決し、電気ケーブルからのEMI放射を抑制できるプリント基板を提供することである。
 本発明は、電気ケーブルが接続される信号配線を備えたプリント基板であって、前記電気ケーブルが接続される信号配線の両側を上下にグランド層で挟み、前記上下のグランド層を複数のスルーホールで接続し、前記スルーホールは前記信号配線とその近傍に、抑制したい電磁波の最大周波数に対応する波長に応じた間隔を開けて設けることを特徴とするプリント基板である。
 本発明により、電気ケーブルからのEMI放射を抑制できるようになる。
本発明の第1の実施形態のプリント基板を示す平面図及び断面図である。 第1の実施形態における電磁界解析の解析モデルを示す図である。 第1の実施形態のケーブル伝送用差動信号配線61を示す平面図である。 プリント基板から電気ケーブルへ電磁波が回り込むEMI放射メカニズムを説明する図である。 GNDスルーホールを形成していない場合のプリント基板内外の電界強度の解析結果を示す図である。 図4のGNDスルーホールを形成していない場合に、基板外の観測点にプローブを置き、そこでの周波数と電界強度との関係を解析した結果である。 GNDスルーホールを基板外周に1層(1列)だけ形成した場合のプリント基板内外の電界強度の解析結果を示す図である。 図7の場合を図5と同様に解析した図である。 プリント基板外周とケーブル用信号配線周囲の両方にGNDスルーホールを形成した場合のプリント基板内外の電界強度の解析結果を示す図である。 図9の場合を図5と同様に解析した図である。 GNDスルーホールなし、同1列、同2列、同3列の場合の、周波数と電界強度との関係を解析した図である。 本発明の第2の実施形態を示す平面図である。
(第1の実施形態)
 (構成の説明)
 図1は本発明第1の実施形態を示す平面図と断面図である。断面図は平面図に示した一点鎖線A-A’における断面を示す。また断面図にはGNDスルーホール3の間を通っている信号配線6と電源層5を示してある。IC2の信号端子と接続された信号配線6は基板中を通ってパルストランス8と接続され、電気ケーブル100に接続している。また電気ケーブル100に接続しない信号配線62、信号配線63も基板上及び基板内に形成されている。
 プリント基板1は多層プリント基板であり、絶縁層を間に挟んで電源層5、電気ケーブルに接続される信号配線6が形成されている。本実施形態では信号配線6は具体的には図2に示すケーブル伝送用差動配線61,61’である。IC2とパルストランス8の間がケーブル伝送用差動配線61であり、パルストランス8とコネクタ7の間がケーブル伝送用差動配線61’である。図3はケーブル伝送用差動信号配線61,61’の配線の様子を示す平面図である。IC2と接続される信号スルーホール31にケーブル伝送用差動信号配線61,61’が接続され、格子状に整列したGNDスルーホール3の間を同層で近接して平行して配線されている。ケーブル伝送用差動信号配線61,61’の両側に、インピーダンス制御するためのGNDスルーホール3を2列ずつ置いている。
 また図1のプリント基板1の表面である部品面の直下と裏面である半田面の直上にはそれぞれGND層41,43が形成されており、基板1の中間にも電源層42が形成されている。GND層41,42,43はGNDベタつまり全面グラウンドである。なお図1では半田の表示を省略している。
 IC2はプリント基板1上にイーサ―などの電気ケーブルを駆動するために実装され、RJ45などのコネクタ7を介して電気ケーブル(カッパーケーブル)100と信号配線6を介してつながっている。このIC2は一般にはPHY(Physical Layer)チップと呼ばれる。一般にPHYとRJ45コネクタの間にはパルストランス8が実装され、直流分カットやCMC(コモンモードチョークコイル:Common mode choke-coil)による雑音抑制などが行われる。
 信号配線6の上層および下層はGND層(グランド層)41,42であり、基板周囲には少なくともこの2枚のGND層を接続するGNDスルーホール3が配されている。本実施形態ではGNDスルーホール3はGND層41、42、43の全てを接続している。IC21(PHY)からコネクタへ接続する配線の周囲には間隔d(dの条件は後述)で格子状にGNDスルーホール3を配している。
