WO2016158882A1 - 合わせガラス用中間膜 - Google Patents

合わせガラス用中間膜 Download PDF

Info

Publication number
WO2016158882A1
WO2016158882A1 PCT/JP2016/059981 JP2016059981W WO2016158882A1 WO 2016158882 A1 WO2016158882 A1 WO 2016158882A1 JP 2016059981 W JP2016059981 W JP 2016059981W WO 2016158882 A1 WO2016158882 A1 WO 2016158882A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
laminated glass
group
interlayer film
mass
Prior art date
Application number
PCT/JP2016/059981
Other languages
English (en)
French (fr)
Inventor
芳聡 浅沼
楠藤 健
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201680018483.5A priority Critical patent/CN107406653A/zh
Priority to US15/561,418 priority patent/US20180104931A1/en
Priority to KR1020177026961A priority patent/KR20170131445A/ko
Priority to JP2017509990A priority patent/JP6185214B2/ja
Priority to EP16772763.5A priority patent/EP3275934A4/en
Publication of WO2016158882A1 publication Critical patent/WO2016158882A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10678Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10605Type of plasticiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols

Definitions

  • the present invention relates to an interlayer film for laminated glass.
  • thermoplastic resins and thermosetting resins such as polyvinyl acetal typified by polyvinyl butyral have excellent adhesion and compatibility with organic and inorganic substrates, and solubility in organic solvents.
  • thermoplastic resins and thermosetting resins such as polyvinyl acetal typified by polyvinyl butyral have excellent adhesion and compatibility with organic and inorganic substrates, and solubility in organic solvents.
  • ceramic binders various inks, paints, and safety glass interlayers.
  • a composition in which polyvinyl butyral and a plasticizer are mixed is usually used.
  • the sound insulation performance in the vicinity of room temperature is improved by using a composition containing a larger amount of plasticizer than ordinary laminated glass (for example, Patent Document 1). .
  • the object is [1] 100 parts by mass of at least one resin (a1) selected from the group consisting of a thermoplastic resin and a thermosetting resin, and at least one compound (a2) selected from the group consisting of compounds 1 to 4
  • An interlayer film for laminated glass comprising a composition (A) containing 10 to 1000 parts by mass, Compound 1 has the chemical formula (1): [Wherein, R 1 and R 2 each independently have a dimethylene group optionally having an alkyl substituent, a trimethylene group optionally having an alkyl substituent, and an alkyl substituent.
  • R 3 and R 4 are each independently of the other, a group selected from the group consisting of a hydrogen atom, an acyl group and alkyl group, R 5 and R 6 is a group selected from the group consisting of a hydrogen atom and an organic group, independently of each other, and R 7 and R 8 may be independent of each other.
  • a compound represented by Compound 2 is a compound having at least one carbon atom bonded to four atoms other than Compound 1 and none of which is a hydrogen atom, and at least one of the carbon atoms is directly bonded to at least three ring structures.
  • Compound 3 is a compound having one carbon atom bonded to four atoms that are not hydrogen atoms in the condensed ring skeleton other than Compound 1 and Compound 2, and among the groups bonded to the carbon atom At least one is a compound that is a group selected from the group consisting of a hydroxyl group and a linear or branched organic group, Compound 4 is an acene compound other than compounds 1 to 3, having a skeleton in which three or more benzene rings are condensed and having a molecular weight of 150 to 10,000.
  • Interlayer film for laminated glass [2] The interlayer film for laminated glass according to [1], wherein the resin (a1) is a thermoplastic resin; [3] The interlayer film for laminated glass according to the above [2], wherein the thermoplastic resin has an ester value of 5 mgKOH / g to 800 mgKOH / g; [4] The thermoplastic resin according to [2] or [3], wherein the thermoplastic resin is at least one resin selected from the group consisting of polyvinyl acetal, polyvinyl carboxylate, and olefin-vinyl carboxylate copolymer.
  • Interlayer film [10] In the compound 3, two of the groups bonded to carbon atoms bonded to four atoms that are not hydrogen atoms are selected from the group consisting of a hydroxyl group and a linear or branched organic group.
  • Agent (a3) is not a compound 1 to 4, an interlayer film for laminated glass;
  • the interlayer film for laminated glass according to the above [12], comprising one or more compounds selected from the group consisting of compounds obtained by esterification reaction with one molecule (k 1 to 4); [14] The laminated glass according to [12] or [13], wherein the compound (a2) and the plasticizer (a3) are compatible with each other at 23 ° C.
  • an interlayer film for laminated glass comprising a composition having a sufficiently lowered glass transition temperature and a sufficiently large tan ⁇ , and having improved sound insulation not only in a coincidence region but also in a mass-dominated region. be able to.
  • the interlayer film for laminated glass of the present invention has at least one resin (a1) selected from the group consisting of thermoplastic resins and thermosetting resins, and at least one type selected from the group consisting of compounds 1 to 4 described later.
  • the hydroxyl value of the resin (a1) is preferably 300 mgKOH / g or less, preferably 200 mgKOH / g or less, from the viewpoint of developing excellent sound insulation performance, particularly from the viewpoint of improving compatibility with the compound (a2) described later. More preferably, it is more preferably 100 mgKOH / g or less, more preferably 80 mgKOH / g or less, more preferably 60 mgKOH / g or less, still more preferably 40 mgKOH / g or less, It is particularly preferably 20 mgKOH / g or less. In this case, the lower limit of the hydroxyl value is usually 0 mgKOH / g.
  • the hydroxyl value of the resin (a1) is preferably 20 mgKOH / g or more, more preferably 50 mgKOH / g or more, and 100 mgKOH / g or more. More preferably, it is more preferably 120 mgKOH / g or more, and still more preferably 140 mgKOH / g or more. Further, the hydroxyl value of the resin (a1) is preferably 1000 mgKOH / g or less, more preferably 800 mgKOH / g or less, further preferably 500 mgKOH / g or less, and 300 mgKOH / g or less. Particularly preferred.
  • the ester value of the resin (a1) is preferably 5 mgKOH / g or more, more preferably 20 mgKOH / g or more, more preferably 50 mgKOH / g or more, and more preferably 100 mgKOH / g or more. 200 mgKOH / g or more is more preferable, and 300 mgKOH / g or more is particularly preferable.
  • the ester value of the resin (a1) is preferably 800 mgKOH / g or less, more preferably 700 mgKOH / g or less, and further preferably 600 mgKOH / g or less.
  • the content of the resin (a1) in the composition (A) is preferably 20% by mass or more, more preferably 25% by mass or more, based on the total weight of the composition (A).
  • the content is more preferably at least mass%, particularly preferably at least 35 mass%.
  • the content of the resin (a1) in the composition (A) is preferably 100% by mass or less, more preferably 90% by mass or less, based on the total weight of the composition (A). It is more preferable that the amount is not more than mass%, and it is particularly preferable that it is not more than 75% by mass.
  • the resin (a1) is preferably a thermoplastic resin from the viewpoint of expressing higher sound insulation performance.
  • the thermoplastic resin used in the present invention may partially or contain a small amount of a crosslinked structure as long as the properties as a thermoplastic resin are not impaired.
  • the resin (a1) is a thermoplastic resin, for example, polyvinyl acetal, polyvinyl alcohol, polyurethane, vinyl polycarboxylate, olefin-vinyl carboxylate copolymer, polyurethane elastomer, polyester elastomer, styrene-diene block copolymer, and chlorine
  • thermoplastic resins such as modified polyolefins can be used.
  • the resin (a1) is preferably polyvinyl acetal from the viewpoint that the interlayer film for laminated glass of the present invention exhibits excellent sound insulation performance and is excellent in weather resistance when used for a long period of time.
  • the resin (a1) is preferably a polyvinyl carboxylate and / or an olefin-vinyl carboxylate copolymer from the viewpoint that the interlayer film for laminated glass of the present invention is more excellent in sound insulation performance.
  • the polyvinyl acetal that can be used in the present invention is usually produced using polyvinyl alcohol as a raw material.
  • the polyvinyl alcohol can be obtained by a conventionally known method, for example, by polymerizing a carboxylic acid vinyl ester compound such as vinyl acetate and saponifying the obtained polymer.
  • a method for polymerizing the carboxylic acid vinyl ester compound conventionally known methods such as a solution polymerization method, a bulk polymerization method, a suspension polymerization method, and an emulsion polymerization method can be applied.
  • As the polymerization initiator an azo initiator, a peroxide initiator, a redox initiator, or the like can be appropriately selected depending on the polymerization method.
  • an alcoholysis decomposition reaction and a hydrolysis reaction using a conventionally known alkali catalyst or acid catalyst can be applied.
  • the polyvinyl alcohol may be a saponified copolymer obtained by copolymerizing a carboxylic acid vinyl ester compound and another monomer, as long as it does not contradict the gist of the present invention.
  • monomers include ⁇ -olefins such as ethylene, propylene, n-butene, and isobutylene; methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, and t-butyl acrylate.
  • Acrylic esters such as 2-ethylhexyl acrylate, dodecyl acrylate and octadecyl acrylate; methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-methacrylate
  • Methacrylic esters such as ethylhexyl, dodecyl methacrylate and octadecyl methacrylate; acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N, N-dimethyl acrylamide, diacetone acrylamide, acrylamide propane sulfate Acrylamide and its derivatives, such as acid and its salt, acrylamidopropyldimethylamine, its salt and its quaternary salt, and N-methylolacrylamide and its derivative; methacrylamide, N-methylmethacrylamide, N-eth
  • the viscosity average degree of polymerization of the polyvinyl alcohol is preferably from 150 to 3,500, more preferably from 200 to 2500, and even more preferably from 1500 to 2500.
  • the viscosity average polymerization degree is less than 150, the mechanical strength of the composition of the present invention may be insufficient, and when it exceeds 3500, solubility in a solvent and workability during melt processing may be reduced. There is.
  • the viscosity average polymerization degree of polyvinyl alcohol can be measured based on JIS K6724: 1994, for example.
  • the polyvinyl acetal that can be used in the present invention can be obtained, for example, by the following method.
  • an aldehyde and an acid catalyst are added, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant.
  • the temperature of the reaction solution is raised to a temperature of 20 to 80 ° C. over 30 to 200 minutes and held for 30 to 300 minutes.
  • the reaction liquid is neutralized by adding a neutralizing agent such as alkali as necessary, and the resin is washed with water and dried to obtain polyvinyl acetal.
  • the acid catalyst used in the acetalization reaction for example, either an organic acid or an inorganic acid can be used.
  • an organic acid or an inorganic acid can be used.
  • acetic acid, p-toluenesulfonic acid, nitric acid, sulfuric acid, hydrochloric acid and the like can be mentioned.
  • hydrochloric acid, sulfuric acid, and nitric acid are preferably used from the viewpoint that a sufficient reaction rate is obtained and cleaning after the reaction is easy.
  • the aldehyde used for the acetalization reaction is preferably an aldehyde having 1 to 8 carbon atoms.
  • the aldehyde having 1 to 8 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-pentylaldehyde, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, and n-octyl.
  • Examples include aldehyde, 2-ethylhexyl aldehyde, and benzaldehyde.
  • aldehydes having 2 to 5 carbon atoms are preferably used, and aldehydes having 4 carbon atoms are more preferably used.
  • n-butyraldehyde is readily available, the aldehyde remaining after the acetalization reaction can be easily removed by water washing and drying, the mechanical properties of the resulting polyvinyl acetal are excellent, and the glass transition temperature of the composition (A) is lowered. It is preferably used because a high tan ⁇ can be obtained.
  • the average residual hydroxyl group content of the polyvinyl acetal that can be used in the present invention is preferably 15 to 50 mol%, more preferably 17 to 42 mol%, and further preferably 23 to 35 mol%. 26 to 33 mol% is particularly preferable.
  • the average residual hydroxyl group content is less than 15 mol%, the mechanical strength of the composition (A) tends to be insufficient, or the compatibility with the compound (a2) and the plasticizer (a3) described later tends to decrease. There is.
  • the average residual hydroxyl group amount exceeds 50 mol%, the composition (A) tends to absorb water, or the compatibility with the compound (a2) and the plasticizer (a3) described later tends to decrease. .
  • the average residual vinyl ester group amount of the polyvinyl acetal that can be used in the present invention is preferably 0.1 to 15 mol%, more preferably 0.1 to 10 mol%, and more preferably 0.1 to 5 mol%. More preferably, it is mol%. Those having an average residual vinyl ester group content of less than 0.1 mol% are difficult to produce industrially at low cost, and those having an average residual vinyl ester group content of more than 15 mol% are discolored and deteriorated in appearance when used for a long time. there is a possibility.
  • the average degree of acetalization of the polyvinyl acetal that can be used in the present invention is preferably 40 to 84 mol%, more preferably 45 to 80 mol%, and more preferably 50 to 75 mol%. 50 to 73 mol% is more preferable, and 70 to 73 mol% is particularly preferable.
  • the average degree of acetalization of polyvinyl acetal is less than 40 mol%, the compatibility with the compound (a2) and the plasticizer (a3) described later tends to decrease.
  • those having an average degree of acetalization exceeding 84 mol% are difficult to produce industrially at low cost, and the mechanical strength of the resulting composition tends to decrease.
  • the polycarboxylate that can be used in the present invention is obtained by polymerizing a vinyl carboxylate compound by a conventionally known method such as a solution polymerization method, a bulk polymerization method, a suspension polymerization method or an emulsion polymerization method. Can do.
  • a polymerization initiator an azo initiator, a peroxide initiator, a redox initiator, or the like is appropriately selected depending on the polymerization method.
  • the vinyl carboxylate compound is preferably a vinyl carboxylate compound having 4 to 20 carbon atoms, more preferably a vinyl carboxylate compound having 4 to 10 carbon atoms, and further preferably a vinyl carboxylate compound having 4 to 6 carbon atoms.
  • Such vinyl carboxylate compounds include vinyl acetate, n-propenyl acetate, isopropenyl acetate, n-butenyl acetate, isobutenyl acetate, vinyl propionate, vinyl butanoate, vinyl pentanoate, vinyl hexanoate, vinyl octanoate, Examples include vinyl decanoate, vinyl dodecanoate, and vinyl hexadecanoate. Among these, vinyl acetate, vinyl propionate and vinyl butanoate are particularly preferably used, and vinyl acetate is more suitably used.
  • a vinyl carboxylate compound copolymerized with a monomer other than olefin can be used unless it is contrary to the spirit of the present invention.
  • monomers include acrylics such as methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, and octadecyl acrylate.
  • Acid esters such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate and octadecyl methacrylate; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetone acrylamide, acrylamide propanesulfonic acid and its salt, acrylamidopropyldimethylamine, its salt and its 4 Acrylamide and its derivatives such as N-methylolacrylamide and its derivatives; methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, methacrylamidepropanesulfonic acid and its salts, methacrylamidepropyldimethylamine, its salts and Quaternary salts thereof and methacrylamide and
  • vinyl ethers such as acrylonitrile and methacrylonitrile
  • vinyl halides such as vinyl chloride and vinyl fluoride
  • vinylidene chloride and Vinylidene halide such as Kka vinylidene
  • maleic acid esters or maleic acid anhydride include vinyl silyl compounds such as vinyl trimethoxy silane.
  • the degree of polymerization of the polyvinyl carboxylate that can be used in the present invention is preferably 500 or more, more preferably 1000 or more, and further preferably 1500 or more.
  • the degree of polymerization of the vinyl polycarboxylate is preferably 10,000 or less, more preferably 5000 or less, and further preferably 3500 or less. When the polymerization degree satisfies the above range, it is preferable because the interlayer film for laminated glass of the present invention exhibits excellent sound insulation performance and sufficient mechanical strength.
  • olefin-vinyl carboxylate copolymer that can be used in the present invention
  • a conventionally known olefin-vinyl carboxylate copolymer can be used.
  • olefin conventionally known compounds such as ethylene, propylene, n-butene, isobutylene, butadiene and isoprene can be used.
  • vinyl carboxylate compounds include vinyl acetate, n-propenyl acetate, isopropenyl acetate, n-butenyl acetate, isobutenyl acetate, vinyl propionate, vinyl butanoate, vinyl pentanoate, vinyl hexanoate, vinyl heptanoate, and octane.
  • the ratio of the amount of vinyl carboxylate to the total amount of olefin and vinyl carboxylate is preferably 10 mol% or more, and preferably 20 mol% or more. More preferably, it is more preferably 30 mol% or more, and particularly preferably 40 mol% or more. Further, the ratio of the amount of the vinyl carboxylate to the total amount of the olefin moiety and the vinyl carboxylate is preferably 90 mol% or less, more preferably 85 mol% or less, and 80 mol% or less. Is more preferable, and it is especially preferable that it is 75 mol% or less. When the amount of the vinyl carboxylate portion satisfies the above range, the interlayer film for laminated glass of the present invention can exhibit excellent sound insulation performance with sufficient mechanical strength and suitable temperature.
  • thermosetting resin examples include epoxy resins, phenol resins, urethane resins, melamine resins, and unsaturated polyester resins.
  • the interlayer film for laminated glass of the present invention contains at least one compound (a2) selected from the group consisting of compounds 1 to 4.
  • Compound 1 has the chemical formula (1): It is a compound represented by these.
  • first plasticizer the compound represented by the chemical formula (1)
  • plasticizer in this application refers to what shows the effect which reduces the viscosity of a composition at any temperature, when it adds to resin.
