WO2016162953A1 - 空燃比制御装置及び空燃比制御方法 - Google Patents

空燃比制御装置及び空燃比制御方法 Download PDF

Info

Publication number
WO2016162953A1
WO2016162953A1 PCT/JP2015/060863 JP2015060863W WO2016162953A1 WO 2016162953 A1 WO2016162953 A1 WO 2016162953A1 JP 2015060863 W JP2015060863 W JP 2015060863W WO 2016162953 A1 WO2016162953 A1 WO 2016162953A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
sensor
control
side electrode
Prior art date
Application number
PCT/JP2015/060863
Other languages
English (en)
French (fr)
Inventor
良輔 佐々木
民一 木村
鈴木 伸幸
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to RU2017136266A priority Critical patent/RU2659230C1/ru
Priority to US15/564,258 priority patent/US10024262B2/en
Priority to BR112017021453-9A priority patent/BR112017021453B1/pt
Priority to MYPI2017703746A priority patent/MY165590A/en
Priority to JP2017511376A priority patent/JP6380661B2/ja
Priority to MX2017012756A priority patent/MX360252B/es
Priority to PCT/JP2015/060863 priority patent/WO2016162953A1/ja
Priority to CN201580078686.9A priority patent/CN107532533B/zh
Priority to EP15888446.0A priority patent/EP3282115B1/en
Publication of WO2016162953A1 publication Critical patent/WO2016162953A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells

Definitions

  • the present invention relates to air-fuel ratio control of an internal combustion engine.
  • air-fuel ratio feedback control using a so-called air-fuel ratio sensor in which an output current value when a predetermined voltage is applied changes linearly with respect to an air-fuel ratio of exhaust gas is known.
  • the air-fuel ratio sensor when the exhaust gas has an air-fuel ratio richer than the stoichiometric air-fuel ratio, oxygen in the air duct is ionized at the air-side electrode, and this oxygen ion passes through the solid electrolyte layer to the exhaust-side electrode. By moving, a current flows through the air-fuel ratio sensor.
  • JP2008-14178A may temporarily stop the air-fuel ratio feedback control and switch to open-loop control when the detection accuracy of the air-fuel ratio sensor decreases as described above. It is described in.
  • an object of the present invention is to provide an air-fuel ratio control apparatus and an air-fuel ratio control method capable of executing air-fuel ratio feedback control in a wider range.
  • an air-fuel ratio control device is provided with an air-fuel ratio sensor in which an output current value changes linearly according to oxygen concentration, and exhaust gas from an internal combustion engine is predetermined based on a detected value of the air-fuel ratio sensor.
  • Air-fuel ratio feedback control means capable of executing air-fuel ratio feedback control for feedback control of the fuel injection amount so as to achieve the air-fuel ratio.
  • the air-fuel ratio control device includes an air-fuel ratio sensor whose output current value changes linearly according to the oxygen concentration, an air-fuel ratio feedback control means for feedback-controlling the air-fuel ratio based on a detection value of the air-fuel ratio sensor, an air-fuel ratio And prohibiting means for prohibiting feedback control when the air-fuel ratio is equal to or higher than a predetermined rich air-fuel ratio.
  • the air-fuel ratio control device permits the feedback control for a predetermined period after the air-fuel ratio becomes equal to or higher than the predetermined rich air-fuel ratio.
  • FIG. 1 is a configuration diagram of an internal combustion engine system to which an embodiment of the present invention is applied.
  • FIG. 2 is a cross-sectional view of the air-fuel ratio sensor.
  • FIG. 3 is a voltage-current characteristic diagram of the air-fuel ratio sensor.
  • FIG. 4 is a voltage-current characteristic diagram of the air-fuel ratio sensor when the detection accuracy is lowered due to an insufficient oxygen supply amount.
  • FIG. 5 is a flowchart showing a control routine of air-fuel ratio control.
  • FIG. 6 is a relationship diagram between the air-fuel ratio of exhaust gas and the measurable time of the air-fuel ratio sensor.
  • FIG. 7 is a timing chart when the control routine of FIG. 5 is executed.
  • FIG. 1 is a configuration diagram of an internal combustion engine system to which an embodiment of the present invention is applied.
  • an air cleaner 4 In the intake passage 2 of the internal combustion engine 1, an air cleaner 4, an air flow meter 5, a turbocharger compressor 10 ⁇ / b> A, a throttle chamber 6, a collector tank 7, and a fuel injection valve 8 are arranged in this order from the upstream side of the intake flow.
  • the internal combustion engine 1 of the present embodiment is a so-called port injection type, but may be a so-called in-cylinder direct injection type.
  • an air-fuel ratio sensor 9 In the exhaust passage of the internal combustion engine 1, an air-fuel ratio sensor 9, a turbocharger turbine 10B, a manifold catalyst 11, and an O 2 sensor 12 are arranged in this order from the upstream side of the exhaust flow.
  • compressor 10A and the turbine 10B are actually connected via a shaft and rotate as a unit.
  • an intercooler for cooling the air that has been pressurized by the compressor 10A and has risen in temperature may be disposed downstream of the compressor 10A.
  • the air-fuel ratio sensor 9 is a sensor in which the output current when a voltage is applied changes linearly according to the oxygen concentration of the exhaust gas. The structure and characteristics of the air-fuel ratio sensor 9 will be described later.
  • the manifold catalyst 11 is a three-way catalyst.
  • the O 2 sensor 12 generates an electromotive force according to the oxygen concentration of the exhaust gas.
  • the electromotive force of the O 2 sensor 12 is approximately 0 V when the exhaust gas is leaner than the stoichiometric air-fuel ratio (hereinafter also simply referred to as “lean”), and is richer than the stoichiometric air-fuel ratio (hereinafter simply referred to as “rich.
  • the output voltage is about 1 V, and the output voltage changes greatly in the vicinity of the theoretical air-fuel ratio. That is, the O 2 sensor 12 can determine whether the exhaust gas is lean or rich.
  • the detection signals from the air flow meter 5, air-fuel ratio sensor 9, and O 2 sensor 12 are read into an engine controller (hereinafter referred to as ECU) 13.
  • the ECU 13 controls the fuel injection amount and ignition timing, sets the target air-fuel ratio, and sets the air-fuel ratio to the target air-fuel ratio based on these detection signals and detection signals from an accelerator pedal opening sensor and a crank angle sensor (not shown).
  • Air-fuel ratio feedback control or the like is executed to match the above.
  • the O 2 sensor 12 is not used for controlling the internal combustion engine 1 when the air-fuel ratio sensor 9 functions normally. However, if the air-fuel ratio sensor 9 is abnormal, air-fuel ratio feedback control is performed based on the detection signal of the O 2 sensor 12.
  • the ECU 13 performs air-fuel ratio feedback control for each cylinder of the internal combustion engine 1. Therefore, in order to accurately determine the cylinder, the air-fuel ratio sensor 9 is installed on the upstream side of the turbine 10B, more specifically, on the upstream side of the turbine 10B and near the junction of the exhaust flow paths from the cylinders. . If the air-fuel ratio sensor 9 is installed on the downstream side of the turbine 10B, the air-fuel ratio sensor 9 detects the air-fuel ratio of the exhaust gas that has been mixed until it passes through the turbine 10B after joining, making cylinder discrimination difficult. Because it becomes.
  • FIG. 2 is a sectional view of the sensor element 20 of the air-fuel ratio sensor 9.
  • a cover that covers the sensor element 20 and a heater for heating the sensor element 20 are omitted.
  • the sensor element 20 includes a solid electrolyte layer 21, an exhaust side electrode 22 provided on the exhaust side of the solid electrolyte layer 21, an atmosphere side electrode 23 provided on the atmosphere side of the solid electrolyte layer 21, and a diffusion resistance layer 24. Consists of including.
  • the solid electrolyte layer 21 is formed of a substance to which oxygen ions can move, such as zirconia.
  • the exhaust side electrode 22 is disposed in the exhaust gas duct 27. Part of the exhaust gas flowing through the exhaust passage 3 flows into the exhaust gas duct 27 while being diffused by the diffusion resistance layer 24, and contacts the exhaust side electrode 22.
  • the diffusion resistance layer 24 is made of, for example, porous ceramic.
  • the atmosphere side electrode 23 is disposed in an atmosphere duct 25 communicating with the atmosphere.
  • the atmosphere flowing into the atmosphere duct 25 contacts the atmosphere side electrode 23.
  • the exhaust side electrode 22 and the atmosphere side electrode 23 are platinum electrodes.
  • the air-fuel ratio sensor 9 receives exhaust gas. A current corresponding to the oxygen concentration flows.
  • oxygen in the atmospheric duct 25 becomes oxygen ions due to the electrode reaction at the atmospheric side electrode 23, and the oxygen ions are solid as shown by arrows in FIG.
  • the electrolyte layer 21 moves from the atmosphere side electrode 23 to the exhaust side electrode 22.
  • carbon dioxide and water are generated by the reaction between the oxygen ions that have moved and HC, CO, and H 2 in the exhaust gas duct 27.
  • a current flows between the exhaust side electrode 22 and the atmosphere side electrode 23 due to the movement of oxygen ions, and the value of the current flowing at this time changes according to the air-fuel ratio of the exhaust gas.
  • FIG. 3 is a diagram showing the voltage-current characteristics of the air-fuel ratio sensor 9 described above.
  • the horizontal axis is the applied voltage, and the vertical axis is the output current.
  • limit current region the region where the value of the output current does not change even when the applied voltage is changed, regardless of whether the air-fuel ratio is lean or rich.
  • limit current value the output current value in the limit current region
  • this limit current value is proportional to the air-fuel ratio of the exhaust gas, the air-fuel ratio can be detected based on the magnitude of the limit current value.
  • the ECU 13 feedback-controls the fuel injection amount so that the air-fuel ratio of the exhaust gas becomes the target air-fuel ratio (for example, the theoretical air-fuel ratio).
  • the air-fuel ratio sensor 9 can detect the air-fuel ratio of the exhaust gas because oxygen ions move through the solid electrolyte layer 21. Therefore, when the air-fuel ratio of the exhaust gas is rich, if the oxygen supply amount to the atmosphere side electrode 23 is insufficient, the oxygen ion movement amount becomes smaller than the movement amount according to the air-fuel ratio, and the air-fuel ratio sensor 9 detects it. The value becomes leaner than the actual air-fuel ratio.
  • the air-fuel ratio sensor 9 has structural restrictions such as the capacity of the air duct 25 and a route for introducing the air, and the speed at which the air flows into the air duct 25 is thereby limited. For this reason, the richer the air-fuel ratio of the exhaust gas, the more likely it is that the amount of oxygen supplied to the atmosphere-side electrode 23 becomes insufficient.
  • FIG. 4 is a diagram showing voltage-current characteristics when the oxygen supply amount to the atmosphere side electrode 23 is insufficient. As shown in the figure, the output current value increases in proportion to the applied voltage on the rich side. Thus, since the limit current value is not flat, the air-fuel ratio detection accuracy is lowered.
  • the ECU 13 executes a control routine described below in order to suppress a decrease in accuracy of the air-fuel ratio control accompanying a decrease in detection accuracy of the air-fuel ratio sensor 9.
  • FIG. 5 is a control routine for air-fuel ratio control executed by the ECU 13.
  • step S10 the ECU 13 determines whether or not the entire area air-fuel ratio control is being performed. If the entire area air-fuel ratio control is not being performed, the current routine is terminated. If the entire area air-fuel ratio control is being performed, the process of step S20 is performed.