(動作の説明)
 図2は本実施形態における電磁界解析の解析モデルを示す図である。図2を用いて、プリント基板1から電気ケーブル100へ電磁波が回り込むEMI放射メカニズムを説明する。本実施形態で適用する基板構成はGND層で挟まれた電源層5である。IC21の動作により電源電流が変化しそれに追従するように電源層5-GND層4間の電位の変化、すなわち電界が変化することにより電磁波が発生する。電源電流の変化を雑音源9で模擬している。増幅器22が図1のIC2に該当する。雑音源9により発生した電磁波は電源層5-GND層4間を伝送路と化し四方八方へと伝搬される。広がった電磁波は電源層5がない領域でも、例えばGND層4-GND層4間あるいは他の電源層-GND層間、あるいは、電源層-電源層間を伝送路と化し更に基板端まで広がっていく。基板端から基板外部へ伝搬した電磁波がEMI放射である。
 今ここにGND層4-GND層4間にケーブル伝送用差動配線61が配してあるとする。雑音源9により発生した電磁波はこのケーブル伝送用差動配線61へと励起される。そのため電磁波は、信号配線6からコネクタ7、電気ケーブル100を介してプリント基板1の外部へと伝搬し、EMI放射となる。パルストランスやCMCが実装されている場合、電磁波はパルストランス自体にも影響するため、パルストランスやCMCでは著しい効果は期待できない。
 電気ケーブルからのEMI放射を回避するため本実施形態ではケーブル伝送用差動配線61の周囲にGNDスルーホール3を格子状に配列させた。格子間隔dは、抑制したい最大周波数fmaxの波長λの1/4以下にすることが望ましい。すなわち、プリント基板の比誘電率ε、光速Cとして
d≦λ/4=C/(4・fmax・√ε)・・・式1
なる条件導くことが出来る。
 なおλ/2より長い波長の電磁波はGNDスルーホール3の格子を通過することができない。もしGNDスルーホール3が完全導体であればλ/2で規定すればよい。しかし実際のスルーホールは完全導体ではないため、間隔λ/2では電磁波はGNDスルーホール3の格子をすり抜ける可能性がある。このため、格子間隔をλ/4とし、上記の式1を定義している。プリント基板の比誘電率を4、抑制したい最大周波数fmaxを1GHzとすると、d≦3×10/(4×1×10×√4)=37.5mmとなる。
 これら効果を検証するため図4のようなモデルを作成し、電磁界解析により効果を確認した。解析モデルは2枚のGND層4に挟まれた電源層と信号配線を配している。図4ではケーブルを配線65で模擬している。またプリント基板1内の信号配線6とは容量200で結合させている。これはパルストランス8の1次側(IC側)と2次側(電気ケーブル側)の容量性結合を模擬している。図4の右側に、このパルストランス8部分のモデルを示している。図4で示したモデルにGNDスルーホールの有無を条件として加え電磁界解析により電界分布と近傍電界強度を計算する。
 図5~図10にこれらの解析結果を示す。図5、図6はプリント基板にGNDスルーホールなしの場合である。図7、図8はプリント基板周囲だけにGNDスルーホールを配した場合である。図9、図10はプリント基板周囲とケーブル用信号配線周囲の両方にGNDスルーホールを配した場合である。図6、8,10はそれぞれ図5,7,9の場合に、基板外の観測点(図中の×印)にプローブを置き、そこでの周波数と電界強度との関係を示した図である。
 実際の電源層(電源線)は通常は細長い形状であるが、解析を簡略にするためここでは正方形で解析している。また図5,7,9の右上のスケールはゼロからマイナスに向かうスケールであり、マイナスに向かうほど電界強度が小さく、ゼロに向かうほど電界強度が強い。単位はdB・V/mであるが、図5,7,9では注入したエネルギーをmax(0dB or 1)とした相対値でプロットしているため図中のスケールでは単位を「max dB・V/m」と表記している。
 図5はGNDスルーホール3を形成していない場合の解析結果であり、電気ケーブル100の形状が明確に見て取ることができ、電気ケーブル100周辺の電界強度が他の基板外の場所に比べて高いことが明らかである。また図6を見ると、1GHz以上で電界強度が-20dB・V/mを超え最大(1.3~1.6GHz)で20dB/m近くに達している。
