WO2016159108A1 - 非水系電解液及び非水系二次電池 - Google Patents

非水系電解液及び非水系二次電池 Download PDF

Info

Publication number
WO2016159108A1
WO2016159108A1 PCT/JP2016/060441 JP2016060441W WO2016159108A1 WO 2016159108 A1 WO2016159108 A1 WO 2016159108A1 JP 2016060441 W JP2016060441 W JP 2016060441W WO 2016159108 A1 WO2016159108 A1 WO 2016159108A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
active material
electrode active
material layer
Prior art date
Application number
PCT/JP2016/060441
Other languages
English (en)
French (fr)
Inventor
松岡 直樹
吉野 彰
穣 夏目
岸見 光浩
丈主 加味根
Original Assignee
旭化成株式会社
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社, 日立マクセル株式会社 filed Critical 旭化成株式会社
Priority to EP16772989.6A priority Critical patent/EP3279996B1/en
Priority to KR1020177023023A priority patent/KR101945657B1/ko
Priority to JP2017510120A priority patent/JP6346989B2/ja
Priority to CN201680017741.8A priority patent/CN107431247B/zh
Priority to US15/558,270 priority patent/US10693189B2/en
Publication of WO2016159108A1 publication Critical patent/WO2016159108A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries are characterized by light weight, high energy, and long life, and are widely used as power sources for various portable electronic devices.
  • power tools such as electric tools
  • in-vehicle use for electric vehicles, electric bicycles and the like Further, it has been attracting attention in the field of power storage such as a residential power storage system. It is desirable from a practical point of view to use a non-aqueous electrolyte as an electrolyte for a room temperature operation type lithium ion secondary battery.
  • a combination of a high dielectric solvent such as a cyclic carbonate and a low viscosity solvent such as a lower chain carbonate is exemplified as a general solvent.
  • a normal high dielectric constant solvent has a high melting point and may cause deterioration of load characteristics (output characteristics) and low temperature characteristics of the nonaqueous electrolyte depending on the type of electrolyte salt used in the nonaqueous electrolyte. obtain.
  • a nitrile solvent excellent in the balance between viscosity and relative dielectric constant has been proposed.
  • acetonitrile has a high potential as a solvent used for an electrolyte solution of a lithium ion secondary battery.
  • acetonitrile has a fatal defect of electrochemically reducing and decomposing at the negative electrode, practical performance could not be exhibited.
  • the main improvement measures proposed so far are classified into the following three.
  • Patent Documents 1 and 2 include acetonitrile as a solvent as a specific electrolyte salt and an additive. There has been reported an electrolyte solution that reduces the influence of reductive decomposition of acetonitrile by combining with the above. In the early days of lithium ion secondary batteries, as disclosed in Patent Document 3, an electrolytic solution containing a solvent obtained by simply diluting acetonitrile with propylene carbonate and ethylene carbonate has been reported.
  • Patent Document 3 since the high-temperature durability performance is determined by evaluating only the internal resistance and battery thickness after high-temperature storage, information on whether or not the battery actually operates when placed in a high-temperature environment. Is not disclosed. In practice, it is extremely difficult to suppress the reductive decomposition of an electrolytic solution containing an acetonitrile-based solvent by simply diluting with ethylene carbonate and propylene carbonate. As a method for suppressing reductive decomposition of a solvent, a method of combining a plurality of electrolyte salts and additives as in Patent Documents 1 and 2 is realistic.
  • Patent Document 4 uses a specific metal compound for the negative electrode. Thus, it is reported that a battery avoiding reductive decomposition of acetonitrile can be obtained.
  • a negative electrode active material that occludes lithium ions at a lower potential than the reduction potential of acetonitrile from the viewpoint of potential difference. Therefore, when the improvement measure of Patent Document 4 is applied in such an application, the range of usable voltages becomes narrow, which is disadvantageous.
  • Patent Document 5 discloses a lithium bis (trifluoromethanesulfonyl) imide (concentration of 4.2 mol / L). It is described that reversible lithium insertion / extraction from a graphite electrode is possible by using an electrolytic solution in which LiN (SO 2 CF 3 ) 2 ) is dissolved in acetonitrile.
  • Patent Document 6 discloses a cell using an electrolytic solution in which lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ) is dissolved in acetonitrile so that the concentration is 4.5 mol / L. As a result of charge / discharge measurement, Li + insertion / extraction reaction to graphite was observed, and it was reported that discharge was possible at a high rate.
  • lithium ion secondary batteries using an electrolytic solution containing acetonitrile are inferior in high-temperature durability performance compared to existing lithium ion secondary batteries using an electrolytic solution containing a carbonate solvent.
  • the reason why the acetonitrile-based lithium ion secondary battery is inferior in high-temperature durability is considered as follows.
  • the fluorine-containing inorganic lithium salt decomposes while extracting hydrogen from the methyl group of acetonitrile, and the decomposition product promotes elution of the positive electrode transition metal.
  • the present invention has been made in view of the above circumstances. Therefore, the present invention suppresses the formation of a complex cation composed of a transition metal and acetonitrile in a non-aqueous electrolytic solution containing acetonitrile and a fluorine-containing inorganic lithium salt, which has an excellent balance between viscosity and relative dielectric constant,
  • An object is to provide a non-aqueous electrolyte solution and a non-aqueous secondary battery that exhibit excellent load characteristics and can suppress self-discharge during high-temperature storage.
  • the inventors of the present invention have made extensive studies to solve the above-described problems. As a result, even in the case of a non-aqueous electrolyte containing acetonitrile as a non-aqueous solvent, when a specific nitrogen-containing cyclic compound is further contained as an additive, the formation of a complex cation composed of a transition metal and acetonitrile is suppressed.
  • the present inventors have found that it is possible to exhibit excellent load characteristics and suppress self-discharge during high-temperature storage, and have completed the present invention. That is, the present invention is as follows.
  • the substituents represented by R 1 , R 2 , and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorine-substituted alkyl having 1 to 4 carbon atoms.
  • the positive electrode active material layer and the negative electrode active material layer are disposed to face each other. Of the negative electrode active material layer, the total area of the surface facing the positive electrode active material layer, The non-aqueous secondary battery according to [5], wherein a ratio to an area of a region where the positive electrode active material layer and the negative electrode active material layer face each other is greater than 1.0 and less than 1.1.
  • a nonaqueous electrolytic solution containing acetonitrile having a good balance between viscosity and relative dielectric constant and a fluorine-containing inorganic lithium salt the formation of a complex cation composed of a transition metal and acetonitrile is suppressed. It is possible to provide a non-aqueous electrolyte and a non-aqueous secondary battery that exhibit excellent load characteristics and can suppress self-discharge during high-temperature storage.
  • FIG. 2 is a cross-sectional view of the non-aqueous secondary battery of FIG. 1 taken along line AA. It is drawing for demonstrating "the width
  • the non-aqueous electrolyte solution of the present embodiment (hereinafter also simply referred to as “electrolyte solution”) A non-aqueous solvent containing 30 to 100% by volume of acetonitrile; A fluorine-containing inorganic lithium salt;
  • electrolyte solution A non-aqueous solvent containing 30 to 100% by volume of acetonitrile; A fluorine-containing inorganic lithium salt;
  • the following general formula (1): ⁇ In the formula (1), the substituents represented by R 1 , R 2 , and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorine-substituted alkyl having 1 to 4 carbon atoms.
  • alkoxy group having 1 to 4 carbon atoms fluorine-substituted alkoxy group having 1 to 4 carbon atoms, phenyl group, cyclohexyl group, nitrile group, nitro group, amino group, N, N′-dimethylamino group, or N, N '-Diethylamino group, and two or more of these substituents are hydrogen atoms.
  • A compound represented by Containing.
  • the electrolyte solution of this embodiment can be used for a non-aqueous secondary battery, for example.
  • a non-aqueous secondary battery of this embodiment for example, A positive electrode containing a positive electrode material capable of inserting and extracting lithium ions as a positive electrode active material;
  • a negative electrode active material a negative electrode material capable of inserting and extracting lithium ions, and a negative electrode containing one or more negative electrode materials selected from the group consisting of metallic lithium
  • a lithium ion secondary battery comprising
  • the non-aqueous secondary battery of the present embodiment may be the non-aqueous secondary battery illustrated in FIGS. 1 and 2.
  • FIG. 1 is a plan view schematically showing a non-aqueous secondary battery
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • the non-aqueous secondary battery 1 includes a laminated electrode body formed by laminating a positive electrode 5 and a negative electrode 6 with a separator 7 in a battery exterior 2 constituted by two aluminum laminate films, and a non-aqueous electrolyte (see FIG. (Not shown).
  • the battery exterior 2 is sealed by heat-sealing the upper and lower aluminum laminate films at the outer periphery thereof.
  • the laminate in which the positive electrode 5, the separator 7, and the negative electrode 6 are sequentially laminated is impregnated with a nonaqueous electrolytic solution.
  • each layer constituting the battery exterior 2 and each layer of the positive electrode 5 and the negative electrode 6 are not shown separately in order to prevent the drawing from becoming complicated.
  • the aluminum laminate film constituting the battery casing 2 is preferably one in which both surfaces of an aluminum foil are coated with a polyolefin resin.
  • the positive electrode 5 is connected to the positive electrode external terminal 3 through the lead body in the battery 1.
  • the negative electrode 6 is also connected to the negative electrode external terminal 4 through the lead body in the battery 1.
  • Each of the positive electrode external terminal 3 and the negative electrode external terminal 4 is drawn to the outside of the battery exterior 2 so that it can be connected to an external device or the like. It is heat-sealed with the sides.
  • each of the positive electrode 5 and the negative electrode 6 has a single laminated electrode body. It can be increased as appropriate.
  • tabs having the same polarity may be joined by welding or the like, and then joined to one lead body by welding or the like and taken out of the battery.
  • the positive electrode 5 includes a positive electrode active material layer made from a positive electrode mixture and a positive electrode current collector.
  • the negative electrode 6 includes a negative electrode active material layer made from a negative electrode mixture and a negative electrode current collector.
  • the positive electrode 5 and the negative electrode 6 are disposed so that the positive electrode active material layer and the negative electrode active material layer face each other with the separator 7 interposed therebetween.
  • electrode is abbreviated as a generic term for the positive electrode and the negative electrode
  • electrode active material layer is a generic term for the positive electrode active material layer and the negative electrode active material layer
  • the term “electrode mixture” is generically termed for the positive electrode mixture and the negative electrode mixture.
  • a material provided in a conventional lithium ion secondary battery can be used as long as each requirement in the present embodiment is satisfied. For example, the following materials may be used.
  • each member of the non-aqueous secondary battery will be described in detail.
  • the electrolytic solution in the present embodiment includes at least a non-aqueous solvent (hereinafter also simply referred to as “solvent”), a fluorine-containing inorganic lithium salt, and a compound represented by the above general formula (1) (nitrogen-containing cyclic compound). Including.
  • solvent non-aqueous solvent
  • fluorine-containing inorganic lithium salt is excellent in ionic conductivity, it has insufficient thermal stability and has the property of being easily hydrolyzed by a trace amount of water in the solvent to generate lithium fluoride and hydrogen fluoride.
  • the electrolytic solution in the present embodiment preferably does not contain moisture, but may contain a very small amount of moisture as long as the solution of the problem of the present invention is not hindered.
  • the water content is preferably 0 to 100 ppm with respect to the total amount of the electrolytic solution.
  • Non-aqueous solvent> Acetonitrile has high ion conductivity and can increase the diffusibility of lithium ions in the battery. Therefore, when the electrolytic solution contains acetonitrile, a collector in which lithium ions are difficult to reach at the time of discharge under a high load, particularly in a positive electrode in which the positive electrode active material layer is thickened to increase the filling amount of the positive electrode active material. Lithium ions can be diffused well to nearby regions. Therefore, a sufficient capacity can be extracted even during high-load discharge, and a non-aqueous secondary battery having excellent load characteristics can be obtained.
  • the ionic conductivity of the non-aqueous electrolyte solution is improved, so that the quick charge characteristics of the non-aqueous secondary battery can be enhanced.
  • the capacity per unit time in the CC charging period is larger than the charging capacity per unit time in the CV charging period.
  • the CC chargeable area can be increased (the CC charge time can be increased), and the charge current can be increased, so the non-aqueous secondary battery can be charged.
  • the time from the start to the fully charged state can be greatly shortened.
  • the non-aqueous solvent is not particularly limited as long as it contains 30 to 100% by volume of acetonitrile relative to the total amount of the non-aqueous solvent, and other non-aqueous solvents may or may not be contained.
  • the “non-aqueous solvent” as used in the present embodiment refers to a component obtained by removing a lithium salt and a nitrogen-containing cyclic compound from an electrolytic solution. That is, in the case where the electrolytic solution contains an electrode protecting additive described later together with a solvent, a lithium salt, and a nitrogen-containing cyclic compound, the solvent and the electrode protecting additive are combined together to form a “non-aqueous solvent”. That's it.
  • the lithium salt and nitrogen-containing cyclic compound described later are not included in the non-aqueous solvent.
  • non-aqueous solvents examples include alcohols such as methanol and ethanol; aprotic solvents and the like. Among these, an aprotic polar solvent is preferable.
  • specific examples of the aprotic solvent include, for example, ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, trans-2,3-butylene carbonate, cis-2,3-butylene.
  • Cyclic carbonates typified by carbonate, 1,2-pentylene carbonate, trans-2,3-pentylene carbonate, cis-2,3-pentylene carbonate, and vinylene carbonate; fluoroethylene carbonate, 1,2-difluoroethylene Cyclic fluorinated carbonates typified by carbonate and trifluoromethylethylene carbonate; typified by ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -caprolactone, and ⁇ -caprolactone Lactones; sulfur compounds typified by sulfolane, dimethyl sulfoxide, and ethylene glycol sulfite; cyclic ethers typified by tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, and 1,3-dioxane; ethyl methyl carbonate, Chain carbonates represented by dimethyl carbonate
  • Mononitriles typified by propionitrile, butyronitrile, valeronitrile, benzonitrile, and acrylonitrile; alkoxy group-substituted nitriles typified by methoxyacetonitrile and 3-methoxypropionitrile; malononitrile, succinonitrile, glutaronitrile, adiponitrile 1,4-dicyanoheptane, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 2,6-dicyanoheptane, 1,8-dicyanooctane, 2,7-dicyanooctane, Dinitriles typified by 1,9-dicyanononane, 2,8-dicyanononane, 1,10-dicyanodecane, 1,6-dicyanodecane, and 2,4-dimethylglutaronitrile; cyclic n
  • cyclic carbonate and chain carbonate together with acetonitrile.
  • only one of those exemplified above as the cyclic carbonate and the chain carbonate may be selected and used, or two or more (for example, two or more of the cyclic carbonates exemplified above, Two or more of the exemplified chain carbonates or one or more of the exemplified cyclic carbonates and two or more of the exemplified chain carbonates may be used.
  • ethylene carbonate, propylene carbonate, vinylene carbonate, or fluoroethylene carbonate is more preferable as the cyclic carbonate
  • ethyl methyl carbonate, dimethyl carbonate, or diethyl carbonate is more preferable as the chain carbonate. It is more preferable to use a cyclic carbonate.
  • Acetonitrile is electrochemically susceptible to reductive decomposition. Therefore, it is preferable to perform at least one of mixing this with another solvent and adding an electrode protective additive for forming a protective film on the electrode.
  • the non-aqueous solvent preferably contains one or more cyclic aprotic polar solvents, and contains one or more cyclic carbonates. Is more preferable.
  • the content of acetonitrile is 30 to 100% by volume, more preferably 35% by volume or more, and still more preferably 40% by volume or more with respect to the total amount of the non-aqueous solvent. This value is more preferably 85% by volume or less, and still more preferably 66% by volume or less.
  • the content of acetonitrile is 30% by volume or more, ionic conductivity tends to increase and high output characteristics tend to be exhibited, and further, dissolution of the lithium salt can be promoted.
  • the content of acetonitrile in the non-aqueous solvent is within the above range, the storage characteristics and other battery characteristics tend to be further improved while maintaining the excellent performance of acetonitrile.
  • the lithium salt in this embodiment is characterized by containing a fluorine-containing inorganic lithium salt.
  • the “fluorine-containing inorganic lithium salt” refers to a lithium salt that does not contain a carbon atom in an anion but contains a fluorine atom in an anion and is soluble in acetonitrile.
  • the “inorganic lithium salt” refers to a lithium salt that does not contain a carbon atom in an anion and is soluble in acetonitrile.
  • Organic lithium salt refers to a lithium salt that contains a carbon atom in its anion and is soluble in acetonitrile.
  • the fluorine-containing inorganic lithium salt in the present embodiment forms a passive film on the surface of the metal foil that is the positive electrode current collector, and suppresses corrosion of the positive electrode current collector.
  • This fluorine-containing inorganic lithium salt is also excellent from the viewpoints of solubility, conductivity, and ionization degree. For this reason, the fluorine-containing inorganic lithium salt must be added as a lithium salt.
  • fluorine-containing inorganic lithium salt examples include, for example, LiPF 6 , LiBF 4 , LiAsF 6 , Li 2 SiF 6 , LiSbF 6 , Li 2 B 12 F b H 12-b [b is an integer of 0 to 3, preferably Is an integer of 1 to 3, and LiN (SO 2 F) 2 .
  • fluorine-containing inorganic lithium salts are used singly or in combination of two or more.
  • a compound that is a double salt of LiF and a Lewis acid is desirable.
  • a fluorine-containing inorganic lithium salt having a phosphorus atom is more preferable because it easily releases a free fluorine atom
  • LiPF 6 is particularly preferred.
  • a fluorine-containing inorganic lithium salt having a boron atom is used as the fluorine-containing inorganic lithium salt, it is preferable because an excessive free acid component that may cause battery deterioration is easily captured. From such a viewpoint, LiBF 4 is preferable. Particularly preferred.
  • the content of the fluorine-containing inorganic lithium salt in the electrolytic solution of the present embodiment is not particularly limited. However, this value is preferably 0.2 mol or more, more preferably 0.5 mol or more, and still more preferably 0.8 mol or more with respect to 1 L of the non-aqueous solvent. This value is preferably 15 mol or less, more preferably 4 mol or less, and even more preferably 2.8 mol or less with respect to 1 L of the non-aqueous solvent.
  • the content of fluorine-containing inorganic lithium salt is within the above range, the ionic conductivity tends to increase and high output characteristics tend to be exhibited, while maintaining the excellent performance of acetonitrile, storage characteristics and other battery characteristics Tends to be even better.
  • a lithium salt generally used for a non-aqueous secondary battery may be supplementarily added as the lithium salt in the present embodiment.
  • other lithium salts include inorganic lithium salts that do not contain fluorine atoms such as LiClO 4 , LiAlO 4 , LiAlCl 4 , LiB 10 Cl 10 , and chloroborane Li in the anion; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), lower aliphatic carboxylic acid Li, tetraphenylborate Li, etc.