  • Execute. “Wide-range air-fuel ratio control” is air-fuel ratio feedback control based on the detection value of the air-fuel ratio sensor 9 and controls the fuel injection amount so as to realize a target air-fuel ratio set according to operating conditions. .
  • the target air-fuel ratio here is not limited to the theoretical air-fuel ratio. For example, during acceleration, a rich target air-fuel ratio may be set in order to generate higher torque.
  • the air-fuel ratio sensor 9 In order to execute the entire area air-fuel ratio control, the air-fuel ratio sensor 9 needs to be in an active state. Therefore, in this step, when the air-fuel ratio sensor 9 is not in the active state as in the warm-up operation after the cold start, it is determined that the overall air-fuel ratio control is not performed.
  • step S20 the ECU 13 determines whether or not the air-fuel ratio (A / F) of the exhaust gas is smaller than the threshold value A / F1, and if it is equal to or greater than the threshold value A / F1, executes the process of step S30. If it is smaller than F1, the process of step S40 is executed.
  • the threshold A / F1 used in this step is detected by the air-fuel ratio sensor 9, that is, the air-fuel ratio in which the oxygen supply amount to the atmosphere-side electrode of the air-fuel ratio sensor does not run short even if the operation at that air-fuel ratio continues. The air / fuel ratio does not decrease accuracy.
  • This threshold A / F1 is set according to the structure of the air-fuel ratio sensor 9, such as the capacity of the air duct 25, the air introduction path, and the like.
  • a detectable A / F described later is set as a threshold A / F1.
  • step S30 executed when the air-fuel ratio is equal to or greater than the threshold A / F1, the ECU 13 continues the entire area air-fuel ratio control as it is.
  • the ECU 13 activates a timer in step S40, and determines whether or not a predetermined time set in advance in step S50 has elapsed.
  • the predetermined time will be described.
  • FIG. 6 is a diagram showing the relationship between the air-fuel ratio of the exhaust gas and the time during which the air-fuel ratio can be measured by the air-fuel ratio sensor 9 found by the inventors of the present invention.
  • the measurable time is a time during which the air-fuel ratio sensor 9 can accurately detect the air-fuel ratio.
  • the air-fuel ratio sensor 9 accurately detects the air-fuel ratio when the oxygen supply amount to the atmosphere-side electrode 23 is insufficient due to the restriction of the capacity of the atmosphere duct 25 as described above. become unable.
  • the rich limit air-fuel ratio at which the oxygen supply amount to the atmosphere-side electrode 23 does not become deficient during detection of the air-fuel ratio is defined as the detection limit A / F
  • the air-fuel ratio leaner than the detection limit A / F If so, the measurable time of the air-fuel ratio sensor 9 is theoretically infinite.
  • the detection accuracy of the air-fuel ratio sensor 9 does not immediately decrease.
  • the air-fuel ratio sensor 9 can accurately detect the air-fuel ratio while the air in the air duct 25 covers the oxygen supply to the atmosphere-side electrode 23.
  • the air-fuel ratio of the exhaust gas is richer than the detection limit A / F, the measurable time of the air-fuel ratio sensor 9 becomes shorter as it becomes richer.
  • the inventor does not immediately reduce the detection accuracy of the air-fuel ratio sensor 9 even when the air-fuel ratio becomes richer than the detection limit A / F.
  • the predetermined time is set according to the air-fuel ratio, and the measurable time ST1 at the air-fuel ratio A / F2 is set as the predetermined time.
  • the predetermined time ST1 is specifically set according to the structure of the air-fuel ratio sensor 9 and the vehicle type to which the present embodiment is applied, but is approximately several tens of seconds to several minutes.
  • ECU13 performs the process of step S60, when it determines with predetermined time ST1 not having passed by step S50, and performs the process of step S70, when it determines with having passed.
  • step S60 the ECU 13 continues the whole area air-fuel ratio control. This is because the air-fuel ratio sensor can be measured before the predetermined time ST1 has elapsed.
  • the ECU 13 prohibits the entire air-fuel ratio control and executes open-loop control based on the target air-fuel ratio. This is because if the overall air-fuel ratio control is executed in a state where the detection accuracy of the air-fuel ratio sensor 9 is lowered, the control accuracy of the air-fuel ratio is lowered.
  • step S80 the ECU 13 determines whether or not the air-fuel ratio A / F has returned to the threshold value A / F1 or more. If it has returned, the process of step S90 is executed. If not, the process of step S50 is executed. To do.
  • step S90 the ECU 13 determines to restart the entire area air-fuel ratio control, and executes the process of step S30. If step S60 is reached from step S60 via step S80, execution of the entire area air-fuel ratio control is determined as it is.
  • a predetermined time during which the air-fuel ratio sensor 9 can accurately detect the air-fuel ratio. Continues the entire air-fuel ratio control. Then, when the predetermined time has elapsed, the entire air-fuel ratio control is prohibited and switched to the open loop control. Further, after switching to the open loop control, when the air-fuel ratio becomes equal to or higher than the threshold A / F1, the entire area air-fuel ratio control is resumed.
  • FIG. 7 is an example of a timing chart when the control routine of FIG. 5 is executed.
  • the broken line indicates the case where the control according to the present embodiment is executed, and the solid line indicates the case where the control according to the conventional technique described above is executed.
  • the air-fuel ratio sensor 9 When the air-fuel ratio sensor 9 becomes active at the timing T1, the entire area air-fuel ratio control is started. Further, since the vehicle starts accelerating from timing T1, the engine load increases and the air-fuel ratio becomes rich. The air-fuel ratio becomes rich because the target air-fuel ratio is switched to a so-called output air-fuel ratio or a value close to the output air-fuel ratio in order to generate higher torque.
  • the entire area air-fuel ratio control is continued with the timer activated.
  • the entire area air-fuel ratio control is switched to the open loop control.
  • the air-fuel ratio changes stepwise. This is because the variation in fuel injection amount due to individual differences in components such as fuel injection valves cannot be absorbed by switching to open loop control. . Therefore, a step-like change at the timing T3 does not occur depending on the size of the variation.
  • the air-fuel ratio can be feedback controlled for a predetermined time. As a result, improvement effects can be obtained in all aspects of output, fuel consumption, and exhaust emission, compared to switching to open loop control immediately after entering the same region.
  • the air-fuel ratio control apparatus of this embodiment performs feedback control of the air-fuel ratio based on the detected value of the air-fuel ratio sensor 9 and the air-fuel ratio sensor 9 in which the output current value changes linearly according to the oxygen concentration, and the air-fuel ratio is predetermined.
  • ECU 13 air-fuel ratio feedback means, prohibiting means for prohibiting feedback control when the air-fuel ratio is greater than or equal to the rich air-fuel ratio.
  • the air-fuel ratio control apparatus permits feedback control for a predetermined time after the air-fuel ratio becomes equal to or higher than the predetermined rich air-fuel ratio.
  • the predetermined rich air-fuel ratio is an air-fuel ratio at which the oxygen supply amount to the atmosphere-side electrode of the air-fuel ratio sensor is insufficient when the operation at that air-fuel ratio is continued.
  • the oxygen supply amount to the atmosphere-side electrode 23 is insufficient due to the structural restrictions of the air-fuel ratio sensor 9, and the air-fuel ratio is reduced.
  • the air-fuel ratio feedback control can be executed even in a situation where the detection accuracy can be lowered.
  • improvement in terms of output, fuel consumption, and exhaust emission can be achieved as compared with the case where open loop control is performed in the same situation.
  • the predetermined time in this embodiment is set to be shorter than the time until the amount of oxygen supplied to the atmosphere-side electrode of the air-fuel ratio sensor is insufficient and the air-fuel ratio detection accuracy is lowered. As a result, it is possible to prevent the air-fuel ratio feedback control from being executed based on the air-fuel ratio detected in a low detection accuracy state.
  • the internal combustion engine 1 includes a turbocharger 10, and the air-fuel ratio sensor 9 is provided in the exhaust passage 3 upstream of the turbine 10B.
  • the air-fuel ratio sensor 9 detects the air-fuel ratio of the exhaust gas before the mixing proceeds, and cylinder discrimination becomes easy. As a result, it is possible to perform air-fuel ratio control corresponding to variations in the fuel injection amount between the cylinders.
  • the air-fuel ratio sensor 9 is provided on the exhaust side of the solid electrolyte layer 21 that allows oxygen ions to move and the exhaust side of the solid electrolyte layer 21 and is exposed to the exhaust passage 3 of the internal combustion engine 1. And an atmosphere side electrode 23 provided on the atmosphere side of the solid electrolyte layer 21 and exposed to the atmosphere, and voltage applying means 28 for applying a voltage between the exhaust side electrode 22 and the atmosphere side electrode 23. Is done. Thereby, the air-fuel ratio sensor 9 can detect the air-fuel ratio in a wide range since the output current value changes linearly according to the oxygen concentration of the exhaust gas.
  • the length of the predetermined time in this embodiment is set according to the air-fuel ratio. This makes it possible to set an appropriate predetermined time corresponding to a different measurable time for each air-fuel ratio, so that the air-fuel ratio feedback control can be continued for a longer time.
  • the so-called air introduction type air-fuel ratio sensor 9 is used.
  • the present embodiment can also be applied to the case of using a type that generates oxygen with an oxygen pump layer provided in the element 20. Even in the case of the air-fuel ratio sensor 9 having the oxygen pump layer, when the air-fuel ratio becomes rich, the generation of oxygen does not catch up, and there may occur a situation where the oxygen supply amount to the atmosphere side electrode 23 is insufficient. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

 空燃比制御装置は、酸素濃度に応じて出力電流値がリニアに変化する空燃比センサと、空燃比センサの検出値に基づいて、内燃機関の排気ガスが所定空燃比になるように燃料噴射量をフィードバック制御する空燃比フィードバック制御を実行し得る空燃比フィードバック制御手段と、を備える。さらに、空燃比が所定のリッチ空燃比以上の場合に前記フィードバック制御を禁止する禁止手段と、を備える。そして、空燃比制御装置は、空燃比が所定のリッチ空燃比以上になってから所定時間はフィードバック制御を許可する。

Description

空燃比制御装置及び空燃比制御方法
 本発明は、内燃機関の空燃比制御に関する。
 内燃機関の空燃比制御として、所定電圧を印加した場合の出力電流値が排気ガスの空燃比に対してリニアに変化する、いわゆる空燃比センサを用いた空燃比フィードバック制御が知られている。空燃比センサ内では、排気ガスが理論空燃比よりもリッチな空燃比の場合には、大気ダクト内の酸素が大気側電極でイオン化し、この酸素イオンが固体電解質層を介して排気側電極へ移動することによって、空燃比センサに電流が流れる。したがって、排気ガスの空燃比が理論空燃比よりもリッチな状態が続いて大気ダクト内の酸素が足りなくなると、空燃比センサの検出値が実際の空燃比よりもリーン側にずれてしまう。このようなズレを防止するため、上記のように空燃比センサの検出精度が低下する状況になった場合に、一時的に空燃比フィードバック制御を停止してオープンループ制御に切り替えることがJP2008-14178Aに記載されている。
 しかしながら、上記文献のように空燃比フィードバック制御を停止してしまうと、燃料噴射弁等の部品の個体差による燃料噴射量のバラツキを吸収できなくなる。このため、オープンループ制御では、空燃比フィードバック制御に比べて制御の精度が低下するので、エンジン出力、燃費、排気エミッションの各性能が低下してしまう。
 そこで本発明では、空燃比フィードバック制御をより広範囲で実行可能な空燃比制御装置及び空燃比制御方法を提供することを目的とする。
 本発明のある態様によれば、空燃比制御装置は、酸素濃度に応じて出力電流値がリニアに変化する空燃比センサと、空燃比センサの検出値に基づいて、内燃機関の排気ガスが所定空燃比になるように燃料噴射量をフィードバック制御する空燃比フィードバック制御を実行し得る空燃比フィードバック制御手段と、を備える。さらに、空燃比制御装置は、酸素濃度に応じて出力電流値がリニアに変化する空燃比センサと、空燃比センサの検出値に基づいて空燃比をフィードバック制御する空燃比フィードバック制御手段と、空燃比が所定のリッチ空燃比以上の場合にフィードバック制御を禁止する禁止手段とを備える。ただし、空燃比制御装置は、空燃比が前記所定のリッチ空燃比以上になってから所定期間は前記フィードバック制御を許可する。
図1は、本発明の実施形態を適用する内燃機関システムの構成図である。 図2は、空燃比センサの断面図である。 図3は、空燃比センサの電圧-電流特性図である。 図4は、酸素供給量不足により検出精度が低下した場合の空燃比センサの電圧-電流特性図である。 図5は、空燃比制御の制御ルーチンを示すフローチャートである。 図6は、排気ガスの空燃比と空燃比センサの計測可能時間との関係図である。 図7は、図5の制御ルーチンを実行した場合のタイミングチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、本発明の実施形態を適用する内燃機関システムの構成図である。
 内燃機関1の吸気通路2には、吸気流れの上流側から順に、エアクリーナ4、エアフローメータ5、ターボ過給機のコンプレッサ10A、スロットルチャンバ6、コレクタタンク7、燃料噴射弁8が配置されている。なお、本実施形態の内燃機関1は、いわゆるポート噴射式であるが、いわゆる筒内直接噴射式であってもよい。
 内燃機関1の排気通路には、排気流れの上流側から順に、空燃比センサ9、ターボ過給機のタービン10B、マニホールド触媒11、O2センサ12が配置されている。
 なお、コンプレッサ10Aとタービン10Bは、実際にはシャフトを介して連結されており、一体として回転する。また、図1では省略しているが、コンプレッサ10Aにより加圧されて温度尾上昇した空気を冷却するためのインタークラーをコンプレッサ10Aより下流側に配置してもよい。
 空燃比センサ9は、電圧を印加した場合の出力電流が排気ガスの酸素濃度に応じてリニアに変化するセンサである。空燃比センサ9の構造及び特性については後述する。
 マニホールド触媒11は、三元触媒である。O2センサ12は排気ガスの酸素濃度に応じた起電力を発生する。O2センサ12の起電力は、排気ガスが理論空燃比よりリーンの場合(以下、単に「リーンの場合」ともいう)には約0V、理論空燃比よりリッチの場合(以下、単に「リッチの場合」ともいう)には約1Vとなり、理論空燃比近傍でその出力電圧が大きく変化するよう構成されている。つまり、O2センサ12は、排気ガスがリーンまたはリッチのいずれなのかを判断できる。
 エアフローメータ5、空燃比センサ9、O2センサ12の各検出信号はエンジンコントローラ(以下、ECUという)13に読み込まれる。ECU13は、これらの検出信号や、図示しないアクセルペダル開度センサ、クランク角度センサ等の検出信号に基づいて、燃料噴射量及び点火時期の制御や、目標空燃比の設定、空燃比を目標空燃比に一致させるための空燃比フィードバック制御等を実行する。
 なお、O2センサ12は、空燃比センサ9が正常に機能する状態では内燃機関1の制御に用いられない。ただし、空燃比センサ9に異常がある場合には、O2センサ12の検出信号に基づいて空燃比フィードバック制御が行われる。
 また、ECU13は、内燃機関1の気筒毎に空燃比フィードバック制御を行う。そこで、正確に気筒判別するために、空燃比センサ9はタービン10Bより上流側、より具体的には、タービン10Bより上流側で各気筒からの排気流路の合流部に近い部位に設置される。タービン10Bより下流側に空燃比センサ9を設置すると、空燃比センサ9は合流してからタービン10Bを通過するまでに混合が進んだ排気ガスの空燃比を検出することとなり、気筒判別が困難になるからである。
 次に、空燃比センサ9について説明する。
 図2は空燃比センサ9のセンサ素子20の断面図である。なお、図2では、センサ素子20を覆うカバー、センサ素子20を加熱するためのヒータは省略している。
 センサ素子20は、固体電解質層21と、固体電解質層21の排気側に設けられる排気側電極22と、固体電解質層21の大気側に設けられる大気側電極23と、拡散抵抗層24と、を含んで構成される。
 固体電解質層21は、酸素イオンが移動可能な物質、例えばジルコニア等で形成されている。
 排気側電極22は、排気ガスダクト27内に配置されている。排気通路3を流れる排気ガスの一部が、拡散抵抗層24によって拡散された状態で排気ガスダクト27に流入して、排気側電極22に接触する。なお、拡散抵抗層24は、例えば多孔質のセラミック等で形成されている。
 大気側電極23は、大気に連通する大気ダクト25内に配置されている。大気ダクト25に流入した大気が大気側電極23に接触する。
 なお、排気側電極22及び大気側電極23は、白金電極である。
 上記のような構成の空燃比センサ9の排気側電極22と大気側電極23との間に、バッテリ(電圧印加手段)28により検出用電圧Vを印加すると、空燃比センサ9には排気ガスの酸素濃度に応じた電流が流れる。
 例えば、排気ガスの空燃比がリッチな場合には、大気ダクト25内の酸素が大気側電極23での電極反応によって、酸素イオンになり、この酸素イオンが図2に矢印で示したように固体電解質層21内を大気側電極23から排気側電極22へ移動する。排気側電極22側では、移動してきた酸素イオンと、排気ガスダクト27内のHC、CO、H2との反応により、二酸化炭素や水が生成される。
 一方、排気ガスの空燃比がリーンな場合には、排気ガス中の余剰酸素が排気側電極22での電極反応によって酸素イオンになり、この酸素イオンが固体電解質層21内を排気側電極22から大気側電極23へ移動する。大気側電極23に到達した酸素イオンは、電子が離脱して酸素に戻り、大気ダクト25へ放出される。
 上記のように、酸素イオンの移動によって排気側電極22と大気側電極23との間に電流が流れ、このとき流れる電流値は排気ガスの空燃比に応じて変化する。
 図3は、上述した空燃比センサ9の電圧-電流特性を示す図である。横軸は印加電圧、縦軸は出力電流である。
 図3に示すように、空燃比がリーン、リッチのいずれの場合でも、印加電圧を変化させても出力電流の値が変化しない領域が存在する。このように出力電流値が変化しない印加電圧の領域を「限界電流領域」、限界電流領域での出力電流値を「限界電流値」という。
 この限界電流値は、排気ガスの空燃比に比例するので、限界電流値の大きさに基づいて空燃比を検出することができる。
 このようにして検出した空燃比に基づいて、ECU13は、排気ガスの空燃比が目標空燃比(例えば理論空燃比)となるように、燃料噴射量をフィードバック制御する。
 ところで、上述したように、空燃比センサ9で排気ガスの空燃比を検出できるのは、酸素イオンが固体電解質層21を移動するからである。したがって、排気ガスの空燃比がリッチな場合に、大気側電極23への酸素供給量が不足すると、酸素イオンの移動量が空燃比に応じた移動量よりも少なくなり、空燃比センサ9の検出値が実際の空燃比よりもリーンな値になってしまう。そして、空燃比センサ9には、大気ダクト25の容量や、大気を導入する経路等、構造上の制約があり、これによって大気ダクト25に大気が流入する速度は制限される。このため、排気ガスの空燃比がリッチになるほど、大気側電極23への酸素供給量が不足する状況が生じ易くなる。
 図4は、大気側電極23への酸素供給量が不足した場合の電圧-電流特性を示す図である。図示するように、リッチ側で出力電流値が印加電圧に比例して増大している。このように限界電流値がフラットでなくなることにより、空燃比検出精度が低下してしまう。
 そこで、空燃比センサ9の検出精度の低下に伴う空燃比制御の精度低下を抑制する為、ECU13は以下に説明する制御ルーチンを実行する。
 図5は、ECU13が実行する空燃比制御の制御ルーチンである。
 ステップS10で、ECU13は、全域空燃比制御中であるか否かを判定し、全域空燃比制御中でない場合はそのまま今回のルーチンを終了し、全域空燃比制御中である場合はステップS20の処理を実行する。「全域空燃比制御」とは、空燃比センサ9の検出値に基づいた空燃比フィードバック制御であり、運転条件に応じて設定した目標空燃比を実現するように燃料噴射量を制御するものである。なお、ここでの目標空燃比は、理論空燃比に限らない。例えば、加速時には、より高いトルクを発生させるためにリッチな目標空燃比を設定することもある。
 全域空燃比制御を実行するためには、空燃比センサ9が活性状態にあることが必要となる。そこで本ステップでは、冷機始動後の暖機運転中のように、空燃比センサ9が活性状態になっていない場合に、全域空燃比制御でないと判定する。
 ステップS20で、ECU13は、排気ガスの空燃比(A/F)が閾値A/F1より小さいか否かを判定し、閾値A/F1以上の場合はステップS30の処理を実行し、閾値A/F1より小さい場合はステップS40の処理を実行する。本ステップで用いる閾値A/F1は、その空燃比での運転が継続しても前記空燃比センサの大気側電極への酸素供給量が不足することのない空燃比、つまり空燃比センサ9の検出精度が低下しない空燃比である。この閾値A/F1は、大気ダクト25の容量や大気導入経路等といった空燃比センサ9の構造に応じて設定する。本実施形態では、後述する検出可能A/Fを閾値A/F1とする。
 空燃比が閾値A/F1以上の場合に実行するステップS30では、ECU13は全域空燃比制御をそのまま継続する。
 空燃比が閾値A/F1より小さい場合には、ECU13はステップS40でタイマを作動させ、ステップS50で予め設定した所定時間が経過したか否かを判定する。
 ここで、所定時間について説明する。
 図6は、本発明の発明者によって見出された、排気ガスの空燃比と、空燃比センサ9による当該空燃比の計測可能時間との関係を示す図である。計測可能時間は、空燃比センサ9が空燃比を正確に検出できる時間である。
 排気ガスの空燃比がリッチな場合には、空燃比センサ9は、上述したように大気ダクト25の容量等の制約によって大気側電極23への酸素供給量が不足すると、空燃比を正確に検出できなくなる。
 空燃比の検出中に大気側電極23への酸素供給量が不足することのないリッチ側の限界の空燃比を検出限界A/Fとすると、検出限界A/Fよりもリーン側の空燃比であれば、空燃比センサ9の計測可能時間は理論上無限大となる。
 一方、空燃比が検出限界A/Fよりリッチ側の場合でも、空燃比センサ9の検出精度がただちに低下するわけではない。例えば、空燃比が検出限界A/Fよりリーン側からリッチ側へ変化する場合には、変化直後の大気ダクト25には大気が充満しているので、大気側電極23へ供給する酸素がただちに不足することはない。つまり、大気ダクト25内にある空気で大気側電極23への酸素供給を賄っている間は、空燃比センサ9は精度良く空燃比を検出できる。換言すると、排気ガスの空燃比が検出限界A/Fよりリッチの場合には、リッチになるほど空燃比センサ9の計測可能時間は短くなる。
 発明者は、上述した特性、すなわち、空燃比が検出限界A/Fよりもリッチ側になった場合でも空燃比センサ9の検出精度がただちに低下するわけではなく、低下するまでの時間(計測可能時間)は空燃比に応じて定まるという特性を見出した。
 そして、上記特性に基づいて、本実施形態では空燃比に応じて所定時間を設定することとし、空燃比A/F2のときの計測可能時間ST1を、所定時間として設定する。このように所定時間ST1を設定すると、所定時間ST1の間は、空燃比A/F2よりリーン側の空燃比を精度良く検出できる。所定時間ST1は、具体的には空燃比センサ9の構造や本実施形態を適用する車種に応じて設定するが、概ね数十秒から数分程度になる。