 図7はGNDスルーホール3をプリント基板外周に1周(1列)だけ形成した場合の解析結果であり、基板外へのEMI放射をある程度抑制できている。しかし電気ケーブル100周辺の電界強度は他の場所に比べて高く、電気ケーブル100からの放射を抑制することはできていないことが分かる。図8を見ると電界強度が最大(1.7GHz近辺)で0dB・V/mに達していて、電磁波の抑制は不十分である。
 図9はプリント基板周囲とケーブル用信号配線周囲の両方にGNDスルーホールを形成した場合であり、電気ケーブル100からの放射とそれ以外の基板外の場所との区別が付かない。図10を見ると電界強度は最大(2GHz近辺)でも-20dB・V/mと低下していて、電磁波を抑制出来ていることが分かる。つまりケーブル用信号配線周囲のGNDスルーホールが、電気ケーブル100からの放射を抑制していることが分かる。
 図5~10では、信号配線6が走る両側にGNDスルーホール3を三列ずつ形成している。しかし最低限二列ずつ形成すればよい。図11はGNDスルーホールなし、同一列、二列、三列の場合の、周波数と電界強度との関係を解析した結果である。GNDスルーホールなしが図6、一列が図8、三列が図10に相当する。二列の場合、電界強度は最大(2GHz近辺)でも-40dB・V/mと低下していて、二列で十分効果があることがわかる。なお図11では図6、8、10と比較して、GNDスルーホールなし、一列、三列の場合の電界強度が絶対値としてはやや異なる。これは測定対象の基板の条件の差等が起因している。しかし二列の場合との条件は同じであり、十分比較に用いることができるデータである。
 なお図5~10ではプリント基板の外周にGNDスルーホールを一周形成しているが、これは次のような理由による。EMI放射は基板内の電源層等からのものと、電気ケーブルからのものがある。前者を排除しておかないと、本実施形態によって後者を抑制する効果があるかどうか判別が付かない。そのため外周にGNDスルーホールを形成したものを解析している。
(効果の説明)
 電気ケーブルに接続される信号配線6の周囲にGNDスルーホール3を配した場合、プリント基板1からの電磁波は電気ケーブル100とは完全に遮断される。この結果により電気ケーブル100からのEMI放射を十分抑制できていることが明らかである。本実施形態のプリント基板1を用いれば製品の設計、開発が容易になる。
 なお、図1のプリント基板1には電源層5もある。電源層5からのEMI放射も考えられるが、電源層5の上にGND層42を設けている。そのため電源層5から信号配線6には電磁波は伝搬しない。
 なお本実施形態では信号配線6としてケーブル伝送用差動配線を用いたが、差動配線ではなく1本の信号配線でも適用できる。
(第2の実施形態)
 図12に本発明の第2の実施形態を示す。機器内部で子基板15(ドーターカード、サブカードなど)のような2階建て基板を構成している。図12に破線で示した部分が子基板15であり、子基板15上にケーブル(不図示)と接続されるコネクタ7、信号配線61、IC2が搭載されている。本実施形態は子基板15上にIC2とコネクタ7を接続する配線が形成されている場合であるが、そのような場合にも適用できる。
(第3の実施形態)
 上述の第1、2の実施形態ではGNDスルーホール3を信号配線6と平行に配列しているが、信号配線6の走る方向に対してジグザグにつまり千鳥状に配列しても良い。このように配置するとスルーホールの間隔を狭くできる。そのためスルーホールを形成する領域の面積を狭くできる。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2015年7月8日に出願された日本出願特願2015-137092を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  プリント基板
 2  IC
 3  GNDスルーホール
 4、41,42,43  GND層
 5  電源層
 6  信号配線
 62、63  信号配線
 61、61’  ケーブル伝送用差動配線
 65  配線
 7  コネクタ
 8  パルストランス
 9  雑音源
 15  子基板
 22  増幅器
 100  電気ケーブル
 200  容量

Claims (8)

  1.  電気ケーブルが接続される信号配線を備えたプリント基板であって、前記電気ケーブルが接続される信号配線の両側を上下にグランド層で挟み、前記上下のグランド層を複数のスルーホールで接続し、前記スルーホールは前記信号配線の両側に、抑制したい電磁波の最大周波数に対応する波長に応じた間隔を開けて設けることを特徴とするプリント基板。
  2.  前記スルーホールは前記信号配線の両側に2列ずつ設ける請求項1に記載のプリント基板。
  3.  前記プリント基板は複数層のグランド層を備え、前記グランド層間を接続するスルーホールを前記基板周囲に設ける請求項1に記載のプリント基板。
  4.  前記スルーホール間の間隔は前記抑制したい電磁波の最大周波数に対応する波長の1/4以下である請求項1または2に記載のプリント基板。
  5.  前記グランド層は全面グランド層である請求項1から4のいずれか一項に記載のプリント基板。
  6.  前記電気ケーブルが接続される信号配線は途中にトランスを介してコネクタと接続され、前記コネクタで前記電気ケーブルと接続される請求項1から5のいずれか1項に記載のプリント基板。
  7.  前記スルーホールは前記信号配線と平行または斜めに配列されている請求項1から6のいずれか一項に記載のプリント基板。
  8.  プリント基板上に子基板が設けられ、前記電気ケーブルが接続される前記信号配線は前記子基板上に配設されている請求項1から7のいずれか1項に記載のプリント基板。
PCT/JP2016/003169 2015-07-08 2016-07-04 プリント配線基板 WO2017006553A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680040236.5A CN107852812A (zh) 2015-07-08 2016-07-04 印刷布线板
US15/738,218 US20180184516A1 (en) 2015-07-08 2016-07-04 Printed wiring board
JP2017527079A JPWO2017006553A1 (ja) 2015-07-08 2016-07-04 プリント配線基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015137092 2015-07-08
JP2015-137092 2015-07-08

Publications (1)

Publication Number Publication Date
WO2017006553A1 true WO2017006553A1 (ja) 2017-01-12

Family

ID=57684995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003169 WO2017006553A1 (ja) 2015-07-08 2016-07-04 プリント配線基板

Country Status (4)

Country Link
US (1) US20180184516A1 (ja)
JP (1) JPWO2017006553A1 (ja)
CN (1) CN107852812A (ja)
WO (1) WO2017006553A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213522492U (zh) * 2017-11-16 2021-06-22 株式会社村田制作所 树脂多层基板、电子部件及其安装构造
JP6841342B2 (ja) * 2017-11-16 2021-03-10 株式会社村田製作所 樹脂多層基板、電子部品およびその実装構造
US11457524B2 (en) * 2019-04-29 2022-09-27 Nxp B.V. Integrated filter for de-sense reduction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024293A (ja) * 1999-07-06 2001-01-26 Meidensha Corp 信号線の接続構造
JP2001068801A (ja) * 1999-08-27 2001-03-16 Sony Corp プリント配線板
US6239387B1 (en) * 1992-04-03 2001-05-29 Compaq Computer Corporation Sinusoidal radio-frequency clock distribution system for synchronization of a computer system
JP2002252505A (ja) * 2001-02-26 2002-09-06 Kyocera Corp 高周波用配線基板
JP2002353904A (ja) * 2001-05-23 2002-12-06 Nec Corp データ処理端末、親基板、子基板、端末設計装置および方法、コンピュータプログラム、情報記憶媒体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847696B2 (en) * 2002-03-18 2014-09-30 Qualcomm Incorporated Flexible interconnect cable having signal trace pairs and ground layer pairs disposed on opposite sides of a flexible dielectric
CN1799290A (zh) * 2003-06-02 2006-07-05 日本电气株式会社 印刷电路板用小型转接传输线路及其设计方法
JP4844080B2 (ja) * 2005-10-18 2011-12-21 日本電気株式会社 印刷配線板及びその電源雑音抑制方法
JP5472305B2 (ja) * 2009-08-19 2014-04-16 日本電気株式会社 給電線構造及びそれを用いた回路基板、emiノイズ低減方法
JP2012038863A (ja) * 2010-08-05 2012-02-23 Nec Corp 多層回路基板、多層回路基板が搭載された回路モジュール及び電子装置
JP5919872B2 (ja) * 2012-02-21 2016-05-18 富士通株式会社 多層配線基板及び電子機器
EP3567629A3 (en) * 2012-06-14 2020-01-22 Skyworks Solutions, Inc. Power amplifier modules including related systems, devices, and methods
WO2014109010A1 (ja) * 2013-01-09 2014-07-17 株式会社 日立製作所 ストレージ装置及び基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239387B1 (en) * 1992-04-03 2001-05-29 Compaq Computer Corporation Sinusoidal radio-frequency clock distribution system for synchronization of a computer system
JP2001024293A (ja) * 1999-07-06 2001-01-26 Meidensha Corp 信号線の接続構造
JP2001068801A (ja) * 1999-08-27 2001-03-16 Sony Corp プリント配線板
JP2002252505A (ja) * 2001-02-26 2002-09-06 Kyocera Corp 高周波用配線基板
JP2002353904A (ja) * 2001-05-23 2002-12-06 Nec Corp データ処理端末、親基板、子基板、端末設計装置および方法、コンピュータプログラム、情報記憶媒体

Also Published As

Publication number Publication date
CN107852812A (zh) 2018-03-27
JPWO2017006553A1 (ja) 2018-04-05
US20180184516A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP4930590B2 (ja) 多層基板
US20050104678A1 (en) System and method for noise mitigation in high speed printed circuit boards using electromagnetic bandgap structures
WO2017006552A1 (ja) プリント基板
JP5983780B2 (ja) プリント配線基板、電子機器及び配線接続方法
JP2006245291A (ja) 伝送線路及び配線形成方法
US20090244877A1 (en) PCB layout structrue for suppressing EMI and method thereof
US20150173256A1 (en) Emi suppression technique using a transmission line grating
WO2017006553A1 (ja) プリント配線基板
US6700455B2 (en) Electromagnetic emission reduction technique for shielded connectors
JP2010114189A (ja) 配線基板、プリント配線板の製造方法
CN104936373B (zh) 一种电路板及其表层差分线的分布方法、通信设备
Shiue et al. Common-mode noise reduction schemes for weakly coupled differential serpentine delay microstrip lines
EP1568099B1 (en) A circuit that taps a differential signal
JP2003347693A (ja) インタフェース基板及び表示装置
WO2014186966A1 (zh) 一种线路板与在pcb基板上形成线路的方法
Kam et al. A new twisted differential line structure on high-speed printed circuit boards to enhance immunity to crosstalk and external noise
JP4957543B2 (ja) プリント回路基板
JP5986032B2 (ja) コネクタ、回路基板、および電子機器
Shiue et al. Significant reduction of common-mode noise in weakly coupled differential serpentine delay microstrip lines using different-layer-routing-turned traces
JP5472305B2 (ja) 給電線構造及びそれを用いた回路基板、emiノイズ低減方法
JP4161323B2 (ja) プリント配線板
JP2005302799A (ja) 多層プリント配線板
JP2002164713A (ja) 被覆シート、該シートを用いたトリプレート線路、該シートを用いたコンピュータ用信号バス及び該シートを用いた電子回路被覆構造
CN211702518U (zh) 电路板结构
TWI449252B (zh) 微帶線結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527079

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15738218

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821029

Country of ref document: EP

Kind code of ref document: A1