WO2011024788A1 - 合わせガラス用中間膜及び合わせガラス - Google Patents

合わせガラス用中間膜及び合わせガラス Download PDF

Info

Publication number
WO2011024788A1
WO2011024788A1 PCT/JP2010/064247 JP2010064247W WO2011024788A1 WO 2011024788 A1 WO2011024788 A1 WO 2011024788A1 JP 2010064247 W JP2010064247 W JP 2010064247W WO 2011024788 A1 WO2011024788 A1 WO 2011024788A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
shielding layer
ultraviolet
heat shielding
heat
Prior art date
Application number
PCT/JP2010/064247
Other languages
English (en)
French (fr)
Inventor
紘史 北野
深谷 重一
大三 伊井
賞純 岡林
竜太 角田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43627893&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011024788(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to RU2012111220/05A priority Critical patent/RU2540569C2/ru
Priority to BR112012003918-0A priority patent/BR112012003918B1/pt
Priority to EP10811838.1A priority patent/EP2471762B1/en
Priority to CN201080037243.2A priority patent/CN102625786B/zh
Priority to KR1020177027094A priority patent/KR101940438B1/ko
Priority to JP2010533376A priority patent/JP4947451B2/ja
Priority to KR1020127004676A priority patent/KR101784533B1/ko
Priority to US13/391,732 priority patent/US20120162752A1/en
Priority to MX2012001804A priority patent/MX348107B/es
Publication of WO2011024788A1 publication Critical patent/WO2011024788A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/04Joining glass to metal by means of an interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10678Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31942Of aldehyde or ketone condensation product
    • Y10T428/31946Next to second aldehyde or ketone condensation product

