WO2017002871A1 - 粒状多孔体に接触させて反応させる反応方法 - Google Patents

粒状多孔体に接触させて反応させる反応方法 Download PDF

Info

Publication number
WO2017002871A1
WO2017002871A1 PCT/JP2016/069309 JP2016069309W WO2017002871A1 WO 2017002871 A1 WO2017002871 A1 WO 2017002871A1 JP 2016069309 W JP2016069309 W JP 2016069309W WO 2017002871 A1 WO2017002871 A1 WO 2017002871A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
reaction
granular porous
liquid
granular
Prior art date
Application number
PCT/JP2016/069309
Other languages
English (en)
French (fr)
Inventor
利一 宮本
鴻志 白
Original Assignee
株式会社エスエヌジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エスエヌジー filed Critical 株式会社エスエヌジー
Priority to JP2017526406A priority Critical patent/JP6501282B2/ja
Priority to EP16817979.4A priority patent/EP3318322B1/en
Priority to US15/737,674 priority patent/US11207660B2/en
Priority to CN201680039129.0A priority patent/CN107708851B/zh
Publication of WO2017002871A1 publication Critical patent/WO2017002871A1/ja
Priority to US17/530,893 priority patent/US20220072510A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/16Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with particles being subjected to vibrations or pulsations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • B01D15/3828Ligand exchange chromatography, e.g. complexation, chelation or metal interaction chromatography