  • an organic lithium salt having an oxalic acid group In order to improve load characteristics and charge / discharge cycle characteristics of the non-aqueous secondary battery, it is preferable to supplementarily add an organic lithium salt having an oxalic acid group, and LiB (C 2 O 4 ) 2 , LiBF 2 ( It is particularly preferable to add one or more selected from the group consisting of C 2 O 4 ), LiPF 4 (C 2 O 4 ), and LiPF 2 (C 2 O 4 ) 2 .
  • the organic lithium salt having an oxalic acid group may be contained in the negative electrode (negative electrode active material layer) in addition to being added to the nonaqueous electrolytic solution.
  • the addition amount of the organolithium salt having an oxalic acid group to the non-aqueous electrolyte is, as the amount per 1 L of the non-aqueous solvent, of the non-aqueous electrolyte is 0.
  • the amount is preferably 005 mol or more, more preferably 0.02 mol or more, and further preferably 0.05 mol or more.
  • the amount of the organic lithium salt having an oxalic acid group in the non-aqueous electrolyte is too large, it may be precipitated.
  • the addition amount of the organic lithium salt having an oxalic acid group to the non-aqueous electrolyte is preferably less than 1.0 mol per liter of the non-aqueous solvent of the non-aqueous electrolyte. More preferably, it is less than 5 mol, and still more preferably less than 0.2 mol.
  • the electrolytic solution in the present embodiment may contain an additive for protecting the electrode in addition to the nitrogen-containing cyclic compound.
  • the electrode protecting additive is contained in a non-aqueous solvent. Therefore, the electrolytic solution contains a non-aqueous solvent containing an electrode protecting additive. It is only necessary that 30 to 100% by volume of acetonitrile is contained with respect to the solvent (the total amount of the above-mentioned non-aqueous solvent and the electrode protecting additive).
  • the electrode protecting additive is not particularly limited as long as it does not hinder the problem solving according to the present invention.
  • the electrode protecting additive is preferably a substance that contributes to improving the performance of the electrolytic solution and the non-aqueous secondary battery in this embodiment, but also includes substances that are not directly involved in the electrochemical reaction.
  • the electrode protecting additive include, for example, 4-fluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolan-2-one, cis-4,5-difluoro -1,3-dioxolan-2-one, trans-4,5-difluoro-1,3-dioxolan-2-one, 4,4,5-trifluoro-1,3-dioxolan-2-one, 4, Fluoroethylene carbonate represented by 4,5,5-tetrafluoro-1,3-dioxolan-2-one, and 4,4,5-trifluoro-5-methyl-1,3-dioxolan-2-one; Unsaturated cyclic carbonates typified by vinylene carbonate, 4,5-dimethylvinylene carbonate, and vinyl ethylene carbonate; ⁇ -butyrolactone, ⁇ -valerolacto Lactones such as ethylene, ⁇ -caprolactone, ⁇ -
  • the non-aqueous solvent containing acetonitrile contains a cyclic aprotic polar solvent as an additive for forming a protective film on the negative electrode. It is preferable to include at least one species, and it is more preferable to include at least one type of unsaturated bond-containing cyclic carbonate.
  • the content of the electrode protecting additive with respect to the total amount of the nonaqueous solvent is preferably 0.1 to 30% by volume, more preferably 2 to 20% by volume, and 5 to 15% by volume. More preferably.
  • the content of the electrode protecting additive is increased, the deterioration of the electrolytic solution is suppressed.
  • the lower the content of the electrode protecting additive the higher the high output characteristics of the non-aqueous secondary battery in a low temperature environment. Therefore, by adjusting the content of the electrode protecting additive within the above-mentioned range, excellent performance based on the high ionic conductivity of the electrolytic solution can be obtained without impairing the basic function as a non-aqueous secondary battery. There is a tendency to make the most of it.
  • By preparing the electrolytic solution with such a composition all of the cycle performance of the non-aqueous secondary battery, the high output performance in a low temperature environment, and other battery characteristics tend to be further improved.
  • the electrolytic solution in the present embodiment has the following general formula (1) as an additive: ⁇ In the formula (1), the substituents represented by R 1 , R 2 , and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a fluorine-substituted alkyl having 1 to 4 carbon atoms.
  • alkoxy group having 1 to 4 carbon atoms fluorine-substituted alkoxy group having 1 to 4 carbon atoms, phenyl group, cyclohexyl group, nitrile group, nitro group, amino group, N, N′-dimethylamino group, or N, N '-Diethylamino group, and two or more of these substituents are hydrogen atoms.
  • Nonrogen-containing cyclic compound.
  • nitrogen-containing cyclic compound examples include, for example, pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2- (n- Propyl) pyridine, 3- (n-propyl) pyridine, 4- (n-propyl) pyridine, 2-isopropylpyridine, 3-isopropylpyridine, 4-isopropylpyridine, 2- (n-butyl) pyridine, 3- (n -Butyl) pyridine, 4- (n-butyl) pyridine, 2- (1-methylpropyl) pyridine, 3- (1-methylpropyl) pyridine, 4- (1-methylpropyl) pyridine, 2- (2-methyl) Propyl) pyridine, 3- (2-methylpropyl) pyridine, 4- (2-methylpropyl) pyridine, 2- (tert-butyl) L) pyridine, 3- (tert-butyl
  • R 1 in the general formula (1) is preferably a hydrogen atom, and both R 1 and R 2 are more preferably hydrogen atoms.
  • R 3 in the general formula (1) is used from the viewpoint of the electronic effect on the lone pair present on the nitrogen atom. Is particularly preferably a hydrogen atom or a tert-butyl group.
  • acetonitrile excellent in the balance between viscosity and relative dielectric constant, fluorine-containing inorganic lithium salt, In a non-aqueous electrolyte solution containing, it is possible to suppress the formation of a complex cation composed of a transition metal and acetonitrile, exhibit excellent load characteristics, and suppress self-discharge during high-temperature storage.
  • the content of the nitrogen-containing cyclic compound in the electrolytic solution in the present embodiment is not particularly limited, but is preferably 0.01 to 10% by mass based on the total amount of the electrolytic solution, and 0.02 to 5 More preferably, it is 0.05% by mass, and still more preferably 0.05-3% by mass.
  • the reaction on the electrode surface can be suppressed without impairing the basic function as a non-aqueous secondary battery.
  • the increase in internal resistance accompanying discharge can be reduced.
  • the non-aqueous electrolyte solution includes, for example, anhydrous acid, Sulfonic acid ester, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene, tert-butylbenzene, phosphoric acid ester [ethyl diethylphosphonoacetate (EDPA): (C 2 H 5 O) 2 (P ⁇ O) —CH 2 ( C ⁇ O) OC 2 H 5 , tris (trifluoroethyl) phosphate (TFEP): (CF 3 CH 2 O) 3 P ⁇ O, triphenyl phosphate (TPP): (C 6 H 5 O) 3 P ⁇ O etc.] and the like, and optional additives selected from derivatives
  • the positive electrode 5 includes a positive electrode active material layer 5A produced from a positive electrode mixture and a positive electrode current collector 5B.
  • the positive electrode 5 is not particularly limited as long as it functions as a positive electrode of a non-aqueous secondary battery, and may be a known one.
  • the positive electrode active material layer 5A contains a positive electrode active material, and optionally further contains a conductive additive and a binder.
  • the positive electrode active material layer 5A preferably contains a material that can occlude and release lithium ions as the positive electrode active material.
  • the positive electrode active material layer 5A preferably contains a conductive additive and a binder as necessary together with the positive electrode active material. The use of such a material is preferable because a high voltage and a high energy density tend to be obtained.
  • Examples of the positive electrode active material include the following general formulas (3a) and (3b): Li x MO 2 (3a) Li y M 2 O 4 (3b) ⁇ In the formula, M represents one or more metal elements including at least one transition metal element, x represents a number from 0 to 1.1, and y represents a number from 0 to 2. ⁇ , A lithium-containing compound represented by each of the above and other lithium-containing compounds. Examples of the lithium-containing compound represented by each of the general formulas (3a) and (3b) include lithium cobalt oxides typified by LiCoO 2 ; LiMnO 2 , LiMn 2 O 4 , and Li 2 Mn 2 O 4 .
  • Lithium manganese oxide typified; Lithium nickel oxide typified by LiNiO 2 ; Li z MO 2 (M contains at least one transition metal element selected from Ni, Mn, and Co, and Ni, Mn 2 or more metal elements selected from the group consisting of Co, Al, and Mg, and z represents a number of more than 0.9 and less than 1.2. It is done.
  • the lithium-containing compound other than the lithium-containing compound represented by each of the general formulas (3a) and (3b) is not particularly limited as long as it contains lithium.
  • Examples of such a lithium-containing compound include a composite oxide containing lithium and a transition metal element, a metal chalcogenide containing lithium, a metal phosphate compound containing lithium and a transition metal element, and lithium and a transition metal element.
  • Li t M u SiO 4 , M is as defined in the general formula (3a), t is a number from 0 to 1, and u is a number from 0 to 2).
  • the lithium-containing compound in particular, With lithium, Selected from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), chromium (Cr), vanadium (V), and titanium (Ti) At least one transition metal element,
  • the composite oxide containing and a metal phosphate compound are preferable.
  • the lithium-containing compound is more preferably a composite oxide containing lithium and a transition metal element or a metal chalcogenide having lithium and a transition metal element, and a metal phosphate compound having lithium.
  • the lithium-containing compound represented by the above general formula (4a) has a layered structure, and the compound represented by the above general formula (4b) has an olivine structure.
  • These lithium-containing compounds are obtained by substituting a part of the transition metal element with Al, Mg, or other transition metal elements for the purpose of stabilizing the structure, and include these metal elements in the grain boundaries. It is also possible that the oxygen atom is partially substituted with a fluorine atom or the like, or at least a part of the surface of the positive electrode active material is coated with another positive electrode active material.
  • the positive electrode active material in the present embodiment only the lithium-containing compound as described above may be used, or other positive electrode active material may be used in combination with the lithium-containing compound.
  • positive electrode active materials include metal oxides or metal chalcogenides having a tunnel structure and a layered structure; sulfur; a conductive polymer.
  • the metal oxide or metal chalcogenide having a tunnel structure and a layered structure include MnO 2 , FeO 2 , FeS 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS 2 , MoS 2 , and NbSe 2. And oxides, sulfides, selenides, and the like of metals other than lithium.
  • the conductive polymer examples include conductive polymers represented by polyaniline, polythiophene, polyacetylene, and polypyrrole.
  • the other positive electrode active materials described above are used alone or in combination of two or more, and are not particularly limited. However, since it is possible to occlude and release lithium ions in a reversible manner and to achieve a high energy density, the positive electrode active material layer is at least one transition metal selected from Ni, Mn, and Co. It is preferable to contain an element.
  • the use ratio of both is preferably 80% by mass or more, and 85% by mass as the use ratio of the lithium-containing compound to the entire positive electrode active material. % Or more is more preferable.
  • Examples of the conductive aid include carbon black typified by graphite, acetylene black, and ketjen black, and carbon fiber.
  • the content ratio of the conductive assistant is preferably 10 parts by mass or less, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid, styrene butadiene rubber, and fluorine rubber.
  • the content of the binder is preferably 6 parts by mass or less, more preferably 0.5 to 4 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • a positive electrode mixture-containing slurry in which a positive electrode mixture obtained by mixing a positive electrode active material and, if necessary, a conductive additive and a binder is dispersed in a solvent is applied to the positive electrode current collector 5B and dried ( It is formed by removing the solvent) and pressing as necessary.
  • a solvent There is no restriction
  • the positive electrode current collector 5B is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
  • the positive electrode current collector 5B may have a surface coated with carbon or may be processed into a mesh shape.
  • the thickness of the positive electrode current collector 5B is preferably 5 to 40 ⁇ m, more preferably 7 to 35 ⁇ m, and still more preferably 9 to 30 ⁇ m.
  • the negative electrode 6 includes a negative electrode active material layer 6A produced from a negative electrode mixture and a negative electrode current collector 6B.
  • the negative electrode 6 is not particularly limited as long as it functions as a negative electrode of a non-aqueous secondary battery, and may be a known one. From the viewpoint that the negative electrode active material layer 6A can increase the battery voltage, 0.4 V vs. lithium ion is used as the negative electrode active material. It is preferable to contain a material that can be occluded at a lower potential than Li / Li + .
  • the negative electrode active material layer 6A preferably contains a conductive additive and a binder as necessary together with the negative electrode active material.
  • Examples of the negative electrode active material include amorphous carbon (hard carbon), artificial graphite, natural graphite, graphite, pyrolytic carbon, coke, glassy carbon, organic polymer compound fired body, mesocarbon microbeads, carbon fiber, activated carbon In addition to carbon materials such as graphite, carbon colloid, and carbon black, metal lithium, metal oxide, metal nitride, lithium alloy, tin alloy, silicon alloy, intermetallic compound, organic compound, inorganic compound, metal complex And organic polymer compounds.
  • a negative electrode active material is used individually by 1 type or in combination of 2 or more types.
  • Examples of the conductive aid include carbon black typified by graphite, acetylene black, and ketjen black, and carbon fiber.
  • the content ratio of the conductive assistant is preferably 20 parts by mass or less, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • Examples of the binder include PVDF, PTFE, polyacrylic acid, styrene butadiene rubber, and fluorine rubber.
  • the content of the binder is preferably 10 parts by mass or less, and more preferably 0.5 to 6 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the negative electrode active material layer 6A is prepared by applying and drying a negative electrode mixture-containing slurry in which a negative electrode mixture obtained by mixing a negative electrode active material and, if necessary, a conductive additive and a binder is dispersed in a solvent and drying (solvent) It is formed by removing) and pressing as necessary.
  • a solvent and drying (solvent) There is no restriction
  • the negative electrode current collector 6B is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
  • the negative electrode current collector 6B may have a surface coated with carbon or may be processed into a mesh shape.
  • the thickness of the negative electrode current collector 6B is preferably 5 to 40 ⁇ m, more preferably 6 to 35 ⁇ m, and even more preferably 7 to 30 ⁇ m.
  • the nonaqueous secondary battery 1 in the present embodiment preferably includes a separator 7 between the positive electrode 5 and the negative electrode 6 from the viewpoint of providing safety such as prevention of short circuit between the positive electrode 5 and the negative electrode 6 and shutdown.
  • the separator 7 may be the same as that provided in a known non-aqueous secondary battery, and is preferably an insulating thin film having high ion permeability and excellent mechanical strength.
  • Examples of the separator 7 include a woven fabric, a nonwoven fabric, and a synthetic resin microporous membrane. Among these, a synthetic resin microporous membrane is preferable.
  • the synthetic resin microporous membrane for example, a microporous membrane containing polyethylene or polypropylene as a main component or a polyolefin microporous membrane such as a microporous membrane containing both of these polyolefins is suitably used.
  • the nonwoven fabric include a porous film made of a heat resistant resin such as glass, ceramic, polyolefin, polyester, polyamide, liquid crystal polyester, and aramid.
  • the separator 7 may have a configuration in which one type of microporous membrane is laminated or a plurality of microporous membranes may be laminated, or two or more types of microporous membranes may be laminated.
  • the separator 7 may be configured to be laminated in a single layer or a plurality of layers using a mixed resin material obtained by melting and kneading two or more kinds of resin materials.
  • the structure of the battery exterior 2 of the non-aqueous secondary battery 1 in this embodiment is not specifically limited,
  • the battery exterior of either a battery can or a laminate film exterior body can be used.
  • the battery can for example, a metal can made of steel or aluminum can be used.
  • the laminate film outer package for example, a laminate film having a three-layer structure of hot melt resin / metal film / resin can be used.
  • Laminate film exterior is in a state where two sheets are stacked with the hot-melt resin side facing inward, or folded so that the hot-melt resin side faces inward, and the end is sealed by heat sealing It can be used as an exterior body.
  • the positive electrode lead body 3 (or a lead tab connected to the positive electrode terminal and the positive electrode terminal) is connected to the positive electrode current collector 5B, and the negative electrode lead body 4 (or the negative electrode terminal and the negative electrode is connected to the negative electrode current collector 6B). You may connect the lead tab which connects with a terminal.
  • the laminate film exterior body is sealed with the ends of the positive electrode lead body 3 and the negative electrode lead body 4 (or the lead tab connected to each of the positive electrode terminal and the negative electrode terminal) pulled out of the exterior body. Also good.
  • the non-aqueous secondary battery 1 in the present embodiment has the above-described non-aqueous electrolyte, the positive electrode 5 having a positive electrode active material layer on one or both sides of the current collector, and the negative electrode active material layer on one or both sides of the current collector. It is produced by a known method using the negative electrode 6, the battery outer casing 2, and the separator 7 as necessary. First, the laminated body which consists of the positive electrode 5 and the positive electrode 6, and the separator 7 as needed is formed.
  • a long positive electrode 5 and a negative electrode 6 are wound in a laminated state in which the long separator is interposed between the positive electrode 5 and the negative electrode 6 to form a laminate having a wound structure
  • the above-described laminated body is accommodated in the battery exterior 2 (battery case), the electrolytic solution according to the present embodiment is injected into the battery case, and the laminated body is immersed in the electrolytic solution and sealed.
  • the nonaqueous secondary battery in this embodiment can be produced.
  • an electrolyte solution in a gel state is prepared in advance by impregnating a base material made of a polymer material with an electrolytic solution, and a sheet-like positive electrode 5, negative electrode 6, electrolyte membrane, and separator 7 as necessary.
  • the nonaqueous secondary battery 1 can be produced by being accommodated in the battery exterior 2.
  • the shape of the non-aqueous secondary battery 1 in the present embodiment is not particularly limited, and for example, a cylindrical shape, an elliptical shape, a rectangular tube shape, a button shape, a coin shape, a flat shape, a laminate shape, and the like are suitably employed.
  • lithium ions released from the positive electrode during the initial charge of the non-aqueous secondary battery are diffused throughout the negative electrode due to its high ionic conductivity.
  • the area of the negative electrode active material layer is generally larger than that of the positive electrode active material layer.
  • the lithium ions remain in the negative electrode without being released during the first discharge. Therefore, the contribution of the lithium ions that are not released becomes an irreversible capacity.
  • the initial charge / discharge efficiency may be lowered.
  • the area of the positive electrode active material layer is larger than or the same as that of the negative electrode active material layer, current concentration is likely to occur at the edge portion of the negative electrode active material layer during charging, and lithium dendrite is likely to be generated. .