  • R 1 and R 2 each independently have a dimethylene group that may have an alkyl substituent, a trimethylene group that may have an alkyl substituent, and an alkyl substituent.
  • the dimethylene group is a group represented by —CH 2 —CH 2 —, and the dimethylene group having an alkyl substituent is one or more, preferably one alkyl group, of any hydrogen atom contained in the dimethylene group, More preferably, it represents a dimethylene group substituted with an alkyl group having 1 to 20 carbon atoms.
  • the trimethylene group is a group represented by —CH 2 —CH 2 —CH 2 —, and the trimethylene group having an alkyl substituent is one or more, preferably one, of any hydrogen atom contained in the trimethylene group. It represents a trimethylene group substituted by an alkyl group, more preferably an alkyl group having 1 to 20 carbon atoms.
  • the tetramethylene group is a group represented by —CH 2 —CH 2 —CH 2 —CH 2 —, and the tetramethylene group having an alkyl substituent is one or more arbitrary hydrogen atoms contained in the tetramethylene group , Preferably represents a tetramethylene group substituted by one alkyl group, more preferably an alkyl group having 1 to 20 carbon atoms. Among these, a dimethylene group which may have an alkyl substituent is particularly preferable.
  • the chemical formula (1) 50 to 100 mol% of the total amount of R 1 and R 2 is selected from the group consisting of a dimethylene group and a dimethylene group having one methyl substituent, that is, —CH 2 —CH (—CH 3 ) —.
  • the selected group is the compatibility between compound 1 and resin (a1), the plasticizing effect of compound 1 on resin (a1), and the value of tan ⁇ while lowering the glass transition temperature in composition (A). It is preferable from the viewpoint of increasing it and from the viewpoint of obtaining Compound 1 at low cost.
  • the plasticizer (a3) described below hereinafter sometimes referred to as “second plasticizer”
  • the compound (a2) and the plasticizer (a3) described below are added to the composition (A).
  • a dimethylene group having one methyl substituent is preferable from the viewpoint that it is easy to achieve compatibility at 23 ° C. in an included ratio.
  • the compound (a2) and the plasticizer (a3) are “compatible”, the compound (a2) and / or the plasticizer (a3) is not precipitated when visually confirmed, and the mixture is This refers to the case where phase separation has not occurred and it is not cloudy.
  • R 1 and R 2 are 50 to 100 mol% of the total amount of R 1 and R 2 in Formula (1), is preferably 70 to 100 mol%, more preferably 90 to 100 mol% dimethylene Group, a group selected from a dimethylene group having one methyl substituent, compatibility between compound 1 and resin (a1), plasticizing effect of compound 1 on resin (a1), composition (A) In view of increasing the value of tan ⁇ while lowering the glass transition temperature, and from the viewpoint of obtaining Compound 1 at low cost.
  • R 3 and R 4 are each independently a group selected from the group consisting of a hydrogen atom, an acyl group, and an alkyl group.
  • the acyl group is preferably an acyl group having 2 to 20 carbon atoms, and more preferably an acyl group having 2 to 8 carbon atoms.
  • Examples of preferable acyl groups include acetyl group, ethylcarbonyl group, propylcarbonyl group, butylcarbonyl group, pentylcarbonyl group, 3-pentylcarbonyl group, hexylcarbonyl group and 3-heptylcarbonyl group.
  • alkyl group an alkyl group having 1 to 20 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
  • alkyl groups include, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group (including branched groups such as 2-ethylhexyl group) and the like. These may be linear or branched.
  • R 3 and R 4 can be arbitrarily selected from these, but from the viewpoint of increasing the compatibility between the compound 1 and the resin (a1) in the composition (A), the total of R 3 and R 4 5 to 100 mol% of the amount is preferably a hydrogen atom, more preferably 10 to 100 mass% is a hydrogen atom, more preferably 30 to 100 mass% is a hydrogen atom, and 50 to 100 mass%.
  • R 5 and R 6 are each independently a group selected from the group consisting of a hydrogen atom and an arbitrary organic group. R 5 and R 6 may be directly bonded to form a cyclic structure. From the viewpoint of the plasticizing effect, it is preferable that no cyclic structure is formed.
  • R 5 and R 6 include a hydrogen atom, an aliphatic group such as a methyl group, an ethyl group, a propyl group, a butyl group and a trifluoromethyl group, and an aromatic group such as a phenyl group. Examples of those in which R 5 and R 6 are directly bonded to form a cyclic structure include a fluorene group.
  • chemical formula (2) Shows the chemical structure of Compound 1 having a fluorene group as R 5 and R 6 .
  • R 5 and R 6 are methyl groups, the compatibility between the compound 1 and the resin (a1) and the plasticizing effect of the compound 1 on the resin (a1) are excellent, and the glass transition temperature of the composition (A) is increased. It is preferable because the value of tan ⁇ increases while decreasing. Further, when R 5 and R 6 form a fluorene group, the maximum value of tan ⁇ (value of tan ⁇ in the vicinity of the glass transition temperature) of the composition (A) is increased more than that of the resin (a1).
  • R 7 and R 8 are each independently an arbitrary substituent that may or may not have.
  • the bonding position and number on the aromatic ring are not limited, and in the case of having two or more groups, they may be the same or different.
  • Specific examples of R 7 and R 8 include aliphatic groups such as methyl group, ethyl group, propyl group, butyl group, isobutyl group and tert-butyl group, aromatic groups such as phenyl group, fluorine atom and chlorine atom. And halogen atoms such as bromine atom.
  • m and n are arbitrary natural numbers, and decrease the compatibility between the compound 1 and the resin (a1), the viewpoint of the plasticizing effect of the compound 1 on the resin (a1), and the glass transition temperature of the composition (A).
  • the average of (m + n) per molecule of the compound is 2 to 10, preferably 2 to 8, more preferably 2 to 6. More preferably, it is ⁇ 4.
  • Examples of the compound 1 include 2,2-bis [4- (2-acetoxyethoxy) phenyl] propane, 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane, and 2,2-bis [4 -(2- (2-hydroxyethoxy) ethoxy) phenyl] propane, 2,2-bis [4- (2-methoxyethoxy) phenyl] propane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] Ethane, 9,9-bis [4- (2-acetoxyethoxy) phenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, 9,9-bis [4- (2- ( 2-hydroxyethoxy) ethoxy) phenyl] fluorene and 9,9-bis [4- (2-methoxyethoxy) phenyl] fluorene.
  • a compound having a fluorene skeleton is preferable from the viewpoint of obtaining
  • Compound 2 is a compound having at least one carbon atom bonded to four atoms other than Compound 1 and none of which is a hydrogen atom, and at least one of the carbon atoms is directly bonded to at least three ring structures. It is a compound.
  • Compound 4 is a carbon atom in which all four atoms are not hydrogen atoms. Further, from the same viewpoint, it is preferable that the carbon atoms bonded to four atoms that are not hydrogen atoms are directly bonded to four ring structures. Furthermore, from the same viewpoint, it is preferable that the compound 2 has a condensed ring structure, and it is more preferable that the condensed ring structure is directly bonded to a carbon atom bonded to four atoms that are not hydrogen atoms. .
  • Compound 2 has at least one carbon atom bonded to four carbon atoms, and at least one of the carbon atoms is directly bonded to four ring structures, and at least one of the directly bonded ring structures is It is particularly preferable that one is a compound having a condensed ring structure.
  • Examples of the compound 2 include 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-diphenylfluorene and 9,9-bis (4 -Compounds having a fluorene skeleton such as bromophenyl) fluorene, compounds having a tetraphenylmethane skeleton such as diphenylbis (4-hydroxyphenyl) methane, diphenylbis (4- (2-hydroxyethoxy) phenyl) methane, and tetraphenylmethane Is mentioned.
  • the compound having a fluorene skeleton is excellent in compatibility with the resin (a1) and raises the maximum value of tan ⁇ of the composition (A) more than that of the resin (a1). It is preferable in that the effect of improving the sound insulation is high, and is preferable from the viewpoint of the weather resistance of the interlayer film for laminated glass obtained.
  • Compound 3 is a compound having one carbon atom bonded to four atoms that are not hydrogen atoms in the condensed ring skeleton other than Compound 1 and Compound 2, and among the groups bonded to the carbon atom At least one is a compound which is a group selected from the group consisting of a hydroxyl group and a linear or branched organic group.
  • Examples of the compound 3 include compounds having a fluorene skeleton such as dimethanol fluorene, dimethyl fluorene and diethyl fluorene, and 1,3-dimethyladamantane, 1,3-dimethanoladamantane, 1-ethyladamantane and 3,5-dimethyl- Examples thereof include compounds having an adamantane skeleton such as 1-adamantanol.
  • the compound having a fluorene skeleton is preferable from the viewpoint of increasing the maximum value of tan ⁇ of the composition (A) from the resin (a1), and is preferable from the viewpoint of the weather resistance of the interlayer film for laminated glass to be obtained.
  • Compound 4 is an acene-based compound having a skeleton in which three or more benzene rings are condensed and having a molecular weight of 150 to 10,000, other than compounds 1 to 3.
  • Examples of the compound 4 include acenes such as 9- (hydroxymethyl) anthracene, 9- (2-hydroxyethyl) anthracene, 2-chloroanthracene, 2-bromoanthracene, 1,8-bishydroxymethylanthracene and 9-bromoanthracene. System compounds (anthracene compounds) and the like.
  • the molecular weight of the compound (a2) is preferably 150 or more, more preferably 250 or more, more preferably 300 or more, further preferably 350 or more, and particularly preferably 400 or more. .
  • the molecular weight of the compound (a2) is preferably 10,000 or less, more preferably 2000 or less, more preferably 1200 or less, further preferably 1000 or less, and 800 or less. Is particularly preferred.
  • the compound (a2) tends to volatilize when used for a long time, and when it exceeds 10,000, the compatibility with the thermoplastic resin and the thermosetting resin. May decrease, or sufficient sound insulation performance may not be exhibited.
  • the hydroxyl value of the compound (a2) used in the present invention is preferably 150 to 400 mgKOH / g, more preferably 200 to 350 mgKOH / g, and further preferably 230 to 320 mgKOH / g.
  • the hydroxyl value of the compound (a2) is preferably 500 mgKOH / g or less, preferably 300 mgKOH / g or less from the viewpoint of maintaining the sound insulation performance of the interlayer film for laminated glass of the present invention even when used for a long period of time. More preferably, it is 200 mgKOH / g or less, more preferably 100 mgKOH / g or less, further preferably 50 mgKOH / g or less, and particularly preferably 20 mgKOH / g or less. In this case, the lower limit of the hydroxyl value is usually 0 mgKOH / g.
  • the ester value of the compound (a2) is 300 mgKOH / g or less from the viewpoint of compatibility with the resin (a1) and the sound insulation performance of the interlayer film for laminated glass of the present invention even when used for a long time.
  • it is 200 mgKOH / g or less, more preferably 100 mgKOH / g or less, even more preferably 50 mgKOH / g or less, and particularly preferably 20 mgKOH / g or less.
  • the lower limit of the ester value is usually 0 mgKOH / g.
  • the amount of the compound (a2) contained in the composition (A) is 10 to 1000 parts by mass with respect to 100 parts by mass of the resin (a1) contained in the composition (A).
  • the compound (a2) is preferably 15 parts by mass or more, more preferably 20 parts by mass or more, more preferably 35 parts by mass or more, further preferably 55 parts by mass or more, and 75 parts by mass.
  • the above is particularly preferable.
  • a compound (a2) is 300 mass parts or less, It is more preferable that it is 200 mass parts or less, It is more preferable that it is 170 mass parts or less, It is more preferable that it is 150 mass parts or less, It is particularly preferably 130 parts by mass or less.
  • the amount of the compound (a2) is less than 10 parts by mass, the effect of adding the compound (a2) may not be exhibited.
  • the amount exceeds 1000 parts by mass the compound (a2) bleeds from the composition (A). Or the resin (a1) and the compound (a2) may undergo phase separation.
  • a compound (a2) is good also considering a compound (a2) as 100 mass parts or less or 90 mass parts or less as needed from a viewpoint of suppressing the bleeding of a compound (a2) more.
  • the composition (A) may contain a plasticizer (a3).
  • the plasticizer (a3) is not a compound 1 to 4.
  • the plastic film (a3) is preferably included from the viewpoint of developing high impact resistance in the interlayer film for laminated glass of the present invention.
  • the plasticizer (a3) that can be used in the present invention is excellent in compatibility with the resin (a1) and plasticizing effect on the resin (a1).
  • the resin (a1) is polyvinyl acetal.
  • a conventionally known plasticizer for polyvinyl acetal can be used.
  • the plasticizer (a3) is used, the compound (a2) and the plasticizer (a3) are compatible with each other at 23 ° C. in the ratio contained in the composition (A). It is excellent in workability at the time of manufacture, and the obtained composition (A) is preferable from the viewpoint of having transparency.
  • “compatibilized” means that the compound (a2) and / or the plasticizer (a3) is not precipitated and the mixture is not phase-separated and cloudy when visually confirmed. Refers to the case where there is not.
  • the resin (a1) is polyvinyl acetal
  • triethylene glycol di2-ethylhexanoate is particularly excellent in compatibility with polyvinyl acetal, and the resulting composition (A) has good impact resistance. Is preferable from the viewpoint of expression.
  • the amount of the plasticizer (a3) used is preferably 1 to 100 parts by mass, more preferably 3 to 90 parts by mass, and more preferably 5 to 80 parts by mass with respect to 100 parts by mass of the resin (a1). It is preferably 10 to 75 parts by mass, more preferably 15 to 70 parts by mass.
  • the amount of the plasticizer (a3) is less than 1 part by mass, the effect due to the inclusion of the plasticizer (a3) does not appear, and when the amount of the plasticizer (a3) exceeds 100 parts by mass, the composition (A ) May cause bleeding of the compound (a2) and / or the plasticizer (a3), and the strength of the composition (A) may be significantly reduced.
  • the compound (a2) When the plasticizer (a3) is added to the composition (A), the compound (a2) also exhibits an effect of improving the compatibility between the resin (a1) and the plasticizer (a3).
  • the compatibility when the composition (A) is stored or used at a low temperature such as 5 ° C. is improved.
  • the ratio of the content of the plasticizer (a3) to the content of the compound (a2) is preferably 0.03 to 40 times by mass, It is more preferably from 20 to 20 times by mass, more preferably from 0.08 to 15 times by mass, still more preferably from 0.1 to 10 times by mass, and further preferably from 0.15 to 6 times by mass. Particularly preferred.
  • Composition (A) may contain an adhesion improver (adhesion modifier), an antioxidant, an ultraviolet absorber and other additives as long as the effects of the present invention are not impaired.
  • adhesion improver adheresion modifier
  • antioxidant antioxidant
  • ultraviolet absorber ultraviolet absorber
  • adhesion improver examples include alkali metal salts and alkaline earth metal salts such as sodium acetate, potassium acetate, magnesium acetate and magnesium butyrate.
  • the addition amount can be adjusted so that, for example, the Pummel value obtained by the Pummel test becomes a value according to the purpose.
  • the composition (A) may contain sodium, but the content thereof is preferably 1 to 200 ppm, more preferably 3 to 100 ppm, further preferably 5 to 70 ppm. Particularly preferred is 50 ppm. Those having a sodium content of less than 1 ppm are difficult to produce industrially at low cost, and when the interlayer film for laminated glass of the present invention is used for a long period of time, the deacetalization reaction of polyvinyl acetal tends to proceed. Therefore, it is not preferable. On the other hand, if the sodium content exceeds 200 ppm, the interlayer film for laminated glass of the present invention tends to become cloudy particularly during water absorption, such being undesirable.
  • the composition (A) comprises a resin (a1), a compound (a2), and, if necessary, a plasticizer (a3), an antioxidant, an ultraviolet absorber, an adhesive strength adjusting agent and other components in a conventionally known method. Obtained by mixing with. Examples of the mixing method include melt kneading using a mixing roll, a plast mill or an extruder, or a method in which each component is dissolved in an appropriate organic solvent and then the solvent is distilled off.
  • the glass transition temperature of the composition (A) is preferably, for example, ⁇ 30 to 50 ° C., more preferably ⁇ 20 to 40 ° C., more preferably ⁇ 10 to 35 ° C., and more preferably 0 to 30 It is particularly preferable that the temperature is C. It is preferable for the glass transition temperature to be in the above range because of excellent mechanical strength and moldability. From the viewpoint of sound insulation, the glass transition temperature is preferably ⁇ 30 to 25 ° C., more preferably ⁇ 20 to 20 ° C., and particularly preferably ⁇ 10 to 15 ° C.
  • the composition (A) preferably has a tan ⁇ of 1.5 or more at the glass transition temperature (temperature T A (° C.)) from the viewpoint of improving the sound insulation performance. Tan ⁇ is measured at a frequency of 0.3 Hz and a tensile mode. Further, tan ⁇ at T A (° C.) is more preferably 1.7 or more, more preferably 2.0 or more, more preferably 2.5 or more, and 3.0 or more. More preferably, it is 3.3 or more, more preferably 3.6 or more, and particularly preferably 4.0 or more. Further, tan ⁇ at T A (° C.) is usually 10 or less.
  • the T A and tan ⁇ can be, for example, using the following method, measuring.
  • the composition (A) is molded by a hot press machine to obtain a sheet having a thickness of 0.8 mm.
  • the sheet was cut into a width of 3 mm and the distance between chucks was increased from ⁇ 50 ° C. to 120 ° C. at a rate of 3 ° C./min using a dynamic viscoelastic device (Rheogel-E4000 manufactured by UBM Co., Ltd.). 20 mm, frequency 0.3 Hz, displacement 75.9 ⁇ m, automatic static load 26 g, analysis in tension mode, temperature T A (° C.) is confirmed, and tangent loss (tan ⁇ ) value at T A (° C.) is obtained.
  • tan ⁇ shows a maximum value near the temperature T A (° C.).
  • An interlayer film for laminated glass can be obtained by molding the composition (A) (for example, extrusion molding or press molding).
  • the interlayer film for laminated glass of the present invention has good sound insulation.