Definitions

  • the present invention has a skeleton composed of an inorganic compound having a three-dimensional continuous network structure, and is dispersed in the through holes formed in the gaps of the skeleton and the surface extending from the surface of the skeleton toward the inside.
  • the present invention relates to a granular porous body having a two-stage hierarchical porous structure composed of fine pores formed, and in particular, to a reaction method in which a liquid containing a reaction target such as a metal ion and a low molecular compound is brought into contact with the granular porous body for reaction. .
  • a monolithic porous body made of an inorganic compound having a two-step hierarchical porous structure has a block-like skeleton body made of an inorganic compound having a three-dimensional continuous network structure, and has a micrometer order formed in a gap between the skeleton bodies. Due to the characteristic three-dimensional continuous network structure through-holes and nanometer-order pores present in the skeleton, the porous body shows excellent reactivity in terms of fluid dynamics. For example, as an example of separation and regeneration of antibody molecules, there is an example in which the contact time is optimized and shortened to about 2 seconds (see Patent Document 1 below).
  • the block monolithic porous body is made to pass through the fluid and reacts completely, a dedicated jacket that covers the monolithic porous body without gaps is required.
  • a gap is formed between the monolith porous body having a through hole in the range of 0.1 to 100 ⁇ m and the jacket, fluid leaks through the gap. Therefore, in order to completely pass the fluid into the monolith porous body, the unit is several microns. It is necessary to control the gap.
  • a granular porous body having a two-stage hierarchical porous structure has through-holes serving as diffusion channels inside the particles, unlike single-pore mesoporous particles in which only pores exist in the particles. Therefore, it is considered that the fluid easily diffuses quickly to the inside of the particles, and the reaction efficiency is considered to be good even if the particle size is larger than that of single-pore particles.
  • individual specific research on the physical characteristics of the granular porous material has not been sufficiently performed, and in the method of reacting the granular porous material with a fluid containing a reactant, the optimum particle size and Clear reaction conditions such as contact time have not been elucidated.
  • the optimal reaction method is unclear for inorganic porous materials having a two-step hierarchical porous structure, and so far, they have not been standardized.
  • the molecules diffuse very slowly through nanometer-scale pores that are innumerable in the particles in the case of conventional single-stage particles.
  • the diffusion rate changes depending on the strength of the interaction of the particles with the pore surface. Unlike the micrometer region where the dispersion and convection of the molecule can dominate, the molecular diffusion is 1000 times slower.
  • the particle size is about 5 to 200 ⁇ m.
  • the particle size is about 0.3 to 2 mm. As described above, this requires a considerable time for the molecular diffusion to the deep part of the particle. Therefore, in the case where a treatment with a contact time as short as a minute unit or less is required, the particle size needs to be reduced to a micrometer.
  • the reaction method in contact with the granular porous body is inferior in the reaction efficiency compared with the method in which the fluid is directly passed through the monolith porous body.
  • the monolithic porous body has a through-hole diameter of about 100 ⁇ m, and depending on the viscosity and flow rate of the fluid, the column pressure increases and the fluid is loaded. Therefore, high-speed processing is possible, but a certain limit occurs.
  • the fluid flows through the gap between the granular porous bodies. Therefore, by increasing the particle diameter, it is possible to widen the gap and greatly reduce the channel resistance.
  • the present invention has been made in view of the problems of the above-mentioned granular porous body having a two-stage hierarchical porous structure, and the object thereof is a reaction in which a liquid containing a reaction target is brought into contact with the granular porous body for reaction.
  • the relationship between the contact time and the optimum particle size is clarified to provide efficient reaction conditions.
  • the inventors of the present application provide a circulation type or non-circulation type column flow method in which the liquid is passed through a column filled with a granular porous material and diffused into the granular porous material, or the liquid.
  • a shaking method in which a granular porous material is dispersed and added, and the liquid and the granular porous material are shaken to diffuse the liquid into the granular porous material
  • the non-circulating column flow method Regardless of the molecular size, we have found that the particle size that guarantees a constant reaction efficiency is given by the natural logarithm of the contact time between the liquid and the granular porous material.
  • the circulation column flow method and the shaking method Regardless of the molecular size, it was found that a particle size that guarantees a constant reaction efficiency was given by a linear function of the contact time, and its effectiveness and practicality were confirmed based on specific experiments.
  • the present invention is a reaction method in which a liquid containing a reaction target is brought into contact with a granular porous body to cause a reaction,
  • the reaction target is a metal ion or a low molecular weight compound having a molecular weight of 2000 or less and
  • a column flow method in which the liquid is passed through a column filled with the granular porous body and diffused into the granular porous body, or the granular porous body is dispersed and added in the liquid, and the liquid and Using a shaking method in which the granular porous body is shaken to diffuse the liquid into the granular porous body,
  • the granular porous body has a skeleton made of an inorganic compound having a three-dimensional continuous network structure, and further, the through holes formed in the gaps of the skeleton, and the surface extending from the surface of the skeleton to the inside.
  • the most frequent pore size of the pore size distribution is in the range of 2 nm to 20 nm when the reaction target is a metal ion, and the range of 5 nm to 50 nm when the reaction target is the low molecular compound.
  • the most frequent pore diameter distribution of the through-holes is not less than 5 times the most frequent pore diameter and in the range of not less than 0.1 ⁇ m and not more than 50 ⁇ m
  • the particle diameter of the granular porous body is not less than twice the most frequent pore diameter of the through hole and not less than 20 ⁇ m, and an upper limit value D (depending on the contact time T (second) between the liquid and the granular porous body.
  • the flow time (seconds) of the liquid is given by a value obtained by multiplying the volume ratio obtained by dividing the volume of the granular porous body by the volume of the liquid
  • the shaking method provides a reaction method characterized by being given as a value obtained by multiplying an elapsed time (seconds) after adding the granular porous material into the liquid by the volume ratio.
  • the volume of the granular porous body is a volume when a predetermined container is closely packed and weighed, the volume of the solid part of the skeleton body, the volume of the space occupied by the through-holes and pores, and between the particles Voids are included.
  • the reaction target is a metal ion, and a functional group having an affinity for the metal ion is chemically modified on the surface of the granular porous body.
  • the metal ions are preferably adsorbed on the surface of the granular porous body by causing a complex formation reaction with the functional group.
  • a reaction method in which a liquid containing a reaction target is brought into contact with a granular porous body for reaction,
  • the reaction target is a compound having a molecular weight in the range of 2,000 to 1,000,000,
  • Non-circular column flow for maintaining the concentration of the reaction target in the liquid constant and allowing the liquid to flow continuously through a column filled with the granular porous material and diffusing into the granular porous material
  • the granular porous body has a skeleton made of an inorganic compound having a three-dimensional continuous network structure, and further, the through holes formed in the gaps of the skeleton, and the surface extending from the surface of the skeleton to the inside.
  • the most frequent pore size of the pore size distribution of the pores is in the range of 10 nm to 100 nm,
  • the most frequent pore diameter distribution of the through-holes is not less than 5 times the most frequent pore diameter and in the range of not less than 0.1 ⁇ m and not more than 50 ⁇ m,
  • the particle diameter of the granular porous body is not less than twice the most frequent pore diameter of the through hole and not less than 20 ⁇ m, and an upper limit value D (depending on the contact time T (second) between the liquid and the granular porous body.
  • LN the natural logarithm
  • the contact time T is a reaction method characterized in that it is given by a value obtained by dividing the volume (m 3 ) of the granular porous body by the flow rate (m 3 / sec) of the liquid.
  • a functional group having affinity for the reaction target is chemically modified on the surface of the granular porous body.
  • the granular porous body is obtained by pulverizing and granulating a massive porous body produced by a sol-gel method,
  • the massive porous body has a skeleton made of the inorganic compound having a three-dimensional continuous network structure, and further extends from the surface of the skeleton to the inside through through holes formed in the gaps of the skeleton.
  • the mode of pore diameter distribution of the pores of the massive porous body is the pore diameter distribution of the pores of the granular porous body It is preferable that the mode diameter of the through hole of the massive porous body is in the same range as the mode diameter of the through hole of the granular porous body.
  • the inorganic compound is preferably silica or titania.
  • a granular porous body used for reaction with metal ions has a skeletal body made of an inorganic compound having a three-dimensional continuous network structure, and is further dispersed in the through holes formed in the gaps of the skeleton body and the surface extending from the surface of the skeletal body to the inside.
  • the most frequent pore size of the pore size distribution of the pores is in the range of 2 nm or more and 20 nm or less,
  • the most frequent pore diameter distribution of the through-holes is not less than 5 times the most frequent pore diameter and in the range of not less than 0.1 ⁇ m and not more than 50 ⁇ m,
  • the particle diameter of the granular porous body is not less than twice the most frequent hole diameter of the through hole, and not less than 20 ⁇ m and not more than 4 mm,
  • a granular porous body characterized in that a functional group having an affinity for the metal ion is chemically modified on the surface of the granular porous body.
  • the granular porous body having the above characteristics preferably has a function in which the functional group causes a complex formation reaction with the metal ions to adsorb the metal ions to the surface of the granular porous body.
  • the granular porous body having the above characteristics is obtained by pulverizing and granulating a massive porous body produced by a sol-gel method, and the massive porous body is made of the inorganic compound having a three-dimensional continuous network structure.
  • the mode of the pore size distribution of the pores of the massive porous body is within the same range as the mode of the pore size distribution of the pores of the granular porous body, It is preferable that the most frequent pore diameter in the pore diameter distribution is in the same range as the most frequent pore diameter in the pore diameter distribution of the through holes of the granular porous body.
  • the inorganic compound is preferably silica or titania.
  • the present invention provides a column used for a reaction with metal ions, characterized in that a granular porous body having the above characteristics is packed in a column container.
  • the particle diameter of the granular porous body is not more than an upper limit value D (mm) determined depending on a contact time T (second) between the liquid containing the metal ions and the granular porous body
  • the contact time T is given by a value obtained by dividing the volume of the granular porous body (m 3 ) by the flow rate of the liquid (m 3 / sec)
  • the upper limit D 0.0315 ⁇ T + 0.470
  • the contact time T is preferably given as a value obtained by multiplying the flow time (second) of the liquid by a volume ratio obtained by dividing the volume of the granular porous body by the volume of the liquid.
  • a method in which a liquid containing a reaction target is diffused and contacted in a granular porous body is a non-circular column flow method or a circulation type. Since the optimal particle size range of the granular porous material is determined according to the contact method between the liquid flow and the granular porous material in the contact method, whether it is the column flow method or the shaking method. It is possible to avoid the use of a fine granular porous material having a small range and being easy to fly and requiring attention in handling.
  • the particle size range of the granular porous material is determined by the same relational expression for metal ions and low molecules, the particle size range of the granular porous material established in one kind of reaction target is expanded to other types of reaction targets. And can be applied. Even in reactions with different contact times, the particle size range can be set using the same relational expression, saving the effort of conducting many preliminary experiments in advance.
  • the particle size range of the granular porous material established by either the circulation type column flow method or the shaking method is It can be extended and applied.
  • Sectional drawing which shows the structural characteristic of the granular porous body which concerns on this invention typically and planarly
  • concentration The figure which shows transition of the density
  • FIG. 9 is a graph showing the contact time T corresponding to the upper limit value D1 shown in FIGS. 9B to 9D and the relational expression thereof in a semi-logarithmic graph.
  • concentration when the reaction object with respect to a different pore diameter is a copper ion.
  • concentration Table showing the measurement results of the particle size range of Example A, combinations of through-hole diameters and pore diameters, and dropout rate by elapsed time Table showing the measurement results of the particle size range of Example B with different functional groups and the dropout rate by elapsed time
  • the measurement result of the dropout rate according to the particle size range and elapsed time of Example C with different metal ions is shown.
  • this reaction method The reaction method according to the present invention (hereinafter referred to as “this reaction method” as appropriate), the granular porous material used in this reaction method (hereinafter simply referred to as “granular porous material”), and the granular porous material as a column
  • granular porous material used in this reaction method filled in a container
  • Each particle of the granular porous body 1 has a skeleton body 2 made of an inorganic compound having a three-dimensional continuous network structure, as shown schematically and planarly in FIG. It has a two-stage hierarchical porous structure composed of through-holes 3 and pores 4 dispersed and formed on the surface extending from the surface of the skeleton body 2 toward the inside.
  • the “surface of the skeleton body” indicates the surface of the skeleton body exposed toward the through hole, and does not include the inner wall surface of the pore formed in the skeleton body.
  • the total surface of the skeleton obtained by combining the “surface of the skeleton” and the inner wall surface of the pore is referred to as the “surface of the granular porous body”.
  • the through hole and the fine hole may be referred to as a macropore and a mesopore, respectively.
  • silica gel or silica glass (SiO 2 ) is assumed as the inorganic compound that forms the skeleton body 2.
  • Each particle of the granular porous body 1 has the most frequent pore diameter ⁇ 0m of the pore diameter distribution of the pores 4 depending on the reaction target of this reaction method described later, but as a whole is in the range of 2 nm to 100 nm.
  • the most frequent hole diameter ⁇ 1 m of the hole diameter distribution of the through holes 3 is not less than 5 times the most frequent hole diameter ⁇ 0 m of the pores 4 and is in the range of 0.1 ⁇ m or more and 50 ⁇ m or less
  • the particle diameter Dp is 3 is the diameter of the most frequent hole diameter ⁇ 1 m or more, and as a whole is in the range of 20 ⁇ m or more and 4 mm or less.
  • the particle diameter Dp has an upper limit value D1 depending on the size of the reaction target, the contact method between the liquid containing the reaction target used in the present reaction method and the granular porous body 1, and the contact time. Further limitations.
  • the mode diameters of the through holes 3 and the pores 4 are mode values (mode values) of the hole diameter distribution measured by a well-known mercury intrusion method.
  • the pore diameter distribution of the pores 4 may be one derived by the well-known nitrogen adsorption measurement BJH method.
  • the most frequent hole diameter of the through-hole 3 is not greatly different from the average hole diameter derived as an average value obtained by measuring the through-hole diameters at arbitrary 20 to 30 dispersed positions from the electron micrograph of the skeleton body 2.
  • FIG. 2 shows an example of the pore size distribution of the through holes 3 and the pores 4 measured by the mercury intrusion method.
  • the horizontal axis is the pore diameter (unit: ⁇ m) of the through-holes 3 and pores 4, and the vertical axis is the differential pore volume (unit: cm 3 / g).
  • the differential pore volume includes the differential through-hole volume.
  • the peak on the left side shows the mode diameter of the pore 4, and the peak on the right side shows the mode diameter of the through hole 3.
  • the most frequent pore diameters of the through hole 3 and the pore 4 are about 1.77 ⁇ m and about 17 nm, and the half widths are about 0.34 ⁇ m and about 3.4 nm.
  • the pore size distribution of the through-holes 3 and the pores 4 is a result of measurement with respect to the particulate granular porous body 1 and a monolithic porous body having the same two-stage hierarchical porous structure (granular porous) before granulation described later.
  • the results measured for the body) are substantially the same. Therefore, the pore size distribution of the through holes 3 and the pores 4 may be measured in the state of a monolith porous body.
  • the granular porous body 1 is a silica monolith porous body made of silica gel or silica glass having a massive three-dimensional continuous network structure synthesized by the spinodal decomposition sol-gel method described in detail below. It is produced by pulverizing and granulating after sintering.
  • FIG. 3 shows an example of a SEM (scanning electron microscope) photograph showing a three-dimensional continuous network structure of a silica monolith porous body. Since the particle diameter of each particle of the granular porous body 1 immediately after pulverization is mixed, the granular porous body 1 having a desired particle size range can be obtained by sieving and classifying. Therefore, the upper limit value and the lower limit value of the above-described particle diameter range are values of the openings of the two types of sieves used for the classification process.
  • the manufacturing method of the granular porous body 1 is roughly classified into a synthesis process of a monolith porous body having a two-stage hierarchical porous structure that is a raw material of the granular porous body 1 and a subsequent granulating process.
  • a synthesis process by a spinodal decomposition sol-gel method of a monolithic porous body made of silica gel or silica glass having a three-dimensional continuous network structure will be described.
  • the synthesis process is further divided into a sol preparation process, a gelation process, and a removal process.
  • a silica precursor as a raw material of silica gel or silica glass and a coexisting substance having a function of inducing sol-gel transition and phase separation in parallel are added to an acid or alkaline aqueous solution, for example, 5 ° C. or less.
  • a uniform precursor sol is prepared by stirring at a low temperature at which the sol-gel transition hardly proceeds to cause a hydrolysis reaction.
  • water glass sodium silicate aqueous solution
  • an inorganic or organic silane compound can be used as the main component of the silica precursor.
  • the inorganic silane compound include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-isopropoxysilane, tetra-n-butoxysilane, and tetra-t-butoxysilane.
  • organic silane compounds include methyl, ethyl, propyl, butyl, hexyl, octyl, decyl, hexadecyl, octadecyl, dodecyl, phenyl, vinyl, hydroxyl, ether, epoxy, aldehyde, carboxyl, ester, thionyl, thio, amino Trialkoxysilanes such as trimethoxysilane, triethoxysilane, triisopropoxysilane, and triphenoxysilane having a substituent such as dialkoxy such as methyldiethoxysilane, methyldimethoxysilane, ethyldiethoxysilane, and ethyldimethoxysilane Examples thereof include monoalkoxysilanes such as silanes, dimethylethoxysilane, and dimethylmethoxysilane.
  • alkoxysilicates containing a cross-linking reaction rate controlling group substituent such as monoalkyl, dialkyl, and phenyltriethoxy, disilanes that are dimers thereof, and oligomers such as trisilane that are trimers are also assumed as silica precursors.
  • hydrolyzable silane various compounds are commercially available and can be obtained easily and inexpensively, and it is also easy to control the sol-gel reaction for forming a three-dimensional crosslinked body composed of silicon-oxygen bonds.
  • the acid or alkaline aqueous solution is an aqueous solution in which an acid or base functioning as a catalyst for promoting the hydrolysis reaction of the silica precursor is dissolved in water as a solvent.
  • an acid or base functioning as a catalyst for promoting the hydrolysis reaction of the silica precursor is dissolved in water as a solvent.
  • the acid include acetic acid, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, and citric acid.
  • Specific examples of the base include sodium hydroxide, potassium hydroxide, aqueous ammonia, sodium carbonate, Amines such as sodium hydrogen carbonate and trimethylammonium, ammonium hydroxides such as tert-butylammonium hydroxide, and alkali metal alkoxides such as sodium methoxide are envisaged.
  • coexisting substances include polyethylene oxide, polypropylene oxide, polyacrylic acid, block copolymers such as polyethylene oxide polypropylene oxide block copolymers, cationic surfactants such as cetyltrimethylammonium chloride, dodecyl sulfate.
  • Anionic surfactants such as sodium and nonionic surfactants such as polyoxyethylene alkyl ether are envisaged.
  • water is used as a solvent, alcohols such as methanol and ethanol may be used.
  • the precursor sol prepared in the sol preparation step is injected into a gelation vessel and gelled at a temperature at which sol-gel transition at about 40 ° C. is likely to proceed.
  • a coexisting substance having a function of inducing sol-gel transition and phase separation in parallel is added to the precursor sol, spinodal decomposition is induced and a silica hydrogel having a three-dimensional continuous network structure ( A co-continuous structure of the (wet gel) phase and the solvent phase is gradually formed.
  • the polycondensation reaction of the wet gel proceeds slowly and the gel shrinks. Therefore, as a subsequent step of the gelation step (post-gelation step), By immersing the co-continuous structure of the silica hydrogel phase and the solvent phase formed in the pores of the sol container in the gelation step in a basic aqueous solution such as ammonia water, and heat-treating in a pressure vessel, It is possible to further advance the hydrolysis reaction, polycondensation reaction, and dissolution reprecipitation reaction of the silica hydrogel phase, and to further strengthen the skeleton structure of the silica hydrogel phase. In addition, what is necessary is just to perform the said post-gelation process as needed.
  • the heat treatment is not necessarily performed in a pressurized container or a sealed container, but an ammonia component or the like may be generated or volatilized by heating. Therefore, the heat treatment may be performed in a sealed container or a pressure resistant container. Processing in a pressure vessel is preferred.
  • the progress of the dissolution and reprecipitation reaction of the silica fine particles that form the skeleton of the silica hydrogel phase enlarges the pore diameter formed in the skeleton. Furthermore, by repeating the dissolution reprecipitation reaction by hydrothermal treatment, it is possible to control to further enlarge the pore diameter.
  • the control of the pore diameter can also be realized by adding urea to the precursor sol in addition to the catalyst and the coexisting substance. Urea hydrolyzes at a temperature of 60 ° C. or higher to produce ammonia, and the ammonia expands the pore diameter of the pores formed in the skeleton of the wet gel synthesized in the gelation process.
  • the pore diameter can be controlled by addition.
  • the structure of the through-hole and the pore diameter can be controlled by adjusting the amount of water or silica precursor added to the precursor sol in the sol preparation step, or the composition and addition amount of coexisting substances.
  • the cleaning liquid is preferably a liquid such as an organic solvent or an aqueous solution.
  • a liquid in which an organic compound or an inorganic compound is dissolved can also be used. Furthermore, even if a solution having a pH different from the isoelectric point of the gel such as acid or alkali is used as the cleaning liquid, the additive remaining in the gel can be easily removed.
  • various acids including hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, acetic acid, formic acid, carbonic acid, citric acid, phosphoric acid, sodium hydroxide, potassium hydroxide, ammonia, water-soluble amine, carbonic acid
  • bases including sodium and sodium bicarbonate
  • Drying of the wet gel may employ natural drying, and in order to eliminate distortion and cracks that occur when the wet gel is dried, the solvent in the wet gel may be isopropanol, acetone, hexane, hydrofluorocarbon, etc.
  • the obtained dried gel can be sintered by firing to form silica glass.
  • a calcination temperature is lower than the glass transition temperature (about 1000 degreeC) of a silica, it does not become a silica glass.
  • the granulation step is a step of crushing and granulating the massive monolith porous body obtained through the above-described sol preparation step, gelation step, and removal step.
  • the pulverization process in the granulation step may be performed manually, a mortar or the like may be used, and a crushing device such as a ball mill may be used.
  • the granulation step may be performed before or after the sintering when the dried gel obtained in the removing step is sintered.
  • the granulated monolith after the granulation step is classified by sieving with a sieve having openings of X ⁇ m and Y ⁇ m (however, D0 ⁇ X ⁇ Y ⁇ D1), so that the particle diameter Dp is a desired particle. It is recovered as a granular porous body 1 within a diameter range (D0 ⁇ m or more and 250 ⁇ m or less).
  • the lower limit D0 ( ⁇ m) of the desired particle size range is the larger of 20 ( ⁇ m) or twice the most frequent hole diameter ⁇ 1 m ( ⁇ m) of the through hole.
  • the upper limit value D1 (mm) of the desired particle size range is calculated by the relational expression described later according to the size of the reaction target, the contact method of this reaction method, and the contact time.
  • the pore diameter, the through-hole diameter, and the particle diameter can be independently controlled as described above, but the most frequent pore diameter ⁇ 1 m of the pore diameter distribution of the through-hole 3 is the largest of the pores 4. If the particle diameter Dp is not less than 5 times the frequent pore diameter ⁇ 0 m and the particle diameter Dp is not less than 5 times the most frequent hole diameter ⁇ 1 m of the through-hole 3, the skeletal body 2 of each particle of the granular porous body 1 has a two-stage hierarchical structure It has been empirically understood that a porous three-dimensional continuous network structure can be maintained. However, in this embodiment, a particle diameter Dp of 2 to 5 times the most frequent hole diameter ⁇ 1 m of the through hole 3 is allowed.
  • the main distribution range of the particle diameter Dp is a classification range of sieve openings X ⁇ m or more and Y ⁇ m or less, and as described later, a small amount of a granular porous material having a small particle diameter Dp is included. The effect is negligible.
  • the through-hole diameter can be controlled in the range of 0.1 to 50 ⁇ m, which is a size that can be controlled by the monolithic porous body as a base material.
  • the inside of the granular porous body can be perfused at a sufficient speed if it is 100 times or more compared with the molecular size of the liquid.
  • molecules in the solution can be efficiently perfused to the pore surface by convection of solvent molecules.
  • the pore diameter can be freely controlled by the molecular size of the reaction target.
  • the pore diameter can be controlled in the range of 2 to 100 nm.
  • the reaction target substance is a metal ion
  • the ionic radius is 1 nm or less, and therefore, the pore diameter of about 2 to 20 nm is appropriate.
  • the molecular weight is about several hundred to 1,000 and the molecular diameter is 1 to 5 nm
  • the pore diameter is preferably 5 to 50 nm.
  • the pore diameter is desirably 10 to 100 nm.
  • the pore diameter is equal to the molecular diameter
  • the molecule can enter the inside of the pore, so the pore diameter is desirably equal to or larger than the molecular diameter. It is also possible to make the pore diameter smaller than the molecular diameter to increase the curvature of the solid surface and to chelate a part of the molecule.
  • pores larger than the molecular diameter by 10 times or more reduce the specific surface area and reduce the reaction efficiency. For example, in order to suppress non-specific reactions, the pore diameter should be 10 times or more compared with the molecular size. Is also possible.
  • the preferred range of the pore diameter is 40 nm to 70 nm with respect to the size of the antibody to be adsorbed (about 10 to 12 nm).
  • the molecular size is slightly different, it matches the ratio of the molecular diameter of 1 to 5 nm and the pore diameter of 5 to 50 nm, and the molecular diameter is 5 nm or more and the pore diameter. This also matches the relationship of 10 to 100 nm.
  • This reaction method is a reaction method in which a liquid containing a reaction target is brought into contact with a granular porous body for reaction.
  • a metal ion, a low molecular compound having a molecular weight of 2000 or less, and a compound having a molecular weight of 2000 or more and 1000000 or less are assumed.
  • transition metal ions including noble metal ions are assumed as the metal ions.
  • the reaction includes adsorption, ion exchange, complex formation, catalytic reaction, and the like, and this reaction method can be used for these reactions.
  • a method for removing impurities in the liquid there are a method for removing impurities in the liquid, a method for extracting only the target component from the mixture in the liquid, and the like, both of which are the surface of the inorganic porous skeleton body (including the surface in the pores) of the granular porous body And the interaction between the molecule to be reacted. More specifically, it is possible to adsorb molecules by utilizing the acidity and charge on the surface of the skeleton. It is also possible to introduce an organic compound having a functional group into the surface of the skeleton through physical interaction or chemical bonding, and use the granular porous material as a functional granular porous material such as ion exchange.
  • the granular porous material can be used as a carbide surface by introducing a hydrocarbon compound into the surface of the skeleton and treated in a reducing atmosphere, or used as a composite having a Si—C bond by sintering in a reducing atmosphere. It is also possible to do.
  • the granular porous body can be used as a metal support by introducing a metal oxide into the surface of the skeleton body and subjecting it to a reduction treatment.
  • this reaction method can be used as a method for efficiently removing metal ions.
  • the organic functional group having specific affinity for metal ions include mercapto groups containing elemental sulfur and functional groups having mercaptopropyl, thiocyanuric acid, and thiourea as thiol groups.
  • the functional group having a carboxylic acid group include ethylenediamine triacetic acid, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ir, La, and lanthanoid series, Li, Mg, Ni, Os, It shows affinity for ions such as Pd, Rh, Ru, Sc, Sn, Zn.
  • Examples of the functional group having nitrogen element include amine functional groups such as aminopropyl, aminoethylaminopropyl (diamine), aminoethylaminoethylaminopropyl (triamine), and imidazole.