  • the ratio of the total area of the negative electrode active material layer to the area of the portion where the positive electrode active material layer and the negative electrode active material layer face each other is greater than 1.0 and less than 1.1. More preferably, it is greater than 1.002 and less than 1.09, more preferably greater than 1.005 and less than 1.08, particularly preferably greater than 1.01 and less than 1.08. preferable.
  • a non-aqueous secondary battery using a non-aqueous electrolyte containing acetonitrile by reducing the ratio of the total area of the negative electrode active material layer to the area of the portion where the positive electrode active material layer and the negative electrode active material layer face each other, The initial charge / discharge efficiency can be improved.
  • Reducing the ratio of the total area of the negative electrode active material layer to the area of the portion where the positive electrode active material layer and the negative electrode active material layer face each other means that the negative electrode active material layer does not face the positive electrode active material layer. This means that the proportion of the area of the part is limited.
  • the amount of lithium ions occluded in the portion of the negative electrode active material layer that is not opposed to the positive electrode active material layer that is, released from the negative electrode during the first discharge. Therefore, it is possible to reduce as much as possible the amount of lithium ion that becomes an irreversible capacity.
  • the load characteristics of the battery can be improved by using acetonitrile.
  • FIG. 3 and 4 show drawings for explaining “width of the non-opposing portion of the negative electrode active material layer” in the configuration of the present embodiment in which the entire surface of the positive electrode active material layer faces the negative electrode active material layer.
  • FIG. 3 is an explanatory diagram in the case where the electrode body composed of the positive electrode, the negative electrode, and the separator is a laminated electrode body (an electrode body that is simply formed by stacking them).
  • FIG. 3A shows a case where a positive electrode having a circular positive electrode active material layer 50 in plan view and a negative electrode having a circular negative electrode active material layer 60 in plan view face each other.
  • FIG. 4 is an explanatory diagram in the case where the electrode body composed of the positive electrode, the negative electrode, and the separator is a wound electrode body formed by winding these laminated bodies in a spiral shape.
  • the electrode body composed of the positive electrode, the negative electrode, and the separator is a wound electrode body formed by winding these laminated bodies in a spiral shape.
  • current collectors and separators of the positive electrode and the negative electrode are not shown.
  • FIG. 4 a part of a portion where the positive electrode active material layer 50 and the negative electrode active material layer 60 are opposed to each other in the wound electrode body is illustrated in a plan view.
  • the front side in the drawing (upper side in the direction perpendicular to the paper surface) is the negative electrode active material layer 60, and the dotted line on the depth side is the positive electrode active material layer 50.
  • the “width of the non-opposing portion of the negative electrode active material layer” in the laminated electrode body is the distance between the outer peripheral end of the negative electrode active material layer 60 and the outer peripheral end of the positive electrode active material layer 50 (in FIG. Length).
  • the front side in the drawing is the negative electrode active material layer 60
  • the dotted line on the depth side is the positive electrode active material layer 50.
  • a strip-shaped positive electrode and a strip-shaped negative electrode are used for forming the wound electrode body.
  • the “width of the non-opposing portion of the negative electrode active material layer” refers to the outer end of the negative electrode active material layer 60 and the outer end of the positive electrode active material layer 50 in the direction orthogonal to the longitudinal direction of the belt-like positive electrode and the belt-like negative electrode. (The length of b in the figure).
  • the arrangement of the electrodes there is a portion where the outer peripheral end of the negative electrode active material layer and the outer peripheral end of the positive electrode active material layer overlap, or a portion where the width is too small in the non-opposing portion of the negative electrode active material layer
  • the charge / discharge cycle characteristics of the non-aqueous secondary battery may be deteriorated due to the displacement of the electrode during battery assembly. Therefore, in the electrode body used for the non-aqueous secondary battery, it is preferable to fix the position of the electrode in advance with tapes such as polyimide tape, polyphenylene sulfide tape, PP tape, or an adhesive.
  • the non-aqueous secondary battery 1 in this embodiment can function as a battery by initial charging.
  • the initial charge is 0. 0 in order to effectively exhibit this stabilization effect. It is preferably performed at 001 to 0.3C, more preferably at 0.002 to 0.25C, and further preferably at 0.003 to 0.2C. It is also preferable that the initial charging is performed via a constant voltage charging in the middle. The constant current for discharging the rated capacity in 1 hour is 1C.
  • SEI Solid Electrolyte Interface: solid electrolyte interface
  • the reaction product is not firmly fixed only to the negative electrode 6, and in some way, a good effect is given to members other than the negative electrode 6 (for example, the positive electrode 5, the separator 7, etc.). For this reason, it is very effective to perform the initial charge in consideration of the electrochemical reaction of the lithium salt dissolved in the non-aqueous electrolyte.
  • the non-aqueous secondary battery 1 in this embodiment can also be used as a battery pack in which a plurality of non-aqueous secondary batteries 1 are connected in series or in parallel.
  • the operating voltage range per battery is preferably 2 to 5V, more preferably 2.5 to 5V, and preferably 2.75V to 5V. Particularly preferred.
  • this invention is not limited to the above-mentioned embodiment.
  • the present invention can be variously modified without departing from the gist thereof.
  • This slurry was applied to one surface of an aluminum foil having a thickness of 15 ⁇ m with a predetermined thickness, dried at 85 ° C., and further vacuum-dried at 100 ° C., and then subjected to a press treatment to form a positive electrode mixture layer as a current collector.
  • the positive electrode which has on one side was obtained.
  • an uncoated region was formed so that a part of the aluminum foil was exposed.
  • this positive electrode is cut so that the positive electrode mixture layer has an area of 30 mm ⁇ 30 mm and includes an exposed portion of the aluminum foil, and an aluminum lead piece for taking out an electric current is welded to the exposed portion of the aluminum foil.
  • positive electrodes (P2) and (P3) with leads were obtained.
  • Table 1 shows the positive electrode active material species, coating amount, thickness, and electrode density of the obtained positive electrodes (P2) and (P3).
  • a positive electrode mixture-containing slurry (paste) was prepared by the same procedure as in the production of the positive electrode (P2).
  • the obtained positive electrode mixture-containing slurry is applied to both sides of an aluminum foil (current collector) having a thickness of 15 ⁇ m and vacuum-dried at 120 ° C. for 12 hours to form a positive electrode mixture layer on both surfaces of the aluminum foil. did.
  • press treatment was performed to adjust the density of the positive electrode mixture layer to 3.15 g / cm 3 , followed by cutting at a predetermined size to obtain a strip-shaped positive electrode.
  • a non-application region was provided so that a part of the aluminum foil was exposed.
  • region on the surface also made the corresponding back surface also the application
  • the thickness of the positive electrode mixture layer of the obtained positive electrode was 63 ⁇ m, and the coating amount (the coating amount per unit surface of the aluminum foil as the positive electrode current collector (weight per unit area)) ) was 15.0 mg / cm 2 .
  • Thomson blade so that the strip-shaped positive electrode has a part of the exposed portion of the aluminum foil (positive electrode current collector) protruding, and the portion where the positive electrode mixture layer is formed has a substantially quadrangular shape with curved corners.
  • FIG. 5 is a plan view schematically showing the battery positive electrode.
  • the positive electrode 10 has a shape having a tab portion 13 punched out so that a part of the exposed portion of the positive electrode current collector 12 protrudes, and the shape of the positive electrode mixture layer 11 forming portion is a substantially square shape with four corners curved.
  • the lengths of a, b, and c are 80 mm, 200 mm, and 20 mm, respectively.
  • Graphite carbon powder (density 2.27 g / cm 3 ), carboxymethylcellulose (density 1.60 g / cm 3 ) solution (solid content concentration 1.83% by mass) and styrene butadiene latex (glass transition temperature: ⁇ 5 ° C.) as binders
  • the negative electrode mixture-containing slurry was applied to one side of a copper foil having a thickness of 10 ⁇ m and a width of 200 mm to be a negative electrode current collector by a doctor blade method while adjusting the basis weight to be 10.6 mg / cm 2. Was removed by drying. Then, it rolled so that the density of a negative electrode active material layer might be 1.50 g / cm ⁇ 3 > with a roll press, and the negative electrode (N1) which consists of a negative electrode active material layer and a negative electrode collector was obtained.
  • a negative electrode mixture-containing slurry (paste) was prepared by the same procedure as in the production of the negative electrode (N2). After apply
  • the thickness of the negative electrode mixture layer of the obtained negative electrode was 69 ⁇ m, and the coating amount (the coated amount per unit surface of the copper foil as the negative electrode current collector (weight per unit area)) ) was 9.0 mg / cm 2 .
  • Thomson blade so that the strip-shaped negative electrode protrudes from a part of the exposed portion of the copper foil (negative electrode current collector), and the negative electrode mixture layer forming portion has a substantially square shape with four corners curved.
  • FIG. 6 is a plan view schematically showing the battery negative electrode.
  • the negative electrode 20 has a shape having a tab portion 23 punched out so that a part of the exposed portion of the negative electrode current collector 22 protrudes, and the shape of the forming portion of the negative electrode mixture layer 21 is a substantially rectangular shape with four corners curved.
  • the lengths of d, e, and f are 85 mm, 205 mm, and 20 mm, respectively.
  • the positive electrode (P1) obtained as described above was punched into a disk shape with a diameter of 15.958 mm.
  • the material layer was set facing up.
  • the area of the positive electrode active material layer was 2.00 cm 2 .
  • a polyethylene microporous membrane (film thickness 20 ⁇ m) and a polypropylene gasket were set from above, and 150 ⁇ L of electrolyte was injected.
  • the negative electrode (N1) obtained as described above was punched into a disk shape having a diameter of 16.156 mm and set with the negative electrode active material layer facing downward.
  • the area of the negative electrode active material layer was 2.05 cm 2 .
  • the battery cap was fitted and crimped with a caulking machine.
  • the electrolyte that overflowed from the battery case was wiped clean with a waste cloth.
  • the battery case containing the laminate and the non-aqueous electrolyte is held at 25 ° C. for 24 hours, and the laminate is sufficiently impregnated with the electrolyte, whereby a coin-type non-aqueous secondary battery (hereinafter simply referred to as “coin”).
  • coin coin-type non-aqueous secondary battery
  • Capacity maintenance rate 100 ⁇ B / A [%]
  • the positive electrode (P2) and the negative electrode (N2) after cutting, or the positive electrode (P3) and the negative electrode (N3) after cutting, are made of a polyethylene microporous membrane separator (thickness). 18 ⁇ m) to form a laminated electrode body, and this laminated electrode body was accommodated in an aluminum laminate sheet outer package of 90 mm ⁇ 80 mm. Subsequently, after injecting the electrolyte into the exterior body, the exterior body is sealed, and the exterior shown in FIG. 1 has a cross-sectional structure shown in FIG. Also referred to as a “layer laminate battery”. This single-layer laminated battery has a rated current value of 25 mAh and a rated voltage value of 4.2V.
  • a laminated electrode body was formed using 21 sheets.
  • the upper and lower ends are battery negative electrodes, and the battery positive electrode and the battery negative electrode are alternately arranged with a separator (a separator made of microporous polyethylene film, thickness 20 ⁇ m) interposed therebetween.
  • the tab portion between the positive electrodes and the tab portion between the negative electrodes were welded respectively.
  • a recess is formed in the aluminum laminate film having a thickness of 150 ⁇ m, a width of 130 mm, and a height of 230 mm so that the stacked electrode body can be accommodated, and the stacked electrode body is inserted into the recess, and the same as described above.
  • a size aluminum laminate film (not formed with a depression) was placed, and three sides of both aluminum laminate films were heat-welded. And the said non-aqueous electrolyte was inject
  • This multilayer laminate battery has a rated current value of 15 Ah and a rated voltage value of 4.2V.
  • Each positive electrode of the laminated electrode body was integrated by welding tab portions, and the integrated product of the welded tab portions was connected to a positive electrode external terminal in the battery.
  • each negative electrode of the laminated electrode body was integrated by welding the tab portions, and the integrated product of the welded tab portions was connected to the negative electrode external terminal in the battery.
  • One end side of these positive electrode external terminal and negative electrode external terminal was pulled out to the outside of the aluminum laminate film outer package so that it could be connected to an external device or the like.
  • Constant current-constant voltage charging and constant current discharging were performed under the conditions, and 2C charging capacity and 2C discharging capacity were measured. Then, the value obtained by dividing the 0.2C discharge capacity by the 2C discharge capacity was defined as the discharge capacity retention rate, and the value obtained by dividing the 0.2C charge capacity by the 2C charge capacity was defined as the charge capacity retention rate. .
  • Example 1 Under an inert atmosphere, a mixed solvent composed of 830 mL of acetonitrile and 170 mL of vinylene carbonate was prepared as a non-aqueous solvent, and 1.3 mol of LiPF 6 and 0.1 mol of LiBOB were dissolved in the mixed solvent. Next, 0.1 parts by mass of pyridine, which is a nitrogen-containing cyclic compound, was added to and mixed with 100 parts by mass of the mixed solvent to obtain an electrolytic solution (S11). This electrolyte solution (S11) was subjected to a positive electrode immersion test by the method described in (2) above.
  • Example 1 the electrolyte solution (S12) was the same as Example 1 except that the composition of the non-aqueous solvent, the type of additive (nitrogen-containing cyclic compound) and the amount added were as shown in Table 3, respectively.
  • S16 A positive electrode immersion test was conducted on these electrolytic solutions by the method described in (2) above.
  • the electrolytic solution compositions and evaluation results in Examples 1 to 4 and Comparative Examples 1 to 2 are shown in Table 3 below.
  • Example 5 The positive electrode (P1) and negative electrode (N1) produced as described above and the electrolyte solution (S15) prepared in Example 4 were combined to produce a coin battery according to the method described in (4) above.
  • the coin battery was first charged / discharged by the method described in (5-1) above, and the discharge capacity measurement and storage test were performed by the methods described in (5-2) and (5-3) above. .
  • Example 5 From the comparison between Example 5 and Comparative Example 4, it was confirmed that when the electrolyte solution containing acetonitrile was used, the capacity retention rate in the output test was remarkably improved as compared with the case of using the electrolyte solution not containing acetonitrile. It was done. According to Comparative Example 3, when the non-aqueous solvent contained a significant amount of acetonitrile, a short circuit was observed within 30 days in the storage test.
  • Example 5 using an electrolytic solution containing a fluorine-containing inorganic lithium salt and a nitrogen-containing cyclic compound, even if the content of acetonitrile in the non-aqueous solvent is 30% by volume or more, In the storage test, it was confirmed that there was no short circuit for at least 30 days.
  • Example 6 In Example 1, the electrolyte solution (S18) was used in the same manner as in Example 1, except that the composition of the non-aqueous solvent, the type of additive (nitrogen-containing cyclic compound), and the amount added were as shown in Table 5, respectively. ) The positive electrode (P2) and negative electrode (N2) produced as described above and the electrolyte solution (S18) were combined to produce a single-layer laminated battery according to the method described in (6) above. This single-layer laminated battery was subjected to an output characteristic (charge / discharge capacity retention rate) test and a 60 ° C. full charge test by the methods described in (8-1) and (8-2) above.
  • P2 positive electrode
  • N2 negative electrode
  • This single-layer laminated battery was subjected to an output characteristic (charge / discharge capacity retention rate) test and a 60 ° C. full charge test by the methods described in (8-1) and (8-2) above.
  • Example 7 A single-layer laminated battery was produced in the same manner as in Example 6 except that the positive electrode (P3) and the negative electrode (N3) were used as the positive electrode and the negative electrode, respectively.
  • This single-layer laminated battery was subjected to an output characteristic (charge / discharge capacity retention rate) test and a 60 ° C. full charge test by the methods described in (8-1) and (8-2) above.
  • Example 6 A single-layer laminated battery was produced in the same manner as in Example 7 except that the electrolytic solution (S19) was used. This single-layer laminated battery was subjected to an output characteristic (charge / discharge capacity retention rate) test and a 60 ° C. full charge test by the methods described in (8-1) and (8-2) above.
  • Example 8 The positive electrode (P4) and negative electrode (N4) produced as described above and the electrolyte solution (S18) were combined to produce a multilayer laminate battery according to the method described in (7) above.
  • the multilayer laminate battery was subjected to an output characteristic (charge / discharge capacity retention rate) test and an output test (charge / discharge DCR measurement) by the method described in (8-1) and (8-3) above.
  • Example 7 A multilayer laminate battery was produced in the same manner as in Example 8 except that the electrolytic solution (S19) was used.
  • the multilayer laminate battery was subjected to an output characteristic (charge / discharge capacity retention rate) test and an output test (charge / discharge DCR measurement) by the method described in (8-1) and (8-3) above.
  • the battery configurations and evaluation results in Example 8 and Comparative Example 7 are shown in Table 6 below.
  • Example 8 In general, in a large-capacity multilayer laminated battery, potential unevenness tends to occur on the electrode surface, and gas generation becomes a serious problem. However, it was proved that the multilayer laminated battery of Example 8 operated without problems and solved the problem at the time of scale-up that could not be confirmed by the evaluation of a small single-layer laminated battery. From the comparison between Example 8 and Comparative Example 7, when the electrolytic solution containing acetonitrile was used, the DCR in the output test was significantly reduced compared to the case where the electrolytic solution not containing acetonitrile was used. confirmed. From the above results, it is verified that the non-aqueous secondary battery using the electrolytic solution of the present embodiment achieves high output characteristics while maintaining high temperature durability performance comparable to that when using the existing electrolytic solution. It was done.
  • the non-aqueous secondary battery of the present invention is, for example, a portable device such as a mobile phone, a portable audio device, a personal computer, an IC (Integrated Circuit) tag; a rechargeable battery for a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, and an electric vehicle; It can be applied to a residential power storage system.
  • a portable device such as a mobile phone, a portable audio device, a personal computer, an IC (Integrated Circuit) tag
  • a rechargeable battery for a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, and an electric vehicle
  • It can be applied to a residential power storage system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、粘度と比誘電率とのバランスに優れたアセトニトリルと、フッ素含有無機リチウム塩と、を含有する非水系電解液において、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、高温貯蔵時の自己放電を抑制することができる非水系電解液及び非水系二次電池を提供することを目的とする。本発明は、アセトニトリルを30~100体積%含む非水系溶媒と、フッ素含有無機リチウム塩と、ピリジンに代表される特定の窒素含有環状化合物と、を含有する非水系電解液などに関する。