 フローチャートの説明に戻る。
 ECU13は、ステップS50で所定時間ST1が経過していないと判定した場合にはステップS60の処理を実行し、経過していると判定した場合にはステップS70の処理を実行する。
 ステップS60で、ECU13は全域空燃比制御を継続する。これは、所定時間ST1経過前であれば、空燃比センサの計測可能時間内であるからである。
 一方のステップS70では、ECU13は全域空燃比制御を禁止して、目標空燃比に基づくオープンループ制御を実行する。これは、空燃比センサ9の検出精度が低下した状態で全域空燃比制御を実行すると、空燃比の制御精度が低下してしまうからである。
 ステップS80で、ECU13は空燃比A/Fが閾値A/F1以上に戻ったか否かを判定し、戻っている場合はステップS90の処理を実行し、戻っていない場合はステップS50の処理を実行する。
 ステップS90で、ECU13は全域空燃比制御の再開を決定し、ステップS30の処理を実行する。なお、ステップS60からステップS80を経由してステップS90に到達した場合は、そのまま全域空燃比制御の実行を決定することとなる。
 上記のように、空燃比センサ9の構造上の制約によって、排気ガスの空燃比の検出精度が低下し得る状況になった場合には、空燃比センサ9が精度良く空燃比を検出できる所定時間は全域空燃比制御を継続する。そして、所定時間が経過したら全域空燃比制御を禁止してオープンループ制御に切り替える。また、オープンループ制御に切り替えた後、空燃比が閾値A/F1以上になったら全域空燃比制御を再開する。
 図7は、図5の制御ルーチンを実行した場合のタイミングチャートの一例である。空燃比フィードバック制御のチャートにおいて、破線は本実施形態による制御を実行した場合を示し、実線は上述した従来技術による制御を実行した場合を示している。
 タイミングT1より前は、空燃比センサ9が活性状態になっていないため、全域空燃比制御(空燃比フィードバック制御)は行われていない。
 タイミングT1で空燃比センサ9が活性状態になると、全域空燃比制御が開始される。また、タイミングT1から車両が加速を開始したため、エンジン負荷は増大し、空燃比はリッチになる。空燃比がリッチになるのは、より高いトルクを発生させるために、目標空燃比がいわゆる出力空燃比または出力空燃比に近い値に切り替わったためである。
 タイミングT2で目標空燃比が閾値A/F1よりリッチになると、タイマを作動させた状態で全域空燃比制御を継続する。
 タイマを作動させてから所定時間ST1が経過したタイミングT3になると、全域空燃比制御からオープンループ制御に切り替わっている。切り替わりの際、空燃比がステップ的に変化しているが、これは、オープンループ制御に切り替わったことで、燃料噴射弁等の部品の個体差による燃料噴射量のバラツキを吸収できなくなったからである。したがって、上記のバラツキの大きさ次第では、タイミングT3におけるステップ的な変化は生じない。
 オープンループ制御に切り替わった後、タイミングT4で排気ガスの空燃比がA/F1を超えると、オープンループ制御から全域空燃比制御へ切り替わっている。
 上記のように、本実施形態では、大気側電極23への酸素供給量が不足して空燃比センサ9の検出精度が低下し得る空燃比、例えば出力空燃比またはこれに近い空燃比においても、所定時間は空燃比をフィードバック制御することが可能となる。その結果、同領域に入ったらただちにオープンループ制御に切り替える場合に比べて、出力、燃費、及び排気エミッションのすべての面で改善効果が得られる。
 次に、本実施形態による作用効果についてまとめる。
 本実施形態の空燃比制御装置は、酸素濃度に応じて出力電流値がリニアに変化する空燃比センサ9と、空燃比センサ9の検出値に基づいて空燃比をフィードバック制御し、空燃比が所定のリッチ空燃比以上の場合にフィードバック制御を禁止するECU13(空燃比フィードバック手段、禁止手段)とを備える。そして、空燃比制御装置は、空燃比が所定のリッチ空燃比以上になってから所定時間はフィードバック制御を許可する。ここで、所定のリッチ空燃比は、その空燃比での運転が継続すると空燃比センサの大気側電極への酸素供給量が不足する空燃比である。
 これにより、例えば出力空燃比のようにリッチな目標空燃比が要求される場合のように、空燃比センサ9の構造上の制約により大気側電極23への酸素供給量が不足して空燃比の検出精度が低下し得る状況においても、空燃比フィードバック制御を実行することができる。その結果、同状況でオープンループ制御を行う場合に比べて出力、燃費、及び排気エミッションの面で改善を図ることができる。
 本実施形態では、空燃比フィードバック制御を禁止したら、所定空燃比を目標値とするオープンループ制御を実行する。これにより、空燃比センサ9の検出精度が低下した状態でも、実際の空燃比と目標空燃比との乖離を抑制できる。
 本実施形態における所定時間は、空燃比センサの大気側電極への酸素供給量が不足して空燃比の検出精度が低下するまでの時間より短く設定される。これにより、検出精度の低い状態で検出した空燃比に基づいて空燃比フィードバック制御が実行されることを防止できる。
 本実施形態では、内燃機関1はターボ式過給機10を備え、空燃比センサ9は、タービン10Bよりも上流側の排気通路3に設けられる。これにより、空燃比センサ9はミキシングが進む前の排気ガスの空燃比を検出することとなり、気筒判別が容易になる。その結果、気筒間での燃料噴射量等のバラツキに対応した空燃比制御が可能となる。
 本実施形態では、空燃比センサ9は酸素イオンの移動を可能とする固体電解質層21と、固体電解質層21の排気側に設けられ、内燃機関1の排気通路3内に晒される排気側電極22と、固体電解質層21の大気側に設けられ、大気に晒される大気側電極23と、排気側電極22と大気側電極23との間に電圧を印加する電圧印加手段28と、を含んで構成される。これにより、空燃比センサ9は出力電流値が排気ガスの酸素濃度に応じてリニアに変化することとなるので、幅広い範囲で空燃比を検出することができる。
 本実施形態における所定時間の長さは、空燃比に応じて設定される。これにより、空燃比毎に異なる計測可能時間に対応して適切な所定時間を設定することが可能となるので、空燃比フィードバック制御をより長い時間継続することができる。
 なお、上記説明では、いわゆる大気導入型の空燃比センサ9を用いたが、素子20内に設けた酸素ポンプ層で酸素を生成するタイプを用いる場合にも本実施形態は適用可能である。酸素ポンプ層を有するタイプの空燃比センサ9であっても、空燃比がリッチになった場合に酸素の生成が追い付かずに、大気側電極23への酸素供給量が不足する事態が起こり得るからである。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (8)

  1.  酸素濃度に応じて出力電流値がリニアに変化する空燃比センサと、
     前記空燃比センサの検出値に基づいて空燃比をフィードバック制御する空燃比フィードバック制御手段と、
     空燃比が所定のリッチ空燃比以上の場合に前記フィードバック制御を禁止する禁止手段と、
    を備え、
     空燃比が前記所定のリッチ空燃比以上になってから所定時間は前記フィードバック制御を許可する空燃比制御装置。
  2.  請求項1に記載の空燃比制御装置において、
     前記所定のリッチ空燃比は、その空燃比での運転が継続すると前記空燃比センサの大気側電極への酸素供給量が不足する空燃比である空燃比制御装置。
  3.  請求項1または2に記載の空燃比制御装置において、
     前記空燃比フィードバック制御を禁止したら、前記所定空燃比を目標値とするオープンループ制御を実行する空燃比制御装置。
  4.  請求項2に記載の空燃比制御装置において、
     前記所定時間は、前記空燃比センサの大気側電極への酸素供給量が不足することにより空燃比の検出精度が低下するまでの時間より短く設定されている空燃比制御装置。
  5.  請求項1から4のいずれかに記載の空燃比制御装置において、
     前記内燃機関はターボ式過給機を備え、
     前記空燃比センサは、前記ターボ式過給機のタービンよりも上流側の排気通路に設けられている空燃比制御装置。
  6.  請求項1から5のいずれかに記載の空燃比制御装置において、
     前記空燃比センサは、
     酸素イオンの移動を可能とする固体電解質層と、
     前記固体電解質層の排気側に設けられ、前記内燃機関の排気通路内に晒される排気側電極と、
     前記固体電解質層の大気側に設けられ、大気に晒される大気側電極と、
     前記排気側電極と前記大気側電極との間に電圧を印加する電圧印加手段と、
    を含んで構成される空燃比制御装置。
  7.  請求項1から6のいずれかに記載の空燃比制御装置において、
     前記所定時間の長さを空燃比に応じて設定する空燃比制御装置。
  8.  酸素濃度に応じて出力電流値がリニアに変化する空燃比センサの検出値に基づいて、内燃機関の排気ガスが所定空燃比になるように燃料噴射量をフィードバック制御する空燃比フィードバック制御を実行し、
     空燃比が所定のリッチ空燃比以上の場合には、空燃比が前記所定のリッチ空燃比以上になってから所定時間は前記フィードバック制御を許可し、前記所定時間が経過したら前記フィードバック制御を禁止する空燃比制御方法。
PCT/JP2015/060863 2015-04-07 2015-04-07 空燃比制御装置及び空燃比制御方法 WO2016162953A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2017136266A RU2659230C1 (ru) 2015-04-07 2015-04-07 Устройство управления соотношением воздух-топливо и способ управления соотношением воздух-топливо
US15/564,258 US10024262B2 (en) 2015-04-07 2015-04-07 Air-fuel ratio control device and air-fuel ratio control method
BR112017021453-9A BR112017021453B1 (pt) 2015-04-07 2015-04-07 Dispositivo de controle de razão entre ar e combustível e método de controle de razão entre ar e combustível
MYPI2017703746A MY165590A (en) 2015-04-07 2015-04-07 Air-fuel ratio control device and air-fuel ratio control method
JP2017511376A JP6380661B2 (ja) 2015-04-07 2015-04-07 空燃比制御装置及び空燃比制御方法
MX2017012756A MX360252B (es) 2015-04-07 2015-04-07 Dispositivo de control de la relacion de aire-combustible y metodo de control de la relacion de aire-combustible.
PCT/JP2015/060863 WO2016162953A1 (ja) 2015-04-07 2015-04-07 空燃比制御装置及び空燃比制御方法
CN201580078686.9A CN107532533B (zh) 2015-04-07 2015-04-07 空燃比控制装置以及空燃比控制方法
EP15888446.0A EP3282115B1 (en) 2015-04-07 2015-04-07 Air-fuel ratio control device and air-fuel ratio control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060863 WO2016162953A1 (ja) 2015-04-07 2015-04-07 空燃比制御装置及び空燃比制御方法

Publications (1)

Publication Number Publication Date
WO2016162953A1 true WO2016162953A1 (ja) 2016-10-13

Family

ID=57072683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060863 WO2016162953A1 (ja) 2015-04-07 2015-04-07 空燃比制御装置及び空燃比制御方法

Country Status (9)

Country Link
US (1) US10024262B2 (ja)
EP (1) EP3282115B1 (ja)
JP (1) JP6380661B2 (ja)
CN (1) CN107532533B (ja)
BR (1) BR112017021453B1 (ja)
MX (1) MX360252B (ja)
MY (1) MY165590A (ja)
RU (1) RU2659230C1 (ja)
WO (1) WO2016162953A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU198321U1 (ru) * 2019-12-30 2020-06-30 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" (ФГАОУ ВО "ЮУрГУ (НИУ)") Устройство для имитации подогрева свежего заряда воздуха на впуске поршневого двигателя внутреннего сгорания
CN111828191B (zh) 2020-03-24 2021-10-08 同济大学 一种混合动力发动机的空燃比控制系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254135A (ja) * 2002-03-06 2003-09-10 Toyota Motor Corp 空燃比センサの異常診断装置
JP2008014178A (ja) * 2006-07-04 2008-01-24 Denso Corp 内燃機関の気筒別空燃比制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212347A (en) 1981-06-25 1982-12-27 Nissan Motor Co Ltd Air-fuel ratio control system
JPS63140841A (ja) * 1986-12-02 1988-06-13 Mazda Motor Corp エンジンの空燃比制御装置
JP3850620B2 (ja) * 2000-03-15 2006-11-29 株式会社日立製作所 内燃機関の空燃比フィードバック制御装置
JP4115685B2 (ja) * 2001-07-02 2008-07-09 株式会社日立製作所 エンジンの空燃比制御装置
JP2004068702A (ja) * 2002-08-06 2004-03-04 Mitsubishi Motors Corp 内燃機関の出力制御装置
JP3915699B2 (ja) * 2002-12-27 2007-05-16 アイシン・エィ・ダブリュ株式会社 ハイブリッド車輌の制御装置
JP3873904B2 (ja) * 2003-02-26 2007-01-31 日産自動車株式会社 内燃機関の排気浄化装置
JP4364777B2 (ja) * 2004-12-02 2009-11-18 本田技研工業株式会社 内燃機関の空燃比制御装置
JP4268595B2 (ja) * 2005-03-30 2009-05-27 日本特殊陶業株式会社 ガス検出装置、このガス検出装置に用いるガスセンサ制御回路及び、ガス検出装置の検査方法
JP4662207B2 (ja) * 2005-11-28 2011-03-30 日本特殊陶業株式会社 空燃比検出装置
US7497210B2 (en) 2006-04-13 2009-03-03 Denso Corporation Air-fuel ratio detection apparatus of internal combustion engine
JP4464932B2 (ja) * 2006-04-27 2010-05-19 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP2009167873A (ja) * 2008-01-15 2009-07-30 Toyota Motor Corp 動力源の制御装置
JP2011163229A (ja) 2010-02-10 2011-08-25 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比インバランス判定装置
JP5543852B2 (ja) * 2010-06-28 2014-07-09 本田技研工業株式会社 内燃機関の空燃比制御装置
US8899019B2 (en) * 2010-09-15 2014-12-02 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus
JP2013121231A (ja) * 2011-12-07 2013-06-17 Hitachi Automotive Systems Ltd 電動車両の制御装置
KR101781278B1 (ko) * 2013-01-29 2017-09-22 도요타지도샤가부시키가이샤 내연 기관의 제어 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254135A (ja) * 2002-03-06 2003-09-10 Toyota Motor Corp 空燃比センサの異常診断装置
JP2008014178A (ja) * 2006-07-04 2008-01-24 Denso Corp 内燃機関の気筒別空燃比制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282115A4 *

Also Published As

Publication number Publication date
CN107532533A (zh) 2018-01-02
BR112017021453A2 (pt) 2018-07-03
RU2659230C1 (ru) 2018-06-29
MY165590A (en) 2018-04-06
BR112017021453B1 (pt) 2022-12-20
MX2017012756A (es) 2018-01-30
US10024262B2 (en) 2018-07-17
JP6380661B2 (ja) 2018-08-29
US20180135547A1 (en) 2018-05-17
JPWO2016162953A1 (ja) 2018-02-15
MX360252B (es) 2018-10-26
EP3282115A4 (en) 2018-06-20
EP3282115B1 (en) 2019-06-12
EP3282115A1 (en) 2018-02-14
CN107532533B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
RU2665765C2 (ru) Способ (варианты) и система определения содержания влаги в окружающем воздухе посредством датчика выхлопных газов
US8296042B2 (en) Humidity detection via an exhaust gas sensor
US8509984B2 (en) Monitoring apparatus for a multi-cylinder internal combustion engine
US9052280B2 (en) Deterioration diagnosis device for catalyst
US20110192146A1 (en) Multicylinder internal combustion engine, inter-cylinder air/fuel ratio imbalance determination apparatus, and method therefor
CN108661814B (zh) 用于排气氧传感器操作的方法和系统
US8354016B2 (en) Dual mode oxygen sensor
US8899014B2 (en) Emission control system for internal combustion engine
KR101399192B1 (ko) 내연 기관의 배출 제어 시스템
US10690077B2 (en) Combustion control method in vehicle engine and engine system for vehicle
JP2007198158A (ja) 水素エンジンの空燃比制御装置
US8893473B2 (en) Emission control system for internal combustion engine
JP6380661B2 (ja) 空燃比制御装置及び空燃比制御方法
US9261032B2 (en) Air-fuel ratio control apparatus for an internal combustion engine
JP2008064007A (ja) 内燃機関の制御装置
JP5459513B2 (ja) 内燃機関の空燃比制御装置
JP2012163080A (ja) 内燃機関の空燃比制御装置
JP2005337213A (ja) 空燃比センサの診断装置
JP2004197693A (ja) 内燃機関の空燃比制御装置
KR100427327B1 (ko) 공연비 피드백 제어 개시 판정방법
JPH08291739A (ja) 空燃比制御装置
JP2013064384A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511376

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15564258

Country of ref document: US

Ref document number: MX/A/2017/012756

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2015888446

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017021453

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2017136266

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112017021453

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171006