  • amine functional groups such as aminopropyl, aminoethylaminopropyl (diamine), aminoethylaminoethylaminopropyl (triamine), and imidazole.
  • Cd, Co, Cr, Cu , Fe, Ni, Os, Pb, Pd, Pt, Rh, Ru, W, Zn, and the like can have an affinity.
  • a phosphoric acid group, a sulfuric acid group, an ammonium group, a hydroxyl group, a keto group, or a complex of these substituents is also included.
  • a method of introducing a functional group a method of chemically immobilizing a functional group on the surface of a skeleton body through a covalent bond, or a method of physical immobilization via a physical interaction such as an ionic bond or a hydrophobic interaction Is mentioned.
  • a method for chemically introducing a functional group there is a method in which a functional group is immobilized via a hydroxyl group on the surface of the skeleton (SiO 2 ) by reacting a silane coupling agent having a functional group.
  • organosilane compounds that can be used as silane coupling agents include methyl, ethyl, propyl, butyl, hexyl, octyl, decyl, hexadecyl, octadecyl, dodecyl, phenyl, vinyl, hydroxyl, ether, epoxy, aldehyde, carboxyl, ester, Trialkoxysilanes having a substituent such as thionyl, thio, amino, etc.
  • Trialkoxysilanes such as triethoxysilane, triisopropoxysilane, triphenoxysilane, methyldiethoxysilane, methyldimethoxysilane, ethyldiethoxysilane, ethyldimethoxy Dialkoxysilanes such as silane, monoalkoxysilanes such as dimethylethoxysilane and dimethylmethoxysilane, octadecyltrichlorosilane, octadecylmethyldichlorosila And alkyl chlorosilanes such as octadecyldimethylchlorosilane, octadecylsilazane, octadecyltrimethoxysilane, octadecylmethyldimethoxysilane, octyl, trimethylchlorosilane (TMS), dimethyl-n-o
  • alkoxysilicates containing a cross-linking reaction rate controlling group substituent such as monoalkyl, dialkyl, and phenyltriethoxy
  • disilanes that are dimers thereof and oligomers such as trisilane that are trimers
  • oligomers such as trisilane that are trimers
  • the reaction target is a blue dye
  • the molecule represented by blue dye is represented by basic blue 17 (toluidine blue) having a molecular weight of 305.82, brilliant blue FCF having a molecular weight of 792.86, indigo carmine having a molecular weight of 466.36, molecular weight
  • These blue pigments are adsorbed by chemical interaction with the skeleton (SiO 2 ) surface. In this case, it is a direct chemical interaction with the surface of the skeleton, and no introduction of a functional group is necessary.
  • the polymer compound when the reaction target is a polymer compound contained in brown sugar, the polymer compound includes flavonoids having a molecular weight of 1000 or less, melanins having a molecular weight of 150,000 or more, chlorophylls having a molecular weight of 1000 or less, carotene, xanthophylls, etc.
  • Melanoidins having a molecular weight of 50000 or less, caramel having a molecular weight of 25000 or less, and other 6-carbon sugar decomposition products having a molecular weight of about 1000 to 5000 are included, and the molecular weight is widely included from about 1000 to about 1000000.
  • brown sugar is rich in caramel (molecular weight of about 2000 to 25000) and melanoidins (molecular weight of about 3000 to 50000).
  • the polymer compound contained in these brown sugars is adsorbed by an ion exchange reaction by a functional group introduced on the surface of the skeleton.
  • the functional group include a quaternary ammonium group and a trimethylpropylammonium chloride group.
  • Other functional groups for ion exchange reaction mainly include secondary or tertiary amine groups, sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups.
  • a functional group is introduced to the surface of the skeleton according to the reaction target and the type of reaction, and the introduction of the functional group is performed on the monolith porous body that is the base of the granular porous body.
  • a granular porous body into which the functional group has been introduced may be produced through a granulation step.
  • the monolithic porous body before the introduction of the functional group may be granulated to produce a granular porous body, and then the functional group may be introduced.
  • this reaction method as a method of contacting the liquid containing the reaction object into the granular porous body (contact method), a non-circulating column flow method, a circulation type column flow method, and a shaking method are used. Use either of these.
  • the non-circulating column flow method of the present reaction method the liquid is continuously passed through the column while maintaining the concentration of the reaction target in the liquid constant.
  • the circulation type column flow method of the present reaction method the reacted liquid discharged from the column outlet is returned to the column inlet and circulated.
  • the non-circulation and circulation column flow methods of this reaction method the liquid containing the reaction object flows through the column continuously.
  • this reaction method is different from liquid chromatography in which a liquid containing a mixture to be separated is allowed to flow through and once adsorbed, and then the eluent is kept flowing to separate the mixture.
  • Example 1 a performance comparison is made between one example (Example 1) of this reaction method using the above-described granular porous material and a comparative example using commercially available single-pore particle silica gel.
  • a copper acetate aqueous solution (concentration 4 mg / mL) was used as a liquid containing copper ions by a non-circulating column flow method using metal ions (copper ions), and the solution was added at 0.3 mL / min.
  • a flow rate of 0.1 mL from each column outlet that is, collected every minute, through the main column packed with the granular porous material of Example 1 and the comparative column packed with the silica gel of the comparative example.
  • the concentration ratio of the solution concentration (post-reaction concentration) collected at the column outlet to the initial concentration before flow was obtained, and the transition was compared.
  • This column and the comparative example column are both filled with the granular porous body of Example 1 and the silica gel of the comparative example in a column container having an inner diameter of 6 mm and a length of 20 mm.
  • the column volume (corresponding to the volume of the granular porous body) ) Is also about 0.56 mL, and the space velocity SV (1 / time) is about 32.14.
  • Mercaptopropyl is introduced as a functional group in both the silica gel of Example 1 and the comparative example.
  • the through-hole diameter and the pore diameter of the granular porous body of Example 1 are 0.1 ⁇ m and 2 nm, and the pore diameter of the silica gel of the comparative example is 2 nm.
  • Example 1 As the particle size range of the granular porous material of Example 1, five types of 0.1 to 0.25 mm, 0.25 to 0.5 mm, 0.5 to 1 mm, 1 to 2 mm, and 2 to 4 mm were prepared and compared. As the particle size range of the silica gel of the example, four types of 0.1 to 0.25 mm, 0.25 to 0.5 mm, 0.5 to 1 mm, and 1 to 2 mm were prepared.
  • Example 1 has a lower concentration ratio and less loss than the comparative example.
  • the particle size range of 0.5 to 1 mm in Example 1 and the particle size range of 0.1 to 0.25 mm in the comparative example show almost the same performance, and Example 1 has the same space velocity SV. It can be seen that the particle size range can be increased by about 5 times.
  • this reaction method is characterized in that the particle size range can be increased as compared with the case where single-pore particle silica gel is used, but further, the upper limit value D1 (mm) of the particle size range. Is characterized in that it can be easily calculated by the relational expression described later according to the size of the reaction target, the contact method of the present reaction method, and the contact time.
  • the upper limit value D1 (mm) when the contact method is a non-circulating column flow method is given by a relational expression with the contact time T (second) shown in the following equation 1 as a variable.
  • the function ln is a natural logarithm
  • Ai is a coefficient in the reaction target i
  • Bi is a constant in the reaction target i.
  • the contact time T (second) is a value obtained by converting the reciprocal of the space velocity SV into seconds, and the volume of the granular porous material, that is, the column volume, is divided by the flow rate of the liquid (solution) containing the reaction target i. Given by value.
  • the concentration ratio between the post-reaction concentration and the initial concentration is measured for each of the reaction targets i for a plurality of different space velocities SV.
  • the column volume and the amount of solution collected from each column outlet are about 0.56 mL and 0.3 mL, the same as in Example 1.
  • the through-hole diameter and pore diameter of a granular porous body are 0.1 micrometer and 3 nm, and are the same as Example 1.
  • the space velocity SV is adjusted by the flow rate of the solution.
  • the time interval for collecting 0.3 mL of solution at the column outlet differs for each space velocity SV, but the number of measurements is common to 1 to 10, and the total amount of solution to be measured is common to 3 mL. However, for reasons described later, for copper ions, the number of measurements is 10 times from 1 to 10 and 5 times from 1 to 5 (the total amount in the solution is 1.5 mL).
  • FIG. 5A is the same as Example 1 in FIG.
  • the functional group introduced into the granular porous material of Examples 2 to 7, the solution containing copper ions, and the initial concentration thereof are the same as in Example 1.
  • the functional groups introduced into the granular porous materials of Examples 8 to 12 are the same as those of Example 1.
  • the solution containing palladium ions is an aqueous dinitrodiammine palladium (II) solution, and the initial concentration is 165 ⁇ g / mL.
  • Examples 13 to 16 show the results of measuring the transition of the concentration ratio between the post-reaction concentration and the initial concentration. No functional group was introduced into the granular porous bodies of Examples 13 to 16.
  • the solution containing the blue pigment is Basic Blue 17 aqueous solution, and its initial concentration is 1 ppm.
  • the solution containing brown sugar is an aqueous solution of Hateruma brown sugar (a mixture of brown substances having a molecular weight of about 2,000 to 1,000,000) with an initial concentration of 10 mg / mL.
  • the functional group introduced into the granular porous material of Examples 17 to 20 is a trimethylpropylammonium chloride group.
  • the concentration ratio measurement shown in FIGS. 5 to 8 is performed for each particle size range of each SV by averaging the concentration ratios of 10 times of measurement times 1 to 10. From the result, the missing rate is calculated.
  • the particle size at which the dropout rate for each SV (contact time T) is 50% is calculated.
  • the median value of the particle size range of the spill rate before and after the spill rate of 50% is linearly interpolated to obtain the median particle size at which the spill rate is 50%, and the upper limit value and the median value of the particle size range are determined.
  • the upper limit value D1 (mm) of the particle diameter is calculated by multiplying by the ratio (1.33 times in this embodiment). From the upper limit D1 (mm) calculated in the above manner and the contact time T (seconds) corresponding to the above-described procedure, the coefficient Ai and the constant Bi of the relational expression 1 are approximately calculated by the least square error method.
  • FIGS. 9 (A) to (E) The upper limit value D1 (mm) derived for each reaction target i in the above manner and the corresponding contact time T (seconds) and the relational expressions are shown in the graphs of FIGS. 9 (A) to (E).
  • Each vertical axis in FIGS. 9A to 9E is the upper limit value D1 (linear display), and each horizontal axis is the contact time T (logarithmic display).
  • FIG. 9A shows the result when the reaction target i is copper ion and the number of measurements is 10.
  • FIG. 9B shows the result when the reaction target i is copper ion and the number of measurements is 5.
  • FIG. 9C shows the result when the reaction target i is palladium ion.
  • FIG. 9D shows the result when the reaction target i is a blue pigment.
  • FIG. 9E shows the result when the reaction target i is brown sugar.
  • the reaction target i is different between the metal ion and the blue dye, and the reaction type is different from the complex formation reaction and the adsorption by the chemical interaction.
  • the slopes of the relational expressions of Equations 3 to 5 are very approximate. That is, it can be seen that the change in the upper limit value D1 accompanying the change in the contact time T is common to the metal ion and the blue pigment. However, since the intercept of the blue pigment is about 0.6 mm larger, it can be seen that the upper limit D1 of the particle size range can be set larger by about 0.6 mm regardless of the contact time T.
  • FIG. 10 collectively shows FIGS. 9B to 9D.
  • the broken line (straight line) in FIG. 10 indicates the total number 1 described above for metal ions, which is calculated by combining the results of the copper ion measurement times 5 and the results of palladium ions in FIGS. 9B and 9C. Is shown.
  • the relational expression is shown in Equation 7 below. From FIG. 10, it can be seen that the upper limit value D1 of a total of 12 points of copper ions and palladium ions is approximated with high accuracy by the relational expression shown in Equation 7 below.
  • the upper limit values D1 of the four points of the blue dye are all located above the relational expression, and the reaction target i is used to set the upper limit value D1 for a low molecular compound having a molecular weight of about 100 to 2000 such as a blue dye. It can be seen that the relational expression can be used.
  • the relational expression shown in Expression 5 may be used instead of the relational expression shown in Expression 7.
  • the initial concentration of each solution of the reaction target i is set to one, but for the reason described below, when the load capacity is 50% or less, the same particle size range, contact time (space) This is because, if the speed is SV), the dropout rate is considered to be the same regardless of the initial density. This content has also been confirmed in a preliminary experiment for this embodiment.
  • the reaction target i is a metal ion (Examples 1 to 12)
  • the fixed amount of the ligand (functional group) and the metal ion retention capacity are almost equal.
  • the metal ion retention amount is a reaction site on the particle surface of the granular porous body.
  • the ligand immobilization amount of mercapto group immobilization is 0.8 mmol / g. Since the bulk density is 0.3 g / mL and the column volume is 0.56 mL, the metal ion retention capacity is 0.136 mmol.
  • the reaction site on the particle surface or the effective specific surface area is defined as a copper molecule. Is not filled, and the starting point at which breakthrough begins to occur is shifted later, or breakthrough is not significant compared to the case of the initial concentration, and a flat curve like the measurement result of the concentration ratio of palladium is obtained.
  • the reaction sites on the particle surface or the effective specific surface area is determined by the copper molecules.
  • the filling time is shortened and the starting point where breakthrough begins to occur is advanced earlier.
  • the concentration ratio is evaluated at 50 times or 100 times instead of 10 times when diluted. In this case, even if the concentration ratio is evaluated 5 times instead of 10 times, the same concentration according to the relational expression is obtained depending on the contact time T.
  • reaction target molecules that exceed the effective specific surface area of the granular porous particles, and the reaction target molecules in the liquid are effective ratios.
  • the condition is that the maximum value of the surface area or reaction site is not exceeded, and the load capacity is considered to be 50% or less.
  • FIG. 11 shows the same column as in Example 1 in this column using four types of granular porous bodies having a particle size range of 0.25 to 0.5 mm, a through-hole diameter of 1 ⁇ m, and pore diameters of 10, 20, 30, and 40 nm.
  • the result of having evaluated the concentration ratio in case a reaction object is a copper ion is shown (Example 21).
  • the spatial concentration SV (solution flow rate) and the initial concentration of the solution are the same as in Example 1.
  • the average value of the concentration ratio (measurement rate) of the measurement times 1 to 5 is calculated, it is 6%, 11%, 41%, 59% in ascending order of pore diameter, and when the pore diameter exceeds 20 nm, Since it rapidly increases, as described above, the pore diameter of about 2 to 20 nm is appropriate when the reaction target substance is a metal ion. Note that when the pore size is 30 nm, the dropout rate is 50% or less, but when the spatial concentration SV is 32, the upper limit value D1 of the particle size range is about 2.7 mm, so an increase in the particle size range is anticipated. Thus, the pore diameter should be 20 nm or less, more preferably 15 nm or less, and still more preferably 10 nm or less.
  • Example 12 (A) to 12 (C) show a book using three kinds of granular porous bodies (Examples 22 to 24) in which at least one of the through-hole diameter and the pore diameter of the granular porous body is changed from Example 1.
  • the column shows the results of evaluating the concentration ratio in the same manner as in Example 1 when the reaction target is copper ions.
  • the through hole diameter and the pore diameter of Example 22 shown in FIG. 12A are 0.1 ⁇ m and 2 nm, and the space velocity SV is 32.
  • the through-hole diameter and the pore diameter of Example 23 shown in FIG. 12B are 1 ⁇ m and 15 nm, and the space velocity SV is 32.
  • the upper limit value D1 (mm) of the particle size range when the contact method is a circulation column flow method or a shaking method is a linear equation with a contact time T (second) shown in the following equation 8 as a variable. It is given by the relational expression consisting of Ci is a coefficient of the first-order term in the reaction target i, and Di is a constant term in the reaction target i.
  • the contact time T (seconds) is obtained by multiplying the liquid flow time (seconds) by the volume ratio R obtained by dividing the volume of the granular porous material (column volume) by the volume of the liquid.
  • the shaking method it is given as a value obtained by multiplying the elapsed time after adding the granular porous material in the liquid by the volume ratio R.
  • the shaking method is used as a method for collecting the noble metal from a solution containing the noble metal.
  • a granular porous material that becomes an adsorbent is added to a solution containing the metal to be collected, and the precious metal that is to be repaired is adsorbed and removed by stirring or shaking. It is.
  • stirring is also handled as one aspect of shaking.
  • aqueous solution of dinitrodiammine palladium (II) having an initial concentration of 165 ⁇ g / mL as in Examples 8 to 12 was prepared.
  • the ion concentration (post-reaction concentration) was measured with an ultraviolet-visible spectrophotometer.
  • Mercaptopropyl having the same functional group as in Example 1 is introduced into each of the 60 granular porous materials and the four comparative silica gels.
  • the particle diameter ranges are 0.106 to 0.25 mm, 0.25 to 0.5 mm, 0.5 to 1 mm, 1 to 2 mm, 2 to 4 mm, and 4 to 8 mm. 5 were prepared as through-hole diameters of 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 10 ⁇ m, and 50 ⁇ m, and 6 pore diameters of 2 nm, 10 nm, 15 nm, 20 nm, 30 nm, and 40 nm were prepared.
  • the particle diameter ranges of 0.106 to 0.25 mm, 0.25 to 0.5 mm, 0.5 to 1 mm, and 1 to 2 mm were prepared. Only 2 nm was prepared.
  • the combination of the particle size range, the through-hole diameter, and the pore diameter is as shown in FIG. 13, and the description is omitted.
  • FIG. 13 six particle size ranges are arranged in the horizontal direction, ten kinds of through-hole diameters and pore diameter combinations of the granular porous body, and one type of silica gel pore diameter of the comparative example are arranged in the vertical direction, A 6 ⁇ 11 array was constructed, and the concentration ratio obtained by dividing the measured post-reaction concentration by the initial concentration was entered in each cell of the array. A cell having a concentration ratio exceeding 50%, that is, a cell having a missing rate of 50% or more is shaded for convenience.
  • FIG. 13 indicates that the larger the particle size range of the granular porous body, the higher the concentration ratio and the greater the spill rate.
  • the concentration ratio becomes higher and the dropout rate increases even in the combination of the same particle size range, through-hole diameter and pore diameter. This tendency is the same as that of the non-circular column flow method described above.
  • FIG. 13 shows that in the combination of the particle size range and the pore diameter where the spillage rate is 50% or less, the change in the spillage rate due to the change in the through-hole diameter is not significant compared to the particle size range and the pore diameter. This tendency is the same as in the case of the column circulation method in which the contact method is a non-circulation type.
  • the pore size is the same for the same elapsed time and the same particle size range, the tendency to increase the missing rate is seen as the pore size increases. This is because when the pore diameter is increased, the specific surface area of the granular porous body is decreased and the performance is deteriorated.
  • the drop rate is 50% or less at a particle size range of 1 mm or less at an elapsed time of 24 hours, and when the pore size is 15 nm, the drop rate is 50% or less at a particle size range of 4 mm or less at an elapsed time of 24 hours.
  • the dropout rate exceeds 50%.
  • the upper limit of the pore diameter can be 20 nm, more preferably 15 nm, and even more preferably 10 nm. This tendency is the same as in the case of the column flow method in which the contact method is a non-circulation type.
  • FIG. 13 shows that the silica gel dropping rates of the above four comparative examples are all 87% or more and are not suitable for practical use in any particle size range.
  • Example A a functional group different from the functional group introduced into the surface of the granular porous material used in the 60 examples shown in FIG. 13 (hereinafter referred to as “Example A” for convenience) is formed on the surface of the granular porous material.
  • Example B and C into which the group aminoethylaminopropyl has been introduced are briefly described.
  • Example B the same palladium ion as in Example A was used as the metal ion to be reacted
  • Example C the ruthenium ion different from that in Example A was used as the metal ion to be reacted.
  • Example B 4 mL of a dinitrodiammine palladium (II) aqueous solution having the same initial concentration as in Example A was prepared, and in Example C, a ruthenium trichloride aqueous solution having an initial concentration of 250 ⁇ g / mL was used as a solution containing ruthenium ions. 4 mL was prepared.
  • the through-hole diameter and the pore diameter of the granular porous material used in Examples B and C are 1 ⁇ m and 2 nm.
  • the spill rate was measured in the same manner as in Example A.
  • FIG. 14 shows the measurement results of the dropout rate in each particle size range of Example B.
  • FIG. 15 the measurement result of the dropout rate in each particle size range of Example C is shown.
  • the particle size range is 2 mm or less and the dropout rate is 50
  • the dropout rate is 50% or less and there are differences in individual numerical values for each particle size range. There is no significant difference in performance due to functional group differences.
  • FIG. 14 and FIG. 15 are compared with each of the elapsed time of 2 hours and 24 hours, in each of the elapsed time of 2 hours, the particle size range is 2 mm or less and the dropout rate is 50% or less. In the 24 hours elapsed time, the dropout rate is 50% or less in all particle size ranges, and although there are differences in individual numerical values for each particle size range, overall performance due to differences in metal ions There is no big difference.
  • the particle size range is the same 6 particle size ranges as in Example A.
  • 3 types of through-hole combinations (through-hole diameter / pore diameter: 0.1 ⁇ m / 2 nm, 0.5 ⁇ m / 2 nm, 1 ⁇ m / 2 nm) were prepared.
  • mercaptopropyl having the same functional group as in Example A is introduced.
  • a dinitrodiammine palladium (II) aqueous solution having the same initial concentration of 165 ⁇ g / mL as in Example A was prepared, and 18 samples in 4 mL and 6 samples in 1 mL were prepared.
  • a total of 18 kinds of granular porous bodies (0.03 mL) having the above-mentioned three kinds of through-hole diameters and six kinds of particle diameter ranges were added to each of the 4 mL aqueous solutions of the above. 0.01 mL of granular porous bodies having six particle diameter ranges were added separately and stirred at a rotational speed of 33 rpm.
  • the subsequent palladium ion concentration (post-reaction concentration) was measured with an ultraviolet-visible absorptiometer, and the spill rate was calculated from the ratio of the post-reaction concentration to the initial concentration (post-reaction concentration / initial concentration).
  • the palladium ion concentration (post-reaction concentration) was measured with an ultraviolet-visible absorptiometer, and the spill rate was calculated from the ratio between the post-reaction concentration and the initial concentration (post-reaction concentration / initial concentration).
  • the particle size at which the missing rate is 50% at each of the five measurement points is calculated from the missing rate for each of the six particle size ranges.
  • the median value of the particle size range of the spill rate before and after the spill rate of 50% is linearly interpolated to obtain the median particle size at which the spill rate is 50%, and the upper limit value and the median value of the particle size range are determined.
  • the upper limit value D1 (mm) of the particle size was calculated by multiplying by the ratio (in this embodiment, 1.33 times).
  • the elapsed time of the shaking method becomes a value corresponding to the contact time T (the value obtained by converting the reciprocal of the space velocity SV into seconds) in the non-circulating column flow method.
  • FIG. 16 is a diagram in which the upper limit D1 of the particle diameter calculated in the above manner and the corresponding contact time T (seconds) are plotted.
  • the vertical axis in FIG. 16 is the upper limit value D1 (logarithmic display), and the horizontal axis is the contact time T (logarithmic display).
  • calculation points are connected and displayed in a polygonal line for each of the four combinations of solution volume (4 mL and 1 mL) and through-hole diameter (0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m).
  • FIG. 16 shows that when the contact time T is several hundred seconds or less, the upper limit value D1 is distributed on substantially the same straight line in any of Examples E1 to E4. Since Examples E3 and D4 are also distributed on the same straight line, it can be seen that the correction for obtaining the contact time T by multiplying the elapsed time by the volume ratio is appropriate. From the above, it can be seen from the results shown in FIG. 16 that, in the shaking method, the upper limit value D1 of the particle size range for realizing a drop rate of 50% or less is expressed by a linear function of the contact time T.
  • the coefficient Ci and the constant Di of the linear function of Equation 8 can be approximately calculated by the least square error method. it can.
  • a granular porous body having a through-hole diameter of 1 ⁇ m and a pore diameter of 2 nm was prepared in the same six particle diameter ranges as in Example A as the particle diameter range.
  • mercaptopropyl having the same functional group as in Examples A and E1 to E4 is introduced.
  • the granular porous material was packed in a column container having an inner diameter of 6 mm and a length of 20 mm to obtain a main column used in a circulating column flow method (referred to as Example F).
  • the column volume is 0.56 mL as in the non-circulating column flow method.
  • a solution containing copper ions prepare 30 mL of an aqueous solution of copper acetate (concentration 0.5 mg / mL) and continuously circulate through the column at a flow rate of 10 mL / min. Circulated back to the column inlet.
  • the copper ion concentration after reaction of the aqueous solution (post-reaction concentration) is stored in an ultraviolet-visible spectrophotometer. The spill rate was calculated from the concentration ratio between the post-reaction concentration and the initial concentration (post-reaction concentration / initial concentration).
  • FIG. 17 shows the measurement result of the concentration ratio at each measurement point.
  • the particle size at which the missing rate is 50% at each of the four measurement points is calculated from the missing rate for each of the six particle size ranges.
  • the median value of the particle size range of the spill rate before and after the spill rate of 50% is linearly interpolated to obtain the median particle size at which the spill rate is 50%, and the upper limit value and the median value of the particle size range are determined.
  • the upper limit value D1 (mm) of the particle size was calculated by multiplying by the ratio (in this embodiment, 1.33 times).
  • the solution exiting from the column outlet is returned to the column inlet and used again for the reaction.
  • T the value obtained by converting the reciprocal of the space velocity SV into seconds
  • the contact time T the value obtained by converting the reciprocal of the space velocity SV into seconds
  • the circulation type column flow method unlike the case of the non-circulation type column flow method, by maintaining the circulation, the entire solution and the entire granular porous body come into contact with each other. It is considered that the behavior becomes close. Further, since the ratio of the volume of the solution and the volume of the granular porous material to be added is not one, it is the same as the shaking method, and therefore the case where the ratio is different cannot be simply compared.
  • the elapsed time after the start of the flow (solution flow time) is multiplied by the volume ratio obtained by dividing the volume of the granular porous body by the volume of the solution.
  • the value converted into seconds is defined as the contact time T (seconds) of the relational expression of the above formula 8.
  • FIG. 16 shows the results of the shaking methods of Examples E1 to E4. And overlaid.
  • Equation 8 From the contact time T corresponding to the upper limit value D1 of each of Examples E1 to E4 and F plotted in FIG. 16, the coefficient Ci and the constant Di of the linear function of Equation 8 are approximately calculated by the least square error method. be able to. However, in the present embodiment, the calculated coefficient Ci and constant Di of each of Examples E1 to E4 and F are averaged to obtain the coefficient Ci and constant Di of the linear function shown in Equation 8 above. The linear function thus derived is displayed in Equation 9 below.
  • silica (silica gel or silica glass) is assumed as the inorganic compound constituting the skeleton body 2 of the granular porous body 1, but the inorganic compound is not limited to silica, and aluminum , Oxides containing transition metal elements such as titanium, zirconium, vanadium, chromium, iron, cobalt, nickel, palladium, platinum, copper, silver, gold, zinc, etc. Porous materials are also available. Furthermore, inorganic oxide porous bodies composed of composites containing alkali metal elements such as lithium and sodium, alkaline earth metal elements such as magnesium and calcium, and lanthanum elements such as lanthanum and cerium are also available. is there.
  • the inorganic compound constituting the skeletal body 2 is titania, it has superior acid resistance and alkali resistance compared to silica, and silica dissolves in an aqueous solution of pH 2 or lower or pH 11 or higher, whereas titania dissolves. Can be used without
  • the monolithic porous body in the production process of the granular porous body 1 is also in the same two stages.
  • a case having a hierarchical porous structure was assumed.
  • the monolithic porous body before granulation may have a three-stage hierarchical porous structure having pores having a larger diameter than the through-holes 3 in addition to the through-holes 3 and the pores 4.
  • the skeleton body 2 is pulverized along the pores, so that the pores are surrounded by the pores in the process of forming the pores.
  • reaction target i specifically used for measurement of the spill rate copper ions, palladium ions, ruthenium ions are used for metal ions, and basic blue 17 is used for blue pigments.
  • brown sugar brown sugar produced in Hateruma was adopted, but the metal ions, low molecular weight compounds having a molecular weight of 2000 or less, and compounds having a molecular weight of 2000 or more and 1000000 or less are not limited thereto.
  • the present reaction method, granular porous body and column according to the present invention are various reactions in which a liquid containing a reaction target such as metal ions such as adsorption, ion exchange, complex formation, catalytic reaction is brought into contact with the granular porous body and reacted.
  • the present invention is applicable to a method, a method of contacting with a liquid such as a filter, an adsorbent, a reaction material, a solid phase catalyst, in particular, a method for adsorbing and collecting a metal in a solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