Description

非水系電解液及び非水系二次電池
 本発明は、非水系電解液及び非水系二次電池に関する。
 リチウムイオン二次電池をはじめとする非水系二次電池は、軽量、高エネルギー及び長寿命であることが大きな特徴であり、各種携帯用電子機器電源として広範囲に用いられている。近年では、電動工具等のパワーツールに代表される産業用;電気自動車、電動式自転車等における車載用としても広がりを見せている。更には、住宅用蓄電システム等の電力貯蔵分野においても注目されている。
 常温作動型のリチウムイオン二次電池の電解液としては、非水系電解液を使用することが実用の見地より望ましい。例えば環状炭酸エステル等の高誘電性溶媒と、低級鎖状炭酸エステル等の低粘性溶媒と、の組み合わせが、一般的な溶媒として例示される。しかしながら、通常の高誘電率溶媒は、融点が高いことの他、非水系電解液に用いる電解質塩の種類によっては非水系電解液の負荷特性(出力特性)及び低温特性を劣化させる要因にもなり得る。
 このような問題を克服する溶媒の1つとして、粘度と比誘電率とのバランスに優れたニトリル系溶媒が提案されている。中でもアセトニトリルは、リチウムイオン二次電池の電解液に用いる溶媒として高いポテンシャルを有する。しかしながら、アセトニトリルは負極で電気化学的に還元分解するという致命的な欠点があるため、実用性能を発揮することができていなかった。この問題に対して、幾つかの改善策が提案されている。
 これまでに提案されている改善策のうち主なものは、以下の3つに分類される。
(1)特定の電解質塩、添加剤等との組み合わせによって負極を保護し、アセトニトリルの還元分解を抑制する方法
 例えば、特許文献1及び2には、溶媒であるアセトニトリルを特定の電解質塩及び添加剤と組み合わせることによって、アセトニトリルの還元分解の影響を低減した電解液が報告されている。なお、リチウムイオン二次電池の黎明期には、特許文献3のように、アセトニトリルをプロピレンカーボネート及びエチレンカーボネートで希釈しただけの溶媒を含む電解液も報告されている。しかしながら、特許文献3では、高温耐久性能について高温保存後の内部抵抗及び電池厚みのみの評価により判定しているため、高温環境下に置かれた場合に実際に電池として作動するか否かという情報は開示されていない。単純にエチレンカーボネート及びプロピレンカーボネートで希釈するだけの措置によってアセトニトリルをベースとする溶媒を含む電解液の還元分解を抑制することは、実際には至難の業である。溶媒の還元分解の抑制方法としては、特許文献1及び2のように、複数の電解質塩及び添加剤を組み合わせる方法が現実的である。
(2)アセトニトリルの還元電位よりも貴な電位でリチウムイオンを吸蔵する負極活物質を用いることによって、アセトニトリルの還元分解を抑制する方法
 例えば、特許文献4には、負極に特定の金属化合物を用いることにより、アセトニトリルの還元分解を回避した電池を得ることができると報告されている。ただし、リチウムイオン二次電池のエネルギー密度を重視する用途においては、アセトニトリルの還元電位よりも卑な電位でリチウムイオンを吸蔵する負極活物質を用いる方が電位差の観点から圧倒的に有利となる。そのため、そのような用途において特許文献4の改善策を適用すると、使用可能な電圧の範囲が狭くなるため、不利である。
(3)高濃度の電解質塩をアセトニトリルに溶解させて安定な液体状態を維持する方法
 例えば、特許文献5には、濃度が4.2mol/Lとなるようにリチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SOCF)をアセトニトリルに溶解させた電解液を用いると、黒鉛電極への可逆的なリチウム挿入脱離が可能であることが記載されている。また、特許文献6には、濃度が4.5mol/Lとなるようにリチウムビス(フルオロスルホニル)イミド(LiN(SOF))をアセトニトリルに溶解させた電解液を用いたセルに対して充放電測定を行った結果、黒鉛へのLi挿入脱離反応が観察され、更に、ハイレートで放電可能であることが報告されている。
国際公開第2012/057311号 国際公開第2013/062056号 特開平4-351860号公報 特開2009-21134号公報 国際公開第2013/146714号 特開2014-241198号公報
 しかしながら、アセトニトリルを含有する電解液を用いたリチウムイオン二次電池は、カーボネート溶媒を含有する電解液を用いた既存のリチウムイオン二次電池と比較して高温耐久性能に劣っており、市販品レベルに達していないことから、未だ本格的な実用化には至っていない。
 各種検証実験の結果から、アセトニトリル系リチウムイオン二次電池が高温耐久性能に劣る理由は以下のように考察される。
 高温環境下において、フッ素含有無機リチウム塩がアセトニトリルのメチル基から水素を引き抜きながら分解し、その分解生成物が正極遷移金属の溶出を促進する。この溶出金属にアセトニトリルが配位した錯体カチオンは化学的に安定であり、該安定錯体カチオンの酸化還元反応が自己放電の要因となっている可能性がある。解体解析の結果に裏付けされたこれらの現象は、本発明者らによって新たに判明した課題であり、特許文献1~6には一切記載されていない。
 本発明は、上述の事情に鑑みてなされたものである。従って本発明は、粘度と比誘電率とのバランスに優れたアセトニトリルと、フッ素含有無機リチウム塩と、を含有する非水系電解液において、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、高温貯蔵時の自己放電を抑制することができる非水系電解液及び非水系二次電池を提供することを目的とする。
 本発明者らは、上述の課題を解決するために鋭意研究を重ねた。その結果、非水系溶媒としてアセトニトリルを含有する非水系電解液であっても、更に添加剤として特定の窒素含有環状化合物を含有する場合に、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、高温貯蔵時の自己放電を抑制することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
 [1] アセトニトリルを30~100体積%含む非水系溶媒と
フッ素含有無機リチウム塩と
下記一般式(1):
Figure JPOXMLDOC01-appb-C000002
{式(1)中、R、R、及びRで表される置換基は、それぞれ独立して、水素原子、炭素数1~4のアルキル基、炭素数1~4のフッ素置換アルキル基、炭素数1~4のアルコキシ基、炭素数1~4のフッ素置換アルコキシ基、フェニル基、シクロヘキシル基、ニトリル基、ニトロ基、アミノ基、N,N’-ジメチルアミノ基、又はN,N’-ジエチルアミノ基であり、これらの置換基のうち2つ以上は水素原子である。}で表される化合物と、
を含有することを特徴とする、非水系電解液。
 [2] 前記一般式(1)で表される化合物が、ピリジン及び4-(tert-ブチル)ピリジンからなる群より選ばれる1種以上の化合物である、[1]記載の非水系電解液。
 [3] 前記一般式(1)で表される化合物の含有量が、非水系電解液の全体に対して0.01~10質量%である、[1]又は[2]記載の非水系電解液。
 [4] 前記フッ素含有無機リチウム塩が、LiPFを含有する、[1]~[3]のいずれか1項記載の非水系電解液。
 [5] 集電体の片面又は両面に、Ni、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有する正極活物質層を有する正極、
集電体の片面又は両面に負極活物質層を有する負極、並びに、
請求項1~4のいずれか1項記載の非水系電解液を具備することを特徴とする、非水系二次電池。
 [6] 前記正極活物質層と前記負極活物質層とが対向配置されており、
前記負極活物質層のうち、前記正極活物質層に対向する側の面の全面積の、
前記正極活物質層と前記負極活物質層とが対向する領域の面積に対する比が、1.0より大きく1.1未満である、[5]記載の非水系二次電池。
 本発明によれば、粘度と比誘電率とのバランスに優れたアセトニトリルと、フッ素含有無機リチウム塩と、を含有する非水系電解液において、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、高温貯蔵時の自己放電を抑制することができる非水系電解液及び非水系二次電池を提供することができる。
本実施形態の非水系二次電池の一例を概略的に示す平面図である。 図1の非水系二次電池のA-A線断面図である。 積層電極体における「負極活物質層の非対向部分の幅」を説明するための図面である。 捲回電極体における「負極活物質層の非対向部分の幅」を説明するための図面である。 電池用正極を説明するための模式的な平面図である。 電池用負極を説明するための模式的な平面図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本明細書において「~」を用いて記載される数値範囲は、その前後に記載される数値を含むものである。
 本実施形態の非水系電解液(以下、単に「電解液」ともいう。)は、
アセトニトリルを30~100体積%含む非水系溶媒と、
フッ素含有無機リチウム塩と、
下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
{式(1)中、R、R、及びRで表される置換基は、それぞれ独立して、水素原子、炭素数1~4のアルキル基、炭素数1~4のフッ素置換アルキル基、炭素数1~4のアルコキシ基、炭素数1~4のフッ素置換アルコキシ基、フェニル基、シクロヘキシル基、ニトリル基、ニトロ基、アミノ基、N,N’-ジメチルアミノ基、又はN,N’-ジエチルアミノ基であり、これらの置換基のうち2つ以上は水素原子である。}で表される化合物と、
を含有する。
<1.非水系二次電池の全体構成>
 本実施形態の電解液は、例えば、非水系二次電池に用いることができる。本実施形態の非水系二次電池としては、例えば、
正極活物質としてリチウムイオンを吸蔵及び放出することが可能な正極材料を含有する正極と、
負極活物質として、リチウムイオンを吸蔵及び放出することが可能な負極材料、並びに金属リチウムからなる群より選ばれる1種以上の負極材料を含有する負極と、
を備えるリチウムイオン二次電池が挙げられる。
 本実施形態の非水系二次電池としては、具体的には、図1及び2に図示される非水系二次電池であってもよい。ここで、図1は非水系二次電池を概略的に表す平面図であり、図2は図1のA-A線断面図である。
 非水系二次電池1は、2枚のアルミニウムラミネートフィルムで構成した電池外装2内に、正極5及び負極6をセパレータ7を介して積層して構成した積層電極体と、非水系電解液(図示せず)とを収容している。電池外装2は、その外周部において、上下のアルミニウムラミネートフィルムを熱融着することにより封止されている。正極5、セパレータ7、及び負極6を順に積層した積層体には、非水系電解液が含浸されている。ただしこの図2では、図面が煩雑になることを避けるために、電池外装2を構成している各層、並びに正極5及び負極6の各層を区別して示していない。
 電池外装2を構成しているアルミニウムラミネートフィルムは、アルミニウム箔の両面をポリオレフィン系の樹脂でコートしたものであることが好ましい。
 正極5は、電池1内でリード体を介して正極外部端子3と接続している。図示していないが、負極6も、電池1内でリード体を介して負極外部端子4と接続している。そして、正極外部端子3及び負極外部端子4は、それぞれ、外部の機器等と接続可能なように、片端側が電池外装2の外側に引き出されており、それらのアイオノマー部分が、電池外装2の1辺と共に熱融着されている。
 図1及び2に図示される非水系二次電池1は、正極5及び負極6が、それぞれ1枚ずつの積層電極体を有しているが、容量設計により正極5及び負極6の積層枚数を適宜増やすことができる。正極5及び負極6をそれぞれ複数枚有する積層電極体の場合には、同一極のタブ同士を溶接等により接合したうえで1つのリード体に溶接等により接合して電池外部に取り出してもよい。上記同一極のタブとしては、集電体の露出部から構成される態様、集電体の露出部に金属片を溶接して構成される態様等が可能である。
 正極5は、正極合剤から作製した正極活物質層と、正極集電体とから構成される。負極6は、負極合剤から作製した負極活物質層と、負極集電体とから構成される。正極5及び負極6は、セパレータ7を介して正極活物質層と負極活物質層とが対向するように配置される。
 以下、正極及び負極の総称として「電極」、正極活物質層及び負極活物質層の総称として「電極活物質層」、正極合剤及び負極合剤の総称として「電極合剤」とも略記する。
 これらの各部材としては、本実施形態における各要件を満たしていれば、従来のリチウムイオン二次電池に備えられる材料を用いることができ、例えば後述の材料であってもよい。以下、非水系二次電池の各部材について詳細に説明する。
<2.電解液>
 本実施形態における電解液は、非水系溶媒(以下、単に「溶媒」ともいう。)と、フッ素含有無機リチウム塩と、上記一般式(1)で表される化合物(窒素含有環状化合物)を少なくとも含む。フッ素含有無機リチウム塩は、イオン伝導度に優れるものの、熱安定性が十分でないうえ、溶媒中の微量水分によって加水分解してフッ化リチウム及びフッ化水素を発生し易い性質を有する。フッ素含有無機リチウム塩が分解すると、該フッ素含有無機リチウム塩を含有する電解液のイオン伝導度が低下するとともに、生成したフッ化リチウム及びフッ化水素が、電極、集電体等の材料を腐食し、或いは溶媒を分解する等の、電池に致命的な悪影響を及ぼす場合がある。
 本実施形態における電解液は、水分を含まないことが好ましいが、本発明の課題解決を阻害しない範囲であれば、ごく微量の水分を含有してもよい。そのような水分の含有量は、電解液の全量に対して、好ましくは0~100ppmである。
<2-1.非水系溶媒>
 アセトニトリルはイオン伝導性が高く、電池内におけるリチウムイオンの拡散性を高めることができる。そのため、電解液がアセトニトリルを含有する場合には、特に正極活物質層を厚くして正極活物質の充填量を高めた正極においても、高負荷での放電時にはリチウムイオンが到達し難い集電体近傍の領域にまで、リチウムイオンが良好に拡散できるようになる。よって、高負荷放電時にも十分な容量を引き出すことが可能となり、負荷特性に優れた非水系二次電池とすることができる。
 非水系電解液の非水系溶媒にアセトニトリルを用いることにより、前記のとおり、非水系電解液のイオン伝導性が向上することから、非水系二次電池の急速充電特性を高めることもできる。非水系二次電池の定電流(CC)-定電圧(CV)充電では、CV充電期間における単位時間当たりの充電容量よりも、CC充電期間における単位時間当たりの容量の方が大きい。非水系電解液の非水系溶媒にアセトニトリルを使用した場合には、CC充電できる領域を大きく(CC充電の時間を長く)できる他、充電電流を高めることもできるため、非水系二次電池の充電開始から満充電状態にするまでの時間を大幅に短縮できる。
 非水系溶媒としては、アセトニトリルを非水系溶媒の全体量に対して30~100体積%含んでいれば特に制限はなく、その他の非水系溶媒を含んでもよいし含んでいなくてもよい。
 本実施形態でいう「非水系溶媒」とは、電解液中からリチウム塩及び窒素含有環状化合物を除いた成分をいう。すなわち、電解液中に、溶媒、リチウム塩、及び窒素含有環状化合物と共に、後述する電極保護用添加剤を含んでいる場合には、溶媒と電極保護用添加剤とを併せて「非水系溶媒」という。後述するリチウム塩及び窒素含有環状化合物は、非水系溶媒に含まない。
 上記その他の非水系溶媒としては、例えば、メタノール、エタノール等のアルコール類;非プロトン性溶媒等が挙げられる。中でも、非プロトン性極性溶媒が好ましい。
 上記その他の非水系溶媒のうち、非プロトン性溶媒の具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、トランス-2,3-ブチレンカーボネート、シス-2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、トランス-2,3-ペンチレンカーボネート、シス-2,3-ペンチレンカーボネート、及びビニレンカーボネートに代表される環状カーボネート;フルオロエチレンカーボネート、1,2-ジフルオロエチレンカーボネート、及びトリフルオロメチルエチレンカーボネートに代表される環状フッ素化カーボネート;γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトンに代表されるラクトン;スルホラン、ジメチルスルホキシド、及びエチレングリコールサルファイトに代表される硫黄化合物;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、及び1,3-ジオキサンに代表される環状エーテル;エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート、及びメチルトリフルオロエチルカーボネートに代表される鎖状カーボネート;トリフルオロジメチルカーボネート、トリフルオロジエチルカーボネート、及びトリフルオロエチルメチルカーボネートに代表される鎖状フッ素化カーボネート;
プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、及びアクリロニトリルに代表されるモノニトリル;メトキシアセトニトリル及び3-メトキシプロピオニトリルに代表されるアルコキシ基置換ニトリル;マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、1,4-ジシアノヘプタン、1,5-ジシアノペンタン、1,6-ジシアノヘキサン、1,7-ジシアノヘプタン、2,6-ジシアノヘプタン、1,8-ジシアノオクタン、2,7-ジシアノオクタン、1,9-ジシアノノナン、2,8-ジシアノノナン、1,10-ジシアノデカン、1,6-ジシアノデカン、及び2,4-ジメチルグルタロニトリルに代表されるジニトリル;ベンゾニトリルに代表される環状ニトリル;プロピオン酸メチルに代表される鎖状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、及びテトラグライムに代表される鎖状エーテル;Rf-OR(Rfはフッ素を含有するアルキル基、Rはフッ素を含有してもよい有機基)に代表されるフッ素化エーテル;アセトン、メチルエチルケトン、及びメチルイソブチルケトンに代表されるケトン類等の他、これらのフッ素化物に代表されるハロゲン化物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 これらその他の非水系溶媒の中でも、環状カーボネート及び鎖状カーボネートのうちの1種以上をアセトニトリルと共に使用することがより好ましい。ここで、環状カーボネート及び鎖状カーボネートとして前記に例示したもののうちの1種のみを選択して使用していてもよく、2種以上(例えば、前記例示の環状カーボネートのうちの2種以上、前記例示の鎖状カーボネートのうちの2種以上、又は前記例示の環状カーボネートのうちの1種以上及び前記例示の鎖状カーボネートのうちの1種以上からなる2種以上)を使用してもよい。これらの中でも、環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、又はフルオロエチレンカーボネートがより好ましく、鎖状カーボネートとしてはエチルメチルカーボネート、ジメチルカーボネート、又はジエチルカーボネートがより好ましい。そして、環状カーボネートを使用することが更に好ましい。
 アセトニトリルは電気化学的に還元分解され易い。そのため、これを、別の溶媒と混合すること、及び、電極への保護皮膜形成のための電極保護用添加剤を添加すること、のうちの少なくとも1つを行うことが好ましい。
 非水系二次電池の充放電に寄与するリチウム塩の電離度を高めるために、非水系溶媒は、環状の非プロトン性極性溶媒を1種以上含むことが好ましく、環状カーボネートを1種以上含むことがより好ましい。