  • the present invention also relates to a multilayer interlayer film for laminated glass comprising at least one interlayer film for laminated glass and at least one protective layer made of the composition (B) containing the resin (b1).
  • the resin (b1) contained in the composition (B) include thermoplastic resins such as polyvinyl acetal, ethylene-vinyl acetate copolymer, and ionomer. These are suitable because they are excellent in mechanical strength, transparency and adhesion to glass.
  • a composition (B) contains these resin (b1) 40 mass% or more, It is more preferable to contain 50 mass% or more, 60 mass%. More preferably, it is more preferably 80% by mass or more, and particularly preferably 90% by mass or more. Further, the composition (B) may contain 100% by mass of these resins (b1). When the content of these resins (b1) is less than 40% by mass, the adhesion between the protective layer and the glass may be lowered, or the mechanical strength of the protective layer may be insufficient.
  • the average residual hydroxyl group content is preferably 10 mol% or more, more preferably 15 mol% or more, and further preferably 20 mol% or more. Preferably, it is particularly preferably 25 mol% or more.
  • the average residual hydroxyl group content of polyvinyl acetal is preferably 50 mol% or less, more preferably 45 mol% or less, and further preferably 40 mol% or less.
  • the average residual vinyl ester group amount is preferably 30 mol% or less, and more preferably 20 mol% or less. If the average residual vinyl ester group amount exceeds 30 mol%, blocking tends to occur during the production of polyvinyl acetal, which makes it difficult to produce.
  • the lower limit of the average residual vinyl ester group amount is usually 0.1 mol%.
  • the average degree of acetalization is preferably 40 mol% or more, and preferably 90 mol% or less.
  • the average degree of acetalization is less than 40 mol%, the compatibility with a plasticizer or the like tends to be reduced.
  • the average degree of acetalization exceeds 90 mol%, a long time is required for the reaction for obtaining the polyvinyl acetal resin, which may be undesirable in the process and may not exhibit sufficient mechanical strength.
  • the average degree of acetalization is more preferably 60 mol% or more, from the viewpoint of water resistance and compatibility with a plasticizer, more preferably 65 mol% or more, and particularly preferably 70 mol% or more. .
  • the average degree of acetalization is preferably 85 mol% or less, more preferably 80 mol% or less, and particularly preferably 75 mol% or less.
  • the degree of polymerization is preferably 100 or more, more preferably 300 or more, more preferably 1000 or more, and preferably 1400 or more. More preferably, it is particularly preferably 1600 or more.
  • the degree of polymerization of the polyvinyl acetal is preferably 5000 or less, more preferably 3000 or less, more preferably 2500 or less, further preferably 2300 or less, and preferably 2000 or less. Particularly preferred.
  • the degree of polymerization of the polyvinyl acetal exceeds 5000, it may be difficult to mold the resin film. Furthermore, in order to improve the laminate suitability of the resulting interlayer film for laminated glass and to obtain a laminated glass having a more excellent appearance, the degree of polymerization of polyvinyl acetal is preferably 1800 or less.
  • the average residual vinyl ester group amount is preferably set to 30 mol% or less, and therefore, a saponified polyvinyl alcohol having a saponification degree of 70 mol% or more is used as a raw material. It is preferable to do.
  • the degree of saponification of polyvinyl alcohol is less than 70 mol%, the transparency and heat resistance of the resin may decrease, and the reactivity with aldehydes may also decrease.
  • the saponification degree is more preferably 95 mol% or more.
  • the upper limit of the saponification degree is usually 99.9 mol%.
  • the saponification degree of polyvinyl alcohol can be measured according to, for example, JIS K6726: 1944.
  • any of those in the interlayer film for laminated glass can be employed.
  • the ratio of the vinyl acetate portion to the total of the ethylene portion and the vinyl acetate portion is preferably less than 50 mol%, and less than 30 mol%. More preferably, it is more preferably less than 20 mol%, and particularly preferably less than 15 mol% from the viewpoint of expressing the mechanical strength and flexibility required for the interlayer film for laminated glass.
  • the ionomer When the ionomer is contained in the composition (B), it has a structural unit derived from ethylene and a structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid, and at least a part of the ⁇ , ⁇ -unsaturated carboxylic acid is a metal Examples thereof include resins neutralized by ions.
  • the content of the structural unit of ⁇ , ⁇ -unsaturated carboxylic acid is preferably 2% by mass or more, preferably 5% by mass or more. More preferably.
  • the content ratio of the structural unit of ⁇ , ⁇ -unsaturated carboxylic acid is preferably 30% by mass or less, and more preferably 20% by mass or less.
  • an ionomer of an ethylene-acrylic acid copolymer and an ionomer of an ethylene-methacrylic acid copolymer are preferable from the viewpoint of availability.
  • the ⁇ , ⁇ -unsaturated carboxylic acid constituting the ionomer include acrylic acid, methacrylic acid, maleic acid, monomethyl maleate, monoethyl maleate, and maleic anhydride. Acrylic acid or methacrylic acid is particularly preferred.
  • the metal ion include sodium ion.
  • a plasticizer (b2) for example, an antioxidant, an ultraviolet absorber, a light stabilizer, an antiblocking agent, a pigment, a dye, a functional inorganic compound, a blocking agent.
  • a heat material for example, an inorganic heat-shielding fine particle or an organic heat-shielding material having infrared absorbing ability
  • a plasticizer (b2) from the viewpoint of the mechanical strength and sound insulation of the interlayer film for laminated glass to be obtained.
  • plasticizer (b2) for example, a conventionally known plasticizer for polyvinyl acetal can be used, and those exemplified by the plasticizer (a3) are preferably used.
  • the content thereof is preferably 20 parts by mass or more and more preferably 25 parts by mass or more with respect to 100 parts by mass of the resin (b1). More preferably, it is 30 parts by mass or more.
  • the content of the plasticizer in the protective layer is preferably 60 parts by mass or less, more preferably 55 parts by mass or less, and 50 parts by mass or less with respect to 100 parts by mass of the resin (b1). More preferably.
  • the content of the plasticizer is less than 20 parts by mass with respect to 100 parts by mass of the resin (b1), the resulting laminate tends to have insufficient flexibility, and impact absorption as an interlayer film for laminated glass. May be a problem.
  • the plasticizer content is preferably 35 to 60 parts by mass from the viewpoint of achieving excellent sound insulation performance.
  • the lower limit of the thickness of the interlayer film for laminated glass of the present invention is usually 0.005 mm, preferably 0.01 mm, more preferably 0.02 mm, more preferably 0.04 mm, more preferably 0.07 mm, and more.
  • it is 0.1 mm, More preferably, it is 0.15 mm, Most preferably, it is 0.2 mm.
  • the upper limit is 5 mm normally, Preferably it is 4 mm, More preferably, it is 2 mm, More preferably, it is 1.6 mm, More preferably, it is 1.2 mm, More preferably, it is 1.1 mm, More preferably, it is 1 mm, Most preferably, it is 0.00. 79 mm.
  • the thickness of the protective layer in the present invention is preferably 0.01 mm or more, more preferably 0.1 mm or more, more preferably 0.15 mm or more, and preferably 0.20 mm or more. More preferably, it is particularly preferably 0.25 mm or more.
  • the thickness of the protective layer is preferably 1.00 mm or less, more preferably 0.70 mm or less, more preferably 0.60 mm or less, and more preferably 0.50 mm or less, It is further preferably 0.45 mm or less, and particularly preferably 0.4 mm or less.
  • the lower limit of the thickness of the multilayer interlayer film for laminated glass of the present invention is usually 0.1 mm, preferably 0.2 mm, more preferably 0.3 mm, more preferably 0.4 mm, more preferably 0.5 mm, more
  • the thickness is preferably 0.6 mm, more preferably 0.7 mm, and particularly preferably 0.75 mm.
  • the upper limit is 5 mm normally, Preferably it is 4 mm, More preferably, it is 2 mm, More preferably, it is 1.6 mm, More preferably, it is 1.2 mm, More preferably, it is 1.1 mm, More preferably, it is 1 mm, Most preferably, it is 0.00. 79 mm.
  • the present invention also relates to a laminated glass in which an interlayer film for laminated glass or a multilayer interlayer film for laminated glass is sandwiched between two glass plates.
  • a laminated glass can be produced by a conventionally known method.
  • the method include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll.
  • the glass laminated with the interlayer film for laminated glass or the multilayer interlayer film for laminated glass of the present invention is, for example, inorganic glass such as float plate glass, polished plate glass, mold plate glass, meshed plate glass and heat ray absorbing plate glass, and polymethyl methacrylate and polycarbonate.
  • inorganic glass such as float plate glass, polished plate glass, mold plate glass, meshed plate glass and heat ray absorbing plate glass, and polymethyl methacrylate and polycarbonate.
  • a conventionally well-known organic glass etc. can be used without a restriction
  • the surface shape of the interlayer film for laminated glass or the multilayer interlayer film for laminated glass of the present invention is preferably provided with a concavo-convex structure because it has excellent bubble-removing properties when thermally bonded to glass.
  • the laminated glass interlayer film and laminated glass interlayer film used in each Example and Comparative Example were sandwiched between two 300 mm ⁇ 300 mm ⁇ 2 mm float glasses, temporarily bonded by vacuum back, and 135 ° C. and 1.2 MPa by autoclave.
  • the laminated glass without bubbles was obtained by treating for 30 minutes under the above conditions.
  • the obtained laminated glass was cut into a size of 25 mm ⁇ 300 mm, and was vibrated with a vibrator (Emic Co., Ltd., small vibration generator 512-A).
  • the frequency response function at that time was analyzed with an FFT analyzer (Co., Ltd.).
  • Table 7 shows the temperature at which the average value of sound transmission loss is the largest (in Table 7, simply described as “temperature”), the average value at that temperature (in Table 7, simply described as “average value”), and at 5000 Hz.
  • the sound transmission loss value (simply described as “5000 Hz” in Table 7) is shown. The larger the average value, the better the sound transmission loss in a wide frequency including the so-called mass-dominated region, and the better the sound transmission loss at 5000 Hz, the better the sound insulation performance in the coincidence region.
  • PVB-1 polyvinyl butyral
  • Polyvinyl butyral (PVB-2) was obtained in the same manner as in Production Example 1 except that the amount of n-butyraldehyde used was changed to 236 g.
  • PVB-2 was analyzed according to JIS K6728: 1977, the average degree of butyralization was 71 mol%, the average amount of residual vinyl ester groups was 1 mol%, and the average amount of residual hydroxyl groups was 28 mol%. The results are shown in Table 1.
  • Polyvinyl butyral (PVB-3) was obtained in the same manner as in Production Example 1 except that the amount of n-butyraldehyde used was 265 g.
  • PVB-3 was analyzed according to JIS K6728: 1977, the average degree of butyralization was 78 mol%, the average amount of residual vinyl ester groups was 1 mol%, and the average amount of residual hydroxyl groups was 21 mol%. The results are shown in Table 1.
  • Polyvinyl alcohol-1 used in Production Example 1 was changed to 400 g of polyvinyl alcohol-2 (viscosity average polymerization degree 1700, saponification degree 92 mol%), and the amount of n-butyraldehyde used was changed to 231 g.
  • Polyvinyl butyral (PVB-4) was obtained.
  • PVB-4 was analyzed according to JIS K6728: 1977, the average degree of butyralization was 74 mol%, the average amount of residual vinyl ester groups was 7 mol%, and the average amount of residual hydroxyl groups was 19 mol%. The results are shown in Table 1.
  • PVB-5 polyvinyl butyral
  • the temperature was raised to 65 ° C. over 60 minutes, held at 65 ° C. for 120 minutes, and then cooled to room temperature.
  • an aqueous sodium hydroxide solution was added to neutralize the remaining acid, and further washed with excess ion-exchanged water and dried to obtain polyvinyl butyral (PVB-5).
  • PVB-5 was measured in accordance with JIS K6728: 1977, the average butyralization degree (average acetalization degree) was 74 mol%, the vinyl ester unit content was 8 mol%, and the residual hydroxyl group content was 18 mol. %Met.
  • the hydroxyl value of PVB-5 was 162 mgKOH / g, and the ester value was 73 mgKOH / g. The results are shown in Table 2.
  • PVB-6 polyvinyl butyral
  • the average butyralization degree (average acetalization degree) was 69 mol%
  • the vinyl ester unit content was 1 mol%
  • the average residual hydroxyl group amount was 30. Mol%.
  • the hydroxyl value of PVB-6 was 264 mgKOH / g
  • the ester value was 9 mgKOH / g. The results are shown in Table 2.
  • thermoplastic resins were used as thermoplastic resins other than the thermoplastic resin of the above production example. Details of the physical properties are shown in Table 2.
  • Ethylene-vinyl acetate copolymer-1 vinyl acetate content 12 mol%
  • Ethylene-vinyl acetate copolymer-2 vinyl acetate content 53 mol%
  • Ethylene-vinyl acetate copolymer-3 vinyl acetate content 70 mol%
  • Polyvinyl acetate vinyl acetate content 100 mol%
  • Table 3 shows compounds that do not satisfy the requirements of Compound 1 (first plasticizer) used in each Example and Compound (a2) used in Comparative Examples.
  • Table 1 shows compounds 1 to 4 used in Examples and Comparative Examples.
  • Example 1 100 parts by weight of PVB-1, 40 parts by weight of the first plasticizer-1, 0.08 parts by weight of BHT (2,6-ditertiarybutyl-4-hydroxytoluene) as an antioxidant, and as an ultraviolet absorber Tinuvin 328 was stirred and roughly mixed in a 0.15 part by mass beaker, and then melt kneaded (150 ° C., 5 minutes) with a lab plast mill to obtain composition-1. The composition-1 was pressed at 130 ° C. and 50 kg / cm 2 for 30 minutes to prepare a sheet-1 having a thickness of 0.8 mm.
  • BHT 2,6-ditertiarybutyl-4-hydroxytoluene
  • Sheet-1 was sandwiched between two 300 mm ⁇ 300 mm ⁇ 3 mm float glasses, temporarily bonded with nip rolls, and then treated in an autoclave at 140 ° C. and 1.2 MPa for 30 minutes to obtain laminated glass-1.
  • the composition of Composition-1 is shown in Table 5.
  • the quantity of the 1st plasticizer in Table 5 and the 2nd plasticizer means the mass part with respect to 100 mass parts of PVB.
  • the haze measurement of laminated glass-1, the dynamic viscoelasticity measurement-1 of sheet 1, and the low temperature bleed test were performed. The results are shown in Table 6.
  • Examples 2 to 29, Comparative Examples 1 to 10, Reference Example Compositions 2 to 40, sheets 2 to 40, and laminated glasses 2 to 40 were prepared and evaluated in the same manner as in Example 1 except that the compositions shown in Table 5 were used.
  • Example 4 to 9, 11, 12, 16, 25, 26, and 28 the compatibility between the first plasticizer and the second plasticizer was evaluated as described in [Evaluation Method]. The results are shown in Table 6.
  • the tan ⁇ peak value at the glass transition temperature is larger even when the glass transition temperature is sufficiently lowered than that of the polyvinyl acetal (reference example).
  • tan ⁇ at the glass transition temperature of the composition is significantly lower than tan ⁇ (2.5) at the glass transition temperature in the case of only polyvinyl acetal (reference example). did.
  • Example 30 100 parts by mass of ethylene-vinyl acetate copolymer-1; 100 parts by mass of fluorene compound-1 shown in Table 4 as compound (a2); and 50 of triethylene glycol di-2-ethylhexanoate as plasticizer (a3).
  • a part by mass was prepared and melt-kneaded with a lab plast mill (150 ° C., 60 rpm, 5 minutes) to obtain a composition-41.
  • the composition-41 was hot-pressed at 150 ° C. and 100 kgf / cm 2 for 30 minutes to obtain a sheet-41 having a thickness of 0.8 mm.
  • the composition of Composition-41 is shown in Table 7.
  • the sheet 41 was evaluated for T A and tan ⁇ (T A ) as described in Measurement-2 of dynamic viscoelasticity described in [Evaluation method] above. The results are shown in Table 7.
  • composition-41 was pressed with a hot press at 150 ° C. and 100 kg / cm 2 for 30 minutes to obtain a sound insulating layer-1 having a thickness of 0.15 mm.
  • 100 parts by mass of PVB-6 and 36 parts by mass of triethylene glycol di-2-ethylhexanoate were melt kneaded with a lab plast mill (150 ° C., 60 rpm, 5 minutes), and the resulting kneaded product was Pressing at 150 ° C. and 100 kg / cm 2 for 30 minutes gave a protective layer-1 having a thickness of 0.33 mm.
  • the obtained sound insulating layer-1 and protective layer-1 are laminated in the order of protective layer-1 / sound insulating layer-1 / protective layer-1, and are laminated by pressing at 30 ° C. and 100 kg / cm 2 for 10 minutes.
  • Multilayer interlayer film-1 was obtained.
  • the multilayer interlayer film-1 for laminated glass was evaluated for sound transmission loss as described in [Evaluation Method] above. The results are shown in Table 7.
  • Examples 31 to 46 Sheets -42 to 57 were produced and evaluated in the same manner as in Example 30 except that the compositions shown in Table 7 were used. Further, sound insulation layers -2 to 17 and a protective layer were produced with the compositions and thicknesses shown in Table 7, and multilayer interlayer films 2 to 17 for laminated glass were produced in the same manner as in Example 30 except that these were used. And evaluated. The results are shown in Table 7.
  • Example 47 A sheet-58 was produced and evaluated in the same manner as in Example 30 except that the composition shown in Table 7 was used.
  • a laminated glass intermediate film was produced in the same manner as in Example 30, except that a sound insulating layer-18 was produced with the composition and thickness shown in Table 7, and only the sound insulating layer-18 was used as the laminated glass intermediate film. Evaluation was performed. The results are shown in Table 7.
  • Sheets-60 to 65 were prepared and evaluated in the same manner as in Example 30 with the compositions shown in Table 8.
  • sound insulation layers -20 to 25 and protective layers having the compositions and thicknesses shown in Table 7 were produced, and multilayer interlayer films 19 to 24 for laminated glass were prepared in the same manner as in Example 30 except that these were used. It produced and evaluated. The results are shown in Table 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 十分に低下したガラス転移温度と、十分に大きいtanδを両立する組成物からなる合わせガラス用中間膜の提供。また、コインシデンス領域のみならず質量支配領域においても遮音性が向上した遮音性合わせガラス用中間膜の提供。 熱可塑性樹脂及び熱硬化性樹脂からなる群から選ばれる少なくとも1種類の樹脂(a1)100質量部、並びに特定の化合物1~化合物4からなる群から選ばれる少なくとも1種類の化合物(a2)を10~1000質量部含む組成物(A)からなる、合わせガラス用中間膜。