反応対象を含む液体を粒状多孔体に接触させて反応させる反応方法において、接触時間と最適な粒径等との関係を明らかにし、効率的な反応条件を提供する。粒状多孔体の粒子径の上限値D(mm)を、非循環式のカラム通流法では、D=0.556×LN(T)+0.166、循環式の前記カラム通流法及び振盪法では、D=0.0315×T+0.470により求め、接触時間T(秒)は、非循環式のカラム通流法では、粒状多孔体の容積(m)を液体の通流速度(m/秒)で除した値で与えられ、循環式の前記カラム通流法では、液体の通流時間(秒)に、粒状多孔体の容積を液体の容積で除した容積比を乗じた値で与えられ、振盪法では、液体中に粒状多孔体を添加してからの経過時間(秒)に、前記容積比を乗じた値で与えられる。

Description

粒状多孔体に接触させて反応させる反応方法
 本発明は、3次元連続網目構造の無機化合物からなる骨格体を有し、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有する粒状多孔体に関し、特に、金属イオン及び低分子化合物等の反応対象を含む液体を当該粒状多孔体に接触させて反応させる反応方法に関する。
 2段階階層的多孔構造を有する無機化合物からなるモノリス多孔質体は、3次元連続網目構造の無機化合物からなるブロック状の骨格体を有し、該骨格体の間隙に形成されたマイクロメートルオーダーの特徴的な3次元連続網目構造の貫通孔と、該骨格内に存在するナノメートルオーダーの細孔により、流体力学的にも物質移動が優れた反応性を示す多孔質体である。例えば、抗体分子の分離再生例として接触時間を最適化して2秒程度に短縮化した例がある(下記特許文献1参照)。
 但し、ブロック体のモノリス多孔質体に流体を通して、もれなく反応させる際には、モノリス多孔質体を隙間なく覆う専用のジャケットが必要となる。貫通孔が0.1~100μmの範囲にあるモノリス多孔質体とジャケットの間に隙間が生ずると隙間を通して流体が漏れるため、完全にモノリス多孔質体内部に流体を通すには数ミクロン単位での隙間の制御が必要になる。
 そのため、モノリス多孔質体を破砕して粒子状にしたような粒子内に貫通孔と細孔を有する2段階階層的多孔構造の粒状多孔体であれば、予め準備されたカラム内に充填するだけで容易に使うことが可能となる。一例として、上述のモノリス多孔質体を粉砕した粒子状の無機系充填剤を、カラム容器に充填し、分析用前処理カラムとして応用することが提案されている(下記特許文献2参照)。
特開2014-2008号公報 特開2006-192420号公報
Fred E. Regnier,"Perfusion Chromatography",Nature,350,pp.634-635 (18 April 1991)
 2段階階層的多孔構造を有する粒状多孔体は、粒子内に細孔のみが存在する単一孔のメソポーラス粒子と異なり、粒子内部に拡散流路となる貫通孔が存在する。そのため、粒子内部まで流体が速やかに拡散しやすいと考えられ、単一孔の粒子と比較して粒径が大きくても反応効率は良いと考えられる。しかし、当該粒状多孔体の物理的特性に関する個別具体的な研究は十分にはなされておらず、当該粒状多孔体を、反応物質を含む流体と接触させて反応させる方法において、最適な粒径や接触時間等の明確な反応条件は解明されていない。モノリス多孔質体の反応方法は数多くあるが、2段階階層的多孔構造を有する無機多孔質体は最適な反応方法が不明確であり、これまでに規格化されていなかった。
 溶液中の分子の粒子内での拡散挙動として、従来の1段階の単一孔粒子の場合では、分子は粒子内に無数に存在するナノメートルスケールの細孔を通じて非常に緩やかに分子拡散する。分子拡散では粒子の細孔表面との相互作用の強さによって拡散速度が変化するが、分子の分散や対流が支配できるマイクロメートル領域と異なり、分子拡散は1000倍以上遅いものである。
 上述の単一孔粒子として、例えばシリカゲルであれば数ミクロンから数ミリメートルまでの粒径のものが存在する。数秒から数分程度と比較的短い接触時間で使用されるクロマトグラフィー等で汎用される場合は、粒径が5~200μm程度である。また、接触時間が数時間から数日単位と比較的長い接触時間で使用される水や低分子の吸着等で汎用される場合は、粒径が0.3~2mm程度である。これは上述した通り、粒子深部までの分子拡散に相当時間を要するため、分単位以下と短い接触時間での処理が必要な場合では、粒径をマイクロメートルまで小さくする必要がある。
 一方、粒子内部にマイクロメートルオーダーの貫通孔が連続してある2段階階層的多孔構造を有する粒状多孔体の場合は、マイクロメートルオーダーの貫通孔の存在により、粒子内で溶液が効率良く分散して対流するために、粒子深部まで溶液が速やかに拡散することが知られている(例えば、上記非特許文献1参照)。当該現象は灌流(パーフュージョン)と呼ばれている。
 尚、粒状多孔体と接触させる反応方法は、モノリス多孔質体内に直接流体を通して反応させる方法と比べて、反応効率が劣る。しかし、モノリス多孔質体は貫通孔径が大きくても100μm程度あり、流体の粘度や流量によってはカラム圧力が大きくなり流体に負荷が掛るため、高速での処理は可能であるが一定の限界が生ずる。これに対して、粒状多孔体であれば粒状多孔体の間隙を流体が流れるため、粒径を大きくすることで当該間隙を広げて流路抵抗を大きく減少させることが可能となる。
 但し、粒径が大きくなるにつれて粒子内の拡散距離が長くなるため、たとえ貫通孔が存在するとしても粒径が数ミリメートルまで大きくなると、結果的に粒子深部まで分子が到達するのに膨大な時間が必要となる。仮に貫通孔内の対流が早くても、粒子表面で流体が素早く分散している場合は、貫通孔内の対流速度が10倍以上極端に大きい粒径では、粒子内部の対流速度と粒子表面での対流速度が異なるためである。
 以上より、2段階階層的多孔構造を有する粒状多孔体を、反応物質を含む流体と接触させて反応させる方法において、接触時間と最適な粒径、貫通孔径、細孔径等との関係については、未だ明らかにされていないのが現状である。
 本発明は、上述の2段階階層的多孔構造を有する粒状多孔体の問題点に鑑みてなされたものであり、その目的は、反応対象を含む液体を当該粒状多孔体に接触させて反応させる反応方法において、接触時間と最適な粒径等との関係を明らかにし、効率的な反応条件を提供することにある。
 本願発明者等は、上記反応方法において、粒状多孔体を充填してなるカラムに上記液体を通流させて粒状多孔体内に拡散させる循環式または非循環式のカラム通流法、或いは、当該液体中に粒状多孔体を分散して添加し、当該液体及び粒状多孔体を振盪させて当該液体を粒状多孔体内に拡散させる振盪法を用いる場合、非循環式のカラム通流法において、反応対象の分子サイズに関係なく、一定の反応効率を保証する粒径が、液体と粒状多孔体の接触時間の自然対数で与えられることを見出し、循環式のカラム通流法と振盪法において、反応対象の分子サイズに関係なく、一定の反応効率を保証する粒径が、上記接触時間の1次関数で与えられることを見出し、具体的な実験に基づいてその有効性及び実用性を確認した。
 即ち、本発明では、上記目的を達成するため、反応対象を含む液体を粒状多孔体に接触させて反応させる反応方法であって、
 前記反応対象が金属イオンまたは分子量以上2000以下の範囲の低分子化合物であり、
 前記粒状多孔体を充填してなるカラムに前記液体を通流させて前記粒状多孔体内に拡散させるカラム通流法、或いは、前記液体中に前記粒状多孔体を分散して添加し、前記液体及び前記粒状多孔体を振盪させて前記液体を前記粒状多孔体内に拡散させる振盪法を用い、
 前記粒状多孔体が、3次元連続網目構造の無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有し、
 前記細孔の孔径分布の最頻孔径が、前記反応対象が金属イオンの場合は、2nm以上20nm以下の範囲内にあり、前記反応対象が前記低分子化合物の場合は、5nm以上50nm以下の範囲内にあり、
 前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上50μm以下の範囲内にあり、
 前記粒状多孔体の粒子径が、前記貫通孔の最頻孔径の2倍以上、且つ、20μm以上で、前記液体と前記粒状多孔体の接触時間T(秒)に依存して定まる上限値D(mm)以下の範囲内にあり、
 前記上限値Dは、
 前記液体中の前記反応対象の濃度を一定に維持して持続的に通流させる非循環式の前記カラム通流法では、
 D=0.556×LN(T)+0.166
により与えられ、但し、関数LNは自然対数であり、
 反応後の前記液体を前記カラムに戻して持続的に循環させる循環式の前記カラム通流法及び前記振盪法では、
 D=0.0315×T+0.470
により与えられ、
 前記接触時間T(秒)は、
 非循環式の前記カラム通流法では、前記粒状多孔体の容積(m)を前記液体の通流速度(m/秒)で除した値で与えられ、
 循環式の前記カラム通流法では、前記液体の通流時間(秒)に、前記粒状多孔体の容積を前記液体の容積で除した容積比を乗じた値で与えられ、
 前記振盪法では、前記液体中に前記粒状多孔体を添加してからの経過時間(秒)に、前記容積比を乗じた値で与えられることを第1の特徴とする反応方法を提供する。
 尚、粒状多孔体の容積は、所定の容器に密に充填して計量した場合の容積であり、骨格体の固体部分の体積、貫通孔及び細孔が占める空間の体積、及び、粒子間の空隙が含まれる。
 更に、上記第1の特徴の反応方法は、前記反応対象が金属イオンであり、前記粒状多孔体の表面に、前記金属イオンと親和性を有する官能基が化学修飾されていることが好ましい。
 更に、上記第1の特徴の反応方法は、前記金属イオンが、前記官能基と錯形成反応を起こして前記粒状多孔体の表面に吸着することが好ましい。
 更に、本発明では、上記目的を達成するため、 反応対象を含む液体を粒状多孔体に接触させて反応させる反応方法であって、
 前記反応対象が分子量2000以上1000000以下の範囲の化合物であり、
 前記液体中の前記反応対象の濃度を一定に維持して前記粒状多孔体を充填してなるカラムに前記液体を持続的に通流させて前記粒状多孔体内に拡散させる非循環式のカラム通流法を用い、
 前記粒状多孔体が、3次元連続網目構造の無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有し、
 前記細孔の孔径分布の最頻孔径が、10nm以上100nm以下の範囲内にあり、
 前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上50μm以下の範囲内にあり、
 前記粒状多孔体の粒子径が、前記貫通孔の最頻孔径の2倍以上、且つ、20μm以上で、前記液体と前記粒状多孔体の接触時間T(秒)に依存して定まる上限値D(mm)以下の範囲内にあり、
 前記上限値Dは、
 D=0.198×LN(T)+0.270
により与えられ、但し、関数LNは自然対数であり、
 前記接触時間Tは、前記粒状多孔体の容積(m)を前記液体の通流速度(m/秒)で除した値で与えられることを第2の特徴とする反応方法を提供する。
 更に、上記第2の特徴の反応方法は、前記粒状多孔体の表面に、前記反応対象と親和性を有する官能基が化学修飾されていることが好ましい。
 更に、上記第1または第2の特徴の反応方法は、前記粒状多孔体が、ゾルゲル法にて作製された塊状多孔体を粉砕して粒状化したものであり、
 前記塊状多孔体が、3次元連続網目構造の前記無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔を有する少なくとも2段階階層的多孔構造を有し、前記塊状多孔体の細孔の孔径分布の最頻孔径が、前記粒状多孔体の細孔の孔径分布の最頻孔径と同じ範囲内にあり、前記塊状多孔体の貫通孔の孔径分布の最頻孔径が、前記粒状多孔体の貫通孔の孔径分布の最頻孔径と同じ範囲内にあることが好ましい。
 更に、上記第1または第2の特徴の反応方法は、前記無機化合物がシリカまたはチタニアであることが好ましい。
 更に、本発明では、金属イオンとの反応に使用される粒状多孔体であって、
 3次元連続網目構造の無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有し、
 前記細孔の孔径分布の最頻孔径が、2nm以上20nm以下の範囲内にあり、
 前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上50μm以下の範囲内にあり、
 前記粒状多孔体の粒子径が、前記貫通孔の最頻孔径の2倍以上、且つ、20μm以上で、4mm以下の範囲内にあり、
 前記粒状多孔体の表面に、前記金属イオンと親和性を有する官能基が化学修飾されていることを特徴とする粒状多孔体を提供する。
 更に、上記特徴の粒状多孔体は、前記官能基が、前記金属イオンと錯形成反応を起こして、前記金属イオンを前記粒状多孔体の表面に吸着させる機能を有することが好ましい。
 更に、上記特徴の粒状多孔体は、ゾルゲル法にて作製された塊状多孔体を粉砕して粒状化したものであり、前記塊状多孔体が、3次元連続網目構造の前記無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔を有する少なくとも2段階階層的多孔構造を有し、前記塊状多孔体の細孔の孔径分布の最頻孔径が、前記粒状多孔体の細孔の孔径分布の最頻孔径と同じ範囲内にあり、前記塊状多孔体の貫通孔の孔径分布の最頻孔径が、前記粒状多孔体の貫通孔の孔径分布の最頻孔径細孔と同じ範囲内にあることが好ましい。
 更に、上記特徴の粒状多孔体は、前記無機化合物がシリカまたはチタニアであることが好ましい。
 更に、本発明では、金属イオンとの反応に使用されるカラムであって、上記特徴の粒状多孔体が、カラム容器内に充填されていることを特徴とするカラムを提供する。
 更に、上記特徴のカラムは、前記粒状多孔体の粒子径が、前記金属イオンを含む液体と前記粒状多孔体の接触時間T(秒)に依存して定まる上限値D(mm)以下であり、
 前記液体の通流が非循環式である場合は、
 前記上限値Dは、
 D=0.556×LN(T)+0.166
により与えられ、但し、関数LNは自然対数であり、
 前記接触時間Tは、前記粒状多孔体の容積(m)を前記液体の通流速度(m/秒)で除した値で与えられ、
 前記液体の通流が循環式である場合は、
 前記上限値Dは、
 D=0.0315×T+0.470
により与えられ、
 前記接触時間Tは、前記液体の通流時間(秒)に、前記粒状多孔体の容積を前記液体の容積で除した容積比を乗じた値で与えられることが好ましい。
 上記特徴の反応方法によれば、反応対象を含む液体を粒状多孔体内に拡散させて接触させる方式(以下、「接触方式」と称す。)が、非循環式のカラム通流法、循環式のカラム通流法、及び、振盪法の何れであるか、また、当該接触方式における液体と粒状多孔体の接触時間に応じた最適な粒状多孔体の粒径範囲が定まるため、不必要に粒径範囲の小さい、舞い易く取扱いに注意を要する微細な粒状多孔体の使用を回避できる。
 また、金属イオン及び低分子で同じ関係式により粒状多孔体の粒径範囲が定まるため、或る1種の反応対象で確立した粒状多孔体の粒径範囲を、他の種類の反応対象に拡張して適用することができる。また、接触時間の異なる反応においても、同じ関係式を用いて粒径範囲を設定でき、予め、多くの予備実験を行う手間が省ける。
 更に、循環式のカラム通流法と振盪法で略同じ関係式が利用可能なため、循環式のカラム通流法と振盪法の何れか一方で確立した粒状多孔体の粒径範囲を、他方に拡張して適用することができる。
本発明に係る粒状多孔体の構造的特徴を模式的且つ平面的に示す断面図 本発明に係る粒状多孔体の貫通孔及び細孔の孔径分布の一例を示す図 シリカモノリス多孔体の3次元連続網目状構造の一例を示すSEM写真 実施例1と比較例の反応後濃度と初期濃度の濃度比の推移を示す図 異なる溶液の流速に対する反応対象が銅イオンの場合の実施例1~7の反応後濃度と初期濃度の濃度比の推移を示す図 異なる溶液の流速に対する反応対象がパラジウムイオンの場合の実施例8~12の反応後濃度と初期濃度の濃度比の推移を示す図 異なる溶液の流速に対する反応対象が青色色素の場合の実施例13~16の反応後濃度と初期濃度の濃度比の推移を示す図 異なる溶液の流速に対する反応対象が黒糖の場合の実施例17~20の反応後濃度と初期濃度の濃度比の推移を示す図 反応対象毎に導出された非循環式のカラム通流法における上限値D1と対応する接触時間T、及び、その関係式を片対数グラフで示す図 図9(B)~(D)に示された上限値D1と対応する接触時間T、及び、その関係式を片対数グラフで纏めて示す図 異なる細孔径に対する反応対象が銅イオンの場合の実施例21の反応後濃度と初期濃度の濃度比の推移を示す図 異なる貫通孔径または細孔径に対する反応対象が銅イオンの場合の実施例22~24の反応後濃度と初期濃度の濃度比の推移を示す図 実施例Aの粒径範囲、貫通孔径と細孔径の組み合わせ、経過時間別の取りこぼし率の測定結果を示す一覧表 官能基の異なる実施例Bの粒径範囲、経過時間別の取りこぼし率の測定結果を示す一覧表 金属イオンの異なる実施例Cの粒径範囲、経過時間別の取りこぼし率の測定結果を示す 振盪法と循環式のカラム通流法における上限値D1と対応する接触時間T、及び、その関係式を両対数グラフで示す図 循環式のカラム通流法における経過時間毎の反応後濃度と初期濃度の濃度比の結果を示す図
 本発明に係る反応方法(以下、適宜「本反応方法」という。)、及び、本反応方法に使用される粒状多孔体(以下、単に「粒状多孔体」という。)及び当該粒状多孔体をカラム容器内に充填してなる本反応方法に使用されるカラム(以下、適宜「本カラム」という。)の実施の形態につき、図面に基づいて説明する。
 先ず、本反応方法に使用される粒状多孔体1の構造的特徴について説明する。粒状多孔体1の各粒子は、図1に模式的且つ平面的に示すように、3次元連続網目構造の無機化合物からなる骨格体2を有し、更に、骨格体2の間隙に形成された貫通孔3と、骨格体2の表面から内部に向けて延伸する該表面に分散して形成された細孔4からなる2段階階層的多孔構造を有する。ところで、本明細書では、「骨格体の表面」は、貫通孔に向けて露出した骨格体の面を指し示し、骨格体に形成された細孔の内壁面は含まない。また、「骨格体の表面」と細孔の内壁面を合わせた骨格体の総表面は、「粒状多孔体の表面」と呼ぶ。尚、貫通孔と細孔は、夫々、マクロポア、メソポアと呼ばれることもある。