Definitions

  • the present invention relates to an interlayer film for laminated glass used for laminated glass such as an automobile or a building, and more specifically, an interlayer film for laminated glass capable of enhancing the heat shielding property of laminated glass, and the interlayer film for laminated glass. It is related with the laminated glass using.
  • Laminated glass is superior in safety even if it is damaged by an external impact and the amount of glass fragments scattered is small. For this reason, the said laminated glass is widely used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc.
  • the laminated glass is manufactured by sandwiching an interlayer film for laminated glass between a pair of glass plates. High heat-insulating properties are required for laminated glass used in such vehicle and building openings.
  • Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays.
  • infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays. Therefore, in order to improve the heat shielding property of the laminated glass, it is necessary to sufficiently block infrared rays.
  • Patent Document 1 In order to effectively block the infrared rays (heat rays), the following Patent Document 1 includes laminated glass containing heat shielding particles such as tin-doped indium oxide particles (ITO particles) or antimony-doped tin oxide particles (ATO particles). An intermediate film for use is disclosed.
  • ITO particles tin-doped indium oxide particles
  • ATO particles antimony-doped tin oxide particles
  • Patent Document 2 discloses a heat ray shielding material having two or more layers containing at least one of a phthalocyanine-based infrared absorber and an ultraviolet absorber. This heat ray shielding material is disposed so that the layer containing the ultraviolet absorber or the like is closer to the side where heat rays are incident than the other layers.
  • CARB California Air Resources Board
  • the CARB regulates the heat energy that passes through the laminated glass and flows into the automobile, reducing the fuel consumed by the air conditioner and reducing the fuel consumption of the automobile. I was considering improving it. Specifically, the CARB had planned to introduce cool car regulations (Cool Cars Standards).
  • Tts Total Solar Transmission
  • the Tts is an index of heat ray shielding.
  • heat-reflective laminated glass using a metal thin film or heat ray reflective PET generally referred to as a thermal reaction type, reflects not only infrared rays but also communication waves in the communication wavelength region.
  • the heat ray reflective laminated glass is used for the windshield, it is necessary to cut out the heat ray reflective portion in order to cope with many sensors.
  • the average Tts of the entire windshield using the heat ray reflective laminated glass having a Tts of 50% is about 53%. Therefore, in a type of laminated glass that transmits communication waves and absorbs infrared rays, Tts was expected to be allowed up to 53%.
  • the laminated glass is required not only to have a high heat shielding property but also to have a high visible light transmittance (Visible Transmittance).
  • the visible light transmittance is desirably 70% or more. That is, it is required to increase the heat shielding property while keeping the visible light transmittance high.
  • the laminated glass satisfies both high heat shielding properties and high visible light transmittance. Is extremely difficult to obtain.
  • An object of the present invention is to use a laminated glass interlayer film capable of obtaining a laminated glass excellent in heat shielding properties and capable of maintaining the superior heat shielding properties of the laminated glass over a long period of time, and the laminated glass interlayer film. It is to provide laminated glass.
  • a heat shielding layer and a first ultraviolet shielding layer are provided, and the heat shielding layer includes a thermoplastic resin, heat shielding particles, a phthalocyanine compound, a naphthalocyanine compound, and an anthocyanin compound.
  • An interlayer film for laminated glass is provided, which contains at least one of the above components, and wherein the first ultraviolet shielding layer contains a thermoplastic resin and an ultraviolet shielding agent.
  • the first ultraviolet shielding layer is laminated on one surface of the heat shielding layer.
  • the first ultraviolet shielding layer is disposed on one surface side of the heat shielding layer, and one surface side of the heat shielding layer.
  • the second ultraviolet shielding layer is further provided on the other surface side opposite to the first ultraviolet shielding layer, and the second ultraviolet shielding layer contains a thermoplastic resin and an ultraviolet shielding agent.
  • the first ultraviolet shielding layer is laminated on one surface of the heat shielding layer
  • the second ultraviolet shielding layer is The heat shielding layer is laminated on the other surface opposite to the one surface.
  • the ultraviolet transmittance of the ultraviolet shielding layer at a wavelength of 360 to 390 nm is 0.5% or less, or the wavelength of the ultraviolet shielding layer is from 380 to 390 nm. Has an ultraviolet transmittance of 0.8% or less.
  • the component is at least one selected from the group consisting of phthalocyanine, a derivative of phthalocyanine, naphthalocyanine, and a derivative of naphthalocyanine.
  • the heat shielding particles are metal oxide particles.
  • the heat shielding particles are tin-doped indium oxide particles.
  • the thermoplastic resin is a polyvinyl acetal resin.
  • each of the heat shielding layer and the ultraviolet shielding layer further includes a plasticizer.
  • the content of the ultraviolet shielding agent is 0.2 to 1.0% by weight in 100% by weight of the ultraviolet shielding layer.
  • the laminated glass according to the present invention comprises first and second laminated glass constituent members and an intermediate film sandwiched between the first and second laminated glass constituent members, and the intermediate film comprises: 1 is an interlayer film for laminated glass constructed according to the present invention.
  • the interlayer film for laminated glass according to the present invention includes the heat shielding layer having a specific composition and the first ultraviolet shielding layer having a specific composition, it is possible to obtain a laminated glass having excellent heat shielding properties. it can. Furthermore, the excellent heat shielding property of the obtained laminated glass can be maintained over a long period of time.
  • FIG. 1 is a partially cutaway sectional view schematically showing an example of an interlayer film for laminated glass according to an embodiment of the present invention.
  • FIG. 2 is a partially cutaway sectional view showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
  • FIG. 1 an example of the intermediate film for laminated glasses which concerns on one Embodiment of this invention is typically shown with a partial notch cross-sectional view.
  • the intermediate film 1 shown in FIG. 1 includes a heat shielding layer 2, a first ultraviolet shielding layer 3 disposed on one surface 2a (first surface) side of the heat shielding layer 2, and the other of the heat shielding layer 2. And a second ultraviolet ray shielding layer 4 disposed on the surface 2b (second surface) side.
  • the first ultraviolet shielding layer 3 is laminated on one surface 2 a of the heat shielding layer 2.
  • the second ultraviolet shielding layer 4 is laminated on the other surface 2 b of the heat shielding layer 2.
  • the intermediate film 1 is used to obtain a laminated glass.
  • the intermediate film 1 is an intermediate film for laminated glass.
  • the first ultraviolet shielding layer 3 and the second ultraviolet shielding layer 4 each contain a thermoplastic resin and an ultraviolet shielding agent. Since the first and second ultraviolet shielding layers 3 and 4 contain an ultraviolet shielding agent, they function as layers that effectively suppress the transmission of ultraviolet rays.
  • the first ultraviolet shielding layer 3 has an ultraviolet transmittance of 4% or less at a wavelength of 360 to 400 nm or an ultraviolet transmittance of the intermediate film 1 at a wavelength of 360 to 400 nm of 0.5% or less.
  • a layer is preferred. Since the second ultraviolet shielding layer 4 contains an ultraviolet shielding agent, the second ultraviolet shielding layer 4 has an ultraviolet transmittance of 4% or less at a wavelength of 360 to 400 nm or a wavelength of 360 to 400 nm of the intermediate film 1. It is preferable that it is a layer for setting the ultraviolet transmittance at 0.5% or less.
  • the intermediate film 1 preferably has an ultraviolet transmittance of 0.5% or less at a wavelength of 360 to 400 nm.
  • the ultraviolet light transmittance at a wavelength of 360 to 400 nm of the ultraviolet shielding layer is more preferably 3.6% or less, further preferably 3% or less, and particularly preferably 2.5% or less.
  • the ultraviolet transmittance at a wavelength of 360 to 400 nm of the intermediate film is more preferably 0.45% or less, further preferably 0.4% or less, and particularly preferably 0.35% or less.
  • the “ultraviolet transmittance at a wavelength of 360 to 400 nm” indicates an average value of each light transmittance of the laminated glass at 360 nm, 365 nm, 370 nm, 375 nm, 380 nm, 385 nm, 390 nm, 395 nm and 400 nm.
  • the first ultraviolet shielding layer 3 has an ultraviolet transmittance at a wavelength of 360 to 390 nm of 0.5% or less, or the intermediate film 1 has an ultraviolet transmittance at a wavelength of 360 to 390 nm of 0.05% or less. It may be a layer for
  • the second ultraviolet shielding layer 4 has an ultraviolet transmittance of 0.5% or less at a wavelength of 360 to 390 nm, or an ultraviolet transmittance of the intermediate film 1 at a wavelength of 360 to 390 nm of 0.05% or less. It may be a layer for.
  • the intermediate film 1 preferably has an ultraviolet transmittance of 0.05% or less at a wavelength of 360 to 390 nm.
  • the ultraviolet ray transmittance at a wavelength of 360 to 390 nm of the ultraviolet ray shielding layer is more preferably 0.3% or less, further preferably 0.2% or less, and particularly preferably 0.1% or less.
  • the ultraviolet transmittance at a wavelength of 360 to 390 nm of the intermediate film is more preferably 0.04% or less, further preferably 0.02% or less, and particularly preferably 0.015% or less.
  • the “ultraviolet transmittance at a wavelength of 360 to 390 nm” indicates an average value of each light transmittance of the laminated glass at 360 nm, 365 nm, 370 nm, 375 nm, 380 nm, 385 nm and 390 nm.
  • the first ultraviolet shielding layer 3 has an ultraviolet transmittance of 0.8% or less at a wavelength of 380 to 390 nm, or an ultraviolet transmittance of the intermediate film 1 at a wavelength of 380 to 390 nm is 0.1% or less. It may be a layer for
  • the second ultraviolet shielding layer 4 has an ultraviolet transmittance of 0.8% or less at a wavelength of 380 to 390 nm, or an ultraviolet transmittance of the intermediate film 1 at a wavelength of 380 to 390 nm of 0.1% or less. It may be a layer for.
  • the intermediate film 1 preferably has an ultraviolet transmittance of 0.1% or less at a wavelength of 380 to 390 nm.
  • the ultraviolet ray transmittance at a wavelength of 380 to 390 nm of the ultraviolet ray shielding layer is more preferably 0.7% or less, further preferably 0.66% or less, and particularly preferably 0.2% or less. .
  • the ultraviolet transmittance at a wavelength of 380 to 390 nm of the intermediate film is more preferably 0.04% or less, further preferably 0.03% or less, and particularly preferably 0.02% or less.
  • the “ultraviolet transmittance at a wavelength of 380 to 390 nm” indicates an average value of each light transmittance of the laminated glass at 380 nm, 385 nm, and 390 nm.
  • the “ultraviolet transmittance at a wavelength of 360 to 400 nm”, the “ultraviolet transmittance at a wavelength of 360 to 390 nm”, and the “ultraviolet transmittance at a wavelength of 380 to 390 nm” are the thicknesses according to JIS R3202. It can be measured using a laminated glass obtained by sandwiching an ultraviolet shielding layer or an intermediate film between two 2 mm float glasses.
  • the heat shielding layer 2 contains a thermoplastic resin, the heat shielding particles 5, and at least one component of a phthalocyanine compound, a naphthalocyanine compound, and an anthracyanine compound.
  • a phthalocyanine compound a phthalocyanine compound, a naphthalocyanine compound, and an anthracyanine compound.
  • component X at least one component of the phthalocyanine compound, naphthalocyanine compound and anthracocyanine compound.
  • the heat shielding property of the laminated glass may be low, and further, low solar radiation transmittance and high visible light transmittance (Visible Transmittance)
  • the solar radiation transmittance is an index of heat shielding properties.
  • the Tts Total Solar Transmission
  • the visible light transmittance is 70% or more. It was extremely difficult to obtain a laminated glass satisfying any of the above, and it was even more difficult to reduce the Tts to 50% or less.
  • the heat shielding layer contains the heat shielding particles and the specific component X described above.
  • the inventors of the present invention have found that the use of a heat-shielding layer containing both the heat-shielding particles and the specific component X can increase both the heat-shielding property and the visible light transmittance of the laminated glass.
  • the present inventors have also found a configuration of an interlayer film for laminated glass that can maintain high heat shielding properties for a long period of time.
  • the interlayer film for laminated glass is intentionally made into a multilayer of two or more layers, and a structure including a heat shielding layer and an ultraviolet shielding layer containing an ultraviolet shielding agent is adopted.
  • the ultraviolet rays are effectively shielded out of the light rays incident on the intermediate film from the ultraviolet shielding layer side.
  • ultraviolet rays having a wavelength of about 360 to 400 nm are effectively shielded.
  • the amount of ultraviolet rays reaching the heat shielding layer can be reduced, and in particular, the amount of ultraviolet rays having a wavelength of 360 to 400 nm, ultraviolet rays having a wavelength of 360 to 390 nm or ultraviolet rays having a wavelength of 380 to 390 nm reaching the heat shielding layer can be reduced. Therefore, it is possible to suppress the deterioration of the resin accompanying the chemical change of the component X and the chemical change of the component X contained in the heat shield layer. For this reason, the outstanding heat insulation can be maintained over a long period of time.
  • the heat shielding properties of the interlayer film and the laminated glass can be sufficiently increased, and further, the solar radiation transmission, which is an index of the heat shielding properties.
  • a laminated glass having a low rate and a high visible light transmittance can be obtained.
  • a laminated glass having a sufficiently low Tts and a sufficiently high visible light transmittance can be obtained.
  • the solar radiation transmittance (Ts 2500) at a wavelength of 300 to 2500 nm of the laminated glass can be made 65% or less, and the visible light transmittance can be made 65% or more.
  • the solar radiation transmittance (Ts2500) can be 60% or less, and the visible light transmittance can be 70% or more.
  • the Tts of the laminated glass can be 53% or less, and the visible light transmittance of the laminated glass can be 70% or more. Further, the Tts can be made 50% or less. Therefore, for example, the laminated glass corresponding to the cool car regulations that the California Air Resources Board (CARB (California Air Resources Board)) is planning to introduce in the United States can be obtained.
  • CARB California Air Resources Board
  • the performance of the Tts and the visible light transmittance is the performance required by the cool car regulation.
  • the Tts is measured, for example, by a measurement method defined by cool car regulations that are scheduled to be introduced.
  • the visible light transmittance is measured in accordance with, for example, JIS R3211 (1998).
  • the interlayer film for laminated glass according to the present invention can not only increase both the heat shielding property and the visible light transmittance, but also maintain a high heat shielding property over a long period of time.
  • the ultraviolet transmittance of the first ultraviolet shielding layer 3 or the intermediate film 1 at a wavelength of 360 to 400 nm, the ultraviolet transmittance of a wavelength of 360 to 390 nm, or a wavelength of 380 It is preferable to control the ultraviolet transmittance at ⁇ 390 nm to a certain value or less.
  • the intermediate film 1 has a three-layer structure in which a first ultraviolet shielding layer 3, a heat shielding layer 2, and a second ultraviolet shielding layer 4 are laminated in this order.
  • the heat shielding layer is preferably disposed between the first and second ultraviolet shielding layers, and more preferably sandwiched between the first and second ultraviolet shielding layers.
  • the ultraviolet rays incident on the intermediate film can be effectively shielded by the first and second ultraviolet shielding layers on both surfaces of the intermediate film.
  • the second ultraviolet shielding layer 4 is not necessarily used. That is, the first ultraviolet shielding layer 3 may be laminated only on one surface 2 a of the heat shielding layer 2. In this case, what is necessary is just to arrange
  • the first ultraviolet shielding layer is disposed on the outside of the automobile, and the heat shielding layer is disposed on the inside of the automobile.
  • the intermediate film may have a laminated structure of four or more layers.
  • the first and second ultraviolet shielding layers 3 and 4 may contain heat shielding particles and the specific component X described above.
  • the interlayer film for laminated glass according to the present invention may further include another layer different from the heat shielding layer and the ultraviolet shielding layer. Furthermore, another layer different from the heat shielding layer and the ultraviolet shielding layer may be sandwiched between the heat shielding layer and the ultraviolet shielding layer.
  • the thickness of the intermediate film is not particularly limited.
  • the thickness of the intermediate film indicates the total thickness of each layer constituting the intermediate film. Therefore, in the case of the intermediate film 1, the thickness of the intermediate film 1 indicates the total thickness of the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4.
  • the preferable lower limit of the thickness of the interlayer film is 0.1 mm, the more preferable lower limit is 0.25 mm, the preferable upper limit is 3 mm, and the more preferable upper limit is 1.5 mm. is there.
  • the thickness of the intermediate film is too thin, the penetration resistance of the laminated glass tends to decrease.
  • the preferable lower limit of each thickness of the first and second ultraviolet shielding layers 3 and 4 is 0.001 mm, and the more preferable lower limit is 0.2 mm.
  • the preferred upper limit is 0.8 mm, and the more preferred upper limit is 0.6 mm.
  • the preferred lower limit of the thickness of the heat shielding layer 1 is 0.001 mm, the more preferred lower limit is 0.05 mm, the preferred upper limit is 0.8 mm, and the more preferred upper limit is 0. .6 mm.
  • thermoplastic resin Each of the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 contains a thermoplastic resin.
  • a conventionally well-known thermoplastic resin can be used as a thermoplastic resin.
  • As for a thermoplastic resin only 1 type may be used and 2 or more types may be used together.
  • thermoplastic resin examples include polyvinyl acetal resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic copolymer resin, polyurethane resin, and polyvinyl alcohol resin. Thermoplastic resins other than these may be used.
  • thermoplastic resins contained in the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is preferably a polyvinyl acetal resin.
  • the thermoplastic resin contained in the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is preferably a polyvinyl acetal resin.
  • the affinity between the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is enhanced, and the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 are in close contact with each other.
  • the sex can be further enhanced.
  • the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 preferably each contain a plasticizer described later.
  • the thermoplastic resin contained in the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is a polyvinyl acetal resin
  • the heat shielding layer 2 can be obtained by using the polyvinyl acetal resin and a plasticizer together. And the adhesive force of the 1st, 2nd ultraviolet shielding layers 3 and 4 can be improved further.
  • the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate.
  • the degree of saponification of the polyvinyl alcohol is generally in the range of 80 to 99.8 mol%.
  • the preferable lower limit of the polymerization degree of the polyvinyl alcohol is 200, the more preferable lower limit is 500, the preferable upper limit is 3,000, and the more preferable upper limit is 2,500.
  • the said polymerization degree is too low, there exists a tendency for the penetration resistance of a laminated glass to fall.
  • the said polymerization degree is too high, shaping
  • the aldehyde is not particularly limited. In general, an aldehyde having 1 to 10 carbon atoms is preferably used as the aldehyde.
  • Examples of the aldehyde having 1 to 10 carbon atoms include n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, n-nonylaldehyde, n- Examples include decyl aldehyde, formaldehyde, acetaldehyde, and benzaldehyde.
  • propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde is preferable, propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferable, and n-butyraldehyde is further preferable.
  • the said aldehyde only 1 type may be used and 2 or more types may be used together.
  • the content of hydroxyl groups (hydroxyl content) in the polyvinyl acetal resin is preferably in the range of 15 to 40 mol%.
  • the more preferable lower limit of the hydroxyl group content is 18 mol%, and the more preferable upper limit is 35 mol%. If the hydroxyl group content is too low, the adhesion of each layer may be low. On the other hand, if the hydroxyl group content is too high, the flexibility of the intermediate film 1 is lowered, and problems with handling of the intermediate film 1 are likely to occur.
  • the hydroxyl group content of the polyvinyl acetal resin is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the amount of the ethylene group to which the hydroxyl group is bonded can be determined, for example, by measuring the amount of ethylene group to which the hydroxyl group of polyvinyl alcohol as a raw material is bonded in accordance with JIS K6726 “Testing method for polyvinyl alcohol”. it can.
  • the preferable lower limit of the degree of acetylation (acetyl group amount) of the polyvinyl acetal resin is 0.1 mol%, the more preferable lower limit is 0.3 mol%, the still more preferable lower limit is 0.5 mol%, and the preferable upper limit is 30 mol%. A more preferable upper limit is 25 mol%, and a further preferable upper limit is 20 mol%.
  • the degree of acetylation is too low, the compatibility between the polyvinyl acetal resin and the plasticizer may be reduced. If the degree of acetylation is too high, the moisture resistance of the interlayer film may be lowered.
  • the degree of acetylation is obtained by subtracting the amount of ethylene groups to which acetal groups are bonded and the amount of ethylene groups to which hydroxyl groups are bonded from the total amount of ethylene groups of the main chain, It is a value indicating the mole fraction obtained by dividing by the percentage.
  • the amount of ethylene group to which the acetal group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
  • the preferable lower limit of the degree of acetalization of the polyvinyl acetal resin (the degree of butyralization in the case of polyvinyl butyral resin) is 60 mol%, the more preferable lower limit is 63 mol%, the preferable upper limit is 85 mol%, and the more preferable upper limit is 75 mol%. A more preferred upper limit is 70 mol%.
  • the degree of acetalization is too low, the compatibility between the polyvinyl acetal resin and the plasticizer may be low.
  • the said acetalization degree is too high, reaction time required in order to manufacture polyvinyl acetal resin may become long.
  • the degree of acetalization is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which acetal groups are bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the degree of acetalization was determined by measuring the degree of acetylation (acetyl group content) and the hydroxyl group content (vinyl alcohol content) according to JIS K6728 “Testing methods for polyvinyl butyral”. The fraction can be calculated and then calculated by subtracting the degree of acetylation and the hydroxyl content from 100 mol%.
  • the polyvinyl acetal resin is a polyvinyl butyral resin
  • the acetalization degree (butyralization degree) and acetylation degree (acetyl group amount) were measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. It can be calculated from the result.
  • the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 each contain a plasticizer.
  • the thermoplastic resin contained in the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is a polyvinyl acetal resin, respectively, the thermal shielding layer 2 and the first and second ultraviolet shielding layers. It is particularly preferable that each of 3 and 4 contains a plasticizer.
  • the plasticizer is not particularly limited.
  • a conventionally known plasticizer can be used as the plasticizer.
  • a plasticizer only 1 type may be used and 2 or more types may be used together.
  • the plasticizer include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and phosphate plasticizers such as organic phosphate plasticizers and organic phosphorous acid plasticizers. It is done. Of these, organic ester plasticizers are preferred.
  • the plasticizer is preferably a liquid plasticizer.
  • the monobasic organic acid ester is not particularly limited.
  • examples include esters.
  • Examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
  • Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
  • the polybasic organic acid ester is not particularly limited, and examples thereof include an ester compound of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
  • Examples of the polybasic organic acid include adipic acid, sebacic acid, and azelaic acid.
  • the organic ester plasticizer is not particularly limited, and triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n- Octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di -2-Ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl hexanoate, dipropylene glycol Rudi-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, te
  • the organic phosphate plasticizer is not particularly limited, and examples thereof include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like.
  • the plasticizer is preferably at least one of triethylene glycol di-2-ethylhexanoate (3GO) and triethylene glycol di-2-ethylbutyrate (3GH), and triethylene glycol di-2 More preferred is ethylhexanoate.
  • the content of the plasticizer in the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is not particularly limited.
  • a preferable lower limit of the plasticizer content is 25 parts by weight, a more preferable lower limit is 30 parts by weight, a preferable upper limit is 60 parts by weight, and a more preferable upper limit is 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • fills the said preferable minimum the penetration resistance of a laminated glass can be improved further.
  • the plasticizer content in the heat shielding layer 2 and the plasticizer content in the first and second ultraviolet shielding layers 3 and 4 may be different.
  • the content of the plasticizer in at least one of the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is 55 parts by weight or more with respect to 100 parts by weight of the thermoplastic resin.
  • the sound insulation of the laminated glass can be improved.
  • the first and second ultraviolet shielding layers 3 and 4 contain an ultraviolet shielding agent.
  • the ultraviolet shielding agent includes an ultraviolet absorber.
  • the ultraviolet shielding agent is preferably an ultraviolet absorber.
  • Conventionally known general ultraviolet shielding agents include, for example, metal ultraviolet shielding agents, metal oxide ultraviolet shielding agents, benzotriazole ultraviolet shielding agents, benzophenone ultraviolet shielding agents, triazine ultraviolet shielding agents, and the like. Examples include benzoate-based ultraviolet shielding agents.
  • the metallic ultraviolet absorber examples include platinum particles, particles in which the surface of the platinum particles is coated with silica, palladium particles, particles in which the surface of the palladium particles is coated with silica, and the like.
  • the ultraviolet shielding agent is preferably not a heat shielding particle.
  • the ultraviolet shielding agent is preferably a benzotriazole ultraviolet shielding agent, a benzophenone ultraviolet shielding agent, a triazine ultraviolet shielding agent or a benzoate ultraviolet shielding agent, and more preferably a benzotriazole ultraviolet absorber.
  • metal oxide ultraviolet absorber examples include zinc oxide, titanium oxide, and cerium oxide. Furthermore, the surface may be coat
  • Examples of the insulating metal oxide include silica, alumina and zirconia.
  • the insulating metal oxide has a band gap energy of 5.0 eV or more, for example.
  • Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5 ′).
  • Tinvin 320 manufactured by BASF
  • 2- (2'-hydroxy-3'-t-butyl-5-methylphenyl) -5-chlorobenzotriazole manufactured by BASF " Tinuvin 326 ”
  • 2- (2′-hydroxy-3 ′, 5′-di-amylphenyl) benzotriazole Tinvin 328 ”manufactured by BASF
  • the ultraviolet shielding agent is preferably a benzotriazole-based ultraviolet absorber containing a halogen atom, and more preferably a benzotriazole-based ultraviolet absorber containing a chlorine atom, because of its excellent ability to absorb ultraviolet rays.
  • Examples of the benzophenone-based ultraviolet absorber include octabenzone (“Chimasorb 81” manufactured by BASF).
  • Examples of the triazine ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol (manufactured by BASF, “Tinuvin 1577FF”). ]) And the like.
  • benzoate ultraviolet absorber examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (manufactured by BASF, “tinuvin120”).
  • the ultraviolet shielding agent contained in the first and second ultraviolet shielding layers 3 and 4 seems to have the ultraviolet transmittance of the first and second ultraviolet shielding layers 3 and 4 or the intermediate film 1 within a preferable range.
  • an appropriate ultraviolet shielding agent is selected.
  • the ultraviolet shielding agents contained in the first and second ultraviolet shielding layers 3 and 4 are the ultraviolet transmittance and wavelength of the first and second ultraviolet shielding layers 3 and 4 or the intermediate film 1 at wavelengths of 360 to 400 nm. It is preferable that an appropriate ultraviolet shielding agent is selected and used so that the ultraviolet transmittance at 360 to 390 nm or the ultraviolet transmittance at a wavelength of 380 to 390 nm is not more than the above-mentioned value.
  • the heat shielding layer 2 may or may not contain the ultraviolet shielding agent 3. From the viewpoint of further reducing the ultraviolet transmittance at a wavelength of 360 to 400 nm, the ultraviolet transmittance at a wavelength of 360 to 390 nm, or the ultraviolet transmittance at a wavelength of 380 to 390 nm of the intermediate film 1, It is preferable to contain a shielding agent.
  • the ultraviolet shielding agent is 2- (2′-hydroxy-3′-t-butyl-5).
  • -Methylphenyl) -5-chlorobenzotriazole (Tinvin 326” manufactured by BASF) or 2- (2'-hydroxy-3 ', 5'-di-amylphenyl) benzotriazole (“Tinvin 328" manufactured by BASF) It is preferably 2- (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5-chlorobenzotriazole.
  • the content of the ultraviolet shielding agent in the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is not particularly limited.
  • the preferred lower limit of the content of the ultraviolet shielding agent is 0.3 parts by weight and the more preferred lower limit is 0.4 weights with respect to 100 parts by weight of the thermoplastic resin. Parts, more preferred lower limit is 0.5 parts by weight, preferred upper limit is 3 parts by weight, more preferred upper limit is 2.5 parts by weight, and still more preferred upper limit is 2 parts by weight.
  • the content of the ultraviolet shielding agent is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, in 100% by weight of the ultraviolet shielding layer. More preferably, it is 0.3% by weight or more, particularly preferably 0.5% by weight or more, preferably 2.5% by weight or less, more preferably 2% by weight or less, still more preferably 1% by weight or less, particularly preferably 0.00%. 8% by weight or less.
  • the content of the ultraviolet shielding agent is 0.2% by weight or more in 100% by weight of the ultraviolet shielding layer, it is possible to remarkably suppress a decrease in heat shielding properties after aging of the laminated glass.
  • the content of the ultraviolet shielding agent in 100% by weight of the heat shielding layer is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, More preferably, it is 0.3% by weight or more, particularly preferably 0.5% by weight or more, preferably 2.5% by weight or less, more preferably 2% by weight or less, still more preferably 1% by weight or less, particularly preferably 0.00%. 8% by weight or less.
  • the content of the ultraviolet shielding agent is 0.3% by weight or more in 100% by weight of the heat shielding layer, it is possible to remarkably suppress the deterioration of the heat shielding property after aging of the laminated glass.
  • the heat shielding layer 2 contains heat shielding particles.
  • the first and second ultraviolet shielding layers 3 and 4 may or may not contain heat shielding particles. From the viewpoint of further improving the heat shielding property of the laminated glass, it is preferable that the first and second ultraviolet shielding layers 3 and 4 each contain heat shielding particles.
  • the heat shielding particles are preferably particles formed of a metal oxide. Only 1 type may be used for a heat-shielding particle and 2 or more types may be used together. Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays. However, infrared rays have a large thermal effect, and once infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays. By using the heat shielding particles, infrared rays (heat rays) can be effectively blocked.
  • the heat shielding particles mean particles that can absorb infrared rays.
  • heat shielding particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles).
  • Aluminum doped zinc oxide particles (AZO particles), niobium doped titanium oxide particles, sodium doped tungsten oxide particles, cesium doped tungsten oxide particles, thallium doped tungsten oxide particles, rubidium doped tungsten oxide particles, tin doped indium oxide particles (ITO particles) And metal oxide particles such as tin-doped zinc oxide particles or silicon-doped zinc oxide particles, and lanthanum hexaboride (LaB 6 ) particles. Heat shielding particles other than these may be used.
  • the heat shielding particles are preferably metal oxide particles, more preferably ATO particles, GZO particles, IZO particles, ITO particles, cesium-doped tungsten oxide particles, and ITO. More preferred are particles.
  • tin-doped indium oxide particles are preferable because they have a high heat ray shielding function and are easily available.
  • the preferable lower limit of the average particle diameter of the heat shielding particles is 0.01 ⁇ m, the more preferable lower limit is 0.02 ⁇ m, the preferable upper limit is 0.1 ⁇ m, and the more preferable upper limit is 0.05 ⁇ m.
  • the average particle diameter satisfies the above preferable lower limit, the heat ray shielding property can be sufficiently enhanced.
  • the average particle diameter satisfies the preferable upper limit the dispersibility of the heat shielding particles can be improved.
  • the “average particle diameter” indicates a volume average particle diameter.
  • the average particle diameter can be measured using a particle size distribution measuring device (“UPA-EX150” manufactured by Nikkiso Co., Ltd.) or the like.
  • the content of the heat shielding particles in the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is not particularly limited.
  • the preferable lower limit of the content of the heat shielding particles is 0.01 parts by weight, the more preferable lower limit is 0.1 parts by weight, the preferable upper limit is 3 parts by weight, and the more preferable upper limit is 2 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Parts by weight.
  • the heat shielding property can be sufficiently enhanced, and the solar transmittance (Ts 2500) is increased.
  • the Tts can be made sufficiently low, and the visible light transmittance can be made sufficiently high.
  • the Tts can be 50% or less, and the visible light transmittance can be 70% or more.
  • the content of the heat shielding particles in the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is not particularly limited. In 100% by weight of the heat shielding layer and the first and second ultraviolet shielding layers, the content of the heat shielding particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and further preferably 1% by weight. % Or more, particularly preferably 1.5% by weight or more, preferably 6% by weight or less, more preferably 5.5% by weight or less, still more preferably 4% by weight or less, particularly preferably 3.5% by weight or less, and most preferably Is 3.0% by weight or less.
  • the heat shielding property can be sufficiently enhanced, and the solar transmittance (Ts 2500) is increased.
  • the Tts can be made sufficiently low, and the visible light transmittance can be made sufficiently high.
  • the visible light transmittance of the laminated glass provided with the interlayer film for laminated glass of the present invention can be 70% or more.
  • the heat shield layer 2 contains the component X.
  • the component X is at least one component among phthalocyanine compounds, naphthalocyanine compounds, and anthracocyanine compounds.
  • the component X is not particularly limited.
  • As the component X conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds can be used.
  • As for the said component X only 1 type may be used and 2 or more types may be used together.
  • the infrared rays can be sufficiently blocked by the combined use of the heat shielding particles and the component X.
  • heat rays can be sufficiently blocked by the combined use of the heat shielding particles and the component X.
  • metal oxide particles and the component X in combination, infrared rays can be blocked more effectively.
  • infrared rays can be blocked more effectively.
  • Examples of the component X include phthalocyanine, a derivative of phthalocyanine, naphthalocyanine, a derivative of naphthalocyanine, an anthocyanin, and an anthocyanin derivative.
  • the phthalocyanine compound and the phthalocyanine derivative preferably each have a phthalocyanine skeleton.
  • the naphthalocyanine compound and the naphthalocyanine derivative preferably each have a naphthalocyanine skeleton. It is preferable that each of the anthocyanin compound and the derivative of the anthracyanine has an anthracyanine skeleton.
  • Component X is preferably at least one selected from the group consisting of phthalocyanine, phthalocyanine derivatives, naphthalocyanine and naphthalocyanine derivatives.
  • the component X preferably contains a vanadium atom or a copper atom, and contains a vanadium atom. Is more preferable.
  • the component X is preferably at least one of a phthalocyanine derivative containing a vanadium atom or a copper atom and a naphthalocyanine derivative containing a vanadium atom or a copper atom.
  • the component X preferably has a structure containing vanadium atoms.
  • the content of component X in the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 is not particularly limited.
  • the preferred lower limit of the content of component X is 0.0005 parts by weight, more preferred lower limit is 0.003 parts by weight, preferred upper limit is 0.1 parts by weight, and more preferred upper limit is 0 parts by weight relative to 100 parts by weight of the thermoplastic resin. 0.05 parts by weight.
  • the heat shielding property can be sufficiently increased
  • the solar transmittance (Ts 2500) can be sufficiently lowered
  • the Tts is sufficiently lowered.
  • the visible light transmittance can be sufficiently increased.
  • the Tts can be 50% or less
  • the visible light transmittance can be 70% or more.
  • the content of the component X is preferably 0.001% by weight or more, more preferably 0.005% by weight or more, and further preferably 0. .05% by weight or more, particularly preferably 0.1% by weight or more, preferably 0.2% by weight or less, more preferably 0.18% by weight or less, still more preferably 0.16% by weight or less, and particularly preferably 0.0. 15% by weight or less.
  • the content of the component X in the first heat shielding layer is not less than the above lower limit and not more than the above upper limit, the heat shielding property can be sufficiently increased, and the solar radiation transmittance (Ts 2500) can be sufficiently lowered. Tts can be made sufficiently low, and the visible light transmittance can be made sufficiently high.
  • the visible light transmittance can be 70% or more.
  • the heat shielding layer 2 and the first and second ultraviolet shielding layers 3 and 4 are respectively provided with an antioxidant, a light stabilizer, a flame retardant, an antistatic agent, a pigment, a dye, an adhesive force adjusting agent, and moisture resistance as required. It may contain additives such as an agent, a fluorescent brightening agent, and an infrared absorber. As for these additives, only 1 type may be used and 2 or more types may be used together.
  • FIG. 2 shows an example of a laminated glass using the intermediate film 1 shown in FIG.
  • a laminated glass 11 shown in FIG. 2 includes an intermediate film 1 and first and second laminated glass constituent members 12 and 13.
  • the intermediate film 1 is an intermediate film for laminated glass.
  • the intermediate film 1 is sandwiched between the first and second laminated glass constituent members 12 and 13. Therefore, the laminated glass 11 is configured by laminating the first laminated glass constituting member 12, the intermediate film 1, and the second laminated glass constituting member 13 in this order.
  • the first laminated glass component 12 is laminated on the outer surface 3 a of the first ultraviolet shielding layer 3.
  • the second laminated glass constituting member 13 is laminated on the outer surface 4 a of the second ultraviolet shielding layer 4.
  • the first and second laminated glass constituent members 12 and 13 include glass plates and PET (polyethylene terephthalate) films.
  • the laminated glass 11 includes not only laminated glass in which an intermediate film is sandwiched between two glass plates, but also laminated glass in which an intermediate film is sandwiched between a glass plate and a PET film or the like.
  • the laminated glass 11 is a glass plate-containing laminate, and at least one glass plate is preferably used.
  • the glass plate examples include inorganic glass and organic glass.
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, mesh plate glass, wire plate glass, and green glass. Since the heat shielding property is high, the inorganic glass is preferably a heat ray absorbing plate glass.
  • the heat-absorbing plate glass is defined in JIS R3208.
  • the organic glass is a synthetic resin glass substituted for inorganic glass. Examples of the organic glass include polycarbonate plates and poly (meth) acrylic resin plates. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
  • the thickness of the first and second laminated glass constituent members 12 and 13 is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less. Moreover, when the laminated glass component members 12 and 13 are glass plates, the thickness of the glass plates is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less. When the laminated glass constituting members 12 and 13 are PET films, the thickness of the PET film is preferably in the range of 0.03 to 0.5 mm.
  • the manufacturing method of the laminated glass 1 is not particularly limited.
  • the intermediate film 1 is sandwiched between the first and second laminated glass constituent members 12 and 13 and passed through a pressing roll, or put in a rubber bag and sucked under reduced pressure, so that the first and second The air remaining between the laminated glass constituent members 12 and 13 and the intermediate film 1 is deaerated. Thereafter, it is pre-adhered at about 70 to 110 ° C. to obtain a laminate.
  • the laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, the laminated glass 11 can be obtained.
  • Laminated glass 11 can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
  • the laminated glass 11 can be used for a windshield, a side glass, a rear glass, a roof glass, or the like of an automobile.
  • the laminated glass 11 can be used for other purposes. Since the heat shielding property is high, the solar radiation transmittance (Ts 2500) is low, the Tts is low, and the visible light transmittance is high, the laminated glass 11 is suitably used for an automobile.
  • the Tts of the laminated glass 11 is preferably 53% or less, preferably 50% or less, and preferably 40% or less.
  • the visible light transmittance of the laminated glass 11 is preferably 65% or more, more preferably 70% or more.
  • the visible light transmittance of the laminated glass can be measured according to JIS R3211 (1998). It is preferable that the visible light transmittance of the laminated glass obtained by sandwiching the interlayer film for laminated glass of the present invention between two float glasses having a thickness of 2 mm in accordance with JIS R3202 is 70% or more. .
  • the solar radiation transmittance (Ts2500) of the laminated glass is preferably 65% or less, more preferably 50% or less.
  • the solar transmittance of the laminated glass can be measured according to JIS R 3106 (1998).
  • the solar transmittance of the laminated glass obtained by sandwiching the interlayer film for laminated glass of the present invention between two float glasses having a thickness of 2 mm in accordance with JIS R3202, is preferably 65% or less, It is more preferably 60% or less, and further preferably 50% or less.
  • the haze value of the laminated glass is preferably 2% or less, more preferably 1% or less, still more preferably 0.5% or less, and particularly preferably 0.4% or less. Since the interlayer film for laminated glass according to the present invention includes the heat shielding layer and the ultraviolet shielding layer, the haze value of the laminated glass can be lowered. The haze value of the laminated glass can be measured according to JIS K6714.
  • Thermoplastic resin PVB1 (polyvinyl butyral resin acetalized with n-butyraldehyde, average polymerization degree 2300, hydroxyl group content 22 mol%, acetylation degree 12 mol%, butyralization degree 66 mol%)
  • PVB2 polyvinyl butyral resin acetalized with n-butyraldehyde, average polymerization degree 1700, hydroxyl group content 30.5 mol%, acetylation degree 1 mol%, butyralization degree 68.5 mol%)
  • Plasticizer 3GO (triethylene glycol di-2-ethylhexanoate)
  • Thermal barrier particles ITO (ITO particles, manufactured by Mitsubishi Materials Corporation) ATO (ATO particles, “SN-100P” manufactured by Ishihara Sangyo Co., Ltd., BET value 70 m 2 / g) GZO (GZO particles, “FINEX-50” manufactured by Sakai Chemical Industry Co., Ltd., BET value 50 m 2 / g)
  • Component X Component X: IR-906 (vanadyl phthalocyanine compound containing an oxygen atom in the vanadium atom, “EEX Color 906” manufactured by Nippon Shokubai Co., Ltd.) IR-915 (vanadyl phthalocyanine compound containing vanadium atom, “EXEX 915” manufactured by Nippon Shokubai Co., Ltd.) IRSORB203 (copper naphthalocyanine compound, manufactured by FUJIFILM Corporation)
  • UV screening agent Tinuvin 326 (2- (2′-hydroxy-3′-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, “Tinuvin 326” manufactured by BASF)
  • Example 1 Production of heat shielding layer 60 parts by weight of triethylene glycol di-2-ethylhexanoate (3GO), an amount of 0.625% by weight in 100% by weight of the heat shielding layer from which Tinuvin 326 can be obtained, and ITO An amount of 1.52% by weight in 100% by weight of the heat-shielding layer obtained by mixing with an amount of 0.122% by weight in 100% by weight of the heat-shielding layer of obtaining IR-906, and After adding a phosphoric acid ester compound as a dispersant, mixing was performed with a horizontal microbead mill to obtain a dispersion. The volume average particle diameter of the ITO particles in the dispersion was 35 nm.
  • the content of the phosphate ester compound was adjusted to be 1/10 of the content of the heat shielding particles.
  • the total amount of the obtained dispersion was added to 100 parts by weight of polyvinyl butyral resin (PVB1), and kneaded sufficiently with a mixing roll to obtain a first composition.
  • PVB1 polyvinyl butyral resin
  • UV shielding layer 40 parts by weight of triethylene glycol di-2-ethylhexanoate (3GO) and an amount of 0.571% by weight in 100% by weight of UV shielding layer from which Tinuvin 326 can be obtained.
  • the dispersion was obtained by mixing with a horizontal microbead mill. The total amount of the obtained dispersion was added to 100 parts by weight of polyvinyl butyral resin (PVB2), and was sufficiently kneaded with a mixing roll to obtain a second composition.
  • PVB2 polyvinyl butyral resin
  • the obtained interlayer film was cut into a size of 30 cm in length and 30 cm in width.
  • two float glasses (length 30 cm ⁇ width 30 cm ⁇ thickness 2 mm) in accordance with JIS R3202 were prepared.
  • the obtained interlayer film was sandwiched between the two float glasses, held at 90 ° C. for 30 minutes with a vacuum laminator, and vacuum pressed to obtain a laminate.
  • the intermediate film portion protruding from the glass plate was cut off to obtain a laminated glass.
  • Example 2 In the same manner as in Example 1 except that the types and contents of the thermoplastic resin, the plasticizer, the heat shielding particles, the component X, and the ultraviolet shielding agent were changed as shown in Table 1 below, the thermal insulation layer and the ultraviolet shielding. A layer was made. A laminated glass provided with an intermediate film having a three-layer structure was produced in the same manner as in Example 1 using the obtained heat shielding layer and ultraviolet shielding layer. In Examples 2 to 10 as well, the phosphate ester content was adjusted to be 1/10 of the heat shielding particles when the heat shielding layer was produced.
  • thermal barrier layer 40 parts by weight of triethylene glycol di-2-ethylhexanoate (3GO), an amount of 0.571% by weight in 100% by weight of the thermal barrier layer to obtain Tinuvin 326, ITO An amount of 3.04% by weight in 100% by weight of the heat-shielding layer obtained by mixing with an amount of 0.129% by weight in 100% by weight of the heat-shielding layer of obtaining IR-915; After adding a phosphoric acid ester compound as a dispersant, mixing was performed with a horizontal microbead mill to obtain a dispersion. The volume average particle diameter of the ITO particles in the dispersion was 35 nm. The content of the phosphate ester compound was adjusted to be 1/10 of the content of the heat shielding particles.
  • 3GO triethylene glycol di-2-ethylhexanoate
  • ITO An amount of 3.04% by weight in 100% by weight of the heat-shielding layer obtained by mixing with an amount of 0.129% by weight in 100% by weight
  • the total amount of the obtained dispersion was added to 100 parts by weight of polyvinyl butyral resin (PVB2), and was sufficiently kneaded with a mixing roll to obtain a first composition.
  • PVB2 polyvinyl butyral resin
  • UV shielding layer 40 parts by weight of triethylene glycol di-2-ethylhexanoate (3GO) and an amount of 0.714% by weight in 100% by weight of the UV shielding layer from which Tinuvin 326 can be obtained.
  • the dispersion was obtained by mixing with a horizontal microbead mill. The total amount of the obtained dispersion was added to 100 parts by weight of polyvinyl butyral resin (PVB2), and was sufficiently kneaded with a mixing roll to obtain a second composition.
  • PVB2 polyvinyl butyral resin
  • Example 12 A heat shielding layer and an ultraviolet shielding layer were produced in the same manner as in Example 11 except that the thicknesses of the heat shielding layer and the ultraviolet shielding layer were changed as shown in Table 1 below.
  • the phosphoric acid ester content was adjusted to be 1/10 of the heat shielding particles when the heat shielding layer was produced.
  • An intermediate film and a laminated glass having a two-layer structure were obtained in the same manner as in Example 11 except that the obtained heat shielding layer and ultraviolet shielding layer were used.
  • the total amount of the obtained dispersion was added to 100 parts by weight of polyvinyl butyral resin (PVB2), and kneaded sufficiently with a mixing roll to obtain a composition.
  • the obtained composition was extruded to obtain a single-layer interlayer film having a thickness of 760 ⁇ m.
  • a laminated glass provided with a single-layer interlayer film was obtained in the same manner as in Example 1.
  • the laminated glass was irradiated with ultraviolet rays (quartz glass mercury lamp (750 W)) for 500 hours and 1000 hours using an ultraviolet irradiation device (“HLG-2S” manufactured by Suga Test Instruments Co., Ltd.) according to JIS R3205.
  • HLG-2S ultraviolet irradiation device
  • the AY, Ts2500, T850, T900, T950 and C light YI of the laminated glass after 500 hours irradiation and 1000 hours irradiation were measured by the above method.
  • ultraviolet rays were irradiated from the first ultraviolet shielding layer side.
  • the composition of the intermediate film is shown in Tables 1 and 2 below, and the evaluation results are shown in Tables 3 and 5 below.
  • the blending amount of the plasticizer in Tables 1 and 2 represents the content (parts by weight) of the plasticizer with respect to 100 parts by weight of the thermoplastic resin.
  • the blending amounts of the heat shielding particles, component X and the ultraviolet shielding agent in Table 1 indicate the contents (wt%) of the heat shielding particles, component X and the ultraviolet shielding agent in 100% by weight of the heat shielding layer or the ultraviolet shielding layer.
  • the blending amounts of the heat shielding particles, the ultraviolet shielding agent and the component X in Table 2 indicate the contents of the heat shielding particles, the ultraviolet shielding agent and the component X in 100% by weight of the intermediate film.
  • Tables 1 and 2 below the description of the content of the phosphate ester compound is omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

 遮熱性に優れた合わせガラスを得ることができ、かつ該合わせガラスの優れた遮熱性を長期間にわたり維持できる合わせガラス用中間膜、及び該合わせガラス用中間膜を用いた合わせガラスを提供する。 本発明に係る合わせガラス用中間膜1は、遮熱層2と、紫外線遮蔽層3とを備える。遮熱層2は、熱可塑性樹脂と、遮熱粒子と、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも一種の成分とを含む。紫外線遮蔽層3は、熱可塑性樹脂と、紫外線遮蔽剤とを含む。本発明に係る合わせガラスは、第1,第2の合わせガラス構成部材と、該第1,第2の合わせガラス構成部材の間に挟み込まれた中間膜とを備える。該中間膜が、本発明に係る合わせガラス用中間膜1である。

Description

合わせガラス用中間膜及び合わせガラス
 本発明は、自動車又は建築物などの合わせガラスに用いられる合わせガラス用中間膜に関し、より詳細には、合わせガラスの遮熱性を高めることができる合わせガラス用中間膜、並びに該合わせガラス用中間膜を用いた合わせガラスに関する。
 合わせガラスは、外部衝撃を受けて破損してもガラスの破片の飛散量が少なく、安全性に優れている。このため、上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に広く使用されている。上記合わせガラスは、一対のガラス板の間に合わせガラス用中間膜を挟み込むことにより、製造されている。このような車両及び建築物の開口部に用いられる合わせガラスには、高い遮熱性が求められる。
 可視光よりも長い波長780nm以上の赤外線は、紫外線と比較して、エネルギー量が小さい。しかしながら、赤外線は熱的作用が大きく、赤外線が物質に吸収されると熱として放出される。このため、赤外線は一般に熱線と呼ばれている。従って、合わせガラスの遮熱性を高めるためには、赤外線を十分に遮断する必要がある。
 上記赤外線(熱線)を効果的に遮断するために、下記の特許文献1には、錫ドープ酸化インジウム粒子(ITO粒子)又はアンチモンドープ酸化錫粒子(ATO粒子)などの遮熱粒子を含む合わせガラス用中間膜が開示されている。
 下記の特許文献2には、フタロシアニン系赤外線吸収剤及び紫外線吸収剤の内の少なくとも一種を含む層を2層以上有する熱線遮蔽材が開示されている。この熱線遮蔽材は、紫外線吸収剤などを含む層が他の層よりも熱線が入射される側であるように配置される。
WO01/25162A1 特開平10-77360号公報
 近年、ITO粒子又はATO粒子を含む従来の中間膜の遮熱性を更に高めることが要求されている。しかし、ITO粒子又はATO粒子は、近赤外線を充分に吸収しない。従って、特許文献1に記載のように、中間膜中にITO粒子又はATO粒子を添加しただけでは、合わせガラスの遮熱性を大きく高めることは困難である。
 例えば、米国において、カリフォルニア大気資源委員会(CARB(California Air Resources Board))は、温室効果ガスを削減するために、自動車から排出される二酸化炭素の量を減らすことを提案していた。自動車から排出される二酸化炭素の量を減らすために、上記CARBは、合わせガラスを透過して自動車内に流入する熱エネルギーを規制して、エアコンで消費される燃料を低減し、自動車の燃費を改善することを検討していた。具体的には、上記CARBは、クールカー規制(Cool Cars Standards)の導入を予定していた。
 上記クールカー規制では、具体的には、2012年に、自動車に用いられる合わせガラスのTts(Total Solar Transmittance)が50%以下であることが要求される予定であった。2016年には、上記合わせガラスの上記Ttsが40%以下であることが要求される予定であった。上記Ttsは、熱線の遮蔽性の指標である。
 なお、一般的に熱反タイプと呼ばれる、金属薄膜を蒸着したガラス又は熱線反射PETを用いた熱線反射合わせガラスは、赤外線だけでなく通信波長領域の通信波を反射する。熱線反射合わせガラスをウインドシールドに用いる場合、多くのセンサー類に対応するため、熱線反射部分をくり抜く必要がある。この結果、Ttsが50%である熱線反射合わせガラスを用いたウインドシールド全面の平均のTtsは約53%となる。従って、通信波を透過し、赤外線を吸収するタイプの合わせガラスでは、Ttsが53%まで許容される見通しであった。
 2010年8月の時点では、上記クールカー規制の導入は見送られたものの、上記Ttsが低い合わせガラスが求められる傾向にあることに変わりはない。
 さらに、上記合わせガラスには、遮熱性が高いだけでなく、可視光線透過率(Visible Transmittance)が高いことも要求される。例えば、可視光線透過率は70%以上であることが望ましい。すなわち、上記可視光線透過率を高く維持したままで、遮熱性を高くすることが要求される。
 特許文献1に記載の遮熱粒子を含有する合わせガラス用中間膜を用いた場合には、高い遮熱性と高い上記可視光線透過率とをいずれも満足する合わせガラスを得ることは極めて困難である。例えば、上記Tts53%以下及び上記可視光線透過率70%以上のいずれも満たす合わせガラスを得ることは極めて困難である。
 また、特許文献2に記載のように、フタロシアニン系赤外線吸収剤及び紫外線吸収剤の内の少なくとも一種を用いた場合にも、高い遮熱性と高い上記可視光線透過率とをいずれも満足する合わせガラスを得ることは極めて困難である。
 本発明の目的は、遮熱性に優れた合わせガラスを得ることができ、かつ該合わせガラスの優れた遮熱性を長期間にわたり維持できる合わせガラス用中間膜、並びに該合わせガラス用中間膜を用いた合わせガラスを提供することである。
 本発明の広い局面によれば、遮熱層と、第1の紫外線遮蔽層とを備え、該遮熱層が、熱可塑性樹脂と、遮熱粒子と、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも一種の成分とを含有し、上記第1の紫外線遮蔽層が、熱可塑性樹脂と、紫外線遮蔽剤とを含有する、合わせガラス用中間膜が提供される。
 本発明に係る合わせガラス用中間膜のある特定の局面では、上記第1の紫外線遮蔽層は、上記遮熱層の一方の表面に積層されている。
 本発明に係る合わせガラス用中間膜の別の特定の局面では、上記第1の紫外線遮蔽層が、上記遮熱層の一方の表面側に配置されており、上記遮熱層の一方の表面側とは反対の他方の表面側に配置された第2の紫外線遮蔽層がさらに備えられており、上記第2の紫外線遮蔽層は、熱可塑性樹脂と、紫外線遮蔽剤とを含有する。
 本発明に係る合わせガラス用中間膜のさらに別の特定の局面では、上記第1の紫外線遮蔽層が、上記遮熱層の一方の表面に積層されており、上記第2の紫外線遮蔽層が、上記遮熱層の一方の表面とは反対の他方の表面に積層されている。
 本発明に係る合わせガラス用中間膜の他の特定の局面では、上記紫外線遮蔽層の波長360~390nmでの紫外線透過率が0.5%以下、又は、上記紫外線遮蔽層の波長380~390nmでの紫外線透過率が0.8%以下である。
 本発明に係る合わせガラス用中間膜の他の特定の局面では、上記成分は、フタロシアニン、フタロシアニンの誘導体、ナフタロシアニン及びナフタロシアニンの誘導体からなる群から選択される少なくとも一種である。
 本発明に係る合わせガラス用中間膜の別の特定の局面では、上記遮熱粒子は金属酸化物粒子である。
 本発明に係る合わせガラス用中間膜のさらに別の特定の局面では、上記遮熱粒子は、錫ドープ酸化インジウム粒子である。
 本発明に係る合わせガラス用中間膜のさらに他の特定の局面では、上記熱可塑性樹脂は、ポリビニルアセタール樹脂である。
 本発明に係る合わせガラス用中間膜の別の特定の局面では、上記遮熱層及び上記紫外線遮蔽層はそれぞれ、可塑剤をさらに含む。
 本発明に係る合わせガラス用中間膜のさらに別の特定の局面では、上記紫外線遮蔽層100重量%中、上記紫外線遮蔽剤の含有量は0.2~1.0重量%である。
 本発明に係る合わせガラスは、第1,第2の合わせガラス構成部材と、該第1,第2の合わせガラス構成部材の間に挟み込まれた中間膜とを備えており、該中間膜が、本発明に従って構成された合わせガラス用中間膜である。
 本発明に係る合わせガラス用中間膜は、特定の組成を有する上記遮熱層と、特定の組成を有する上記第1の紫外線遮蔽層とを備えるので、遮熱性に優れた合わせガラスを得ることができる。さらに、得られた合わせガラスの優れた遮熱性を、長期間にわたり維持できる。
図1は、本発明の一実施形態に係る合わせガラス用中間膜の一例を模式的に示す部分切欠断面図である。 図2は、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を示す部分切欠断面図である。
 以下、本発明の詳細を説明する。
 (合わせガラス用中間膜)
 図1に、本発明の一実施形態に係る合わせガラス用中間膜の一例を模式的に部分切欠断面図で示す。
 図1に示す中間膜1は、遮熱層2と、遮熱層2の一方の表面2a(第1の表面)側に配置された第1の紫外線遮蔽層3と、遮熱層2の他方の表面2b(第2の表面)側に配置された第2の紫外線遮蔽層4とを備える。第1の紫外線遮蔽層3は、遮熱層2の一方の表面2aに積層されている。第2の紫外線遮蔽層4は、遮熱層2の他方の表面2bに積層されている。中間膜1は、合わせガラスを得るために用いられる。中間膜1は、合わせガラス用中間膜である。
 第1の紫外線遮蔽層3及び第2の紫外線遮蔽層4はそれぞれ、熱可塑性樹脂と、紫外線遮蔽剤とを含有する。第1,第2の紫外線遮蔽層3,4は紫外線遮蔽剤を含有するため、紫外線の透過を効果的に抑制する層として機能する。
 第1の紫外線遮蔽層3は、波長360~400nmでの紫外線透過率が4%以下であるか、又は中間膜1の波長360~400nmでの紫外線透過率を0.5%以下にするための層であることが好ましい。第2の紫外線遮蔽層4は紫外線遮蔽剤を含むため、第2の紫外線遮蔽層4は、波長360~400nmでの紫外線透過率が4%以下であるか、又は中間膜1の波長360~400nmでの紫外線透過率を0.5%以下にするための層であることが好ましい。中間膜1は、波長360~400nmでの紫外線透過率が0.5%以下であることが好ましい。このような紫外線透過率を満たすことにより、合わせガラスの優れた遮熱性を、より一層長期間にわたり維持できる。上記紫外線遮蔽層の波長360~400nmでの紫外線透過率は3.6%以下であることがより好ましく、3%以下であることがさらに好ましく、2.5%以下であることが特に好ましい。上記中間膜の波長360~400nmでの紫外線透過率は0.45%以下であることがより好ましく、0.4%以下であることがさらに好ましく、0.35%以下であることが特に好ましい。なお、上記「波長360~400nmでの紫外線透過率」は、360nm、365nm、370nm、375nm、380nm、385nm、390nm、395nm及び400nmでの合わせガラスの各光線透過率の平均値を示す。
 また、第1の紫外線遮蔽層3は、波長360~390nmでの紫外線透過率が0.5%以下であるか、又は中間膜1の波長360~390nmでの紫外線透過率を0.05%以下にするための層であってもよい。第2の紫外線遮蔽層4は、波長360~390nmでの紫外線透過率が0.5%以下であるか、又は中間膜1の波長360~390nmでの紫外線透過率を0.05%以下にするための層であってもよい。中間膜1は、波長360~390nmでの紫外線透過率が0.05%以下であることが好ましい。このような紫外線透過率を満たすことにより、合わせガラスの優れた遮熱性を、より一層長期間にわたり維持できる。上記紫外線遮蔽層の波長360~390nmでの紫外線透過率は0.3%以下であることがより好ましく、0.2%以下であることがさらに好ましく、0.1%以下であることが特に好ましい。上記中間膜の波長360~390nmでの紫外線透過率は0.04%以下であることがより好ましく、0.02%以下であることがさらに好ましく、0.015%以下であることが特に好ましい。なお、上記「波長360~390nmでの紫外線透過率」は、360nm、365nm、370nm、375nm、380nm、385nm及び、390nmでの合わせガラスの各光線透過率の平均値を示す。
 また、第1の紫外線遮蔽層3は、波長380~390nmでの紫外線透過率が0.8%以下であるか、又は中間膜1の波長380~390nmでの紫外線透過率を0.1%以下にするための層であってもよい。第2の紫外線遮蔽層4は、波長380~390nmでの紫外線透過率が0.8%以下であるか、又は中間膜1の波長380~390nmでの紫外線透過率を0.1%以下にするための層であってもよい。中間膜1は、波長380~390nmでの紫外線透過率が0.1%以下であることが好ましい。このような紫外線透過率を満たすことにより、合わせガラスの優れた遮熱性を、より一層長期間にわたり維持できる。上記紫外線遮蔽層の波長380~390nmでの紫外線透過率は0.7%以下であることがより好ましく、0.66%以下であることがさらに好ましく、0.2%以下であることが特に好ましい。上記中間膜の波長380~390nmでの紫外線透過率は0.04%以下であることがより好ましく、0.03%以下であることがさらに好ましく、0.02%以下であることが特に好ましい。なお、上記「波長380~390nmでの紫外線透過率」は、380nm、385nm及び、390nmでの合わせガラスの各光線透過率の平均値を示す。
 なお、上記「波長360~400nmでの紫外線透過率」、上記「波長360~390nmでの紫外線透過率」及び上記「波長380~390nmでの紫外線透過率」は、JIS R3202に準拠した、厚さ2mmのフロートガラス2枚の間に紫外線遮蔽層又は中間膜を挟み込むことにより得られた合わせガラスを用いて測定することができる。
 遮熱層2は、熱可塑性樹脂と、遮熱粒子5と、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも一種の成分とを含有する。以下、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも一種の成分を、「成分X」と記載することがある。
 従来、ITO粒子などの遮熱粒子を含む合わせガラス用中間膜を用いた場合には、合わせガラスの遮熱性が低いことがあり、更に低い日射透過率と高い可視光線透過率(Visible Transmittance)とを両立した合わせガラスを得ることは困難であるという問題があった。なお、上記日射透過率は、遮熱性の指標である。さらに、従来、ITO粒子などの遮熱粒子を含む合わせガラス用中間膜を用いた場合には、上記Tts(Total Solar Transmittance)が53%以下かつ上記可視光線透過率(Visible Transmittance)が70%以上のいずれも満たす合わせガラスを得ることは極めて困難であり、更に上記Ttsを50%以下にすることは更に一層困難であった。
 本発明の主な特徴の一つは、遮熱層が、遮熱粒子と、特定の上記成分Xとを含むことである。本発明者らは、遮熱粒子と特定の上記成分Xとの双方を含む遮熱層の使用により、合わせガラスの遮熱性と可視光線透過率との双方を高くすることができることを見出した。
 さらに、本発明者らが検討した結果、遮熱粒子と特定の上記成分Xとを含む中間膜を用いて合わせガラスを作製しただけでは、得られる合わせガラスが長期間使用されたときに、遮熱性が低下することがわかった。そこで、本発明者らが更に検討した結果、高い遮熱性を長期間維持することが可能な合わせガラス用中間膜の構成も見出した。
 本発明の他の主な特徴は、合わせガラス用中間膜を敢えて2層以上の多層にし、遮熱層と紫外線遮蔽剤を含む紫外線遮蔽層とを備える構成を採用したことである。これによって、紫外線遮蔽層側から中間膜に入射する光線の内、紫外線が効果的に遮蔽される。特に波長360~400nm程度の紫外線が効果的に遮蔽される。このため、遮熱層に至る紫外線の量を低減でき、特に遮熱層に至る波長360~400nmの紫外線、波長360~390nmの紫外線又は波長380~390nmの紫外線の量を低減できる。従って、遮熱層に含まれている上記成分Xの化学変化及び上記成分Xの化学変化に伴う樹脂の劣化を抑制できる。このため、優れた遮熱性を長期間にわたり維持できる。
 従って、成分Xと遮熱粒子とを併用した遮熱層とともに紫外線遮蔽層を用いることにより、中間膜及び合わせガラスの遮熱性を充分に高くすることができ、更に遮熱性の指標である日射透過率が低く、かつ可視光線透過率が高い合わせガラスを得ることができる。さらに、上記Ttsが充分に低く、かつ上記可視光線透過率が充分に高い合わせガラスを得ることができる。
 例えば、合わせガラスの波長300~2500nmでの日射透過率(Ts2500)を65%以下にし、かつ可視光線透過率を65%以上にすることができる。さらに、日射透過率(Ts2500)を60%以下にすることができ、更に可視光線透過率を70%以上にすることができる。また、合わせガラスの上記Ttsを53%以下にし、合わせガラスの上記可視光線透過率を70%以上にすることができる。さらに、上記Ttsを50%以下にすることもできる。従って、例えば、カリフォルニア大気資源委員会(CARB(California Air Resources Board))が、米国において導入を予定していたクールカー規制に対応した合わせガラスを得ることができる。
 なお、本明細書において、上記Tts及び上記可視光線透過率の性能は、上記クールカー規制で要求されていた性能である。上記Ttsは、例えば、導入が予定されていたクールカー規制により定められた測定方法により測定される。上記可視光線透過率は、例えば、JIS R3211(1998)に準拠して測定される。
 さらに、本発明に係る合わせガラス用中間膜では、遮熱性と可視光線透過率との双方を高くすることができるだけでなく、高い遮熱性を長期間にわたり維持できる。優れた遮熱性を長期間にわたり維持するためには、第1の紫外線遮蔽層3又は中間膜1の波長360~400nmでの紫外線透過率、波長360~390nmでの紫外線透過率、又は、波長380~390nmでの紫外線透過率を一定の値以下に制御することが好ましい。
 また、本発明では、透明性を高めることも可能であり、例えば、ヘーズ値を1%以下にすることができ、更に0.5%以下にすることもできる。
 中間膜1は、第1の紫外線遮蔽層3と、遮熱層2と、第2の紫外線遮蔽層4とがこの順で積層された3層構造を有する。このように、遮熱層は、第1,第2の紫外線遮蔽層の間に配置されていることが好ましく、第1,第2の紫外線遮蔽層の間に挟み込まれていることがより好ましい。この場合には、中間膜の両面において、中間膜に入射する紫外線を、第1,第2の紫外線遮蔽層により効果的に遮蔽できる。
 ただし、第2の紫外線遮蔽層4は必ずしも用いられていなくてもよい。すなわち、遮熱層2の一方の表面2aのみに第1の紫外線遮蔽層3が積層されていてもよい。この場合には、中間膜1の第1の紫外線遮蔽層を、光線が入射される側に配置すればよい。例えば、中間膜を用いた合わせガラスを自動車に用いる場合には、第1の紫外線遮蔽層が自動車の外側に配置され、遮熱層が自動車の内側に配置される。また、中間膜は、4層以上の積層構造を有していてもよい。また、第1,第2の紫外線遮蔽層3,4は遮熱粒子と特定の上記成分Xを含有してもよい。
 また、本発明に係る合わせガラス用中間膜は、遮熱層及び紫外線遮蔽層とは異なる他の層をさらに備えていてもよい。さらに、遮熱層と紫外線遮蔽層との間に、遮熱層及び紫外線遮蔽層とは異なる他の層が挟み込まれていてもよい。
 上記中間膜の厚みは特に限定されない。上記中間膜の厚みは、中間膜を構成する各層の合計の厚みを示す。よって、中間膜1の場合には、該中間膜1の厚みは、遮熱層2及び第1,第2の紫外線遮蔽層3,4の合計の厚みを示す。実用面の観点、並びに遮熱性を充分に高める観点からは、上記中間膜の厚みの好ましい下限は0.1mm、より好ましい下限は0.25mm、好ましい上限は3mm、より好ましい上限は1.5mmである。上記中間膜の厚みが薄すぎると、合わせガラスの耐貫通性が低下する傾向がある。
 実用面の観点、並びに長期間にわたり遮熱性を充分に維持する観点からは、第1,第2の紫外線遮蔽層3,4の各厚みの好ましい下限は0.001mm、より好ましい下限は0.2mm、好ましい上限は0.8mm、より好ましい上限は0.6mmである。
 実用面の観点、並びに遮熱性を充分に高める観点からは、遮熱層1の厚みの好ましい下限は0.001mm、より好ましい下限は0.05mm、好ましい上限は0.8mm、より好ましい上限は0.6mmである。
 以下、遮熱層2及び第1,第2の紫外線遮蔽層3,4を構成する材料の詳細を説明する。
 (熱可塑性樹脂)
 遮熱層2及び第1,第2の紫外線遮蔽層3,4はそれぞれ、熱可塑性樹脂を含有する。熱可塑性樹脂として、従来公知の熱可塑性樹脂を用いることができる。熱可塑性樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱可塑性樹脂としては、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体樹脂、エチレン-アクリル共重合体樹脂、ポリウレタン樹脂及びポリビニルアルコール樹脂等が挙げられる。これら以外の熱可塑性樹脂を用いてもよい。
 遮熱層2及び第1,第2の紫外線遮蔽層3,4に含まれている熱可塑性樹脂はそれぞれ、ポリビニルアセタール樹脂であることが好ましい。遮熱層2及び第1,第2の紫外線遮蔽層3,4に含まれている熱可塑性樹脂はいずれも、ポリビニルアセタール樹脂であることが好ましい。この場合には、遮熱層2と第1,第2の紫外線遮蔽層3,4との親和性が高められ、遮熱層2と第1,第2の紫外線遮蔽層3,4との密着性をより一層高めることができる。
 遮熱層2及び第1,第2の紫外線遮蔽層3,4はそれぞれ、後述の可塑剤を含有することが好ましい。遮熱層2及び第1,第2の紫外線遮蔽層3,4に含まれている熱可塑性樹脂が、ポリビニルアセタール樹脂である場合に、ポリビニルアセタール樹脂と可塑剤との併用により、遮熱層2及び第1,第2の紫外線遮蔽層3,4の接着力をより一層高めることができる。
 上記ポリビニルアセタール樹脂は、例えば、ポリビニルアルコールをアルデヒドによりアセタール化することにより製造できる。上記ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより得られる。上記ポリビニルアルコールのけん化度は、一般に80~99.8モル%の範囲内である。
 上記ポリビニルアルコールの重合度の好ましい下限は200、より好ましい下限は500、好ましい上限は3,000、より好ましい上限は2,500である。上記重合度が低すぎると、合わせガラスの耐貫通性が低下する傾向がある。上記重合度が高すぎると、合わせガラス用中間膜の成形が困難となることがある。
 上記アルデヒドは特に限定されない。上記アルデヒドとして、一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、例えば、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ホルムアルデヒド、アセトアルデヒド及びベンズアルデヒド等が挙げられる。なかでも、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドが好ましく、プロピオンアルデヒド、n-ブチルアルデヒド又はイソブチルアルデヒドがより好ましく、n-ブチルアルデヒドが更に好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 各層の接着力をより一層高める観点からは、上記ポリビニルアセタール樹脂の水酸基の含有率(水酸基量)は、15~40モル%の範囲内であることが好ましい。上記水酸基の含有率のより好ましい下限は18モル%、より好ましい上限は35モル%である。上記水酸基の含有率が低すぎると、各層の接着力が低くなることがある。また、上記水酸基の含有率が高すぎると、中間膜1の柔軟性が低くなり、中間膜1の取扱いに問題が生じやすい。
 上記ポリビニルアセタール樹脂の水酸基の含有率は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6726「ポリビニルアルコール試験方法」に準拠して、原料となるポリビニルアルコールの水酸基が結合しているエチレン基量を測定することにより求めることができる。
 上記ポリビニルアセタール樹脂のアセチル化度(アセチル基量)の好ましい下限は0.1モル%、より好ましい下限は0.3モル%、さらに好ましい下限は0.5モル%、好ましい上限は30モル%、より好ましい上限は25モル%、さらに好ましい上限は20モル%である。
 上記アセチル化度が低すぎると、上記ポリビニルアセタール樹脂と上記可塑剤との相溶性が低下することがある。上記アセチル化度が高すぎると、中間膜の耐湿性が低くなることがある。
 上記アセチル化度は、主鎖の全エチレン基量から、アセタール基が結合しているエチレン基量と、水酸基が結合しているエチレン基量とを差し引いた値を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセタール基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
 上記ポリビニルアセタール樹脂のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)の好ましい下限は60モル%、より好ましい下限は63モル%、好ましい上限は85モル%、より好ましい上限は75モル%、さらに好ましい上限は70モル%である。
 上記アセタール化度が低すぎると、ポリビニルアセタール樹脂と可塑剤との相溶性が低いことがある。上記アセタール化度が高すぎると、ポリビニルアセタール樹脂を製造するために必要な反応時間が長くなることがある。
 上記アセタール化度は、アセタール基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。
 上記アセタール化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により、アセチル化度(アセチル基量)と水酸基の含有率(ビニルアルコール量)とを測定し、得られた測定結果からモル分率を算出し、ついで、100モル%からアセチル化度と水酸基の含有率とを差し引くことにより算出され得る。
 なお、ポリビニルアセタール樹脂がポリビニルブチラール樹脂である場合は、上記アセタール化度(ブチラール化度)及びアセチル化度(アセチル基量)は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出され得る。
 (可塑剤)
 各層の接着力をより一層高める観点からは、遮熱層2及び第1,第2の紫外線遮蔽層3,4はそれぞれ、可塑剤を含有することが好ましい。遮熱層2及び第1,第2の紫外線遮蔽層3,4に含まれている熱可塑性樹脂がそれぞれ、ポリビニルアセタール樹脂である場合に、遮熱層2及び第1,第2の紫外線遮蔽層3,4はそれぞれ、可塑剤を含むことが特に好ましい。
 上記可塑剤は特に限定されない。可塑剤として、従来公知の可塑剤を用いることができる。可塑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記可塑剤としては、例えば、一塩基性有機酸エステル及び多塩基性有機酸エステル等の有機エステル可塑剤、並びに有機リン酸可塑剤及び有機亜リン酸可塑剤などのリン酸可塑剤等が挙げられる。なかでも、有機エステル可塑剤が好ましい。上記可塑剤は液状可塑剤であることが好ましい。
 上記一塩基性有機酸エステルとしては、特に限定されず、例えば、グリコールと一塩基性有機酸との反応によって得られたグリコールエステル、並びにトリエチレングリコール又はトリプロピレングリコールと一塩基性有機酸とのエステル等が挙げられる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール及びトリプロピレングリコール等が挙げられる。上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸等が挙げられる。
 上記多塩基性有機酸エステルとしては、特に限定されず、例えば、多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物が挙げられる。上記多塩基性有機酸としては、アジピン酸、セバシン酸及びアゼライン酸等が挙げられる。
 上記有機エステル可塑剤としては、特に限定されず、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリエート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、及びリン酸エステルとアジピン酸エステルとの混合物等が挙げられる。これら以外の有機エステル可塑剤を用いてもよい。
 上記有機リン酸可塑剤としては、特に限定されず、例えば、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等が挙げられる。
 上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)及びトリエチレングリコールジ-2-エチルブチレート(3GH)の内の少なくとも一種であることが好ましく、トリエチレングリコールジ-2-エチルヘキサノエートであることがより好ましい。
 遮熱層2及び第1,第2の紫外線遮蔽層3,4における上記可塑剤の含有量は特に限定されない。上記熱可塑性樹脂100重量部に対して、上記可塑剤の含有量の好ましい下限は25重量部、より好ましい下限は30重量部、好ましい上限は60重量部、より好ましい上限は50重量部である。上記可塑剤の含有量が上記好ましい下限を満たすと、合わせガラスの耐貫通性をより一層高めることができる。上記可塑剤の含有量が上記好ましい上限を満たすと、中間膜1の透明性をより一層高めることができる。
 遮熱層2における上記可塑剤の含有量と第1,第2の紫外線遮蔽層3,4における上記可塑剤の含有量は異なっていてもよい。例えば、遮熱層2及び第1,第2の紫外線遮蔽層3,4の内の少なくとも一層の上記可塑剤の含有量が、上記熱可塑性樹脂100重量部に対して55重量部以上である場合、合わせガラスの遮音性を高めることができる。
 (紫外線遮蔽剤)
 第1,第2の紫外線遮蔽層3,4は、紫外線遮蔽剤を含有する。紫外線遮蔽剤には、紫外線吸収剤が含まれる。紫外線遮蔽剤は、紫外線吸収剤であることが好ましい。
 従来広く知られている一般的な紫外線遮蔽剤としては、例えば、金属系紫外線遮蔽剤、金属酸化物系紫外線遮蔽剤、ベンゾトリアゾール系紫外線遮蔽剤、ベンゾフェノン系紫外線遮蔽剤、トリアジン系紫外線遮蔽剤及びベンゾエート系紫外線遮蔽剤等が挙げられる。
 上記金属系紫外線吸収剤としては、例えば、白金粒子、白金粒子の表面をシリカで被覆した粒子、パラジウム粒子及びパラジウム粒子の表面をシリカで被覆した粒子等が挙げられる。紫外線遮蔽剤は、遮熱粒子ではないことが好ましい。紫外線遮蔽剤は、ベンゾトリアゾール系紫外線遮蔽剤、ベンゾフェノン系紫外線遮蔽剤、トリアジン系紫外線遮蔽剤又はベンゾエート系紫外線遮蔽剤であることが好ましく、ベンゾトリアゾール系紫外線吸収剤であることがより好ましい。
 上記金属酸化物系紫外線吸収剤としては、例えば、酸化亜鉛、酸化チタン及び酸化セリウム等が挙げられる。さらに、上記金属酸化物系紫外線吸収剤として、表面が被覆されていてもよい。上記金属酸化物系紫外線吸収剤の表面の被覆材料としては、絶縁性金属酸化物、加水分解性有機ケイ素化合物及びシリコーン化合物等が挙げられる。
 上記絶縁性金属酸化物としては、シリカ、アルミナ及びジルコニア等が挙げられる。上記絶縁性金属酸化物は、例えば5.0eV以上のバンドギャップエネルギーを有する。
 上記ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール(BASF社製「TinuvinP」)、2-(2’-ヒドロキシ-3’、5’-ジ-t-ブチルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin320」)、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製「Tinuvin326」)、及び2-(2’-ヒドロキシ-3’、5’-ジ-アミルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin328」)等のベンゾトリアゾール系紫外線吸収剤が挙げられる。紫外線を吸収する性能に優れることから、上記紫外線遮蔽剤はハロゲン原子を含むベンゾトリアゾール系紫外線吸収剤であることが好ましく、塩素原子を含むベンゾトリアゾール系紫外線吸収剤であることがより好ましい。
 上記ベンゾフェノン系紫外線吸収剤としては、例えば、オクタベンゾン(BASF社製「Chimassorb81」)等が挙げられる。
 上記トリアジン系紫外線吸収剤としては、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(BASF社製、「Tinuvin1577FF」)等が挙げられる。
 上記ベンゾエート系紫外線吸収剤としては、例えば、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(BASF社製、「tinuvin120」)等が挙げられる。
 第1,第2の紫外線遮蔽層3,4に含まれている紫外線遮蔽剤は、第1,第2の紫外線遮蔽層3,4又は中間膜1の紫外線透過率が好適な範囲内であるように、適宜の紫外線遮蔽剤が選択される。第1,第2の紫外線遮蔽層3,4に含まれている紫外線遮蔽剤は、第1,第2の紫外線遮蔽層3,4又は中間膜1の波長360~400nmでの紫外線透過率、波長360~390nmでの紫外線透過率、又は波長380~390nmでの紫外線透過率が上述した値以下になるように、適宜の紫外線遮蔽剤が選択されて用いられることが好ましい。
 遮熱層2は、紫外線遮蔽剤3を含有していてもよく、含有していなくてもよい。中間膜1の波長360~400nmでの紫外線透過率、波長360~390nmでの紫外線透過率、又は波長380~390nmでの紫外線透過率をより一層低くする観点からは、遮熱層2は、紫外線遮蔽剤を含有することが好ましい。
 第1,第2の紫外線遮蔽層3,4又は中間膜1の紫外線透過率をより一層低くする観点からは、紫外線遮蔽剤は、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製「Tinuvin326」)、又は2-(2’-ヒドロキシ-3’,5’-ジ-アミルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin328」)であることが好ましく、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾールであることがより好ましい。
 遮熱層2及び第1,第2の紫外線遮蔽層3,4における紫外線遮蔽剤の含有量は特に限定されない。初期及び経時後の遮熱性をより一層高める観点からは、上記熱可塑性樹脂100重量部に対して、紫外線遮蔽剤の含有量の好ましい下限は0.3重量部、より好ましい下限は0.4重量部、さらに好ましい下限は0.5重量部、好ましい上限は3重量部、より好ましい上限は2.5重量部、さらに好ましい上限は2重量部である。
 初期及び経時後の遮熱性をより一層高める観点からは、紫外線遮蔽層100重量%中、紫外線遮蔽剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、さらに好ましくは0.3重量%以上、特に好ましくは0.5重量%以上、好ましくは2.5重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下、特に好ましくは0.8重量%以下である。特に、紫外線遮蔽層100重量%中、紫外線遮蔽剤の含有量が0.2重量%以上であることにより、合わせガラスの経時後の遮熱性の低下を顕著に抑制できる。
 初期及び経時後の遮熱性をより一層高める観点からは、遮熱層100重量%中、紫外線遮蔽剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、さらに好ましくは0.3重量%以上、特に好ましくは0.5重量%以上、好ましくは2.5重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下、特に好ましくは0.8重量%以下である。特に、遮熱層100重量%中、紫外線遮蔽剤の含有量が0.3重量%以上であることにより、合わせガラスの経時後の遮熱性の低下を顕著に抑制できる。
 (遮熱粒子)
 遮熱層2は、遮熱粒子を含有する。第1,第2の紫外線遮蔽層3,4は、遮熱粒子を含有していてもよく、含有していなくてもよい。合わせガラスの遮熱性をより一層高める観点からは、第1,第2の紫外線遮蔽層3,4はそれぞれ、遮熱粒子を含有することが好ましい。
 上記遮熱粒子は、金属の酸化物により形成された粒子であることが好ましい。遮熱粒子は1種のみが用いられてもよく、2種以上が併用されてもよい。
 可視光よりも長い波長780nm以上の赤外線は、紫外線と比較して、エネルギー量が小さい。しかしながら、赤外線は熱的作用が大きく、赤外線が物質にいったん吸収されると熱として放出される。このため、赤外線は一般に熱線と呼ばれている。上記遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。なお、遮熱粒子とは、赤外線を吸収することが出来る粒子を意味する。
 上記遮熱粒子の具体例としては、アルミニウムドープ酸化錫粒子、インジウムドープ酸化錫粒子、アンチモンドープ酸化錫粒子(ATO粒子)、ガリウムドープ酸化亜鉛粒子(GZO粒子)、インジウムドープ酸化亜鉛粒子(IZO粒子)、アルミニウムドープ酸化亜鉛粒子(AZO粒子)、ニオブドープ酸化チタン粒子、ナトリウムドープ酸化タングステン粒子、セシウムドープ酸化タングステン粒子、タリウムドープ酸化タングステン粒子、ルビジウムドープ酸化タングステン粒子、錫ドープ酸化インジウム粒子(ITO粒子)、錫ドープ酸化亜鉛粒子、または、珪素ドープ酸化亜鉛粒子等の金属酸化物粒子や、六ホウ化ランタン(LaB)粒子等が挙げられる。これら以外の遮熱粒子を用いてもよい。なかでも、熱線の遮蔽機能が高いため、遮熱粒子は金属酸化物粒子であることが好ましく、ATO粒子、GZO粒子、IZO粒子、ITO粒子、セシウムドープ酸化タングステン粒子であることがより好ましく、ITO粒子がさらに好ましい。
 特に、熱線の遮蔽機能が高く、かつ入手が容易であるので、錫ドープ酸化インジウム粒子(ITO粒子)が好ましい。
 上記遮熱粒子の平均粒子径の好ましい下限は0.01μm、より好ましい下限は0.02μm、好ましい上限は0.1μm、より好ましい上限は0.05μmである。平均粒子径が上記好ましい下限を満たすと、熱線の遮蔽性を充分に高めることができる。平均粒子径が上記好ましい上限を満たすと、遮熱粒子の分散性を高めることができる。
 上記「平均粒子径」は、体積平均粒子径を示す。平均粒子径は、粒度分布測定装置(日機装社製「UPA-EX150」)等を用いて測定できる。
 遮熱層2及び第1,第2の紫外線遮蔽層3,4における上記遮熱粒子の含有量は特に限定されない。上記熱可塑性樹脂100重量部に対して、上記遮熱粒子の含有量の好ましい下限は0.01重量部、より好ましい下限は0.1重量部、好ましい上限は3重量部、より好ましい上限は2重量部である。遮熱層2及び第1,第2の紫外線遮蔽層3,4における遮熱粒子の含有量が上記好ましい範囲内であると、遮熱性を充分に高めることができ、日射透過率(Ts2500)を充分に低くすることができ、上記Ttsを充分に低くすることができ、かつ上記可視光線透過率を充分に高くすることができる。例えば、上記Ttsを50%以下にすることができ、かつ上記可視光線透過率を70%以上にすることができる。
 遮熱層2及び第1,第2の紫外線遮蔽層3,4における上記遮熱粒子の含有量は特に限定されない。遮熱層及び第1,第2の紫外線遮蔽層100重量%中、遮熱粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、さらに好ましくは1重量%以上、特に好ましくは1.5重量%以上、好ましくは6重量%以下、より好ましくは5.5重量%以下、さらに好ましくは4重量%以下、特に好ましくは3.5重量%以下、最も好ましくは3.0重量%以下である。遮熱層2及び第1,第2の紫外線遮蔽層3,4における遮熱粒子の含有量が上記好ましい範囲内であると、遮熱性を充分に高めることができ、日射透過率(Ts2500)を充分に低くすることができ、上記Ttsを充分に低くすることができ、かつ上記可視光線透過率を充分に高くすることができる。例えば、本発明の合わせガラス用中間膜を備える合わせガラスの可視光線透過率を70%以上にすることができる。
 (成分X)
 遮熱層2は、上記成分Xを含有する。上記成分Xは、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも一種の成分である。
 上記成分Xは特に限定されない。上記成分Xとして、従来公知のフタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物を用いることができる。上記成分Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記遮熱粒子と成分Xとの併用により、赤外線(熱線)を充分に遮断できる。上記金属酸化物粒子と成分Xとの併用により、赤外線をより一層効果的に遮断できる。上記ITO粒子と成分Xとの併用により、赤外線を更に一層効果的に遮断できる。
 上記成分Xとしては、フタロシアニン、フタロシアニンの誘導体、ナフタロシアニン、ナフタロシアニンの誘導体、アントラシアニン及びアントラシアニンの誘導体等が挙げられる。上記フタロシアニン化合物及び上記フタロシアニンの誘導体はそれぞれ、フタロシアニン骨格を有することが好ましい。上記ナフタロシアニン化合物及び上記ナフタロシアニンの誘導体はそれぞれ、ナフタロシアニン骨格を有することが好ましい。上記アントラシアニン化合物及び上記アントラシアニンの誘導体はそれぞれ、アントラシアニン骨格を有することが好ましい。
 中間膜及び合わせガラスの遮熱性をより一層高くし、日射透過率(Ts2500)を充分に低くし、上記Ttsを充分に低くし、かつ上記可視光線透過率を充分に高くする観点からは、上記成分Xは、フタロシアニン、フタロシアニンの誘導体、ナフタロシアニン及びナフタロシアニンの誘導体からなる群から選択される少なくとも一種であることが好ましい。
 遮熱性を効果的に高め、かつ長期間にわたり可視光線透過率をより一層高いレベルで維持する観点からは、上記成分Xはバナジウム原子又は銅原子を含有することが好ましく、バナジウム原子を含有することがより好ましい。上記成分Xは、バナジウム原子又は銅原子を含有するフタロシアニンの誘導体、バナジウム原子又は銅原子を含有するナフタロシアニンの誘導体の内の少なくとも一種であることが好ましい。中間膜及び合わせガラスの遮熱性をさらに一層高くする観点からは、上記成分Xは、バナジウム原子を含有する構造を有することが好ましい。
 遮熱層2及び第1,第2の紫外線遮蔽層3,4における成分Xの含有量は特に限定されない。上記熱可塑性樹脂100重量部に対して、成分Xの含有量の好ましい下限は0.0005重量部、より好ましい下限は0.003重量部、好ましい上限は0.1重量部、より好ましい上限は0.05重量部である。遮熱層2における成分Xの含有量が上記好ましい範囲内であると、遮熱性を充分に高めることができ、日射透過率(Ts2500)を充分に低くすることができ、上記Ttsを充分に低くすることができ、かつ上記可視光線透過率を充分に高くすることができる。例えば、上記Ttsを50%以下にすることができ、かつ上記可視光線透過率を70%以上にすることができる。
 また、遮熱層及び第1,第2の紫外線遮蔽層100重量%中、成分Xの含有量は、好ましくは0.001重量%以上、より好ましくは0.005重量%以上、さらに好ましくは0.05重量%以上、特に好ましくは0.1重量%以上、好ましくは0.2重量%以下、より好ましくは0.18重量%以下、さらに好ましくは0.16重量%以下、特に好ましくは0.15重量%以下である。第1の遮熱層における成分Xの含有量が上記下限以上及び上記上限以下であると、遮熱性を充分に高めることができ、日射透過率(Ts2500)を充分に低くすることができ、上記Ttsを充分に低くすることができ、かつ上記可視光線透過率を充分に高くすることができる。例えば、可視光線透過率を70%以上にすることができる。
 (他の成分)
 遮熱層2及び第1,第2の紫外線遮蔽層3,4はそれぞれ、必要に応じて、酸化防止剤、光安定剤、難燃剤、帯電防止剤、顔料、染料、接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等の添加剤を含有していてもよい。これらの添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 (合わせガラス)
 本発明に係る合わせガラス用中間膜は、合わせガラスを得るために用いられる。
 図2に、図1に示す中間膜1を用いた合わせガラスの一例を示す。
 図2に示す合わせガラス11は、中間膜1と、第1,第2の合わせガラス構成部材12,13とを備える。中間膜1は、合わせガラス用中間膜である。中間膜1は、第1,第2の合わせガラス構成部材12,13の間に挟み込まれている。従って、合わせガラス11は、第1の合わせガラス構成部材12と、中間膜1と、第2の合わせガラス構成部材13とがこの順で積層されて構成されている。第1の合わせガラス構成部材12は、第1の紫外線遮蔽層3の外側の表面3aに積層されている。第2の合わせガラス構成部材13は、第2の紫外線遮蔽層4の外側の表面4aに積層されている。
 第1,第2の合わせガラス構成部材12,13としては、ガラス板及びPET(ポリエチレンテレフタレート)フィルム等が挙げられる。合わせガラス11には、2枚のガラス板の間に中間膜が挟み込まれている合わせガラスだけでなく、ガラス板とPETフィルム等との間に中間膜が挟み込まれている合わせガラスも含まれる。合わせガラス11は、ガラス板含有積層体であり、少なくとも1枚のガラス板が用いられていることが好ましい。
 上記ガラス板としては、無機ガラス及び有機ガラスが挙げられる。上記無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、熱線反射板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス及びグリーンガラス等が挙げられる。遮熱性が高いことから、上記無機ガラスは熱線吸収板ガラスであることが好ましい。なお、熱線吸収板ガラスに関しては、JIS R3208に規定されている。上記有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。上記有機ガラスとしては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。
 第1,第2の合わせガラス構成部材12,13の厚みは、好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。また、合わせガラス構成部材12,13がガラス板である場合に、該ガラス板の厚みは、好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。合わせガラス構成部材12,13がPETフィルムである場合に、該PETフィルムの厚みは、0.03~0.5mmの範囲内であることが好ましい。
 合わせガラス1の製造方法は特に限定されない。例えば、第1,第2の合わせガラス構成部材12,13の間に、中間膜1を挟んで、押圧ロールに通したり、又はゴムバックに入れて減圧吸引したりして、第1,第2の合わせガラス構成部材12,13と中間膜1との間に残留する空気を脱気する。その後、約70~110℃で予備接着して積層体を得る。次に、積層体をオートクレーブに入れたり、又はプレスしたりして、約120~150℃及び1~1.5MPaの圧力で圧着する。このようにして、合わせガラス11を得ることができる。
 合わせガラス11は、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。合わせガラス11は、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。合わせガラス11は、これらの用途以外にも使用できる。遮熱性が高く、日射透過率(Ts2500)が低く、上記Ttsが低くかつ上記可視光線透過率が高いので、合わせガラス11は、自動車に好適に用いられる。
 遮熱性により一層優れた合わせガラスを得る観点からは、合わせガラス11の上記Ttsは、53%以下であることが好ましく、50%以下であることが好ましく、40%以下であることが好ましい。
 透明性により一層優れた合わせガラスを得る観点からは、合わせガラス11の上記可視光線透過率は、好ましくは65%以上、より好ましくは70%以上である。合わせガラスの可視光線透過率は、JIS R3211(1998)に準拠して測定できる。本発明の合わせガラス用中間膜を、JIS R3202に準拠した、厚さ2mmの2枚のフロートガラスの間に挟み込むことにより得られた合わせガラスの可視光線透過率は70%以上であることが好ましい。
 合わせガラスの日射透過率(Ts2500)は、好ましくは65%以下、より好ましくは50%以下である。合わせガラスの日射透過率は、JIS R 3106(1998)に準拠して測定できる。本発明の合わせガラス用中間膜を、JIS R3202に準拠した、厚さ2mmの2枚のフロートガラスの間に挟み込むことにより得られた合わせガラスの日射透過率は65%以下であることが好ましく、60%以下であることがより好ましく、50%以下であることがさらに好ましい。
 合わせガラスのヘーズ値は、好ましくは2%以下、より好ましくは1%以下、更に好ましくは0.5%以下、特に好ましくは0.4%以下である。本発明に係る合わせガラス用中間膜は、遮熱層と紫外線遮蔽層とを備えるので、合わせガラスのヘーズ値を低くすることができる。合わせガラスのヘーズ値は、JIS K6714に準拠して測定できる。
 以下、実施例を掲げて本発明を更に詳しく説明する。本発明は以下の実施例のみに限定されない。
 実施例及び比較例では、以下の材料を用いた。
 熱可塑性樹脂:
 PVB1(n-ブチルアルデヒドによりアセタール化されているポリビニルブチラール樹脂、平均重合度2300、水酸基の含有率22モル%、アセチル化度12モル%、ブチラール化度66モル%)
 PVB2(n-ブチルアルデヒドによりアセタール化されているポリビニルブチラール樹脂、平均重合度1700、水酸基の含有率30.5モル%、アセチル化度1モル%、ブチラール化度68.5モル%)
 可塑剤:
 3GO(トリエチレングリコールジ-2-エチルヘキサノエート)
 遮熱粒子:
 ITO(ITO粒子、三菱マテリアル社製)
 ATO(ATO粒子、石原産業社製「SN-100P」、BET値 70m/g)
 GZO(GZO粒子、堺化学社製 「FINEX-50」、BET値 50m/g)
 成分X:
 IR-906(バナジウム原子に酸素原子を含有するバナジルフタロシアニン化合物、日本触媒社製「イーエクスカラー906」)
 IR-915(バナジウム原子を含有するバナジルフタロシアニン化合物、日本触媒社製「イーエクスカラー915」)
 IRSORB203(銅ナフタロシアニン化合物、富士フイルム社製)
 紫外線遮蔽剤:
 Tinuvin326(2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、BASF社製「Tinuvin326」)
 (実施例1)
 (1)遮熱層の作製
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)60重量部と、Tinuvin326を得られる遮熱層100重量%中で0.625重量%となる量と、ITOを得られる遮熱層100重量%中で1.52重量%となる量と、IR-906を得られる遮熱層100重量%中で0.122重量%となる量とを混合し、さらに、分散剤であるリン酸エステル化合物を添加した後、水平型のマイクロビーズミルにて混合し、分散液を得た。分散液中のITO粒子の体積平均粒径は35nmであった。なお、リン酸エステル化合物の含有量は遮熱粒子の含有量の1/10となるように調整した。
 ポリビニルブチラール樹脂(PVB1)100重量部に対し、得られた分散液全量を添加し、ミキシングロールで充分に混練し、第1の組成物を得た。
 (2)紫外線遮蔽層の作製
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40重量部と、Tinuvin326を得られる紫外線遮蔽層100重量%中で0.571重量%となる量とを、水平型のマイクロビーズミルにて混合し、分散液を得た。
 ポリビニルブチラール樹脂(PVB2)100重量部に対し、得られた分散液全量を添加し、ミキシングロールで充分に混練し、第2の組成物を得た。
 (3)合わせガラス用中間膜の作製
 得られた第1の組成物及び第2の組成物を押出機を用いて共押出することにより、紫外線遮蔽層/遮熱層/紫外線遮蔽層の3層の積層構造を有する積層体を得た。なお、紫外線遮蔽層の厚みは330μm、遮熱層の厚みは100μmであり、厚み760μmの3層構造を有する中間膜を得た。
 (4)合わせガラスの作製
 得られた中間膜を、縦30cm×横30cmの大きさに切断した。次に、JIS R3202に準拠した2枚のフロートガラス(縦30cm×横30cm×厚み2mm)を用意した。この2枚のフロートガラスの間に、得られた中間膜を挟み込み、真空ラミネーターにて90℃で30分間保持し、真空プレスし、積層体を得た。積層体において、ガラス板からはみ出た中間膜部分を切り落とし、合わせガラスを得た。
 (実施例2~10)
 熱可塑性樹脂、可塑剤、遮熱粒子、成分X及び紫外線遮蔽剤の種類及び含有量を下記の表1に示すように変更したこと以外は実施例1と同様にして、遮熱層及び紫外線遮蔽層を作製した。得られた遮熱層と紫外線遮蔽層とを用いて、実施例1と同様にして、3層構造を有する中間膜を備えた合わせガラスを作製した。なお、実施例2~10でも、遮熱層を作製する際に、リン酸エステルの含有量は遮熱粒子の1/10となるように調整した。
 (実施例11)
 (1)遮熱層の作製
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40重量部と、Tinuvin326を得られる遮熱層100重量%中で0.571重量%となる量と、ITOを得られる遮熱層100重量%中で3.04重量%となる量と、IR-915を得られる遮熱層100重量%中で0.129重量%となる量とを混合し、さらに、分散剤であるリン酸エステル化合物を添加した後、水平型のマイクロビーズミルにて混合し、分散液を得た。分散液中のITO粒子の体積平均粒径は35nmであった。なお、リン酸エステル化合物の含有量は遮熱粒子の含有量の1/10となるように調整した。
 ポリビニルブチラール樹脂(PVB2)100重量部に対し、得られた分散液全量を添加し、ミキシングロールで充分に混練し、第1の組成物を得た。
 (2)紫外線遮蔽層の作製
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40重量部と、Tinuvin326を得られる紫外線遮蔽層100重量%中で0.714重量%となる量とを、水平型のマイクロビーズミルにて混合し、分散液を得た。
 ポリビニルブチラール樹脂(PVB2)100重量部に対し、得られた分散液全量を添加し、ミキシングロールで充分に混練し、第2の組成物を得た。
 (3)合わせガラス用中間膜の作製
 得られた第1の組成物及び第2の組成物とを押出機を用いて共押出することにより、紫外線遮蔽層/遮熱層の2層の積層構造を有する積層体を得た。なお、紫外線遮蔽層の厚みは660μm、遮熱層の厚みは100μmであり、厚み760μmの2層構造を有する中間膜を得た。
 (4)合わせガラスの作製
 得られた中間膜を用いたこと以外は実施例1と同様にして、合わせガラスを得た。
 (実施例12)
 遮熱層及び紫外線遮蔽層の各厚みを下記の表1に示すように変更したこと以外は実施例11と同様にして、遮熱層及び紫外線遮蔽層を作製した。なお、実施例12でも、遮熱層を作製する際に、リン酸エステルの含有量は遮熱粒子の1/10となるように調整した。
 得られた遮熱層及び紫外線遮蔽層を用いたこと以外は、実施例11と同様にして、2層構造を有する中間膜及び合わせガラスを得た。
 (参考例1)
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40重量部と、ITOを得られる中間膜100重量%中で0.20重量%となる量と、Tinuvin326を得られる中間膜100重量%中で0.625重量%となる量と、IR-906を得られる中間膜100重量%中で0.016重量%となる量とを混合し、さらに、分散剤であるリン酸エステル化合物を添加した後、水平型のマイクロビーズミルにて混合し、分散液を得た。なお、リン酸エステル化合物の含有量は遮熱粒子の含有量の1/10となるように調整した。
 ポリビニルブチラール樹脂(PVB2)100重量部に対し、得られた分散液全量を添加し、ミキシングロールで充分に混練し、組成物を得た。
 得られた組成物を押出することにより、厚み760μmの単層の中間膜を得た。
 得られた中間膜を用いて、実施例1と同様にして、単層の中間膜を備えた合わせガラスを得た。
 (参考例2~4、比較例1~7及び参考例5)
 熱可塑性樹脂、可塑剤、遮熱粒子、紫外線遮蔽剤及び成分Xの種類及び含有量を下記の表2に示すように変更したこと以外は参考例1と同様にして、中間膜を作製した。この中間膜を用いて、参考例1と同様にして、単層の中間膜を備えた合わせガラスを作製した。
 なお、参考例2~4、比較例6~7及び参考例5でも、リン酸エステル化合物の含有量は遮熱粒子の含有量の1/10となるように調整した。比較例1~5では、リン酸エステル化合物を用いなかった。
 なお、参考例1~5では、遮熱粒子と成分Xとが同じ層(中間膜)に含まれている。比較例1~4では、遮熱粒子を配合せず、かつ成分Xを配合した。比較例5では、遮熱粒子及び成分Xをいずれも配合しなかった。比較例6~7では、遮熱粒子を配合し、かつ成分Xを配合しなかった。
 (評価)
 (1)紫外線透過率(360~400nm)、(360~390nm)及び(380~390nm)の測定
 実施例の中間膜を得るために用いた紫外線遮蔽層(1層)を作製した。また、実施例及び比較例の中間膜を用意した。分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS R3211(1998)に準拠して、紫外線遮蔽層及び中間膜の波長360~400nmにおける上記紫外線透過率、波長360~390nmにおける上記紫外線透過率及び波長380~390nmにおける上記紫外線透過率を測定した。
 (2)可視光線透過率(A光Y値、初期A-Y(380~780nm))の測定
 分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS R3211(1998)に準拠して、得られた合わせガラスの波長380~780nmにおける上記可視光線透過率を測定した。
 (3)日射透過率(初期Ts2500(300~2500nm))の測定
 分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS R3106(1998)に準拠して、得られた合わせガラスの波長300~2500nmでの日射透過率Ts(Ts2500)を求めた。
 (4)光線透過率(初期T850(850nm)、初期T900(900nm)及び初期T950(nm))の測定
 分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS R 3106(1998)に準拠した方法により、得られた合わせガラスの波長850nm、900nm及び950nmでの光線透過率(T850(850nm)、T900(900nm)及びT950(950nm))を測定した。
 (5)黄色度(C光YI:イエローインデックス)の測定
 分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS K7105に準拠して、得られた合わせガラスの透過法による黄色度(イエローインデックス)を測定した。
 (6)へーズ値の測定
 ヘーズメーター(東京電色社製「TC-HIIIDPK」)を用いて、JIS K6714に準拠して、得られた合わせガラスのヘーズ値を測定した。
 (7)長期安定性(耐光性)
 紫外線照射装置(スガ試験機社製「HLG-2S」)等を用いて、JIS R3205に準拠して、紫外線(石英ガラス水銀灯(750W))を、合わせガラスに500時間及び1000時間照射した。500時間照射後及び1000時間照射後の合わせガラスのA-Y、Ts2500、T850、T900、T950及びC光YIを上記の方法により測定した。なお、実施例11~12では、紫外線を第1の紫外線遮蔽層側から照射した。
 得られた測定値から、ΔA-Y((紫外線の照射後のA-Y)-(初期のA-Y))、ΔTs2500(紫外線の照射後のTs2500-初期のTs2500)、ΔT850(紫外線の照射後のT850-初期のT850)、ΔT900(紫外線の照射後のT900-初期のT900)、ΔT950(紫外線の照射後のT950-初期のT950)及びC光ΔYI(紫外線の照射後のC光YI-初期のC光YI)を求めた。
 中間膜の組成を下記の表1~2に示し、評価結果を下記の表3~5に示す。表1~2における可塑剤の配合量は、熱可塑性樹脂100重量部に対する可塑剤の含有量(重量部)を示す。表1における遮熱粒子、成分X及び紫外線遮蔽剤の配合量は、遮熱層又は紫外線遮蔽層100重量%中の遮熱粒子、成分X及び紫外線遮蔽剤の含有量(重量%)を示す。表2における遮熱粒子、紫外線遮蔽剤及び成分Xの配合量は、中間膜100重量%中の遮熱粒子、紫外線遮蔽剤及び成分Xの含有量を示す。また、下記の表1~2では、リン酸エステル化合物の含有量の記載は省略した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 なお、参考例1~5の合わせガラス用中間膜では、初期の遮熱性は十分に高かった。
 1…合わせガラス用中間膜
 2…遮熱層
 2a…第1の表面
 2b…第2の表面
 3…第1の紫外線遮蔽層
 3a…外側の表面
 4…第2の紫外線遮蔽層
 4a…外側の表面
 5…遮熱粒子
 11…合わせガラス
 12…第1の合わせガラス構成部材
 13…第2の合わせガラス構成部材

Claims (12)

  1.  遮熱層と、
     第1の紫外線遮蔽層とを備え、
     前記遮熱層が、熱可塑性樹脂と、遮熱粒子と、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも一種の成分とを含有し、
     前記第1の紫外線遮蔽層が、熱可塑性樹脂と、紫外線遮蔽剤とを含有する、合わせガラス用中間膜。
  2.  前記第1の紫外線遮蔽層が、前記遮熱層の一方の表面に積層されている、請求項1に記載の合わせガラス用中間膜。
  3.  前記第1の紫外線遮蔽層が、前記遮熱層の一方の表面側に配置されており、
     前記遮熱層の一方の表面側とは反対の他方の表面側に配置された第2の紫外線遮蔽層をさらに備え、
     前記第2の紫外線遮蔽層が、熱可塑性樹脂と、紫外線遮蔽剤とを含有する、請求項1に記載の合わせガラス用中間膜。
  4.  前記第1の紫外線遮蔽層が、前記遮熱層の一方の表面に積層されており、
     前記第2の紫外線遮蔽層が、前記遮熱層の一方の表面とは反対の他方の表面に積層されている、請求項3に記載の合わせガラス用中間膜。
  5.  前記紫外線遮蔽層の波長360~390nmでの紫外線透過率が0.5%以下、又は、前記紫外線遮蔽層の波長380~390nmでの紫外線透過率が0.8%以下である、請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
  6.  前記成分が、フタロシアニン、フタロシアニンの誘導体、ナフタロシアニン及びナフタロシアニンの誘導体からなる群から選択される少なくとも一種である、請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
  7.  前記遮熱粒子が金属酸化物粒子である、請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
  8.  前記遮熱粒子が、錫ドープ酸化インジウム粒子である、請求項7に記載の合わせガラス用中間膜。
  9.  前記熱可塑性樹脂が、ポリビニルアセタール樹脂である、請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
  10.  前記遮熱層及び前記紫外線遮蔽層がそれぞれ、可塑剤をさらに含有する、請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
  11.  前記紫外線遮蔽層100重量%中、前記紫外線遮蔽剤の含有量が0.2~1.0重量%である、請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
  12.  第1,第2の合わせガラス構成部材と、
     前記第1,第2の合わせガラス構成部材の間に挟み込まれた中間膜とを備え、
     前記中間膜が、請求項1~4のいずれか1項に記載の合わせガラス用中間膜である、合わせガラス。
PCT/JP2010/064247 2009-08-24 2010-08-24 合わせガラス用中間膜及び合わせガラス WO2011024788A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2012111220/05A RU2540569C2 (ru) 2009-08-24 2010-08-24 Промежуточная пленка для многослойного стекла и многослойное стекло
BR112012003918-0A BR112012003918B1 (pt) 2009-08-24 2010-08-24 película intermediária para vidro laminado e vidro laminado
EP10811838.1A EP2471762B1 (en) 2009-08-24 2010-08-24 Intermediate film for laminated glass, and laminated glass
CN201080037243.2A CN102625786B (zh) 2009-08-24 2010-08-24 夹层玻璃用中间膜及夹层玻璃
KR1020177027094A KR101940438B1 (ko) 2009-08-24 2010-08-24 접합 유리용 중간막 및 접합 유리
JP2010533376A JP4947451B2 (ja) 2009-08-24 2010-08-24 合わせガラス用中間膜及び合わせガラス
KR1020127004676A KR101784533B1 (ko) 2009-08-24 2010-08-24 접합 유리용 중간막 및 접합 유리
US13/391,732 US20120162752A1 (en) 2009-08-24 2010-08-24 Intermediate film for laminated glass, and laminated glass
MX2012001804A MX348107B (es) 2009-08-24 2010-08-24 Pelicula intermedia para vidrio laminado y vidrio laminado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009193721 2009-08-24
JP2009-193721 2009-08-24

Publications (1)

Publication Number Publication Date
WO2011024788A1 true WO2011024788A1 (ja) 2011-03-03

Family

ID=43627893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064247 WO2011024788A1 (ja) 2009-08-24 2010-08-24 合わせガラス用中間膜及び合わせガラス

Country Status (9)