 アセトニトリルの含有量は、非水系溶媒の全体量に対して、30~100体積%であり、35体積%以上であることがより好ましく、40体積%以上であることが更に好ましい。この値は、85体積%以下であることがより好ましく、66体積%以下であることが更に好ましい。アセトニトリルの含有量が30体積%以上である場合、イオン伝導度が増大して高出力特性を発現できる傾向にあり、更に、リチウム塩の溶解を促進することができる。非水系溶媒中のアセトニトリルの含有量が上述の範囲内にある場合、アセトニトリルの優れた性能を維持しながら、貯蔵特性及びその他の電池特性を、一層良好なものとすることができる傾向にある。
<2-2.リチウム塩>
 本実施形態におけるリチウム塩は、フッ素含有無機リチウム塩を含むことを特徴としている。「フッ素含有無機リチウム塩」とは、炭素原子をアニオンに含まず、フッ素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。「無機リチウム塩」とは、炭素原子をアニオンに含まず、アセトニトリルに可溶なリチウム塩をいう。「有機リチウム塩」とは、炭素原子をアニオンに含み、アセトニトリルに可溶なリチウム塩をいう。
 本実施形態におけるフッ素含有無機リチウム塩は、正極集電体である金属箔の表面に不働態皮膜を形成し、正極集電体の腐食を抑制する。このフッ素含有無機リチウム塩は、溶解性、伝導度、及び電離度という観点からも優れている。このため、フッ素含有無機リチウム塩は、リチウム塩として必ず加える必要がある。フッ素含有無機リチウム塩の具体例としては、例えば、LiPF、LiBF、LiAsF、LiSiF、LiSbF、Li1212-b〔bは0~3の整数、好ましくは1~3の整数〕、LiN(SOF)等が挙げられる。
 これらのフッ素含有無機リチウム塩は、1種を単独で又は2種以上を組み合わせて用いられる。フッ素含有無機リチウム塩として、LiFとルイス酸との複塩である化合物が望ましく、中でも、リン原子を有するフッ素含有無機リチウム塩を用いると、遊離のフッ素原子を放出し易くなることからより好ましく、LiPFが特に好ましい。フッ素含有無機リチウム塩として、ホウ素原子を有するフッ素含有無機リチウム塩を用いると、電池劣化を招くおそれのある過剰な遊離酸成分を捕捉し易くなることから好ましく、このような観点からはLiBFが特に好ましい。
 本実施形態の電解液におけるフッ素含有無機リチウム塩の含有量については、特に制限はない。しかしながらこの値は、非水系溶媒1Lに対して0.2mol以上であることが好ましく、0.5mol以上であることがより好ましく、0.8mol以上であることが更に好ましい。この値は、非水系溶媒1Lに対して15mol以下であることが好ましく、4mol以下であることがより好ましく、2.8mol以下であることが更に好ましい。フッ素含有無機リチウム塩の含有量が上述の範囲内にある場合、イオン伝導度が増大し高出力特性を発現できる傾向にあり、アセトニトリルの優れた性能を維持しながら、貯蔵特性及びその他の電池特性を一層良好なものとすることができる傾向にある。
 本実施形態におけるリチウム塩として、フッ素含有無機リチウム塩以外に、一般に非水系二次電池用に用いられているリチウム塩を補助的に添加してもよい。その他のリチウム塩の具体例としては、例えば、LiClO、LiAlO、LiAlCl、LiB10Cl10、クロロボランLi等のフッ素原子をアニオンに含まない無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiC(CFSO、LiC2n+1SO(n≧2)、低級脂肪族カルボン酸Li、四フェニルホウ酸Li等の有機リチウム塩;LiN(SOCF、LiN(SO等のLiN(SO2m+1〔mは1~8の整数〕で表される有機リチウム塩;LiPF(CF)等のLiPF(C2p+16-n〔nは1~5の整数、pは1~8の整数〕で表される有機リチウム塩;LiBF(CF)等のLiBF(C2s+14-q〔qは1~3の整数、sは1~8の整数〕で表される有機リチウム塩;LiB(Cで表されるリチウムビス(オキサラト)ボレート(LiBOB);ハロゲン化LiBOB;LiBF(C)で表されるリチウムオキサラトジフルオロボレート(LiODFB);LiB(Cで表されるリチウムビス(マロネート)ボレート(LiBMB);LiPF(C)で表されるリチウムテトラフルオロオキサラトフォスフェート、LiPF(Cで表されるリチウムジフルオロビス(オキサラト)フォスフェート等の有機リチウム塩、多価アニオンと結合されたリチウム塩;下記一般式(2a)、(2b)、及び(2c):
  LiC(SO)(SO)(SO) (2a)
  LiN(SOOR)(SOOR10)     (2b)
  LiN(SO11)(SOOR12)     (2c)
{式中、R、R、R、R、R10、R11、及びR12は、互いに同一であっても異なっていてもよく、炭素数1~8のパーフルオロアルキル基を示す。}のそれぞれで表される有機リチウム塩等が挙げられ、これらのうちの1種又は2種以上を、フッ素含有無機リチウム塩と共に使用することができる。
 非水系二次電池の負荷特性改善及び充放電サイクル特性改善のためには、シュウ酸基を有する有機リチウム塩を補助的に添加することが好ましく、LiB(C、LiBF(C)、LiPF(C)、及びLiPF(Cから成る群より選択される1種以上を添加することが特に好ましい。このシュウ酸基を有する有機リチウム塩は、非水系電解液に添加する他、負極(負極活物質層)に含有させてもよい。
 前記のシュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、その使用による効果をより良好に確保する観点から、非水系電解液の非水系溶媒1L当たりの量として、0.005モル以上であることが好ましく、0.02モル以上であることがより好ましく、0.05モル以上であることが更に好ましい。ただし、前記のシュウ酸基を有する有機リチウム塩の非水系電解液中の量が多すぎると析出するおそれがある。よって、前記のシュウ酸基を有する有機リチウム塩の非水系電解液への添加量は、非水系電解液の非水系溶媒1L当たりの量で、1.0モル未満であることが好ましく、0.5モル未満であることがより好ましく、0.2モル未満であることが更に好ましい。
<2-3.電極保護用添加剤>
 本実施形態における電解液には、窒素含有環状化合物以外に、電極を保護する添加剤が含まれていてもよい。なお、上述したように、電解液が電極保護用添加剤を含む場合、該電極保護用添加剤は非水系溶媒に含まれるから、該電解液中には、電極保護用添加剤を含む非水系溶媒(上述の非水系溶媒と電極保護用添加剤との合計量)に対して30~100体積%のアセトニトリルが含まれていればよい。
 電極保護用添加剤としては、本発明による課題解決を阻害しないものであれば特に制限はない。リチウム塩を溶解する溶媒としての役割を担う物質(すなわち上述の非水系溶媒)と実質的に重複してもよい。電極保護用添加剤は、本実施形態における電解液及び非水系二次電池の性能向上に寄与する物質であることが好ましいが、電気化学的な反応には直接関与しない物質をも包含する。
 電極保護用添加剤の具体例としては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、シス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、トランス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4,5-トリフルオロ-1,3-ジオキソラン-2-オン、4,4,5,5-テトラフルオロ-1,3-ジオキソラン-2-オン、及び4,4,5-トリフルオロ-5-メチル-1,3-ジオキソラン-2-オンに代表されるフルオロエチレンカーボネート;ビニレンカーボネート、4,5-ジメチルビニレンカーボネート、及びビニルエチレンカーボネートに代表される不飽和結合含有環状カーボネート;γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-バレロラクトン、δ-カプロラクトン、及びε-カプロラクトンに代表されるラクトン;1,4-ジオキサンに代表される環状エーテル;エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ペンテンサルファイト、スルホラン、3-メチルスルホラン、1,3-プロパンスルトン、1,4-ブタンスルトン、及びテトラメチレンスルホキシドに代表される環状硫黄化合物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 非水系溶媒の一成分であるアセトニトリルは電気化学的に還元分解され易いため、該アセトニトリルを含む非水系溶媒は、負極への保護皮膜形成のための添加剤として環状の非プロトン性極性溶媒を1種以上含むことが好ましく、不飽和結合含有環状カーボネートを1種以上含むことがより好ましい。
 本実施形態における電解液中の電極保護用添加剤の含有量については、特に制限はない。しかし、非水系溶媒の全量に対する電極保護用添加剤の含有量として、0.1~30体積%であることが好ましく、2~20体積%であることがより好ましく、5~15体積%であることが更に好ましい。
 本実施形態においては、電極保護用添加剤の含有量が多いほど電解液の劣化が抑えられる。しかし、電極保護用添加剤の含有量が少ないほど非水系二次電池の低温環境下における高出力特性が向上することになる。従って、電極保護用添加剤の含有量を上述の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、電解液の高イオン伝導度に基づく優れた性能を最大限に発揮することができる傾向にある。このような組成で電解液を調製することにより、非水系二次電池のサイクル性能、低温環境下における高出力性能及びその他の電池特性の全てを一層良好なものとすることができる傾向にある。
<2-4.窒素含有環状化合物>
 本実施形態における電解液は、添加剤として下記一般式(1):
Figure JPOXMLDOC01-appb-C000004
{式(1)中、R、R、及びRで表される置換基は、それぞれ独立して、水素原子、炭素数1~4のアルキル基、炭素数1~4のフッ素置換アルキル基、炭素数1~4のアルコキシ基、炭素数1~4のフッ素置換アルコキシ基、フェニル基、シクロヘキシル基、ニトリル基、ニトロ基、アミノ基、N,N’-ジメチルアミノ基、又はN,N’-ジエチルアミノ基であり、これらの置換基のうち2つ以上は水素原子である。}で表される化合物(窒素含有環状化合物)を含有することを特徴とする。
 上記窒素含有環状化合物の具体例としては、例えば、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2-(n-プロピル)ピリジン、3-(n-プロピル)ピリジン、4-(n-プロピル)ピリジン、2-イソプロピルピリジン、3-イソプロピルピリジン、4-イソプロピルピリジン、2-(n-ブチル)ピリジン、3-(n-ブチル)ピリジン、4-(n-ブチル)ピリジン、2-(1-メチルプロピル)ピリジン、3-(1-メチルプロピル)ピリジン、4-(1-メチルプロピル)ピリジン、2-(2-メチルプロピル)ピリジン、3-(2-メチルプロピル)ピリジン、4-(2-メチルプロピル)ピリジン、2-(tert-ブチル)ピリジン、3-(tert-ブチル)ピリジン、4-(tert-ブチル)ピリジン、2-トリフルオロメチルピリジン、3-トリフルオロメチルピリジン、4-トリフルオロメチルピリジン、2-(2,2,2-トリフルオロエチル)ピリジン、3-(2,2,2-トリフルオロエチル)ピリジン、4-(2,2,2-トリフルオロエチル)ピリジン、2-(ペンタフルオロエチル)ピリジン、3-(ペンタフルオロエチル)ピリジン、4-(ペンタフルオロエチル)ピリジン、2-メトキシピリジン、3-メトキシピリジン、4-メトキシピリジン、2-エトキシピリジン、3-エトキシピリジン、4-エトキシピリジン、2-(n-プロポキシ)ピリジン、3-(n-プロポキシ)ピリジン、4-(n-プロポキシ)ピリジン、2-イソプロポキシピリジン、3-イソプロポキシピリジン、4-イソプロポキシピリジン、2-(n-ブトキシ)ピリジン、3-(n-ブトキシ)ピリジン、4-(n-ブトキシ)ピリジン、2-(1-メチルプロポキシ)ピリジン、3-(1-メチルプロポキシ)ピリジン、4-(1-メチルプロポキシ)ピリジン、2-(2-メチルプロポキシ)ピリジン、3-(2-メチルプロポキシ)ピリジン、4-(2-メチルプロポキシ)ピリジン、2-トリフルオロメトキシピリジン、3-トリフルオロメトキシピリジン、4-トリフルオロメトキシピリジン、2-(2,2,2-トリフルオロエトキシ)ピリジン、3-(2,2,2-トリフルオロエトキシ)ピリジン、4-(2,2,2-トリフルオロエトキシ)ピリジン、2-フェニルピリジン、3-フェニルピリジン、4-フェニルピリジン、2-シクロヘキシルピリジン、3-シクロヘキシルピリジン、4-シクロヘキシルピリジン、2-シアノピリジン、3-シアノピリジン、4-シアノピリジン、2-アミノピリジン、3-アミノピリジン、4-アミノピリジン、2-(N,N’-ジメチルアミノ)ピリジン、3-(N,N’-ジメチルアミノ)ピリジン、4-(N,N’-ジメチルアミノ)ピリジン、2-(N,N’-ジエチルアミノ)ピリジン、3-(N,N’-ジエチルアミノ)ピリジン、及び4-(N,N’-ジエチルアミノ)ピリジンが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 フッ素含有無機リチウム塩として、LiFとルイス酸との複塩である化合物を用いる場合、窒素含有環状化合物における窒素原子周辺には立体障害が存在しないことが望ましい。そのため、上記一般式(1)中のRは水素原子であることが好ましく、R及びRが共に水素原子であることがより好ましい。上記一般式(1)中のR及びRがともに水素原子である場合、窒素原子上に存在する非共有電子対に及ぼす電子的効果の観点から、上記一般式(1)中のRは、水素原子又はtert-ブチル基であることが特に好ましい。本実施形態の電解液が添加剤として上記一般式(1)で表される窒素含有環状化合物を含有することによって、粘度と比誘電率とのバランスに優れたアセトニトリルと、フッ素含有無機リチウム塩と、を含有する非水系電解液において、遷移金属とアセトニトリルとからなる錯体カチオンの生成を抑制し、優れた負荷特性を発揮するとともに、高温貯蔵時の自己放電を抑制することができる。本実施形態における電解液中の窒素含有環状化合物の含有量については、特に制限はないが、電解液の全量を基準として、0.01~10質量%であることが好ましく、0.02~5質量%であることがより好ましく、0.05~3質量%であることが更に好ましい。
 本実施形態においては、窒素含有環状化合物の含有量を上述の範囲内に調整することによって、非水系二次電池としての基本的な機能を損なうことなく、電極表面における反応が抑制できるため、充放電に伴う内部抵抗の増加を低減できる。
 上記のような組成で電解液を調製することにより、非水系二次電池のサイクル性能、低温環境下における高出力性能、及びその他の電池特性のすべてを、一層良好なものとすることができる傾向にある。
<2-5.その他の任意的添加剤>
 本実施形態においては、非水系二次電池の充放電サイクル特性の改善、高温貯蔵性、安全性の向上(例えば過充電防止等)等の目的で、非水系電解液に、例えば、無水酸、スルホン酸エステル、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、tert-ブチルベンゼン、リン酸エステル〔エチルジエチルホスホノアセテート(EDPA):(CO)(P=O)-CH(C=O)OC、リン酸トリス(トリフルオロエチル)(TFEP):(CFCHO)P=O、リン酸トリフェニル(TPP):(CO)P=O等〕等、及びこれらの各化合物の誘導体等から選択される任意的添加剤を、適宜含有させることもできる。特に前記のリン酸エステルは、貯蔵時の副反応を抑制する作用があり、効果的である。
<3.正極>
 正極5は、正極合剤から作製した正極活物質層5Aと、正極集電体5Bとから構成される。正極5は、非水系二次電池の正極として作用するものであれば特に限定されず、公知のものであってもよい。
 正極活物質層5Aは、正極活物質を含有し、場合により導電助剤及びバインダーを更に含有する。
 正極活物質層5Aは、正極活物質として、リチウムイオンを吸蔵及び放出することが可能な材料を含有することが好ましい。正極活物質層5Aは、正極活物質とともに、必要に応じて導電助剤及びバインダーを含有することが好ましい。このような材料を用いる場合、高電圧及び高エネルギー密度を得ることができる傾向にあるので好ましい。
 正極活物質としては、例えば、以下の一般式(3a)及び(3b):
  LiMO   (3a)
  Li  (3b)
{式中、Mは少なくとも1種の遷移金属元素を含む1種以上の金属元素を示し、xは0~1.1の数、yは0~2の数を示す。}のそれぞれで表されるリチウム含有化合物、及びその他のリチウム含有化合物が挙げられる。
 一般式(3a)及び(3b)のそれぞれで表されるリチウム含有化合物としては、例えば、LiCoOに代表されるリチウムコバルト酸化物;LiMnO、LiMn、及びLiMnに代表されるリチウムマンガン酸化物;LiNiOに代表されるリチウムニッケル酸化物;LiMO(MはNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含み、且つ、Ni、Mn、Co、Al、及びMgからなる群より選ばれる2種以上の金属元素を示し、zは0.9超1.2未満の数を示す)で表されるリチウム含有複合金属酸化物等が挙げられる。
 一般式(3a)及び(3b)のそれぞれで表されるリチウム含有化合物以外のリチウム含有化合物としては、リチウムを含有するものであれば特に限定されない。このようなリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、リチウムを有する金属カルコゲン化物、リチウムと遷移金属元素とを含むリン酸金属化合物、及びリチウムと遷移金属元素とを含むケイ酸金属化合物(例えばLiSiO、Mは一般式(3a)と同義であり、tは0~1の数、uは0~2の数を示す。)が挙げられる。より高い電圧を得る観点から、リチウム含有化合物としては、特に、
リチウムと、
コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、バナジウム(V)、及びチタン(Ti)からなる群より選ばれる少なくとも1種の遷移金属元素と、
を含む複合酸化物、及びリン酸金属化合物が好ましい。
 リチウム含有化合物としてより具体的には、リチウムと遷移金属元素とを含む複合酸化物又はリチウムと遷移金属元素とを有する金属カルコゲン化物、及びリチウムを有するリン酸金属化合物がより好ましく、例えば、それぞれ以下の一般式(4a)及び(4b):  Li    (4a)
  LiIIPO  (4b)
{式中、Dは酸素又はカルコゲン元素を示し、M及びMIIはそれぞれ1種以上の遷移金属元素を示し、v及びwの値は、電池の充放電状態によって異なり、vは0.05~1.10、wは0.05~1.10の数を示す。}のそれぞれで表される化合物が挙げられる。
 上述の一般式(4a)で表されるリチウム含有化合物は層状構造を有し、上述の一般式(4b)で表される化合物はオリビン構造を有する。これらのリチウム含有化合物は、構造を安定化させる等の目的から、Al、Mg、又はその他の遷移金属元素により遷移金属元素の一部を置換したもの、これらの金属元素を結晶粒界に含ませたもの、酸素原子の一部をフッ素原子等で置換したもの、正極活物質表面の少なくとも一部に他の正極活物質を被覆したもの等であってもよい。
 本実施形態における正極活物質としては、上記のようなリチウム含有化合物のみを用いてもよいし、該リチウム含有化合物とともにその他の正極活物質を併用してもよい。
 このようなその他の正極活物質としては、例えば、トンネル構造及び層状構造を有する金属酸化物又は金属カルコゲン化物;イオウ;導電性高分子等が挙げられる。トンネル構造及び層状構造を有する金属酸化物又は金属カルコゲン化物としては、例えば、MnO、FeO、FeS、V、V13、TiO、TiS、MoS、及びNbSeに代表される、リチウム以外の金属の酸化物、硫化物、セレン化物等が挙げられる。導電性高分子としては、例えば、ポリアニリン、ポリチオフェン、ポリアセチレン、及びポリピロールに代表される導電性高分子を挙げられる。
