WO2016203696A1 - 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法 - Google Patents

非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法 Download PDF

Info

Publication number
WO2016203696A1
WO2016203696A1 PCT/JP2016/002272 JP2016002272W WO2016203696A1 WO 2016203696 A1 WO2016203696 A1 WO 2016203696A1 JP 2016002272 W JP2016002272 W JP 2016002272W WO 2016203696 A1 WO2016203696 A1 WO 2016203696A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
electrolyte secondary
secondary battery
Prior art date
Application number
PCT/JP2016/002272
Other languages
English (en)
French (fr)
Inventor
貴一 廣瀬
博道 加茂
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP16811177.1A priority Critical patent/EP3312916B1/en
Priority to CN201680035286.4A priority patent/CN107710466B/zh
Priority to US15/580,556 priority patent/US10418627B2/en
Priority to KR1020177036185A priority patent/KR102633418B1/ko
Publication of WO2016203696A1 publication Critical patent/WO2016203696A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • C01F7/36Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts from organic aluminium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, and a method for producing a negative electrode material for a nonaqueous electrolyte secondary battery.
  • This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.
  • lithium ion secondary batteries are highly expected because they are small in size and easy to increase in capacity, and can obtain higher energy density than lead batteries and nickel cadmium batteries.
  • the above lithium ion secondary battery includes a positive electrode, a negative electrode, and a separator together with an electrolyte, and the negative electrode includes a negative electrode active material involved in a charge / discharge reaction.
  • the negative electrode active material As the negative electrode active material, a carbon material is widely used, but further improvement in battery capacity is required due to recent market demand.
  • silicon As a negative electrode active material, use of silicon as a negative electrode active material has been studied. This is because the theoretical capacity of silicon (4199 mAh / g) is 10 times or more larger than the theoretical capacity of graphite (372 mAh / g), so that significant improvement in battery capacity can be expected.
  • the development of a siliceous material as a negative electrode active material has been examined not only for silicon itself but also for compounds represented by alloys and oxides.
  • the shape of the active material has been studied from a standard coating type for carbon materials to an integrated type directly deposited on a current collector.
  • the negative electrode active material when silicon is used as the negative electrode active material as the main raw material, the negative electrode active material expands and contracts during charge and discharge, so that it tends to break mainly near the surface of the negative electrode active material. Further, an ionic material is generated inside the active material, and the negative electrode active material is easily broken. When the negative electrode active material surface layer is cracked, a new surface is generated thereby increasing the reaction area of the active material. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a coating that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.
  • silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see, for example, Patent Document 1). Further, in order to obtain a high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (see, for example, Patent Document 2). Furthermore, in order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed ( For example, see Patent Document 3). Further, in order to improve the cycle characteristics, oxygen is contained in the silicon active material, the average oxygen content is 40 at% or less, and the oxygen content is increased at a location close to the current collector. (For example, refer to Patent Document 4).
  • Si phase (for example, see Patent Document 5) by using a nanocomposite containing SiO 2, M y O metal oxide in order to improve the initial charge and discharge efficiency.
  • the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios in the vicinity of the active material and current collector interface The active material is controlled within a range of 0.4 or less (see, for example, Patent Document 7).
  • a metal oxide containing lithium is used (see, for example, Patent Document 8).
  • a hydrophobic layer such as a silane compound is formed on the surface layer of the siliceous material (see, for example, Patent Document 9).
  • Patent Document 10 conductivity is imparted by using silicon oxide and forming a graphite film on the surface layer.
  • Patent Document 10 with respect to the shift value obtained from the Raman spectra for graphite coating, with broad peaks appearing at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 1.5 ⁇ I 1330 / I 1580 ⁇ 3.
  • particles having a silicon microcrystalline phase dispersed in silicon dioxide are used in order to improve high battery capacity and cycle characteristics (see, for example, Patent Document 11).
  • silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1: y (0 ⁇ y ⁇ 2) is used (see, for example, Patent Document 12).
  • a mixed electrode of silicon and carbon is prepared and the silicon ratio is designed to be 5 wt% or more and 13 wt% or less (see, for example, Patent Document 13).
  • lithium ion secondary battery As described above, in recent years, small electronic devices typified by mobile terminals and the like have been improved in performance and multifunction, and the lithium ion secondary battery as the main power source is required to increase the battery capacity. ing. As one method for solving this problem, development of a lithium ion secondary battery composed of a negative electrode using a siliceous material as a main material is desired.
  • a lithium ion secondary battery using a siliceous material is desired to have battery characteristics close to those of a lithium ion secondary battery using a carbon material.
  • the use of silicon oxide modified by insertion and partial desorption of Li as the negative electrode active material has improved the cycle retention rate and initial efficiency of the battery.
  • the modified silicon oxide since the modified silicon oxide has been modified using Li, its water resistance is relatively low. For this reason, the slurry containing the modified silicon oxide prepared during the production of the negative electrode is not sufficiently stabilized, and gas may be generated due to aging of the slurry. In some cases, it is difficult to use a device or the like that is used in general, or it is difficult to use.
  • the present invention has been made in view of the above problems, and provides a negative electrode active material for a non-aqueous electrolyte secondary battery that has high stability with respect to an aqueous slurry, high capacity, and good cycle characteristics and initial efficiency.
  • the purpose is to do.
  • the present invention has negative electrode active material particles, and the negative electrode active material particles contain a silicon compound containing a Li compound (SiO x : 0.5 ⁇ x ⁇ 1.6).
  • a negative electrode active material for a non-aqueous electrolyte secondary battery wherein at least part of the surface of the silicon compound is coated with a carbon coating, or the surface of the silicon compound or the surface of the carbon coating, or
  • a negative electrode active for a non-aqueous electrolyte secondary battery wherein at least a part of both of them is coated with a composite layer containing a composite made of an amorphous metal oxide and a metal hydroxide.
  • negative electrode active material particles containing a silicon compound are composed of amorphous metal oxide and metal hydroxide on the outermost surface. Since the composite layer containing the composite is included, the water resistance against the aqueous slurry is high. Further, when the composite is amorphous, Li is easily exchanged. Further, the present invention is excellent in conductivity because at least a part of the surface of the silicon compound is coated with a carbon film. Therefore, if the negative electrode active material of the present invention is used, a non-aqueous electrolyte secondary battery having a high battery capacity and a good cycle maintenance ratio utilizing the original characteristics of silicon oxide modified with Li can be industrially produced. Manufacturing in an advantageous production.
  • the metal oxide and the metal hydroxide contain at least one element selected from aluminum, magnesium, titanium, and zirconium.
  • the slurry becomes more stable at the time of electrode preparation.
  • the thickness of the composite layer is preferably 10 nm or less. Moreover, it is particularly preferable that the thickness of the composite layer is 5 nm or less.
  • the thickness of the composite layer is 10 nm or less, particularly 5 nm or less, the resistance of the silicon-based active material particles does not become excessively high, and good battery characteristics can be obtained.
  • the silicon compound preferably contains Li 2 SiO 3 as the Li compound.
  • Li silicate such as Li 2 SiO 3 is relatively stable as a Li compound, better battery characteristics can be obtained.
  • the silicon compound has a peak derived from a SiO 2 region given to -95 to -150 ppm as a chemical shift value obtained from a 29 Si-MAS-NMR spectrum.
  • the amount of Li compound such as Li silicate in the silicon compound is not excessive, and the SiO 2 component remains to some extent, so that the stability to the slurry during electrode preparation is further improved. .
  • the silicon compound has a peak intensity A derived from Li 2 SiO 3 given in the vicinity of ⁇ 75 ppm as a chemical shift value obtained from the 29 Si-MAS-NMR spectrum, and SiO given to ⁇ 95 to ⁇ 150 ppm.
  • the intensity B of the peak derived from the two regions preferably satisfies the relationship A> B.
  • the silicon compound if the amount of Li 2 SiO 3 is larger with respect to the SiO 2 component, it becomes a negative electrode active material that can sufficiently obtain the effect of improving battery characteristics by inserting Li.
  • a test cell comprising a negative electrode and a counter electrode lithium prepared by using a negative electrode active material obtained by mixing the negative electrode active material for a nonaqueous electrolyte secondary battery and a carbon-based active material is charged and discharged, and a discharge capacity is obtained.
  • the negative electrode active material for a non-aqueous electrolyte secondary battery It is preferable that the potential V of the negative electrode has a peak in the range of 0.40 V to 0.55 V at the time of discharging in which a current flows so as to desorb lithium.
  • the above-mentioned peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery.
  • the half width (2 ⁇ ) of the diffraction peak attributed to the Si (111) crystal plane obtained by X-ray diffraction of the silicon compound is 1.2 ° or more, and the crystallite size attributed to the crystal plane Is preferably 7.5 nm or less.
  • the silicon-based active material having such a half width and crystallite size has low crystallinity and a small amount of Si crystals, the battery characteristics can be improved.
  • the median diameter of the silicon compound is preferably 0.5 ⁇ m or more and 15 ⁇ m or less.
  • the median diameter is 0.5 ⁇ m or more, the area where a side reaction occurs on the surface of the silicon compound is small, and therefore, Li is not consumed excessively and the cycle maintenance rate of the battery can be maintained high. Further, if the median diameter is 15 ⁇ m or less, the expansion at the time of inserting Li is small, it is difficult to crack, and cracks are hardly generated. Furthermore, since the expansion of the silicon compound is small, for example, a negative electrode active material layer in which a carbon active material is mixed with a commonly used silicon-based active material is not easily destroyed.
  • the present invention provides a nonaqueous electrolyte secondary battery comprising any one of the above negative electrode active materials for nonaqueous electrolyte secondary batteries.
  • Such a secondary battery has a high cycle maintenance ratio and initial efficiency, and can be manufactured industrially.
  • the present invention provides a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery including negative electrode active material particles, which has a general formula SiO x (0.5 ⁇ x ⁇ 1.6). ), A step of forming a carbon film on the surface of the silicon oxide particles, and insertion and desorption of Li from the silicon oxide particles coated with the carbon film. A step of modifying the silicon oxide particles, and a step of forming a composite layer including a composite of an amorphous metal oxide and a metal hydroxide on the surface of the modified silicon oxide particles.
  • a negative electrode material for a non-aqueous electrolyte secondary battery is manufactured using the silicon oxide particles having the composite layer and having the composite layer formed therein.
  • the nonaqueous negative electrode which has the high battery capacity and the favorable cycle maintenance factor which utilized the original characteristic of the silicon oxide modified using Li A material can be obtained. Furthermore, since the negative electrode material manufactured in this way contains the silicon-based active material particles having the composite layer as described above, the slurry produced at the time of manufacturing the negative electrode becomes stable. That is, a negative electrode material capable of industrially producing a secondary battery can be obtained.
  • the composite layer forming step it is preferable to form the composite layer on the surface of the modified silicon oxide particles by hydrolysis and dehydration condensation of metal alkoxide.
  • the negative electrode active material of the present invention can improve the stability of the slurry produced during the production of the secondary battery, and if this slurry is used, an industrially usable coating film can be formed. Capacity, cycle characteristics, and initial charge / discharge characteristics can be improved. Moreover, the secondary battery of the present invention containing this negative electrode active material can be produced industrially superiorly, and the battery capacity, cycle characteristics, and initial charge / discharge characteristics are good. Moreover, the same effect can be acquired also in the electronic device, electric tool, electric vehicle, electric power storage system, etc. which used the secondary battery of this invention.
  • the method for producing a negative electrode material of the present invention provides a negative electrode material that can improve the stability of a slurry produced during the production of a secondary battery and can improve battery capacity, cycle characteristics, and initial charge / discharge characteristics. Can be manufactured.
  • Lithium ion secondary batteries using silicon-based active materials as the main material are expected to have cycle characteristics and initial efficiency close to those of lithium ion secondary batteries using carbon materials.
  • silicon-based active material modified with Li in order to obtain cycle characteristics and initial efficiency close to those of a secondary battery, it is difficult to produce a stable slurry, and it is difficult to produce a good quality negative electrode.
  • the present inventors have made extensive studies in order to obtain a negative electrode active material capable of easily producing a nonaqueous electrolyte secondary battery having a high battery capacity and good cycle characteristics and initial efficiency.
  • the present invention has been reached.
  • the negative electrode active material of the present invention includes silicon-based active material particles having a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6) containing a Li compound.
  • the negative electrode active material has a carbon film formed on at least a part of the surface of the silicon compound.
  • the negative electrode active material is coated with a composite layer including a composite composed of an amorphous metal oxide and a metal hydroxide, at least a part of the surface of the silicon compound or the surface of the carbon film, or both of them. Has been.
  • FIG. 1 shows an outline of the vicinity of the surface layer portion of the silicon compound 1.
  • a carbon film 2 is formed on the surface of the silicon compound 1.
  • the carbon film is formed on a part of the surface of the silicon compound.
  • the carbon film may be formed on the entire surface of the silicon compound.
  • a composite layer 3 including a composite made of amorphous aluminum oxide and aluminum hydroxide is formed on the surface of the silicon compound 1 and the surface of the carbon coating 2.
  • FIG. 1 illustrates the case where the composite of the composite layer 3 contains an aluminum element, it is not particularly limited to this and may contain other metal elements.
  • the composite layer 3 has an aluminum oxide region 3a and an aluminum hydroxide region 3b as shown in FIG.
  • the silicon-based active material particles have a composite layer containing a composite composed of an amorphous metal oxide and a metal hydroxide on the outermost surface, In contrast, the water resistance is high. Conventionally, an aqueous slurry containing a silicon oxide modified by insertion and desorption of Li changes with time and gas is generated, which is not suitable for mass production.
  • the silicon-based active material particles since the silicon-based active material particles have the composite layer as described above, it is difficult for gas generation due to aging of the slurry to occur, and a stable coating film can be obtained. Can be secured sufficiently. Further, when the composite is amorphous, Li is easily exchanged.
  • the present invention is excellent in conductivity because at least a part of the surface of the silicon compound is coated with a carbon film. Therefore, if the negative electrode active material of the present invention is used, a non-aqueous electrolyte secondary battery having a high battery capacity and a good cycle maintenance ratio utilizing the original characteristics of silicon oxide modified with Li can be industrially produced. Manufacturing in an advantageous production.
  • FIG. 2 shows a cross-sectional view of a negative electrode containing the negative electrode active material of the present invention.
  • the negative electrode 10 is configured to have a negative electrode active material layer 12 on a negative electrode current collector 11.
  • the negative electrode active material layer 12 may be provided on both surfaces or only one surface of the negative electrode current collector 11.
  • the negative electrode current collector 11 may not be provided in the negative electrode of the nonaqueous electrolyte secondary battery of the present invention.
  • the negative electrode current collector 11 is an excellent conductive material and is made of a material that is excellent in mechanical strength.
  • Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
  • the negative electrode current collector 11 preferably contains carbon (C) or sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved.
