WO2016181930A1 - 基板の検査方法、基板処理システム及びコンピュータ記憶媒体 - Google Patents

基板の検査方法、基板処理システム及びコンピュータ記憶媒体 Download PDF

Info

Publication number
WO2016181930A1
WO2016181930A1 PCT/JP2016/063733 JP2016063733W WO2016181930A1 WO 2016181930 A1 WO2016181930 A1 WO 2016181930A1 JP 2016063733 W JP2016063733 W JP 2016063733W WO 2016181930 A1 WO2016181930 A1 WO 2016181930A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
image
inspection
storage unit
feature amount
Prior art date
Application number
PCT/JP2016/063733
Other languages
English (en)
French (fr)
Inventor
森 拓也
早川 誠
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020237024716A priority Critical patent/KR20230111273A/ko
Priority to US15/567,997 priority patent/US10520450B2/en
Priority to CN202010794112.4A priority patent/CN111982927B/zh
Priority to CN201680026816.9A priority patent/CN107533016B/zh
Priority to KR1020177032354A priority patent/KR102562020B1/ko
Publication of WO2016181930A1 publication Critical patent/WO2016181930A1/ja
Priority to US16/689,218 priority patent/US11513081B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Definitions

  • the present invention relates to a substrate inspection method, a substrate processing system, and a readable computer storage medium storing a program for executing the substrate inspection method.
  • a resist coating process is performed by applying a resist solution on a semiconductor wafer (hereinafter referred to as “wafer”) as a substrate, and the resist film is exposed to a predetermined pattern.
  • Wafer semiconductor wafer
  • a series of processes such as an exposure process for developing and a development process for developing the exposed resist film are sequentially performed to form a predetermined resist pattern on the wafer.
  • These series of processes are performed by a coating and developing system that is a substrate processing system equipped with various processing apparatuses for processing wafers, a transport mechanism for transporting wafers, and the like.
  • Such a coating and developing processing system is provided with an inspection apparatus that performs a so-called macro defect inspection on a wafer (Patent Document 1).
  • a wafer that has been subjected to a predetermined process by the coating and developing processing system is imaged by an imaging device such as a CCD line sensor under a predetermined illumination, and a captured image of the wafer is acquired. And the presence or absence of a defect is determined by comparing the acquired captured image with the image of the wafer used as a reference.
  • inspection recipes such as a reference wafer image, illumination illuminance, and imaging speed are set.
  • the surface state such as reflectivity of the wafer surface varies from process to process. Therefore, there is a problem that the accuracy of the macro defect inspection varies depending on the surface state of the wafer.
  • the present invention has been made in view of such a point, and an object thereof is to appropriately inspect a substrate in a substrate processing system.
  • the present invention provides a method for inspecting a substrate in a substrate processing system including a plurality of processing apparatuses for performing a predetermined process on a substrate, the substrate before being processed by the processing apparatus.
  • a first substrate image is acquired by imaging the surface, a predetermined feature amount is extracted from the first substrate image, and a plurality of inspection recipes set corresponding to the feature amounts in different ranges are stored.
  • the inspection recipe corresponding to the feature amount extracted from the first substrate image is selected from the storage unit, and the second substrate image is obtained by imaging the surface of the substrate after being processed by the processing apparatus. Then, based on the selected inspection recipe and the second substrate image, the presence / absence of a substrate defect is determined.
  • the optimal Based on the inspection recipe since the first substrate image is acquired by first imaging the substrate before being processed in the processing station, and the inspection recipe is selected based on the feature amount of the first substrate image, the optimal Based on the inspection recipe, the presence or absence of a defect in the second substrate image can be appropriately determined. Therefore, it is possible to always perform an optimal inspection regardless of the surface state of the substrate, and to suppress variations in accuracy of the macro defect inspection.
  • a substrate processing system including a plurality of processing apparatuses that perform predetermined processing on a substrate, and images a surface of the substrate before being processed by the processing apparatus to obtain a first substrate image.
  • a plurality of inspection recipes set in correspondence with the feature amounts in different ranges, respectively, and a first feature amount extraction unit that extracts a predetermined feature amount from the first substrate image.
  • a recipe selection section that selects an inspection recipe corresponding to the feature quantity extracted by the feature quantity extraction section from the inspection recipe stored in the storage section, and the selected inspection recipe
  • a second imaging device that captures the surface of the substrate processed by the processing device to obtain a second substrate image, and a defect determination unit that determines the presence or absence of a defect in the second substrate image; And an inspection device equipped with That.
  • a readable computer storage medium storing a program that operates on a computer of a control unit that controls the substrate processing system so that the substrate inspection method is executed by the substrate processing system. is there.
  • FIG. 1 is a plan view showing an outline of a configuration of a substrate processing system 1 according to the present embodiment.
  • 2 and 3 are a front view and a rear view, respectively, schematically showing the outline of the internal configuration of the substrate processing system 1.
  • the substrate processing system 1 is a coating and developing processing system that performs coating and developing processing on the wafer W
  • elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
  • the substrate processing system 1 includes a cassette station 10 in which a cassette C containing a plurality of wafers W is loaded and unloaded, and a processing station 11 having a plurality of various processing apparatuses for performing predetermined processing on the wafers W. And an interface station 13 that transfers the wafer W to and from the exposure apparatus 12 adjacent to the processing station 11 is integrally connected.
  • the cassette station 10 is provided with a cassette mounting table 20.
  • the cassette mounting table 20 is provided with a plurality of cassette mounting plates 21 on which the cassette C is mounted when the cassette C is carried into and out of the substrate processing system 1.
  • the cassette station 10 is provided with a wafer transfer device 23 that is movable on a transfer path 22 extending in the X direction as shown in FIG.
  • the wafer transfer device 23 is also movable in the vertical direction and the vertical axis direction ( ⁇ direction), and includes a cassette C on each cassette mounting plate 21 and a delivery device for a third block G3 of the processing station 11 described later.
  • the wafer W can be transferred between the two.
  • the processing station 11 is provided with a plurality of, for example, four blocks G1, G2, G3, and G4 having various devices.
  • the first block G1 is provided on the front side of the processing station 11 (X direction negative direction side in FIG. 1), and the second block is provided on the back side of the processing station 11 (X direction positive direction side in FIG. 1).
  • Block G2 is provided.
  • a third block G3 is provided on the cassette station 10 side (Y direction negative direction side in FIG. 1) of the processing station 11, and the interface station 13 side (Y direction positive direction side in FIG. 1) of the processing station 11 is provided. Is provided with a fourth block G4.
  • a plurality of liquid processing apparatuses for example, a development processing apparatus 30 that develops the wafer W, an antireflection film (hereinafter referred to as “lower antireflection”) under the resist film of the wafer W.
  • a lower antireflection film forming device 31 for forming a film a resist coating device 32 for applying a resist solution to the wafer W to form a resist film, and an antireflection film (hereinafter referred to as “upper reflection” on the resist film of the wafer W).
  • An upper antireflection film forming device 33 for forming an “antireflection film” is arranged in this order from the bottom.
  • the development processing device 30, the lower antireflection film forming device 31, the resist coating device 32, and the upper antireflection film forming device 33 are arranged side by side in the horizontal direction.
  • the number and arrangement of the development processing device 30, the lower antireflection film forming device 31, the resist coating device 32, and the upper antireflection film forming device 33 can be arbitrarily selected.
  • the lower antireflection film forming device 31 for example, spin coating for applying a predetermined coating solution onto the wafer W is performed.
  • spin coating for example, a coating liquid is discharged onto the wafer W from a coating nozzle, and the wafer W is rotated to diffuse the coating liquid to the surface of the wafer W.
  • a peripheral exposure device 42 for exposing the outer peripheral portion is provided side by side in the vertical direction and the horizontal direction. The number and arrangement of the heat treatment apparatus 40, the adhesion apparatus 41, and the peripheral exposure apparatus 42 can be arbitrarily selected.
  • the third block G3 is processed by the inspection apparatus 50 for inspecting the wafer W before being processed by the processing station 11, the plurality of transfer apparatuses 51, 52, 53, 54, 55, and the processing station 11.
  • An inspection device 56 for inspecting the subsequent wafer W is provided in order from the bottom.
  • the fourth block G4 is provided with a plurality of delivery devices 60, 61, 62 in order from the bottom. The configuration of the inspection devices 50 and 56 will be described later.
  • a wafer transfer area D is formed in an area surrounded by the first block G1 to the fourth block G4.
  • a plurality of wafer transfer devices 70 having transfer arms that are movable in the Y direction, the X direction, the ⁇ direction, and the vertical direction are arranged.
  • the wafer transfer device 70 moves in the wafer transfer area D and transfers the wafer W to a predetermined device in the surrounding first block G1, second block G2, third block G3, and fourth block G4. it can.
  • a shuttle transfer device 80 that transfers the wafer W linearly between the third block G3 and the fourth block G4 is provided.
  • the shuttle transport device 80 is linearly movable, for example, in the Y direction in FIG.
  • the shuttle transfer device 80 moves in the Y direction while supporting the wafer W, and can transfer the wafer W between the transfer device 52 of the third block G3 and the transfer device 62 of the fourth block G4.
  • a wafer transfer device 90 is provided next to the third block G3 on the positive side in the X direction.
  • the wafer transfer device 90 has a transfer arm that is movable in the X direction, the ⁇ direction, and the vertical direction, for example.
  • the wafer transfer device 90 moves up and down while supporting the wafer W, and can transfer the wafer W to each delivery device in the third block G3.
  • the interface station 13 is provided with a wafer transfer device 100 and a delivery device 101.
  • the wafer transfer apparatus 100 has a transfer arm that is movable in the Y direction, the ⁇ direction, and the vertical direction, for example.