 上述のその他の正極活物質は、1種を単独で又は2種以上を組み合わせて用いられ、特に制限はない。しかしながら、リチウムイオンを可逆安定的に吸蔵及び放出することが可能であり、且つ、高エネルギー密度を達成できることから、前記正極活物質層がNi、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有することが好ましい。
 正極活物質として、リチウム含有化合物とその他の正極活物質とを併用する場合、両者の使用割合としては、正極活物質の全部に対するリチウム含有化合物の使用割合として、80質量%以上が好ましく、85質量%以上がより好ましい。
 導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有割合は、正極活物質100質量部に対して、10質量部以下とすることが好ましく、より好ましくは1~5質量部である。
 バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有割合は、正極活物質100質量部に対して、6質量部以下とすることが好ましく、より好ましくは0.5~4質量部である。
 正極活物質層5Aは、正極活物質と、必要に応じて導電助剤及びバインダーとを混合した正極合剤を溶剤に分散した正極合剤含有スラリーを、正極集電体5Bに塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、特に制限はなく、従来公知のものを用いることができる。例えば、N―メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
 正極集電体5Bは、例えば、アルミニウム箔、ニッケル箔、ステンレス箔等の金属箔により構成される。正極集電体5Bは、表面にカーボンコートが施されていてもよく、メッシュ状に加工されていてもよい。正極集電体5Bの厚みは、5~40μmであることが好ましく、7~35μmであることがより好ましく、9~30μmであることが更に好ましい。
<4.負極>
 負極6は、負極合剤から作製した負極活物質層6Aと、負極集電体6Bとから構成される。負極6は、非水系二次電池の負極として作用するものであれば特に限定されず、公知のものであってもよい。
 負極活物質層6Aは、電池電圧を高められるという観点から、負極活物質としてリチウムイオンを0.4V vs.Li/Liよりも卑な電位で吸蔵することが可能な材料を含有することが好ましい。負極活物質層6Aは、負極活物質とともに、必要に応じて導電助剤及びバインダーを含有することが好ましい。
 負極活物質としては、例えば、アモルファスカーボン(ハードカーボン)、人造黒鉛、天然黒鉛、黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド、及びカーボンブラックに代表される炭素材料の他、金属リチウム、金属酸化物、金属窒化物、リチウム合金、スズ合金、シリコン合金、金属間化合物、有機化合物、無機化合物、金属錯体、有機高分子化合物等が挙げられる。
 負極活物質は1種を単独で又は2種以上を組み合わせて用いられる。
 導電助剤としては、例えば、グラファイト、アセチレンブラック、及びケッチェンブラックに代表されるカーボンブラック、並びに炭素繊維が挙げられる。導電助剤の含有割合は、負極活物質100質量部に対して、20質量部以下とすることが好ましく、より好ましくは0.1~10質量部である。
 バインダーとしては、例えば、PVDF、PTFE、ポリアクリル酸、スチレンブタジエンゴム、及びフッ素ゴムが挙げられる。バインダーの含有割合は、負極活物質100質量部に対して、10質量部以下とすることが好ましく、より好ましくは0.5~6質量部である。
 負極活物質層6Aは、負極活物質と必要に応じて導電助剤及びバインダーとを混合した負極合剤を溶剤に分散した負極合剤含有スラリーを、負極集電体6Bに塗布及び乾燥(溶媒除去)し、必要に応じてプレスすることにより形成される。このような溶剤としては、特に制限はなく、従来公知のものを用いることができる。例えば、N―メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、水等が挙げられる。
 負極集電体6Bは、例えば、銅箔、ニッケル箔、ステンレス箔等の金属箔により構成される。また、負極集電体6Bは、表面にカーボンコートが施されていてもよいし、メッシュ状に加工されていてもよい。負極集電体6Bの厚みは、5~40μmであることが好ましく、6~35μmであることがより好ましく、7~30μmであることが更に好ましい。
<5.セパレータ>
 本実施形態における非水系二次電池1は、正極5及び負極6の短絡防止、シャットダウン等の安全性付与の観点から、正極5と負極6との間にセパレータ7を備えることが好ましい。セパレータ7としては、公知の非水系二次電池に備えられるものと同様のものを用いてもよく、イオン透過性が大きく、機械的強度に優れる絶縁性の薄膜が好ましい。セパレータ7としては、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられ、これらの中でも、合成樹脂製微多孔膜が好ましい。
 合成樹脂製微多孔膜としては、例えば、ポリエチレン又はポリプロピレンを主成分として含有する微多孔膜、或いは、これらのポリオレフィンの双方を含有する微多孔膜等のポリオレフィン系微多孔膜が好適に用いられる。不織布としては、例えば、ガラス製、セラミック製、ポリオレフィン製、ポリエステル製、ポリアミド製、液晶ポリエステル製、アラミド製等の耐熱樹脂製の多孔膜が挙げられる。
 セパレータ7は、1種の微多孔膜を単層又は複数積層した構成であってもよく、2種以上の微多孔膜を積層したものであってもよい。セパレータ7は、2種以上の樹脂材料を溶融混錬した混合樹脂材料を用いて単層又は複数層に積層した構成であってもよい。
<6.電池外装>
 本実施形態における非水系二次電池1の電池外装2の構成は特に限定されないが、例えば、電池缶及びラミネートフィルム外装体のいずれかの電池外装を用いることができる。電池缶としては、例えば、スチール又はアルミニウムからなる金属缶を用いることができる。ラミネートフィルム外装体としては、例えば、熱溶融樹脂/金属フィルム/樹脂の3層構成からなるラミネートフィルムを用いることができる。
 ラミネートフィルム外装体は、熱溶融樹脂側を内側に向けた状態で2枚重ねて、又は熱溶融樹脂側を内側に向けた状態となるように折り曲げて、端部をヒートシールにより封止した状態で外装体として用いることができる。ラミネートフィルム外装体を用いる場合、正極集電体5Bに正極リード体3(又は正極端子及び正極端子と接続するリードタブ)を接続し、負極集電体6Bに負極リード体4(又は負極端子及び負極端子と接続するリードタブ)を接続してもよい。この場合、正極リード体3及び負極リード体4(又は正極端子及び負極端子のそれぞれに接続されたリードタブ)の端部が外装体の外部に引き出された状態でラミネートフィルム外装体を封止してもよい。
<7.電池の作製方法>
 本実施形態における非水系二次電池1は、上述の非水系電解液、集電体の片面又は両面に正極活物質層を有する正極5、集電体の片面又は両面に負極活物質層を有する負極6、及び電池外装2、並びに必要に応じてセパレータ7を用いて、公知の方法により作製される。
 先ず、正極5及び正極6、並びに必要に応じてセパレータ7からなる積層体を形成する。
 例えば、長尺の正極5と負極6とを、正極5と負極6との間に該長尺のセパレータを介在させた積層状態で巻回して巻回構造の積層体を形成する態様;
正極5及び負極6を一定の面積と形状とを有する複数枚のシートに切断して得た正極シートと負極シートとを、セパレータシートを介して交互に積層した積層構造の積層体を形成する態様;
長尺のセパレータをつづら折りにして、該つづら折りになったセパレータ同士の間に交互に正極体シートと負極体シートとを挿入した積層構造の積層体を形成する態様
等が可能である。
 次いで、電池外装2(電池ケース)内に上述の積層体を収容して、本実施形態に係る電解液を電池ケース内部に注液し、積層体を電解液に浸漬して封印することによって、本実施形態における非水系二次電池を作製することができる。
 或いは、電解液を高分子材料からなる基材に含浸させることによって、ゲル状態の電解質膜を予め作製しておき、シート状の正極5、負極6、及び電解質膜、並びに必要に応じてセパレータ7を用いて積層構造の積層体を形成した後、電池外装2内に収容して非水系二次電池1を作製することができる。
 本実施形態における非水系二次電池1の形状は、特に限定されず、例えば、円筒形、楕円形、角筒型、ボタン形、コイン形、扁平形、ラミネート形等が好適に採用される。
 本実施形態において、アセトニトリルを使用した非水系電解液を用いた場合、その高いイオン伝導性に起因して、非水系二次電池の初回充電時に正極から放出されたリチウムイオンが負極の全体に拡散してしまう可能性がある。非水系二次電池では、正極活物質層よりも負極活物質層の面積を大きくすることが一般的である。しかしながら、負極活物質層のうち正極活物質層と対向していない箇所にまでリチウムイオンが拡散して吸蔵されてしまうと、このリチウムイオンが初回放電時に放出されずに負極に留まることとなる。そのため、該放出されないリチウムイオンの寄与分が不可逆容量となってしまう。こうした理由から、アセトニトリルを含有する非水系電解液を用いた非水系二次電池では、初回充放電効率が低くなってしまう場合がある。
 一方、負極活物質層よりも正極活物質層の面積が大きいか、或いは同じである場合には、充電時に負極活物質層のエッジ部分で電流の集中が起こり易く、リチウムデンドライトが生成し易くなる。
 正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比について特に制限はないが、上記の理由により、1.0より大きく1.1未満であることが好ましく、1.002より大きく1.09未満であることがより好ましく、1.005より大きく1.08未満であることが更に好ましく、1.01より大きく1.08未満であることが特に好ましい。アセトニトリルを含む非水系電解液を用いた非水系二次電池では、正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくすることにより、初回充放電効率を改善できる。
 正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を小さくするということは、負極活物質層のうち、正極活物質層と対向していない部分の面積の割合を制限することを意味している。これにより、初回充電時に正極から放出されたリチウムイオンのうち、正極活物質層とは対向していない負極活物質層の部分に吸蔵されるリチウムイオンの量(すなわち、初回放電時に負極から放出されずに不可逆容量となるリチウムイオンの量)を可及的に低減することが可能となる。よって、正極活物質層と負極活物質層とが対向する部分の面積に対する、負極活物質層全体の面積の比を上記の範囲に設計することによって、アセトニトリルを使用することによる電池の負荷特性向上を図りつつ、電池の初回充放電効率を高め、更にリチウムデンドライトの生成も抑えることができるのである。
 図3及び図4には、正極活物質層の全面が負極活物質層と対向する本実施態様の構成における「負極活物質層の非対向部分の幅」を説明するための図面を示している。図3は、正極、負極、及びセパレータで構成される電極体が積層電極体(これらを重ねて構成しただけの電極体)である場合の説明図である。図3(a)は、平面視で円形の正極活物質層50を有する正極と、平面視で円形の負極活物質層60を有する負極とが対向している場合を示す。図3(b)は、平面視で四角形の正極活物質層50を有する正極と、平面視で四角形の負極活物質層60を有する負極とが対向している場合を示す。図4は、正極、負極、及びセパレータで構成される電極体が、これらの積層体を渦巻状に巻回して形成した巻回電極体である場合の説明図である。これらの図面では、正極活物質層50と負極活物質層60との位置関係の理解を容易にするために、正極及び負極それぞれの集電体、並びにセパレータは図示していない。図4では、巻回電極体における正極活物質層50と負極活物質層60とが対向している箇所の一部を平面的に示している。
 図3では、図中手前側(紙面に垂直な方向における上側)が負極活物質層60であり、奥行き側の点線で示したものが正極活物質層50である。積層電極体における「負極活物質層の非対向部分の幅」は、平面視において、負極活物質層60の外周端と、正極活物質層50の外周端との間の距離(図中aの長さ)を意味する。
 図4においても、図3と同様に、図中手前側が負極活物質層60であり、奥行き側の点線で示したものが正極活物質層50である。巻回電極体の形成には、帯状の正極と帯状の負極とが使用される。この「負極活物質層の非対向部分の幅」は、帯状の正極及び帯状の負極の長尺方向に直交する方向における、負極活物質層60の外端と、正極活物質層50の外端との距離(図中bの長さ)を意味する。
 電極の配置が、負極活物質層の外周端と正極活物質層の外周端とが重なる部分が存在するように、又は負極活物質層の非対向部分に幅が小さすぎる箇所が存在するように設計されている場合、電池組み立て時に電極の位置ずれが生じることにより、非水系二次電池における充放電サイクル特性が低下するおそれがある。よって、該非水系二次電池に使用する電極体においては、予めポリイミドテープ、ポリフェニレンスルフィドテープ、PPテープ等のテープ類、又は接着剤等によって、電極の位置を固定しておくことが好ましい。
 本実施形態における非水系二次電池1は、初回充電により電池として機能し得る。初回充電の方法について特に制限はない。しかし、該非水系二次電池1は、初回充電の際に電解液の一部が分解することにより安定化することを考慮し、この安定化効果を有効に発現させるために、初回充電は0.001~0.3Cで行われることが好ましく、0.002~0.25Cで行われることがより好ましく、0.003~0.2Cで行われることが更に好ましい。初回充電が、途中に定電圧充電を経由して行われることも好ましい結果を与える。定格容量を1時間で放電する定電流が1Cである。リチウム塩が電気化学的な反応に関与する電圧範囲を長く設定することによって、SEI(Solid Electrolyte Interface:固体電解質界面)が電極表面に形成され、正極5を含めた内部抵抗の増加を抑制する効果があることの他、反応生成物が負極6のみに強固に固定化されることなく、何らかの形で負極6以外の部材(例えば、正極5、セパレータ7等)にも良好な効果を与える。このため、非水系電解液に溶解したリチウム塩の電気化学的な反応を考慮して初回充電を行うことは、非常に有効である。
 本実施形態における非水系二次電池1は、複数個の非水系二次電池1を直列又は並列に接続した電池パックとして使用することもできる。電池パックの充放電状態を管理する観点から、1個あたりの使用電圧範囲は2~5Vであることが好ましく、2.5~5Vであることがより好ましく、2.75V~5Vであることが特に好ましい。
 以上、本発明を実施するための形態について説明したが、本発明は上述の実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
 以下、実施例によって本発明を更に詳細に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
 各種評価は以下のようにして実施した。
(1)正極の作製
(1-1)正極(P1)の作製
 正極活物質として数平均粒子径11μmのリチウム、ニッケル、マンガン及びコバルトの複合酸化物(LiNi1/3Mn1/3Co1/3、密度4.70g/cm)と、導電助剤として数平均粒子径6.5μmのグラファイト炭素粉末(密度2.26g/cm)及び数平均粒子径48nmのアセチレンブラック粉末(密度1.95g/cm)と、バインダーとしてポリフッ化ビニリデン(PVdF;密度1.75g/cm)とを、100:4.2:1.8:4.6の質量比で混合し、正極合剤を得た。得られた正極合剤に溶剤としてN-メチル-2-ピロリドンを固形分68質量%となるように投入して更に混合して、正極合剤含有スラリーを調製した。正極集電体となる厚さ20μm、幅200mmのアルミニウム箔の片面に、この正極合剤含有スラリーを、目付量が24.0mg/cmになるように調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで正極活物質層の密度が2.90g/cmになるように圧延することにより、正極活物質層と正極集電体とからなる正極(P1)を得た。
(1-2)正極(P2)及び(P3)の作製
 表1に記載の正極活物質:96.8質量部と、導電助剤であるアセチレンブラック:2質量部と、バインダーであるポリフッ化ビニリデン:1質量部と、分散剤であるポリビニルピロリドン:0.2質量部とを混合し、更に適量のN-メチル-2-ピロリドンを添加し、プラネタリーミキサーを用いて混合・分散を行って正極合剤含有スラリーを調製した。このスラリーを、厚みが15μmのアルミニウム箔の片面に所定の厚みで塗布し、85℃で乾燥した後、更に100℃で真空乾燥してからプレス処理を施して、正極合剤層を集電体の片面に有する正極を得た。正極合剤含有スラリーをアルミニウム箔に塗布する際には、アルミニウム箔の一部が露出するように未塗布領域を形成した。
 次に、この正極を、正極合剤層の面積が30mm×30mmで、且つアルミニウム箔の露出部を含むように切断し、アルミニウム箔の露出部に電流を取り出すためのアルミニウム製のリード片を溶接することにより、リード付き正極(P2)及び(P3)を得た。
 得られた正極(P2)及び(P3)の正極活物質種、塗布量、厚み、電極密度を表1に示す。
(1-3)正極(P4)の作製
 上記正極(P2)の作製におけるのと同様の手順により、正極合剤含有スラリー(ペースト)を調製した。得られた正極合剤含有スラリーを、厚みが15μmのアルミニウム箔(集電体)の両面に塗布し、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。次いで、プレス処理を行って正極合剤層の密度を3.15g/cmに調整した後に所定の大きさで切断して、帯状の正極を得た。アルミニウム箔に正極合剤含有ペーストを塗布する際には、アルミニウム箔の一部が露出するように非塗布領域を設けた。このとき、表面で塗布領域とした箇所は対応する裏面も塗布領域とした。得られた正極の正極合剤層の厚み(正極集電体であるアルミニウム箔の片面あたりの厚み)は63μm、塗布量(正極集電体であるアルミニウム箔の片面あたりの塗布量(目付量))は15.0mg/cmであった。
 前記帯状の正極を、アルミニウム箔(正極集電体)の露出部の一部が突出するように、且つ正極合剤層の形成部が四隅を曲線状とする略四角形状になるようにトムソン刃で打ち抜いて、正極集電体の両面に正極合剤層を有する電池用正極(P4)を得た。ここで、突出したアルミニウム箔露出部はタブ部として機能する。図5に、前記電池用正極を模式的に表す平面図を示した。ただし、正極の構造の理解を容易にするために、図5に示す正極のサイズの比率は、必ずしも実際のものと一致しない。
 正極10は、正極集電体12の露出部の一部が突出するように打ち抜いたタブ部13を有する形状であり、正極合剤層11形成部の形状は四隅を曲線状にした略四角形であり、図中a、b、及びcの長さはそれぞれ80mm、200mm、及び20mmである。
Figure JPOXMLDOC01-appb-T000005
(2)正極浸漬試験
 アルミラミネート袋を2.7cm×6cmに加工し、23mm×17mmに打ち抜いた前述の正極を封入した後、不活性雰囲気下において、各実施例又は比較例で調製した非水系電解液0.5mLを注液した。このとき、電極面が電解液中に浸漬されていることを確認した。注液後シールし、アルミラミネート袋を縦に立て掛けた状態で60℃に保ち、10日間保存した。保存後、内部の電解液及び正極表面の観察を行った。遷移金属とアセトニトリルとからなる錯体カチオンの塩を主成分とするゲル状物の生成が認められなかった場合を「○」(良好)、前記ゲル状物の生成が認められた場合を「×」(不良)と判定した。
(3)負極の作製
(3-1)負極(N1)の作製