  • the current collector contains the above-described element, there is an effect of suppressing electrode deformation including the current collector.
  • content of said content element is not specifically limited, Especially, it is preferable that it is 100 ppm or less. This is because a higher deformation suppressing effect can be obtained.
  • the surface of the negative electrode current collector 11 may be roughened or may not be roughened.
  • the roughened negative electrode current collector is, for example, a metal foil subjected to electrolytic treatment, embossing treatment, or chemical etching.
  • the non-roughened negative electrode current collector is, for example, a rolled metal foil.
  • the negative electrode active material layer 12 may contain a plurality of types of negative electrode active materials such as carbon-based active materials in addition to silicon-based active material particles. Furthermore, other materials such as a thickener (also referred to as “binder” or “binder”) or a conductive aid may be included in battery design. The shape of the negative electrode active material may be particulate.
  • the negative electrode active material of the present invention includes silicon-based active material particles made of SiO x (0.5 ⁇ x ⁇ 1.6).
  • the silicon-based active material particles are a silicon oxide material (SiO x : 0.5 ⁇ x ⁇ 1.6), and the composition is preferably such that x is close to 1. This is because high cycle characteristics can be obtained.
  • the composition of the silicon oxide material in the present invention does not necessarily mean 100% purity, and may contain a small amount of impurity elements and Li.
  • the lower the crystallinity of the silicon compound the better.
  • the half-value width (2 ⁇ ) of a diffraction peak caused by the (111) crystal plane obtained by X-ray diffraction of a silicon-based active material using Cu—K ⁇ rays is 1.2 ° or more, and It is desirable that the crystallite size resulting from the crystal plane is 7.5 nm or less.
  • the median diameter of the silicon compound is not particularly limited, but is preferably 0.5 ⁇ m or more and 15 ⁇ m or less. This is because, within this range, it is easy to occlude and release lithium ions during charging and discharging, and the silicon-based active material particles are difficult to break. If the median diameter is 0.5 ⁇ m or more, the surface area is not too large, so that side reactions are unlikely to occur during charging and discharging, and the battery irreversible capacity can be reduced. On the other hand, a median diameter of 15 ⁇ m or less is preferable because the silicon-based active material particles are difficult to break and a new surface is difficult to appear.
  • the silicon-based active material includes Li 2 SiO 3 as a Li compound contained in the silicon compound. Since Li silicate such as Li 2 SiO 3 is relatively more stable than other Li compounds, a silicon-based active material containing these Li compounds can obtain more stable battery characteristics. These Li compounds can be obtained by selectively changing a part of the SiO 2 component generated inside the silicon compound to the Li compound and modifying the silicon compound.
  • the Li compound inside the silicon compound can be quantified by NMR (nuclear magnetic resonance) and XPS (X-ray photoelectron spectroscopy).
  • the XPS and NMR measurements can be performed, for example, under the following conditions.
  • XPS ⁇ Device X-ray photoelectron spectrometer, ⁇ X-ray source: Monochromatic Al K ⁇ ray, ⁇ X-ray spot diameter: 100 ⁇ m, Ar ion gun sputtering conditions: 0.5 kV 2 mm ⁇ 2 mm.
  • 29 Si MAS NMR (magic angle rotating nuclear magnetic resonance) Apparatus 700 NMR spectrometer manufactured by Bruker, ⁇ Probe: 4mmHR-MAS rotor 50 ⁇ L, Sample rotation speed: 10 kHz, -Measurement environment temperature: 25 ° C.
  • an electrochemical method when modifying the silicon compound, an electrochemical method, a modification by oxidation-reduction reaction, and a physical method such as thermal doping can be used.
  • the silicon compound when modified using an electrochemical technique and oxidation-reduction modification, the battery characteristics of the negative electrode active material are improved.
  • the modification may be performed not only by inserting Li into the silicon compound but also by detaching Li from the silicon compound. Thereby, stability with respect to slurry, such as water resistance of a negative electrode active material, improves more.
  • the silicon compound has a peak derived from the SiO 2 region given as -95 to -150 ppm as a chemical shift value obtained from the 29 Si-MAS-NMR spectrum. In this way, the stability to the slurry is further improved by leaving the SiO 2 region to some extent without changing all the SiO 2 regions in the silicon compound to the Li compound by the modification.
  • the peak intensity A derived from Li 2 SiO 3 given in the vicinity of ⁇ 75 ppm as a chemical shift value obtained from the 29 Si—MAS-NMR spectrum of the silicon compound is ⁇ 95 to It is preferable that the intensity B of the peak derived from the SiO 2 region given at ⁇ 150 ppm satisfies the relationship of A> B.
  • the silicon compound if the amount of Li 2 SiO 3 is relatively large when the SiO 2 component is used as a reference, the effect of improving battery characteristics by inserting Li can be sufficiently obtained.
  • the silicon-based active material particles have a composite layer containing a composite made of an amorphous metal oxide and a metal hydroxide on the surface of the silicon compound or the surface of the carbon coating.
  • the composite composed of the metal oxide and the metal hydroxide is preferably produced by hydrolysis and dehydration condensation of a metal alkoxide. This is because the metal oxide region and the hydroxide region are compatible in the composite layer.
  • the metal oxide and metal hydroxide preferably contain at least one element selected from aluminum, magnesium, titanium, and zirconium.
  • the outermost layer portion of the composite layer has a structure close to Al (OH) 3 . This is because the slurry becomes more stable during the production of the negative electrode.
  • a composite layer by sol-gel reaction treatment of aluminum isopropoxide.
  • a thin composite layer including a composite composed of amorphous aluminum oxide and aluminum hydroxide can be formed on the surface layer of the silicon-based active material.
  • the thickness of the composite layer is preferably 10 nm or less, and more preferably 5 nm or less. If the thickness of the composite layer is 10 nm or less, although it depends on the composition of the mixture, the electric resistance does not become too high, so the battery characteristics are improved. Further, when the film thickness is about 2 to 3 nm, it is possible to further improve the stability to the slurry while suppressing an increase in electrical resistance.
  • the film thickness of the composite layer can be confirmed with a TEM (transmission electron microscope).
  • a test cell composed of a negative electrode and a counter electrode lithium prepared by using the negative electrode active material obtained by mixing the negative electrode active material and the carbon-based active material of the present invention was charged and discharged, and the discharge capacity Q
  • the negative electrode at the time of discharge in which a current flows so that the negative electrode active material desorbs lithium It is preferable that the potential V has a peak in the range of 0.40V to 0.55V.
  • the above-mentioned peak in the V-dQ / dV curve is similar to the peak of the siliceous material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily developed when designing the battery.
  • silicon oxide particles represented by SiO x (0.5 ⁇ x ⁇ 1.6) are produced.
  • a carbon film is formed on the surface of the silicon oxide particles.
  • the silicon oxide particles are modified by inserting and removing Li from the silicon oxide particles.
  • a Li compound can be generated inside or on the surface of the silicon oxide particles.
  • a composite layer including a composite made of an amorphous metal oxide and a metal hydroxide is formed on the surface of the modified silicon oxide particles.
  • a negative electrode material and a negative electrode can be produced by mixing with a conductive additive or a binder.
  • the negative electrode material is manufactured by the following procedure, for example.
  • a raw material that generates silicon oxide gas is heated in a temperature range of 900 ° C. to 1600 ° C. in the presence of an inert gas or under reduced pressure to generate silicon oxide gas.
  • the raw material is a mixture of metal silicon powder and silicon dioxide powder, and considering the surface oxygen of the metal silicon powder and the presence of trace amounts of oxygen in the reactor, the mixing molar ratio is 0.8 ⁇ metal silicon powder / It is desirable that the silicon dioxide powder is in the range of ⁇ 1.3.
  • the Si crystallites in the particles are controlled by changing the preparation range and vaporization temperature, and by heat treatment after generation.
  • the generated gas is deposited on the adsorption plate. The deposit is taken out with the temperature in the reactor lowered to 100 ° C. or lower, and pulverized and powdered using a ball mill, a jet mill or the like.
  • a carbon film is formed on the surface layer of the obtained powder material (silicon compound).
  • the carbon coating is effective for further improving the battery characteristics of the negative electrode active material.
  • Pyrolysis CVD is desirable as a method for forming a carbon film on the surface layer of the powder material.
  • silicon oxide powder is set in a furnace, the furnace is filled with hydrocarbon gas, and the temperature in the furnace is raised.
  • the decomposition temperature is not particularly limited, but is particularly preferably 1200 ° C. or lower. More desirably, the temperature is 950 ° C. or lower, and unintended disproportionation of silicon oxide can be suppressed.
  • Hydrocarbon gas is not particularly limited, 3 ⁇ n of C n H m composition it is desirable. This is because the low production cost and the physical properties of the decomposition products are good.
  • the in-bulk reformer 20 includes a bathtub 27 filled with an organic solvent 23, a positive electrode (lithium source, reforming source) 21 disposed in the bathtub 27 and connected to one of the power sources 26, And a separator 24 provided between the positive electrode 21 and the powder storage container 25.
  • the powder storage container 25 is connected to the other side of the power source 26.
  • the powder storage container 25 stores silicon oxide powder 22.
  • a silicon compound (silicon oxide particles) is stored in the powder storage container, and a voltage is applied to the powder storage container and the positive electrode (lithium source) storing the silicon oxide particles by a power source. Thereby, since lithium can be inserted into and desorbed from the silicon oxide particles, the silicon oxide powder 22 can be modified.
  • organic solvent 23 in the bathtub 27 ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, fluoromethyl methyl carbonate, difluoromethyl methyl carbonate, or the like can be used.
  • electrolyte salt contained in the organic solvent 23 lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like can be used.
  • the positive electrode 21 may use a Li foil or a Li-containing compound.
  • the Li-containing compound include lithium carbonate, lithium oxide, lithium cobaltate, lithium olivine, lithium nickelate, and lithium vanadium phosphate.
  • the modification may be performed using a thermal dope method.
  • the powder material can be modified by mixing with LiH powder or Li powder and heating in a non-oxidizing atmosphere.
  • a non-oxidizing atmosphere for example, an Ar atmosphere can be used as the non-oxidizing atmosphere.
  • LiH powder or Li powder and silicon oxide powder are sufficiently mixed in an Ar atmosphere, sealed, and homogenized by stirring the sealed container. Thereafter, heating is performed in the range of 700 ° C. to 750 ° C. for reforming.
  • a method of sufficiently cooling the heated powder and then washing with alcohol, alkaline water, weak acid or pure water can be used.
  • a composite layer including a composite made of an amorphous metal oxide and a metal hydroxide is formed on the surface of the modified silicon oxide particles.
  • the composite layer is preferably formed by hydrolysis and dehydration condensation of a metal alkoxide. If it does in this way, a hydrolysis and dehydration condensation of a metal alkoxide will occur continuously, and a complex can be efficiently generated so that a metal oxide field and a metal hydroxide field may be compatible. More specifically, for example, the composite layer can be formed by the following procedure.
  • dehydrated ethanol, a silicon compound after modification of a mass of a quarter of the mass of dehydrated ethanol, and Al isopropoxide equivalent to 1.5% by mass of the modified silicon compound are put into a container, Stir for 3.5 hours. After stirring, ethanol is removed by suction filtration, and the silicon compound is vacuum-dried at 120 ° C. for 12 hours. At this time, the film thickness of the composite layer can be controlled by changing the mass of Al isopropoxide added simultaneously with the modifier.
  • a silicon-based active material containing silicon oxide particles having the above composite layer and, if necessary, a carbon-based active material are mixed, and these negative electrode active materials are mixed with other materials such as a binder and a conductive additive.
  • an organic solvent or water is added to form a slurry.
  • the negative electrode mixture slurry is applied to the surface of the negative electrode current collector 11 and dried to form the negative electrode active material layer 12. At this time, a heating press or the like may be performed as necessary. As described above, the negative electrode of the nonaqueous electrolyte secondary battery of the present invention can be produced.
  • Lithium ion secondary battery a laminated film type lithium ion secondary battery will be described as a specific example of the nonaqueous electrolyte secondary battery of the present invention.
  • a laminated film type lithium ion secondary battery 30 shown in FIG. 4 is one in which a wound electrode body 31 is accommodated mainly in a sheet-like exterior member 35.
  • the wound electrode body 31 has a separator between a positive electrode and a negative electrode, and is wound.
  • a separator is provided between the positive electrode and the negative electrode and a laminate is accommodated.
  • the positive electrode lead 32 is attached to the positive electrode
  • the negative electrode lead 33 is attached to the negative electrode.
  • the outermost peripheral part of the electrode body is protected by a protective tape.
  • the positive and negative electrode leads 32 and 33 are led out in one direction from the inside of the exterior member 35 to the outside, for example.
  • the positive electrode lead 32 is formed of a conductive material such as aluminum
  • the negative electrode lead 33 is formed of a conductive material such as nickel or copper.
  • the exterior member 35 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
  • This laminate film is formed of two films so that the fusion layer faces the electrode body 31.
  • the outer peripheral edges of the fusion layer are bonded together with an adhesive or an adhesive.
  • the fused part is, for example, a film such as polyethylene or polypropylene, and the metal part is aluminum foil or the like.
  • the protective layer is, for example, nylon.
  • An adhesion film 34 is inserted between the exterior member 35 and the positive and negative electrode leads to prevent intrusion of outside air.
  • This material is, for example, polyethylene, polypropylene, or polyolefin resin.
  • the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, similarly to the negative electrode 10 of FIG.
  • the positive electrode current collector is made of, for example, a conductive material such as aluminum.
  • the positive electrode active material layer includes any one or more of positive electrode materials capable of occluding and releasing lithium ions, and other materials such as a positive electrode binder, a positive electrode conductive additive, and a dispersant depending on the design. May be included. In this case, details regarding the positive electrode binder and the positive electrode conductive additive are the same as, for example, the negative electrode binder and negative electrode conductive additive already described.
  • a lithium-containing compound is desirable.
  • the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element.
  • compounds having at least one of nickel, iron, manganese and cobalt are preferable.
  • These chemical formulas are represented by, for example, Li x M 1 O 2 or Li y M 2 PO 4 .
  • M 1 and M 2 represent at least one transition metal element.
  • the values of x and y vary depending on the battery charge / discharge state, but are generally expressed as 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt composite oxide.
  • Examples of the lithium nickel cobalt composite oxide include lithium nickel cobalt aluminum composite oxide (NCA) and lithium nickel cobalt manganese composite oxide (NCM).
  • Examples of the phosphate compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1)). Is mentioned. If these positive electrode materials are used, a high battery capacity can be obtained, and excellent cycle characteristics can also be obtained.
  • the negative electrode has the same configuration as the negative electrode 10 for lithium ion secondary battery in FIG. 2 described above, and has, for example, a negative electrode active material layer on both surfaces of the current collector.
  • This negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. Thereby, precipitation of lithium metal on the negative electrode can be suppressed.
  • the positive electrode active material layer is provided on a part of both surfaces of the positive electrode current collector, and similarly, the negative electrode active material layer is provided on a part of both surfaces of the negative electrode current collector.
  • the negative electrode active material layer provided on the negative electrode current collector is provided with a region where there is no opposing positive electrode active material layer. This is to perform a stable battery design.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing a short circuit due to contact between the two electrodes.
  • This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • Electrode At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution).
  • This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.
  • a non-aqueous solvent for example, a non-aqueous solvent can be used.
  • the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran.
  • a high viscosity solvent such as ethylene carbonate or propylene carbonate
  • a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.
  • the solvent additive contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolyte can be suppressed.
  • unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.
  • sultone cyclic sulfonic acid ester
  • solvent additive examples include propane sultone and propene sultone.
  • the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
  • the acid anhydride include propanedisulfonic acid anhydride.