Description

合わせガラス用中間膜
 本発明は、合わせガラス用中間膜に関する。
 高強度かつ高透明性を有し、柔軟性及びガラスとの接着性に優れる合わせガラス用中間膜を2枚のガラスで挟んで得られる合わせガラスは、自動車フロントガラス等の各種安全ガラスに使用されている。
 一方、熱可塑性樹脂や熱硬化性樹脂、例えばポリビニルブチラールに代表されるポリビニルアセタールは、有機・無機基材に対する接着性や相溶性、有機溶剤への溶解性に優れており、種々の接着剤やセラミック用バインダー、各種インク、塗料等や、安全ガラス用中間膜として広範に利用されている。
 合わせガラス用中間膜にはある程度の柔軟性が要求されるため、通常、ポリビニルブチラールと可塑剤とを混合した組成物が使用される。特に遮音性能を有する合わせガラス用中間膜においては、通常の合わせガラスに比べて多量の可塑剤を含む組成物を使用することで、室温付近における遮音性能を向上させている(例えば特許文献1)。
特開2007-008798号公報
 ところで、熱可塑性樹脂や熱硬化性樹脂、例えばポリビニルブチラールと可塑剤とを混合する場合、可塑剤の添加量を増やして組成物のガラス転移温度を低下させるほど、ガラス転移温度付近におけるtanδの大きさも低下する。遮音性合わせガラス用中間膜においてはそのtanδが大きいほど、合わせガラスのコインシデンス効果を低下させる効果が大きいことが知られているが、現在までに知られている組成物ではガラス転移温度付近におけるtanδの大きさを保持しつつ、ガラス転移温度を低下させることは困難であった。
 そこで、本発明の目的は、熱可塑性樹脂や熱硬化性樹脂、例えばポリビニルアセタールと可塑剤とを含む組成物であって、当該組成物に含まれる樹脂に比べて十分に低下したガラス転移温度と、十分に大きいtanδを両立する組成物を提供することである。また、本発明の別の目的は、コインシデンス領域のみならず質量支配領域においても遮音性が向上した遮音性合わせガラス用中間膜を提供することである。
 本発明によれば、上記目的は、
[1]熱可塑性樹脂及び熱硬化性樹脂からなる群から選ばれる少なくとも1種類の樹脂(a1)100質量部、並びに化合物1~化合物4からなる群から選ばれる少なくとも1種類の化合物(a2)を10~1000質量部含む組成物(A)からなる合わせガラス用中間膜であって、
化合物1は、化学式(1):
Figure JPOXMLDOC01-appb-I000002
[式中、R及びRは、それぞれ互いに独立して、アルキル置換基を有していてもよいジメチレン基、アルキル置換基を有していてもよいトリメチレン基及びアルキル置換基を有していてもよいテトラメチレン基からなる群から選ばれる基を表し、R及びRは、それぞれ互いに独立して、水素原子、アシル基及びアルキル基からなる群から選ばれる基であり、R及びRは、それぞれ互いに独立して、水素原子及び有機基からなる群から選ばれる基であり、R及びRは、それぞれ互いに独立して、有していても有していなくてもよい任意の置換基であり、m及びnは任意の自然数であり、化合物1分子あたりの(m+n)の平均は2~10である]
で表される化合物であり、
化合物2は、化合物1以外の、いずれも水素原子でない4つの原子に結合した炭素原子を少なくとも1つ有する化合物であって、該炭素原子のうち少なくとも1つは、少なくとも3つの環構造に直接結合している化合物であり、
化合物3は、化合物1及び化合物2以外の、縮合環骨格中にいずれも水素原子でない4つの原子に結合した炭素原子を1つ有する化合物であって、該炭素原子に結合している基のうち少なくとも1つは水酸基、及び直鎖又は分岐鎖を有する有機基からなる群から選ばれる基である化合物であり、
化合物4は、化合物1~3以外の、ベンゼン環が3つ以上縮環した骨格を有し、150~10000の分子量を有するアセン系化合物である、
合わせガラス用中間膜;
[2]樹脂(a1)は熱可塑性樹脂である、上記[1]に記載の合わせガラス用中間膜;
[3]前記熱可塑性樹脂のエステル価は5mgKOH/g~800mgKOH/gである、上記[2]に記載の合わせガラス用中間膜;
[4]前記熱可塑性樹脂はポリビニルアセタール、ポリカルボン酸ビニル及びオレフィン-カルボン酸ビニル共重合体からなる群から選ばれる少なくとも1種類の樹脂である、上記[2]又は[3]に記載の合わせガラス用中間膜;
[5]前記ポリビニルアセタールの平均残存水酸基量は15モル%~50モル%である、上記[4]に記載の合わせガラス用中間膜;
[6]前記化学式(1)において、m+n=2~3である化合物の割合は10~100質量%である、上記[1]~[5]のいずれかに記載の合わせガラス用中間膜;
[7]前記化学式(1)において、R及びRはいずれもメチル基である、上記[1]~[6]のいずれかに記載の合わせガラス用中間膜;
[8]前記化学式(1)においてR及びRは直接結合し、環状の構造を形成している、上記[1]~[6]のいずれかに記載の合わせガラス用中間膜;
[9]前記化合物2において、前記いずれも水素原子でない4つの原子に結合した炭素原子は4つの環構造に直接結合している、上記[1]~[8]のいずれかに記載の合わせガラス用中間膜;
[10]前記化合物3において、前記いずれも水素原子でない4つの原子に結合した炭素原子に結合している基のうち2つは、水酸基及び直鎖又は分岐鎖を有する有機基からなる群から選ばれる基である、上記[1]~[9]のいずれかに記載の合わせガラス用中間膜;
[11]化合物(a2)の水酸基価は500mgKOH/g以下である、上記[1]~[10]のいずれかに記載の合わせガラス用中間膜;
[12]樹脂(a1)100質量部に対して可塑剤(a3)を1~100質量部含む、上記[1]~[11]のいずれかに記載の合わせガラス用中間膜であって、可塑剤(a3)は化合物1~4ではない合わせガラス用中間膜;
[13]可塑剤(a3)は、j価カルボン酸1分子と1価アルコールj分子とのエステル化反応で得られる化合物(j=1~4)、及び1価カルボン酸k分子とk価アルコール1分子とのエステル化反応で得られる化合物(k=1~4)からなる群から選ばれる1種類以上の化合物を含む、上記[12]に記載の合わせガラス用中間膜;
[14]化合物(a2)と可塑剤(a3)は、前記組成物(A)に含まれる比率で23℃において相溶するものである、上記[12]又は[13]に記載の合わせガラス用中間膜;
[15]前記組成物(A)のガラス転移温度は-30~50℃である、上記[1]~[14]のいずれかに記載の合わせガラス用中間膜;
[16]前記組成物(A)はそのガラス転移温度において1.5以上のtanδを有する、上記[1]~[15]のいずれかに記載の合わせガラス用中間膜であって、tanδは周波数0.3Hz及び引っ張りモードで測定される合わせガラス用中間膜;
[17]上記[1]~[16]のいずれかに記載の合わせガラス用中間膜を少なくとも一層含む、合わせガラス用多層中間膜;
[18]二枚のガラス板の間に、上記[1]~[16]のいずれかに記載の合わせガラス用中間膜又は上記[17]に記載の合わせガラス用多層中間膜が挟持されてなる合わせガラス;
を提供することで達成される。
 本発明によれば、十分に低下したガラス転移温度と、十分に大きいtanδとを併せ持つ組成物からなり、コインシデンス領域のみならず質量支配領域においても遮音性が向上した合わせガラス用中間膜を提供することができる。
合わせガラス用中間膜の断面図の一例である。
 本発明の合わせガラス用中間膜は、熱可塑性樹脂及び熱硬化性樹脂からなる群から選ばれる少なくとも1種類の樹脂(a1)と、後述する化合物1~化合物4からなる群から選ばれる少なくとも1種類の化合物(a2)とを含む組成物(A)からなる。
 樹脂(a1)の水酸基価は、優れた遮音性能を発現させる観点、特に後述する化合物(a2)との相溶性を良くする観点から、300mgKOH/g以下であることが好ましく、200mgKOH/g以下であることがより好ましく、100mgKOH/g以下であることがより好ましく、80mgKOH/g以下であることがより好ましく、60mgKOH/g以下であることがより好ましく、40mgKOH/g以下であることがさらに好ましく、20mgKOH/g以下であることが特に好ましい。この場合の水酸基価の下限値は、通常は、0mgKOH/gである。
 一方、遮音層に十分な力学強度を発現させる観点では、樹脂(a1)の水酸基価は20mgKOH/g以上であることが好ましく、50mgKOH/g以上であることがより好ましく、100mgKOH/g以上であることがより好ましく、120mgKOH/g以上であることがより好ましく、140mgKOH/g以上であることがさらに好ましい。また、樹脂(a1)の水酸基価は1000mgKOH/g以下であることが好ましく、800mgKOH/g以下であることがより好ましく、500mgKOH/g以下であることがさらに好ましく、300mgKOH/g以下であることが特に好ましい。
 樹脂(a1)のエステル価は5mgKOH/g以上であることが好ましく、20mgKOH/g以上であることがより好ましく、50mgKOH/g以上であることがより好ましく、100mgKOH/g以上であることがより好ましく、200mgKOH/g以上であることがさらに好ましく、300mgKOH/g以上であることが特に好ましい。また樹脂(a1)のエステル価は800mgKOH/g以下であることが好ましく、700mgKOH/g以下であることがより好ましく、600mgKOH/g以下であることがさらに好ましい。エステル価が上記範囲を満たすと、特に本発明の合わせガラス用中間膜が後述する化合物(a2)を含む場合に適切な温度で優れた遮音性能を発現できるため、好適である。
 組成物(A)中の樹脂(a1)の含有量は、組成物(A)の総重量に基づいて、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることがさらに好ましく、35質量%以上であることが特に好ましい。組成物(A)中の樹脂(a1)の含有量は、組成物(A)の総重量に基づいて、100質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましく、75質量%以下であることが特に好ましい。組成物(A)中の熱可塑性樹脂の含有量が上記範囲外であると、本発明の合わせガラス用中間膜の遮音性能が不十分となったり、強度が不十分となったりする傾向がある。
樹脂(a1)は、より高い遮音性能を発現させる観点から、熱可塑性樹脂であることが好ましい。なお本発明で使用する熱可塑性樹脂は、取扱い性や成形性を改善するために、熱可塑性樹脂としての特性を損なわない範囲で部分的に又は少量の架橋構造を含むものであってもよい。
<熱可塑性樹脂>
 樹脂(a1)が熱可塑性樹脂である場合、例えばポリビニルアセタール、ポリビニルアルコール、ポリウレタン、ポリカルボン酸ビニル、オレフィン-カルボン酸ビニル共重合体、ポリウレタンエラストマー、ポリエステルエラストマー、スチレン-ジエンブロック共重合体及び塩素化ポリオレフィン等の従来公知の熱可塑性樹脂を使用することができる。これらの中でも、本発明の合わせガラス用中間膜が優れた遮音性能を発現し、長期間使用した場合の耐候性に優れる観点から、樹脂(a1)がポリビニルアセタールであることが好ましい。また、樹脂(a1)は、本発明の合わせガラス用中間膜がより遮音性能に優れる観点から、ポリカルボン酸ビニル及び/又はオレフィン-カルボン酸ビニル共重合体であることが好ましい。
 本発明に用いることができるポリビニルアセタールは、通常、ポリビニルアルコールを原料として製造される。上記ポリビニルアルコールは従来公知の手法、例えば、酢酸ビニル等のカルボン酸ビニルエステル化合物を重合し、得られた重合体をけん化することによって得ることができる。カルボン酸ビニルエステル化合物を重合する方法としては、溶液重合法、塊状重合法、懸濁重合法及び乳化重合法等の従来公知の方法を適用することができる。重合開始剤としては、重合方法に応じて、アゾ系開始剤、過酸化物系開始剤及びレドックス系開始剤等を適宜選択できる。けん化反応は、従来公知のアルカリ触媒又は酸触媒を用いた加アルコール分解反応及び加水分解反応等を適用できる。
 また、前記ポリビニルアルコールは本発明の趣旨に反しない限り、カルボン酸ビニルエステル化合物と他の単量体とを共重合させた共重合体をけん化したものであってもよい。他の単量体としては、例えば、エチレン、プロピレン、n-ブテン及びイソブチレン等のα-オレフィン;アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル及びアクリル酸オクタデシル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル及びメタクリル酸オクタデシル等のメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン、その塩及びその4級塩、並びにN-メチロールアクリルアミド及びその誘導体等の、アクリルアミド及びその誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン、その塩及びその4級塩、並びにN-メチロールメタクリルアミド及びその誘導体等の、メタクリルアミド及びその誘導体;メチルビニルエーテル、エチルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル及びステアリルビニルエーテル等のビニルエーテル;アクリロニトリル及びメタクリロニトリル等のニトリル;塩化ビニル及びフッ化ビニル等のハロゲン化ビニル;塩化ビニリデン及びフッ化ビニリデン等のハロゲン化ビニリデン;酢酸アリル及び塩化アリル等のアリル化合物;マレイン酸エステル、マレイン酸無水物、ビニルトリメトキシシラン等のビニルシリル化合物、並びに酢酸イソプロペニル等が挙げられる。これらの他の単量体を共重合させる場合には、通常、カルボン酸ビニルエステル化合物に対して10モル%未満の割合で用いられる。
 前記ポリビニルアルコールの粘度平均重合度は150~3500のものが好ましく、200~2500のものがより好ましく、1500~2500であるものがさらに好ましい。粘度平均重合度が150未満であると、本発明の組成物の力学強度が不十分となることがあり、3500を超えると、溶剤への溶解性や、溶融加工時の加工性が低下することがある。なお、ポリビニルアルコールの粘度平均重合度は例えばJIS K6724:1994に準拠して測定することができる。
 本発明に用いることができるポリビニルアセタールは、例えば次のような方法によって得ることができる。まず、濃度3~30質量%のポリビニルアルコール水溶液を、80~100℃の温度範囲で保持した後、10~60分かけて徐々に冷却する。温度が-10~30℃まで低下したところで、アルデヒド及び酸触媒を添加し、温度を一定に保ちながら、30~300分間アセタール化反応を行う。その後、反応液を30~200分かけて20~80℃の温度まで昇温し、30~300分保持する。次に反応液を必要に応じてアルカリ等の中和剤を添加して中和し、樹脂を水洗し、乾燥することにより、ポリビニルアセタールを得ることができる。
 アセタール化反応に用いる酸触媒は、例えば有機酸及び無機酸のいずれも使用することができる。例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸及び塩酸等が挙げられる。これらの中でも、十分な反応速度が得られ、反応後の洗浄が容易である観点から、塩酸、硫酸及び硝酸が好ましく用いられる。
 アセタール化反応に用いるアルデヒドは、炭素数1~8のアルデヒドを用いることが好ましい。炭素数1~8のアルデヒドとしては、例えばホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ペンチルアルデヒド、n-ヘキシルアルデヒド、2-エチルブチルアルデヒド、n-ヘプチルアルデヒド、n-オクチルアルデヒド、2-エチルヘキシルアルデヒド及びベンズアルデヒド等が挙げられる。これらは単独で使用されてもよく、二種以上が併用されてもよい。これらの中でも、炭素数2~5のアルデヒドを用いることが好ましく、炭素数4のアルデヒドを用いることがより好ましい。特にn-ブチルアルデヒドが入手容易であり、アセタール化反応後に残存するアルデヒドの水洗や乾燥による除去が容易で、得られるポリビニルアセタールの力学特性に優れ、さらに組成物(A)のガラス転移温度を低下させつつtanδの高いものが得られるため、好ましく用いられる。
 本発明に用いることができるポリビニルアセタールの平均残存水酸基量は、15~50モル%であることが好ましく、17~42モル%であることがより好ましく、23~35モル%であることがさらに好ましく、26~33モル%であることが特に好ましい。平均残存水酸基量が15モル%未満であると、組成物(A)の力学強度が不十分となったり、後述する化合物(a2)及び可塑剤(a3)との相溶性が低下したりする傾向がある。また、平均残存水酸基量が50モル%を超えると、組成物(A)が吸水しやすくなったり、後述する化合物(a2)及び可塑剤(a3)との相溶性が低下したりする傾向がある。
 本発明に用いることができるポリビニルアセタールの平均残存ビニルエステル基量は、0.1~15モル%であることが好ましく、0.1~10モル%であることがより好ましく、0.1~5モル%であることがさらに好ましい。平均残存ビニルエステル基量が0.1モル%未満のものは工業的に安価に生産することが困難であり、15モル%を越えるものは、長期間使用した場合に変色して外観が損なわれる可能性がある。
 本発明に用いることができるポリビニルアセタールの平均アセタール化度は、40~84モル%であることが好ましく、45~80モル%であることがより好ましく、50~75モル%であることがより好ましく、50~73モル%であることがさらに好ましく、70~73モル%であることが特に好ましい。ポリビニルアセタールの平均アセタール化度が40モル%未満となると、後述する化合物(a2)及び可塑剤(a3)との相溶性が低下する傾向がある。また、平均アセタール化度が84モル%を超えるものは工業的に安価に生産することが困難であり、また得られる組成物の力学強度が低下する傾向がある。
 本発明で用いることができるポリカルボン酸ビニルは、カルボン酸ビニル化合物を従来公知の方法、例えば溶液重合法、塊状重合法、懸濁重合法又は乳化重合法等の方法により重合したものを用いることができる。重合開始剤としては、重合方法に応じて、アゾ系開始剤、過酸化物系開始剤又はレドックス系開始剤等が適宜選択される。カルボン酸ビニル化合物は、炭素数4~20のカルボン酸ビニル化合物が好ましく、炭素数4~10のカルボン酸ビニル化合物がより好ましく、炭素数4~6のカルボン酸ビニル化合物がさらに好ましい。カルボン酸ビニル化合物の炭素数が4より小さくなると、目的の重合体の製造が困難となり、炭素数が20より大きくなると、本発明の合わせガラス用中間膜の力学特性が低下したり、遮音性能が低下したりする傾向がある。このようなカルボン酸ビニル化合物としては、酢酸ビニル、酢酸n-プロペニル、酢酸イソプロペニル、酢酸n-ブテニル、酢酸イソブテニル、プロピオン酸ビニル、ブタン酸ビニル、ペンタン酸ビニル、ヘキサン酸ビニル、オクタン酸ビニル、デカン酸ビニル、ドデカン酸ビニル及びヘキサデカン酸ビニル等が挙げられる。これらの中でも特に、酢酸ビニル、プロピオン酸ビニル及びブタン酸ビニルが好適に用いられ、酢酸ビニルがより好適に用いられる。
 本発明で用いることができるポリカルボン酸ビニルとしては、本発明の趣旨に反しない限り、カルボン酸ビニル化合物をオレフィン以外の他の単量体と共重合したものを用いることができる。単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル及びアクリル酸オクタデシル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル及びメタクリル酸オクタデシル等のメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン、その塩及びその4級塩、並びにN-メチロールアクリルアミド及びその誘導体等のアクリルアミド及びその誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン、その塩及びその4級塩、並びにN-メチロールメタクリルアミド及びその誘導体等のメタクリルアミド及びその誘導体;メチルビニルエーテル、エチルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル及びステアリルビニルエーテル等のビニルエーテル;アクリロニトリル及びメタクリロニトリル等のニトリル;塩化ビニル及びフッ化ビニル等のハロゲン化ビニル;塩化ビニリデン及びフッ化ビニリデン等のハロゲン化ビニリデン;酢酸アリル及び塩化アリル等のアリル化合物;マレイン酸エステル又はマレイン酸無水物、ビニルトリメトキシシラン等のビニルシリル化合物等が挙げられる。これらの他の単量体を共重合させる場合には、通常、これらの他の単量体を、カルボン酸ビニル化合物に対して10モル%未満の割合で用いられることが好ましい。
 本発明で用いることができるポリカルボン酸ビニルの重合度は500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることがさらに好ましい。また、ポリカルボン酸ビニルの重合度は10000以下であることが好ましく、5000以下であることがより好ましく、3500以下であることがさらに好ましい。重合度が上記範囲を満たすと、本発明の合わせガラス用中間膜が優れた遮音性能と十分な力学強度を発現するため好適である。
 本発明で用いることができるオレフィン-カルボン酸ビニル共重合体としては、従来公知のオレフィン-カルボン酸ビニル共重合体を使用することができる。オレフィンとしては、エチレン、プロピレン、n-ブテン、イソブチレン、ブタジエン及びイソプレン等の従来公知の化合物を使用することができる。また、カルボン酸ビニル化合物としては、酢酸ビニル、酢酸n-プロペニル、酢酸イソプロペニル、酢酸n-ブテニル、酢酸イソブテニル、プロピオン酸ビニル、ブタン酸ビニル、ペンタン酸ビニル、ヘキサン酸ビニル、ヘプタン酸ビニル、オクタン酸ビニル、ノナン酸ビニル、デカン酸ビニル、ドデカン酸ビニル及びヘキサデカン酸ビニルが挙げられる。これらの中でも、エチレン-酢酸ビニル共重合体を用いることが、本発明の合わせガラス用中間膜が優れた遮音性能と十分な力学強度を発現する観点で好ましい。
 前記オレフィン-カルボン酸ビニル共重合体において、オレフィン部分とカルボン酸ビニル部分との合計量に対するカルボン酸ビニル部分の量の比率は10モル%以上であることが好ましく、20モル%以上であることがより好ましく、30モル%以上であることがさらに好ましく、40モル%以上であることが特に好ましい。また、オレフィン部分とカルボン酸ビニル部分との合計量に対するカルボン酸ビニル部分の量の比率は90モル%以下であることが好ましく、85モル%以下であることがより好ましく、80モル%以下であることがさらに好ましく、75モル%以下であることが特に好ましい。カルボン酸ビニル部分の量が上記範囲を満たすと、本発明の合わせガラス用中間膜が十分な力学強度と好適な温度で優れた遮音性能を発現することが可能である。
<熱硬化性樹脂>
 本発明で用いることができる熱硬化性樹脂としては、例えばエポキシ系樹脂、フェノール系樹脂、ウレタン系樹脂、メラミン系樹脂及び不飽和ポリエステル系樹脂等が挙げられる。
<化合物(a2)>
 本発明の合わせガラス用中間膜は、化合物1~化合物4からなる群から選ばれる少なくとも1種類の化合物(a2)を含む。
<化合物1(第一の可塑剤)>
 化合物1は、化学式(1):
Figure JPOXMLDOC01-appb-I000003
で表される化合物である。以下において、化学式(1)で表される化合物を「第一の可塑剤」と称することもある。なお本願における可塑剤とは、樹脂に添加した際にいずれかの温度で組成物の粘度を下げる効果を示すものを指す。
 化学式(1)において、R及びRは、それぞれ互いに独立して、アルキル置換基を有していてもよいジメチレン基、アルキル置換基を有していてもよいトリメチレン基及びアルキル置換基を有していてもよいテトラメチレン基からなる群から選ばれる基を表す。ジメチレン基とは-CH-CH-で表される基であり、アルキル置換基を有するジメチレン基とは、ジメチレン基に含まれる任意の水素原子1個以上、好ましくは1個をアルキル基、より好ましくは炭素数1~20のアルキル基で置換したジメチレン基を表す。トリメチレン基とは-CH-CH-CH-で表される基であり、アルキル置換基を有するトリメチレン基とは、トリメチレン基に含まれる任意の水素原子1個以上、好ましくは1個をアルキル基、より好ましくは炭素数1~20のアルキル基で置換したトリメチレン基を表す。テトラメチレン基とは-CH-CH-CH-CH-で表される基であり、アルキル置換基を有するテトラメチレン基とは、テトラメチレン基に含まれる任意の水素原子1個以上、好ましくは1個をアルキル基、より好ましくは炭素数1~20のアルキル基で置換したテトラメチレン基を表す。これらの中でも特に、アルキル置換基を有していてもよいジメチレン基が好ましい。化学式(1)において、RとRの合計量の50~100モル%がジメチレン基、及びメチル置換基を1個有するジメチレン基すなわち-CH-CH(-CH)-からなる群から選ばれる基であることが、化合物1と樹脂(a1)との相溶性、化合物1の樹脂(a1)への可塑化効果、組成物(A)においてガラス転移温度を低下させつつtanδの値を高くする観点、及び化合物1を安価に入手する観点から好ましい。後述する可塑剤(a3)(以下、「第二の可塑剤」と称することもある)を使用する場合には、化合物(a2)と後述する可塑剤(a3)が、組成物(A)に含まれる比率で23℃において相溶するものとすることが容易である観点から、メチル置換基を1個有するジメチレン基が好適である。ここで、化合物(a2)と可塑剤(a3)が「相溶する」とは、目視で確認した際に、化合物(a2)及び/又は可塑剤(a3)が析出しておらず、混合物が相分離を起こしておらず、濁っていない場合を指す。
 化学式(1)において、R及びRは化学式(1)におけるRとRの合計量の50~100モル%、好ましくは70~100モル%、より好ましくは90~100モル%がジメチレン基、メチル置換基を1個有するジメチレン基から選ばれる基であることが、化合物1と樹脂(a1)との相溶性、化合物1の樹脂(a1)への可塑化効果、組成物(A)においてガラス転移温度を低下させつつtanδの値を高くする観点、及び化合物1を安価に入手する観点から好ましい。
 R及びRは、それぞれ互いに独立して、水素原子、アシル基及びアルキル基からなる群から選ばれる基である。アシル基としては炭素数2~20のアシル基が好ましく、炭素数2~8のアシル基がより好ましい。好ましいアシル基の例としては、例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ブチルカルボニル基、ペンチルカルボニル基、3-ペンチルカルボニル基、ヘキシルカルボニル基及び3-ヘプチルカルボニル基等が挙げられる。アルキル基としては、炭素数1~20のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。好ましいアルキル基の例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基(2-エチルヘキシル基等分岐状のものも含む)等が挙げられ、これらは直鎖状であっても、分岐状であってもよい。R及びRは、これらの中から任意に選択可能であるが、組成物(A)において化合物1と樹脂(a1)との相溶性をより高くする観点から、RとRの合計量の5~100モル%が水素原子であることが好ましく、10~100質量%が水素原子であることがより好ましく、30~100質量%が水素原子であることがより好ましく、50~100質量%が水素原子であることがより好ましく、80~100質量%が水素原子であることがさらに好ましく、90~100質量%が水素原子であることが特に好ましい。
 R及びRは、それぞれ互いに独立して、水素原子及び任意の有機基からなる群から選ばれる基である。R及びRが直接結合し、環状の構造を形成していてもよい。可塑化効果の観点からは環状の構造を形成していないものであることが好ましい。R及びRとしては、水素原子、メチル基、エチル基、プロピル基、ブチル基及びトリフルオロメチル基等の脂肪族基、フェニル基等の芳香族基等が挙げられる。R及びRが直接結合し、環状の構造を形成しているものとしては、フルオレン基等が挙げられる。参考までに、化学式(2):
Figure JPOXMLDOC01-appb-I000004
により、R及びRとしてフルオレン基を有する化合物1の化学構造を示す。
 R及びRがメチル基である場合が化合物1と樹脂(a1)との相溶性、及び化合物1の樹脂(a1)への可塑化効果に優れ、組成物(A)のガラス転移温度を低下させつつ、tanδの値が高くなるので好適である。また、R及びRがフルオレン基を形成している場合は、組成物(A)のtanδの極大値(ガラス転移温度付近におけるtanδの値)を樹脂(a1)よりも上昇させるので好ましい。
 化学式(1)において、R及びRは、それぞれ互いに独立して、有していても有していなくてもよい任意の置換基である。R及びRを有している場合、芳香環上におけるその結合位置や数は限定されず、2つ以上の基を有している場合にはそれらは同一であっても異なっていてもよい。R及びRを具体的に例示すると、メチル基、エチル基、プロピル基、ブチル基、イソブチル基及びtert-ブチル基等の脂肪族基、フェニル基等の芳香族基、フッ素原子、塩素原子及び臭素原子等のハロゲン原子が挙げられる。
 m及びnは任意の自然数であり、化合物1と樹脂(a1)との相溶性、及び化合物1の樹脂(a1)への可塑化効果の観点、並びに組成物(A)のガラス転移温度を低下させつつtanδの値を高いものとする観点から、化合物1分子あたりの(m+n)の平均は2~10であり、2~8であることが好ましく、2~6であることがより好ましく、2~4であることがさらに好ましい。
 また、化学式(1)で表される化合物のうち、m+n=2~3である化合物の割合は10~100質量%が好ましく、30~100質量%であることがより好ましく、50~100質量%であることがさらに好ましい。m+n=2~3である化合物の割合が前記範囲を満たすことにより、化合物1と樹脂(a1)との相溶性、及び化合物1の樹脂(a1)への可塑化効果がさらに優れ、また組成物(A)のガラス転移温度を低下させつつ、tanδの値を高いものとすることができるので好適である。
 さらに、化合物1の取り扱い性の観点、及び化合物1の樹脂(a1)に対する可塑化効果の観点から、化合物1のうちm+n=2であるものの割合は0~80質量%であることが好ましく、0~70質量%であることがより好ましく、0~60質量%であることがさらに好ましく、0~50質量%であることが特に好ましい。
 化合物1としては、例えば、2,2-ビス[4-(2-アセトキシエトキシ)フェニル]プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(2-(2-ヒドロキシエトキシ)エトキシ)フェニル]プロパン、2,2-ビス[4-(2-メトキシエトキシ)フェニル]プロパン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]エタン、9,9-ビス[4-(2-アセトキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-(2-ヒドロキシエトキシ)エトキシ)フェニル]フルオレン、及び9,9-ビス[4-(2-メトキシエトキシ)フェニル]フルオレンが挙げられる。これらの中でも、フルオレン骨格を有する化合物が、より高い遮音性能を得る観点から好ましく、また得られる合わせガラス用中間膜の耐候性の観点で好ましい。
<化合物2>
 化合物2は、化合物1以外の、いずれも水素原子でない4つの原子に結合した炭素原子を少なくとも1つ有する化合物であって、該炭素原子のうち少なくとも1つは、少なくとも3つの環構造に直接結合している化合物である。
 本発明の合わせガラス用中間膜の遮音性能をより高める観点から、化合物2は前記いずれも水素原子でない4つの原子すべてが炭素原子であることが好ましい。また同様の観点から、前記いずれも水素原子でない4つの原子に結合した炭素原子が4つの環構造に直接結合していることが好ましい。さらに同様の観点から、化合物2が縮合環構造を有していることが好ましく、前記縮合環構造が前記いずれも水素原子でない4つの原子に結合した炭素原子に直接結合していることがより好ましい。すなわち化合物2は、4つの炭素原子に結合した炭素原子を少なくとも1つ有し、該炭素原子のうち少なくとも1つは4つの環構造に直接結合しており、前記直接結合した環構造のうち少なくとも1つが縮合環構造を有している化合物であることが特に好ましい。
 化合物2としては、例えば9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ジフェニルフルオレン及び9,9-ビス(4-ブロモフェニル)フルオレン等のフルオレン骨格を有する化合物、ジフェニルビス(4-ヒドロキシフェニル)メタン、ジフェニルビス(4-(2-ヒドロキシエトキシ)フェニル)メタン、テトラフェニルメタン等のテトラフェニルメタン骨格を有する化合物が挙げられる。これらの中でも、フルオレン骨格を有する化合物が、樹脂(a1)との相溶性に優れ、組成物(A)のtanδの極大値を樹脂(a1)よりも上昇させ、本発明の合わせガラス用中間膜の遮音性を向上させる効果が高い点で好ましく、また得られる合わせガラス用中間膜の耐候性の観点で好ましい。
<化合物3>
 化合物3は、化合物1及び化合物2以外の、縮合環骨格中にいずれも水素原子でない4つの原子に結合した炭素原子を1つ有する化合物であって、該炭素原子に結合している基のうち少なくとも1つが、水酸基、及び直鎖又は分岐鎖を有する有機基からなる群から選ばれる基である化合物である。
 化合物3としては、例えばジメタノールフルオレン、ジメチルフルオレン及びジエチルフルオレン等のフルオレン骨格を有する化合物、並びに1,3-ジメチルアダマンタン、1,3-ジメタノールアダマンタン、1-エチルアダマンタン及び3,5-ジメチル-1-アダマンタノール等のアダマンタン骨格を有する化合物が挙げられる。これらの中でも、フルオレン骨格を有する化合物が、組成物(A)のtanδの極大値を樹脂(a1)より上昇させる観点から好ましく、また得られる合わせガラス用中間膜の耐候性の観点で好ましい。
<化合物4>
 化合物4は、化合物1~3以外の、ベンゼン環が3つ以上縮環した骨格を有し、150~10000の分子量を有するアセン系化合物である。
 化合物4としては、例えば9-(ヒドロキシメチル)アントラセン、9-(2-ヒドロキシエチル)アントラセン、2-クロロアントラセン、2-ブロモアントラセン、1,8-ビスヒドロキシメチルアントラセン及び9-ブロモアントラセン等のアセン系化合物(アントラセン化合物)等が挙げられる。
 化合物(a2)の分子量は150以上であることが好ましく、250以上であることがより好ましく、300以上であることがより好ましく、350以上であることがさらに好ましく、400以上であることが特に好ましい。また、化合物(a2)の分子量は、10000以下であることが好ましく、2000以下であることがより好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることが特に好ましい。化合物(a2)の分子量が150未満の場合は、長期間使用した場合に化合物(a2)が揮発してしまう傾向にあり、10000を超える場合は、熱可塑性樹脂及び熱硬化性樹脂との相溶性が低下したり、十分な遮音性能が発現しなかったりすることがある。
 本発明で用いられる化合物(a2)の水酸基価は、150~400mgKOH/gとすることが好ましく、200~350mgKOH/gとすることがより好ましく、230~320mgKOH/gとすることがさらに好ましい。化合物(a2)の水酸基価を前記範囲とすることにより、化合物(a2)と樹脂(a1)との相溶性、及び化合物(a2)の樹脂(a1)に対する可塑化効果に優れ、また得られる組成物(A)のtanδの値を高いものとすることができるため、好適である。また、化合物(a2)の水酸基価は、長期間使用時にも本発明の合わせガラス用中間膜の遮音性能を保持するという観点からは、500mgKOH/g以下であることが好ましく、300mgKOH/g以下であることがより好ましく、200mgKOH/g以下であることがより好ましく、100mgKOH/g以下であることがより好ましく、50mgKOH/g以下であることがさらに好ましく、20mgKOH/g以下であることが特に好ましい。この場合の水酸基価の下限値は、通常は、0mgKOH/gである。
 化合物(a2)のエステル価は、前記樹脂(a1)との相溶性や長期間使用時にも本発明の合わせガラス用中間膜の遮音性能を保持するという観点から、300mgKOH/g以下であることが好ましく、200mgKOH/g以下であることがより好ましく、100mgKOH/g以下であることがさらに好ましく、50mgKOH/g以下であることがいっそう好ましく、20mgKOH/g以下であることが特に好ましい。この場合のエステル価の下限値は、通常は、0mgKOH/gである。
 組成物(A)に含まれる化合物(a2)の量は、組成物(A)に含まれる樹脂(a1)100質量部に対して10~1000質量部である。化合物(a2)は15質量部以上であること好ましく、20質量部以上であることがより好ましく、35質量部以上であることがより好ましく、55質量部以上であることがさらに好ましく、75質量部以上であることが特に好ましい。また、化合物(a2)は300質量部以下であることが好ましく、200質量部以下であることがより好ましく、170質量部以下であることがより好ましく、150質量部以下であることがさらに好ましく、130質量部以下であることが特に好ましい。化合物(a2)が10質量部未満であると、前記化合物(a2)を添加する効果が発現しないことがあり、1000質量部を超えると、組成物(A)から前記化合物(a2)がブリードしたり、樹脂(a1)と化合物(a2)が相分離したりすることがある。なお化合物(a2)のブリードをより抑制する観点から、必要に応じて化合物(a2)を100質量部以下又は90質量部以下としてもよい。
<可塑剤(a3)(第二の可塑剤)>
 組成物(A)は、可塑剤(a3)を含んでいてもよい。可塑剤(a3)は、化合物1~4ではない。特に本発明の合わせガラス用中間膜に高い耐衝撃性を発現させる観点から、可塑剤(a3)を含んでいることが好ましい。
 本発明で用いることができる可塑剤(a3)は、樹脂(a1)との相溶性、及び樹脂(a1)への可塑化効果に優れるものであって、例えば樹脂(a1)がポリビニルアセタールである場合は、従来公知のポリビニルアセタール用可塑剤を使用することができる。また、可塑剤(a3)を用いる場合、化合物(a2)と可塑剤(a3)が、組成物(A)に含まれる比率で23℃において相溶していることが、組成物(A)を製造する際の作業性に優れ、得られる組成物(A)が透明性を有する観点から好ましい。ここで「相溶している」とは、目視で確認した際に、化合物(a2)及び/又は可塑剤(a3)が析出しておらず、混合物が相分離を起こしておらず、濁っていない場合を指す。
 可塑剤(a3)は、樹脂(a1)との相溶性、及び樹脂(a1)への可塑化効果に優れるものであり、例えばj価カルボン酸1分子と1価アルコールj分子とのエステル化反応で得られる化合物(j=1~4)、及び1価カルボン酸k分子とk価アルコール1分子とのエステル化反応で得られる化合物(k=1~4)からなる群から選ばれる1種類以上の化合物が好適に使用される。可塑剤(a3)と樹脂(a1)との相溶性、及び可塑剤(a3)の樹脂(a1)への可塑化効果の観点から、jは1~3であることがより好ましく、1~2であることがさらに好ましく、2であることが特に好ましい。また、可塑剤(a3)と樹脂(a1)との相溶性、及び可塑剤(a3)の樹脂(a1)への可塑化効果の観点から、kは1~3であることがより好ましく、1~2であることがさらに好ましく、2であることが特に好ましい。
 j価カルボン酸1分子と1価アルコールj分子とのエステル化反応で得られる化合物(j=1~4)を具体的に例示すると、アジピン酸ジヘキシル、アジピン酸ジ2-エチルヘキシル、アジピン酸ジ(ブトキシエチル)、アジピン酸ジ(ブトキシエトキシエチル)、アジピン酸ジノニル、セバシン酸ブチル、セバシン酸ヘキシル、セバシン酸ジ(ブトキシエチル)、シクロヘキサンジカルボン酸ジイソノニルエステル、フタル酸ジオクチル、フタル酸ジ2-エチルヘキシル、トリメット酸トリ2-エチルヘキシル等が挙げられる。また、1価カルボン酸k分子とk価アルコール1分子とのエステル化反応で得られる化合物(k=1~4)を具体的に例示すると、トリエチレングリコールジ2-エチルブタノエート、トリエチレングリコールジ2-エチルヘキサノエート、トリエチレングリコールジノネート、テトラエチレングリコールジ2-エチルブチレート、テトラエチレングリコールジ2-エチルヘキサノエート、グリセリントリブチル、グリセリントリヘキシル、グリセリントリ(ブトキシエチル)、グリセリントリ2-エチルヘキシル等が挙げられる。樹脂(a1)がポリビニルアセタールの場合は、これらの中でも特にトリエチレングリコールジ2-エチルヘキサノエートが、ポリビニルアセタールとの相溶性に特に優れ、得られる組成物(A)の良好な耐衝撃性が発現する観点から好適である。
 可塑剤(a3)の使用量は、樹脂(a1)100質量部に対して1~100質量部含むことが好ましく、3~90質量部含むことがより好ましく、5~80質量部含むことがより好ましく、10~75質量部含むことがさらに好ましく、15~70質量部含むことが特に好ましい。可塑剤(a3)の量が1質量部未満であると、可塑剤(a3)を含むことによる効果が発現せず、可塑剤(a3)の量が100質量部を超えると、組成物(A)から化合物(a2)及び/又は可塑剤(a3)がブリードすることがあり、組成物(A)の強度が著しく低下することがあり、好ましくない。
 組成物(A)に可塑剤(a3)を添加する場合、化合物(a2)は樹脂(a1)と可塑剤(a3)の相溶性を向上させる作用も示す。とりわけ組成物(A)を、例えば5℃のような低温下で保管もしくは使用する場合の相溶性を向上させる。そのような作用を効果的に発現させるためには、化合物(a2)の含有量に対する、可塑剤(a3)の含有量の割合は0.03~40質量倍であることが好ましく、0.05~20質量倍であることがより好ましく、0.08~15質量倍であることがより好ましく、0.1~10質量倍であることがさらに好ましく、0.15~6質量倍であることが特に好ましい。
 組成物(A)は、本発明の効果を損なわない範囲で、接着性改良剤(接着性調整剤)、酸化防止剤、紫外線吸収剤及びその他の添加剤を含んでいてもよい。
 接着性改良剤としては、例えば酢酸ナトリウム、酢酸カリウム、酢酸マグネシウム及び酪酸マグネシウム等の、アルカリ金属塩及びアルカリ土類金属塩等が挙げられる。その添加量は、例えばパンメル試験により得られるパンメル値が目的に応じた値になるように添加量を調節することができる。
 組成物(A)はナトリウムを含んでいてもよいが、その含有量は1~200ppmであることが好ましく、3~100ppmであることがより好ましく、5~70ppmであることがさらに好ましく、10~50ppmであることが特に好ましい。ナトリウム含有量が1ppm未満であるものは工業的に安価に製造することが困難であり、また本発明の合わせガラス用中間膜を長期間使用した場合にポリビニルアセタールの脱アセタール化反応が進行しやすくなるため、好ましくない。また、ナトリウムの含有量が200ppmを越えると、本発明の合わせガラス用中間膜が吸水時に特に白濁しやすくなるため、好ましくない。
 組成物(A)は、樹脂(a1)、化合物(a2)、並びに必要に応じて、可塑剤(a3)、酸化防止剤、紫外線吸収剤、接着力調整剤及びその他の成分を従来公知の方法で混合することにより得られる。混合方法としては、例えばミキシングロール、プラストミル又は押し出し機等を用いた溶融混練、あるいは各成分を適当な有機溶剤に溶解した後、溶剤を留去する方法等が挙げられる。
 組成物(A)のガラス転移温度は、例えば-30~50℃であることが好ましく、-20~40℃であることがより好ましく、-10~35℃であることがより好ましく、0~30℃であることが特に好ましい。ガラス転移温度が上記範囲内であると、力学強度及び成形性に優れるため好ましい。遮音性発現の観点からは、ガラス転移温度は、好ましくは-30~25℃、より好ましくは-20~20℃、特に好ましくは-10~15℃である。
 組成物(A)がそのガラス転移温度(温度T(℃))において1.5以上のtanδを有することが、遮音性能を良好にする観点から好ましい。tanδは、周波数0.3Hz及び引張モードで測定される。また、T(℃)におけるtanδは、1.7以上であることがより好ましく、2.0以上であることがより好ましく、2.5以上であることがより好ましく、3.0以上であることがより好ましく、3.3以上であることがより好ましく、3.6以上であることがさらに好ましく、4.0以上であることが特に好ましい。また、T(℃)におけるtanδは、通常は10以下である。
 上記T及びtanδは、例えば以下の方法を用いて、測定することができる。組成物(A)を、熱プレス機で成形し、厚さ0.8mmのシートを得る。前記シートを幅3mmに切断し、動的粘弾性装置(株式会社ユービーエム製、Rheogel-E4000)を使用し、-50℃から120℃まで、3℃/分で昇温しながら、チャック間距離20mm、周波数0.3Hz、変位75.9μm、自動静荷重26g、引張モードで分析し、温度T(℃)を確認し、またT(℃)における正接損失(tanδ)の値を求める。tanδは、温度T(℃)付近で極大値を示す。
 組成物(A)を成形(例えば、押出成形及びプレス成形等)することにより、合わせガラス用中間膜を得ることができる。本発明の合わせガラス用中間膜は、良好な遮音性を有する。
<保護層>
 本発明はまた、上記の合わせガラス用中間膜を少なくとも一層と、樹脂(b1)を含有する組成物(B)からなる保護層を少なくとも一層含む合わせガラス用多層中間膜にも関する。組成物(B)に含まれる樹脂(b1)としては、例えばポリビニルアセタール、エチレン-酢酸ビニル共重合体及びアイオノマー等の熱可塑性樹脂が挙げられる。これらは力学強度、透明性、ガラスとの接着性に優れているため好適である。
 組成物(B)からなる保護層を用いる場合には、組成物(B)がこれらの樹脂(b1)を40質量%以上含むことが好ましく、50質量%以上含むことがより好ましく、60質量%以上含むことがより好ましく、80質量%以上含むことがさらに好ましく、90質量%以上含むことが特に好ましい。また、組成物(B)がこれら樹脂(b1)を100質量%含むものであってもよい。これら樹脂(b1)の含有量が40質量%より少なくなると、保護層とガラスとの接着性が低下したり、保護層の力学強度が不十分になったりすることがある。
 組成物(B)にポリビニルアセタールが含まれる場合、その平均残存水酸基量は、10モル%以上であることが好ましく、15モル%以上であることがより好ましく、20モル%以上であることがさらに好ましく、25モル%以上であることが特に好ましい。ポリビニルアセタールの平均残存水酸基量は、50モル%以下であることが好ましく、45モル%以下であることがより好ましく、40モル%以下であることがさらに好ましい。平均残存水酸基量が15モル%より少なくなると、ガラスとの接着性が低下する傾向にあり、平均残存水酸基量が50モル%より多くなると、耐水性が低下する傾向にある。
 組成物(B)にポリビニルアセタールが含まれる場合、その平均残存ビニルエステル基量は30モル%以下であることが好ましく、20モル%以下であることがより好ましい。平均残存ビニルエステル基量が30モル%を超えると、ポリビニルアセタールの製造時にブロッキングを起こしやすくなるため、製造しにくくなる。平均残存ビニルエステル基量の下限値は、通常は0.1モル%である。
 組成物(B)にポリビニルアセタールが含まれる場合、その平均アセタール化度は40モル%以上であることが好ましく、90モル%以下であることが好ましい。平均アセタール化度が40モル%未満であると可塑剤等との相溶性が低下する傾向にある。平均アセタール化度が90モル%を超えると、ポリビニルアセタール樹脂を得るための反応に長時間を要し、プロセス上好ましくないことがあり、また十分な力学強度を発現しないことがある。平均アセタール化度は60モル%以上であることがより好ましく、耐水性や可塑剤との相溶性の観点から、65モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましい。また、平均アセタール化度は85モル%以下であることが好ましく、80モル%以下であることがさらに好ましく、75モル%以下であることが特に好ましい。
 組成物(B)にポリビニルアセタールが含まれる場合、その重合度は、100以上であることが好ましく、300以上であることがより好ましく、1000以上であることがより好ましく、1400以上であることがさらに好ましく、1600以上であることが特に好ましい。ポリビニルアセタールの重合度が低すぎると、耐貫通性、耐クリープ物性、特に85℃/85%RHのような高温高湿条件下での耐クリープ物性が低下することがある。また、ポリビニルアセタールの重合度は、5000以下であることが好ましく、3000以下であることがより好ましく、2500以下であることがより好ましく、2300以下であることがさらに好ましく、2000以下であることが特に好ましい。ポリビニルアセタールの重合度が5000を超えると樹脂膜の成形が難しくなることがある。さらに、得られる合わせガラス用中間膜のラミネート適性を向上させ、外観に一層優れた合わせガラスを得るためには、ポリビニルアセタールの重合度が1800以下であることが好ましい。
 組成物(B)にポリビニルアセタールが含まれる場合、その平均残存ビニルエステル基量は30モル%以下に設定することが好ましいため、原料としてけん化度が70モル%以上のポリビニルアルコールのけん化物を使用することが好ましい。ポリビニルアルコールのけん化度が70モル%未満となると、樹脂の透明性や耐熱性が低下することがあり、またアルデヒド類との反応性も低下することがある。けん化度は、より好ましくは95モル%以上である。けん化度の上限値は、通常は99.9モル%である。
 ポリビニルアルコールのけん化度は、例えば、JIS K6726:1944に準拠して測定することができる。
 ポリビニルアルコールのアセタール化に用いるアルデヒド類及びポリビニルアセタール樹脂としては、上記合わせガラス用中間膜におけるものをいずれも採用することができる。
 組成物(B)にエチレン-酢酸ビニル共重合体が含まれる場合、エチレン部分、酢酸ビニル部分の合計に対する酢酸ビニル部分の割合は、50モル%未満であることが好ましく、30モル%未満であることがより好ましく、20モル%未満であることがさらに好ましく、15モル%未満であることが、合わせガラス用中間膜に必要な力学強度と柔軟性を発現する観点で特に好ましい。
 組成物(B)にアイオノマーが含まれる場合、エチレン由来の構成単位、及びα,β-不飽和カルボン酸に由来の構成単位を有し、α,β-不飽和カルボン酸の少なくとも一部が金属イオンによって中和された樹脂が挙げられる。ベースポリマーとなるエチレン-α,β-不飽和カルボン酸共重合体において、α,β-不飽和カルボン酸の構成単位の含有割合は、2質量%以上であることが好ましく、5質量%以上であることがより好ましい。また、α,β-不飽和カルボン酸の構成単位の含有割合は、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。本発明においては、入手のしやすさの点から、エチレン-アクリル酸共重合体のアイオノマー、及びエチレン-メタクリル酸共重合体のアイオノマーが好ましい。アイオノマーを構成するα,β-不飽和カルボン酸としては、例えばアクリル酸、メタクリル酸、マレイン酸、マレイン酸モノメチル、マレイン酸モノエチル及び無水マレイン酸等が挙げられる。アクリル酸又はメタクリル酸が特に好ましい。また、前記金属イオンとしてはナトリウムイオン等が挙げられる。
 組成物(B)には、樹脂(b1)以外の成分として、さらに可塑剤(b2)、酸化防止剤、紫外線吸収剤、光安定剤、ブロッキング防止剤、顔料、染料、機能性無機化合物、遮熱材料(例えば、赤外線吸収能を有する、無機遮熱性微粒子又は有機遮熱性材料)等が、必要に応じて添加されていてもよい。特に組成物(B)にポリビニルアセタールを使用する場合には、得られる合わせガラス用中間膜の力学強度及び遮音性の観点から、可塑剤(b2)を含むことが好ましい。
 可塑剤(b2)としては、例えば従来公知のポリビニルアセタール用可塑剤を用いることができ、前記可塑剤(a3)で例示されるものが好適に使用される。
 組成物(B)が可塑剤(b2)を含む場合、その含有量は樹脂(b1)100質量部に対して、20質量部以上であることが好ましく、25質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。また、保護層における可塑剤の含有量は、樹脂(b1)100質量部に対して、60質量部以下であることが好ましく、55質量部以下であることがより好ましく、50質量部以下であることがさらに好ましい。可塑剤の含有量が、樹脂(b1)100質量部に対して20質量部より少ないと、得られる積層体の柔軟性が不十分となる傾向にあり、合わせガラス用中間膜としての衝撃吸収性が問題になる場合がある。また、可塑剤の含有量が、樹脂(b1)100質量部に対して60質量部より多いと、得られる積層体の力学強度が不十分となる傾向にある。特にポリビニルアセタールを用いる場合には、優れた遮音性能を発現する観点で、可塑剤の含有量は35~60質量部であることが好適である。
 本発明の合わせガラス用中間膜の厚さの下限値は、通常は0.005mm、好ましくは0.01mm、より好ましくは0.02mm、より好ましくは0.04mm、より好ましくは0.07mm、より好ましくは0.1mm、さらに好ましくは0.15mm、特に好ましくは0.2mmである。また、その上限値は、通常5mm、好ましくは4mm、より好ましくは2mm、より好ましくは1.6mm、より好ましくは1.2mm、より好ましくは1.1mm、さらに好ましくは1mm、特に好ましくは0.79mmである。