 負極活物質として数平均粒子径12.7μmのグラファイト炭素粉末(密度2.23g/cm)及び数平均粒子径6.5μmのグラファイト炭素粉末(密度2.27g/cm)と、バインダーとしてカルボキシメチルセルロース(密度1.60g/cm)溶液(固形分濃度1.83質量%)及びスチレンブタジエンラテックス(ガラス転移温度:-5℃、乾燥時の数平均粒子径:120nm、密度1.00g/cm、分散媒:水、固形分濃度40質量%)とを、87.2:9.7:1.4:1.7の固形分質量比で混合し、負極合剤を得た。得られた負極合剤に溶剤として水を固形分45質量%となるように投入して更に混合して、負極合剤含有スラリーを調製した。負極集電体となる厚さ10μm、幅200mmの銅箔の片面に、この負極合剤含有スラリーを、目付量が10.6mg/cmになるよう調節しながらドクターブレード法で塗布し、溶剤を乾燥除去した。その後、ロールプレスで負極活物質層の密度が1.50g/cmになるように圧延して、負極活物質層と負極集電体とからなる負極(N1)を得た。
(3-2)負極(N2)及び(N3)の作製
 負極活物質である黒鉛:97.5質量部と、バインダーであるカルボキシメチルセルロース:1.5質量部及びスチレンブタジエンラテックス:1.0質量部とを混合し、更に適量の水を添加した後に十分に混合して、負極合剤含有スラリーを調製した。このスラリーを、厚みが10μmの銅箔の片面に一定厚みで塗布し、85℃で乾燥した後、更に100℃で真空乾燥してからプレス処理を施すことにより、負極合剤層を集電体の片面に有する負極を得た。負極合剤含有スラリーを銅箔に塗布する際には、銅箔の一部が露出するように未塗布領域を形成した。
 次に、この負極を、負極合剤層の面積が35mm×35mmで、且つ銅箔の露出部を含むように切断し、更に、銅箔の露出部に電流を取り出すためのニッケル製のリード片を溶接して、リード付き負極(N2)及び(N3)を得た。
 得られた負極(N2)及び(N3)の塗布量、厚み、及び実電極密度を表2に示す。
(3-3)負極(N4)の作製
 上記負極(N2)の作製におけるのと同様の手順により、負極合剤含有スラリー(ペースト)を調製した。得られた負極合剤含有スラリーを、厚みが10μmの銅箔(集電体)の両面に塗布した後、乾燥を行って、銅箔の両面に負極合剤層を形成した。次いで、プレス処理を行って負極合剤層の密度を1.55g/cmに調整した後に、所定の大きさで切断することにより、帯状の負極を得た。銅箔に負極合剤含有ペーストを塗布する際には、銅箔の一部が露出するように非塗布領域を設けた。このとき、表面で塗布領域とした箇所は対応する裏面も塗布領域とした。得られた負極の負極合剤層の厚み(負極集電体である銅箔の片面あたりの厚み)は69μm、塗布量(負極集電体である銅箔の片面あたりの塗布量(目付量))は9.0mg/cmであった。
 前記帯状の負極を、銅箔(負極集電体)の露出部の一部が突出するように、且つ負極合剤層の形成部が四隅を曲線状とする略四角形状になるようにトムソン刃で打ち抜いて、負極集電体の両面に負極合剤層を有する電池用負極(N4)を得た。ここで、突出した銅箔露出部はタブ部として機能する。図6に、前記電池用負極を模式的に表す平面図を示した。ただし、負極の構造の理解を容易にするために、図6に示す負極のサイズの比率は、必ずしも実際のものと一致していない。負極20は、負極集電体22の露出部の一部が突出するように打ち抜いたタブ部23を有する形状であり、負極合剤層21の形成部の形状は四隅を曲線状にした略四角形であり、図中d、e、及びfの長さはそれぞれ85mm、205mm、及び20mmである。
Figure JPOXMLDOC01-appb-T000006
(4)コイン電池の組み立て
 CR2032タイプの電池ケース(SUS304/Alクラッド)の中央に、上述のようにして得られた正極(P1)を直径15.958mmの円盤状に打ち抜いたものを、正極活物質層を上向きにしてセットした。この正極において、正極活物質層の面積は2.00cmであった。その上からポリエチレン製微多孔膜(膜厚20μm)及びポリプロピレン製ガスケットをセットして、電解液を150μL注入した。この後、上述のようにして得られた負極(N1)を直径16.156mmの円盤状に打ち抜いたものを、負極活物質層を下向きにしてセットした。この負極において、負極活物質層の面積は2.05cmであった。更にスペーサー及びスプリングをセットした後に電池キャップをはめ込み、カシメ機でかしめた。電池ケースからあふれた電解液はウエスできれいにふきとった。積層体及び非水系電解液が収容された電池ケースを、25℃環境下で24時間保持し、積層体に電解液を十分含浸させることにより、コイン型非水系二次電池(以下、単に「コイン電池」ともいう)を得た。
(5)コイン電池の評価
 上述のようにして得られたコイン電池について、先ず、以下の(5-1)の手順に従って、初回充電処理及び初回充放電容量測定を行った。次に、以下の(5-2)及び(5-3)の手順に従って、それぞれのコイン電池を評価した。充放電は、アスカ電子(株)製の充放電装置ACD-01(商品名)及び二葉科学社製の恒温槽PLM-63S(商品名)を用いて行った。
 ここで、1Cとは満充電状態の電池を、定電流で放電して1時間で放電終了となることが期待される電流値を意味する。下記においては、4.2Vの満充電状態から定電流で3.0Vまで放電して1時間で放電終了となることが期待される電流値を意味する。
(5-1)コイン電池の初回充放電処理
 コイン電池の周囲温度を25℃に設定し、0.1Cに相当する0.6mAの定電流で充電して電池電圧が4.2Vに到達するまで充電を行った後、4.2Vの定電圧で合計15時間充電を行った。その後、0.3Cに相当する1.8mAの定電流で3.0Vまで放電した。このときの放電容量を充電容量で割ることによって、初回効率を算出した。また、このときの放電容量を初期容量とした。
(5-2)コイン電池の高出力下における放電容量測定(出力試験)
 上述の(5-1)に記載の方法で初回充放電処理を行ったコイン電池を用い、1Cに相当する6mAの定電流で充電して電池電圧が4.2Vに到達するまで充電を行った後、4.2Vの定電圧で合計3時間充電を行った。その後、1Cに相当する6mAの定電流で電池電圧3.0Vまで放電した。このときの放電容量をAとした。次に、1Cに相当する6mAの定電流で充電して電池電圧が4.2Vに到達するまで充電を行った後、4.2Vの定電圧で合計3時間充電を行った。その後、5Cに相当する30mAの定電流で電池電圧3.0Vまで放電した。このときの放電容量をBとした。出力試験測定値(容量維持率)として、以下の値を算出した。
   容量維持率=100×B/A[%]
(5-3)コイン電池の60℃満充電保存試験
 上述の(5-1)に記載の方法で初回充放電処理を行ったコイン電池について、60℃において満充電状態で保存した場合の耐久性能を評価した。先ず、コイン電池の周囲温度を25℃に設定し、1Cに相当する6mAの定電流で充電して電池電圧が4.2Vに到達した後、4.2Vの定電圧で合計3時間充電を行った。次に、このコイン電池を60℃の恒温槽に30日間保存した。その後、コイン電池の周囲温度を25℃に戻し、電池電圧を測定した。電池電圧が3.0V以上を維持した場合を「〇」(良好)、短絡して電池電圧が3.0Vを下回った場合を「×」(不良)と判定した。
(6)単層ラミネート電池の組み立て
 裁断後の前記正極(P2)と前記負極(N2)、又は裁断後の前記正極(P3)と前記負極(N3)とを、ポリエチレン製微多孔膜セパレータ(厚み18μm)を介して重ね合わせて積層電極体とし、この積層電極体を、90mm×80mmのアルミニウムラミネートシート外装体内に収容した。続いて、電解液を外装体内に注入した後、外装体を封止して、図1に示す外観で、図2に示す断面構造の単層ラミネート型非水系二次電池(以下、単に「単層ラミネート電池」ともいう)を作製した。この単層ラミネート電池は、定格電流値が25mAh、定格電圧値が4.2Vのものである。
(7)多層ラミネート電池の組み立て
 正極集電体の両面に正極合剤層を形成した電池用正極(P4)20枚、及び負極集電体の両面に負極合剤層を形成した電池用負極(N4)21枚を用いて積層電極体を形成した。該積層電極体は、上下の両端を電池用負極として、これらの間に電池用正極と電池用負極とを、セパレータ(微多孔性ポリエチレンフィルム製セパレータ、厚み20μm)を介在させつつ交互に配置し、正極同士のタブ部、及び負極同士のタブ部を、それぞれ溶接した。
 次に、厚み:150μm、幅:130mm、高さ:230mmのアルミニウムラミネートフィルムに前記積層電極体が収まるように窪みを形成し、該窪みに前記積層電極体を挿入し、その上に前記と同じサイズのアルミニウムラミネートフィルム(窪みを形成していないもの)を置いて、両アルミニウムラミネートフィルムの3辺を熱溶着した。そして、両アルミニウムラミネートフィルムの残りの1辺から前記非水電解液を注入した。その後、両アルミニウムラミネートフィルムの前記残りの1辺を真空熱封止することにより、多層ラミネート型非水系二次電池(以下、単に「多層ラミネート電池」ともいう)を作製した。この多層ラミネート電池は、定格電流値が15Ah、定格電圧値が4.2Vのものである。
 積層電極体の有する各正極は、タブ部同士を溶接して一体化し、この溶接したタブ部の一体化物を電池内で正極外部端子と接続した。同様に、積層電極体の有する各負極も、タブ部同士を溶接して一体化し、この溶接したタブ部の一体化物を電池内で負極外部端子と接続した。これら正極外部端子及び負極外部端子は、外部の機器等と接続可能なように、片端側をアルミニウムラミネートフィルム外装体の外側に引き出した。
(8)単層ラミネート電池及び多層ラミネート電池の評価
 上述のようにして得られた単層ラミネート電池及び多層ラミネート電池について、先ず、以下の(8-1)の手順に従って出力特性を評価した。次に、単層ラミネート電池については以下の(8-2)の手順に従って60℃満充電保存特性を、多層ラミネート電池については(8-3)の手順に従って充放電DCR(直流内部抵抗)を、それぞれ評価した。
(8-1)出力特性(充放電容量維持率)
 実施例及び比較例で得られた各ラミネート電池について、23℃において、0.2Cの電流値で4.2Vまで定電流充電を行った後、電流値が0.1Cになるまで4.2Vで定電圧充電して、充電容量(0.2C充電容量)を測定した。次いで、充電後の各ラミネート電池について、0.2Cの電流値で2.5Vになるまで定電流で放電して、0.2C放電容量を測定した。
 次に、上記0.2C放電容量を測定した後の各ラミネート電池について、定電流充電時及び定電流放電時の電流値をそれぞれ2Cに変更した以外は、上記0.2C充放電容量測定と同じ条件で定電流-定電圧充電及び定電流放電を行い、2C充電容量及び2C放電容量を測定した。
 そして、0.2C放電容量を2C放電容量で除した値を放電容量維持率とし、0.2C充電容量を2C充電容量で除した値を充電容量維持率として、それぞれを求め、百分率で表した。
(8-2)60℃満充電保存試験
 実施例及び比較例得られた各ラミネート電池について、25℃において、1Cの電流値で4.2Vになるまで定電流充電を行い、引き続いて電流値が0.1Cになるまで4.2Vで定電圧充電を行った。次に、この充電後の各ラミネート電池を60℃の恒温槽内で30日間貯蔵した。その後、各ラミネート電池を恒温槽から取り出して室温に戻した後に、短絡の有無を測定し、短絡が生じなかった場合を「○(60℃満充電保存特性良好)」と判定し、短絡が生じた場合を「×(60℃満充電保存特性不良)」と判定した。
(8-3)出力試験(充放電DCR(直流内部抵抗)測定)
 実施例及び比較例で得られた各ラミネート電池について、25℃において、1Cの電流値で30分間の定電流充電を行った後、1Cの電流値で10秒間放電し、放電開始から10秒間で低下した電圧:ΔVを測定した。
 次に、前記条件下における定電流充電と、2C電流値における定電流放電とを順次行って、2Cの定電流放電の開始から10秒間で低下した電圧:ΔVを同様に測定し、下記式によりDCRを算出した。
  DCR(mΩ)=(ΔV-ΔV)/(2Cの電流値-1Cの電流値)
[実施例1]
 不活性雰囲気下、非水系溶媒として830mLのアセトニトリル及び170mLのビニレンカーボネートからなる混合溶媒を調製し、該混合溶媒に対して、1.3molのLiPF及び0.1molのLiBOBを溶解させた。次に、上記混合溶媒100質量部に対して、添加剤として窒素含有環状化合物であるピリジン0.1質量部を加えて混合することにより、電解液(S11)を得た。この電解液(S11)について、上述の(2)に記載の方法で正極浸漬試験を行った。
[比較例1、実施例2~4、及び比較例2]
 上記実施例1において、非水系溶媒の組成、添加剤(窒素含有環状化合物)の種類及び添加量を、それぞれ表3に記載の通りとしたこと以外は実施例1と同様にして電解液(S12~S16)をそれぞれ得た。これらの電解液について上述の(2)に記載の方法で正極浸漬試験を行った。
 実施例1~実施例4及び比較例1~比較例2における電解液組成及び評価結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000007
 表3の非水系溶媒欄における略称は、それぞれ以下の意味である。
  AN:アセトニトリル
  PC:プロピレンカーボネート
  DEC:ジエチルカーボネート
  VC:ビニレンカーボネート
  ES:エチレンサルファイト
  EC:エチレンカーボネート
  EMC:エチルメチルカーボネート
 表4~表6における略称も上記と同様である。
 フッ素含有無機リチウム塩と有意量のアセトニトリルとを含む電解液において、窒素含有環状化合物を含有しない比較例1及び比較例2では、褐色ゲル状物の生成が認められた。このゲル状物は、分析結果から遷移金属とアセトニトリルとからなる錯体カチオンを含むものであることが判明した。一方、フッ素含有無機リチウム塩と有意量のアセトニトリルとを含む電解液においても、窒素含有環状化合物を含有する実施例1~実施例4では、褐色ゲル状物の生成が認められなかった。
 これらの結果から、フッ素含有無機リチウム塩と有意量のアセトニトリルとを含む電解液において、窒素含有環状化合物の添加が、高温耐久性に大きく寄与していることが明らかとなった。
[実施例5]
 上述のようにして作製した正極(P1)及び負極(N1)、並びに実施例4で調製した電解液(S15)を組み合わせ、上述の(4)に記載の方法に従ってコイン電池を作製した。このコイン電池について上述の(5-1)に記載の方法により初回充放電処理を行い、上述の(5-2)及び(5-3)に記載の方法により放電容量測定及び保存試験を行った。
[比較例3]
 電解液として上記比較例2で調製した(S16)を使用した以外は、実施例5と同様にしてコイン電池を作製した。このコイン電池について上述の(5-1)に記載の方法により初回充放電処理を行い、上述の(5-2)及び(5-3)に記載の方法により放電容量測定及び保存試験を行った。
[比較例4]
 不活性雰囲気下、非水系溶媒として300mLのエチレンカーボネート及び700mLのエチルメチルカーボネートからなる混合溶媒を調製し、該混合溶媒対して1.0molのLiPFを溶解させて、電解液(S17)を得た。
 電解液(S17)を使用した以外は、実施例5と同様にしてコイン電池を作製した。このコイン電池について上述の(5-1)に記載の方法により初回充放電処理を行い、上述の(5-2)及び(5-3)に記載の方法により放電容量測定及び保存試験を行った。
 実施例5、比較例3、及び比較例4の評価結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例5と比較例4との比較から、アセトニトリルを含む電解液を用いた場合、アセトニトリルを含まない電解液を用いた場合と比較して出力試験における容量維持率が顕著に向上することが確認された。
 比較例3によると、非水系溶媒が有意量のアセトニトリルを含む場合には、保存試験において30日以内に短絡が見られた。これに対して、非水系溶媒中のアセトニトリルの含有量が30体積%以上であっても、フッ素含有無機リチウム塩と窒素含有環状化合物とを含む電解液を用いた実施例5の場合には、保存試験において少なくとも30日間は短絡しないことが確認された。
[実施例6]
 上記実施例1において、非水系溶媒の組成、添加剤(窒素含有環状化合物)の種類及び添加量を、それぞれ表5に記載のとおりとしたこと以外は実施例1と同様にして電解液(S18)を得た。
 上述のようにして作製した正極(P2)及び負極(N2)、並びに電解液(S18)を組み合わせ、上述の(6)に記載の方法に従って単層ラミネート電池を作製した。この単層ラミネート電池について上述の(8-1)及び(8-2)に記載の方法により出力特性(充放電容量維持率)試験及び60℃満充電試験を行った。
[実施例7]
 正極及び負極として、それぞれ正極(P3)及び負極(N3)を使用した以外は、実施例6と同様にして単層ラミネート電池を作製した。この単層ラミネート電池について上述の(8-1)及び(8-2)に記載の方法により出力特性(充放電容量維持率)試験及び60℃満充電試験を行った。
[比較例5]
 不活性雰囲気下、非水系溶媒として300mLのエチレンカーボネート及び700mLのジエチルカーボネートからなる混合溶媒を調製し、該混合溶媒対して1.2molのLiPFを溶解させ、更に1.5質量%の量となるビニレンカーボネートを溶解させて、電解液(S19)を得た。
 電解液(S19)を使用した以外は、実施例6と同様にして単層ラミネート電池を作製した。この単層ラミネート電池について上述の(8-1)及び(8-2)に記載の方法により出力特性(充放電容量維持率)試験及び60℃満充電試験を行った。
[比較例6]
 電解液(S19)を使用した以外は、実施例7と同様にして単層ラミネート電池を作製した。この単層ラミネート電池について上述の(8-1)及び(8-2)に記載の方法により出力特性(充放電容量維持率)試験及び60℃満充電試験を行った。
 実施例6及び7、並びに比較例5及び6における電池構成及び評価結果を以下の表5に示す。
Figure JPOXMLDOC01-appb-T000009
[実施例8]
 上述のようにして作製した正極(P4)及び負極(N4)、並びに電解液(S18)を組み合わせ、上述の(7)に記載の方法に従って多層ラミネート電池を作製した。この多層ラミネート電池について上述の(8-1)及び(8-3)に記載の方法により出力特性(充放電容量維持率)試験及び出力試験(充放電DCR測定)を行った。
[比較例7]
 電解液(S19)を使用した以外は、実施例8と同様にして多層ラミネート電池を作製した。この多層ラミネート電池について上述の(8-1)及び(8-3)に記載の方法により出力特性(充放電容量維持率)試験及び出力試験(充放電DCR測定)を行った。
 実施例8及び比較例7における電池構成及び評価結果を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000010
 一般に、大容量の多層ラミネート電池では、電極表面における電位ムラが生じ易く、ガス発生が大きな問題となる。しかし、実施例8の多層ラミネート電池は問題なく作動し、小型の単層ラミネート電池評価では確認できなかったスケールアップ時の課題も解決していることが実証された。
 実施例8と比較例7との比較から、アセトニトリルを含む電解液を用いた場合には、アセトニトリルを含まない電解液を用いた場合と比較して出力試験におけるDCRが顕著に低減されることが確認された。
 以上の結果から、本実施形態の電解液を用いた非水系二次電池は、既存電解液を使用した場合に匹敵する高温耐久性能を維持しながら、高い出力特性が実現されていることが検証された。
 本発明の非水系二次電池は、例えば、携帯電話機、携帯オーディオ機器、パーソナルコンピュータ、IC(Integrated Circuit)タグ等の携帯機器;ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車等の自動車用充電池;住宅用蓄電システム等への適用が可能である。
 1  非水系二次電池
 2  電池外装
 3  正極外部端子
 4  負極外部端子
 5  正極
 5A  正極活物質層
 5B  正極集電体
 6  負極
 6A  負極活物質層
 6B  負極集電体
 7  セパレータ
 10  正極
 11  正極合剤層
 12  正極集電体
 13  タブ部
 20  負極
 21  負極合剤層
 22  負極集電体
 23  タブ部