  • the electrolyte salt can include, for example, one or more light metal salts such as a lithium salt.
  • the lithium salt include lithium hexafluorophosphate (LiPF6) and lithium tetrafluoroborate (LiBF4).
  • the content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ion conductivity is obtained.
  • a positive electrode is manufactured using the positive electrode material described above.
  • a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive additive are mixed to form a positive electrode mixture, which is then dispersed in an organic solvent to form a positive electrode mixture slurry.
  • the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
  • the positive electrode active material layer is compression molded with a roll press or the like. At this time, heating may be performed or compression may be repeated a plurality of times.
  • a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector using the same operating procedure as the production of the negative electrode 10 for lithium ion secondary batteries described above.
  • the positive electrode lead 32 is attached to the positive electrode current collector and the negative electrode lead 33 is attached to the negative electrode current collector by ultrasonic welding or the like.
  • the positive electrode and the negative electrode are laminated or wound via a separator to produce a wound electrode body 31, and a protective tape is bonded to the outermost periphery.
  • the wound body is molded so as to have a flat shape.
  • the insulating portions of the exterior member are bonded to each other by a thermal fusion method, and the wound electrode body is released in only one direction. Enclose.
  • the laminated film type secondary battery 30 can be manufactured as described above.
  • the negative electrode utilization rate during charge / discharge is preferably 93% or more and 99% or less. If the negative electrode utilization rate is in the range of 93% or more, the initial charge efficiency does not decrease, and the battery capacity can be greatly improved. Moreover, if the negative electrode utilization rate is in the range of 99% or less, Li is not precipitated and safety can be ensured.
  • Example 1-1 The laminate film type secondary battery 30 shown in FIG. 4 was produced by the following procedure.
  • the positive electrode active material is 95 parts by mass of lithium nickel cobalt aluminum composite oxide (LiNi 0.7 Co 0.25 Al 0.05 O), 2.5 parts by mass of positive electrode conductive additive (acetylene black), and a positive electrode binder. (Polyvinylidene fluoride, PVDF) 2.5 parts by mass were mixed to obtain a positive electrode mixture.
  • the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone, NMP) to obtain a paste slurry.
  • the slurry was applied to both surfaces of the positive electrode current collector with a coating apparatus having a die head, and dried with a hot air drying apparatus. At this time, a positive electrode current collector having a thickness of 15 ⁇ m was used. Finally, compression molding was performed with a roll press.
  • a negative electrode was produced.
  • a silicon-based active material was prepared as follows. A raw material (vaporization starting material) mixed with metallic silicon and silicon dioxide is placed in a reactor, and the vaporized material in a vacuum atmosphere of 10 Pa is deposited on an adsorption plate and cooled sufficiently. It was pulverized with a take-out ball mill. After adjusting the particle size, the carbon film was coated by performing thermal CVD. Subsequently, LiH powder having a mass corresponding to 4% by mass with respect to the silicon compound coated with the carbon coating was mixed in an argon atmosphere and stirred with a shaker. Thereafter, the agitated powder was modified by heat treatment at 740 ° C. in an atmosphere control furnace.
  • the modified silicon oxide particles were put into a mixed solution of dehydrated ethanol and Al isopropoxide, stirred, filtered and dried to remove ethanol. Thereby, a composite layer containing a composite of aluminum oxide and aluminum hydroxide was formed.
  • the film thickness of the composite layer was 3 nm. Here, the film thickness was calculated from the amount of aluminum remaining in the filtrate after filtration.
  • the negative electrode active material was prepared by blending the silicon-based active material prepared as described above and the carbon-based active material in a mass ratio of 1: 9.
  • the carbon-based active material a mixture of natural graphite and artificial graphite coated with a pitch layer at a mass ratio of 5: 5 was used.
  • the median diameter of the carbon-based active material was 20 ⁇ m.
  • the produced negative electrode active material conductive additive 1 (carbon nanotube, CNT), conductive additive 2 (carbon fine particles having a median diameter of about 50 nm), styrene butadiene rubber (styrene butadiene copolymer, hereinafter referred to as SBR), Carboxymethylcellulose (hereinafter referred to as CMC) was mixed at a dry mass ratio of 92.5: 1: 1: 2.5: 3, and then diluted with pure water to obtain a negative electrode mixture slurry.
  • SBR and CMC are negative electrode binders (negative electrode binder).
  • the negative electrode current collector an electrolytic copper foil (thickness 15 ⁇ m) was used. Finally, the negative electrode mixture slurry was applied to the negative electrode current collector and dried in a vacuum atmosphere at 100 ° C. for 1 hour. The amount of deposition (also referred to as area density) of the negative electrode active material layer per unit area on one side of the negative electrode after drying was 5 mg / cm 2 .
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • FEC fluoroethylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • the content of the electrolyte salt was 1.0 mol / kg with respect to the solvent.
  • 1.5% by mass of vinylene carbonate (VC) was added to the obtained electrolytic solution.
  • a secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order and wound in the longitudinal direction to obtain a wound electrode body. The end portion was fixed with a PET protective tape. As the separator, a laminated film of 12 ⁇ m sandwiched between a film mainly composed of porous polyethylene and a film mainly composed of porous polypropylene was used.
  • the outer peripheral edges except for one side were heat-sealed, and the electrode body was housed inside.
  • the exterior member a nylon film, an aluminum foil, and an aluminum laminate film in which a polypropylene film was laminated were used.
  • the prepared electrolyte was injected from the opening, impregnated in a vacuum atmosphere, and then heat-sealed and sealed.
  • the cycle characteristics were examined as follows. First, in order to stabilize the battery, charge and discharge was performed for 2 cycles at 0.2 C in an atmosphere at 25 ° C., and the discharge capacity at the second cycle was measured. Subsequently, charge and discharge were performed until the total number of cycles reached 499 cycles, and the discharge capacity was measured each time. Finally, the discharge capacity at the 500th cycle obtained by 0.2 C charge / discharge was divided by the discharge capacity at the second cycle to calculate a capacity retention rate (hereinafter also simply referred to as a maintenance rate). In the normal cycle, that is, from the 3rd cycle to the 499th cycle, charging and discharging were performed with a charge of 0.7 C and a discharge of 0.5 C.
  • initial efficiency (initial discharge capacity / initial charge capacity) ⁇ 100.
  • the ambient temperature was the same as when the cycle characteristics were examined.
  • Example 1-2 to Example 1-4 A secondary battery was manufactured in the same manner as in Example 1-1, except that the metal oxide species and metal hydroxide species in the composite layer were changed to those containing the elements shown in Table 1.
  • the metal oxide species and the metal hydroxide species can be changed by changing the type of metal alkoxide used for the sol-gel reaction when forming the composite layer.
  • Example 1-1 A secondary battery was manufactured in the same manner as in Example 1-1, except that the steps of forming the carbon coating, modifying the silicon compound, and forming the composite layer were not performed after the production of the silicon compound.
  • Example 1-3 After the formation of the silicon compound, a secondary battery was manufactured in the same manner as in Example 1-1 except that the carbon film was formed and the silicon compound was modified, but the composite layer was not formed. .
  • the physical properties of the silicon compounds in the above Examples and Comparative Examples are as follows.
  • the value x of the silicon compound represented by SiO x was 1.0, and the median diameter D 50 of the silicon compound was 4 ⁇ m.
  • the half-value width (2 ⁇ ) of the diffraction peak caused by the Si (111) crystal plane obtained by X-ray diffraction of the unmodified silicon compound as in Comparative Example 1-1 and Comparative Example 1-2 is 2.
  • the crystallite size attributable to the crystal plane Si (111) was 3.29 nm.
  • the half-value width (2 ⁇ ) of the diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of the modified silicon compound is 2.257.
  • the crystallite size attributable to the crystal plane Si (111) was 3.77 nm. This is because part of the silicon compound was disproportionated and crystallization progressed because the thermal doping method was used for the modification.
  • the silicon compound after modification contained Li 2 SiO 3 .
  • Example 1-1 to 1-4 and Comparative Examples 1-2 and 1-3 the coating amount of the carbon coating was 5% by mass with respect to the total of the silicon compound and the carbon coating. Further, in all the above Examples and Comparative Examples, a peak derived from the SiO 2 region given as -95 to -150 ppm as a chemical shift value obtained from the 29 Si-MAS-NMR spectrum appeared.
  • Comparative Example 1-1 and Comparative Example 1-2 the peak intensity A derived from Li 2 SiO 3 given in the vicinity of ⁇ 75 ppm as the chemical shift value obtained from the 29 Si-MAS-NMR spectrum and the above SiO 2
  • the relationship with the intensity B of the peak derived from the region was A ⁇ B. In other examples and comparative examples, the above relationship was A> B.
  • the 29 Si-MAS-NMR spectrum obtained in Example 1-1 is shown in FIG.
  • a 2032 size coin cell type test cell was prepared from the negative electrode and the counter electrode lithium prepared as described above, and the discharge behavior was evaluated. More specifically, first, constant current and constant voltage charging was performed up to 0 V with the counter electrode Li, and the charging was terminated when the current density reached 0.05 mA / cm 2 . Then, constant current discharge was performed to 1.2V. The current density at this time was 0.2 mA / cm 2 . From the data obtained by such charging and discharging, a graph is drawn with the vertical axis representing the rate of change in capacity (dQ / dV) and the horizontal axis representing the voltage (V), where V is 0.4 to 0.55 (V). It was confirmed whether a peak was obtained in the range. As a result, peaks were confirmed in all Examples and Comparative Examples other than Comparative Examples 1-1 and 1-2.
  • Table 1 shows the evaluation results of Examples 1-1 to 1-4 and Comparative Examples 1-1, 1-2, and 1-3.
  • Example 1-1 to Example 1-4 in Table 1 in the secondary battery using the negative electrode active material of the present invention, battery characteristics such as cycle characteristics and initial efficiency are improved by reforming with Li. In addition to obtaining the effect, the generation of gas could be greatly suppressed. In particular, in Example 1-1, the generation of gas was confirmed only after a lapse of one week from the preparation of the slurry.
  • Comparative Example 1-3 in which the composite layer was not formed on the modified silicon-based active material particles, gas was generated when 6 hours had elapsed since the slurry was created.
  • gas was generated within 6 hours after slurry preparation. I can say that.
  • the slurry after gas generation is difficult to handle because the peel strength from the copper foil (current collector) decreases.
  • the pot life of the slurry is required to be at least 6 hours. Therefore, the negative electrode active material of Comparative Example 1-3 cannot be used for industrial production. I can say that.
  • Example 2-1 and 2-2 Comparative Examples 2-1 and 2-2
  • a secondary battery was manufactured in the same manner as Example 1-1 except that the amount of oxygen in the bulk of the silicon compound was adjusted. In this case, the amount of oxygen was adjusted by changing the ratio and temperature of the vaporized starting material.
  • Table 2 shows the values of x of the silicon compounds represented by SiO x in Examples 2-1 and 2-2 and Comparative Examples 2-1 and 2-2.
  • Examples 3-1 to 3-6 A secondary battery was manufactured in the same manner as in Example 1-1, except that the thickness of the composite layer was changed as shown in Table 3.
  • the film thickness was adjusted by changing the mass ratio of Al isopropoxide to dehydrated ethanol and the modified silicon compound.
  • the film thickness can also be measured by TEM, but here the film thickness was calculated from the amount of aluminum remaining in the filtrate after filtration.
  • the film thickness (3 nm) in Example 3-3 the image was confirmed by TEM, and it was confirmed that the calculated value of the film thickness obtained by the above calculation method substantially coincided with the film thickness value measured by TEM. .
  • Example 4-1 to Example 4-5 A secondary battery was manufactured in the same manner as in Example 1-1 except that the film thickness of the composite layer was changed as shown in Table 4 and the modification method was an electrochemical method. More specifically, the reforming includes a mixed solvent having a volume ratio of ethylene carbonate and dimethyl carbonate of 3: 7 (electrolyte salt at a concentration of 1.3 mol / kg) in the apparatus shown in FIG. ) was subjected to bulk modification using an electrochemical method.
  • the reforming includes a mixed solvent having a volume ratio of ethylene carbonate and dimethyl carbonate of 3: 7 (electrolyte salt at a concentration of 1.3 mol / kg) in the apparatus shown in FIG. ) was subjected to bulk modification using an electrochemical method.
  • the composite layer thickness is 10 nm or less, and in addition to the effect of suppressing gas generation, the effect of improving battery characteristics is more sufficiently achieved. It turns out that it is obtained. Also in this case, it has been found that particularly good battery characteristic improvement effects can be obtained when the thickness of the composite layer is 5 nm or less, particularly 2 to 3 nm.
  • Example 5-1 and 5-2 Except that the silicon compound does not have a peak derived from the SiO 2 region given to -95 to -150 ppm as the chemical shift value obtained from the 29 Si-MAS-NMR spectrum, it is the same as in Example 1-1. A secondary battery was produced. By increasing the amount of Li during the modification, the intensity of the peak derived from the SiO 2 region was greatly reduced. Thereafter, Li was desorbed from the silicon compound to the extent that it can withstand the aqueous slurry, thereby producing a silicon-based active material having no SiO 2 region that can be confirmed by NMR.
  • Example 5-2 the reforming method was changed to an electrochemical method.
  • Example 5-1 and 5-2 generation of gas was confirmed after 24 hours and 48 hours, respectively.
  • Example 1-1 in which a slurry was prepared under the same conditions as in Example 5-1, or Example 5-2 and the presence or absence of the above peak
  • Example 3-3 in which the slurry was produced under the same conditions, gas generation was confirmed after one week as described above. From this, it was found that the effect of suppressing the generation of gas is higher when the silicon-based active material contains a SiO 2 region that can be confirmed by NMR.
  • Example 6-1 In the same manner as in Example 1-1, except that the silicon compound was such that the relationship between the peak intensity A derived from Li 2 SiO 3 and the peak intensity B derived from the SiO 2 region was A ⁇ B. A battery was produced. In this case, the amount of Li 2 SiO 3 was reduced by reducing the amount of Li during the modification, and the peak intensity A derived from Li 2 SiO 3 was reduced.
  • Example 6-1 When a silicon dioxide region that can be confirmed by NMR is strongly left in the silicon compound, the direction is mild to gas generation (a direction in which gas generation is suppressed).
  • the time until gas generation was evaluated to be the same one week as Example 1-1 satisfying the relationship A> B of peak intensity, but in actuality, the gas of Example 6-1 was evaluated. The time until generation is considered to be longer than the time until gas generation in Example 1-1. However, the initial efficiency in Example 6-1 was slightly lower than that in Example 1-1.
  • Example 7-1 A secondary battery was fabricated in the same manner as in Example 1-1, except that the silicon-based active material had no peak in the V-dQ / dV curve where V was in the range of 0.40 V to 0.55 V. .
  • the silicon compound (SiOx) In order for the discharge curve shape to rise sharper, the silicon compound (SiOx) needs to exhibit a discharge behavior similar to that of silicon (Si). When there is no peak in the above range, the silicon compound has a relatively gentle discharge curve. Therefore, when the assembled cell is used, the initial efficiency slightly decreases.
  • Examples 8-1 to 8-9 A secondary battery was manufactured in the same manner as in Example 1-1 except that the crystallinity of the silicon compound was changed.
  • the change in crystallinity of the silicon compound can be controlled by heat treatment in a non-air atmosphere after the silicon compound is produced. In the modification by the thermal doping method, a certain amount of heat is applied to the silicon compound. Therefore, in Examples 8-8 and 8-9, the material close to amorphous is modified by an electrochemical method in order to maintain low crystallinity.
  • a high retention rate was obtained with a low crystalline material having a half width (2 ⁇ ) of 1.2 ° or more and a crystallite size attributable to the Si (111) plane of 7.5 nm or less.
  • Example 9-1 to Example 9-6 A secondary battery was manufactured in the same manner as in Example 1-1 except that the median diameter of the silicon compound was changed as shown in Table 9.
  • the maintenance rate was improved. This is presumably because the surface area of the silicon compound was not too large and the area where the side reaction occurred could be reduced.
  • the median diameter is 15 ⁇ m or less, the particles are difficult to break during charging, and SEI (solid electrolyte interface) due to the new surface is difficult to be generated during charging and discharging, so that loss of reversible Li can be suppressed.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本発明は、負極活物質粒子を有し、負極活物質粒子はLi化合物が含まれるケイ素化合物(SiO:0.5≦x≦1.6)を含有するものである非水電解質二次電池用負極活物質であって、ケイ素化合物の表面の少なくとも一部が炭素被膜で被覆されたものであり、ケイ素化合物の表面若しくは炭素被膜の表面、又はこれらの両方の少なくとも一部が、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層で被覆されたものであることを特徴とする非水電解質二次電池用負極活物質である。これにより、水系スラリーに対する安定性が高く、高容量であるとともに、サイクル特性及び初回効率が良好な非水電解質二次電池用負極活物質が提供される。

Description

非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
 本発明は、非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
 上記のリチウムイオン二次電池は、正極および負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
 この負極活物質としては、炭素材料が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素材では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
 しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張及び収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
 これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。
 具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
 また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。
 また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するラマンスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。また、高い電池容量、サイクル特性の改善のため、ケイ素と炭素の混合電極を作成しケイ素比率を5wt%以上13wt%以下で設計している(例えば、特許文献13参照)。
特開2001-185127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特許第2997741号明細書 特開2010-092830号公報
 上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。
 また、ケイ素材を用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近い電池特性が望まれている。そこで、Liの挿入、一部脱離により改質されたケイ素酸化物を負極活物質として使用することで、電池のサイクル維持率、及び初回効率を改善してきた。しかしながら、改質後のケイ素酸化物はLiを用いて改質されたため、比較的耐水性が低い。そのため、負極の製造時に作製する、上記改質後のケイ素酸化物を含むスラリーの安定化が不十分となりスラリーの経時変化によってガスが発生することがあり、炭素系活物質の塗布に従来から一般的に使われている装置等を使用することができない場合が有ったり、または使用しづらいという問題があった。このように、Liを用いた改質によって、初期効率及びサイクル維持率を改善したケイ素酸化物を使用する場合、水を含むスラリーの安定性が不十分となるため、二次電池の工業的な生産において優位な非水電解質二次電池用負極活物質を提案するには至っていなかった。
 本発明は前述のような問題に鑑みてなされたもので、水系スラリーに対する安定性が高く、高容量であるとともに、サイクル特性及び初回効率が良好な非水電解質二次電池用負極活物質を提供することを目的とする。
 上記目的を達成するために、本発明は、負極活物質粒子を有し、該負極活物質粒子はLi化合物が含まれるケイ素化合物(SiO:0.5≦x≦1.6)を含有するものである非水電解質二次電池用負極活物質であって、前記ケイ素化合物の表面の少なくとも一部が炭素被膜で被覆されたものであり、前記ケイ素化合物の表面若しくは前記炭素被膜の表面、又はこれらの両方の少なくとも一部が、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層で被覆されたものであることを特徴とする非水電解質二次電池用負極活物質を提供する。
 本発明の負極活物質は、ケイ素化合物を含有する負極活物質粒子(以下、ケイ素系活物質粒子とも呼称する)が、その最表面に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を有しているため、水系スラリーに対しての耐水性が高いものとなる。また、上記複合体が非晶質であれば、Liの授受が行われやすい。また、本発明は、ケイ素化合物の表面の少なくとも一部が炭素被膜で被覆されたものであるため、導電性に優れる。そのため、本発明の負極活物質を使用すれば、Liを用いて改質されたケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する非水電解質二次電池を工業的な生産において優位に製造可能となる。
 このとき、前記金属酸化物及び金属水酸化物は、アルミニウム、マグネシウム、チタニウム、及びジルコニウムのうち少なくとも1種の元素を含むことが好ましい。
 金属酸化物及び金属水酸化物が上記のような金属元素を含むことで、電極作製時にスラリーがより安定する。
 またこのとき、前記複合層の厚さが10nm以下であることが好ましい。また、前記複合層の厚さが5nm以下であることが特に好ましい。
 複合層の厚さが10nm以下、特には5nm以下であれば、ケイ素系活物質粒子の抵抗が大きくなり過ぎないため、良好な電池特性が得られる。
 このとき、前記ケイ素化合物は、前記Li化合物としてLiSiOを含むことが好ましい。
 LiSiOのようなLiシリケートは、Li化合物として比較的安定しているため、より良好な電池特性が得られる。
 またこのとき、前記ケイ素化合物が、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-95~-150ppmに与えられるSiO領域に由来するピークを持つことが好ましい。
 このようなものであれば、ケイ素化合物中のLiシリケート等のLi化合物の量が過多となっておらず、SiO成分がある程度残っているため、電極作製時のスラリーに対する安定性がより向上する。
 このとき、前記ケイ素化合物が、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-75ppm付近に与えられるLiSiOに由来するピークの強度Aと、-95~-150ppmに与えられるSiO領域に由来するピークの強度Bとが、A>Bの関係を満たすことが好ましい。
 このように、ケイ素化合物中において、SiO成分を基準としてLiSiOの量がより多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる負極活物質となる。
 またこのとき、前記非水電解質二次電池用負極活物質と炭素系活物質とを混合した負極活物質を使用して作製した負極電極と対極リチウムとから成る試験セルを充放電し、放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、前記非水電解質二次電池用負極活物質がリチウムを脱離するよう電流を流す放電時における、前記負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。
 V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。
 このとき、前記ケイ素化合物が、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下のものであることが好ましい。
 このような半値幅及び結晶子サイズを有するケイ素系活物質は、結晶性が低くSi結晶の存在量が少ないため、電池特性を向上させることができる。
 またこのとき、前記ケイ素化合物のメディアン径が0.5μm以上15μm以下のものであることが好ましい。
 メディアン径が0.5μm以上であれば、ケイ素化合物の表面における副反応が起きる面積が小さいため、Liを余分に消費せず、電池のサイクル維持率を高く維持できる。また、メディアン径が15μm以下であれば、Li挿入時の膨張が小さく、割れ難くなり、かつ、亀裂が生じにくい。さらに、ケイ素化合物の膨張が小さいため、例えば一般的に使用されているケイ素系活物質に炭素活物質を混合した負極活物質層などが破壊され難い。
 また、上記目的を達成するために、本発明は、上記のいずれかの非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池を提供する。
 このような二次電池は、高いサイクル維持率及び初回効率を有するとともに、工業的に優位に製造することが可能なものである。
 また、上記目的を達成するために、本発明は、負極活物質粒子を含む非水電解質二次電池用負極材の製造方法であって、一般式SiO(0.5≦x≦1.6)で表される酸化珪素粒子を作製する工程と、前記酸化珪素粒子の表面に炭素被膜を形成する工程と、前記炭素被膜が被覆された酸化珪素粒子に、Liを挿入、脱離することで、前記酸化珪素粒子を改質する工程と、前記改質後の酸化珪素粒子の表面に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を形成する工程とを有し、前記複合層を形成された酸化珪素粒子を用いて、非水電解質二次電池用負極材を製造することを特徴とする非水電解質二次電池用負極材の製造方法を提供する。
 このような非水電解質二次電池用負極材の製造方法であれば、Liを用いて改質されたケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する非水負極材を得ることができる。さらにこのようにして製造された負極材は、上記のような複合層を有するケイ素系活物質粒子を含有しているため、負極の製造時に作製するスラリーが安定なものとなる。すなわち、二次電池を工業的に優位に生産可能な負極材を得ることができる。
 このとき、前記複合層形成工程において、金属アルコキシドの加水分解及び脱水縮合によって前記改質後の酸化珪素粒子の表面に前記複合層を形成することが好ましい。
 このようにすれば、金属アルコキシドの加水分解・脱水縮合が連続して起こることで、金属酸化物領域と金属水酸化物領域が両立するように複合体を効率よく生成することができる。
 本発明の負極活物質は、二次電池の製造時に作製するスラリーの安定性を向上させることができ、このスラリーを用いれば、工業的に使用可能な塗膜を形成できるので、実質的に電池容量、サイクル特性、及び初回充放電特性を向上させることができる。また、この負極活物質を含む本発明の二次電池は、工業的に優位に生産可能であり、電池容量、サイクル特性、及び初回充放電特性が良好なものとなる。また、本発明の二次電池を用いた電子機器、電動工具、電気自動車及び電力貯蔵システム等でも同様の効果を得ることができる。
 また、本発明の負極材の製造方法は、二次電池の製造時に作製するスラリーの安定性を向上させ、かつ、電池容量、サイクル特性、及び初回充放電特性を向上させることができる負極材を製造できる。
本発明の負極活物質に含まれるケイ素系活物質粒子の複合層付近の構成の概略を示す図である。 本発明の負極活物質を含む負極の構成を示す断面図である。 本発明の負極活物質を製造する際に使用できるバルク内改質装置である。 本発明の負極活物質を含むリチウムイオン二次電池の構成例(ラミネートフィルム型)を表す分解図である。 実施例1-1においてケイ素化合物から測定された29Si-MAS-NMRスペクトルである.
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素系活物質を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。ケイ素系活物質を主材として用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近いサイクル特性、初期効率が望まれているが、炭素材を用いたリチウムイオン二次電池と同等に近いサイクル特性、初期効率を得るためにLiを用いて改質したケイ素系活物質では安定したスラリーの作製が難しく、良質な負極電極を製造することは困難であった。
 そこで、本発明者らは、高電池容量であるとともに、サイクル特性及び初回効率が良好な非水電解質二次電池を容易に製造することが可能な負極活物質を得るために鋭意検討を重ね、本発明に至った。
 本発明の負極活物質は、Li化合物が含まれるケイ素化合物(SiO:0.5≦x≦1.6)を有するケイ素系活物質粒子を含む。また、この負極活物質は、ケイ素化合物の表面の少なくとも一部に炭素被膜が形成されている。さらに、この負極活物質は、ケイ素化合物の表面若しくは炭素被膜の表面、又はこれらの両方の少なくとも一部が、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層で被覆されている。
 ここで、図1に、ケイ素化合物1の表層部付近の概略を示す。図1のように、ケイ素化合物1の表面には炭素被膜2が形成されている。図1の場合、ケイ素化合物の表面の一部に炭素被膜が形成されているが、炭素被膜はケイ素化合物の全面に形成されていても良い。また、ケイ素化合物1の表面と炭素被膜2の表面には、非晶質のアルミニウム酸化物及びアルミニウム水酸化物から成る複合体を含む複合層3が形成されている。図1では、複合層3の複合体がアルミニウム元素を含む場合を例示しているが、これに特に限定されることは無く、他の金属元素を含んでいても良い。この場合、複合層3は、図1に示すように、アルミニウム酸化物領域3aとアルミニウム水酸化物領域3bを有する。
 このような負極活物質は、ケイ素系活物質粒子が、その最表面に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を有しているため、水系スラリーに対しての耐水性が高いものとなる。従来、Liの挿入、脱離によって改質したケイ素酸化物を含む水系スラリーは経時変化して、ガス発生が起こるため、量産化に不向きであった。しかしながら、本発明では、ケイ素系活物質粒子が、上記のような複合層を有することで、スラリーの経時変化に伴うガス発生が起こりづらくなり、安定した塗膜を得ることができ、結着性を十分に確保することができる。また、上記複合体が非晶質であれば、Liの授受が行われやすい。また、本発明は、ケイ素化合物の表面の少なくとも一部が炭素被膜で被覆されたものであるため、導電性に優れる。そのため、本発明の負極活物質を使用すれば、Liを用いて改質されたケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する非水電解質二次電池を工業的な生産において優位に製造可能となる。
[負極の構成]
 続いて、このような本発明の負極活物質を含む二次電池の負極の構成について説明する。
 図2は、本発明の負極活物質を含む負極の断面図を表している。図2に示すように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の非水電解質二次電池の負極においては、負極集電体11はなくてもよい。
[負極集電体]
 負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
 負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、100ppm以下であることが好ましい。これは、より高い変形抑制効果が得られるからである。
 負極集電体11の表面は、粗化されていても良いし、粗化されていなくても良い。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は化学エッチングされた金属箔などである。粗化されていない負極集電体は例えば、圧延金属箔などである。
[負極活物質層]
 負極活物質層12は、ケイ素系活物質粒子の他に炭素系活物質などの複数の種類の負極活物質を含んでいて良い。さらに、電池設計上、増粘剤(「結着剤」、「バインダー」とも呼称する)や導電助剤等の他の材料を含んでいても良い。また、負極活物質の形状は粒子状であって良い。
 上述のように、本発明の負極活物質は、SiO(0.5≦x≦1.6)からなるケイ素系活物質粒子を含む。このケイ素系活物質粒子は酸化ケイ素材(SiO:0.5≦x≦1.6)であり、その組成としてはxが1に近い方が好ましい。これは、高いサイクル特性が得られるからである。なお、本発明における酸化ケイ素材の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素やLiを含んでいても良い。
 また、本発明において、ケイ素化合物の結晶性は低いほどよい。具体的には、Cu-Kα線を用いたケイ素系活物質のX線回折により得られる(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に起因する結晶子サイズが7.5nm以下であることが望ましい。このように、特に結晶性が低くSi結晶の存在量が少ないことにより、電池特性を向上させるだけでなく、安定的なLi化合物の生成をすることができる。
 また、ケイ素化合物のメディアン径は特に限定されないが、中でも0.5μm以上15μm以下であることが好ましい。この範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、ケイ素系活物質粒子が割れにくくなるからである。このメディアン径が0.5μm以上であれば、表面積が大きすぎないため、充放電時に副反応を起こしにくく、電池不可逆容量を低減することができる。一方、メディアン径が15μm以下であれば、ケイ素系活物質粒子が割れにくく新生面が出にくいため好ましい。
 更に、本発明において、ケイ素系活物質は、ケイ素化合物に含まれるLi化合物として、LiSiOが存在するものであることが好ましい。LiSiOのようなLiシリケートは、他のLi化合物よりも比較的安定しているため、これらのLi化合物を含むケイ素系活物質は、より安定した電池特性を得ることができる。これらのLi化合物は、ケイ素化合物の内部に生成するSiO成分の一部をLi化合物へ選択的に変更し、ケイ素化合物を改質することにより得ることができる。
 ケイ素化合物の内部のLi化合物はNMR(核磁気共鳴)とXPS(X線光電子分光)で定量可能である。XPSとNMRの測定は、例えば、以下の条件により行うことができる。
XPS
・装置: X線光電子分光装置、
・X線源: 単色化Al Kα線、
・X線スポット径: 100μm、
・Arイオン銃スパッタ条件: 0.5kV 2mm×2mm。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
 また、本発明において、ケイ素化合物の改質を行う際に、電気化学的手法や、酸化還元反応による改質、及び物理的手法である熱ドープ等の手法を用いることができる。特に、電気化学的手法及び酸化還元による改質を用いてケイ素化合物を改質した場合、負極活物質の電池特性が向上する。また、改質では、ケイ素化合物へのLiの挿入だけでなく、ケイ素化合物からのLiの脱離を合わせて行うと良い。これにより、負極活物質の耐水性などといったスラリーに対する安定性がより向上する。
 また、本発明の負極活物質では、ケイ素化合物が、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-95~-150ppmに与えられるSiO領域に由来するピークを持つことが好ましい。このように、改質によってケイ素化合物中のSiO領域を全て、Li化合物に変更せずに、ある程度SiO領域を残しておくことで、スラリーに対する安定性がより向上する。
 また、本発明の負極活物質では、ケイ素化合物が、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-75ppm付近に与えられるLiSiOに由来するピークの強度Aと、-95~-150ppmに与えられるSiO領域に由来するピークの強度Bとが、A>Bの関係を満たすことが好ましい。ケイ素化合物中において、SiO成分を基準とした場合にLiSiOの量が比較的多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる。
 また、上述のように、ケイ素系活物質粒子はケイ素化合物の表面や炭素被膜の表面に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を有する。
 特に、金属酸化物及び金属水酸化物から成る複合体は、金属アルコキシドの加水分解・脱水縮合によって生成されたものであることが好ましい。これは、複合層内に金属酸化物領域と水酸化物領域が両立するからである。
 金属酸化物及び金属水酸化物は、アルミニウム、マグネシウム、チタニウム、及びジルコニウムのうち少なくとも1種の元素を含むことが好ましい。
 特に、複合層の最表層部はAl(OH)に近い構造を有するものであることが好ましい。これは、負極作製時に、スラリーがより安定するからである。
 また、アルミニウムイソプロポキシドのゾルゲル反応処理によって、複合層を形成することが特に好ましい。このような方法であれば、ケイ素系活物質の表層に非晶質のアルミニウム酸化物及びアルミニウム水酸化物から成る複合体を含む、薄い複合層を形成できる。
 また、複合層の厚さは10nm以下であることが好ましく、さらに、5nm以下であることがより好ましい。複合層の厚さが10nm以下であれば、合剤組成にもよるが、電気抵抗が高くなり過ぎないため、電池特性が向上する。また、膜厚が2~3nm程度であると、電気抵抗の増加を抑制しつつ、スラリーに対する安定性をより向上させることができる。なお、複合層の膜厚はTEM(透過型電子顕微鏡)により確認可能である。
 またこのとき、本発明の負極活物質と炭素系活物質とを混合した負極活物質を使用して作製した負極電極と対極リチウムとから成る試験セルを充放電し、放電容量Qを対極リチウムを基準とする負極電極の電位Vで微分した微分値dQ/dVと電位Vとの関係を示すグラフを描いた場合に、負極活物質がリチウムを脱離するよう電流を流す放電時における、負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。
[負極の製造方法]
 続いて、本発明の非水電解質二次電池の負極の製造方法の一例を説明する。
 最初に負極に含まれる負極材の製造方法を説明する。まず、SiO(0.5≦x≦1.6)で表される酸化珪素粒子を作製する。次に、酸化珪素粒子の表面に炭素被膜を形成する。次に、酸化珪素粒子にLiを挿入、脱離することにより、酸化珪素粒子を改質する。このとき、同時に酸化珪素粒子の内部や表面にLi化合物を生成させることができる。そして、改質後の酸化珪素粒子の表面に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を形成する。そしてこのような酸化珪素粒子を負極活物質粒子として用いて、導電助剤やバインダと混合するなどして、負極材及び負極電極を製造できる。
 より具体的には、負極材は、例えば、以下の手順により製造される。
 まず、酸化珪素ガスを発生する原料を不活性ガスの存在下もしくは減圧下900℃~1600℃の温度範囲で加熱し、酸化ケイ素ガスを発生させる。この場合、原料は金属珪素粉末と二酸化珪素粉末との混合であり、金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。粒子中のSi結晶子は仕込み範囲や気化温度の変更、また生成後の熱処理で制御される。発生したガスは吸着板に堆積される。反応炉内温度を100℃以下に下げた状態で堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。
 次に、得られた粉末材料(ケイ素化合物)の表層に炭素被膜を形成する。炭素被膜は、負極活物質の電池特性をより向上させるには効果的である。
 粉末材料の表層に炭素被膜を形成する手法としては、熱分解CVDが望ましい。熱分解CVDは炉内に酸化ケイ素粉末をセットし、炉内に炭化水素ガスを充満させ炉内温度を昇温させる。分解温度は特に限定しないが特に1200℃以下が望ましい。より望ましいのは950℃以下であり、意図しないケイ素酸化物の不均化を抑制することが可能である。炭化水素ガスは特に限定することはないが、C組成のうち3≧nが望ましい。低製造コスト及び分解生成物の物性が良いからである。
 次に、粉末材料のバルク内の改質を行う。バルク内改質は電気化学的にLiを挿入・脱離し得る装置を用いて行うことが望ましい。特に装置構造を限定することはないが、例えば図3に示すバルク内改質装置20を用いて、バルク内改質を行うことができる。バルク内改質装置20は、有機溶媒23で満たされた浴槽27と、浴槽27内に配置され、電源26の一方に接続された陽電極(リチウム源、改質源)21と、浴槽27内に配置され、電源26の他方に接続された粉末格納容器25と、陽電極21と粉末格納容器25との間に設けられたセパレータ24とを有している。粉末格納容器25には、酸化ケイ素の粉末22が格納される。そして、粉末格納容器には、ケイ素化合物(酸化珪素粒子)を格納し、電源により酸化珪素粒子を格納した粉末格納容器と陽電極(リチウム源)に電圧をかける。これにより、酸化珪素粒子にリチウムを挿入、脱離することができるため、酸化珪素の粉末22を改質できる。
 浴槽27内の有機溶媒23として、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどを用いることができる。また、有機溶媒23に含まれる電解質塩として、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などを用いることができる。
 陽電極21はLi箔を用いてもよく、また、Li含有化合物を用いてもよい。Li含有化合物として、炭酸リチウム、酸化リチウム、コバルト酸リチウム、オリビン鉄リチウム、ニッケル酸リチウム、リン酸バナジウムリチウムなどがあげられる。
 また、改質は熱ドープ法を使用して行っても良い。この場合、例えば、粉末材料をLiH粉やLi粉と混合し、非酸化雰囲気下で加熱をすることで改質可能である。非酸化雰囲気としては、例えば、Ar雰囲気などが使用できる。より具体的には、まず、Ar雰囲気下でLiH粉又はLi粉と酸化珪素粉末を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、700℃~750℃の範囲で加熱し改質を行う。またこの場合、Liをケイ素化合物から脱離するには、加熱後の粉末を十分に冷却し、その後アルコールやアルカリ水、弱酸や純水で洗浄する方法などを使用できる。
 続いて、改質後の酸化珪素粒子の表面に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を形成する。複合層は、金属アルコキシドの加水分解及び脱水縮合によって形成することが好ましい。このようにすれば、金属アルコキシドの加水分解・脱水縮合が連続して起こることで、金属酸化物領域と金属水酸化物領域が両立するように複合体を効率よく生成することができる。より具体的には、例えば、以下のような手順で複合層を形成できる。
 まず、脱水エタノールと、脱水エタノールの質量の四分の一の質量分の改質後のケイ素化合物と改質後のケイ素化合物の1.5質量%相当のAlイソプロポキシドを容器に投入し、3時間半撹拌する。撹拌後は吸引濾過でエタノールを除去し、ケイ素化合物を、120℃で12時間真空乾燥する。この時、複合層の膜厚は改質材と同時に添加するAlイソプロポキシドの質量を変えることで制御可能である。
 続いて、上記の複合層を有する酸化珪素粒子を含むケイ素系活物質と必要に応じて炭素系活物質を混合するとともに、これらの負極活物質とバインダ、導電助剤など他の材料とを混合し負極合剤としたのち、有機溶剤又は水などを加えてスラリーとする。
 次に、図2に示したように、負極集電体11の表面に、この負極合剤のスラリーを塗布し、乾燥させて、負極活物質層12を形成する。この時、必要に応じて加熱プレスなどを行っても良い。以上のようにして、本発明の非水電解質二次電池の負極を製造することができる。
<リチウムイオン二次電池>
 次に、上記した本発明の非水電解質二次電池の具体例として、ラミネートフィルム型のリチウムイオン二次電池について説明する。
[ラミネートフィルム型二次電池の構成]
 図4に示すラミネートフィルム型のリチウムイオン二次電池30は、主にシート状の外装部材35の内部に巻回電極体31が収納されたものである。この巻回電極体31は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体の最外周部は保護テープにより保護されている。
 正負極リード32、33は、例えば、外装部材35の内部から外部に向かって一方向で導出されている。正極リード32は、例えば、アルミニウムなどの導電性材料により形成され、負極リード33は、例えば、ニッケル、銅などの導電性材料により形成される。
 外装部材35は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体31と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
 外装部材35と正負極リードとの間には、外気侵入防止のため密着フィルム34が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
 正極は、例えば、図2の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
 正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
 正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて正極結着剤、正極導電助剤、分散剤などの他の材料を含んでいても良い。この場合、正極結着剤、正極導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
 正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これらの正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiあるいはLiPOで表される。式中、M、Mは少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
 リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルト複合酸化物などが挙げられる。リチウムニッケルコバルト複合酸化物としては、例えばリチウムニッケルコバルトアルミニウム複合酸化物(NCA)やリチウムニッケルコバルトマンガン複合酸化物(NCM)などが挙げられる。
 リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量を得ることができるとともに、優れたサイクル特性も得ることができる。
[負極]
 負極は、上記した図2のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体の両面に負極活物質層を有している。この負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
 正極活物質層は、正極集電体の両面の一部に設けられており、同様に負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。
 上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため、負極活物質層の状態が形成直後のまま維持され、これによって負極活物質の組成などを、充放電の有無に依存せずに再現性良く正確に調べることができる。
[セパレータ]
 セパレータは正極と負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
 活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
 溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン、又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。これは、電解質塩の解離性やイオン移動度が向上するためである。
 溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
 また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などが挙げられる。
 電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。これは、高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
 最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて正極結着剤、正極導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また圧縮を複数回繰り返しても良い。
 次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
 正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図2を参照)。
 続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード32を取り付けると共に、負極集電体に負極リード33を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体31を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材35の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。続いて、正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。続いて、解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型二次電池30を製造することができる。
 上記作製したラミネートフィルム型二次電池30等の本発明の非水電解質二次電池において、充放電時の負極利用率が93%以上99%以下であることが好ましい。負極利用率を93%以上の範囲とすれば、初回充電効率が低下せず、電池容量の向上を大きくできる。また、負極利用率を99%以下の範囲とすれば、Liが析出してしまうことがなく安全性を確保できる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1-1)
 以下の手順により、図4に示したラミネートフィルム型の二次電池30を作製した。
 最初に正極を作製した。正極活物質はリチウムニッケルコバルトアルミニウム複合酸化物(LiNi0.7Co0.25Al0.05O)95質量部と、正極導電助剤(アセチレンブラック)2.5質量部と、正極結着剤(ポリフッ化ビニリデン、PVDF)2.5質量部とを混合し正極合剤とした。続いて正極合剤を有機溶剤(N-メチル-2-ピロリドン、NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時、正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。
 次に負極を作製した。まず、ケイ素系活物質を以下のように作製した。金属ケイ素と二酸化ケイ素を混合した原料(気化出発材)を反応炉へ設置し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。粒径を調整した後、熱CVDを行うことで炭素被膜を被覆した。続いて、炭素被膜を被覆したケイ素化合物に対して4質量%に相当する質量のLiH粉末をアルゴン雰囲気下で混合し、シェイカーで撹拌した。その後、雰囲気制御炉で、攪拌した粉末を740℃の熱処理を行うことで改質を行った。次に、改質後の酸化珪素粒子を脱水エタノールとAlイソプロポキシドの混合溶液に投入し、撹拌、濾過、乾燥しエタノールを除去した。これにより、酸化アルミニウム及び水酸化アルミニウムの複合体を含む複合層を形成した。複合層の膜厚は3nmであった。ここでは濾過後の濾過液に残ったアルミニウム量から、膜厚を計算した。
 以上のようにして作製したケイ素系活物質と、炭素系活物質を1:9の質量比で配合し、負極活物質を作製した。ここで、炭素系活物質としては、ピッチ層で被覆した天然黒鉛及び人造黒鉛を5:5の質量比で混合したものを使用した。また、炭素系活物質のメディアン径は20μmであった。
 次に、作製した負極活物質、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メディアン径が約50nmの炭素微粒子)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)92.5:1:1:2.5:3の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。尚、上記のSBR、CMCは負極バインダー(負極結着剤)である。ここで、負極合剤スラリーの安定性を測定するため、作製した負極合剤スラリーの一部を二次電池の作製用のものとは別に30g取り出し、20℃で保存し、負極合剤スラリー作製後から、6時間後、24時間後、48時間後、72時間後、及び1週間後のガス発生状況を確認した。
 また、負極集電体としては、電解銅箔(厚さ15μm)を用いた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は5mg/cmであった。
 次に、溶媒として、フルオロエチレンカーボネート(FEC)、エチレンカーボネート(EC)及びジエチルカーボネート(DEC))を混合したのち、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でFEC:EC:DEC=1:2:7とし、電解質塩の含有量を溶媒に対して1.0mol/kgとした。さらに、得られた電解液にビニレンカーボネート(VC)を1.5質量%添加した。
 次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に巻回させ巻回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム12μmを用いた。続いて、外装部材間に電極体を挟んだのち、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し封止した。
 以上のようにして作製した二次電池のサイクル特性及び初回充放電特性を評価した。
 サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて、総サイクル数が499サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に、0.2C充放電で得られた500サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率(以下、単に維持率ともいう)を算出した。通常サイクル、すなわち3サイクル目から499サイクル目までは、充電0.7C、放電0.5Cで充放電を行った。
 初回充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。雰囲気温度は、サイクル特性を調べた場合と同様にした。
(実施例1-2~実施例1-4)
 複合層における金属酸化物種及び金属水酸化物種を表1に示すような元素を含むものに変更したこと以外、実施例1-1と同様に、二次電池の製造を行った。金属酸化物種及び金属水酸化物種の変更は、複合層形成時のゾルゲル反応に使用する金属アルコキシドの種類を変更することで可能である。
(比較例1-1)
 ケイ素化合物の作製後に、炭素被膜の形成、ケイ素化合物の改質、及び複合層の形成のいずれの工程も行わなかった以外、実施例1-1と同様に、二次電池の製造を行った。
(比較例1-2)
 ケイ素化合物の作製後に、炭素被膜の形成を行ったが、ケイ素化合物の改質、及び複合層の形成は行わなかったこと以外、実施例1-1と同様に、二次電池の製造を行った。
(比較例1-3)
 ケイ素化合物の作製後に、炭素被膜の形成、及びケイ素化合物の改質を行ったが、複合層の形成は行わなかったこと以外、実施例1-1と同様に、二次電池の製造を行った。
 上記実施例及び比較例におけるケイ素化合物の物性は以下のとおりである。上記の全ての実施例及び比較例においてSiOで表されるケイ素化合物のxの値が1.0であり、ケイ素化合物のメディアン径D50は4μmであった。また、比較例1-1及び比較例1-2のような、未改質のケイ素化合物のX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)は2.593°であり、その結晶面Si(111)に起因する結晶子サイズは3.29nmであった。また、これらの比較例1-1、1-2以外における、改質後のケイ素化合物のX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)は2.257°であり、その結晶面Si(111)に起因する結晶子サイズは3.77nmであった。これは、改質に熱ドープ法を用いたため、ケイ素化合物の一部が不均化し、結晶化が進んだためである。改質後のケイ素化合物はLiSiOを含んでいた。
 また、実施例1-1~1-4、比較例1-2、1-3において、炭素被膜の被覆量が、ケイ素化合物と炭素被膜の合計に対し、5質量%であった。また、上記の全ての実施例及び比較例において、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-95~-150ppmに与えられるSiO領域に由来するピークが発現した。また、比較例1-1、比較例1-2では、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-75ppm付近に与えられるLiSiOに由来するピークの強度Aと上記SiO領域に由来するピークの強度Bとの関係がA<Bであった。その他の実施例、比較例では、上記関係はA>Bであった。実施例1-1において得られた29Si-MAS-NMRスペクトルを図5に示す。
 また、上記のように作製した負極と対極リチウムとから、2032サイズのコイン電池型の試験セルを作製し、その放電挙動を評価した。より具体的には、まず、対極Liで0Vまで定電流定電圧充電を行い、電流密度が0.05mA/cmに達した時点で充電を終止させた。その後、1.2Vまで定電流放電を行った。この時の電流密度は0.2mA/cmであった。このような充放電により得られたデータから、縦軸を容量の変化率(dQ/dV)、横軸を電圧(V)としてグラフを描き、Vが0.4~0.55(V)の範囲にピークが得られるかを確認した。その結果、比較例1-1、1-2以外の全ての実施例、比較例にてピークが確認された。
 実施例1-1~1-4、比較例1-1、1-2、1-3の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1-1~実施例1-4のように、本発明の負極活物質を使用した二次電池では、Liを用いた改質による、サイクル特性や初回効率といった電池特性の向上効果を得られるうえに、ガス発生を大幅に抑制することができた。特に、実施例1-1では、スラリー作製から1週間経過後にしかガスの発生が確認されなかった。
 一方、改質したケイ素系活物質粒子に複合層を形成しなかった比較例1-3では、スラリー作成から6時間経過時点でガスが発生していた。上記のように、スラリー作製直後から作製後6時間経過前の間でガス発生の有無を確認していないため、比較例1-3ではスラリー作製後から6時間以内にガスが発生してしまったと言える。ガス発生後のスラリーは銅箔(集電体)との剥離強度が低下するため、取扱いが難しい。工業的に電極を作製する場合には、スラリーのポットライフは最低でも6時間は必要であるため、比較例1-3の負極活物質は工業的な生産に使用するに耐えないものであるといえる。また、改質を行っていない比較例1-1、1-2ではガスの発生は無かったものの、実施例に比べて電池特性が劣る。比較例1-2では、ケイ素系活物質粒子が炭素被膜を有しているため、比較例1-1よりも電池特性は良好であるが、十分な値とは言えない。
(実施例2-1、2-2、比較例2-1、2-2)
 ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1-1と同様に、二次電池の製造を行った。この場合、気化出発材の比率や温度を変化させることで、酸素量を調整した。実施例2-1、2-2、比較例2-1、2-2における、SiOで表されるケイ素化合物のxの値を表2中に示した。
Figure JPOXMLDOC01-appb-T000002
 ケイ素化合物中の酸素量が減る、すなわちx<0.5となると、Siリッチとなり、サイクル維持率が大幅に低下した。また酸素リッチの場合、すなわちx>1.6となる場合、ケイ素酸化物の抵抗が高くなり、サイクル維持率が大幅に低下した。
(実施例3-1~3-6)
 複合層の膜厚を表3に示すように変更したこと以外、実施例1-1と同様に、二次電池の製造を行った。膜厚は、脱水エタノールと改質後のケイ素化合物に対するAlイソプロポキシドの質量比を変化させることで調整した。なお、膜厚はTEMでも測定可能であるが、ここでは濾過後の濾過液に残ったアルミニウム量から、膜厚を計算した。また、実施例3-3における膜厚(3nm)に関しては、TEMで画像を確認し、上記計算法で得た膜厚の算出値がTEMで測定する膜厚値とほぼ一致することを確認した。
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、複合層の厚さが10nm以下で、十分なガス発生の抑制効果に加え、電池特性の向上効果を、より十分に得られることが分かった。また、複合層の厚さが5nm以下、特には2~3nmで特に良好な電池特性の向上効果が得られることが分かった。
(実施例4-1~実施例4-5)
 複合層の膜厚を表4に示すように変更したことと、改質方法を電気化学的手法としたこと以外、実施例1-1と同様に、二次電池の製造を行った。より具体的には、改質は、図3に示した装置内で、エチレンカーボネート及びジメチルカーボネートの体積比が3:7の混合溶媒(電解質塩を1.3mol/kgの濃度で含んでいる。)中で電気化学法を用いバルク改質を行った。
Figure JPOXMLDOC01-appb-T000004
 改質方法を電気化学的手法とした場合であっても、表4に示すように、複合層の厚さが10nm以下で、ガス発生の抑制効果に加え、電池特性の向上効果がより十分に得られることが分かった。また、この場合にも、複合層の厚さが5nm以下、特には2~3nmで特に良好な電池特性の向上効果が得られることが分かった。
(実施例5-1、5-2)
 ケイ素化合物を29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-95~-150ppmに与えられるSiO領域に由来するピークを持たないものとしたこと以外、実施例1-1と同様に二次電池を作製した。改質時にLi量を増加させることで、SiO領域に由来するピークの強度を大幅に低減した。そして、その後、水系スラリーに耐えられる程度にまでケイ素化合物からLiを脱離することで、NMRで確認可能なSiO領域が無いケイ素系活物質を作製した。
 また、実施例5-2では、改質手法を電気化学的手法に変更した。
Figure JPOXMLDOC01-appb-T000005
 実施例5-1、5-2では、それぞれ、24時間後と48時間後にガスの発生が確認された。一方で、NMRによって測定されるSiO領域に由来するピークの有無以外、実施例5-1と同条件でスラリーを作製した実施例1-1や、実施例5-2と上記ピークの有無以外同条件でスラリーを作製した実施例3-3では、上述のように、ガスの発生は1週間後に確認された。このことから、ケイ素系活物質にNMRで確認可能なSiO領域が含まれている方が、ガスの発生を抑制する効果がより高いことが分かった。また、実施例5-1、5-2のように、Li化合物が多く、スラリーに対する安定性が比較的低くなり得る場合であっても、本発明のように複合層を形成すれば、ガス発生時間を24時間以上とでき、従来に比べ大幅にガスの発生を抑制できていることも確認できた。
(実施例6-1)
 ケイ素化合物をLiSiOに由来するピークの強度Aと上記SiO領域に由来するピークの強度Bとの関係がA<Bのものとしたこと以外、実施例1-1と同様に二次電池を作製した。この場合、改質時にLi量を減らすことで、LiSiOの量を減らし、LiSiOに由来するピークの強度Aを小さくした。
Figure JPOXMLDOC01-appb-T000006
 ケイ素化合物に、NMRで確認できる二酸化ケイ素領域を強く残した場合、ガス発生にマイルドな方向(ガス発生を抑制する方向)となる。ここでは、測定の方法上、ガス発生までの時間が、ピーク強度の関係A>Bを満たす実施例1-1と同じ1週間と評価されたが、実際には、実施例6-1のガス発生までの時間は、実施例1-1のガス発生までの時間より長いと考えられる。しかしながら、実施例6-1では、実施例1-1に比べ若干初期効率が低下した。
(実施例7-1)
 ケイ素系活物質をV-dQ/dV曲線において、Vが0.40V~0.55Vの範囲にピークが得られないものとしたこと以外、実施例1-1と同様に二次電池を作製した。
Figure JPOXMLDOC01-appb-T000007
 放電カーブ形状がより鋭く立ち上がるためには、ケイ素化合物(SiOx)において、ケイ素(Si)と同様の放電挙動を示す必要がある。上記の範囲にピークが存在しない場合、ケイ素化合物は比較的緩やかな放電カーブとなるため、組みセルにした場合、若干初期効率が低下する結果となった。
(実施例8-1~8-9)
 ケイ素化合物の結晶性を変化させた他は、実施例1-1と同様に二次電池の製造を行った。ケイ素化合物の結晶性の変化は、ケイ素化合物の作製後に非大気雰囲気下で熱処理することで制御可能である。なお、熱ドープ法による改質では、ケイ素化合物に一定以上の熱がかかる。そこで、実施例8-8、8-9では、より非晶質に近い材料において、低結晶性を維持するために電気化学法で改質を行っている。
Figure JPOXMLDOC01-appb-T000008
 特に半値幅(2θ)が1.2°以上で、尚且つSi(111)面に起因する結晶子サイズが7.5nm以下の低結晶性材料で高い維持率が得られた。
(実施例9-1~実施例9-6)
 ケイ素化合物のメディアン径を表9のように変化させたこと以外、実施例1-1と同様に二次電池の製造を行った。
Figure JPOXMLDOC01-appb-T000009
 ケイ素化合物のメディアン径が0.5μm以上であれば、維持率が向上した。これは、ケイ素化合物の表面積が大すぎず、副反応が起きる面積を小さくできたためと考えられる。一方、メディアン径が15μm以下であれば、充電時に粒子が割れ難く、充放電時に新生面によるSEI(固体電解質界面)が生成し難いため、可逆Liの損失を抑制することができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (13)

  1.  負極活物質粒子を有し、該負極活物質粒子はLi化合物が含まれるケイ素化合物(SiO:0.5≦x≦1.6)を含有するものである非水電解質二次電池用負極活物質であって、
     前記ケイ素化合物の表面の少なくとも一部が炭素被膜で被覆されたものであり、
     前記ケイ素化合物の表面若しくは前記炭素被膜の表面、又はこれらの両方の少なくとも一部が、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層で被覆されたものであることを特徴とする非水電解質二次電池用負極活物質。
  2.  前記金属酸化物及び金属水酸化物は、アルミニウム、マグネシウム、チタニウム、及びジルコニウムのうち少なくとも1種の元素を含むことを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。
  3.  前記複合層の厚さが10nm以下であることを特徴とする請求項1又は請求項2に記載の非水電解質二次電池用負極活物質。
  4.  前記複合層の厚さが5nm以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の非水電解質二次電池用負極活物質。
  5.  前記ケイ素化合物は、前記Li化合物としてLiSiOを含むことを特徴とする請求項1から請求項4のいずれか1項に記載の非水電解質二次電池用負極活物質。
  6.  前記ケイ素化合物が、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-95~-150ppmに与えられるSiO領域に由来するピークを持つことを特徴とする請求項1から請求項5のいずれか1項に記載の非水電解質二次電池負極活物質。
  7.  前記ケイ素化合物が、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-75ppm付近に与えられるLiSiOに由来するピークの強度Aと、-95~-150ppmに与えられるSiO領域に由来するピークの強度Bとが、A>Bの関係を満たすことを特徴とする請求項1から請求項6のいずれか1項に記載の非水電解質二次電池負極活物質。
  8.  前記非水電解質二次電池用負極活物質と炭素系活物質とを混合した負極活物質を使用して作製した負極電極と対極リチウムとから成る試験セルを充放電し、放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、前記非水電解質二次電池用負極活物質がリチウムを脱離するよう電流を流す放電時における、前記負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることを特徴とする請求項1から請求項7のいずれか1項に記載の非水電解質二次電池用負極活物質。
  9.  前記ケイ素化合物が、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であると共に、その結晶面に起因する結晶子サイズが7.5nm以下のものであることを特徴とする請求項1から請求項8のいずれか1項に記載の非水電解質二次電池用負極活物質。
  10.  前記ケイ素化合物のメディアン径が0.5μm以上15μm以下のものであることを特徴とする請求項1から請求項9のいずれか1項に記載の非水電解質二次電池用負極活物質。
  11.  請求項1から請求項10のいずれか1項に記載の非水電解質二次電池用負極活物質を含むことを特徴とする非水電解質二次電池。
  12.  負極活物質粒子を含む非水電解質二次電池用負極材の製造方法であって、
     一般式SiO(0.5≦x≦1.6)で表される酸化珪素粒子を作製する工程と、
     前記酸化珪素粒子の表面に炭素被膜を形成する工程と、
     前記炭素被膜が被覆された酸化珪素粒子に、Liを挿入、脱離することで、前記酸化珪素粒子を改質する工程と、
     前記改質後の酸化珪素粒子の表面に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を形成する工程とを有し、前記複合層を形成された酸化珪素粒子を用いて、非水電解質二次電池用負極材を製造することを特徴とする非水電解質二次電池用負極材の製造方法。
  13.  前記複合層形成工程において、金属アルコキシドの加水分解及び脱水縮合によって前記改質後の酸化珪素粒子の表面に前記複合層を形成することを特徴とする請求項12に記載の非水電解質二次電池用負極材の製造方法。
PCT/JP2016/002272 2015-06-17 2016-05-10 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法 WO2016203696A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16811177.1A EP3312916B1 (en) 2015-06-17 2016-05-10 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
CN201680035286.4A CN107710466B (zh) 2015-06-17 2016-05-10 负极活性物质及二次电池、以及负极材料的制造方法
US15/580,556 US10418627B2 (en) 2015-06-17 2016-05-10 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
KR1020177036185A KR102633418B1 (ko) 2015-06-17 2016-05-10 비수전해질 이차 전지용 부극 활물질 및 비수전해질 이차 전지, 그리고 비수전해질 이차 전지용 부극재의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-122147 2015-06-17
JP2015122147A JP6407804B2 (ja) 2015-06-17 2015-06-17 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法

Publications (1)

Publication Number Publication Date
WO2016203696A1 true WO2016203696A1 (ja) 2016-12-22

Family

ID=57546357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002272 WO2016203696A1 (ja) 2015-06-17 2016-05-10 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法

Country Status (7)

Country Link
US (1) US10418627B2 (ja)
EP (1) EP3312916B1 (ja)
JP (1) JP6407804B2 (ja)
KR (1) KR102633418B1 (ja)
CN (1) CN107710466B (ja)
TW (1) TWI709273B (ja)
WO (1) WO2016203696A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168196A1 (ja) * 2017-03-13 2018-09-20 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
CN110419130A (zh) * 2017-03-13 2019-11-05 信越化学工业株式会社 负极材料及该负极材料的制造方法以及混合负极材料
CN110679019A (zh) * 2017-06-01 2020-01-10 信越化学工业株式会社 负极活性物质、混合负极活性物质材料、以及负极活性物质颗粒的制造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6688673B2 (ja) * 2016-05-11 2020-04-28 株式会社大阪チタニウムテクノロジーズ 酸化珪素系粉末負極材
US11817546B2 (en) * 2016-09-15 2023-11-14 Nec Corporation Lithium ion secondary battery
JP6375471B1 (ja) * 2017-03-31 2018-08-15 日本碍子株式会社 接合体および弾性波素子
JP6802111B2 (ja) * 2017-06-02 2020-12-16 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
US20200176770A1 (en) 2017-06-26 2020-06-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
CN111742437A (zh) * 2018-02-27 2020-10-02 松下知识产权经营株式会社 非水电解质二次电池
CN108987689B (zh) * 2018-06-22 2020-12-22 杨庆 一种硅碳负极材料的制备方法
JP6934453B2 (ja) * 2018-06-25 2021-09-15 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質
JP7003006B2 (ja) * 2018-06-26 2022-01-20 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法
JPWO2020044931A1 (ja) * 2018-08-30 2021-08-10 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池
CN109390577B (zh) * 2018-12-11 2021-02-19 桑德新能源技术开发有限公司 Si/SiO2/C复合纳米纤维材料及其制备方法与负极材料
CN109638254B (zh) * 2018-12-17 2020-09-25 宁德新能源科技有限公司 负极材料及使用其的电化学装置和电子装置
WO2020129652A1 (ja) * 2018-12-21 2020-06-25 パナソニックIpマネジメント株式会社 二次電池用負極活物質および二次電池
CN109713286B (zh) * 2018-12-29 2020-07-24 安普瑞斯(南京)有限公司 一种用于锂离子二次电池的硅基复合材料及其制备方法
CN111403693B (zh) * 2019-01-02 2021-08-13 宁德新能源科技有限公司 负极活性材料和使用其的负极极片、电化学装置和电子装置
CN109888217B (zh) 2019-02-20 2021-08-03 宁德新能源科技有限公司 负极活性材料和使用其的负极极片以及电化学和电子装置
CN112018334A (zh) * 2019-05-28 2020-12-01 贝特瑞新材料集团股份有限公司 一种硅氧化物/碳复合负极材料及其制备方法和锂离子电池
CN111115638A (zh) * 2019-12-11 2020-05-08 合肥国轩高科动力能源有限公司 一种硅基负极材料的制备方法
JP7410301B2 (ja) 2019-12-31 2024-01-09 博賽利斯(南京)有限公司 電池用の負極活性材料およびその製造方法
KR102511822B1 (ko) 2021-02-18 2023-03-17 에스케이온 주식회사 리튬 이차 전지용 음극 활물질 이를 포함하는 리튬 이차 전지
CN115148960A (zh) * 2021-03-31 2022-10-04 宁德新能源科技有限公司 负极极片及包含该负极极片的电化学装置、电子装置
JP2024503413A (ja) * 2021-08-13 2024-01-25 エルジー エナジー ソリューション リミテッド 負極活物質、これを含む負極、および二次電池
CN117751466A (zh) * 2021-12-10 2024-03-22 株式会社Lg新能源 负极、制造负极的方法、负极浆料和包含负极的二次电池
TW202349768A (zh) * 2022-03-25 2023-12-16 南韓商大洲電子材料股份有限公司 矽-碳混合物、其製備方法及包含其之負極活性材料與鋰二次電池
JP2023151923A (ja) * 2022-04-01 2023-10-16 信越化学工業株式会社 負極活物質及び負極活物質の製造方法
WO2024038496A1 (ja) * 2022-08-15 2024-02-22 テックワン株式会社 複合材および複合材製造方法
WO2024053939A1 (ko) * 2022-09-05 2024-03-14 주식회사 엘지에너지솔루션 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042806A (ja) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2008282819A (ja) * 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2009070825A (ja) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009164104A (ja) * 2007-09-06 2009-07-23 Canon Inc 負極用電極材料、その製造方法ならびに該材料を用いた電極構造体及び蓄電デバイス
JP2009212074A (ja) * 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2010073651A (ja) * 2008-09-22 2010-04-02 Toshiba Corp 非水電解質電池用負極活物質及び非水電解質電池
WO2013047024A1 (ja) * 2011-09-26 2013-04-04 日本電気株式会社 リチウム二次電池及びこれを用いた車両
JP2015099775A (ja) * 2013-11-19 2015-05-28 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 負極活物質、それを採用した負極及びリチウム電池、並びに該負極活物質の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP4367311B2 (ja) 2004-10-18 2009-11-18 ソニー株式会社 電池
JP4994634B2 (ja) 2004-11-11 2012-08-08 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP4911990B2 (ja) 2006-02-27 2012-04-04 三洋電機株式会社 リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP5108355B2 (ja) 2007-03-30 2012-12-26 パナソニック株式会社 リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP5374851B2 (ja) * 2007-10-15 2013-12-25 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5555978B2 (ja) 2008-02-28 2014-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP5245592B2 (ja) * 2008-07-14 2013-07-24 信越化学工業株式会社 非水電解質二次電池用負極材、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP4883323B2 (ja) * 2008-08-26 2012-02-22 信越化学工業株式会社 非水電解質二次電池負極材及びSi−O−Al複合体の製造方法、ならびに非水電解質二次電池負極及び非水電解質二次電池
JP2010092830A (ja) 2008-09-11 2010-04-22 Sanyo Electric Co Ltd 非水電解質二次電池
KR101084077B1 (ko) * 2009-10-14 2011-11-16 삼성에스디아이 주식회사 리튬이차전지용 음극활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지
JP5411781B2 (ja) 2010-04-05 2014-02-12 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
KR20120069531A (ko) * 2010-12-20 2012-06-28 가부시키가이샤 히타치세이사쿠쇼 리튬 이온 이차전지용 전극 및 리튬 이온 이차전지
JP5686441B2 (ja) 2012-04-19 2015-03-18 エルジー・ケム・リミテッド ケイ素系正極活物質及びこれを含む二次電池
EP2869367A4 (en) * 2012-06-27 2016-02-24 Jnc Corp NEGATIVE ACTIVE MATERIAL FOR SECONDARY BATTERY, METHOD OF MANUFACTURING THEREOF, AND NEGATIVE ELECTRODE AND LITHIUMION BATTERY MADE THEREFOR
US9112213B2 (en) * 2012-11-06 2015-08-18 Samsung Sdi Co., Ltd. Active material for a secondary battery, secondary battery including the active material, and method of preparing an active material
JP6156190B2 (ja) * 2014-02-27 2017-07-05 ソニー株式会社 負極活物質、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042806A (ja) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2009164104A (ja) * 2007-09-06 2009-07-23 Canon Inc 負極用電極材料、その製造方法ならびに該材料を用いた電極構造体及び蓄電デバイス
JP2009070825A (ja) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009212074A (ja) * 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2008282819A (ja) * 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2010073651A (ja) * 2008-09-22 2010-04-02 Toshiba Corp 非水電解質電池用負極活物質及び非水電解質電池
WO2013047024A1 (ja) * 2011-09-26 2013-04-04 日本電気株式会社 リチウム二次電池及びこれを用いた車両
JP2015099775A (ja) * 2013-11-19 2015-05-28 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 負極活物質、それを採用した負極及びリチウム電池、並びに該負極活物質の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312916A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598542A4 (en) * 2017-03-13 2020-12-23 Shin-Etsu Chemical Co., Ltd. NEGATIVE ELECTRODE ACTIVE SUBSTANCE, NEGATIVE ELECTRODE ACTIVE SUBSTANCE MIXED MATERIAL AND NEGATIVE ELECTRODE ACTIVE SUBSTANCE MANUFACTURING PROCESS
CN110419130B (zh) * 2017-03-13 2022-05-24 信越化学工业株式会社 负极材料及该负极材料的制造方法以及混合负极材料
CN110419129A (zh) * 2017-03-13 2019-11-05 信越化学工业株式会社 负极活性物质、混合负极活性物质材料以及负极活性物质的制备方法
CN110419130A (zh) * 2017-03-13 2019-11-05 信越化学工业株式会社 负极材料及该负极材料的制造方法以及混合负极材料
US11990603B2 (en) 2017-03-13 2024-05-21 Shin-Etsu Chemical Co., Ltd. Negative electrode material, method of producing the negative electrode material, and mixed negative electrode material
EP3598541A4 (en) * 2017-03-13 2020-12-23 Shin-Etsu Chemical Co., Ltd. NEGATIVE ELECTRODE MATERIAL, METHOD FOR MANUFACTURING THE SAID NEGATIVE ELECTRODE MATERIAL AND MIXED NEGATIVE ELECTRODE MATERIAL
JP2018152252A (ja) * 2017-03-13 2018-09-27 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2018168196A1 (ja) * 2017-03-13 2018-09-20 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
US11594716B2 (en) 2017-03-13 2023-02-28 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method of producing negative electrode active material
CN110679019A (zh) * 2017-06-01 2020-01-10 信越化学工业株式会社 负极活性物质、混合负极活性物质材料、以及负极活性物质颗粒的制造方法
US11283060B2 (en) 2017-06-01 2022-03-22 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material particle
CN110679019B (zh) * 2017-06-01 2022-11-18 信越化学工业株式会社 负极活性物质、混合负极活性物质材料、以及负极活性物质颗粒的制造方法
US11901545B2 (en) 2017-06-01 2024-02-13 Shin-Etsu Chemical Co., Ltd. Method for producing negative electrode active material particle
EP3633772A4 (en) * 2017-06-01 2021-03-03 Shin-Etsu Chemical Co., Ltd. NEGATIVE ELECTRODE ACTIVE SUBSTANCE, NEGATIVE ELECTRODE ACTIVE SUBSTANCE MATERIAL, AND PROCESS FOR MANUFACTURING NEGATIVE ACTIVE PARTICLE ACTIVE SUBSTANCE

Also Published As

Publication number Publication date
KR102633418B1 (ko) 2024-02-06
JP6407804B2 (ja) 2018-10-17
CN107710466B (zh) 2020-11-03
KR20180019569A (ko) 2018-02-26
US10418627B2 (en) 2019-09-17
JP2017010645A (ja) 2017-01-12
US20180175377A1 (en) 2018-06-21
TWI709273B (zh) 2020-11-01
EP3312916A4 (en) 2019-03-20
EP3312916A1 (en) 2018-04-25
TW201717457A (zh) 2017-05-16
EP3312916B1 (en) 2024-03-20
CN107710466A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6407804B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP6596405B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
JP6389159B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法
JP6181590B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2015063979A1 (ja) 負極活物質、負極活物質の製造方法、並びに、リチウムイオン二次電池
JP6239476B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6386414B2 (ja) 非水電解質二次電池用負極活物質及びその製造方法、並びにその負極活物質を用いた非水電解質二次電池及び非水電解質二次電池用負極材の製造方法
WO2015107581A1 (ja) 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
JP7078346B2 (ja) 負極活物質及びリチウムイオン二次電池の製造方法
JP7019284B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2017085911A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
JP6297991B2 (ja) 非水電解質二次電池
JP6448462B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極活物質の製造方法
JP6460960B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
WO2017119031A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
WO2017183286A1 (ja) 負極活物質、混合負極活物質材料、負極活物質の製造方法
JP6215804B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに負極活物質粒子の製造方法
JP6365785B2 (ja) 非水電解質二次電池の使用方法
WO2017145654A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
JP6862091B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP6746526B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2017110040A1 (ja) 負極活物質、負極電極、リチウムイオン二次電池、負極活物質の製造方法及びリチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15580556

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177036185

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811177

Country of ref document: EP