Country Link
US (1) US20120162752A1 (ja)
EP (2) EP2471762B1 (ja)
JP (4) JP4947451B2 (ja)
KR (2) KR101784533B1 (ja)
CN (2) CN102625786B (ja)
BR (1) BR112012003918B1 (ja)
MX (1) MX348107B (ja)
RU (1) RU2540569C2 (ja)
WO (1) WO2011024788A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026487A1 (ja) * 2010-08-24 2012-03-01 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2012108537A1 (ja) * 2011-02-10 2012-08-16 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
EP2548727A1 (de) * 2011-07-22 2013-01-23 Kuraray Europe GmbH Hochfeste Folienlaminate mit Schichten von weichmacherhaltigem Polyvinyl(n)acetal und weichmacherhaltigem Polyvinyl(iso)acetal
EP2548732A1 (de) 2011-07-22 2013-01-23 Kuraray Europe GmbH Folien aus weichmacherhaltigem Polyvinyl(iso)acetal
EP2548733A1 (de) 2011-07-22 2013-01-23 Kuraray Europe GmbH Folienlaminate mit Dämpfungseigenschaften enthaltend eine Teilschicht aus weichmacherhaltigem Polyvinyl(iso)acetal
JP2013107821A (ja) * 2010-09-30 2013-06-06 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
US20130337247A1 (en) * 2011-02-23 2013-12-19 Hirofumi Kitano Intermediate film for laminated glasses, and laminated glass
JP2014019838A (ja) * 2012-07-23 2014-02-03 Yamada Chem Co Ltd 熱線遮蔽材料
JP2014080466A (ja) * 2012-10-15 2014-05-08 Mitsubishi Materials Corp 熱線遮蔽組成物
CN103889917A (zh) * 2012-02-10 2014-06-25 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
JP2015116678A (ja) * 2013-12-17 2015-06-25 株式会社クラレ 積層体
JP2016108225A (ja) * 2014-11-10 2016-06-20 株式会社クラレ 積層体及び合わせガラス
WO2018025834A1 (ja) * 2016-08-05 2018-02-08 旭硝子株式会社 合わせガラス
JP2018123051A (ja) * 2013-06-14 2018-08-09 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
US10421254B2 (en) * 2012-09-28 2019-09-24 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
US10538063B2 (en) 2016-05-09 2020-01-21 Kuraray America, Inc. Multilayer interlayer and glass laminate
DE112019001777B4 (de) 2018-04-05 2023-01-19 AGC Inc. Laminiertes glas

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103641337B (zh) * 2009-08-24 2017-01-18 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
JP5685084B2 (ja) * 2009-09-29 2015-03-18 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
CN107253830B (zh) * 2011-02-23 2020-04-10 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
CN108483949B (zh) * 2012-07-31 2021-06-01 积水化学工业株式会社 夹层玻璃用中间膜、夹层玻璃及夹层玻璃的安装方法
KR20170083162A (ko) * 2013-09-30 2017-07-17 세키스이가가쿠 고교가부시키가이샤 접합 유리용 중간막 및 접합 유리
JP6882650B2 (ja) * 2013-09-30 2021-06-02 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
CN104553215B (zh) * 2013-10-16 2017-05-24 北京化工大学 透明阻燃隔热防紫外高分子复合贴膜及其制备方法和用途
RU2663009C2 (ru) * 2014-01-15 2018-08-01 Секисуй Кемикал Ко., Лтд. Межслойная пленка для многослойного стекла и многослойное стекло
US11524487B2 (en) * 2014-01-31 2022-12-13 Sekisui Chemical Co., Ltd. Laminated glass and method for fitting laminated glass
WO2015147302A1 (ja) 2014-03-28 2015-10-01 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
KR20170009850A (ko) * 2014-05-15 2017-01-25 아사히 가라스 가부시키가이샤 접합 유리용 중간막 및 접합 유리
WO2015179761A1 (en) * 2014-05-23 2015-11-26 Digihealth LLC Light emission reducing film for electronic devices
US10642087B2 (en) 2014-05-23 2020-05-05 Eyesafe, Llc Light emission reducing compounds for electronic devices
US10901125B2 (en) 2014-05-23 2021-01-26 Eyesafe, Llc Light emission reducing compounds for electronic devices
WO2016039477A1 (ja) 2014-09-12 2016-03-17 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
US10596785B2 (en) 2014-09-29 2020-03-24 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
CN106132891B (zh) * 2014-09-29 2021-05-04 积水化学工业株式会社 夹层玻璃用中间膜和夹层玻璃
KR20170131445A (ko) * 2015-03-27 2017-11-29 주식회사 쿠라레 합판 유리용 중간막
KR101586241B1 (ko) 2015-09-22 2016-01-19 주식회사 케이앤피나노 다기능성 접합유리 제조방법
JP6625727B2 (ja) * 2016-03-11 2019-12-25 日本板硝子株式会社 ウインドシールド
EP3438063B1 (en) * 2016-03-31 2022-11-02 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and glass window
KR101867811B1 (ko) * 2016-04-05 2018-06-18 (주)청원산업 차열컬러샌드 및 이를 포함하는 차열블록
KR20180086643A (ko) 2017-01-23 2018-08-01 주식회사 창의인터내셔날 양면 거울을 갖는 안전 접합유리 및 그 제조방법
GB201701272D0 (en) 2017-01-25 2017-03-08 Pilkington Group Ltd Process
CN109963822A (zh) 2017-02-22 2019-07-02 积水化学工业株式会社 绝热性片、夹层玻璃用中间膜和夹层玻璃
CN110234713A (zh) * 2017-03-31 2019-09-13 积水化学工业株式会社 热塑性树脂膜及含有玻璃板的叠层体
ES2889583T3 (es) * 2017-05-24 2022-01-12 Saint Gobain Lámina de vidrio compuesto y procedimiento para su producción
JP6744433B2 (ja) * 2017-09-29 2020-08-19 積水化学工業株式会社 ガラス構成体
US11126033B2 (en) 2018-11-28 2021-09-21 Eyesafe Inc. Backlight unit with emission modification
US11810532B2 (en) 2018-11-28 2023-11-07 Eyesafe Inc. Systems for monitoring and regulating harmful blue light exposure from digital devices
US11592701B2 (en) 2018-11-28 2023-02-28 Eyesafe Inc. Backlight unit with emission modification
US11347099B2 (en) 2018-11-28 2022-05-31 Eyesafe Inc. Light management filter and related software
CN109553951A (zh) * 2018-12-05 2019-04-02 广州市聚赛龙工程塑料股份有限公司 一种选择性屏蔽近红外线的聚碳酸酯材料及其制备方法和应用
US10971660B2 (en) 2019-08-09 2021-04-06 Eyesafe Inc. White LED light source and method of making same
KR102253130B1 (ko) 2019-11-13 2021-05-14 에스케이씨 주식회사 플라스틱 중간막, 이를 포함하는 적층체 및 이를 포함하는 이동수단
EP4174041A4 (en) * 2020-06-25 2024-07-03 Sekisui Chemical Co Ltd INTERLAYER FILM FOR LAMINATED GLASS AND LAMINATED GLASS
US20240002574A1 (en) * 2020-12-02 2024-01-04 Huntsman International Llc A thermoplastic polyurethane resin composition
KR102418761B1 (ko) 2021-03-08 2022-07-07 에스케이씨 주식회사 접합유리용 중간막, 광투과적층체 및 이동수단
EP4197780A1 (en) * 2021-12-14 2023-06-21 Kuraray Europe GmbH Laminated glass comprising functional polymer film with uv shielding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077360A (ja) 1996-08-30 1998-03-24 Nippon Shokubai Co Ltd 熱線遮蔽用組成物および熱線遮蔽材
JP2001039741A (ja) * 1999-07-27 2001-02-13 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス並びに合わせガラス構造体
WO2001025162A1 (en) 1999-10-01 2001-04-12 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass
WO2003018502A1 (fr) * 2001-07-26 2003-03-06 Sekisui Chemical Co., Ltd. Film intermediaire pour verre feuillete et verre feuillete

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737154B2 (en) * 1995-06-26 2004-05-18 3M Innovative Properties Company Multilayer polymer film with additional coatings or layers
JPH09316363A (ja) * 1996-05-31 1997-12-09 Nippon Kayaku Co Ltd 熱線遮断性樹脂組成物またはコーティングフィルム
AU2002357640A1 (en) * 2001-07-24 2003-04-22 Cree, Inc. Insulting gate algan/gan hemt
JP2004284839A (ja) * 2003-03-19 2004-10-14 Nippon Sheet Glass Co Ltd 合わせガラス
US20040239251A1 (en) * 2003-05-28 2004-12-02 D'haene Pol Plasma display panel filters
JP2005157011A (ja) * 2003-11-27 2005-06-16 Unitika Ltd 遮熱フィルム
CN1898175B (zh) * 2003-12-26 2011-08-24 积水化学工业株式会社 夹层玻璃用中间膜和夹层玻璃
JP5049593B2 (ja) * 2004-09-02 2012-10-17 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2006240893A (ja) * 2005-02-28 2006-09-14 Sekisui Chem Co Ltd 合わせガラス用着色中間膜および合わせガラス
US20070009714A1 (en) * 2005-05-11 2007-01-11 Lee David J Polymeric interlayers having a wedge profile
CN101193830A (zh) * 2005-06-13 2008-06-04 积水化学工业株式会社 夹层玻璃
JP2007045636A (ja) * 2005-08-05 2007-02-22 Sekisui Chem Co Ltd 合わせガラス用中間膜および合わせガラス
US20080057185A1 (en) * 2005-12-30 2008-03-06 Wall Jason S Solar control laminates
JP4848872B2 (ja) * 2006-07-19 2011-12-28 旭硝子株式会社 窓用合わせガラス
JP5449659B2 (ja) * 2007-09-04 2014-03-19 株式会社ブリヂストン 近赤外線遮蔽体、これを用いた積層体及びディスプレイ用光学フィルタ、並びにディスプレイ
JP4512161B2 (ja) * 2007-09-12 2010-07-28 積水化学工業株式会社 合わせガラス用中間膜
MX2010007972A (es) * 2008-01-23 2010-09-30 Sekisui Chemical Co Ltd Pelicula intercapas para vidrio laminado, y vidrio laminado.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077360A (ja) 1996-08-30 1998-03-24 Nippon Shokubai Co Ltd 熱線遮蔽用組成物および熱線遮蔽材
JP2001039741A (ja) * 1999-07-27 2001-02-13 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス並びに合わせガラス構造体
WO2001025162A1 (en) 1999-10-01 2001-04-12 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass and laminated glass
WO2003018502A1 (fr) * 2001-07-26 2003-03-06 Sekisui Chemical Co., Ltd. Film intermediaire pour verre feuillete et verre feuillete

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2471762A4

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026487A1 (ja) * 2010-08-24 2012-03-01 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JPWO2012026487A1 (ja) * 2010-08-24 2013-10-28 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP5220956B2 (ja) * 2010-08-24 2013-06-26 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
CN103080036A (zh) * 2010-08-24 2013-05-01 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
JP2013107821A (ja) * 2010-09-30 2013-06-06 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2016084273A (ja) * 2010-09-30 2016-05-19 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
WO2012108537A1 (ja) * 2011-02-10 2012-08-16 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP5340478B2 (ja) * 2011-02-10 2013-11-13 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2013216571A (ja) * 2011-02-10 2013-10-24 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
US20130337247A1 (en) * 2011-02-23 2013-12-19 Hirofumi Kitano Intermediate film for laminated glasses, and laminated glass
JP2013022963A (ja) * 2011-07-22 2013-02-04 Kuraray Europe Gmbh 可塑剤含有ポリビニル(n)アセタール及び可塑剤含有ポリビニル(イソ)アセタールの層を備える高強度シート積層体
EP2548728A1 (de) * 2011-07-22 2013-01-23 Kuraray Europe GmbH Folienlaminate mit Dämpfungseigenschaften enthaltend eine Teilschicht aus weichmacherhaltigem Polyvinyl(iso)acetal
EP2548731A1 (de) 2011-07-22 2013-01-23 Kuraray Europe GmbH Hochfeste Folienlaminate mit Schichten von weichmacherhaltigem Polyvinyl(n)acetal und weichmacherhaltigem Polyvinyl(iso)acetal
EP2548733A1 (de) 2011-07-22 2013-01-23 Kuraray Europe GmbH Folienlaminate mit Dämpfungseigenschaften enthaltend eine Teilschicht aus weichmacherhaltigem Polyvinyl(iso)acetal
US8597792B2 (en) 2011-07-22 2013-12-03 Kuraray Europe Gmbh High-strength film laminates having layers of plasticizer-containing polyvinyl (N)acetal and plasticizer-containing polyvinyl (ISO)acetal
EP2548732A1 (de) 2011-07-22 2013-01-23 Kuraray Europe GmbH Folien aus weichmacherhaltigem Polyvinyl(iso)acetal
EP2548727A1 (de) * 2011-07-22 2013-01-23 Kuraray Europe GmbH Hochfeste Folienlaminate mit Schichten von weichmacherhaltigem Polyvinyl(n)acetal und weichmacherhaltigem Polyvinyl(iso)acetal
US8920930B2 (en) 2011-07-22 2014-12-30 Kuraray Europe Gmbh Film laminates having damping properties containing a sub-layer made of plasticizer-containing polyvinyl (iso)acetal
CN110077061A (zh) * 2012-02-10 2019-08-02 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
CN103889917A (zh) * 2012-02-10 2014-06-25 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
JP2014019838A (ja) * 2012-07-23 2014-02-03 Yamada Chem Co Ltd 熱線遮蔽材料
US10981360B2 (en) 2012-09-28 2021-04-20 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
US10421254B2 (en) * 2012-09-28 2019-09-24 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, and laminated glass
JP2014080466A (ja) * 2012-10-15 2014-05-08 Mitsubishi Materials Corp 熱線遮蔽組成物
JP2018123051A (ja) * 2013-06-14 2018-08-09 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2015116678A (ja) * 2013-12-17 2015-06-25 株式会社クラレ 積層体
JP2016108225A (ja) * 2014-11-10 2016-06-20 株式会社クラレ 積層体及び合わせガラス
JP2016108221A (ja) * 2014-11-10 2016-06-20 株式会社クラレ 合わせガラス用中間膜および合わせガラス
JP2016108220A (ja) * 2014-11-10 2016-06-20 株式会社クラレ 合わせガラス用中間膜および合わせガラス
US11155062B2 (en) 2014-11-10 2021-10-26 Kuraray Co., Ltd. Interlayer film for laminated glass and laminated glass
US10538063B2 (en) 2016-05-09 2020-01-21 Kuraray America, Inc. Multilayer interlayer and glass laminate
JPWO2018025834A1 (ja) * 2016-08-05 2019-06-13 Agc株式会社 合わせガラス
WO2018025834A1 (ja) * 2016-08-05 2018-02-08 旭硝子株式会社 合わせガラス
DE112019001777B4 (de) 2018-04-05 2023-01-19 AGC Inc. Laminiertes glas
US11999136B2 (en) 2018-04-05 2024-06-04 AGC Inc. Laminated glass

Also Published As

Publication number Publication date
CN104803613B (zh) 2018-05-08
RU2540569C2 (ru) 2015-02-10
KR101784533B1 (ko) 2017-10-11
KR20120066007A (ko) 2012-06-21
EP2471762B1 (en) 2016-04-13
CN102625786A (zh) 2012-08-01
EP3009413A1 (en) 2016-04-20
BR112012003918B1 (pt) 2020-12-29
MX2012001804A (es) 2012-05-08
US20120162752A1 (en) 2012-06-28
JP2012106931A (ja) 2012-06-07
CN102625786B (zh) 2015-04-15
CN104803613A (zh) 2015-07-29
JP5976143B2 (ja) 2016-08-23
JP6374914B2 (ja) 2018-08-15
JPWO2011024788A1 (ja) 2013-01-31
JP2016193826A (ja) 2016-11-17
KR101940438B1 (ko) 2019-01-18
MX348107B (es) 2017-05-29
EP2471762A4 (en) 2013-02-13
JP4947451B2 (ja) 2012-06-06
RU2012111220A (ru) 2013-10-10
BR112012003918A2 (pt) 2016-03-29
KR20170113712A (ko) 2017-10-12
JP2015171989A (ja) 2015-10-01
JP5695585B2 (ja) 2015-04-08
EP2471762A1 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP6374914B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP6434937B2 (ja) 合わせガラス
JP5220956B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP6255520B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP5662957B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP5416839B2 (ja) 合わせガラス用中間膜及び合わせガラス
EP2650266B1 (en) Interlayer for laminated glass, and laminated glass
JP5685084B2 (ja) 合わせガラス用中間膜及び合わせガラス
EP2674405A1 (en) Interlayer for laminated glass and laminated glass
WO2015046584A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP2012131659A (ja) 合わせガラス及び合わせガラスの取り付け方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010533376

Country of ref document: JP

Ref document number: 201080037243.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811838

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/001804

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010811838

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127004676

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1703/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13391732

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012111220

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012003918

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012003918

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120223