 本実施形態では、骨格体2を形成する無機化合物として、シリカゲルまたはシリカガラス(SiO)を想定する。粒状多孔体1の各粒子は、細孔4の孔径分布の最頻孔径φ0mが、後述する本反応方法の反応対象に応じて最適範囲が異なるが、全体として、2nm以上100nm以下の範囲内にあり、貫通孔3の孔径分布の最頻孔径φ1mが、細孔4の最頻孔径φ0mの5倍以上で、且つ、0.1μm以上50μm以下の範囲内にあり、粒子径Dpが、貫通孔3の最頻孔径φ1mの2倍以上で、且つ、全体として、20μm以上4mm以下の範囲内にある。但し、粒子径Dpは、後述するように、反応対象の大きさ、本反応方法で用いる反応対象を含む液体と粒状多孔体1との接触方法、及び、接触時間に応じて、上限値D1が更に制限される。
 貫通孔3及び細孔4の各最頻孔径は、周知の水銀圧入法で測定した孔径分布の最頻値(モード値)である。尚、細孔4の孔径分布は、周知の窒素吸着測定によるBJH法により導出されたものを使用しても良い。また、貫通孔3の最頻孔径は、骨格体2の電子顕微鏡写真から任意の20乃至30程度の分散した箇所の貫通孔径の計測し、その平均値として導出される平均孔径と大差はない。図2に、水銀圧入法で測定した貫通孔3及び細孔4の孔径分布の一例を示す。横軸が貫通孔3及び細孔4の孔径(単位:μm)で、縦軸が微分細孔容積(単位:cm/g)である。但し、微分細孔容積は微分貫通孔容積も含む。左側のピークが細孔4の最頻孔径を示し、右側のピークが貫通孔3の最頻孔径を示している。図2の例では、貫通孔3及び細孔4の各最頻孔径は、約1.77μmと約17nmで、各半値幅は、約0.34μmと約3.4nmとなっている。尚、貫通孔3及び細孔4の孔径分布は、粒子状の粒状多孔体1に対して測定した結果と、後述する粒状化前の同じ2段階階層的多孔構造を有するモノリス多孔体(塊状多孔体に相当)に対して測定した結果は、実質的に同じである。従って、貫通孔3及び細孔4の孔径分布は、モノリス多孔体の状態で測定しても良い。
 本実施形態では、粒状多孔体1は、以下で詳細に説明するスピノーダル分解ゾルゲル法で合成された塊状の3次元連続網目状構造のシリカゲルまたはシリカガラスからなるシリカモノリス多孔体を、焼結前または焼結後に粉砕して粒状化することで作製される。図3に、尚、シリカモノリス多孔体の3次元連続網目状構造を示すSEM(走査型電子顕微鏡)写真の一例を示す。粉砕直後の粒状多孔体1の各粒子の粒子径は大小混在しているため、篩掛けして分級することで、所望の粒径範囲の粒状多孔体1が得られる。従って、上述の粒子径の範囲の上限値と下限値は、分級処理に使用する2種類の篩の目開きの値である。
 次に、粒状多孔体1の作製方法について説明する。粒状多孔体1の作製方法は、粒状多孔体1の原料となる2段階階層的多孔構造を有するモノリス多孔体の合成工程と、その後の粒状化工程に、大きく分類される。
 先ず、3次元連続網目状構造のシリカゲルまたはシリカガラスからなるモノリス多孔体のスピノーダル分解ゾルゲル法による合成工程について説明する。当該合成工程は、更に、ゾル調製工程、ゲル化工程、及び、除去工程に区分される。
 ゾル調製工程では、酸またはアルカリ性水溶液中に、シリカゲルまたはシリカガラスの原料となるシリカ前駆体と、ゾルゲル転移と相分離を並行して誘起する働きを有する共存物質を添加して、例えば5℃以下のゾルゲル転移が進行し難い低温下で攪拌し、加水分解反応を起こさせて、均一な前駆体ゾルを調製する。
 シリカ前駆体の主成分として、水ガラス(ケイ酸ナトリウム水溶液)、或いは、無機または有機シラン化合物が使用できる。無機シラン化合物の一例として、テトラメトキシシラン、テトラエトキシシラン、テトラ-イソプロポキシシラン、テトラ-n-ブトキシシラン、テトラ-t-ブトキシシラン等のテトラアルコキシシラン類が挙げられる。また、有機シラン化合物の一例として、メチル、エチル、プロピル、ブチル、ヘキシル、オクチル、デシル、ヘキサデシル、オクタデシル、ドデシル、フェニル、ビニル、ヒドロキシル、エーテル、エポキシ、アルデヒド、カルボキシル、エステル、チオニル、チオ、アミノ等の置換基を有するトリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、トリフェノキシシラン等のトリアルコキシシラン類、メチルジエトキシシラン、メチルジメトキシシラン、エチルジエトキシシラン、エチルジメトキシシラン等のジアルコキシシラン類、ジメチルエトキシシラン、ジメチルメトキシシラン等のモノアルコキシシラン類等が挙げられる。また、モノアルキル、ジアルキル、フェニルトリエトキシ等の架橋反応速度制御基置換体を含むアルコキシシリケートやその二量体であるジシラン、三量体であるトリシランといったオリゴマー等もシリカ前駆体として想定される。上述の加水分解性シランは、種々の化合物が市販されており、容易且つ安価に入手可能であり、ケイ素-酸素結合からなる3次元架橋体を形成するゾルゲル反応を制御することも容易である。
 酸またはアルカリ性水溶液は、溶媒である水にシリカ前駆体の加水分解反応を促進する触媒として機能する酸または塩基が溶解した水溶液である。上記酸の具体例として、酢酸、塩酸、硫酸、硝酸、ギ酸、シュウ酸、及び、クエン酸等が、また、上記塩基の具体例として、水酸化ナトリウム、水酸化カリウム、アンモニア水、炭酸ナトリウム、炭酸水素ナトリウム、トリメチルアンモニウム等のアミン類、tert-ブチルアンモニウムヒドロキシド等のアンモニウムヒドロキシド類、及び、ソディウムメトキシド等のアルカリ金属アルコキシド類等が想定される。また、上記共存物質の具体例として、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリル酸、ポリエチレンオキシドポリプロピレンオキシドブロック共重合体等のブロック共重合体、セチルトリメチルアンモニウムクロリド等の陽イオン性界面活性剤、ドデシル硫酸ナトリウム等の陰イオン性界面活性剤、及び、ポリオキシエチレンアルキルエーテル等のノニオン系界面活性剤等が想定される。尚、溶媒として水を使用するが、メタノールやエタノール等のアルコール類としても良い。
 ゲル化工程では、ゾル調製工程で調製された前駆体ゾルを、ゲル化容器内に注入し、例えば40℃程度のゾルゲル転移が進行し易い温度下でゲル化させる。ここで、前駆体ゾル内には、ゾルゲル転移と相分離を並行して誘起する働きを有する共存物質が添加されているため、スピノーダル分解が誘起され、3次元連続網目状構造を有するシリカヒドロゲル(湿潤ゲル)相と溶媒相の共連続構造体が徐々に形成される。
 ゲル化工程において、シリカヒドロゲル層が形成された後も、当該湿潤ゲルの重縮合反応が緩やかに進行して、ゲルの収縮が起こるため、ゲル化工程の後工程(ゲル化後工程)として、ゲル化工程でゾル収容体の空孔内に形成されたシリカヒドロゲル相と溶媒相の共連続構造体を、アンモニア水等の塩基性水溶液に浸漬し、加圧容器内で加熱処理することにより、シリカヒドロゲル相の加水分解反応、重縮合反応、及び、溶解再析出反応を更に進行させ、シリカヒドロゲル相の骨格構造をより強固なものにすることが可能となる。尚、当該ゲル化後工程は、必要に応じて行えば良い。尚、当該加熱処理は、必ずしも加圧容器や密閉容器内で行わなくても差し支えないが、加熱によりアンモニア成分等が生成または揮発する場合があるので、密閉容器内、或いは、耐圧性を有する加圧容器内で処理するのが好ましい。
 シリカヒドロゲル相の骨格体を形成するシリカ微粒子の溶解再析出反応の進行により、当該骨格体に形成される細孔径が拡大される。更に、水熱処理により、当該溶解再析出反応を繰り返すことにより、細孔径を更に拡大する制御が可能となる。尚、細孔径の制御は、前駆体ゾル内に上記触媒及び共存物質以外に尿素を添加することによっても実現できる。尿素は60℃以上の温度下で加水分解してアンモニアを生成し、当該アンモニアにより、ゲル化工程で合成された湿潤ゲルの骨格体に形成される細孔の孔径が拡張されるため、尿素の添加により当該細孔径の制御が可能となる。一方、貫通孔の構造及び孔径の制御は、ゾル調製工程で前駆体ゾルに添加する水やシリカ前駆体の量、或いは、共存物質の組成及び添加量等の調整により可能となる。
 引き続き、除去工程において、湿潤ゲルの洗浄と乾燥或いは乾燥のみを行い、添加剤や未反応物等を含む溶媒相を除去する。溶媒相除去後の空間が貫通孔となる。洗浄により、溶媒相内に残留した添加剤や未反応物等によって生ずる乾燥時の表面張力を解消し、乾燥時にゲルに歪みや割れが生じるのを抑制できる。洗浄液は、有機溶剤や水溶液等の液体が望ましい。また、有機化合物や無機化合物を溶解させた液体を用いることもできる。更に、洗浄液として酸やアルカリ等のゲルの等電点と異なるpHの溶液を用いても、ゲル内に残留した添加材等を容易に除去することができる。具体的には、塩酸、硫酸、硝酸、フッ酸、酢酸、ギ酸、炭酸、クエン酸、リン酸を始めとする各種の酸、及び、水酸化ナトリウム、水酸化カリウム、アンモニア、水溶性アミン、炭酸ナトリウム、炭酸水素ナトリウムを始めとする各種の塩基を用いることができる。湿潤ゲルの乾燥は、自然乾燥を採用しても良く、更に湿潤ゲルを乾燥させる際に生ずる歪みや割れを解消するために、湿潤ゲル内の溶媒を、イソプロパノール、アセトン、ヘキサン、ハイドロフルオロカーボン等の水より表面張力が低い低表面張力溶媒に置換してから行う乾燥、凍結昇華による乾燥、更に、湿潤ゲル内の溶媒を超臨界状態の二酸化炭素に交換してから無表面張力状態で行う超臨界乾燥等を採用するのも好ましい。
 引き続き、得られた乾燥ゲルは焼成により焼結させシリカガラスとすることが可能である。尚、焼成温度が、シリカのガラス転移温度(約1000℃)より低温の場合は、シリカガラスには成らない。
 以上のゾル調製工程、ゲル化工程、及び、除去工程を経て、2段階の階層的多孔構造を有する3次元連続網目状構造の乾燥シリカゲルまたはシリカガラスのモノリス多孔体が得られる。
 粒状化工程は、上述のゾル調製工程、ゲル化工程、及び、除去工程を経て得られた塊状のモノリス多孔体を破砕して粒状化する工程である。粒状化工程の粉砕処理は、人手によって行っても良く、乳鉢等を用いても良く、また、ボールミル等の破砕装置を使用しても良い。また、粒状化工程は、上記除去工程で得られた乾燥ゲルを焼結させる場合、当該焼結前及び後の何れで行っても良い。
 粒状化工程後の粒状化されたモノリス多孔体は、目開きがXμmとYμm(但し、D0≦X<Y≦D1)の篩で篩掛けして分級することで、粒子径Dpが所望の粒径範囲内(D0μm以上250μm以下)にある粒状多孔体1として回収される。但し、所望の粒径範囲の下限値D0(μm)は、20(μm)または貫通孔の最頻孔径φ1m(μm)の2倍の何れか大きい方の値である。更に、所望の粒径範囲の上限値D1(mm)は、反応対象の大きさ、本反応方法の接触方式、及び、接触時間に応じて、後述する関係式により算出される。
 本実施形態において、細孔径、貫通孔径、及び、粒子径は、上述のように、夫々独立して制御可能ではあるが、貫通孔3の孔径分布の最頻孔径φ1mが、細孔4の最頻孔径φ0mの5倍以上、粒子径Dpが、貫通孔3の最頻孔径φ1mの5倍以上であれば、粒状多孔体1の各粒子の骨格体2が、粒状化後も2段階階層的多孔構造の3次元連続網目構造を保持できることが、経験的に把握されている。しかし、本実施形態では、粒子径Dpが、貫通孔3の最頻孔径φ1mの2倍~5倍のものも許容している。これは、篩掛けによる分級後に、上記粒状化工程で発生した完全な3次元連続網目構造を維持していない破砕断片が少量含まれている可能性を考慮したものである。当該断片が含まれていても、粒子径Dpの主たる分布範囲は、篩の目開きXμm以上Yμm以下の分級範囲となり、後述するように、少量含まれている粒子径Dpの小さい粒状多孔体の影響は無視できるからである。
 また、貫通孔径は、母体となるモノリス多孔体にて制御し得るサイズの0.1~50μmの範囲で制御することが可能である。貫通孔の上限と下限で500倍の差異があるが、液体の分子サイズと比べて100倍以上あれば十分な速度で粒状多孔体内部を灌流することが可能となる。また、溶液中の分子は溶媒分子の対流によって細孔表面まで効率良く灌流することが可能となる。
 細孔径は、反応対象の分子サイズによって自由に制御することが可能である。単一孔粒子のシリカゲルの場合、細孔径は2~100nmの範囲で制御することが可能である。粒状多孔体においても、例えば、反応対象物質が金属イオンの場合、イオン半径が1nm以下となるため細孔径は2~20nm程度が妥当となる。また分子量が数100~1000程度の分子で分子直径が1~5nmとなるような場合であれば、細孔径は5~50nmとするのが望ましい。また、分子量が1000を超えて分子直径が5nm以上となる分子であれば、細孔径は10~100nmとするのが望ましい。
 細孔径は分子直径と同等であれば、分子は細孔の内部まで入ることが出来るため細孔径は分子直径と同等以上であることが望ましい。また、分子直径より細孔径を小さくして固体表面の曲率を大きくし、分子の一部をキレート反応するようなことも可能である。また、分子直径より10倍以上大きい細孔は比表面積が低下して反応効率が低下するが、例えば非特異的な反応を抑制するために分子サイズと比べて10倍以上の細孔径とすることも可能である。尚、モノリス多孔体の例ではあるが、上記特許文献1では、吸着対象の抗体の大きさ(約10~12nm)に対して、細孔径(中心直径)の好適範囲として40nm以上70nm以下が推奨されており、吸着対象の約4~7倍の大きさであり、分子サイズが若干異なるが上述の分子直径1~5nmと細孔径5~50nmの比率と符合し、分子直径5nm以上と細孔径10~100nmの関係とも符合する。
 次に、本反応方法について説明する。本反応方法は、反応対象を含む液体を粒状多孔体に接触させて反応させる反応方法である。当該反応対象としては、金属イオン、分子量2000以下の範囲の低分子化合物、分子量2000以上1000000以下の範囲の化合物を想定している。金属イオンは、特に、貴金属イオンを含む遷移金属イオンを想定している。また、当該反応には、吸着、イオン交換、錯形成、触媒反応等が含まれ、本反応方法は、これらの反応に利用できる。
 例えば、液体中の不純物を除去する方法、液体中の混合物から目的成分のみを抽出する方法等が挙げられ、何れも粒状多孔体の無機多孔質の骨格体表面(細孔内の表面を含む)と反応対象の分子との相互作用を利用したものである。より具体的は、骨格体表面の酸性度や電荷を利用して分子を吸着させることが可能である。また、官能基を有する有機化合物を骨格体表面に物理的相互作用または化学的結合を介して導入し、粒状多孔体をイオン交換等の機能性粒状多孔体として使用することも可能である。また、粒状多孔体を、炭化水素化合物を骨格体表面に導入し、還元雰囲気下にて処理し炭化物表面として使用するか、還元雰囲気下にて焼結しSi-C結合を有する複合体として使用することも可能である。また、粒状多孔体を、金属酸化物を骨格体表面に導入して還元処理して金属担持体として使用することも可能である。
 例えば、溶液中の金属イオンを粒状多孔体と反応させ吸着させる場合、金属イオンは骨格体表面に導入した官能基によって錯形成反応して吸着されるため、骨格体表面に官能基を導入することにより、本反応方法を、金属イオンを効率的に除去する方法として使用できる。金属イオンに特異的に親和性を示す有機官能基として、例えば、硫黄元素を含有するメルカプト基やチオール基としてメルカプトプロピル、チオシアヌル酸、チオ尿素を有する官能基が挙げられ、Ag、Cd、Co、Cu、Fe、Hg、Ir、Ni、Os、Pb、Pd、Pt、Rh、Ru、Sc、Sn、Zn等のイオンに親和性を示す。また、カルボン酸基を有する官能基として、例えば、エチレンジアミン三酢酸が挙げられ、Ca、Cd、Co、Cr、Cs、Cu、Fe、Ir、La、及びランタノイド系、Li、Mg、Ni、Os、Pd、Rh、Ru、Sc、Sn、Zn等のイオンに親和性を示す。また、窒素元素を有する官能基として、例えばアミノプロピル、アミノエチルアミノプロピル(ジアミン)、アミノエチルアミノエチルアミノプロピル(トリアミン)、イミダゾール等のアミン系官能基が挙げられ、Cd、Co、Cr、Cu、Fe、Ni、Os、Pb、Pd、Pt、Rh、Ru、W、Zn等のイオンに親和性を示すことが可能である。その他、リン酸基、硫酸基、アンモニウム基、水酸基、ケト基を始め、または、これらの置換基の複合体も挙げられる。
 官能基を導入する方法として、骨格体表面に共有結合を介し官能基を化学的に固定する方法、または、イオン結合や疎水性相互作用等の物理的相互作用を介して物理的に固定する方法が挙げられる。例えば、官能基を化学的に導入する方法として、官能基を有するシランカップリング剤を反応させて骨格体(SiO)表面の水酸基を介して官能基を固定化する方法がある。
 シランカップリング剤として利用できる有機シラン化合物の一例として、メチル、エチル、プロピル、ブチル、ヘキシル、オクチル、デシル、ヘキサデシル、オクタデシル、ドデシル、フェニル、ビニル、ヒドロキシル、エーテル、エポキシ、アルデヒド、カルボキシル、エステル、チオニル、チオ、アミノ等の置換基を有するトリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、トリフェノキシシラン等のトリアルコキシシラン類、メチルジエトキシシラン、メチルジメトキシシラン、エチルジエトキシシラン、エチルジメトキシシラン等のジアルコキシシラン類、ジメチルエトキシシラン、ジメチルメトキシシラン等のモノアルコキシシラン類等、オクタデシルトリクロロシラン、オクタデシルメチルジクロロシラン、オクタデシルジメチルクロロシラン、オクタデシルシラザン、オクタデシルトリメトキシシラン、オクタデシルメチルジメトキシシラン、オクチル、トリメチルクロロシラン(TMS)、ジメチル-n-オクチルクロロシラン、ジメチル-n-オクタデシルクロロシラン(ODS)などのアルキルクロロシラン類等が挙げられる。また、モノアルキル、ジアルキル、フェニルトリエトキシ等の架橋反応速度制御基置換体を含むアルコキシシリケートやその二量体であるジシラン、三量体であるトリシランといったオリゴマー等もシランカップリング剤として使用できる。
 例えば、反応対象が、青色色素の場合、青色色素で代表され分子として、分子量305.82のベーシックブルー17(トルイジンブルー)、分子量792.86のブリリアントブルーFCF、分子量466.36のインジゴカルミン、分子量833.048のクマシーブリリアントブルー等があり、何れも分子量300~1000の低分子化合物である。これらの青色色素は、骨格体(SiO)表面との化学的相互作用によって吸着する。この場合は、骨格体表面との直接的な化学的相互作用であり、官能基の導入は不要である。