 本発明における保護層の厚さは、0.01mm以上であることが好ましく、0.1mm以上であることがより好ましく、0.15mm以上であることがより好ましく、0.20mm以上であることがさらに好ましく、0.25mm以上であることが特に好ましい。また保護層の厚さは1.00mm以下であることが好ましく、0.70mm以下であることがより好ましく、0.60mm以下であることがより好ましく、0.50mm以下であることがより好ましく、0.45mm以下であることがさらに好ましく、0.4mm以下であることが特に好ましい。
 本発明の合わせガラス用多層中間膜の厚さの下限値は、通常0.1mm、好ましくは0.2mm、より好ましくは0.3mm、より好ましくは0.4mm、より好ましくは0.5mm、より好ましくは0.6mm、さらに好ましくは0.7mm、特に好ましくは0.75mmである。また、その上限値は、通常5mm、好ましくは4mm、より好ましくは2mm、より好ましくは1.6mm、より好ましくは1.2mm、より好ましくは1.1mm、さらに好ましくは1mm、特に好ましくは0.79mmである。
 本発明はまた、二枚のガラス板の間に、合わせガラス用中間膜又は合わせガラス用多層中間膜が挟持されてなる合わせガラスにも関する。かかる合わせガラスは従来公知の方法で製造できる。例えば、真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法及びニップロールを用いる方法等が挙げられる。また、上記方法により仮圧着した後に、オートクレーブに投入して本接着する方法も挙げられる。
 本発明の合わせガラス用中間膜又は合わせガラス用多層中間膜と積層させるガラスは、例えばフロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス及び熱線吸収板ガラス等の無機ガラス、並びにポリメタクリル酸メチル及びポリカーボネート等の従来公知の有機ガラス等を制限なく使用することができる。これらは、無色又は有色のいずれであってもよい。これらは単独で使用してもよく、2種以上を併用してもよい。また、ガラスの厚みは、通常100mm以下であることが好ましい。
 本発明の合わせガラス用中間膜又は合わせガラス用多層中間膜の表面の形状は、凹凸構造を付与したものであることがガラスと熱圧着する際の泡抜け性に優れるため好ましい。
 以下に、実施例等により本発明をさらに詳しく説明するが、本発明はこれらの実施例によって何ら限定されない。
[評価方法]
(ヘイズ測定)
 後述する実施例及び比較例で得られる合わせガラスを5cm×5cmの大きさに切断し、スガ試験機社製、ヘーズメーター(HZ-1)を使用し、ヘイズを測定した。結果を表6に示す。
(動的粘弾性の測定)
 後述する実施例及び比較例で得られる組成物からなる合わせガラス用中間膜(遮音層、実施例においては樹脂(a1)及び化合物(a2)を含有する組成物からなる合わせガラス用中間膜)について、下記の動的粘弾性の測定-1又は動的粘弾性の測定-2の方法により、動的粘弾性を測定した。
(動的粘弾性の測定-1)
 後述する実施例で得られるシートを幅3mmに切断して、周波数0.3Hz及び引っ張りモードで動的粘弾性を測定し(装置:レオロジー社製 DVE-V4)、tanδのピーク温度(ガラス転移温度)及び当該温度におけるtanδの値(tanδのピーク値)を測定した。結果を表6に示す。
(動的粘弾性の測定-2:遮音層を構成する組成物の動的粘弾性による評価)
 各実施例及び比較例で用いられる遮音層を構成する組成物を、熱プレス機を使用して180℃及び100kg/cmで30分間プレスして、厚さ0.8mmのシートを得た。幅3mmに切断して、動的粘弾性測定用サンプルとした。この測定用サンプルについて、動的粘弾性装置(株式会社ユービーエム製、Rheogel-E4000)を使用し、-50℃から120℃まで、3℃/分で昇温しながら、チャック間距離20mm、周波数0.3Hz、変位75.9μm、自動静荷重26g及び引張モードで分析した。得られた結果から正接損失tanδ(=損失弾性率/貯蔵弾性率)が極大になる温度T(℃)を求めた。温度Tと、温度Tでのtanδ(T)を表7に示す。
(低温ブリード試験)
 後述する実施例及び比較例で得られるシートを含水率0.5%に調湿後、5℃で1週間保管した。保管後のシート表面をティッシュペーパーで軽く拭い、ティッシュペーパーへの可塑剤の付着有無を目視で評価した。可塑剤が付着していたものを可塑剤ブリード「有り」とし、付着していなかったものを可塑剤ブリード「無し」として評価した。結果を表6に示す。
(化合物1と可塑剤(a3)との相溶性)
 表5に記載した質量比で化合物1(第一の可塑剤)及び可塑剤(a3)(第二の可塑剤)をビーカーに入れ、23℃で24時間撹拌した。得られた溶液を目視で確認して「相溶」又は「非相溶」を判断した。結果を表6に示す。ここで、化合物1と可塑剤(a3)が「相溶する」とは、目視で確認した際に、化合物1及び/又は可塑剤(a3)が析出しておらず、混合物が相分離を起こしておらず、濁っていない場合を指す。
(合わせガラスの損失係数測定)
 各実施例及び比較例で用いる合わせガラス用中間膜及び合わせガラス用多層中間膜を、300mm×300mm×2mmのフロートガラス2枚に挟み、バキュームバックで仮接着し、オートクレーブで135℃及び1.2MPaの条件で30分間処理して、気泡の無い合わせガラスを得た。得られた合わせガラスを25mm×300mmの大きさに切断し、加振機(エミック株式会社製、小型振動発生機512-A)により加振し、その際の周波数応答関数をFFTアナライザー(株式会社小野測器製、DS-2100)にて検出し、サーボ解析ソフト(株式会社小野測器製、DS-0242)を使用して0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃および40℃のそれぞれの温度について、3次の反共振モードにおける損失係数を求めた。また、損失係数と前記試験で求められる3次の反共振周波数の値から0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃および40℃における2000Hz、2500Hz、3150Hz、4000Hz、5000Hzおよび6300Hzの音響透過損失を計算し、これらの平均値を求めた。表7に、音響透過損失の平均値が最も大きい温度(表7では、単に「温度」と記載)と、その温度における前記平均値(表7では、単に「平均値」と記載)および5000Hzにおける音響透過損失値(表7では、単に「5000Hz」と記載)を示す。平均値が大きいものほど、いわゆる質量支配領域を含む広い周波数において音響透過損失が優れることを示し、5000Hzにおける音響透過損失に優れるものは、コインシデンス領域における遮音性能に優れることを示す。
[樹脂]
(製造例1)
 還流冷却器、温度計、イカリ型撹拌翼を備えた5リットルガラス容器に、イオン交換水4000g、ポリビニルアルコール-1(粘度平均重合度1700、けん化度99モル%)400gを仕込み、95℃に昇温してポリビニルアルコールを完全に溶解させた。得られた溶液を120rpmで撹拌下、10℃まで約30分かけて徐々に冷却後、n-ブチルアルデヒド229g及び20%塩酸水溶液200mLを添加した。その後、60分かけて65℃まで昇温し、65℃にて120分間保持した後、室温まで冷却した。得られた樹脂をイオン交換水で洗浄後、水酸化ナトリウム水溶液を添加して残存する酸を中和し、さらに過剰のイオン交換水で洗浄、乾燥してポリビニルブチラール(PVB-1)を得た。PVB-1をJIS K6728:1977に準拠して分析したところ、平均ブチラール化度(平均アセタール化度)は69モル%、平均残存ビニルエステル基量は1モル%であり、平均残存水酸基量は30モル%であった。結果を表1に示す。
(製造例2)
 製造例1において、n-ブチルアルデヒドの使用量を236gにした以外は同様にしてポリビニルブチラール(PVB-2)を得た。PVB-2をJIS K6728:1977に準拠して分析したところ、平均ブチラール化度は71モル%、平均残存ビニルエステル基量は1モル%であり、平均残存水酸基量は28モル%であった。結果を表1に示す。
(製造例3)
 製造例1において、n-ブチルアルデヒドの使用量を265gにした以外は同様にしてポリビニルブチラール(PVB-3)を得た。PVB-3をJIS K6728:1977に準拠して分析したところ、平均ブチラール化度は78モル%、平均残存ビニルエステル基量は1モル%であり、平均残存水酸基量は21モル%であった。結果を表1に示す。
(製造例4)
 製造例1において使用したポリビニルアルコール-1を400gのポリビニルアルコール-2(粘度平均重合度1700、けん化度92モル%)とし、またn-ブチルアルデヒドの使用量を231gに変更した以外は同様にしてポリビニルブチラール(PVB-4)を得た。PVB-4をJIS K6728:1977に準拠して分析したところ、平均ブチラール化度は74モル%、平均残存ビニルエステル基量は7モル%であり、平均残存水酸基量は19モル%であった。結果を表1に示す。
(製造例5)
 還流冷却器、温度計、イカリ型撹拌翼を備えた5リットルガラス容器に、イオン交換水4050g、ポリビニルアルコール-2(粘度平均重合度1700、けん化度92モル%)330gを仕込み、95℃に昇温してポリビニルアルコールを完全に溶解させた。得られた溶液を160rpmで撹拌下、10℃まで約30分かけて徐々に冷却後、n-ブチルアルデヒド197g及び20%塩酸水溶液200mLを添加し、ブチラール化反応を50分間行った。その後、60分かけて65℃まで昇温し、65℃にて120分間保持した後、室温まで冷却した。得られた樹脂をイオン交換水で洗浄後、水酸化ナトリウム水溶液を添加して残存する酸を中和し、さらに過剰のイオン交換水で洗浄、乾燥してポリビニルブチラール(PVB-5)を得た。PVB-5をJIS K6728:1977に準拠して測定したところ、平均ブチラール化度(平均アセタール化度)は74モル%、ビニルエステル単位の含有量は8モル%であり、残存水酸基量は18モル%であった。またJIS K0070:1992に準拠して測定したところ、PVB-5の水酸基価は162mgKOH/g、エステル価は73mgKOH/gであった。結果を表2に示す。
(製造例6)
 還流冷却器、温度計、イカリ型撹拌翼を備えた5リットルガラス容器に、イオン交換水4050g、ポリビニルアルコール-1(粘度平均重合度1700、けん化度99モル%)330gを仕込み、95℃に昇温してポリビニルアルコールを完全に溶解させた。得られた溶液を160rpmで撹拌下、10℃まで約30分かけて徐々に冷却後、n-ブチルアルデヒド188.5g及び20%塩酸水溶液200mLを添加し、ブチラール化反応を50分間行った。その後、60分かけて65℃まで昇温し、65℃にて120分間保持した後、室温まで冷却した。得られた樹脂をイオン交換水で洗浄後、水酸化ナトリウム水溶液を添加して残存する酸を中和し、さらに過剰のイオン交換水で洗浄、乾燥してポリビニルブチラール(PVB-6)を得た。PVB-6をJIS K6728:1977に準拠して分析したところ、平均ブチラール化度(平均アセタール化度)は69モル%、ビニルエステル単位の含有量は1モル%であり、平均残存水酸基量は30モル%であった。またJIS K0070:1992に準拠して測定したところ、PVB-6の水酸基価は264mgKOH/g、エステル価は9mgKOH/gであった。結果を表2に示す。
(製造例7)
 還流冷却器、温度計、イカリ型撹拌翼を備えた2リットルガラス容器に、ポリビニルアルコール-3(粘度平均重合度2400、けん化度88モル%)100g、無水プロピオン酸270g、ピリジン300gを添加して撹拌しながら80℃で360分保持した。反応溶液を水に投入し、得られた沈殿を十分に水洗した後、乾燥した。得られた樹脂(PVOPr)を重クロロホルムに溶解しH-NMRで分析したところ、酢酸ビニルユニットの含有量は12モル%、プロピオン酸ビニルユニットの含有量は88モル%であった。またJIS K0070:1992に準拠して測定したところ、PVOPrの水酸基価は0mgKOH/g、エステル価は570mgKOH/gであった。結果を表2に示す。
 上記製造例の熱可塑性樹脂以外の熱可塑性樹脂として、下記熱可塑性樹脂を使用した。物性の詳細は表2に記す。
エチレン-酢酸ビニル共重合体-1:酢酸ビニル含有量12モル%
エチレン-酢酸ビニル共重合体-2:酢酸ビニル含有量53モル%
エチレン-酢酸ビニル共重合体-3:酢酸ビニル含有量70モル%
ポリ酢酸ビニル:酢酸ビニル含有量100モル%
[表1]
Figure JPOXMLDOC01-appb-I000005
[表2]
Figure JPOXMLDOC01-appb-I000006
[化合物(a2)及び比較例で用いた化合物]
 各実施例で用いた化合物1(第一の可塑剤)及び比較例で用いた化合物(a2)の要件を満たさない化合物について表3に示す。そのほか、実施例及び比較例で用いた化合物1~4について表4に示す。
[表3]
Figure JPOXMLDOC01-appb-I000007
[表4]
Figure JPOXMLDOC01-appb-I000008
(実施例1)
 PVB-1を100質量部、第一の可塑剤-1を40質量部、酸化防止剤としてBHT(2,6-ジターシャリーブチル-4-ヒドロキシトルエン)を0.08質量部、紫外線吸収剤としてチヌビン328を0.15質量部ビーカー内で撹拌して粗混合した後、ラボプラストミルで溶融混練(150℃、5分)して、組成物-1を得た。組成物-1を130℃、50kg/cm、30分プレスして厚さ0.8mmのシート-1を作成した。シート-1を300mm×300mm×3mmのフロートガラス2枚に挟み、ニップロールで仮接着後、オートクレーブ中で140℃、1.2MPa、30分処理して合わせガラス-1を得た。組成物-1の組成を表5に示す。なお、表5中の第一の可塑剤及び第二の可塑剤の量は、PVB100質量部に対する質量部を意味する。また、前述した[評価方法]に記載にしたがって、合わせガラス-1のヘイズの測定、シート-1の動的粘弾性の測定-1及び低温ブリード試験を行った。結果を表6に示す。
(実施例2~29、比較例1~10、参考例)
 表5に記載の組成とした以外は実施例1と同様に組成物-2~40、シート-2~40及び合わせガラス-2~40を作製し評価を行った。また実施例4~9、11、12、16、25、26、28について、前述した[評価方法]に記載の通り第一の可塑剤と第二の可塑剤の相溶性を評価した。結果を表6に示す。
[表5]
Figure JPOXMLDOC01-appb-I000009
[表6]
Figure JPOXMLDOC01-appb-I000010
 本発明の規定を満たす実施例1~29の組成物はポリビニルアセタール(参考例)よりもガラス転移温度を十分に低下させた状態であってもガラス転移温度におけるtanδピーク値が大きいのに対し、本発明の規定を満たさない比較例1~8は、組成物のガラス転移温度におけるtanδが、ポリビニルアセタールのみの場合(参考例)のガラス転移温度におけるtanδ(2.5)と比較して著しく低下した。
(実施例30)
 エチレン-酢酸ビニル共重合体-1を100質量部、化合物(a2)として表4に示すフルオレン化合物-1を100質量部、可塑剤(a3)としてトリエチレングリコールジ2-エチルヘキサノエートを50質量部用意し、ラボプラストミルで溶融混錬して(150℃、60rpm、5分)組成物-41を得た。組成物-41を150℃及び100kgf/cmで30分間熱プレスして厚さ0.8mmのシート-41とした。組成物-41の組成を表7に示す。またシート-41について、前述した[評価方法]に記載の動的粘弾性の測定-2の通り、T、tanδ(T)の評価を行った。結果を表7に示す。
 組成物-41を熱プレスで150℃及び100kg/cmで30分間プレスして厚さ0.15mmの遮音層-1とした。また、100質量部のPVB-6とトリエチレングリコールジ2-エチルヘキサノエート36質量部を、ラボプラストミルで溶融混錬し(150℃、60rpm、5分)、得られた混錬物を150℃及び100kg/cmで30分間プレスして、厚さ0.33mmの保護層-1とした。得られた遮音層-1と保護層-1を、保護層-1/遮音層-1/保護層-1の順に重ね、30℃及び100kg/cmで10分間プレスして積層し、合わせガラス用多層中間膜-1を得た。合わせガラス用多層中間膜-1について、前述した[評価方法]に記載の通り、音響透過損失の評価を行った。結果を表7に示す。
(実施例31~46)
 表7に示す組成とした以外は実施例30と同様の方法でシート-42~57を作製し、評価を行った。また表7に示す組成及び厚さで遮音層-2~17及び保護層を製造し、これらを用いたこと以外は、実施例30と同様にして合わせガラス用多層中間膜2~17を製造し、評価を行った。結果を表7に示す。
(実施例47)
 表7に示す組成とした以外は実施例30と同様の方法でシート-58を作製し、評価を行った。表7に示す組成及び厚さで遮音層-18を製造し、遮音層-18のみを合わせガラス用中間膜としたこと以外は、実施例30と同様にして合わせガラス用中間膜を製造し、評価を行った。結果を表7に示す。
[表7]
Figure JPOXMLDOC01-appb-I000011
(比較例11)
 9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンを添加しないこと以外は、実施例30と同様の方法でシート-59、遮音層-19、保護層及び合わせガラス用多層中間膜-18を製造し、評価を行った。結果を表8に示す。
(比較例12~17)
 実施例30と同様の方法で表8に示す組成でシート-60~65を作製し評価を行った。また表7に示す組成及び厚さで遮音層-20~25、及び保護層を製造し、これらを用いたこと以外は、実施例30と同様にして合わせガラス用多層中間膜-19~24を作製し評価を行った。結果を表8に示す。
[表8]
Figure JPOXMLDOC01-appb-I000012
 1   合わせガラス用中間膜
 2a  保護層
 2b  保護層