Claims (6)

  1.  アセトニトリルを30~100体積%含む非水系溶媒と、
    フッ素含有無機リチウム塩と、
    下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式(1)中、R、R、及びRで表される置換基は、それぞれ独立して、水素原子、炭素数1~4のアルキル基、炭素数1~4のフッ素置換アルキル基、炭素数1~4のアルコキシ基、炭素数1~4のフッ素置換アルコキシ基、フェニル基、シクロヘキシル基、ニトリル基、ニトロ基、アミノ基、N,N’-ジメチルアミノ基、又はN,N’-ジエチルアミノ基であり、これらの置換基のうち2つ以上は水素原子である。}で表される化合物と、
    を含有することを特徴とする、非水系電解液。
  2.  前記一般式(1)で表される化合物が、ピリジン及び4-(tert-ブチル)ピリジンからなる群より選ばれる1種以上の化合物である、請求項1記載の非水系電解液。
  3.  前記一般式(1)で表される化合物の含有量が、非水系電解液の全体に対して0.01~10質量%である、請求項1又は2記載の非水系電解液。
  4.  前記フッ素含有無機リチウム塩が、LiPFを含有する、請求項1~3のいずれか1項記載の非水系電解液。
  5.  集電体の片面又は両面に、Ni、Mn、及びCoから選ばれる少なくとも1種の遷移金属元素を含有する正極活物質層を有する正極、
    集電体の片面又は両面に負極活物質層を有する負極、並びに、
    請求項1~4のいずれか1項記載の非水系電解液を具備することを特徴とする、非水系二次電池。
  6.  前記正極活物質層と前記負極活物質層とが対向配置されており、
    前記負極活物質層のうち、前記正極活物質層に対向する側の面の全面積の、
    前記正極活物質層と前記負極活物質層とが対向する領域の面積に対する比が、1.0より大きく1.1未満である、請求項5記載の非水系二次電池。
PCT/JP2016/060441 2015-03-31 2016-03-30 非水系電解液及び非水系二次電池 WO2016159108A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16772989.6A EP3279996B1 (en) 2015-03-31 2016-03-30 Nonaqueous electrolyte and nonaqueous secondary battery
KR1020177023023A KR101945657B1 (ko) 2015-03-31 2016-03-30 비수계 전해액 및 비수계 이차 전지
JP2017510120A JP6346989B2 (ja) 2015-03-31 2016-03-30 非水系電解液及び非水系二次電池
CN201680017741.8A CN107431247B (zh) 2015-03-31 2016-03-30 非水系电解液和非水系二次电池
US15/558,270 US10693189B2 (en) 2015-03-31 2016-03-30 Nonaqueous electrolyte and nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015073425 2015-03-31
JP2015-073425 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159108A1 true WO2016159108A1 (ja) 2016-10-06

Family

ID=57006919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060441 WO2016159108A1 (ja) 2015-03-31 2016-03-30 非水系電解液及び非水系二次電池

Country Status (6)

Country Link
US (1) US10693189B2 (ja)
EP (1) EP3279996B1 (ja)
JP (1) JP6346989B2 (ja)
KR (1) KR101945657B1 (ja)
CN (1) CN107431247B (ja)
WO (1) WO2016159108A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101582A (ja) * 2016-12-21 2018-06-28 住友金属鉱山株式会社 非水系電解質二次電池用正極材料の容量評価方法
JP2018156803A (ja) * 2017-03-17 2018-10-04 旭化成株式会社 非水系二次電池
CN110383564A (zh) * 2017-03-17 2019-10-25 旭化成株式会社 非水系电解液、非水系二次电池、电池包和混合动力系统
KR20220035220A (ko) 2020-05-28 2022-03-21 아사히 가세이 가부시키가이샤 비수계 이차 전지 및 비수계 전해액
US11532839B2 (en) 2017-03-17 2022-12-20 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery
US11843092B2 (en) 2019-09-13 2023-12-12 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
WO2023249003A1 (ja) * 2022-06-24 2023-12-28 ダイキン工業株式会社 電極材料用表面処理剤、正極活物質、集電箔、負極活物質、導電助剤、電極、電池、正極活物質の製造方法、集電箔の製造方法、負極活物質の製造方法、導電助剤の製造方法、及び、電極の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902900A (zh) * 2018-03-29 2020-11-06 松下知识产权经营株式会社 电化学装置
CN112563491B (zh) * 2019-03-21 2023-10-24 宁德新能源科技有限公司 负极材料及包含该负极材料的负极及电化学装置
CN112335090B (zh) * 2020-03-03 2023-05-02 宁德新能源科技有限公司 电解液和使用其的电化学装置
DE102020216546A1 (de) * 2020-12-23 2022-06-23 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Elektrodenpulvermischung einer Batteriezelle
CN113270642A (zh) * 2021-05-17 2021-08-17 西安亚弘泰新能源科技有限公司 一种超低温锂离子电池电解液及其制备方法
CN114361446A (zh) * 2021-12-29 2022-04-15 常州锂源新能源科技有限公司 一种磷酸铁锂正极材料低温性能的测试方法
CN114552005A (zh) * 2022-02-15 2022-05-27 湖北亿纬动力有限公司 一种电解液及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351860A (ja) * 1991-05-29 1992-12-07 Sanyo Electric Co Ltd 非水電解液電池
JP2004111349A (ja) * 2002-07-23 2004-04-08 Central Glass Co Ltd 電気化学ディバイスの溶媒分解抑制方法及びそれを用いた電気化学ディバイス
JP2007273405A (ja) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2014116586A (ja) * 2012-12-06 2014-06-26 Samsung Electro-Mechanics Co Ltd 電解液組成物及びこれを有するエネルギ貯蔵装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075716B2 (ja) 1985-09-02 1995-01-25 株式会社リコー N,n’―ジフェニルベンジジン重合体の製造方法
US6767671B2 (en) * 2000-07-14 2004-07-27 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and secondary battery containing same
JP4934919B2 (ja) * 2000-07-14 2012-05-23 三菱化学株式会社 非水電解液及び非水電解液二次電池
US7968235B2 (en) * 2003-07-17 2011-06-28 Uchicago Argonne Llc Long life lithium batteries with stabilized electrodes
KR100612272B1 (ko) * 2003-07-31 2006-08-11 삼성에스디아이 주식회사 비수성 전해질 및 이를 포함하는 리튬 이차 전지
KR100558846B1 (ko) * 2003-08-19 2006-03-10 에스케이씨 주식회사 전해질 조성물 및 이를 채용한 리튬 전지와 그의 제조방법
JP5049680B2 (ja) 2007-07-12 2012-10-17 株式会社東芝 非水電解質電池及び電池パック
CN101673852B (zh) * 2008-09-11 2015-01-14 比亚迪股份有限公司 一种电解液添加剂及含该添加剂的电解液及锂离子电池
EP2634854B1 (en) 2010-10-29 2018-09-19 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte and nonaqueous secondary battery
US20120171576A1 (en) * 2010-12-29 2012-07-05 Industrial Technology Research Institute Non-aqueous electrolyte and lithium secondary battery including the same
US10644353B2 (en) 2011-10-28 2020-05-05 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery
US9614252B2 (en) 2012-03-26 2017-04-04 The University Of Tokyo Lithium secondary battery electrolytic solution and secondary battery including said electrolytic solution
GB2510413A (en) * 2013-02-04 2014-08-06 Leclanch Sa Electrolyte composition for electrochemical cells
JP6238582B2 (ja) 2013-06-11 2017-11-29 国立大学法人 東京大学 高濃度金属塩を含むアセトニトリル電解液、及び当該電解液を含む二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351860A (ja) * 1991-05-29 1992-12-07 Sanyo Electric Co Ltd 非水電解液電池
JP2004111349A (ja) * 2002-07-23 2004-04-08 Central Glass Co Ltd 電気化学ディバイスの溶媒分解抑制方法及びそれを用いた電気化学ディバイス
JP2007273405A (ja) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2014116586A (ja) * 2012-12-06 2014-06-26 Samsung Electro-Mechanics Co Ltd 電解液組成物及びこれを有するエネルギ貯蔵装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101582A (ja) * 2016-12-21 2018-06-28 住友金属鉱山株式会社 非水系電解質二次電池用正極材料の容量評価方法
US11532839B2 (en) 2017-03-17 2022-12-20 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery
CN110383564A (zh) * 2017-03-17 2019-10-25 旭化成株式会社 非水系电解液、非水系二次电池、电池包和混合动力系统
JPWO2018169028A1 (ja) * 2017-03-17 2020-01-16 旭化成株式会社 非水系電解液、非水系二次電池、セルパック、及び、ハイブリッドシステム
EP3598558A4 (en) * 2017-03-17 2021-09-01 Asahi Kasei Kabushiki Kaisha WATER-FREE ELECTROLYTE, WATER-FREE SECONDARY BATTERY, CELL PACK AND HYBRID SYSTEM
JP2022017483A (ja) * 2017-03-17 2022-01-25 旭化成株式会社 非水系二次電池、セルパック、及び、ハイブリッドシステム
CN110383564B (zh) * 2017-03-17 2022-09-20 旭化成株式会社 非水系电解液、非水系二次电池、电池包和混合动力系统
US11515567B2 (en) 2017-03-17 2022-11-29 Asahi Kasei Kabushiki Kaisha Non-aqueous electrolyte solution, non-aqueous secondary battery, cell pack, and hybrid power system
JP2018156803A (ja) * 2017-03-17 2018-10-04 旭化成株式会社 非水系二次電池
JP7248764B2 (ja) 2017-03-17 2023-03-29 旭化成株式会社 非水系二次電池、セルパック、及び、ハイブリッドシステム
US11843092B2 (en) 2019-09-13 2023-12-12 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20220035220A (ko) 2020-05-28 2022-03-21 아사히 가세이 가부시키가이샤 비수계 이차 전지 및 비수계 전해액
WO2023249003A1 (ja) * 2022-06-24 2023-12-28 ダイキン工業株式会社 電極材料用表面処理剤、正極活物質、集電箔、負極活物質、導電助剤、電極、電池、正極活物質の製造方法、集電箔の製造方法、負極活物質の製造方法、導電助剤の製造方法、及び、電極の製造方法

Also Published As

Publication number Publication date
JPWO2016159108A1 (ja) 2017-09-21
US20180062207A1 (en) 2018-03-01
EP3279996A4 (en) 2018-02-07
EP3279996A1 (en) 2018-02-07
KR20170105590A (ko) 2017-09-19
EP3279996B1 (en) 2018-12-26
KR101945657B1 (ko) 2019-02-07
US10693189B2 (en) 2020-06-23
CN107431247B (zh) 2020-02-21
CN107431247A (zh) 2017-12-01
JP6346989B2 (ja) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6346989B2 (ja) 非水系電解液及び非水系二次電池
JP6346990B2 (ja) 非水系電解液及び非水系二次電池
JP6865555B2 (ja) 非水系二次電池
KR102536581B1 (ko) 비수계 전해액 및 비수계 이차 전지
JP6868969B2 (ja) 非水系二次電池とそれに用いられる非水系電解液
JP6796445B2 (ja) 非水系二次電池
JP6767151B2 (ja) 非水系電解液及び非水系二次電池
JP2019197634A (ja) 非水系電解液
JP2022150959A (ja) 非水系電解液及び非水系二次電池
JP7303755B2 (ja) 非水系電解液及び非水系二次電池
JP6564336B2 (ja) 非水系電解液及び非水系二次電池
JP2019197633A (ja) 非水系電解液及び非水系二次電池
JP2019197632A (ja) 非水系電解液及び非水系二次電池
JP7233323B2 (ja) 非水系電解液、及び非水系二次電池
JP7339921B2 (ja) 非水系電解液及び非水系二次電池
JP7260983B2 (ja) 非水系電解液及び非水系二次電池
JP2018060693A (ja) 非水系二次電池
JP7020818B2 (ja) 非水系電解液及び非水系二次電池
WO2022203072A1 (ja) 非水系電解液及び非水系二次電池
US20240178452A1 (en) Nonaqueous Electrolyte Solution and Nonaqueous Secondary Battery
JP2022150999A (ja) 非水系二次電池の初回コンディショニング方法
JP2018060692A (ja) 非水系二次電池
JP2018060691A (ja) 非水系二次電池
JP2018060690A (ja) 非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510120

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177023023

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772989

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15558270

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE