WO2014186966A1 - 一种线路板与在pcb基板上形成线路的方法 - Google Patents

一种线路板与在pcb基板上形成线路的方法 Download PDF

Info

Publication number
WO2014186966A1
WO2014186966A1 PCT/CN2013/076158 CN2013076158W WO2014186966A1 WO 2014186966 A1 WO2014186966 A1 WO 2014186966A1 CN 2013076158 W CN2013076158 W CN 2013076158W WO 2014186966 A1 WO2014186966 A1 WO 2014186966A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
differential
shielded
shielding
pattern
Prior art date
Application number
PCT/CN2013/076158
Other languages
English (en)
French (fr)
Inventor
许帅
李静
周明
章光华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380003210.XA priority Critical patent/CN103858526B/zh
Priority to PCT/CN2013/076158 priority patent/WO2014186966A1/zh
Publication of WO2014186966A1 publication Critical patent/WO2014186966A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0245Lay-out of balanced signal pairs, e.g. differential lines or twisted lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors

Definitions

  • the invention relates to the field of circuits, and in particular to a technique for reducing line electromagnetic interference. Background technique
  • the working speed of the chip increases rapidly, and thus the generated electromagnetic radiation causes electromagnetic interference to other electronic devices.
  • many electronic products produce significant electromagnetic radiation at high frequencies of 6 GHz and 10.3125 GHz.
  • the reason for these electromagnetic interferences is that the conducted noise from the chip propagates through the PCB traces and then propagates to various high-speed connectors (such as backplane connectors, hard disk connectors), which are usually more powerful.
  • EMC Electromagnetic Compatibility
  • the whole machine shielding refers to wrapping the metal casing outside the equipment, and relies on the electrostatic shielding effect formed by the physical structure to shield the external radiation of the high-speed connector.
  • EMC Electromagnetic Compatibility
  • Even small holes will have obvious electromagnetic interference leaking out.
  • the equipment cannot be completely sealed.
  • ventilation holes will be opened in the chassis, so the shielding effect of the whole machine is limited. How to provide a new solution to reduce differential line electromagnetic interference is an urgent problem to be solved.
  • Embodiments of the present invention provide a circuit board and a method for forming a circuit on a PCB substrate, which can shield the radiation of the differential line.
  • an embodiment of the present invention provides a circuit board, which is provided with two parallel lines in parallel, and a first shielding line is disposed between the difference lines, the first shielding line is a conductive line parallel to the differential line, and is located at The line of symmetry of the two differential lines.
  • the two differential lines further include: a shielding line parallel to the first shielding line; a third shielding line symmetrical with a symmetry line of the second shielding line with respect to the two differential lines; and a fourth shielding line, and the first shielding line,
  • the second shield line and the third shield line are vertically connected, and the fourth shield line is symmetrical with respect to a line of symmetry of the two difference lines.
  • the two differential lines further include: an additional structure, the additional structure is connected to the at least one shield line of the circuit board, and is opposite to the two differential lines Symmetrical line symmetry.
  • the length of the first shield line is one quarter of the differential line noise signal wavelength.
  • an embodiment of the present invention provides a method for forming a circuit on a PCB substrate, the substrate including a dielectric layer and a conductive layer, including the steps of: forming a photosensitive material on the conductive layer; and partially exposing the photosensitive material, The exposed portion forms a line pattern, the line pattern includes a first shield line pattern and two differential line patterns, the two difference line patterns are parallel to each other, and the first shield line pattern is located between the two different difference line patterns, a first shield line pattern is parallel to the differential line pattern, the first shield is located on a symmetry line of the two differential line patterns; a protective layer that cannot be etched is formed on the line pattern; and the non-line pattern portion is etched to form a line There are two parallel lines in parallel on the line, and a first shield line between the difference lines, the first shield line is a line parallel to the difference line, and is located on a symmetry line of the two difference lines.
  • the two differential line patterns further include: a second shield line pattern parallel to the second shield line; a third shield line pattern, The second shield line is parallel, the second shield line pattern and the third shield line pattern are symmetric with respect to the symmetry lines of the two difference lines; the fourth shield line pattern, and the first shield line pattern, The second shield line pattern and the third shield line pattern are vertically connected, and the fourth shield line pattern line is symmetrical with respect to the symmetry lines of the two different difference line patterns; correspondingly, the line includes the second shield The line, the third shielded line, and the third shielded line.
  • the method further includes an additional structure graphic, where the additional structure graphic is connected to the at least one shield line pattern in the line pattern, and is symmetric with respect to the symmetric lines of the two different difference line patterns
  • the circuit also includes an additional structure.
  • the first shield line is an integer multiple of a wavelength of the differential line noise signal of the quarter.
  • FIG. 1A is a schematic view of an embodiment of a line of the present invention.
  • FIG. 1B is a schematic view of an embodiment of a line according to the present invention.
  • FIG. 2 is a schematic view of an embodiment of a circuit of the present invention.
  • 3A is a schematic view of an embodiment of a circuit of the present invention.
  • FIG. 3B is a schematic view of an embodiment of a circuit according to the present invention.
  • FIG. 4 is a flow chart of an embodiment of a method for forming a line on a PCB substrate according to the present invention. detailed description
  • Differential signals some also called differential signals, use two identical, opposite polarity signal lines to transmit one channel of data, relying on the difference between the two signal lines to determine the signal. Keeping the parallel lines of the two differential lines during wiring can ensure greater consistency of the two signal lines. Of course, in practical engineering applications, Absolute parallelism is not possible, and the line spacing remains substantially the same as the requirements of the embodiments of the present invention. For example, the angle between two differential lines or a certain section of two differential lines does not exceed 5°.
  • Two differential lines of the same group one can be called a P line, the other can be called an N line, the axis of the difference line is axisymmetric, and the line of symmetry of the difference line is also called the axis.
  • the differential line is also called a differential signal line.
  • the differential line can suppress EMI to a certain extent, because the two signal lines have opposite polarities, and their externally radiated electromagnetic fields can cancel each other out.
  • the shielding structure may be a shielding line, or a combination of a plurality of shielding lines, or a combination of the shielding line and the additional structure, shielding the noise of the differential signal through the shielding structure, suppressing EMI, and reducing external radiation.
  • the materials of the shield wire, the shield structure, and the additional structure mentioned in the embodiments of the present invention are all electrically conductive materials, for example, copper is used as the material.
  • the shielding technology of the whole machine in the prior art has many shortcomings, on the one hand, because of inevitable gaps and through holes, the shielding efficiency is affected; on the other hand, the metal casing increases the volume and weight of the device; moreover, it consumes more The metal material also causes an increase in cost and is not conducive to environmental protection.
  • 1A is an embodiment of a circuit of the present invention.
  • the wire 11a and the wire l ib form a set of differential lines, and a first shield line 21 is disposed between the differential lines.
  • the shield line is located between the differential lines and does not include the case where the shield line and the differential line are connected.
  • the length of the first shield line can be a quarter of the noise signal wavelength, which can suppress the external radiation of the differential line.
  • the 1/4 wavelength open circuit is equivalent to a series resonant circuit, and the load is resistive.
  • the length of the first shielded wire can also be obtained by simulation. At this time, the length of the first shielded wire can be omitted. /4 The length of an integer multiple of ⁇ , which is based on the length obtained by the simulation.
  • Fig. 1B shows another embodiment of the present invention.
  • the distance between the differential lines can be enlarged in a certain section or part of a pair of differential lines. This makes it easier to arrange various shielded wires including the first shielded wire. This approach is equally applicable to other embodiments. To add an example, you can stretch one differential line or both, and the way in Figure 1B is that both differential lines are stretched.
  • the second shield line 31, the third shield line 32, and the third shield line 33 are added to the first shield line 21.
  • the second shield line 31 is parallel to the first shield line 21, and the third shield line 32 is parallel to the first shield line 21.
  • the third shield line is vertically connected to the first shield line 21, the second shield line 31, and the third shield line 32.
  • the second shielded line 31 and the third shielded line 32 are also symmetrical with respect to the line of symmetry of the differential line.
  • the size of each of the shielded wires may be shorter than the first two embodiments, for example, the length of each of the shielded wires may be an order of magnitude smaller than 1/4 ⁇ .
  • a capacitance is formed between the first shield line 31 and the differential line 11a and between the second shield line 32 and the differential line 11b.
  • the first shield line 21 and the fourth shield line 33 correspond to an inductor.
  • the length of each shielded wire varies according to the noise frequency. The specific value can be obtained according to the simulation. When the resonant frequency of the shielded wire and the frequency of the differential line noise are the same or similar, the noise can be suppressed.
  • the first shield line 21 may have no ground vias or one or more ground vias 22.
  • one or more additional structural structures may be added on the basis of the above embodiments, and the added additional structure is symmetric with respect to the symmetry line of the differential line, and is connected with the original shielded line structure.
  • the additional structure may have vias or vias, and the vias are symmetric with respect to the line of symmetry of the differential lines.
  • Figure 3A is a further embodiment of the present invention. The difference between this embodiment and the previous embodiment is that the shield line 34 is added. 3B differs from FIG. 3A in that the shield line 34 becomes the shield line 35. Both the shielded wire 34 and the shielded wire 35 belong to an additional structure, which has in common with respect to the difference.
  • the line of symmetry is symmetrical.
  • the embodiment of the invention further provides a method for forming a circuit, wherein the circuit including the shielding structure can be formed on the PCB substrate, and the substrate comprises a dielectric layer and a conductive layer.
  • the specific structure of the shielded wire is as described in the foregoing embodiment. See Figure 5.
  • the method for forming a line in this embodiment comprises the following steps: S1. forming a photosensitive material on the conductive layer; S2.
  • the circuit pattern includes a shield line pattern and a set of differential line patterns.
  • the two differential line patterns are parallel to each other, and the difference line patterns include a shield line pattern, the shield line pattern is a line segment parallel to the differential line pattern, and is located at two a line of symmetry of the strip line pattern; S3. forming a protective layer on the line pattern that cannot be etched; S4.
  • the shielding structure between the differential lines may be a combination of a plurality of shielding lines, such as a first shielding line, a second shielding line, a third shielding line, and a fourth shielding line.
  • the combination of the plurality of shielded lines forms a shield structure having the same resonant frequency as the differential signal noise frequency. Additional structures may also be included in addition to the shielding structure.
  • the above method of forming a line can be accomplished by a device including a CPU and a computer readable medium, and the CPU can execute an in-memory program to complete the steps of the method of forming a line.
  • the foregoing program can be stored in a computer readable storage medium, and when executed, the program includes the above method embodiment.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

一种线路板及线路设计方法,在平行的两条差分线之间有第一屏蔽线,所述第一屏蔽线是与差分线平行的导电线,并且位于两条差分线的对称线上。还可以增设相互平行的第二屏蔽线与第三屏蔽线,第二屏蔽线与第三屏蔽线相对于差分线的对称轴对称,以及增设第四屏蔽线,四屏蔽线与第一屏蔽线、第二屏蔽线以及第三屏蔽线垂直连接,且第四屏蔽线相对于两条差分线的对称线对称。通过屏蔽线结构可以降低差分线对外辐射。

Description

一种线路板与在 PCB基板上形成线路的方法 技术领域
本发明涉及电路领域, 特别有关于一种降低线路电磁干扰技术。 背景技术
随着通信技术的不断发展, 芯片的工作速率迅速增加, 因此产生的电磁 辐射会对其他电子设备造成电磁干扰。例如很多电子产品都会在速率为 6GHz、 10.3125GHz的高频产生明显的电磁辐射。 产生这些电磁干扰的原因是: 从芯 片出来的传导噪声通过 PCB走线传播, 然后传播到各类高速连接器(比如背 板连接器、 硬盘连接器) , 这些连接器通常都是辐射能力较强的天线, 它们 会将传导噪声辐射出去, 对其他器件或者设备造成电磁干扰。
为了满足电磁兼容性( Electro Magnetic Compatibility, EMC )认证的要求, 现有技术中, 釆用整机屏蔽的方式。 整机屏蔽是指在设备外包裹金属外壳, 依靠物理结构形成的静电屏蔽效应来屏蔽高速连接器的对外辐射。 但是在高 频情况下, 即使很小的孔缝也会有明显的电磁干扰泄露出去。 而设备无法是 保证完全密封的, 例如为了满足散热要求, 会在机箱上开通风孔, 因此整机 屏蔽的做法效果有限。 如何提供一种减少差分线电磁干扰的新方案, 是急需解决的问题。
发明内容
本发明实施例提供一种线路板和一种 PCB基板上形成线路的方法, 可以 屏蔽差分线路的辐射。 第一方面, 本发明实施例提供一种线路板, 布设有平行的两条差分线, 差分线之间有第一屏蔽线, 所述第一屏蔽线是与差分线平行的导电线, 并且 位于两条差分线的对称线上。 在第一方面的第一种可能的实现方式中, 两条差分线之间还包括: 第二 屏蔽线, 与所述第一屏蔽线平行; 第三屏蔽线, 与所述第二屏蔽线相对于两 条差分线的对称线对称; 以及第四屏蔽线, 与所述第一屏蔽线、 所述第二屏 蔽线以及所述第三屏蔽线垂直连接, 且所述第四屏蔽线相对于两条差分线的 对称线对称。
在第一方面的第二种可能的实现方式中, 两条差分线之间还包括: 附加 结构, 所述附加结构与所述线路板中至少一个屏蔽线连接, 且相对于两条差 分线的对称线对称。 在第一方面的第三种可能的实现方式中, 第一屏蔽线的长度是四分之一 所述差分线噪声信号波长。 第二方面, 本发明实施例提供一种在 PCB基板上形成线路的方法, 所述 基板包括介电层与导电层, 包括步骤: 在导电层上形成感光材料; 对感光材 料进行部分曝光, 未曝光的部分形成线路图形, 所述线路图形包括第一屏蔽 线图形和两条差分线图形, 两条差分线图形相互平行, 第一屏蔽线图形位于 两条所述差分线图形之间, 所述第一屏蔽线图形与所述差分线图形平行, 所 述第一屏蔽并且位于两条差分线图形的对称线上; 在线路图形上形成无法被 蚀刻的保护层; 蚀刻掉非线路图形部分形成线路, 所述线路上有平行的两条 差分线, 差分线之间有第一屏蔽线, 所述第一屏蔽线是与所述差分线平行的 导线, 并且位于两条差分线的对称线上。
在第二方面的第一种可能的实现方式中, 两条所述差分线图形之间还包 括: 第二屏蔽线图形, 与所述第二屏蔽线平行; 第三屏蔽线图形, 与所述第 二屏蔽线平行, 所述第二屏蔽线图形与所述第三屏蔽线图形相对于两条所述 差分线的对称线对称; 第四屏蔽线图形, 与所述第一屏蔽线图形、 所述第二 屏蔽线图形以及所述第三屏蔽线图形垂直连接, 且所述第四屏蔽线图形线相 对于两条所述差分线图形的对称线对称;相应的,所述线路包括第二屏蔽线、 第三屏蔽线以及第三屏蔽线。 在第二方面的第二种可能的实现方式中, 还包括附加结构图形, 附加结 构图形与所述线路图形中至少一个屏蔽线图形连接, 且相对于两条所述差分 线图形的对称线对称; 相应的, 所述线路中也包括附加结构。 在第二方面的第三种可能的实现方式中, 所述第一屏蔽线是四分之一所 述差分线噪声信号波长的整数倍。 应用本发明的实现方法, 可以减小差分线对外的电磁干扰。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A为本发明线路实施例示意图;
图 1B为本发明线路实施例示意图;
图 2为本发明线路实施例示意图;
图 3A为本发明线路实施例示意图;
图 3B为本发明线路实施例示意图; 图 4为本发明在 PCB基板上形成线路的方法实施例流程图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 所获得的所有其他实施例, 都属于本发明保护的范围。
差分信号, 有些也称差动信号, 用两条完全一样, 极性相反的信号线传 输一路数据, 依靠两条信号线电平差进行信号的判决。 在布线时保持两条差 分线的平行, 可以更大的保证两条信号线的一致。 当然,在实际工程应用中, 绝对的平行是无法做到的, 线间距基本保持不变也符合本发明实施例的要求, 例如两条差分线之间或者两条差分线的某一段的夹角不超过 5° 。同一组的两 条差分线,一条可以称为 P线,另外一条可以称为 N线,差分线之间轴对称, 差分线的对称线也称为轴线。 差分线也称为差分信号线。
由于同一组的两条差分线之间具有耦合性, 当外界存在噪声干扰时, 几 乎是同时被耦合到两条线上, 而信号的接收方只关心两个信号的差值, 所以 外界的共模噪声可以被抵消。
差分线可以一定程度的抑制 EMI, 因为两条信号线的极性相反, 他们对 外辐射的电磁场可以相互抵消。 但是在实际情况下仍然有少量辐射产品, 尤 其是在信号频率较高时, 对外有明显辐射。 本发明实施例中, 屏蔽结构可以 是一条屏蔽线, 或者多条屏蔽线的组合, 或者屏蔽线与附加结构的组合, 通 过屏蔽结构屏蔽差分信号的噪声, 抑制 EMI, 减少对外辐射的产生。 本发明 实施例中提到的屏蔽线、 屏蔽结构、 附加结构的材料都是导电的材料, 例如 使用铜作为材料。
现有技术中的整机屏蔽技术有诸多缺点, 一方面因为无可避免的缝隙、 通孔会影响屏蔽效率;另一方面, 金属外壳增加了设备的体积和重量;再者, 耗费了更多的金属材料, 也造成了成本的提高, 并且不利于环保。
图 1A为本发明一种线路的一个实施例。 如图 1所示, 导线 11a和导线 l ib形成一组差分线, 差分线之间设有第一屏蔽线 21。 本发明实施例中, 屏 蔽线位于差分线之间不包括屏蔽线与差分线连接的情况。
第一屏蔽线 21上可以有接地的过孔 22。
导线 11a与导线 l ib在传输差分信号时,会产生噪声信号引起对外辐射。 第一屏蔽线的长度可以是四分之一噪声信号波长, 可以抑制差分线的对外辐 射。 根据传输线的理论, 1/4波长的开路线相当于一个串联谐振电路, 负载呈 电阻性。 在其他实施例中, 第一屏蔽线的长度可以是四分之一噪声信号波长 的整数倍, 如果噪声信号的波长用 λ表示, 第一屏蔽线的长度可以是 1/4 λ的 整数倍, 例如 1/4 λ、 3/4 λ或者 5/4 λ。 λ的值可以通过公式 C= A f 确定。 其 中 C是光速, f 是噪声信号的频率, 由于线路设计本身的复杂性, 在具体实现 中, 也可以通过仿真来获得第一屏蔽线的长度, 此时第一屏蔽线的长度可以 不使用 1/4 λ的整数倍的长度, 而以仿真获得的长度为准。
图 1B是本发明另外一个实施例, 在一对差分线的某一段或者说一部分, 可以扩大差分线之间的距离。 这样可以更方便的布设包括第一屏蔽线在内的 各种屏蔽线。 这种做法对其他实施例同样适用。 增加举例的方式, 可以拉伸 一条的差分线, 也可以两条都拉伸, 图 1B的方式是两条差分线都拉伸。
参见图 2,是本发明又一种实施例,本实施例在第一屏蔽线 21的基础上, 增加了第二屏蔽线 31、 第三屏蔽线 32 以及第三屏蔽线 33。 其中第二屏蔽线 31和第一屏蔽线 21平行, 第三屏蔽线 32和第一屏蔽线 21平行。 第三屏蔽线 和第一屏蔽线 21、 第二屏蔽线 31 以及第三屏蔽线 32垂直连接。 第二屏蔽线 31和第三屏蔽线 32之间也相对于差分线的对称线对称。
在这个实施例中, 各条屏蔽线的尺寸可以比前两个实施例更短, 例如各 条屏蔽线的长度可以比 1/4 λ小一个数量级。 第一屏蔽线 31与差分线 11a之 间以及第二屏蔽线 32与差分线 11 b之间相当于形成了电容。而第一屏蔽线 21 与第四屏蔽线 33相当于电感。 这四条屏蔽线中, 每条屏蔽线的长度, 根据噪 声频率不同而不同, 其具体数值可以根据仿真获得, 当屏蔽线的谐振频点和 差分线噪声的频率相同或者相近时, 可以抑制噪声。 同样的, 第一屏蔽线 21 上可以没有接地过孔, 也可以有一个或多个接地的过孔 22。
在本发明实施例中, 可以在上述实施例的基础上增加一个或者多个附加 结构结构, 新增的附加结构相对于差分线的对称线对称, 并且和原有屏蔽线 结构连接。 附加结构可以有过孔也可以没有过孔, 过孔相对于差分线的对称 线对称。 例如图 3A是本发明又一个实施例, 这个实施例相对于上一实施例的 区别是, 增加了屏蔽线 34。 图 3B和图 3A相比, 区别点是屏蔽线 34变成了 屏蔽线 35。 屏蔽线 34和屏蔽线 35都属于附加结构, 其共同点是相对于差分 线的对称线对称。 如果保持原屏蔽线不变, 增加了附加结构后谐振频点发生 变化, 需要再次仿真来确定新的谐振频点。 本发明实施例还提供一种形成线路的方法, 可以在 PCB基板上形成上述 包括屏蔽结构的线路, 基板包括介电层与导电层。 屏蔽线的具体结构参见前 述实施例。 参见图 5。 本实施例形成线路的方法包括以下步骤: S1.在导电层上形成感光材料; S2.对感光材料进行部分曝光, 未曝光的部分形成线路图形, 线路图形的形状 和希望制成的线路相同, 线路图形中包括屏蔽线图形和一组差分线图形, 两 条差分线图形相互平行, 差分线图形之间包括有屏蔽线图形, 所述屏蔽线图 形是与差分线图形平行的线段, 并且位于两条差分线图形的对称线上; S3.在 线路图形上形成无法被蚀刻的保护层; S4.蚀刻掉非线路图形部分形成线路, 所述线路上有平行的两条差分线, 差分线之间有第一屏蔽线, 所述第一屏蔽 线是与差分线平行的线段, 并且位于两条差分线的对称线上。 第一屏蔽线的 长度可以是 1/4噪声波长。 在线路的实施例可知, 除了第一屏蔽线, 差分线之间的屏蔽结构也可以 是多条屏蔽线的组合, 例如第一屏蔽线、 第二屏蔽线、 第三屏蔽线与第四屏 蔽线的组合, 多条屏蔽线的组合形成的屏蔽结构的谐振频点和差分信号噪声 频率相同。 屏蔽结构之外还可以包括附加结构。 上述形成线路的方法可以由一种装置来完成, 该装置包括 CPU与计算机 可读介质, CPU可以执行内存中的程序, 从而完成形成线路的方法的步骤。
实现上述形成线路的方法实施例的全部或部分步骤可以通过程序指令相 关的硬件来完成, 前述的程序可以存储于一计算机可读取存储介质中, 该程 序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制。 参照前述实施例对本发明进行了详细的说明, 可以对前述各实施例所 记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些 修改或者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的 ^"神和范围。

Claims

权 利 要求 书
1、 一种线路板, 布设有平行的两条差分线, 其特征在于: 差分线之间有第一屏蔽线, 所述第一屏蔽线是与差分线平行的导电线, 并 且位于两条差分线的对称线上。
2、如权利要求 1所述的线路板,其特征在于,所述两条差分线之间还包括: 第二屏蔽线, 与所述第一屏蔽线平行; 第三屏蔽线, 与所述第二屏蔽线相对于两条差分线的对称线对称; 第四屏蔽线, 与所述第一屏蔽线、 所述第二屏蔽线以及所述第三屏蔽线垂 直连接, 且所述第四屏蔽线相对于两条差分线的对称线对称。
3、 如权利要求 1或 2所述的线路板, 其特征在于, 所述两条差分线之间还 包括:
至少一个过孔, 所述过孔位于所述第一屏蔽线上。
4、 如权利要求 1、 2或 3所述的线路板, 其特征在于, 所述两条差分线之 间还包括:
附加结构, 所述附加结构与所述线路板中至少一个屏蔽线连接, 且相对于 两条差分线的对称线对称。
5、 如权利要求 1所述的线路板, 其特征在: 所述第一屏蔽线的长度是四分之一所述差分线噪声信号波长。
6、 如权利要求 1所述的线路板, 其特征在: 所述第一屏蔽线的长度是四分之一所述差分线噪声信号波长的整数倍。
7、 一种在 PCB基板上形成线路的方法, 所述基板包括介电层与导电层, 其 特征在于: 在导电层上形成感光材料; 对感光材料进行部分曝光, 未曝光的部分形成线路图形, 所述线路图形包 括第一屏蔽线图形和两条差分线图形, 两条差分线图形相互平行, 第一屏蔽线 图形位于两条所述差分线图形之间, 所述第一屏蔽线图形与所述差分线图形平 行, 所述第一屏蔽并且位于两条差分线图形的对称线上;
在线路图形上形成无法被蝕刻的保护层; 蚀刻掉非线路图形部分形成线路, 所述线路上有平行的两条差分线, 差分 线之间有第一屏蔽线, 所述第一屏蔽线是与所述差分线平行的导线, 并且位于 两条差分线的对称线上。
8、如权利要求 7所述的在 PCB基板上形成线路的方法, 其特征在于, 两条 所述差分线图形之间还包括: 第二屏蔽线图形, 与所述第二屏蔽线平行;
第三屏蔽线图形, 与所述第二屏蔽线平行, 所述第二屏蔽线图形与所述第 三屏蔽线图形相对于两条所述差分线的对称线对称;
第四屏蔽线图形, 与所述第一屏蔽线图形、 所述第二屏蔽线图形以及所述 第三屏蔽线图形垂直连接, 且所述第四屏蔽线图形线相对于两条所述差分线图 形的对称线对称;
相应的, 所述线路包括第二屏蔽线、 第三屏蔽线以及第三屏蔽线。
9、 如权利要求 7或 8所述的在 PCB基板上形成线路的方法, 其特征在于, 两条所述差分线图形之间还包括:
附加结构图形, 与所述线路图形中至少一个屏蔽线图形连接, 且相对于两 条所述差分线图形的对称线对称;
相应的, 所述线路中也包括附加结构。
10、 如权利要求 7所述的在 PCB基板上形成线路的方法, 其特征在: 所述第一屏蔽线是四分之一所述差分线噪声信号波长的整数倍。
PCT/CN2013/076158 2013-05-23 2013-05-23 一种线路板与在pcb基板上形成线路的方法 WO2014186966A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003210.XA CN103858526B (zh) 2013-05-23 2013-05-23 一种线路板与在pcb基板上形成线路的方法
PCT/CN2013/076158 WO2014186966A1 (zh) 2013-05-23 2013-05-23 一种线路板与在pcb基板上形成线路的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/076158 WO2014186966A1 (zh) 2013-05-23 2013-05-23 一种线路板与在pcb基板上形成线路的方法

Publications (1)

Publication Number Publication Date
WO2014186966A1 true WO2014186966A1 (zh) 2014-11-27

Family

ID=50864364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076158 WO2014186966A1 (zh) 2013-05-23 2013-05-23 一种线路板与在pcb基板上形成线路的方法

Country Status (2)

Country Link
CN (1) CN103858526B (zh)
WO (1) WO2014186966A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798962A (zh) * 2018-08-02 2020-02-14 朗美通日本株式会社 印刷电路板、光学模块和光学传输设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076580B (zh) * 2016-11-15 2021-01-22 中兴通讯股份有限公司 一种隔离信号过孔间串扰的方法及装置
CN107995776A (zh) * 2017-12-14 2018-05-04 武汉电信器件有限公司 一种用于屏蔽串扰的电路板及串扰消除方法
CN113727513B (zh) * 2021-07-27 2024-01-09 平头哥(上海)半导体技术有限公司 封装基板、印刷电路板、封装器件和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101472385A (zh) * 2007-12-26 2009-07-01 鸿富锦精密工业(深圳)有限公司 印刷电路板
CN101932188A (zh) * 2009-06-18 2010-12-29 宏达国际电子股份有限公司 柔性印刷电路板及其组成方法
JP4835188B2 (ja) * 2006-02-16 2011-12-14 日本電気株式会社 多層プリント基板
CN102711362A (zh) * 2011-03-28 2012-10-03 鸿富锦精密工业(深圳)有限公司 印刷电路板
US20130049878A1 (en) * 2011-08-31 2013-02-28 Chung Yuan Christian University Differential mode transmission lines with weak coupling structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8669483B2 (en) * 2009-03-30 2014-03-11 Panasonic Corporation Flexible cable and transmission system
TWI387407B (zh) * 2009-06-10 2013-02-21 Htc Corp 軟式印刷電路板其及組成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835188B2 (ja) * 2006-02-16 2011-12-14 日本電気株式会社 多層プリント基板
CN101472385A (zh) * 2007-12-26 2009-07-01 鸿富锦精密工业(深圳)有限公司 印刷电路板
CN101932188A (zh) * 2009-06-18 2010-12-29 宏达国际电子股份有限公司 柔性印刷电路板及其组成方法
CN102711362A (zh) * 2011-03-28 2012-10-03 鸿富锦精密工业(深圳)有限公司 印刷电路板
US20130049878A1 (en) * 2011-08-31 2013-02-28 Chung Yuan Christian University Differential mode transmission lines with weak coupling structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798962A (zh) * 2018-08-02 2020-02-14 朗美通日本株式会社 印刷电路板、光学模块和光学传输设备
US11234326B2 (en) 2018-08-02 2022-01-25 Lumentum Japan, Inc. Printed circuit board, optical module, and optical transmission equipment

Also Published As

Publication number Publication date
CN103858526A (zh) 2014-06-11
CN103858526B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
Shahparnia et al. Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures
US20050104678A1 (en) System and method for noise mitigation in high speed printed circuit boards using electromagnetic bandgap structures
US20150173256A1 (en) Emi suppression technique using a transmission line grating
de Paulis et al. Design of a common mode filter by using planar electromagnetic bandgap structures
Huang et al. Analytical design of via lattice for ground planes noise suppression and application on embedded planar EBG structures
WO2014186966A1 (zh) 一种线路板与在pcb基板上形成线路的方法
US20120081873A1 (en) Implementing high-speed signaling via dedicated printed circuit-board media
Kim et al. Wideband and compact EBG structure with balanced slots
Zhang et al. Power noise suppression using power-and-ground via pairs in multilayered printed circuit boards
Shiue et al. Common-mode noise reduction schemes for weakly coupled differential serpentine delay microstrip lines
WO2017006553A1 (ja) プリント配線基板
Huang et al. Suppression of cavity resonant edge effects and PDN impedance using absorbing material
Hua et al. Power and signal integrity analysis of high-speed mixed-signal backplanes based on VPX
Bait-Suwailam et al. Reduction of electromagnetic radiation from apertures and enclosures using electromagnetic bandgap structures
CN106021727B (zh) 基于等效多端口的射频综合模块电磁特性分析方法
US10779402B1 (en) Noise sensitive trace 3D ground-shielding crosstalk mitigation
De Paulis et al. Experimental validation of common-mode filtering performances of planar electromagnetic band-gap structures
Shahparnia et al. Electromagnetic noise mitigation in high-speed printed circuit boards and packaging using electromagnetic band gap structures
Di Febo et al. Impact of planar electromagnetic band-gap structures on IR-DROP and signal integrity in high speed printed circuit boards
Khorrami Optimized virtual ground fence for power delivery filtering of mixed-signal systems
De Paulis et al. Standalone removable EBG-based common mode filter for high speed differential signaling
Packianathan et al. Comparative study of crosstalk reduction techniques in RF printed circuit board using FDTD method
Choi Noise suppression and isolation in mixed-signal systems using alternating impedance electromagnetic bandgap (AI-EBG) structure
De Paulis et al. Compact configuration of a planar EBG based CM filter and crosstalk analysis
De Paulis et al. Routing strategies for improving common mode filter performances in high speed digital differential interconnects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885137

Country of ref document: EP

Kind code of ref document: A1