  • the wafer transfer apparatus 100 can transfer the wafer W between each transfer apparatus, the transfer apparatus 101, and the exposure apparatus 12 in the fourth block G4, for example, by supporting the wafer W on a transfer arm.
  • the inspection device 50 includes a casing 150.
  • a wafer chuck 151 for holding the wafer W is provided in the casing 150 as shown in FIG.
  • a guide rail 152 extending from one end side (X direction negative direction side in FIG. 4) to the other end side (X direction positive direction side in FIG. 4) is provided on the bottom surface of the casing 150.
  • a drive unit 153 that rotates the wafer chuck 151 and is movable along the guide rail 152 is provided.
  • the imaging part 160 as a 1st imaging device is provided in the side surface of the other end side in the casing 150 (X direction positive direction side of FIG. 4).
  • the imaging unit 160 for example, a wide-angle CCD camera is used.
  • a half mirror 161 is provided Near the upper center of the casing 150.
  • the half mirror 161 is provided at a position facing the imaging unit 160 in a state where the mirror surface is inclined 45 degrees upward from the state in which the mirror surface is directed vertically downward toward the imaging unit 160.
  • An illumination device 162 is provided above the half mirror 161.
  • the half mirror 161 and the illumination device 162 are fixed to the upper surface inside the casing 150. Illumination from the illumination device 162 passes through the half mirror 161 and is illuminated downward.
  • the light reflected by the object below the illumination device 162 is further reflected by the half mirror 161 and taken into the imaging unit 160. That is, the imaging unit 160 can capture an image of an object in an irradiation area by the illumination device 162. Then, an image of the wafer W (first substrate image) captured by the imaging unit 160 of the inspection apparatus 50 is input to the control apparatus 200 described later.
  • the inspection device 56 has the same configuration as the inspection device 50, the description of the inspection device 56 is omitted.
  • the imaging unit 160 of the inspection apparatus 56 functions as the second imaging apparatus of the present invention, and the image of the wafer W (second substrate image) captured by the imaging unit 160 of the inspection apparatus 56 is similarly controlled. Input to the device 200.
  • the substrate processing system 1 is provided with a control device 200 as shown in FIG.
  • the control device 200 is configured by a computer including a CPU, a memory, and the like, for example, and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the inspection of the wafer W performed based on the substrate image captured by the inspection apparatuses 50 and 56.
  • the program storage unit controls the operation of drive systems such as the above-described various processing apparatuses and transfer apparatuses to perform predetermined operations of the substrate processing system 1, that is, application and development of a resist solution on the wafer W. Also stored are programs for realizing heat treatment, wafer W delivery, control of each unit, and the like.
  • the program is recorded on a computer-readable storage medium H such as a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), or a memory card. May have been installed in the control device 200 from the storage medium H.
  • a computer-readable storage medium H such as a computer-readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical desk (MO), or a memory card. May have been installed in the control device 200 from the storage medium H.
  • the control device 200 includes a feature amount extraction unit 210 that extracts a predetermined feature amount from the first board image captured by the imaging unit 160 of the inspection device 50, and a feature amount within a predetermined range.
  • the inspection recipe corresponding to the feature amount extracted by the feature amount extraction unit 210 is selected from the storage unit 211 in which a plurality of inspection recipes set corresponding to the storage unit 211 are stored and the plurality of inspection recipes stored in the storage unit 211
  • a defect determination unit 213 that determines the presence / absence of a defect based on the selected inspection recipe and the second substrate image imaged by the imaging unit 160 of the inspection device 56. .
  • control device 200 includes the first substrate image captured by the imaging unit 160, the image storage unit 214 that stores the first substrate image, and the first substrate image stored in the image storage unit 214.
  • an image classification unit 215 for classifying into a plurality of groups, and a second corresponding to the plurality of first substrate images classified into each group by the image classification unit 215.
  • a reference image generation unit 216 that combines the substrate images to generate a reference image
  • an inspection recipe generation unit 217 that generates an inspection recipe based on the reference image generated by the reference image generation unit 216 and stores the inspection recipe in the storage unit 211. And are further provided.
  • the feature amount extracted by the feature amount extraction unit 210 is, for example, a pixel value of a board image. Then, the feature amount extraction unit 210 calculates an average value, for example, for pixel values on the entire surface of the board image, and obtains the average value as a feature quantity of the board image.
  • the substrate image is an 8-bit image having, for example, 256 gradations (0 to 255) will be described as an example.
  • the inspection recipe 230 is used, for example, when the feature amount (average pixel value) of the first board image is in the range of “10 to 70”. It is used when the amount is “90 to 140” or “200 to 240”.
  • Each inspection recipe 230, 231 and 232 includes, for example, imaging conditions when imaging is performed by each imaging unit 160, a reference image serving as a reference for defect inspection, and the like. Note that the number of inspection recipes stored in the storage unit 211 and the range covered by the inspection recipe can be arbitrarily set, and are not limited to the contents of the present embodiment.
  • an inspection recipe corresponding to the feature amount extracted by the feature amount extraction unit 210 is selected from the storage unit 211. For example, when the feature quantity of the first substrate image acquired by imaging the wafer W of an arbitrary lot with the inspection apparatus 50 is “60”, the recipe selection unit 212 stores the feature quantity “10 ⁇ The inspection recipe 230 corresponding to the board image “70” is selected.
  • the defect determination unit 213 determines the presence / absence of a defect based on the inspection recipe 230 and the second substrate image. Specifically, when the wafer W whose feature value of the first substrate image is “60” finishes the predetermined processing at the processing station 11, the image is picked up by the imaging unit 160 of the inspection device 56 and is then taken into the second substrate image. Is acquired. Then, the defect determination unit 213 determines the presence / absence of a defect in the second substrate image of the same wafer W by the inspection recipe 230 selected based on the feature value “60” of the first substrate image.
  • the functions of the other image storage unit 214, image classification unit 215, reference image generation unit 216, and inspection recipe generation unit 217 will be described later.
  • FIG. 8 is a flowchart showing an example of main steps of the wafer W inspection method. The inspection method will be described with reference to FIG.
  • a cassette C storing a plurality of wafers W of the same lot is carried into the cassette station 10 of the substrate processing system 1, and each wafer W in the cassette C is sequentially inspected by the wafer transfer device 23 in the third block G3. 50, the first substrate image is acquired (step S1 in FIG. 8).
  • the feature quantity extraction unit 210 extracts feature quantities from the first board image (step S2 in FIG. 8). If an inspection recipe corresponding to the feature amount of the first board image exists in the storage unit 211, a predetermined inspection recipe is selected by the recipe selection unit 212 (steps S3 and S4 in FIG. 8).
  • the recipe selection unit 212 selects the inspection recipe 230 corresponding to the feature amount “60” from the storage unit 211. .
  • the feature amount is “150” and there is no corresponding inspection recipe in the storage unit 211 (NO in step S3 in FIG. 8)
  • the first board image whose feature amount is “150” is The image is stored in the image storage unit 214 (step S5 in FIG. 8), and a predetermined inspection recipe is selected (step S4 in FIG. 8). Processing after the first substrate image is stored in the image storage unit 214 will be described later.
  • the predetermined inspection recipe may be any inspection recipe among a plurality of inspection recipes stored in the storage unit 211, for example, in this embodiment, the inspection recipe 231 is predetermined.
  • this is an inspection recipe. That is, when the feature amount of the first board image is “150”, there is no corresponding inspection recipe in the storage unit 211, and thus a predetermined inspection recipe 231 is selected.
  • the wafer W is transferred to the heat treatment apparatus 40 of the second block G2 and subjected to temperature adjustment processing. Thereafter, the wafer W is transferred to, for example, the lower antireflection film forming device 31 of the first block G1 by the wafer transfer device 70, and a lower antireflection film is formed on the wafer W. Thereafter, the wafer W is transported to the heat treatment apparatus 40 of the second block G2, subjected to heat treatment, and the temperature is adjusted.
  • the wafer W is transferred to the adhesion apparatus 41 and subjected to an adhesion process. Thereafter, the wafer W is transferred to the resist coating device 32 of the first block G1, and a resist film is formed on the wafer W.
  • the wafer W is then transferred to the upper antireflection film forming apparatus 33 of the first block G1, and an upper antireflection film is formed on the wafer W. Thereafter, the wafer W is transferred to the heat treatment apparatus 40 of the second block G2, and heat treatment is performed. Thereafter, the wafer W is transferred to the peripheral exposure device 42 and subjected to peripheral exposure processing.
  • the wafer W is transferred to the transfer device 52 by the wafer transfer device 100 and transferred to the transfer device 62 of the fourth block G4 by the shuttle transfer device 80. Thereafter, the wafer W is transferred to the exposure device 12 by the wafer transfer device 110 of the interface station 13 and subjected to exposure processing in a predetermined pattern.
  • the wafer W is transferred to the heat treatment apparatus 40 by the wafer transfer apparatus 70 and subjected to post-exposure baking. Thereby, the deprotection reaction is caused by the acid generated in the exposed portion of the resist film. Thereafter, the wafer W is transferred to the development processing apparatus 30 by the wafer transfer apparatus 70 and subjected to development processing.
  • the wafer W is transferred to the heat treatment apparatus 40 and subjected to a post-bake process. Next, the temperature of the wafer W is adjusted by the heat treatment apparatus 40. Thereafter, the wafer W is transferred by the wafer transfer device 70 to the inspection device 56 of the third block G3, and a second substrate image is acquired by the imaging unit 160 (step S6 in FIG. 8).
  • the defect determination unit 213 of the control device 200 determines the presence / absence of a defect in the second substrate image based on, for example, the inspection recipe 230 selected corresponding to the feature value “60”.
  • the determination of the presence / absence of a defect is performed by, for example, comparing the reference image in the inspection recipe 230 with the second substrate image, and for example, when the pixel value between the reference image and the second substrate image has a difference equal to or greater than a specified value. If there is a defect and the difference is smaller than the specified value, it is determined that there is no defect (step S7 in FIG. 8). Similarly, even when the feature amount of the first substrate image is “150”, the presence / absence of a defect is determined based on the selected inspection recipe 231 and the second substrate image.
  • the wafer W is transferred to the cassette C of the predetermined cassette mounting plate 21 via the wafer transfer device 23, and a series of photolithography steps is completed. Then, this series of photolithography steps is also performed on subsequent wafers W in the same lot.
  • step S5 processing after the first substrate image is stored in the image storage unit 214 in step S5 will be described.
  • a feature value “150” that does not correspond to any of the inspection recipes 230, 231, and 232 is extracted from the first substrate image of the first wafer W of the lot, the feature value of the subsequent wafer W is also substantially increased. Is a value around “150”.
  • the number of first substrate images not corresponding to the inspection recipes 230, 231 and 232 corresponds to the image storage unit 214, that is, the number of wafers W included in the lot.
  • 9 represents the number of board images stored in the storage unit 211.
  • the image classification unit 215 uses the first group for the substrate image with the pixel value in the range of 75 to 85 and the substrate image with the pixel value in the range of 145 to 160. Are classified into the second group (step S8 in FIG. 8).
  • the reference image generation unit 216 combines the second substrate images of the wafer W corresponding to the first substrate image belonging to the first group, and generates a reference image corresponding to the first group ( Step S9 in FIG. Similarly, a reference image corresponding to the second group is also generated.
  • the inspection recipe generation unit 217 generates a recipe corresponding to each group based on the generated reference image, and stores it as a new inspection recipe in the storage unit 211 (step S10 in FIG. 8).
  • this new inspection recipe is selected and defect inspection of the wafer W is performed in step S4.
  • the wafer W before being processed at the processing station 11 is first imaged by the imaging unit 160 of the inspection apparatus 50 to obtain the first substrate image, and the characteristics of the first substrate image are obtained. Since the inspection recipe is selected based on the amount, it is possible to appropriately determine the presence or absence of a defect in the second substrate image based on the optimal inspection recipe. Therefore, even when the surface state of the wafer W is different from lot to lot, for example, it is possible to always perform the optimum inspection and suppress the variation in the accuracy of the macro defect inspection.
  • the first board image is temporarily stored in the image storage unit 214, and a predetermined number of groups are stored. Since new inspection recipes are generated at the time of classification, the inspection recipes stored in the storage unit 211 gradually increase. Therefore, by continuing the wafer W process in the substrate processing system 1, most of the first substrate images correspond to the inspection recipe stored in the storage unit 211, thereby improving the accuracy of the macro defect inspection. Can do.
  • the image classification unit 215 classifies the board images into groups, and generates a new inspection recipe based on the classified board images.
  • the inspection recipe can be appropriately generated without spending a great deal of labor.
  • a plurality of inspection recipes 230, 231, and 232 are stored in advance in the storage unit 211, but at least one inspection recipe may be stored in the storage unit 211. That is, in the initial state of operation of the substrate processing system 1, inspection is performed by this one inspection recipe. As described above, new inspection recipes are sequentially generated, and the number of inspection recipes stored in the storage unit 211 is increased. By doing so, it becomes possible to perform the macro defect inspection corresponding to almost all the wafers W carried into the substrate processing system 1.
  • the surface state of the wafer W transferred to the substrate processing system 1 changes depending on the processing recipe in other processing apparatuses installed in a clean room including the substrate processing system 1, for example.
  • a so-called host computer that collectively manages the substrate processing system 1 and other processing apparatuses.
  • a new inspection recipe is sequentially generated based on the substrate image, and the wafer W before being processed in the processing station 11 is imaged by the imaging unit 160 of the inspection apparatus 50 to obtain the surface state. By checking, it is possible to always inspect defects according to the surface state of the wafer W without exchanging with the host computer.
  • step S3 only the first substrate image determined as “NO” in step S3 is stored in the image storage unit 214, but the first substrate image determined as “YES” in step S3. May also be stored in the image storage unit 214.
  • the inspection recipe generating unit 217 is used.
  • a provisional inspection recipe may be generated based on the reference image.
  • the storage unit 211 does not necessarily need to store the inspection recipe in advance. .
  • the reference image generation unit 216 generates the reference image by synthesizing the second substrate image.
  • what kind of substrate image is used as the reference image is the content of the present embodiment. It is not limited to.
  • the control device 200 is provided with a difference image generation unit 218 that generates a difference image between the first board image and the second board image, and the image storage unit 214 receives a plurality of the difference images.
  • the reference image may be stored and the reference image generation unit 216 may generate the reference image based on the plurality of difference images.
  • the inspection recipe generation unit 217 generates an inspection recipe using a reference image based on this difference image.
  • a difference image of the wafer W to be subjected to defect inspection is generated by the difference image generation unit 218, and the defect determination unit 213 generates the difference.
  • the presence / absence of a defect in the wafer W is determined based on the difference image thus obtained and the inspection recipe generated based on the difference image.
  • the first substrate image and the second substrate image are also stored in the image storage unit 214.
  • the defect determination unit 213 determines that there is a defect, it can be determined that the defect is caused by the substrate processing system 1. . That is, if a defect exists in the wafer W to be inspected before processing at the processing station 11, the defect exists in both the first substrate image and the second substrate image. By generating a difference image between the first substrate image and the second substrate image, those defects existing before the processing at the processing station 11 can be removed from the difference image. Therefore, it can be determined that the defect on the difference image is caused by the processing at the processing station 11.
  • the first substrate image stored in the image storage unit 214 or the first substrate image The presence or absence of a defect is confirmed for at least one of the two substrate images, and if there is a defect in the first substrate image or the second substrate image even if there is no defect in the difference image, the wafer W It may be determined that there is a defect.
  • a defect is detected from the first substrate image or the second substrate image, it can be determined that the defect is not caused by processing at the processing station 11.
  • the reference image generation unit 216 when the reference image generation unit 216 generates the reference image based on the difference image, the first substrate image acquired by the imaging unit 160 of the inspection apparatus 50 is also determined to have a defect, and is determined to have a defect. It is preferable that the first substrate image is not stored in the image storage unit 214 or excluded when the reference image generation unit 216 generates the reference image.
  • a reference image is generated by synthesizing a substrate image including defects, it may not be possible to detect defects included in the reference image, but by generating an image that includes defects when the reference image is generated, More accurate defect inspection can be performed.
  • the defect determination is performed for each of the first substrate image and the second substrate image.
  • the determination results may be compared. Specifically, as described above, the presence / absence of a defect in the wafer W is determined based on the second substrate image, and when it is determined that there is a defect, the result is compared with the determination result of the defect in the first substrate image. . If a defect present in the second substrate image is also present in the first substrate image, it can be determined that the defect exists before the processing at the processing station 11.
  • the wafer W determined to have a defect is unloaded from the substrate processing system 1 and then corrected by rework.
  • the defect is not caused by processing at the processing station 11
  • the defect is not eliminated even if rework is performed.
  • the wafer W that does not contribute to the production is repeatedly processed by the substrate processing system 1, and as a result, the productivity is lowered.
  • the wafer W having a defect not caused by the processing in the processing station 11. Such a situation can be avoided by preventing the substrate processing system 1 from being loaded again.
  • the transfer route in the processing station 11 is changed, By determining the defect for the wafer W processed by the changed route, it is possible to detect which route the defect has occurred. In other words, if there is a defect in the route after the change, if there is a portion where the route overlaps in the route before the change and the route after the change, it can be determined that the defect occurs in the overlap portion. . On the other hand, if no defect has occurred in the route after the change, it can be determined that the overlapping portion is not the cause of the defect.
  • the inspection apparatus 50 that inspects the wafer W before processing in the processing station 11 and the inspection apparatus 56 that inspects the wafer W after processing in the processing station 11 are used.
  • the specifications of each device in the inspection apparatus 50 and the inspection apparatus 56 are the same. That is, if the specifications of each device are the same between the inspection apparatus 50 and the inspection apparatus 56, a difference between the first board image and the second board image is caused due to the difference in the specifications. Can be avoided. As a result, more accurate macro defect inspection and differential image generation are possible.
  • the first substrate image and the second substrate image are acquired by different inspection devices 50 and 56, respectively.
  • the first substrate image and the second substrate image are not necessarily different inspection devices. It is not necessary to acquire, and you may make it acquire with the same test
  • the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood.
  • the present invention is not limited to this example and can take various forms.
  • the present invention can also be applied to a case where the substrate is another substrate such as an FPD (flat panel display) other than a wafer or a mask reticle for a photomask.
  • FPD flat panel display

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Image Processing (AREA)

Abstract

 基板に所定の処理を施す複数の処理装置を備えた基板処理システムにおける、基板の検査方法は、処理装置で処理される前の基板の表面を撮像して第1の基板画像を取得し、当該第1の基板画像から所定の特徴量を抽出し、それぞれ異なる範囲の特徴量に対応して設定された複数の検査レシピが記憶された記憶部から、第1の基板画像から抽出された特徴量に対応する検査レシピを選択し、処理装置で処理された後の基板の表面を撮像して第2の基板画像を取得し、選択された検査レシピと第2の基板画像に基づいて、基板の欠陥の有無を判定する。

Description

基板の検査方法、基板処理システム及びコンピュータ記憶媒体
(関連出願の相互参照)
 本願は、2015年5月12日に日本国に出願された特願2015-097333号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、基板を検査する方法、基板処理システム及び前記基板の検査方法を実行するプログラムを格納した読み取り可能なコンピュータ記憶媒体に関する。
 例えば半導体デバイスの製造工程におけるフォトリソグラフィ工程では、基板としての半導体ウェハ(以下、「ウェハ」という)上にレジスト液を塗布してレジスト膜を形成するレジスト塗布処理、レジスト膜を所定のパターンに露光する露光処理、露光されたレジスト膜を現像する現像処理などの一連の処理が順次行われ、ウェハ上に所定のレジストパターンが形成されている。これらの一連の処理は、ウェハを処理する各種処理装置やウェハを搬送する搬送機構などを搭載した基板処理システムである塗布現像処理システムで行われている。
 このような塗布現像処理システムには、ウェハに対していわゆるマクロ欠陥検査を行う検査装置が設けられている(特許文献1)。マクロ欠陥検査においては、塗布現像処理システムで所定の処理を施されたウェハが、所定の照明下で例えばCCDラインセンサなどの撮像装置により撮像され、当該ウェハの撮像画像が取得される。そして、取得された撮像画像を基準となるウェハの画像と比較することで、欠陥の有無が判定される。
日本国特開2012-104593号公報
 ところで、上述のマクロ欠陥検査においては、基準となるウェハの画像や、照明の照度、撮像速度といった検査レシピが設定されている。しかしながら、フォトリソグラフィ工程においてはウェハ表面に種々の膜が形成されるため、ウェハ表面の反射率等の表面状態は、工程毎に異なる。そのため、ウェハの表面状態により、マクロ欠陥検査の精度がばらつくという問題があった。
 本発明は、かかる点に鑑みてなされたものであり、基板処理システムにおいて、基板の検査を適正に行うことを目的としている。
 前記の目的を達成するため、本発明は、基板に所定の処理を施す複数の処理装置を備えた基板処理システムにおける、基板の検査方法であって、前記処理装置で処理される前の基板の表面を撮像して第1の基板画像を取得し、前記第1の基板画像から所定の特徴量を抽出し、それぞれ異なる範囲の前記特徴量に対応して設定された複数の検査レシピが記憶された記憶部から、前記第1の基板画像から抽出された前記特徴量に対応する検査レシピを選択し、前記処理装置で処理された後の基板の表面を撮像して第2の基板画像を取得し、前記選択された検査レシピと前記第2の基板画像に基づいて、基板の欠陥の有無を判定する。
 本発明によれば、先ず処理ステーションで処理される前の基板を撮像して第1の基板画像を取得し、当該第1の基板画像の特徴量に基づいて検査レシピを選択するので、最適な検査レシピに基づいて、第2の基板画像における欠陥の有無を適正に判定することができる。したがって、基板の表面状態によらず、常に最適な検査を行い、マクロ欠陥検査の精度のばらつきを抑制することができる。
 別の観点による本発明は、基板に所定の処理を施す複数の処理装置を備えた基板処理システムであって、前記処理装置で処理される前の基板の表面を撮像して第1の基板画像を取得する第1の撮像装置と、前記第1の基板画像から所定の特徴量を抽出する特徴量抽出部と、それぞれ異なる範囲の前記特徴量に対応して設定された複数の検査レシピが記憶された記憶部と、前記記憶部に記憶された前記検査レシピから、前記特徴量抽出部で抽出された特徴量に対応する検査レシピを選択するレシピ選択部と、前記選択された検査レシピに基づいて、前記処理装置で処理された後の基板の表面を撮像して第2の基板画像を取得する第2の撮像装置と、前記第2の基板画像における欠陥の有無を判定する欠陥判定部と、を備えた検査装置と、を有する。
 別の観点による本発明は、前記の基板の検査方法を基板処理システムによって実行させるように、当該基板処理システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体である。
 本発明によれば、基板処理システムにおいて、基板の検査を適正に行うことができる。
本実施の形態にかかる基板処理システムの構成の概略を示す平面図である。 本実施の形態にかかる基板処理システムの構成の概略を示す正面図である。 本実施の形態にかかる基板処理システムの構成の概略を示す背面図である。 検査装置の構成の概略を示す横断面図である。 検査装置の構成の概略を示す縦断面図である。 制御装置の構成の概略を模式的に示すブロック図である。 画素値と検査レシピとの関係を示す説明図である。 ウェハの欠陥検査の工程の概略を示すフローチャートである。 画素値と検査レシピとの関係を示す説明図である。
 以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる基板処理システム1の構成の概略を示す平面図である。図2及び図3は、各々基板処理システム1の内部構成の概略を模式的に示す、正面図と背面図である。なお、本実施の形態では、基板処理システム1がウェハWに対して塗布現像処理を行う塗布現像処理システムである場合を例にして説明する。また、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
 基板処理システム1は、図1に示すように複数枚のウェハWを収容したカセットCが搬入出されるカセットステーション10と、ウェハWに所定の処理を施す複数の各種処理装置を備えた処理ステーション11と、処理ステーション11に隣接する露光装置12との間でウェハWの受け渡しを行うインターフェイスステーション13とを一体に接続した構成を有している。
 カセットステーション10には、カセット載置台20が設けられている。カセット載置台20には、基板処理システム1の外部に対してカセットCを搬入出する際に、カセットCを載置するカセット載置板21が複数設けられている。
 カセットステーション10には、図1に示すようにX方向に延びる搬送路22上を移動自在なウェハ搬送装置23が設けられている。ウェハ搬送装置23は、上下方向及び鉛直軸周り(θ方向)にも移動自在であり、各カセット載置板21上のカセットCと、後述する処理ステーション11の第3のブロックG3の受け渡し装置との間でウェハWを搬送できる。
 処理ステーション11には、各種装置を備えた複数例えば4つのブロックG1、G2、G3、G4が設けられている。例えば処理ステーション11の正面側(図1のX方向負方向側)には、第1のブロックG1が設けられ、処理ステーション11の背面側(図1のX方向正方向側)には、第2のブロックG2が設けられている。また、処理ステーション11のカセットステーション10側(図1のY方向負方向側)には、第3のブロックG3が設けられ、処理ステーション11のインターフェイスステーション13側(図1のY方向正方向側)には、第4のブロックG4が設けられている。
 例えば第1のブロックG1には、図2に示すように複数の液処理装置、例えばウェハWを現像処理する現像処理装置30、ウェハWのレジスト膜の下層に反射防止膜(以下「下部反射防止膜」という)を形成する下部反射防止膜形成装置31、ウェハWにレジスト液を塗布してレジスト膜を形成するレジスト塗布装置32、ウェハWのレジスト膜の上層に反射防止膜(以下「上部反射防止膜」という)を形成する上部反射防止膜形成装置33が下からこの順に配置されている。
 例えば現像処理装置30、下部反射防止膜形成装置31、レジスト塗布装置32、上部反射防止膜形成装置33は、それぞれ水平方向に3つ並べて配置されている。なお、これら現像処理装置30、下部反射防止膜形成装置31、レジスト塗布装置32、上部反射防止膜形成装置33の数や配置は、任意に選択できる。
 これら現像処理装置30、下部反射防止膜形成装置31、レジスト塗布装置32、上部反射防止膜形成装置33では、例えばウェハW上に所定の塗布液を塗布するスピンコーティングが行われる。スピンコーティングでは、例えば塗布ノズルからウェハW上に塗布液を吐出すると共に、ウェハWを回転させて、塗布液をウェハWの表面に拡散させる。
 例えば第2のブロックG2には、図3に示すようにウェハWの加熱や冷却といった熱処理を行う熱処理装置40や、レジスト液とウェハWとの定着性を高めるためのアドヒージョン装置41、ウェハWの外周部を露光する周辺露光装置42が上下方向と水平方向に並べて設けられている。これら熱処理装置40、アドヒージョン装置41、周辺露光装置42の数や配置についても、任意に選択できる。
 例えば第3のブロックG3には、処理ステーション11で処理される前のウェハWを検査する検査装置50と、複数の受け渡し装置51、52、53、54、55、及び処理ステーション11で処理された後のウェハWを検査する検査装置56が下から順に設けられている。また、第4のブロックG4には、複数の受け渡し装置60、61、62が下から順に設けられている。検査装置50、56の構成については後述する。
 図1に示すように第1のブロックG1~第4のブロックG4に囲まれた領域には、ウェハ搬送領域Dが形成されている。ウェハ搬送領域Dには、例えばY方向、X方向、θ方向及び上下方向に移動自在な搬送アームを有する、ウェハ搬送装置70が複数配置されている。ウェハ搬送装置70は、ウェハ搬送領域D内を移動し、周囲の第1のブロックG1、第2のブロックG2、第3のブロックG3及び第4のブロックG4内の所定の装置にウェハWを搬送できる。
 また、ウェハ搬送領域Dには、第3のブロックG3と第4のブロックG4との間で直線的にウェハWを搬送するシャトル搬送装置80が設けられている。
 シャトル搬送装置80は、例えば図3のY方向に直線的に移動自在になっている。シャトル搬送装置80は、ウェハWを支持した状態でY方向に移動し、第3のブロックG3の受け渡し装置52と第4のブロックG4の受け渡し装置62との間でウェハWを搬送できる。
 図1に示すように第3のブロックG3のX方向正方向側の隣には、ウェハ搬送装置90が設けられている。ウェハ搬送装置90は、例えばX方向、θ方向及び上下方向に移動自在な搬送アームを有している。ウェハ搬送装置90は、ウェハWを支持した状態で上下に移動して、第3のブロックG3内の各受け渡し装置にウェハWを搬送できる。
 インターフェイスステーション13には、ウェハ搬送装置100と受け渡し装置101が設けられている。ウェハ搬送装置100は、例えばY方向、θ方向及び上下方向に移動自在な搬送アームを有している。ウェハ搬送装置100は、例えば搬送アームにウェハWを支持して、第4のブロックG4内の各受け渡し装置、受け渡し装置101及び露光装置12との間でウェハWを搬送できる。
 次に、上述した検査装置50の構成について説明する。検査装置50は、図4に示すようにケーシング150を有している。ケーシング150内には、図5に示すようにウェハWを保持するウェハチャック151が設けられている。ケーシング150の底面には、ケーシング150内の一端側(図4中のX方向負方向側)から他端側(図4中のX方向正方向側)まで延伸するガイドレール152が設けられている。ガイドレール152上には、ウェハチャック151を回転させると共に、ガイドレール152に沿って移動自在な駆動部153が設けられている。
 ケーシング150内の他端側(図4のX方向正方向側)の側面には、第1の撮像装置としての撮像部160が設けられている。撮像部160としては、例えば広角型のCCDカメラが用いられる。ケーシング150の上部中央付近には、ハーフミラー161が設けられている。ハーフミラー161は、撮像部160と対向する位置に、鏡面が鉛直下方を向いた状態から撮像部160の方向に向けて45度上方に傾斜した状態で設けられている。ハーフミラー161の上方には、照明装置162が設けられている。ハーフミラー161と照明装置162は、ケーシング150内部の上面に固定されている。照明装置162からの照明は、ハーフミラー161を通過して下方に向けて照らされる。したがって、照明装置162の下方にある物体によって反射した光は、ハーフミラー161でさらに反射して、撮像部160に取り込まれる。すなわち、撮像部160は、照明装置162による照射領域にある物体を撮像することができる。そして、検査装置50の撮像部160で撮像されたウェハWの画像(第1の基板画像)は、後述する制御装置200に入力される。
 検査装置56は、検査装置50と同一の構成を有しているので、検査装置56についての説明は省略する。なお、検査装置56の撮像部160は、本発明の第2の撮像装置として機能し、検査装置56の撮像部160で撮像されたウェハWの画像(第2の基板画像)も、同様に制御装置200に入力される。
 以上の基板処理システム1には、図1に示すように制御装置200が設けられている。制御装置200は、例えばCPUやメモリなどを備えたコンピュータにより構成され、プログラム格納部(図示せず)を有している。プログラム格納部には、検査装置50、56で撮像された基板画像に基づいて行われるウェハWの検査を制御するプログラムが格納されている。これに加えて、プログラム格納部には、上述した各種処理装置や搬送装置などの駆動系の動作を制御して、基板処理システム1の所定の作用、すなわちウェハWへのレジスト液の塗布、現像、加熱処理、ウェハWの受け渡し、各ユニットの制御などを実現させるためのプログラムも格納されている。なお、前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体Hから制御装置200にインストールされたものであってもよい。
 また、制御装置200は、図6に示すように、検査装置50の撮像部160で撮像された第1の基板画像から所定の特徴量を抽出する特徴量抽出部210と、所定範囲の特徴量に対応して設定された検査レシピが複数記憶された記憶部211と、記憶部211に記憶された複数の検査レシピから、特徴量抽出部210で抽出された特徴量に対応する検査レシピを選択するレシピ選択部212と、選択された検査レシピと、検査装置56の撮像部160で撮像された第2の基板画像に基づいて欠陥の有無を判定する欠陥判定部213と、を有している。また、制御装置200には、撮像部160で撮像された第1の基板画像及び第1の基板画像を保管する画像保管部214、画像保管部214に保管された第1の基板画像を、特徴量抽出部210で抽出された特徴量に基づいて、複数のグループに分類する画像分類部215と、画像分類部215で各グループに分類された複数の第1の基板画像に対応する第2の基板画像を合成して、基準画像を生成する基準画像生成部216と、基準画像生成部216で生成された基準画像に基づいて検査レシピを生成し、記憶部211に記憶させる検査レシピ生成部217と、がさらに設けられている。
 特徴量抽出部210で抽出される特徴量は、本実施の形態では例えば基板画像の画素値である。そして、特徴量抽出部210では、例えば基板画像の全面の画素値について平均値を算出して、当該平均値をその基板画像の特徴量として求める。なお、本実施の形態では、基板画像が、例えば256階調(0~255)の8bit画像である場合を例に説明する。
 記憶部211には、例えば図7に示すように、異なる範囲の画素値に対応して設定された、例えば3種類の検査レシピ230、231、232が記憶されている。検査レシピ230は、例えば第1の基板画像の特徴量(画素値の平均値)が「10~70」の範囲であった場合に使用されるものであり、検査レシピ231、232は、それぞれ特徴量が「90~140」、「200~240」であった場合に使用されるものである。各検査レシピ230、231、232には、例えば各撮像部160で撮像する際の撮像条件や、欠陥検査の基準となる基準画像などにより構成されている。なお、記憶部211に記憶される検査レシピの数や検査レシピのカバーする範囲は任意に設定が可能であり、本実施の形態の内容に限定されるものではない。
 レシピ選択部212では、特徴量抽出部210で抽出された特徴量に対応する検査レシピが記憶部211から選択される。例えば任意のロットのウェハWを検査装置50で撮像して取得された第1の基板画像の特徴量が「60」であった場合、レシピ選択部212では、記憶部211から特徴量「10~70」の基板画像に対応する検査レシピ230を選択する。
 欠陥判定部213では、この検査レシピ230と第2の基板画像に基づいて欠陥の有無が判定される。具体的には、第1の基板画像の特徴量が「60」であったウェハWが処理ステーション11で所定の処理を終えると、検査装置56の撮像部160で撮像されて第2の基板画像が取得される。そして、欠陥判定部213では、第1の基板画像の特徴量「60」に基づいて選択された検査レシピ230により、同一のウェハWの第2の基板画像について欠陥の有無を判定する。なお、他の画像保管部214、画像分類部215、基準画像生成部216、検査レシピ生成部217の機能については、後述する。
 次に、以上のように構成された基板処理システム1を用いて行われるウェハWの処理方法及びウェハWの検査方法について説明する。図8は、かかるウェハWの検査方法の主な工程の例を示すフローチャートであり、検査方法についてはこの図8に基づいて説明する。
 先ず、同一ロットの複数のウェハWを収納したカセットCが、基板処理システム1のカセットステーション10に搬入され、ウェハ搬送装置23によりカセットC内の各ウェハWが順次第3のブロックG3の検査装置50に搬送されて、第1の基板画像が取得される(図8の工程S1)。次いで、特徴量抽出部210では、この第1の基板画像から特徴量を抽出する(図8の工程S2)。そして、第1の基板画像の特徴量に対応する検査レシピが記憶部211に存在すれば、レシピ選択部212により所定の検査レシピが選択される(図8の工程S3、S4)。具体的には、例えば特徴量としての画素値の平均値が「60」であった場合は、レシピ選択部212により記憶部211から、特徴量「60」に対応する検査レシピ230が選択される。また、例えば特徴量が「150」であり、記憶部211内に対応する検査レシピが存在しない場合は(図8の工程S3のNO)、特徴量が「150」である第1の基板画像は、画像保管部214に保管される(図8の工程S5)と共に、予め定められた検査レシピが選択される(図8の工程S4)。画像保管部214に第1の基板画像が保管された後の処理については、後述する。ここで、予め定められた検査レシピとは、例えば記憶部211に記憶された複数の検査レシピのうち任意の検査レシピであればよく、例えば本実施の形態では、検査レシピ231が予め定められた検査レシピであるものとして説明する。即ち、第1の基板画像の特徴量が「150」であった場合、記憶部211内に対応する検査レシピが存在しないので、予め定められた検査レシピ231が選択される。
 次にウェハWは、第2のブロックG2の熱処理装置40に搬送され温度調節処理される。その後、ウェハWは、ウェハ搬送装置70によって例えば第1のブロックG1の下部反射防止膜形成装置31に搬送され、ウェハW上に下部反射防止膜が形成される。その後ウェハWは、第2のブロックG2の熱処理装置40に搬送され、加熱処理され、温度調節される。
 次にウェハWはアドヒージョン装置41に搬送され、アドヒージョン処理される。その後ウェハWは、第1のブロックG1のレジスト塗布装置32に搬送され、ウェハW上にレジスト膜が形成される。
 ウェハWにレジスト膜が形成されると、次にウェハWは、第1のブロックG1の上部反射防止膜形成装置33に搬送され、ウェハW上に上部反射防止膜が形成される。その後、ウェハWは第2のブロックG2の熱処理装置40に搬送され、加熱処理が行われる。その後、ウェハWは、周辺露光装置42に搬送され、周辺露光処理される。
 次にウェハWは、ウェハ搬送装置100によって受け渡し装置52に搬送され、シャトル搬送装置80によって第4のブロックG4の受け渡し装置62に搬送される。その後、ウェハWは、インターフェイスステーション13のウェハ搬送装置110によって露光装置12に搬送され、所定のパターンで露光処理される。
 次にウェハWは、ウェハ搬送装置70によって熱処理装置40に搬送され、露光後ベーク処理される。これにより、レジスト膜の露光部において発生した酸により脱保護反応させる。その後ウェハWは、ウェハ搬送装置70によって現像処理装置30に搬送され、現像処理が行われる。
 現像処理の終了後、ウェハWは熱処理装置40に搬送され、ポストベーク処理される。次いで、ウェハWは、熱処理装置40により温度調整される。その後、ウェハWは、ウェハ搬送装置70により第3のブロックG3の検査装置56に搬送され、撮像部160により第2の基板画像が取得される(図8の工程S6)。
 次いで、制御装置200の欠陥判定部213では、例えば特徴量「60」に対応して選択された検査レシピ230に基づいて、第2の基板画像中の欠陥の有無を判定する。欠陥の有無の判定は、例えば検査レシピ230中の基準画像と第2の基板画像とを比較し、例えば基準画像と第2の基板画像との間の画素値に規定値以上の差異がある場合は欠陥有りと、差異が規定値より小さければ欠陥無しと判定される(図8の工程S7)。同様に、第1の基板画像の特徴量が「150」であった場合においても、選択された検査レシピ231と第2の基板画像に基づいて欠陥の有無が判定される。
 ウェハWの欠陥検査が終了すると、当該ウェハWはウェハ搬送装置23を介して所定のカセット載置板21のカセットCに搬送され、一連のフォトリソグラフィ工程が完了する。そして、この一連のフォトリソグラフィ工程が、同一ロットの後続のウェハWについても実施される。
 次に、工程S5で画像保管部214に第1の基板画像が保管された後の処理について説明する。例えば、ロットの先頭のウェハWの第1の基板画像において、検査レシピ230、231、232のいずれにも該当しない特徴量「150」が抽出されると、後続のウェハWについても、概ね特徴量は「150」前後の値となる。かかる場合、例えば図9に破線で示すように、検査レシピ230、231、232に対応しない第1の基板画像は画像保管部214に相当数、即ち、前記のロットに含まれるウェハWの数だけ記憶される。なお、図9の破線の縦軸は、記憶部211に保管される基板画像の数を表している。
 そして、検査レシピ230、231、232のいずれにも該当しない第1の基板画像を画像保管部214に蓄積していった結果、例えば図9に示すように、例えば画素値が75~85の範囲と、145~160の範囲に相当数存在する場合、例えば画像分類部215で、画素値が75~85の範囲の基板画像を第1のグループと、画素値が145~160の範囲の基板画像を第2のグループとに分類する(図8の工程S8)。
 そして、基準画像生成部216では、第1のグループに属する第1の基板画像に対応するウェハWの第2の基板画像を合成して、この第1のグループに対応する基準画像を生成する(図8の工程S9)。同様に、第2のグループに対応する基準画像も生成する。次いで、検査レシピ生成部217では、この生成された基準画像に基づいて各グループに対応するレシピを生成し、記憶部211に、新たな検査レシピとして記憶させる(図8の工程S10)。
 そして、後続のロットにおける第1の基板画像の特徴量が、新たな検査レシピに対応するものであれば、工程S4において、この新たな検査レシピが選択され、ウェハWの欠陥検査が行われる。
 以上の実施の形態によれば、先ず処理ステーション11で処理される前のウェハWを検査装置50の撮像部160で撮像して第1の基板画像を取得し、当該第1の基板画像の特徴量に基づいて検査レシピを選択するので、最適な検査レシピに基づいて、第2の基板画像における欠陥の有無を適正に判定することができる。したがって、ウェハWの表面状態が、例えばロット毎に異なるような場合であっても、常に最適な検査を行い、マクロ欠陥検査の精度のばらつきを抑制することができる。
 また、第1の基板画像の特徴量に対応する検査レシピが記憶部211に存在しない場合であっても、第1の基板画像を画像保管部214に一旦記憶して、所定数を有するグループに分類された時点で新たな検査レシピを生成するので、記憶部211に記憶される検査レシピが徐々に増加する。そのため、基板処理システム1でウェハW処理を継続することで、ほとんどの第1の基板画像が記憶部211に記憶された検査レシピに対応するようになるため、マクロ欠陥検査の精度を向上させることができる。
 特に、検査レシピを作成する過程では、作業員が複数の基板画像を選択し、選択された基板画像を合成して基準画像を作成する必要があるが、この基準画像の作成には多大な労力を有すると共に、作業員の熟練度により基準画像の品質にばらつきが生じるという問題があった。この点、本実施の形態のように、画像分類部215で基板画像をグループに分類し、当該分類された基板画像に基づいて新たな検査レシピを生成するので、作業員の熟練度によらず、且つ多大な労力を費やすことなく、適正に検査レシピを生成することができる。
 なお、以上の実施の形態では、記憶部211に予め複数の検査レシピ230、231、232が記憶されていたが、記憶部211には、最低限1つの検査レシピが記憶されていればよい。即ち、基板処理システム1の運用の初期状態においては、この1つの検査レシピにより検査が行われるが、上述のように新たな検査レシピを順次生成し、記憶部211に記憶される検査レシピを増加させることで、基板処理システム1に搬入されるほとんどすべてのウェハWに対応してマクロ欠陥検査を行うことが可能となる。
 特に、基板処理システム1に搬送されるウェハWの表面状態は、例えば基板処理システム1を含めた、クリーンルーム内などに設置された他の処理装置での処理レシピにより変化するものであるが、ウェハWの表面状態を逐一基板処理システム1に入力するためには、基板処理システム1やその他の処理装置を一括管理する、いわゆるホストコンピュータの負荷の増大につながる。この点、本発明のように、順次基板画像に基づいて新たな検査レシピを生成し、処理ステーション11で処理が行われる前のウェハWを検査装置50の撮像部160で撮像して表面状態を確認することで、ホストコンピュータとのやり取りを行うことなく、常にウェハWの表面状態に応じた欠陥の検査を行うことができる。
 なお、以上の実施の形態では、工程S3において「NO」と判定された第1の基板画像についてのみ画像保管部214に保管したが、工程S3において「YES」と判定された第1の基板画像についても、画像保管部214に保管してもよい。
 また、全ての第1の基板画像を保管した場合、例えば画像保管部214に保管された第1の基板画像のうち、同一ロットの先頭のウェハWを基準画像として採用し、検査レシピ生成部217でこの基準画像に基づいて暫定的な検査レシピを生成するようにしてもよい。また、同一ロットの先頭のウェハWを基準画像として採用して検査レシピ生成部217で暫定的な検査レシピを生成する場合、記憶部211には、必ずしも予め検査レシピを記憶させておく必要はない。
 また、以上の実施の形態では、基準画像生成部216において第2の基板画像を合成して基準画像を生成したが、基準画像としてどのような基板画像を用いるかについては本実施の形態の内容に限定されない。例えば、図6に示すように、制御装置200に、第1の基板画像と第2の基板画像との差分画像を生成する差分画像生成部218を設け、画像保管部214にこの差分画像を複数保管し、複数の差分画像に基づいて、基準画像生成部216で基準画像を生成するようにしてもよい。そして、検査レシピ生成部217では、この差分画像に基づく基準画像を用いて検査レシピが生成される。
 そして、差分画像に基づく基準画像を用いて生成された検査レシピを用いる場合、欠陥検査の対象となるウェハWの差分画像を差分画像生成部218で生成し、欠陥判定部213においては、当該生成された差分画像と、差分画像に基づいて生成された上記の検査レシピに基づいて、ウェハWの欠陥の有無が判定される。この場合、第1の基板画像と第2の基板画像についても、画像保管部214に保管しておくことが好ましい。
 そして、このように差分画像を基準画像とすることで、欠陥判定部213で欠陥有りと判定された場合に、その欠陥が基板処理システム1に起因するものであると判断することが可能となる。即ち、検査対象となるウェハWに、処理ステーション11での処理以前に欠陥が存在していた場合、その欠陥は第1の基板画像と第2の基板画像の双方に存在することとなるが、第1の基板画像と第2の基板画像の差分画像を生成することで、当該差分画像から処理ステーション11での処理以前に存在していたそれらの欠陥を除去することができる。したがって、差分画像上の欠陥は処理ステーション11での処理に起因するものであると判断できる。また、欠陥の原因によらず、基板処理システム1から搬出される全てのウェハWについて欠陥の有無を判定する必要がある場合は、例えば画像保管部214に保管された第1の基板画像または第2の基板画像の少なくともいずれかについて欠陥の有無を確認し、差分画像に欠陥が存在しない場合でも、第1の基板画像や第2の基板画像に欠陥が存在する場合は、そのウェハWには欠陥が有ると判定するようにしてもよい。第1の基板画像または第2の基板画像から欠陥が検出された場合、その欠陥は処理ステーション11での処理に起因しないものと判断できる。
 なお、基準画像生成部216で差分画像に基づいて基準画像を生成するにあたっては、検査装置50の撮像部160により取得された第1の基板画像についても欠陥の有無を判定し、欠陥有りと判定された第1の基板画像については、画像保管部214に保管しないか、あるいは、基準画像生成部216で基準画像を生成する際に、除外することが好ましい。欠陥を含んだ基板画像を合成して基準画像を生成した場合、基準画像に含まれた欠陥を検出できなくなる可能性があるが、基準画像を生成する際に欠陥を含む画像を除外することで、より正確な欠陥の検査を行うことができる。
 また、欠陥が処理ステーション11での処理に起因するか否かを判断するに際しては、必ずしも差分画像を用いる必要はなく、例えば第1の基板画像と第2の基板画像のそれぞれについて欠陥の判定を行い、それらの判定結果を比較するようにしてもよい。具体的には、既述のように第2の基板画像に基づいてウェハWの欠陥の有無を判定し、欠陥有と判定された場合は、第1の基板画像の欠陥の判定結果と比較する。そして、第2の基板画像に存在する欠陥が、この第1の基板画像にも存在する場合には、当該欠陥は処理ステーション11での処理以前に存在していたものであると判断できる。その一方、第2の基板画像に存在する欠陥が、第1の基板画像に存在しない場合には、当該欠陥は処理ステーション11での処理に起因するものであると判断できる。またこのように、欠陥が処理ステーション11での処理に起因するか否かを判断する場合には、必ずしも第1の基板画像と第2の基板画像そのものを全て保管しておく必要はなく、例えば欠陥検査の判定結果のみを保管しておき、その判定結果同士を比較するようにしてもよい。そうすることで、画像を保管するための制御装置200の負荷を低減できる。
 なお、例えば処理ステーション11で処理された後のウェハWを検査装置56で検査した結果、欠陥有りと判定されたウェハWについては、基板処理システム1から搬出された後、リワークにより欠陥を修正して再度基板処理システム1に搬入される場合が有るが、その欠陥が処理ステーション11での処理に起因するものではない場合、リワークを行っても当該欠陥が解消されない。かかる場合、生産に寄与しないウェハWを繰り返し基板処理システム1で処理することになり、結果として生産性が低下することとなるが、処理ステーション11での処理に起因しない欠陥を有するウェハWについては、再度基板処理システム1に搬入しないようにすることで、そのような事態を避けることができる。
 また、処理ステーション11での処理に起因して欠陥が生じたと判定された場合、例えば欠陥有りと判定されたウェハWの後続のウェハWにおいて、処理ステーション11内での搬送ルートを変更して、変更後のルートで処理したウェハWについて欠陥の判定を行うことで、どのルートで欠陥が生じたかを検知することができる。即ち、変更後のルートにおいても欠陥が生じている場合、変更前のルートと変更後のルートのうち、ルートが重複する部分が存在すれば、その重複する部分で欠陥が生じていると判断できる。その反対に、変更後のルートにおいて欠陥が生じていない場合、重複する部分は欠陥の原因ではないと判断できる。
 以上の実施の形態では、ウェハWの欠陥を検査するにあたり、処理ステーション11で処理前のウェハWを検査する検査装置50と、処理ステーション11で処理後のウェハWを検査する検査装置56を用いたが、検査装置50と検査装置56における各機器の仕様は、同一であることが好ましい。即ち、検査装置50と検査装置56で各機器の仕様が同一であれば、その仕様の差に起因して第1の基板画像と第2の基板画像との間に差が生じてしまうことを避けることができる。その結果、より正確なマクロ欠陥検査や差分画像の生成が可能となる。
 なお、以上の実施の形態では、第1の基板画像と第2の基板画像をそれぞれ異なる検査装置50、56で取得したが、第1の基板画像と第2の基板画像は必ずしも異なる検査装置で取得する必要はなく、同じ検査装置で取得するようにしてもよい。ただし、ウェハWの搬送ルートの干渉や、スループットの観点からは、処理ステーション11で処理される前のウェハWと、処理後のウェハWは別箇独立した検査装置で撮像することが好ましい。
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。本発明は、基板がウェハ以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板である場合にも適用できる。
  1  基板処理システム
  30 現像処理装置
  31 下部反射防止膜形成装置
  32 レジスト塗布装置
  33 上部反射防止膜形成装置
  40 熱処理装置
  41 アドヒージョン装置
  42 周辺露光検査装置
  70 ウェハ搬送装置
  110 処理容器
  150 撮像部
  200 制御装置
  210 特徴量抽出部
  211 記憶部
  212 レシピ選択部
  213 欠陥判定部
  214 画像保管部
  215 画像分類部
  216 基準画像生成部
  217 検査レシピ生成部
  218 差分画像生成部
  230.231、232 検査レシピ
  W  ウェハ
 

Claims (19)

  1. 基板に所定の処理を施す複数の処理装置を備えた基板処理システムにおける、基板の検査方法であって、
    前記処理装置で処理される前の基板の表面を撮像して第1の基板画像を取得し、
    前記第1の基板画像から所定の特徴量を抽出し、
    それぞれ異なる範囲の前記特徴量に対応して設定された複数の検査レシピが記憶された記憶部から、前記第1の基板画像から抽出された前記特徴量に対応する検査レシピを選択し、
    前記処理装置で処理された後の基板の表面を撮像して第2の基板画像を取得し、
    前記選択された検査レシピと前記第2の基板画像に基づいて、基板の欠陥の有無を判定する。
  2. 請求項1に記載の基板の検査方法において、
    前記記憶部内に、前記第1の基板画像の特徴量に対応する検査レシピが存在しないときは、前記第1の基板画像及び前記第2の基板画像を画像保管部に保管し、
    前記画像保管部に保管された複数の前記第1の基板画像を、当該第1の基板画像の特徴量に基づいて、複数のグループに分類し、
    前記各グループに分類された複数の前記第1の基板画像に対応する複数の前記第2の基板画像を合成して、欠陥検査の基準となる基準画像を生成し、
    前記生成された基準画像に基づいて検査レシピを生成して、前記記憶部に当該生成された検査レシピを記憶させ、
    前記基板の欠陥の有無の判定は、予め定められた検査レシピと前記第2の基板画像に基づいて行われる。
  3. 請求項1に記載の基板の検査方法において、
    前記第1の基板画像と、当該第1の基板画像に対応する前記第2の基板画像との差分画像を生成し、
    前記基板の欠陥の有無の判定は、前記選択された検査レシピと前記差分画像に基づいて行われ、
    前記記憶部に記憶された検査レシピは、前記差分画像に基づいて基板の欠陥の有無を判定するものである。
  4. 請求項3に記載の基板の検査方法において、
    前記記憶部内に、前記第1の基板画像の特徴量に対応する検査レシピが存在しないときは、前記第1の基板画像、前記第2の基板画像及び前記差分画像を画像保管部に保管し、
    前記画像保管部に保管された複数の前記第1の基板画像を、当該第1の基板画像の特徴量に基づいて、複数のグループに分類し、
    前記各グループに分類された複数の前記第1の基板画像に対応する複数の前記差分画像を合成して、欠陥検査の基準となる基準画像を生成し、
    前記生成された基準画像に基づいて検査レシピを生成して、前記記憶部に当該生成された検査レシピを記憶させ、
    前記基板の欠陥の有無の判定は、予め定められた検査レシピと前記差分画像に基づいて行われる。
  5. 請求項1に記載の基板の検査方法において、
    前記所定の特徴量は、前記第1の基板画像の画素値である。
  6. 請求項2に記載の基板の検査方法において、
    前記所定の特徴量は、前記第1の基板画像の画素値である。
  7. 請求項3に記載の基板の検査方法において、
    前記所定の特徴量は、前記第1の基板画像の画素値である。
  8. 請求項4に記載の基板の検査方法において、
    前記所定の特徴量は、前記第1の基板画像の画素値である。
  9. 基板に所定の処理を施す複数の処理装置を備えた基板処理システムであって、
    前記処理装置で処理される前の基板の表面を撮像して第1の基板画像を取得する第1の撮像装置と、
    前記第1の基板画像から所定の特徴量を抽出する特徴量抽出部と、
    それぞれ異なる範囲の前記特徴量に対応して設定された複数の検査レシピが記憶された記憶部と、
    前記記憶部に記憶された前記検査レシピから、前記特徴量抽出部で抽出された特徴量に対応する検査レシピを選択するレシピ選択部と、
    前記選択された検査レシピに基づいて、前記処理装置で処理された後の基板の表面を撮像して第2の基板画像を取得する第2の撮像装置と、前記第2の基板画像における欠陥の有無を判定する欠陥判定部と、を備えた検査装置と、を有する。
  10. 請求項9に記載の基板処理システムにおいて、
    前記第1の基板画像及び前記第2の基板画像を保管する画像保管部と、
    前記画像保管部に保管された前記第1の基板画像を、前記特徴量抽出部で抽出された特徴量に基づいて、複数のグループに分類する画像分類部と、
    前記各グループに分類された複数の前記第1の基板画像に対応する複数の前記第2の基板画像を合成して、欠陥検査の基準となる基準画像を生成する基準画像生成部と、
    前記基準画像生成部で生成された基準画像に基づいて検査レシピを生成し、前記記憶部に記憶させる検査レシピ生成部と、をさらに有する。
  11. 請求項9に記載の基板処理システムにおいて、
    前記第1の基板画像と、当該第1の基板画像に対応する前記第2の基板画像との差分画像を生成する差分画像生成部と、
    前記第1の基板画像、前記第2の基板画像及び前記差分画像を保管する画像保管部と、
    前記画像保管部に保管された前記第1の基板画像を、前記特徴量抽出部で抽出された特徴量に基づいて、複数のグループに分類する画像分類部と、
    前記各グループに分類された複数の前記第1の基板画像に対応する複数の前記差分画像を合成して、欠陥検査の基準となる基準画像を生成する基準画像生成部と、
    前記基準画像生成部で生成された基準画像に基づいて検査レシピを生成し、前記記憶部に記憶させる検査レシピ生成部と、をさらに有し、
    前記欠陥判定部では、前記第2の基板画像に対応する差分画像に基づいて、基板の欠陥の有無を判定する。
  12. 請求項9に記載の基板処理システムにおいて、
    前記所定の特徴量は、前記第1の基板画像の画素値である。
  13. 請求項10に記載の基板処理システムにおいて、
    前記所定の特徴量は、前記第1の基板画像の画素値である。
  14. 請求項11に記載の基板処理システムにおいて、
    前記所定の特徴量は、前記第1の基板画像の画素値である。
  15. 基板に所定の処理を施す複数の処理装置を備えた基板処理システムにおける基板の検査方法を、当該基板処理システムによって実行させるように、当該基板処理システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
    前記基板の検査方法は、
    前記処理装置で処理される前の基板の表面を撮像して第1の基板画像を取得し、
    前記第1の基板画像から所定の特徴量を抽出し、
    それぞれ異なる範囲の前記特徴量に対応して設定された複数の検査レシピが記憶された記憶部から、前記第1の基板画像から抽出された前記特徴量に対応する検査レシピを選択し、
    前記処理装置で処理された後の基板の表面を撮像して第2の基板画像を取得し、
    前記選択された検査レシピと前記第2の基板画像に基づいて、基板の欠陥の有無を判定する。
  16. 請求項15に記載のコンピュータ記憶媒体において、
    前記記憶部内に、前記第1の基板画像の特徴量に対応する検査レシピが存在しないときは、前記第1の基板画像及び前記第2の基板画像を画像保管部に保管し、
    前記画像保管部に保管された複数の前記第1の基板画像を、当該第1の基板画像の特徴量に基づいて、複数のグループに分類し、
    前記各グループに分類された複数の前記第1の基板画像に対応する複数の前記第2の基板画像を合成して、欠陥検査の基準となる基準画像を生成し、
    前記生成された基準画像に基づいて検査レシピを生成して、前記記憶部に当該生成された検査レシピを記憶させ、
    前記基板の欠陥の有無の判定は、予め定められた検査レシピと前記第2の基板画像に基づいて行われる。
  17. 請求項15に記載のコンピュータ記憶媒体において、
    前記第1の基板画像と、当該第1の基板画像に対応する前記第2の基板画像との差分画像を生成し、
    前記基板の欠陥の有無の判定は、前記選択された検査レシピと前記差分画像に基づいて行われ、
    前記記憶部に記憶された検査レシピは、前記差分画像に基づいて基板の欠陥の有無を判定するものである。
  18. 請求項17に記載のコンピュータ記憶媒体において、
    前記記憶部内に、前記第1の基板画像の特徴量に対応する検査レシピが存在しないときは、前記第1の基板画像、前記第2の基板画像及び前記差分画像を画像保管部に保管し、
    前記画像保管部に保管された複数の前記第1の基板画像を、当該第1の基板画像の特徴量に基づいて、複数のグループに分類し、
    前記各グループに分類された複数の前記第1の基板画像に対応する複数の前記差分画像を合成して、欠陥検査の基準となる基準画像を生成し、
    前記生成された基準画像に基づいて検査レシピを生成して、前記記憶部に当該生成された検査レシピを記憶させ、
    前記基板の欠陥の有無の判定は、予め定められた検査レシピと前記差分画像に基づいて行われる。
  19. 請求項15に記載のコンピュータ記憶媒体において、
    前記所定の特徴量は、前記第1の基板画像の画素値である。
PCT/JP2016/063733 2015-05-12 2016-05-09 基板の検査方法、基板処理システム及びコンピュータ記憶媒体 WO2016181930A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237024716A KR20230111273A (ko) 2015-05-12 2016-05-09 기판의 검사 방법, 기판 처리 시스템 및 컴퓨터 기억매체
US15/567,997 US10520450B2 (en) 2015-05-12 2016-05-09 Substrate inspection method, substrate treatment system, and computer storage medium
CN202010794112.4A CN111982927B (zh) 2015-05-12 2016-05-09 基板处理系统
CN201680026816.9A CN107533016B (zh) 2015-05-12 2016-05-09 基板的检查方法、基板处理系统和计算机存储介质
KR1020177032354A KR102562020B1 (ko) 2015-05-12 2016-05-09 기판의 검사 방법, 기판 처리 시스템 및 컴퓨터 기억 매체
US16/689,218 US11513081B2 (en) 2015-05-12 2019-11-20 Substrate inspection method, substrate treatment system, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015097333A JP6244329B2 (ja) 2015-05-12 2015-05-12 基板の検査方法、基板処理システム及びコンピュータ記憶媒体
JP2015-097333 2015-05-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/567,997 A-371-Of-International US10520450B2 (en) 2015-05-12 2016-05-09 Substrate inspection method, substrate treatment system, and computer storage medium
US16/689,218 Continuation US11513081B2 (en) 2015-05-12 2019-11-20 Substrate inspection method, substrate treatment system, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2016181930A1 true WO2016181930A1 (ja) 2016-11-17

Family

ID=57248133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063733 WO2016181930A1 (ja) 2015-05-12 2016-05-09 基板の検査方法、基板処理システム及びコンピュータ記憶媒体

Country Status (6)

Country Link
US (2) US10520450B2 (ja)
JP (1) JP6244329B2 (ja)
KR (2) KR102562020B1 (ja)
CN (2) CN107533016B (ja)
TW (2) TWI649557B (ja)
WO (1) WO2016181930A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655005A (zh) * 2017-10-11 2019-04-19 株式会社斯库林集团 膜厚测量装置、基板检查装置、膜厚测量方法以及基板检查方法
JP2022062132A (ja) * 2017-08-15 2022-04-19 東京エレクトロン株式会社 基板処理装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036235A (ja) * 2016-09-02 2018-03-08 株式会社Screenホールディングス 基板検査装置、基板処理装置、基板検査方法および基板処理方法
CN110663101B (zh) * 2017-05-24 2023-08-18 东京毅力科创株式会社 基板处理装置和基板处理方法
JP2019021747A (ja) * 2017-07-14 2019-02-07 東京エレクトロン株式会社 基板位置調整方法、記憶媒体及び基板処理システム
JP7097691B2 (ja) * 2017-12-06 2022-07-08 東京エレクトロン株式会社 ティーチング方法
CN112334764B (zh) * 2018-06-21 2024-05-24 东京毅力科创株式会社 基片的缺陷检查方法、存储介质和基片的缺陷检查装置
JP7157580B2 (ja) * 2018-07-19 2022-10-20 東京エレクトロン株式会社 基板検査方法及び基板検査装置
KR102247828B1 (ko) * 2018-07-23 2021-05-04 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
JP7105135B2 (ja) * 2018-08-17 2022-07-22 東京エレクトロン株式会社 処理条件補正方法及び基板処理システム
US10801968B2 (en) * 2018-10-26 2020-10-13 Kla-Tencor Corporation Algorithm selector based on image frames
JP7273556B2 (ja) 2019-03-15 2023-05-15 株式会社東芝 分析システム、分析方法、プログラム、及び記憶媒体
JP7231462B2 (ja) * 2019-04-05 2023-03-01 株式会社キーエンス 画像検査システム及び画像検査方法
TW202115390A (zh) 2019-06-06 2021-04-16 日商東京威力科創股份有限公司 基板檢查裝置、基板檢查系統及基板檢查方法
TWI723577B (zh) * 2019-10-14 2021-04-01 環球晶圓股份有限公司 排列多個晶圓的方法、欲對多個晶圓進行清洗步驟的方法及晶片的製造方法
JP2022015474A (ja) 2020-07-09 2022-01-21 東京エレクトロン株式会社 検査装置及び基板搬送方法
US20220230314A1 (en) * 2021-01-15 2022-07-21 Kulicke And Soffa Industries, Inc. Intelligent pattern recognition systems for wire bonding and other electronic component packaging equipment, and related methods
JP2022189284A (ja) 2021-06-11 2022-12-22 東京エレクトロン株式会社 基板検査装置、基板検査方法及び記憶媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242681A (ja) * 2005-03-02 2006-09-14 Tokyo Seimitsu Co Ltd 外観検査装置
JP2007298505A (ja) * 2006-04-05 2007-11-15 Hitachi High-Technologies Corp 欠陥検査方法およびその装置
JP2008002935A (ja) * 2006-06-22 2008-01-10 Tokyo Seimitsu Co Ltd 外観検査方法及び外観検査装置
JP2009216401A (ja) * 2008-03-07 2009-09-24 Olympus Corp 基板検査システムおよび基板検査方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311608A (ja) * 1998-04-28 1999-11-09 Nikon Corp 検査装置
JP3648495B2 (ja) * 2002-05-21 2005-05-18 株式会社東芝 欠陥検査方法及びその装置
JP2004226717A (ja) * 2003-01-23 2004-08-12 Renesas Technology Corp マスクの製造方法および半導体集積回路装置の製造方法
CN100533132C (zh) * 2004-09-06 2009-08-26 欧姆龙株式会社 基板检查方法及基板检查装置
JP4422000B2 (ja) 2004-11-16 2010-02-24 東京エレクトロン株式会社 基板処理方法、制御プログラム、およびコンピューター記憶媒体
JP2006308372A (ja) * 2005-04-27 2006-11-09 Tokyo Seimitsu Co Ltd 外観検査装置及び外観検査方法
JP2007010390A (ja) * 2005-06-29 2007-01-18 Nikon Corp 表面検査装置及び表面検査方法
JP2007071678A (ja) * 2005-09-07 2007-03-22 Hitachi High-Technologies Corp 検査システム
US8041103B2 (en) * 2005-11-18 2011-10-18 Kla-Tencor Technologies Corp. Methods and systems for determining a position of inspection data in design data space
US7834992B2 (en) * 2006-04-05 2010-11-16 Hitachi High-Technologies Corporation Method and its apparatus for detecting defects
JP2008046012A (ja) * 2006-08-17 2008-02-28 Dainippon Screen Mfg Co Ltd 欠陥検出装置および欠陥検出方法
IL188825A0 (en) * 2008-01-16 2008-11-03 Orbotech Ltd Inspection of a substrate using multiple cameras
JP5156452B2 (ja) * 2008-03-27 2013-03-06 東京エレクトロン株式会社 欠陥分類方法、プログラム、コンピュータ記憶媒体及び欠陥分類装置
JP2010117185A (ja) * 2008-11-11 2010-05-27 Olympus Corp 欠陥検査装置および欠陥検査方法
JP2010190740A (ja) * 2009-02-18 2010-09-02 Nikon Corp 基板検査装置、方法およびプログラム
JP2011174757A (ja) * 2010-02-23 2011-09-08 Tokyo Electron Ltd 欠陥検査方法、プログラム、コンピュータ記憶媒体及び欠陥検査装置
JP5479253B2 (ja) * 2010-07-16 2014-04-23 東京エレクトロン株式会社 基板処理装置、基板処理方法、プログラム及びコンピュータ記憶媒体
JP5566265B2 (ja) * 2010-11-09 2014-08-06 東京エレクトロン株式会社 基板処理装置、プログラム、コンピュータ記憶媒体及び基板の搬送方法
JP5715873B2 (ja) * 2011-04-20 2015-05-13 株式会社日立ハイテクノロジーズ 欠陥分類方法及び欠陥分類システム
US9196031B2 (en) * 2012-01-17 2015-11-24 SCREEN Holdings Co., Ltd. Appearance inspection apparatus and method
JP5865734B2 (ja) * 2012-03-01 2016-02-17 株式会社Screenホールディングス 領域分類装置、そのプログラム、基板検査装置、および領域分類方法
JP2013205320A (ja) 2012-03-29 2013-10-07 Dainippon Screen Mfg Co Ltd 検査条件決定方法、検査方法および検査装置
JP6080379B2 (ja) * 2012-04-23 2017-02-15 株式会社日立ハイテクノロジーズ 半導体欠陥分類装置及び半導体欠陥分類装置用のプログラム
US10354929B2 (en) * 2012-05-08 2019-07-16 Kla-Tencor Corporation Measurement recipe optimization based on spectral sensitivity and process variation
JP6241120B2 (ja) * 2012-09-14 2017-12-06 株式会社リコー 画像検査装置、画像検査方法及び画像検査装置の制御プログラム
JP2014109436A (ja) * 2012-11-30 2014-06-12 Tokyo Electron Ltd 基板の欠陥検査方法、基板の欠陥検査装置、プログラム及びコンピュータ記憶媒体
JP2014115245A (ja) * 2012-12-12 2014-06-26 Tokyo Electron Ltd 基板の欠陥検査方法、基板の欠陥検査装置、プログラム及びコンピュータ記憶媒体
US9390494B2 (en) * 2012-12-13 2016-07-12 Kla-Tencor Corporation Delta die intensity map measurement
JP5837649B2 (ja) * 2014-06-17 2015-12-24 東京エレクトロン株式会社 基板処理装置、異常処理部判定方法、プログラム及びコンピュータ記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242681A (ja) * 2005-03-02 2006-09-14 Tokyo Seimitsu Co Ltd 外観検査装置
JP2007298505A (ja) * 2006-04-05 2007-11-15 Hitachi High-Technologies Corp 欠陥検査方法およびその装置
JP2008002935A (ja) * 2006-06-22 2008-01-10 Tokyo Seimitsu Co Ltd 外観検査方法及び外観検査装置
JP2009216401A (ja) * 2008-03-07 2009-09-24 Olympus Corp 基板検査システムおよび基板検査方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022062132A (ja) * 2017-08-15 2022-04-19 東京エレクトロン株式会社 基板処理装置
JP7274009B2 (ja) 2017-08-15 2023-05-15 東京エレクトロン株式会社 基板処理装置
CN109655005A (zh) * 2017-10-11 2019-04-19 株式会社斯库林集团 膜厚测量装置、基板检查装置、膜厚测量方法以及基板检查方法
CN109655005B (zh) * 2017-10-11 2021-02-26 株式会社斯库林集团 膜厚测量装置、基板检查装置、膜厚测量方法以及基板检查方法

Also Published As

Publication number Publication date
TW201920948A (zh) 2019-06-01
US11513081B2 (en) 2022-11-29
CN111982927B (zh) 2023-12-15
TWI649557B (zh) 2019-02-01
US10520450B2 (en) 2019-12-31
TWI676799B (zh) 2019-11-11
JP6244329B2 (ja) 2017-12-06
CN107533016B (zh) 2020-09-15
US20200088654A1 (en) 2020-03-19
TW201704740A (zh) 2017-02-01
KR102562020B1 (ko) 2023-08-02
CN107533016A (zh) 2018-01-02
US20180143144A1 (en) 2018-05-24
CN111982927A (zh) 2020-11-24
JP2016212008A (ja) 2016-12-15
KR20230111273A (ko) 2023-07-25
KR20180004150A (ko) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6244329B2 (ja) 基板の検査方法、基板処理システム及びコンピュータ記憶媒体
JP6329923B2 (ja) 基板の検査方法、コンピュータ記憶媒体及び基板検査装置
KR102314721B1 (ko) 막 두께 측정 장치, 막 두께 측정 방법 및 비일시적인 컴퓨터 기억 매체
JP5566265B2 (ja) 基板処理装置、プログラム、コンピュータ記憶媒体及び基板の搬送方法
JP5717711B2 (ja) 基板の基準画像作成方法、基板の欠陥検査方法、基板の基準画像作成装置、基板の欠陥検査ユニット、プログラム及びコンピュータ記憶媒体
JP6310263B2 (ja) 検査装置
WO2014091928A1 (ja) 基板の欠陥検査方法、基板の欠陥検査装置及びコンピュータ記憶媒体
US20140152807A1 (en) Substrate defect inspection method, substrate defect inspection apparatus and non-transitory computer-readable storage medium
JP5837649B2 (ja) 基板処理装置、異常処理部判定方法、プログラム及びコンピュータ記憶媒体
JP6007171B2 (ja) 基板処理システム、基板搬送方法、プログラム及びコンピュータ記憶媒体
JP6423064B2 (ja) 基板処理システム
JP6209546B2 (ja) 基板処理システム、欠陥検査方法、プログラム及びコンピュータ記憶媒体
KR20200140201A (ko) 기판 검사 방법, 기판 검사 시스템 및 제어 장치
JP6524185B2 (ja) 基板処理システム
KR20220167224A (ko) 기판 검사 장치, 기판 검사 방법 및 기억 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15567997

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177032354

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792655

Country of ref document: EP

Kind code of ref document: A1