 例えば、反応対象が、黒糖に含まれる高分子化合物の場合、当該高分子化合物として、分子量1000以下のフラボノイド類、分子量150000以上のメラニン類、分子量1000以下のクロロフィル、カロテン、キサントロフィル等、分子量50000以下のメラノイジン類、分子量25000以下のカラメル、分子量1000~5000程度のその他6炭糖分解物が含まれ、分子量は、1000程度から1000000程度まで広範囲に含まれる。中でも、黒糖には、カラメル(分子量2000から25000程度)とメラノイジン類(分子量3000から50000程度)が豊富に含まれている。これらの黒糖に含まれる高分子化合物は、骨格体表面に導入した官能基によってイオン交換反応して吸着される。当該官能基として、4級アンモニウム基で、トリメチルプロピルアンモニウムクロリド基が挙げられる。他のイオン交換反応用の官能基として、主に、2級または3級アミン基・スルホン酸基・カルボン酸基・リン酸基等が該当する。
 上述のように、本反応方法では、反応対象及び反応の種類に応じて、骨格体表面に官能基が導入されるが、当該官能基の導入は、粒状多孔体の母体であるモノリス多孔体に対して行ってから、粒状化工程を経て、当該官能基の導入された粒状多孔体を作製するようにしても良い。また、当該官能基の導入前のモノリス多孔体を粒状化して粒状多孔体を作製してから、当該官能基の導入を行っても良い。
 更に、本反応方法では、反応対象を含む液体を粒状多孔体内に拡散させて接触させる方式(接触方式)として、非循環式のカラム通流法、循環式のカラム通流法、及び、振盪法の何れかを使用する。尚、本反応方法の非循環式のカラム通流法では、当該液体は、液体中の反応対象の濃度を一定に維持して、カラム内に持続的に通流される。また、本反応方法の循環式のカラム通流法では、カラムの出口から放出された反応後の液体がカラムの入口に戻され循環する。本反応方法の非循環式及び循環式のカラム通流法では、反応対象を含む液体は、持続的にカラム内を通流する。この点において、本反応方法は、分離対象の混合物を含む液体を通流させて一旦吸着させた後、溶離液を流し続けて混合物を分離する液体クロマトグラフィーとは異なる。
 次に、上述した粒状多孔体を用いる本反応方法の一実施例(実施例1)と、市販の単一孔粒子のシリカゲルを用いた比較例との性能比較を行う。本性能比較では、金属イオン(銅イオン)を非循環式のカラム通流法により、銅イオンを含む液体として、酢酸銅水溶液(濃度4mg/mL)を使用し、当該溶液を0.3mL/分の流速で、実施例1の粒状多孔体を充填した本カラムと、比較例のシリカゲルを充填した比較例カラムに通流し、各カラム出口から0.3mLずつ、つまり、1分毎に回収して、カラム出口で採取した溶液濃度(反応後濃度)と通流前の初期濃度の濃度比(反応後濃度/初期濃度)を求め、その推移を比較した。
 本カラム及び比較例カラムは、何れも内径6mm、長さ20mmのカラム容器内に、実施例1の粒状多孔体と比較例のシリカゲルを充填したもので、カラム容積(粒状多孔体の容積に相当)は同じく、約0.56mLであり、空間速度SV(1/時間)は、約32.14である。実施例1と比較例のシリカゲルの何れにも、官能基としてメルカプトプロピルが導入されている。実施例1の粒状多孔体の貫通孔径及び細孔径は、0.1μmと2nmで、比較例のシリカゲルの細孔径は2nmである。実施例1の粒状多孔体の粒径範囲として、0.1~0.25mm、0.25~0.5mm、0.5~1mm、1~2mm、2~4mmの5通りを準備し、比較例のシリカゲルの粒径範囲として、0.1~0.25mm、0.25~0.5mm、0.5~1mm、1~2mmの4通りを準備した。
 図4(A)及び(B)に、実施例1と比較例の反応後濃度と初期濃度の濃度比の推移を夫々示す。何れも、縦軸が当該濃度比で、横軸が1分毎の測定回を示す。図4より明らかなように、同じ粒径範囲同士を比較すると、実施例1の方が比較例より、当該濃度比が低く、取りこぼしが少ないことが分かる。実施例1の粒径範囲0.5~1mmと比較例の粒径範囲0.1~0.25mmがほぼ同じ性能を示しており、実施例1の方が、同じ空間速度SVに対して、粒径範囲を約5倍程度大きくできることが分かる。
 本反応方法では、上述のように、単一孔粒子のシリカゲルを用いた場合と比較して、粒径範囲を大きくできる点に特徴があるが、更に、粒径範囲の上限値D1(mm)を、反応対象の大きさ、本反応方法の接触方式、及び、接触時間に応じて、後述する関係式により簡易に算出できる点に特徴がある。
 [非循環式のカラム通流法]
 次に、接触方式が非循環式のカラム通流法の場合の上限値D1(mm)は、下記の数1に示す接触時間T(秒)を変数とする関係式で与えられる。関数lnは自然対数であり、Aiは反応対象iにおける係数で、Biは反応対象iにおける定数である。接触時間T(秒)は、空間速度SVの逆数を秒に換算した値であり、粒状多孔体の容積、つまり、カラム容積を、反応対象iを含む液体(溶液)の通流速度で除した値で与えられる。
 (数1)
 D1=Ai×ln(T)+Bi
 以下において、反応対象iとして、銅イオン、パラジウムイオン、青色色素、及び、黒糖を用いて、反応対象i毎の上記数1の係数Aiと定数Biを導出する。次に、当該導出手順を説明する。
 図4(A)の実施例1と同じ要領で、各反応対象iに対して、異なる複数の空間速度SVについて、反応後濃度と初期濃度の濃度比を測定する。カラム容積、各カラム出口から逐次採取される溶液量は、実施例1と同じ、約0.56mLと0.3mLである。また、粒状多孔体の貫通孔径及び細孔径は、0.1μmと3nmで、実施例1と同じである。粒径範囲は、実施例1で採用した5通りの中から、測定可能なものを適宜採用する。空間速度SVは、溶液の流速によって調整される。従って、カラム出口で0.3mLずつ溶液を採取する時間間隔が、空間速度SV毎に異なるが、測定回数は1~10で共通であり、測定する溶液の総量は、3mLで共通する。但し、後述する理由から、銅イオンについては、測定回数は1~10の10回と、1~5の5回(溶液に総量は1.5mL)の2通りとする。
 図5(A)~(G)に、反応対象iが銅イオンの場合の、溶液の流速が、0.3mL/分(SV=32)、0.6mL/分(SV=64)、1.5mL/分(SV=160)、3mL/分(SV=321)、10mL/分(SV=1071)、20mL/分(SV=2142)、30mL/分(SV=3214)の7通り(実施例1~7)について、反応後濃度と初期濃度の濃度比の推移を測定した結果を示す。図5(A)は図4(A)の実施例1と同じである。実施例2~7の粒状多孔体に導入された官能基、銅イオンを含む溶液及びその初期濃度は、実施例1と同じである。
 図6(A)~(E)に、反応対象iがパラジウムイオンの場合の、溶液の流速が、0.6mL/分(SV=64)、3mL/分(SV=321)、10mL/分(SV=1071)、20mL/分(SV=2142)、30mL/分(SV=3214)の5通り(実施例8~12)について、反応後濃度と初期濃度の濃度比の推移を測定した結果を示す。実施例8~12の粒状多孔体に導入された官能基は、実施例1と同じである。パラジウムイオンを含む溶液は、ジニトロジアンミンパラジウム(II)水溶液で、初期濃度は165μg/mLである。
 図7(A)~(D)に、反応対象iが青色色素の場合の、溶液の流速が、0.3mL/分(SV=32)、3mL/分(SV=321)、10mL/分(SV=1071)、30mL/分(SV=3214)の4通り(実施例13~16)について、反応後濃度と初期濃度の濃度比の推移を測定した結果を示す。実施例13~16の粒状多孔体には官能基が導入されていない。青色色素を含む溶液は、ベーシックブルー17水溶液で、その初期濃度は1ppmである。
 図8(A)~(D)に、反応対象iが黒糖の場合の、溶液の流速が、0.3mL/分(SV=32)、3mL/分(SV=321)、10mL/分(SV=1071)、30mL/分(SV=3214)の4通り(実施例17~20)について、反応後濃度と初期濃度の濃度比の推移を測定した結果を示す。黒糖を含む溶液は、波照間産黒糖(褐色物質が分子量2000~1000000程度の混合物)の水溶液で、初期濃度は10mg/mLである。実施例17~20の粒状多孔体に導入された官能基は、トリメチルプロピルアンモニウムクロリド基である。
 以上の実験で採用された各空間速度SV(SV=32,64,160,321,1072,2142,3214、但し、何れも近似値)に対する接触時間は、記載順に、112.5秒、56.25秒、22.5秒、11.215秒、3.361秒、1.681秒、1.12秒である。
 図5~図8より、反応対象iに関係なく、粒状多孔体の粒径範囲が大きい程、濃度比が高くなり、溶液中の反応対象iが未反応のままカラムを通過する、所謂「取りこぼし」の割合が高くなる。従って、複数の測定回の濃度比の平均値は、カラムを通過した溶液全体の取りこぼし率を示している。また、図5~図8より、反応対象iに関係なく、空間速度SVが大きい程、つまり、接触時間Tが短い程、同じ粒径範囲でも、濃度比が高くなり、取りこぼし率が高くなる傾向があることが分かる。
 また、銅イオンの場合に顕著に表れているが、測定回が大きくになるにつれ、粒状多孔体表面の反応サイト(例えば、金属イオンの場合では導入された官能基)が飽和して、破過が生じ始めるが、当該破過の開始が、粒状多孔体の粒径範囲が大きい程、また、接触時間Tが短い程、早くなる傾向が見られる。
 本反応方法では、反応を効率的に維持するには、当該取りこぼし率は50%以下に抑える必要があると考え、取りこぼし率50%以下を維持するに必要な、粒径Dpの上限値D1と接触時間Tとの間の関係を、反応対象i毎に導出する。具体的には、測定誤差の影響を排除するために、測定回1~10の10回分の濃度比の平均により、各SVの各粒径範囲について、図5~図8に示す濃度比の測定結果から、取りこぼし率を算出する。尚、銅イオンの場合には、上述の破過の影響を考慮するために、測定回1~10の10回分の濃度比の平均に加え、測定回1~5の5回分の濃度比の平均による取りこぼし率も算出した。
 上記要領で算出した反応対象i毎の各SV、各粒径範囲の取りこぼし率から、反応対象i毎の各SV(接触時間T)における取りこぼし率50%となる粒径を算出する。具体的には、取りこぼし率50%の前後の取りこぼし率の粒径範囲の中央値を線形補間して、取りこぼし率50%となる粒径中央値を求め、粒径範囲の上限値と中央値の比率(本実施形態では、1.33倍)を乗じて、粒径の上限値D1(mm)を算出する。当該要領で算出した上限値D1(mm)と対応する接触時間T(秒)から、上記数1の関係式の係数Ai及び定数Biを、最小二乗誤差法で近似的に算出する。
 以上の要領で反応対象i毎に導出された上限値D1(mm)と対応する接触時間T(秒)、及び、関係式を、図9(A)~(E)のグラフに示す。図9(A)~(E)の各縦軸が上限値D1(線形表示)で、各横軸が接触時間T(対数表示)である。図9(A)は、反応対象iが銅イオンで測定回数10の場合の結果を示す。図9(B)は、反応対象iが銅イオンで測定回数5の場合の結果を示す。図9(C)は、反応対象iがパラジウムイオンの結果を示す。図9(D)は、反応対象iが青色色素の結果を示す。図9(E)は、反応対象iが黒糖の結果を示す。
 図9(A)~(E)で算出された上記数1の関係式を、以下の数2~数6に纏めて表示する。
 (数2) 銅イオン(測定回1~10)
  D1=0.411×LN(T)+0.137
 (数3) 銅イオン(測定回1~5)
  D1=0.555×LN(T)+0.197
 (数4) パラジウムイオン
  D1=0.545×LN(T)+0.145
 (数5) 青色色素
  D1=0.545×LN(T)+0.831
 (数6) 黒糖
  D1=0.198×LN(T)+0.270
 図9(A)及び(B)を比較すると、同じ銅イオンでも、測定回数の違いで、上記数2及び数3の関係式の係数Ai及び定数Bi、つまり、片対数グラフ上で直線表示された上記数1の関係式の傾きと切片(D1軸)が異なっている。この傾き及び切片の違いは、破過の影響によるものと考えられる。一方、図9(B)と図9(C)を比較すると、金属イオンとして同じであるが、異なる金属間で、上記数3及び数4の関係式の傾きと切片が極めて近似していることが分かる。つまり、破過の影響が小さい場合は、異なる金属間でも、同じ関係式で、上限値D1と接触時間Tの関係を表すことができることが分かる。従って、本実施形態では、銅イオンの場合、破過の影響が小さい測定回数5の場合の結果を採用する。
 図9(B)及び(C)と図9(D)を比較すると、反応対象iは金属イオンと青色色素で異なり、反応の種類も錯形成反応と化学的相互作用による吸着と異なるが、上記数3~数5の関係式の傾きが極めて近似していることが分かる。つまり、接触時間Tの変化に伴う上限値D1の変化が、金属イオンと青色色素で共通していることが分かる。但し、青色色素の方が、切片が約0.6mm大きいため、接触時間Tに関係なく、粒径範囲の上限値D1を0.6mm程大きく設定できることが分かる。
 図10に、図9(B)~(D)を纏めて示す。図10中の破線(直線)は、図9(B)と図9(C)の銅イオンの測定回数5の結果とパラジウムイオンの結果を合わせて算出した、金属イオンに対する総合的な上記数1の関係式を示している。当該関係式を、下記の数7に示す。図10より、銅イオンとパラジウムイオンの計12点の上限値D1は、下記数7に示す関係式により精度良く近似されていることが分かる。また、青色色素の4点の上限値D1は何れも当該関係式より上側に位置しており、反応対象iが青色色素等の分子量100~2000程度の低分子化合物に対する上限値D1を設定するに当たり、当該関係式を使用できることが分かる。尚、当該低分子化合物に対する上限値D1を設定するに当たり、数7に示す関係式に代えて、数5に示す関係式を使用しても良い。
 (数7) 金属イオン(銅イオン+パラジウムイオン)
  D1=0.556×LN(T)+0.166
 図9(B)~(D)と図9(E)を比較すると、反応対象iが黒糖の場合、金属イオン等の他の反応対象iと比較して、上記数1の関係式の傾きが大きく異なっており、同じ接触時間で、他の反応対象iの上限値D1と比較する、黒糖の方が明らかに小さい。よって、反応対象iが黒糖等の分子サイズの大きい高分子化合物の場合には、上記数7に示す金属イオン用の関係式を共通に使用するのは困難であることが分かる。従って、黒糖等の分子量2000~1000000程度の化合物には、数6に示す個別の関係式を使用するのが良い。
 尚、本実施形態では、反応対象iの各溶液の初期濃度を1通りに設定しているが、以下に説明する理由から、負荷容量が50%以下では、同じ粒径範囲、接触時間(空間速度SV)であれば、初期濃度に関係なく、取りこぼし率は同じになると考えられるためである。尚、当該内容は、本実施形態のための予備実験でも確認されている。
 例えば、反応対象iが金属イオンの場合(実施例1~12)、リガンド(官能基)の固定量と金属イオン保持容量はほぼ等しくなる。ここで、金属イオン保持量とは、粒状多孔体の粒子表面の反応サイトのことである。メルカプト基固定のリガンド固定量は0.8mmol/gである。かさ密度0.3g/mLで、カラム容積は0.56mLであるため、金属イオン保持容量は0.136mmolとなる。銅イオンの場合は、初期濃度4mg/mLの酢酸銅(分子量181)水溶液を測定回1~10で3mL通流しており、金属イオンの負荷量は0.066mmolと金属イオン保持容量の50%となる。また、金属イオンの負荷量が金属イオン保持容量の50%を超えた場合、金属イオンの取りこぼし(破過)が顕著に大きくなるため、上記関係式には乗らない。
 初期濃度を下げた場合、例えば当初の初期濃度の1/2、1/4・・・と希釈して、濃度比の測定を行った場合は、粒子表面の反応サイトまたは有効比表面積を銅分子が埋めておらず、破過が生じ始める開始点が後にずれるか、当該初期濃度の場合と比べて破過が顕著ではなくなり、パラジウムの濃度比の測定結果のような平坦なカーブとなる。
 逆に初期濃度を上げた場合、例えば当初の初期濃度の2倍、4倍・・・と濃縮して濃度比の測定を行った場合は、粒子表面の反応サイトまたは有効比表面積を銅分子が埋める時間が短くなり、破過が生じ始める開始点が前に早まる。
 つまり、金属イオン保持量の50%以下となるように金属イオンをカラムに負荷し続ける場合であれば、希釈した場合は上記濃度比の評価を10回ではなく50回でも100回でも、濃縮した場合は上記濃度比の評価を10回ではなく5回としても、接触時間Tによって関係式に従った同様の濃度となる。
 他の反応、例えば化学的相互作用による吸着の場合であれば、粒状多孔体粒子の有効比表面積を超える反応対象分子を無限に吸着し続けることは有り得ず、液体中の反応対象分子が有効比表面積または反応サイトの最大値を超えないことが条件となり、負荷容量は50%以下であることが条件になると考えられる。
 以上、非循環式のカラム通流法における粒状多孔体の粒径範囲の上限値D1と接触時間Tの関係式について説明した。
 次に、本反応方法で使用する粒状多孔体の貫通孔径及び細孔径について、実験データに基づいて説明する。図11に、粒径範囲0.25~0.5mm、貫通孔径1μm、細孔径が10,20,30及び40nmの4通りの粒状多孔体を用いた本カラムで、実施例1と同じ要領で、反応対象が銅イオンの場合の濃度比の評価を行った結果を示す(実施例21)。空間濃度SV(溶液の流速)、溶液の初期濃度は、実施例1と同じである。測定回1~5の濃度比の平均値(取りこぼし率)を計算すると、細孔径の小さい順に、6%、11%、41%、59%であり、細孔径が20nmを超えると、取りこぼし率が急激に増加するため、細孔径は上述したように、反応対象物質が金属イオンの場合、2~20nm程度が妥当となる。尚、細孔径が30nmでは、取りこぼし率は50%以下であるが、空間濃度SVが32の場合、粒径範囲の上限値D1は、約2.7mmとなるため、粒径範囲の増加を見越して、細孔径は20nm以下、より好ましくは15nm以下、更に好ましくは10nm以下とするのが良い。
 図12(A)~(C)に、実施例1から、粒状多孔体の貫通孔径と細孔径の少なくとも何れか一方を変更した3通り(実施例22~24)の粒状多孔体を用いた本カラムで、実施例1と同じ要領で、反応対象が銅イオンの場合の濃度比の評価を行った結果を示す。図12(A)に示す実施例22の貫通孔径と細孔径は、0.1μm、2nmで、空間速度SVは32である。図12(B)に示す実施例23の貫通孔径と細孔径は、1μm、15nmで、空間速度SVは32である。図12(C)に示す実施例23の貫通孔径と細孔径は、50μm、10nmで、空間速度SVは32である。実施例22~24の各粒径範囲について、測定回1~5の濃度比の平均値(取りこぼし率)を計算し、取りこぼし率50%となる粒径範囲の上限値を、上述の関係式の係数Ai及び定数Biを算出したのと同じ要領で求めると、夫々、2.28mm、1.61mm、2.35mmとなり、空間速度SVが32における接触時間112.5秒から数7で与えられる上限値D1(=2.79)以下となっており、貫通孔径が0.1~50μmで適用可能であることが分かる。
 [循環式のカラム通流法及び浸透法]
 次に、接触方式が循環式のカラム通流法または振盪法の場合の粒径範囲の上限値D1(mm)は、下記の数8に示す接触時間T(秒)を変数とする1次式からなる関係式で与えられる。Ciは反応対象iにおける1次項の係数で、Diは反応対象iにおける定数項である。接触時間T(秒)は、循環式のカラム通流法の場合、液体の通流時間(秒)に、粒状多孔体の容積(カラム容積)を液体の容積で除した容積比Rを乗じた値で与えられ、振盪法の場合、液体中に粒状多孔体を添加してからの経過時間に上記容量比Rを乗じた値で与えられる。
 (数8)
 D1=Ci×T+Di
 先ず、上記数8の係数Ciと定数Diを導出する前に、振盪法における「取りこぼし率」と、粒状多孔体の粒径範囲、貫通孔径、及び、細孔径との関係について検討する。
 振盪法は、貴金属を含む溶液から当該貴金属を捕集する方法として利用される。貴金属の捕集で利用される振盪法では、捕集対象の金属を含む溶液内に、吸着体となる粒状多孔体を添加して、撹拌または振盪して補修対象である貴金属を吸着除去するものである。尚、本実施形態では、撹拌も振盪の一態様として扱う。
 パラジウムイオンを含む溶液として、実施例8~12と同じ、初期濃度165μg/mLのジニトロジアンミンパラジウム(II)水溶液4mLを用意した。図13に示す粒径範囲、貫通孔径、細孔径の60通りの組み合わせの粒状多孔体と、図13に示す粒径範囲、細孔径の4通りの組み合わせの比較例としての市販の単一孔粒子のシリカゲルを、夫々10mg、当該水溶液を収容した容器内に各別に添加して、回転数33rpmで撹拌して、添加してから2時間経過後と24時間経過後に、当該水溶液の反応後のパラジウムイオン濃度(反応後濃度)を紫外可視吸光光度計にて測定した。上記60通りの粒状多孔体と4通りの比較例のシリカゲルの何れにも、上記実施例1と同じ官能基のメルカプトプロピルが導入されている。
 上記60通りの粒状多孔体では、粒径範囲として、0.106~0.25mm、0.25~0.5mm、0.5~1mm、1~2mm、2~4mm、4~8mmの6通りを準備し、貫通孔径として、0.1μm、0.5μm、1μm、10μm、50μmの5通りを準備し、細孔径として、2nm、10nm、15nm、20nm、30nm、40nmの6通りを準備した。上記4通りの比較例のシリカゲルでは、粒径範囲として、0.106~0.25mm、0.25~0.5mm、0.5~1mm、1~2mmの6通りを準備し、細孔径は2nmのみを準備した。粒径範囲、貫通孔径、細孔径の組み合わせは、図13に示す通りであり、説明は割愛する。
 図13では、6通りの粒径範囲を横方向に配列し、粒状多孔体の10通りの貫通孔径と細孔径の組み合わせ及び1通りの比較例のシリカゲルの細孔径を縦方向に配列して、6×11の配列を構成し、当該配列の各セル内に、測定した反応後濃度を初期濃度で除した濃度比を夫々記入した。濃度比が50%を超えるもの、つまり取りこぼし率が50%以上のセルには、便宜的に網掛けを施している。
 振盪法においても、上述の非循環式のカラム通流法と同様に、反応を効率的に維持するには、当該取りこぼし率は50%以下に抑える必要があると考え、取りこぼし率は50%以下を実用範囲とする。
 図13より、粒状多孔体の粒径範囲が大きい程、濃度比が高くなり、取りこぼし率が増加している。経過時間が短い方が、同じ粒径範囲、貫通孔径と細孔径の組み合わせでも、濃度比が高くなり、取りこぼし率が増加している。この傾向は、上述の非循環式のカラム通流法と同様である。
 図13より、取りこぼし率が50%以下となる粒径範囲と細孔径の組み合わせでは、貫通孔径の変化による取りこぼし率の変化は、粒径範囲と細孔径に比べて顕著でないことが分かる。この傾向は、接触方式が非循環式のカラム通流法の場合と同様である。
 図13より、同じ経過時間で、同じ粒径範囲であれば、細孔径が大きくなるほど、取りこぼし率が増加する傾向が見られる。これは、細孔径が大きくなると、粒状多孔体の比表面積が小さくなり、性能が低下するためである。細孔径が20nmの場合、経過時間24時間では、粒径範囲1mm以下で取りこぼし率50%以下となり、細孔径が15nmの場合、経過時間24時間では、粒径範囲4mm以下で取りこぼし率50%以下となるが、粒径範囲が大きくなるか、或いは、経過時間が短くなると、取りこぼし率が50%を超える。従って、条件によっては、細孔径の上限値は、20nmも可能であるが、より好ましくは15nm、更に好ましくは10nmとするのが良い。当該傾向も、接触方式が非循環式のカラム通流法の場合と同様である。
 図13より、上記4通りの比較例のシリカゲルの取りこぼし率は、何れも87%以上であり、何れの粒径範囲においても、実用に適していないことが分かる。
 次に、粒状多孔体の表面に、図13に示した60通りの実施例(以下、便宜的に「実施例A」)に使用した粒状多孔体の表面に導入した官能基とは別の官能基アミノエチルアミノプロピルを導入した実施例B及びCについて、簡単に説明する。実施例Bでは、反応対象の金属イオンとして、実施例Aと同じパラジウムイオンとし、実施例Cでは、反応対象の金属イオンとして、実施例Aとは異なるルテニウムイオンとした。実施例Bでは、実施例Aと同じ初期濃度165μg/mLのジニトロジアンミンパラジウム(II)水溶液4mLを用意し、実施例Cでは、ルテニウムイオンを含む溶液として、初期濃度250μg/mLの三塩化ルテニウム水溶液を4mL準備した。実施例B及びCで使用する粒状多孔体の貫通孔径と細孔径は、1μmと2nmである。実施例B及びCにおいて、実施例Aで行ったのと同じ要領で、取りこぼし率の測定を行った。
 図14に、実施例Bの各粒径範囲における取りこぼし率の測定結果を示す。図15に、実施例Cの各粒径範囲における取りこぼし率の測定結果を示す。
 図14と、図13の同じ貫通孔径と細孔径の組み合わせを、経過時間2時間と24時間の夫々で比較すると、経過時間2時間では、何れも、粒径範囲2mm以下で、取りこぼし率が50%以下となっており、経過時間24時間では、何れも、全ての粒径範囲で、取りこぼし率が50%以下となっており、粒径範囲毎の個々の数値に違いはあるものの、全体として、官能基の違いによる性能の大きな違いは見られない。
 次に、図14と図15を、経過時間2時間と24時間の夫々で比較すると、経過時間2時間では、何れも、粒径範囲2mm以下で、取りこぼし率が50%以下となっており、経過時間24時間では、何れも、全ての粒径範囲で、取りこぼし率が50%以下となっており、粒径範囲毎の個々の数値に違いはあるものの、全体として、金属イオンの違いによる性能の大きな違いは見られない。
 次に、反応対象iとして、パラジウムイオンを用いて、振盪法における上記数8の係数Ciと定数Diを導出する手順を説明する。
 当該導出手順では、図13に示した60通りの実施例Aとは別に、粒径範囲として、実施例Aと同じ6通りの粒径範囲で、貫通孔径と細孔径の組み合わせは、実施例Aの6通りの組み合わせの内の3通り(貫通孔径/細孔径:0.1μm/2nm、0.5μm/2nm、1μm/2nm)の粒状多孔体を準備した。当該粒状多孔体の表面には、実施例Aと同じ官能基のメルカプトプロピルが導入されている。
 また、パラジウムイオンを含む溶液として、実施例Aと同じ初期濃度165μg/mLのジニトロジアンミンパラジウム(II)水溶液を、4mLを18通りと1mLを6通り、計24通りの試料を用意し、18通りの当該4mLの水溶液に、上記3通りの貫通孔径と6通りの粒径範囲の計18通りの粒状多孔体0.03mLを各別に添加し、6通りの当該1mLの水溶液に、貫通孔径1μmの6通りの粒径範囲の粒状多孔体0.01mLを各別に添加し、夫々、回転数33rpmで撹拌した。
 上記4mL溶液の計18通りのサンプルに対して、粒状多孔体を添加してから10分、30分、60分、120分、及び、1440分経過後の5つの測定点において、当該水溶液の反応後のパラジウムイオン濃度(反応後濃度)を紫外可視吸光光度計にて測定し、反応後濃度と初期濃度の濃度比(反応後濃度/初期濃度)から取りこぼし率を算出した。更に、上記1mL溶液の計6通りのサンプルに対して、粒状多孔体を添加してから2分、7分、12分、及び、20分経過後の4つの測定点において、当該水溶液の反応後のパラジウムイオン濃度(反応後濃度)を紫外可視吸光光度計にて測定し、反応後濃度と初期濃度の濃度比(反応後濃度/初期濃度)から取りこぼし率を算出した。
 次に、水溶液の容積と貫通孔径が同じ組み合わせに対して、6通りの粒径範囲毎の取りこぼし率から、上記5点の各測定点における取りこぼし率50%となる粒径を算出する。具体的には、取りこぼし率50%の前後の取りこぼし率の粒径範囲の中央値を線形補間して、取りこぼし率50%となる粒径中央値を求め、粒径範囲の上限値と中央値の比率(本実施形態では、1.33倍)を乗じて、粒径の上限値D1(mm)を算出した。
 尚、振盪法の場合、溶液の容積と添加する粒状多孔体の容積の比率は1通りではないので、当該比率の異なる場合を単純に比較できないので、本実施形態では、上記経過時間に、粒状多孔体の容積を溶液の容積で除した容積比を乗じて、秒に換算した値を、上記数8の関係式の接触時間T(秒)とする。当該容積比による補正で、振盪法の経過時間を、非循環式のカラム通流法における接触時間T(空間速度SVの逆数を秒に換算した値)に対応した値となる。
 図16は、上記要領で算出した粒径の上限値D1と対応する接触時間T(秒)をプロットした図である。図16の縦軸が上限値D1(対数表示)で、横軸が接触時間T(対数表示)である。図16では、溶液の容積(4mLと1mL)と貫通孔径(0.1μm、0.5μm、1μm)の4通りの組み合わせ別に、算出点を結んで折れ線表示している。以下便宜的に、溶液の容積と貫通孔径の4通りの組み合わせ(4mL/0.1μm、4mL/0.5μm、4mL/1μm、1mL/1μm)を、夫々記載順に、実施例E1~E4と称す。図16では、循環式のカラム通流法の結果も重ねて表示しているが、これについては後述する。
 溶液の容積が4mLの実施例E1~E3の場合、経過時間が24時間(容積比で補正された接触時間Tが648秒)では、貫通孔径の違いによる差異が見られるが、必ずしも貫通孔径の違いに起因する差異とは限らず、経過時間が長時間であることに起因する測定誤差とも考えられる。
 図16より、接触時間Tが数100秒以下では、実施例E1~E4の何れも、上限値D1が、ほぼ同じ直線上に分布していることが分かる。実施例E3とD4も、同じ直線上に分布していることから、経過時間を上記容積比で乗じて接触時間Tを求める補正が妥当であることが分かる。以上より、図16に示す結果より、振盪法では、取りこぼし率50%以下を実現するための粒径範囲の上限値D1は、上記接触時間Tの1次関数で表されることが分かる。
 図16にプロットした各実施例E1~E4の上限値D1と対応する接触時間Tから、上記数8の1次関数の係数Ci及び定数Diを、最小二乗誤差法で近似的に算出することができる。
 次に、反応対象iとして、銅イオンを用いて、接触方式が循環式のカラム通流法における上記数8の係数Ciと定数Diを導出する手順を説明する。
 当該導出手順では、粒径範囲として、実施例Aと同じ6通りの粒径範囲で、貫通孔径1μm、細孔径2nmの粒状多孔体を準備した。当該粒状多孔体の表面には、実施例A及びE1~E4と同じ官能基のメルカプトプロピルが導入されている。上記粒状多孔体を、内径6mm、長さ20mmのカラム容器内に充填して、循環式のカラム通流法で使用する本カラムとした(実施例Fと称す)。カラム容積は、非循環式のカラム通流法の場合と同様、0.56mLである。
 また、銅イオンを含む溶液として、酢酸銅水溶液(濃度0.5mg/mL)30mLを用意し、流速10mL/minで上記本カラム内を持続的に循環させ、つまり、カラム出口から出た溶液を、カラム入口に戻して循環させた。循環を開始してから、30分、60分、120分、及び、1440分経過後の4つの測定点において、当該水溶液の反応後の銅イオン濃度(反応後濃度)を紫外可視吸光光度計にて測定し、反応後濃度と初期濃度の濃度比(反応後濃度/初期濃度)から取りこぼし率を算出した。図17に各測定点での濃度比の測定結果を示す。
 次に、6通りの粒径範囲毎の取りこぼし率から、上記4点の各測定点における取りこぼし率50%となる粒径を算出する。具体的には、取りこぼし率50%の前後の取りこぼし率の粒径範囲の中央値を線形補間して、取りこぼし率50%となる粒径中央値を求め、粒径範囲の上限値と中央値の比率(本実施形態では、1.33倍)を乗じて、粒径の上限値D1(mm)を算出した。
 尚、循環式のカラム通流法の場合、非循環式のカラム通流法の場合と異なり、カラム出口から出た溶液はカラム入口に戻され再度反応に供されるため、非循環式のカラム通流法で採用した接触時間T(空間速度SVの逆数を秒に換算した値)をそのまま使用するには、明らかに問題がある。また、循環式のカラム通流法の場合、非循環式のカラム通流法の場合と異なり、循環を持続させることで、溶液全体と粒状多孔体の全体が相互に接触するため、振盪法に近い挙動になると考えられる。また、溶液の容積と添加する粒状多孔体の容積の比率は1通りではない点も、振盪法と同じであるので、当該比率の異なる場合を単純に比較できない。
 よって、本実施形態では、振盪法と同様に、上記通流を開始してからの経過時間(溶液の通流時間)に、粒状多孔体の容積を溶液の容積で除した容積比を乗じて、秒に換算した値を、上記数8の関係式の接触時間T(秒)とする。
 上記要領で算出した粒径の上限値D1と対応する接触時間T(秒)を、振盪法の結果との対比を容易にするために、図16に、実施例E1~E4の振盪法の結果と重ねてプロットした。
 図16より、実施例E1~E4の振盪法の結果と、実施例Fの循環式のカラム通流法の結果は、図16のグラフ上で、ほぼ同じ位置に重なって分布していることが分かり、実施例E1~E4と同様に、上限値D1が、ほぼ同じ直線上に分布していることが分かる。つまり、図16に示す結果より、循環式のカラム通流法の場合も、振盪法の場合と同様に、取りこぼし率50%以下を実現するための粒径範囲の上限値D1は、上記接触時間Tの1次関数で表されることが分かる。
 図16にプロットした各実施例E1~E4及びFの上限値D1と対応する接触時間Tから、上記数8の1次関数の係数Ci及び定数Diを、最小二乗誤差法で近似的に算出することができる。但し、本実施形態では、算出された各実施例E1~E4及びFの係数Ci及び定数Diを平均して、上記数8に示す1次関数の係数Ci及び定数Diとする。そのようにして導出された1次関数を、下記の数9に表示する。
 (数9)
 D1=0.0315×T+0.470
 尚、接触方式が振盪法と循環式のカラム通流法の説明では、専ら、反応対象iが金属イオンの場合について説明したが、非循環式のカラム通流法では、金属イオンと分子量2000以下の低分子加工物の間で、粒径範囲の上限値D1と接触時間の関係において、共通する傾向が見られたので、振盪法と循環式のカラム通流法の場合にも、同様の共通性が存在していると考えられる。
 [別実施形態]
 以下に、本反応方法及び粒状多孔体の別実施形態につき説明する。
〈1〉 上記実施形態では、粒状多孔体1の骨格体2を構成する無機化合物として、シリカ(シリカゲルまたはシリカガラス)を想定したが、当該無機化合物は、シリカに限定されるものではなく、アルミニウム、リン、ゲルマニウム、スズ等の典型金属元素や、チタン、ジルコニウム、バナジウム、クロム、鉄、コバルト、ニッケル、パラジウム、白金、銅、銀、金、亜鉛等を始めとする遷移金属元素を含む酸化物多孔体も、利用可能である。更に、これらに、リチウム、ナトリウム等のアルカリ金属元素や、マグネシウム、カルシウム等のアルカリ土類金属元素、ランタン、セリウム等のランタン系元素を含む複合体からなる無機酸化物多孔体も、利用可能である。
 一例として、粒状多孔体1の骨格体2がチタニア(TiO)の場合における、粒状化前のチタニアモノリス多孔体の合成法の一例を簡単に説明する。
 ポリエチレングリコール(平均分子量10000)0.4gを含有する1-プロパノール2.5mLとアセト酢酸エチル2.5mLの混合溶液にチタン酸テトラn-プロピル5.0mLを加えた後、1mol/Lの硝酸アンモニウム水溶液1.0mLを攪拌しながら加えて均一溶液とし、密閉容器内に移して40℃で1日間静置してゲル化させる。得られたゲルを、水・エタノールの混合溶媒に1日浸して洗浄した後、自然乾燥させ500℃で5時間焼結すると、チタニアモノリス多孔体が得られる。
 骨格体2を構成する無機化合物がチタニアの場合、シリカと比べて、耐酸性・耐アルカリ性に優れており、シリカはpH2以下またはpH11以上の水溶液中で溶解するのに対し、チタニアは溶解することなく使用できる。
 〈2〉 上記実施形態では、モノリス多孔体の合成方法に関して、具体的な数値(分量、温度、時間等)を明示した実施例を説明したが、当該合成方法は、当該実施例で例示された数値条件に限定されるものではない。
 〈3〉 上記実施形態では、粒状多孔体1が、貫通孔3と細孔4からなる2段階階層的多孔構造を有するため、粒状多孔体1の作製過程のモノリス多孔体も、同様の2段階階層的多孔構造を有する場合を想定した。しかし、粒状化前のモノリス多孔体が、貫通孔3と細孔4以外に、貫通孔3より大きな孔径の空孔を有する3段階階層的多孔構造を有していても良い。この場合、モノリス多孔体を粉砕して粒状化し、粒状多孔体1を作製する際に、当該空孔に沿って骨格体2が粉砕されるため、空孔の形成過程において、当該空孔に囲まれた骨格体2の径をある程度均一化することで、粉砕後の粒状多孔体1の粒子径Dpを、一定範囲内に効率良く揃えることが可能となる。
 〈4〉 上記実施形態では、取りこぼし率の測定に具体的に使用した反応対象iとして、金属イオンの場合は、銅イオン、パラジウムイオン、ルテニウムイオンを、青色色素の場合は、ベーシックブルー17を、黒糖の場合は、波照間産黒糖を採用したが、反応対象iとしての金属イオン、分子量2000以下の低分子化合物、分子量2000以上1000000以下の化合物は、これらに限定されるものではない。
 本発明に係る本反応方法、粒状多孔体及びカラムは、吸着、イオン交換、錯形成、触媒反応等の金属イオン等の反応対象を含む液体を当該粒状多孔体に接触させて反応させる種々の反応方法、更に、フィルター、吸着材、反応材、固相触媒等の液体と接触させる方法、特に、溶液中の金属の吸着方法及び回収材に利用可能である。
 1:   粒状多孔体
 2:   骨格体
 3:   貫通孔
 4:   細孔

Claims (13)

  1.  反応対象を含む液体を粒状多孔体に接触させて反応させる反応方法であって、
     前記反応対象が金属イオンまたは分子量2000以下の範囲の低分子化合物であり、
     前記粒状多孔体を充填してなるカラムに前記液体を通流させて前記粒状多孔体内に拡散させるカラム通流法、或いは、前記液体中に前記粒状多孔体を分散して添加し、前記液体及び前記粒状多孔体を振盪させて前記液体を前記粒状多孔体内に拡散させる振盪法を用い、
     前記粒状多孔体が、3次元連続網目構造の無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有し、
     前記細孔の孔径分布の最頻孔径が、前記反応対象が金属イオンの場合は、2nm以上20nm以下の範囲内にあり、前記反応対象が前記低分子化合物の場合は、5nm以上50nm以下の範囲内にあり、
     前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上50μm以下の範囲内にあり、
     前記粒状多孔体の粒子径が、前記貫通孔の最頻孔径の2倍以上、且つ、20μm以上で、前記液体と前記粒状多孔体の接触時間T(秒)に依存して定まる上限値D(mm)以下の範囲内にあり、
     前記上限値Dは、
      前記液体中の前記反応対象の濃度を一定に維持して持続的に通流させる非循環式の前記カラム通流法では、
      D=0.556×LN(T)+0.166
    により与えられ、但し、関数LNは自然対数であり、
      反応後の前記液体を前記カラムに戻して持続的に循環させる循環式の前記カラム通流法及び前記振盪法では、
      D=0.0315×T+0.470
    により与えられ、
     前記接触時間T(秒)は、
      非循環式の前記カラム通流法では、前記粒状多孔体の容積(m)を前記液体の通流速度(m/秒)で除した値で与えられ、
      循環式の前記カラム通流法では、前記液体の通流時間(秒)に、前記粒状多孔体の容積を前記液体の容積で除した容積比を乗じた値で与えられ、
      前記振盪法では、前記液体中に前記粒状多孔体を添加してからの経過時間(秒)に、前記容積比を乗じた値で与えられることを特徴とする反応方法。
  2.  前記反応対象が金属イオンであり、前記粒状多孔体の表面に、前記金属イオンと親和性を有する官能基が化学修飾されていることを特徴とする請求項1に記載の反応方法。
  3.  前記金属イオンが、前記官能基と錯形成反応を起こして前記粒状多孔体の表面に吸着することを特徴とする請求項2に記載の反応方法。
  4.  反応対象を含む液体を粒状多孔体に接触させて反応させる反応方法であって、
     前記反応対象が分子量2000以上1000000以下の範囲の化合物であり、
     前記液体中の前記反応対象の濃度を一定に維持して前記粒状多孔体を充填してなるカラムに前記液体を持続的に通流させて前記粒状多孔体内に拡散させる非循環式のカラム通流法を用い、
     前記粒状多孔体が、3次元連続網目構造の無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有し、
     前記細孔の孔径分布の最頻孔径が、10nm以上100nm以下の範囲内にあり、
     前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上50μm以下の範囲内にあり、
     前記粒状多孔体の粒子径が、前記貫通孔の最頻孔径の2倍以上、且つ、20μm以上で、前記液体と前記粒状多孔体の接触時間T(秒)に依存して定まる上限値D(mm)以下の範囲内にあり、
     前記上限値Dは、
     D=0.198×LN(T)+0.270
    により与えられ、但し、関数LNは自然対数であり、
     前記接触時間Tは、前記粒状多孔体の容積(m)を前記液体の通流速度(m/秒)で除した値で与えられることを特徴とする反応方法。
  5.  前記粒状多孔体の表面に、前記反応対象と親和性を有する官能基が化学修飾されていることを特徴とする請求項4に記載の反応方法。
  6.  前記粒状多孔体が、ゾルゲル法にて作製された塊状多孔体を粉砕して粒状化したものであり、
     前記塊状多孔体が、3次元連続網目構造の前記無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔を有する少なくとも2段階階層的多孔構造を有し、
     前記塊状多孔体の細孔の孔径分布の最頻孔径が、前記粒状多孔体の細孔の孔径分布の最頻孔径と同じ範囲内にあり、
     前記塊状多孔体の貫通孔の孔径分布の最頻孔径が、前記粒状多孔体の貫通孔の孔径分布の最頻孔径と同じ範囲内にあることを特徴とする請求項1~5の何れか1項に記載の反応方法。
  7.  前記無機化合物がシリカまたはチタニアであることを特徴とする請求項1~6の何れか1項に記載の反応方法。
  8.  金属イオンとの反応に使用される粒状多孔体であって、
     3次元連続網目構造の無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有し、
     前記細孔の孔径分布の最頻孔径が、2nm以上20nm以下の範囲内にあり、
     前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上50μm以下の範囲内にあり、
     前記粒状多孔体の粒子径が、前記貫通孔の最頻孔径の2倍以上、且つ、20μm以上で、4mm以下の範囲内にあり、
     前記粒状多孔体の表面に、前記金属イオンと親和性を有する官能基が化学修飾されていることを特徴とする粒状多孔体。
  9.  前記官能基は、前記金属イオンと錯形成反応を起こして、前記金属イオンを前記粒状多孔体の表面に吸着させる機能を有することを特徴とする請求項8に記載の粒状多孔体。
  10.  ゾルゲル法にて作製された塊状多孔体を粉砕して粒状化したものであり、
     前記塊状多孔体が、3次元連続網目構造の前記無機化合物からなる骨格体を有し、更に、前記骨格体の間隙に形成された貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔を有する少なくとも2段階階層的多孔構造を有し、
     前記塊状多孔体の細孔の孔径分布の最頻孔径が、前記粒状多孔体の細孔の孔径分布の最頻孔径と同じ範囲内にあり、
     前記塊状多孔体の貫通孔の孔径分布の最頻孔径が、前記粒状多孔体の貫通孔の孔径分布の最頻孔径細孔と同じ範囲内にあることを特徴とする請求項8または9に記載の粒状多孔体。
  11.  前記無機化合物がシリカまたはチタニアであることを特徴とする請求項8~10の何れか1項に記載の粒状多孔体。
  12.  金属イオンとの反応に使用されるカラムであって、
     請求項8~11の何れか1項に記載の粒状多孔体が、カラム容器内に充填されていることを特徴とするカラム。
  13.  前記粒状多孔体の粒子径が、前記金属イオンを含む液体と前記粒状多孔体の接触時間T(秒)に依存して定まる上限値D(mm)以下であり、
     前記液体の通流が非循環式である場合は、
     前記上限値Dは、
     D=0.556×LN(T)+0.166
    により与えられ、但し、関数LNは自然対数であり、
     前記接触時間Tは、前記粒状多孔体の容積(m)を前記液体の通流速度(m/秒)で除した値で与えられ、
     前記液体の通流が循環式である場合は、
     前記上限値Dは、
     D=0.0315×T+0.470
    により与えられ、
     前記接触時間Tは、前記液体の通流時間(秒)に、前記粒状多孔体の容積を前記液体の容積で除した容積比を乗じた値で与えられることを特徴とする請求項12に記載のカラム。
PCT/JP2016/069309 2015-06-30 2016-06-29 粒状多孔体に接触させて反応させる反応方法 WO2017002871A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017526406A JP6501282B2 (ja) 2015-06-30 2016-06-29 粒状多孔体に接触させて反応させる反応方法
EP16817979.4A EP3318322B1 (en) 2015-06-30 2016-06-29 Reaction method for reacting in contact with granular porous body
US15/737,674 US11207660B2 (en) 2015-06-30 2016-06-29 Reaction method for reacting reaction object with liquid containing the reaction object being in contact with granular porous body
CN201680039129.0A CN107708851B (zh) 2015-06-30 2016-06-29 与粒状多孔体接触而进行反应的反应方法
US17/530,893 US20220072510A1 (en) 2015-06-30 2021-11-19 Reaction method for reacting reaction object with liquid containing the reaction object being in contact with granular porous body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015132242 2015-06-30
JP2015-132242 2015-06-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/737,674 A-371-Of-International US11207660B2 (en) 2015-06-30 2016-06-29 Reaction method for reacting reaction object with liquid containing the reaction object being in contact with granular porous body
US17/530,893 Division US20220072510A1 (en) 2015-06-30 2021-11-19 Reaction method for reacting reaction object with liquid containing the reaction object being in contact with granular porous body

Publications (1)

Publication Number Publication Date
WO2017002871A1 true WO2017002871A1 (ja) 2017-01-05

Family

ID=57608564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069309 WO2017002871A1 (ja) 2015-06-30 2016-06-29 粒状多孔体に接触させて反応させる反応方法

Country Status (5)

Country Link
US (2) US11207660B2 (ja)
EP (1) EP3318322B1 (ja)
JP (1) JP6501282B2 (ja)
CN (1) CN107708851B (ja)
WO (1) WO2017002871A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163834A1 (ja) 2021-01-29 2022-08-04 三井金属鉱業株式会社 多孔質体、該多孔質体を含む吸着材並びに該吸着材を使用した金属及び/又は金属イオンの除去方法
WO2023120522A1 (ja) * 2021-12-22 2023-06-29 三井金属鉱業株式会社 アミノ化合物担持多孔質基材及び酸性ガス吸着材
WO2023190445A1 (ja) * 2022-03-29 2023-10-05 三井金属鉱業株式会社 吸着材の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504515A (ja) * 2002-10-31 2006-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 有機ポリマーでコーティングした無機一体成形品
JP2006192420A (ja) * 2004-03-31 2006-07-27 Showa Denko Kk 分析用前処理カラム
JP2009265047A (ja) * 2008-04-30 2009-11-12 Kyoto Univ 長距離秩序を有するメソ孔を含む階層的多孔質体による固液接触デバイスおよび分離媒体
JP2013003065A (ja) * 2011-06-20 2013-01-07 Gl Sciences Inc 多孔質体およびその製造方法
JP2016070937A (ja) * 2014-09-29 2016-05-09 株式会社エスエヌジー 粒状多孔体、液体クロマトグラフィー用カラム、及び、粒状多孔体の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1075867A1 (en) * 1998-04-02 2001-02-14 Toto Ltd. Humidity-controlling functional material and process for the production thereof
JP2005008424A (ja) * 2002-07-10 2005-01-13 Matsushita Electric Ind Co Ltd 多孔体およびその製造方法
US7449165B2 (en) 2004-02-03 2008-11-11 Ut-Battelle, Llc Robust carbon monolith having hierarchical porosity
US20070196928A1 (en) 2004-03-31 2007-08-23 Kazuki Nakanishi Analytical Pretreatment Column
CN1938080A (zh) * 2004-03-31 2007-03-28 昭和电工株式会社 分析预处理柱
KR101044970B1 (ko) * 2009-09-15 2011-06-29 한서대학교 산학협력단 메조포러스 고분자 나노중합 합성체 소재 제조방법
JP4830046B1 (ja) * 2010-11-24 2011-12-07 株式会社Reiメディカル モノリス多孔体の製造方法
JP2014002008A (ja) 2012-06-18 2014-01-09 Renaissance Energy Investment:Kk 抗体精製方法、及び、抗体精製用カラム
EP2829873B1 (en) * 2012-08-27 2017-11-22 Shinwa Chemical Industries, Ltd. Porous silica powder
WO2014083729A1 (ja) * 2012-11-30 2014-06-05 国立大学法人京都大学 マクロ多孔性モノリスとその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504515A (ja) * 2002-10-31 2006-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 有機ポリマーでコーティングした無機一体成形品
JP2006192420A (ja) * 2004-03-31 2006-07-27 Showa Denko Kk 分析用前処理カラム
JP2009265047A (ja) * 2008-04-30 2009-11-12 Kyoto Univ 長距離秩序を有するメソ孔を含む階層的多孔質体による固液接触デバイスおよび分離媒体
JP2013003065A (ja) * 2011-06-20 2013-01-07 Gl Sciences Inc 多孔質体およびその製造方法
JP2016070937A (ja) * 2014-09-29 2016-05-09 株式会社エスエヌジー 粒状多孔体、液体クロマトグラフィー用カラム、及び、粒状多孔体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3318322A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163834A1 (ja) 2021-01-29 2022-08-04 三井金属鉱業株式会社 多孔質体、該多孔質体を含む吸着材並びに該吸着材を使用した金属及び/又は金属イオンの除去方法
WO2022163833A1 (ja) 2021-01-29 2022-08-04 三井金属鉱業株式会社 吸着材を使用した方法
WO2022163832A1 (ja) 2021-01-29 2022-08-04 三井金属鉱業株式会社 柱状体、該柱状体を含む吸着材並びに該吸着材を使用した金属及び/又は金属イオンの除去方法
JP7186335B1 (ja) * 2021-01-29 2022-12-08 三井金属鉱業株式会社 多孔質体、該多孔質体を含む吸着材並びに該吸着材を使用した金属及び/又は金属イオンの除去方法
KR20230132794A (ko) 2021-01-29 2023-09-18 미쓰이금속광업주식회사 기둥상체, 해당 기둥상체를 포함하는 흡착재 그리고해당 흡착재를 사용한 금속 및/또는 금속 이온의 제거 방법
KR20230135080A (ko) 2021-01-29 2023-09-22 미쓰이금속광업주식회사 다공질체, 해당 다공질체를 포함하는 흡착재 그리고해당 흡착재를 사용한 금속 및/또는 금속 이온의 제거 방법
KR20230137904A (ko) 2021-01-29 2023-10-05 미쓰이금속광업주식회사 흡착재를 사용한 방법
WO2023120522A1 (ja) * 2021-12-22 2023-06-29 三井金属鉱業株式会社 アミノ化合物担持多孔質基材及び酸性ガス吸着材
WO2023190445A1 (ja) * 2022-03-29 2023-10-05 三井金属鉱業株式会社 吸着材の製造方法

Also Published As

Publication number Publication date
EP3318322B1 (en) 2021-03-03
CN107708851B (zh) 2021-12-21
JPWO2017002871A1 (ja) 2018-04-19
CN107708851A (zh) 2018-02-16
US11207660B2 (en) 2021-12-28
US20220072510A1 (en) 2022-03-10
EP3318322A4 (en) 2019-04-17
EP3318322A1 (en) 2018-05-09
US20180185821A1 (en) 2018-07-05
JP6501282B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
Santoso et al. Facile synthesis of ZIF-8 nanoparticles using polar acetic acid solvent for enhanced adsorption of methylene blue
Kachbouri et al. Tuning particle morphology of mesoporous silica nanoparticles for adsorption of dyes from aqueous solution
US20220072510A1 (en) Reaction method for reacting reaction object with liquid containing the reaction object being in contact with granular porous body
US10464811B2 (en) Method of forming a particulate porous metal oxide or metalloid oxide
EP1890964B1 (en) Mesocellular foam particles
JPS59222224A (ja) 表面多孔性マクロ粒子の製造法
JPH07112524B2 (ja) クロマトグラフィー分離用ビーズとその製法
CN112657475B (zh) 硼亲和功能化微球吸附剂及其制备方法和应用
JP2013542157A (ja) 不規則多孔質二酸化ケイ素材料の製造及びその製造における脂肪アルコールポリオキシエチレンエーテルの応用
CN101186301A (zh) 粒径均一的具活性基团的聚硅氧化物微球制备方法
CN107399740B (zh) 一种氟化两亲纳米颗粒及其应用
Johari et al. Synthesis and characterization of novel sulfur-functionalized silica gels as mercury adsorbents
CN111892060A (zh) 一种介孔二氧化硅微球的制备方法
CN107243358B (zh) 一种纳米级零价铁载体及其制备方法与应用
Li et al. Uniform and reactive hydrogen polysilsesquioxane hollow spheres immobilized with silver nanoparticles for catalytic reduction of methylene blue
CN111068677B (zh) 复合氧化物担载贵金属纳米簇催化剂及其制备和应用
CN112156730B (zh) 一种高纯度单分散多孔氧化硅球的制备方法
JP5771312B2 (ja) クロマトグラフィ充填剤用セラミックス粒子及びその製造方法
JPWO2004018099A1 (ja) 一体型反応性多孔質担体の製造方法
Mansor et al. Preparation and characterization of in situ entrapment of laccase in silica microparticles via an ambient drying procedure
JPS62105914A (ja) 多孔性シリカミクロスフエアおよびその製法
JP2016070937A (ja) 粒状多孔体、液体クロマトグラフィー用カラム、及び、粒状多孔体の製造方法
Fait et al. Incorporation of silica nanoparticles into porous templates to fabricate mesoporous silica microspheres for high performance liquid chromatography applications
Tarutani et al. Shell-thickness control of hollow SiO2 nanoparticles through post-treatment using sol–gel technique toward efficient water confinement
WO2020054134A1 (ja) 有機無機複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016817979

Country of ref document: EP