Claims (18)

  1.  熱可塑性樹脂及び熱硬化性樹脂からなる群から選ばれる少なくとも1種類の樹脂(a1)100質量部、並びに化合物1~化合物4からなる群から選ばれる少なくとも1種類の化合物(a2)を10~1000質量部含む組成物(A)からなる合わせガラス用中間膜であって、
    化合物1は、化学式(1):
    Figure JPOXMLDOC01-appb-I000001
    [式中、R及びRは、それぞれ互いに独立して、アルキル置換基を有していてもよいジメチレン基、アルキル置換基を有していてもよいトリメチレン基及びアルキル置換基を有していてもよいテトラメチレン基からなる群から選ばれる基を表し、R及びRは、それぞれ互いに独立して、水素原子、アシル基及びアルキル基からなる群から選ばれる基であり、R及びRは、それぞれ互いに独立して、水素原子及び有機基からなる群から選ばれる基であり、R及びRは、それぞれ互いに独立して、有していても有していなくてもよい任意の置換基であり、m及びnは任意の自然数であり、化合物1分子あたりの(m+n)の平均は2~10である]
    で表される化合物であり、
    化合物2は、化合物1以外の、いずれも水素原子でない4つの原子に結合した炭素原子を少なくとも1つ有する化合物であって、該炭素原子のうち少なくとも1つは、少なくとも3つの環構造に直接結合している化合物であり、
    化合物3は、化合物1及び化合物2以外の、縮合環骨格中にいずれも水素原子でない4つの原子に結合した炭素原子を1つ有する化合物であって、該炭素原子に結合している基のうち少なくとも1つは水酸基、及び直鎖又は分岐鎖を有する有機基からなる群から選ばれる基である化合物であり、
    化合物4は、化合物1~3以外の、ベンゼン環が3つ以上縮環した骨格を有し、150~10000の分子量を有するアセン系化合物である、
    合わせガラス用中間膜。
  2.  樹脂(a1)は熱可塑性樹脂である、請求項1に記載の合わせガラス用中間膜。
  3.  前記熱可塑性樹脂のエステル価は5mgKOH/g~800mgKOH/gである、請求項2に記載の合わせガラス用中間膜。
  4.  前記熱可塑性樹脂はポリビニルアセタール、ポリカルボン酸ビニル及びオレフィン-カルボン酸ビニル共重合体からなる群から選ばれる少なくとも1種類の樹脂である、請求項2又は3に記載の合わせガラス用中間膜。
  5.  前記ポリビニルアセタールの平均残存水酸基量は15モル%~50モル%である、請求項4に記載の合わせガラス用中間膜。
  6.  前記化学式(1)において、m+n=2~3である化合物の割合は10~100質量%である、請求項1~5のいずれかに記載の合わせガラス用中間膜。
  7.  前記化学式(1)において、R及びRはいずれもメチル基である、請求項1~6のいずれかに記載の合わせガラス用中間膜。
  8.  前記化学式(1)においてR及びRは直接結合し、環状の構造を形成している、請求項1~6のいずれかに記載の合わせガラス用中間膜。
  9.  前記化合物2において、前記いずれも水素原子でない4つの原子に結合した炭素原子は4つの環構造に直接結合している、請求項1~8のいずれかに記載の合わせガラス用中間膜。
  10.  前記化合物3において、前記いずれも水素原子でない4つの原子に結合した炭素原子に結合している基のうち2つは、水酸基及び直鎖又は分岐鎖を有する有機基からなる群から選ばれる基である、請求項1~9のいずれかに記載の合わせガラス用中間膜。
  11.  化合物(a2)の水酸基価は500mgKOH/g以下である、請求項1~10のいずれかに記載の合わせガラス用中間膜。
  12.  樹脂(a1)100質量部に対して可塑剤(a3)を1~100質量部含む、請求項1~11のいずれかに記載の合わせガラス用中間膜であって、可塑剤(a3)は化合物1~4ではない合わせガラス用中間膜。
  13.  可塑剤(a3)は、j価カルボン酸1分子と1価アルコールj分子とのエステル化反応で得られる化合物(j=1~4)、及び1価カルボン酸k分子とk価アルコール1分子とのエステル化反応で得られる化合物(k=1~4)からなる群から選ばれる1種類以上の化合物を含む、請求項12に記載の合わせガラス用中間膜。
  14.  化合物(a2)と可塑剤(a3)は、前記組成物(A)に含まれる比率で23℃において相溶するものである、請求項12又は13に記載の合わせガラス用中間膜。
  15.  前記組成物(A)のガラス転移温度は-30~50℃である、請求項1~14のいずれかに記載の合わせガラス用中間膜。
  16.  前記組成物(A)はそのガラス転移温度において1.5以上のtanδを有する、請求項1~15のいずれかに記載の合わせガラス用中間膜であって、tanδは周波数0.3Hz及び引っ張りモードで測定される合わせガラス用中間膜。
  17.  請求項1~16のいずれかに記載の合わせガラス用中間膜を少なくとも一層含む、合わせガラス用多層中間膜。
  18.  二枚のガラス板の間に、請求項1~16のいずれかに記載の合わせガラス用中間膜又は請求項17に記載の合わせガラス用多層中間膜が挟持されてなる合わせガラス。
PCT/JP2016/059981 2015-03-27 2016-03-28 合わせガラス用中間膜 WO2016158882A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680018483.5A CN107406653A (zh) 2015-03-27 2016-03-28 夹层玻璃用中间膜
US15/561,418 US20180104931A1 (en) 2015-03-27 2016-03-28 Intermediate film for laminated glass
KR1020177026961A KR20170131445A (ko) 2015-03-27 2016-03-28 합판 유리용 중간막
JP2017509990A JP6185214B2 (ja) 2015-03-27 2016-03-28 合わせガラス用中間膜
EP16772763.5A EP3275934A4 (en) 2015-03-27 2016-03-28 Intermediate film for laminated glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-067225 2015-03-27
JP2015067225 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016158882A1 true WO2016158882A1 (ja) 2016-10-06

Family

ID=57006845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059981 WO2016158882A1 (ja) 2015-03-27 2016-03-28 合わせガラス用中間膜

Country Status (6)

Country Link
US (1) US20180104931A1 (ja)
EP (1) EP3275934A4 (ja)
JP (1) JP6185214B2 (ja)
KR (1) KR20170131445A (ja)
CN (1) CN107406653A (ja)
WO (1) WO2016158882A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170259A1 (ja) * 2016-03-28 2017-10-05 株式会社クラレ 合わせガラス用中間膜
WO2018143442A1 (ja) * 2017-02-03 2018-08-09 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2018212332A1 (ja) * 2017-05-19 2018-11-22 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2019009352A1 (ja) * 2017-07-07 2019-01-10 積水化学工業株式会社 樹脂発泡体、樹脂発泡体シート、粘着テープ、車両用部材及び建築部材
WO2019021999A1 (ja) 2017-07-24 2019-01-31 積水化学工業株式会社 樹脂膜及びガラス板含有積層体
CN110536874A (zh) * 2017-05-19 2019-12-03 积水化学工业株式会社 夹层玻璃用中间膜和夹层玻璃
JPWO2019151325A1 (ja) * 2018-02-02 2020-12-03 積水化学工業株式会社 合わせガラス用中間膜、ロール体及び合わせガラス
US11590737B2 (en) * 2018-02-02 2023-02-28 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, rolled body, and laminated glass
WO2023100928A1 (ja) * 2021-12-01 2023-06-08 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3041772A1 (en) * 2016-09-27 2018-04-05 Kuraray Co., Ltd. Intermediate film for laminated glass
WO2019151329A1 (ja) * 2018-02-02 2019-08-08 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2023059706A1 (en) * 2021-10-08 2023-04-13 Solutia Inc. Polymer interlayers with improved acoustic properties

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294681A (ja) * 1992-04-23 1993-11-09 Sekisui Chem Co Ltd 合わせガラス用中間膜
JP2007008798A (ja) * 2005-06-02 2007-01-18 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス
WO2010038801A1 (ja) * 2008-09-30 2010-04-08 積水化学工業株式会社 合わせガラス用中間膜、及び、合わせガラス
WO2010095749A1 (ja) * 2009-02-23 2010-08-26 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2014188542A1 (ja) * 2013-05-22 2014-11-27 株式会社クラレ 層間接着性に優れる積層体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB372327A (en) * 1930-12-24 1932-04-25 British Celanese Improvements in compositions containing polymerised vinyl compounds and the application thereof
EP0494663A3 (en) * 1991-01-10 1993-02-10 Tosoh Corporation Thermoplastic resin composition
AU2002356116B2 (en) * 2001-07-26 2007-05-17 Sekisui Chemical Co., Ltd. Laminated glass-use intermediate film and laminated glass
US9180648B2 (en) * 2008-12-22 2015-11-10 Sekisui Chemical Co., Ltd. Laminate for laminated glass
EP3009413A1 (en) * 2009-08-24 2016-04-20 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass
EP2759527B1 (en) * 2011-09-21 2018-01-24 Sekisui Chemical Co., Ltd. Interlayer for laminated glass and laminated glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294681A (ja) * 1992-04-23 1993-11-09 Sekisui Chem Co Ltd 合わせガラス用中間膜
JP2007008798A (ja) * 2005-06-02 2007-01-18 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス
WO2010038801A1 (ja) * 2008-09-30 2010-04-08 積水化学工業株式会社 合わせガラス用中間膜、及び、合わせガラス
WO2010095749A1 (ja) * 2009-02-23 2010-08-26 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2014188542A1 (ja) * 2013-05-22 2014-11-27 株式会社クラレ 層間接着性に優れる積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3275934A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438065A4 (en) * 2016-03-28 2020-01-08 Kuraray Co., Ltd. INTERMEDIATE FILM FOR LAMINATED GLASS
JPWO2017170259A1 (ja) * 2016-03-28 2018-04-05 株式会社クラレ 合わせガラス用中間膜
WO2017170259A1 (ja) * 2016-03-28 2017-10-05 株式会社クラレ 合わせガラス用中間膜
US11325354B2 (en) 2016-03-28 2022-05-10 Kuraray Co., Ltd. Interlayer film for laminated glass
WO2018143442A1 (ja) * 2017-02-03 2018-08-09 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
US11648755B2 (en) 2017-02-03 2023-05-16 Sekisui Chemical Co., Ltd. Laminated glass intermediate film and laminated glass
JP7252759B2 (ja) 2017-02-03 2023-04-05 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2022113872A (ja) * 2017-02-03 2022-08-04 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JPWO2018143442A1 (ja) * 2017-02-03 2019-11-21 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
US11396162B2 (en) 2017-05-19 2022-07-26 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
US11214043B2 (en) 2017-05-19 2022-01-04 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
WO2018212332A1 (ja) * 2017-05-19 2018-11-22 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JPWO2018212332A1 (ja) * 2017-05-19 2019-06-27 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
EP3626689A4 (en) * 2017-05-19 2021-03-03 Sekisui Chemical Co., Ltd. INTERMEDIATE FILM FOR LAMINATED GLASS, AND LAMINATED GLASS
EP3626690A4 (en) * 2017-05-19 2021-03-10 Sekisui Chemical Co., Ltd. INTERMEDIATE FILM FOR LAMINATED GLASS, AND LAMINATED GLASS
CN110536874A (zh) * 2017-05-19 2019-12-03 积水化学工业株式会社 夹层玻璃用中间膜和夹层玻璃
JPWO2019009352A1 (ja) * 2017-07-07 2019-07-04 積水化学工業株式会社 樹脂発泡体、樹脂発泡体シート、粘着テープ、車両用部材及び建築部材
WO2019009352A1 (ja) * 2017-07-07 2019-01-10 積水化学工業株式会社 樹脂発泡体、樹脂発泡体シート、粘着テープ、車両用部材及び建築部材
US11692073B2 (en) 2017-07-07 2023-07-04 Sekisui Chemical Co., Ltd. Resin foam, resin foam sheet, adhesive tape, vehicle member, and building member
EP3659985A4 (en) * 2017-07-24 2021-04-28 Sekisui Chemical Co., Ltd. RESIN FOIL AND GLASS PANEL LAMINATE
WO2019021999A1 (ja) 2017-07-24 2019-01-31 積水化学工業株式会社 樹脂膜及びガラス板含有積層体
KR20200034656A (ko) 2017-07-24 2020-03-31 세키스이가가쿠 고교가부시키가이샤 수지막 및 유리판 함유 적층체
JPWO2019151325A1 (ja) * 2018-02-02 2020-12-03 積水化学工業株式会社 合わせガラス用中間膜、ロール体及び合わせガラス
US11590737B2 (en) * 2018-02-02 2023-02-28 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, rolled body, and laminated glass
WO2023100928A1 (ja) * 2021-12-01 2023-06-08 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Also Published As

Publication number Publication date
EP3275934A4 (en) 2018-12-05
JP6185214B2 (ja) 2017-08-23
JPWO2016158882A1 (ja) 2017-08-10
US20180104931A1 (en) 2018-04-19
EP3275934A1 (en) 2018-01-31
KR20170131445A (ko) 2017-11-29
CN107406653A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
JP6185214B2 (ja) 合わせガラス用中間膜
JP6541758B2 (ja) シート
JP6311079B2 (ja) 合わせガラス用中間膜
US10808114B2 (en) Blends of poly(vinyl acetal) resins for compositions, layers, and interlayers having enhanced optical properties
WO2018225860A1 (ja) 合わせガラス用中間膜の再利用方法
WO2014188542A1 (ja) 層間接着性に優れる積層体
US10377891B2 (en) Blends of poly(vinyl acetal) resins for compositions, layers, and interlayers having enhanced optical properties
EP3412450B1 (en) Laminate
JP6392629B2 (ja) ポリビニルアセタール組成物
JP6243341B2 (ja) 積層シートおよびその製造方法並びに表面保護シート
KR20170093222A (ko) 개선된 광학 특성을 갖는 조성물, 층 및 중간층을 위한 폴리(비닐 아세탈) 수지 배합물
JP2017136807A (ja) 遮音性と取り扱い性に優れる積層体
JP2019172500A (ja) 合わせガラス用中間膜
JP6456747B2 (ja) ポリビニルアセタールを含有する積層体
JPWO2014188544A1 (ja) 遮音性に優れる積層体
JP6033753B2 (ja) 層間接着性に優れる積層体
JP2019025885A (ja) 積層体
JP2017136806A (ja) 積層体
JP2017136805A (ja) 積層体
JP2016188371A (ja) ポリビニルアセタール組成物、該組成物からなるシートおよびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509990

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177026961

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772763

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561418

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE