WO2016152886A1 - ピラゾール誘導体の製造方法 - Google Patents

ピラゾール誘導体の製造方法 Download PDF

Info

Publication number
WO2016152886A1
WO2016152886A1 PCT/JP2016/059101 JP2016059101W WO2016152886A1 WO 2016152886 A1 WO2016152886 A1 WO 2016152886A1 JP 2016059101 W JP2016059101 W JP 2016059101W WO 2016152886 A1 WO2016152886 A1 WO 2016152886A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
alkyl group
atom
compound
Prior art date
Application number
PCT/JP2016/059101
Other languages
English (en)
French (fr)
Inventor
雄一郎 石橋
洋輔 おおち
徳顕 三宅
祐輔 山崎
翔太 清水
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to ES16768789T priority Critical patent/ES2899825T3/es
Priority to EP19158520.7A priority patent/EP3521277B1/en
Priority to JP2017508374A priority patent/JP6658736B2/ja
Priority to EP16768789.6A priority patent/EP3275868B1/en
Priority to US15/560,934 priority patent/US10239841B2/en
Priority to KR1020177019062A priority patent/KR101982952B1/ko
Publication of WO2016152886A1 publication Critical patent/WO2016152886A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/02Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C225/14Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/30Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having nitrogen atoms of imino groups quaternised
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/255Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/12Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
    • C07D295/125Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a novel method for producing pyrazole derivatives such as pyrazolyl ketone derivatives and pyrazole-4-carboxylic acid derivatives useful as intermediates for pharmaceuticals and agricultural chemicals, and novel compounds useful as intermediates for the production methods.
  • pyrazole derivatives such as pyrazolyl ketone derivatives and pyrazole-4-carboxylic acid derivatives useful as intermediates for pharmaceuticals and agricultural chemicals, and novel compounds useful as intermediates for the production methods.
  • 3-Difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid and 3-trifluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid are useful intermediates in the preparation of pyrazolylcarboxanilide fungicides.
  • Body see, for example, Patent Documents 1 and 2).
  • a method for producing these intermediates a plurality of methods are known (for example, see Non-Patent Document 1).
  • a method for obtaining a carboxylic acid by converting a substituent at the 4-position of the pyrazole ring into a carboxyl group a method of oxidizing an aldehyde to a carboxylic acid is known (for example, see Patent Document 3).
  • An object of the present invention is to provide a novel and industrially useful production method of a pyrazole derivative, a novel compound that is an intermediate of the production method, and a production method of the novel compound.
  • the present invention is as follows:
  • a method for producing a pyrazole derivative represented by the following formula (6) comprising reacting a compound represented by the following formula (5) with an oxidizing agent.
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • R 3 represents a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group.
  • a pyrazole derivative represented by the following formula (6) characterized in that a compound represented by the following formula (5) and an oxidizing agent are reacted under basic conditions and then reacted with an acid. Production method.
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • R 3 represents a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group.
  • a method for producing a compound represented by the following formula (6a), comprising reacting a compound represented by the following formula (5) with an oxidizing agent in the presence of a base.
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • R 3 represents a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group
  • M represents a counter cation of carboxylic acid.
  • a compound represented by the following formula (5) is obtained by reacting a compound represented by the following formula (3) with a compound represented by the following formula (4a) or (4b): [1 ] To [4].
  • R A represents OR 4 , NR 5 R 6 or SR 4 (wherein R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other)
  • R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other
  • Each represents a hydrogen atom or a C1-8 alkyl group, or R 5 and R 6 are bonded together to form a 5-6 membered heterocycle together with the nitrogen atom to which they are attached.
  • Y 1 represents an oxygen atom or N + R 7 R 8 ⁇ A ⁇ (wherein R 7 and R 8 independently of each other represent a C1-8 alkyl group, or R 7 and R 8 are And may be combined with each other to form a 5- to 6-membered heterocycle together with the nitrogen atom to which they are bonded, and A ⁇ represents a counter anion.
  • R 9 and R 10 are each independently a hydrogen atom, a C1-12 alkyl group, a C1-12 alkyl group having a substituent, a C3-8 cycloalkyl group, or a C3-8 cycloalkyl having a substituent.
  • R A represents OR 4 , NR 5 R 6 or SR 4 (wherein R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other)
  • R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other
  • Each represents a hydrogen atom or a C1-8 alkyl group, or R 5 and R 6 are bonded together to form a 5-6 membered heterocycle together with the nitrogen atom to which they are attached.
  • Y 1 represents an oxygen atom or N + R 7 R 8 ⁇ A ⁇ (wherein R 7 and R 8 independently of each other represent a C1-8 alkyl group, or R 7 and R 8 are And may be combined with each other to form a 5- to 6-membered heterocycle together with the nitrogen atom to which they are bonded, and A ⁇ represents a counter anion.
  • the wavy line indicates that the configuration regarding the double bond between Z 1 and R A may be E or Z. ].
  • the substituents of the C1-12 alkyl group having a substituent in R 9 and R 10 are independently of each other, —X A , —OR B , —SR B , —N (R B ) (R C ), —Si (R B ) (R C ) (R D ), —COOR B , — (C ⁇ O) R B , —CN and —CON (R B ) (R C ) (Wherein R B , R C and R D each independently represents a hydrogen atom or a C1-8 alkyl group, and X A represents a fluorine atom or a chlorine atom), [5] or [5A] The manufacturing method as described.
  • a compound represented by the following formula (5) is obtained by reacting a compound represented by the following formula (3b) with a compound represented by the following formula (4a) or (4b).
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • R 3 represents a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group
  • R A represents OR 4 , NR 5 R 6 or SR 4 (wherein R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other)
  • Each represents a hydrogen atom or a C1-8 alkyl group, or R 5 and R 6 are bonded together to form a 5-6 membered heterocycle together with the nitrogen atom to which they are attached.
  • R 9 and R 10 are each independently a hydrogen atom, a C1-12 alkyl group, a C1-12 alkyl group having a substituent, a C3-8 cycloalkyl group, or a C3-8 cycloalkyl having a substituent.
  • a compound represented by the following formula (5) is obtained by reacting a compound represented by the following formula (3b) with a compound represented by the following formula (4a).
  • the manufacturing method of the pyrazole derivative represented by the following Formula (6) characterized by making the compound represented and an oxidizing agent react.
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • R 3 represents a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group
  • R A represents OR 4 , NR 5 R 6 or SR 4 (wherein R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other)
  • Each represents a hydrogen atom or a C1-8 alkyl group, or R 5 and R 6 are bonded together to form a 5-6 membered heterocycle together with the nitrogen atom to which they are attached. Which may be formed)
  • the wavy line indicates that the configuration regarding the double bond between Z 1 and R A may be E or Z. ].
  • a compound represented by the following formula (5) is obtained by reacting a compound represented by the following formula (3b) with a compound represented by the following formula (4a) or (4b): A method for producing a pyrazole derivative represented by the following formula (6), wherein the compound represented by (5) and an oxidizing agent are reacted under basic conditions and then reacted with an acid.
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • R 3 represents a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group
  • R A represents OR 4 , NR 5 R 6 or SR 4 (wherein R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other)
  • Each represents a hydrogen atom or a C1-8 alkyl group, or R 5 and R 6 are bonded together to form a 5-6 membered heterocycle together with the nitrogen atom to which they are attached.
  • R 9 and R 10 are each independently a hydrogen atom, a C1-12 alkyl group, a C1-12 alkyl group having a substituent, a C3-8 cycloalkyl group, or a C3-8 cycloalkyl having a substituent.
  • the substituents of the C1-12 alkyl group having a substituent in R 9 and R 10 are independently of each other, —X A , —OR B , —SR B , —N (R B ) (R C ), —Si (R B ) (R C ) (R D ), —COOR B , — (C ⁇ O) R B , —CN and —CON (R B ) (R C ) (Wherein R B , R C and R D each independently represents a hydrogen atom or a C1-8 alkyl group, and X A represents a fluorine atom or a chlorine atom), [10] or [11] The manufacturing method as described in.
  • R 7 and R 8 independently of one another represent a C 1-8 alkyl group, or R 7 and R 8 are bonded together and together with the nitrogen atom to which they are bonded 5 to 5 A 6-membered heterocycle may be formed, A ⁇ represents a counter anion.
  • a compound represented by the following formula (3) is obtained by reacting a compound represented by the following formula (1) with a compound represented by the following formula (2): [5] to [9 ] The manufacturing method in any one of.
  • R 1 , R 2 , X 1 , X 2 and Z 1 are synonymous with [1]
  • R A , Y 1 and the wavy line are synonymous with [5]
  • X 3 represents a halogen atom.
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • R 3 represents a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group
  • R A represents OR 4 , NR 5 R 6 or SR 4 (wherein R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other)
  • Each represents a hydrogen atom or a C1-8 alkyl group, or R 5 and R 6 are bonded together to form a 5-6 membered heterocycle together with the nitrogen atom to which they are attached.
  • Y 1 represents an oxygen atom or N + R 7 R 8 ⁇ A ⁇ (wherein R 7 and R 8 independently of each other represent a C1-8 alkyl group, or R 7 and R 8 are And may be combined with each other to form a 5- to 6-membered heterocycle together with the nitrogen atom to which they are bonded, and A ⁇ represents a counter anion.
  • R 9 and R 10 are each independently a hydrogen atom, a C1-12 alkyl group, a C1-12 alkyl group having a substituent, a C3-8 cycloalkyl group, or a C3-8 cycloalkyl having a substituent.
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group
  • R A represents OR 4 , NR 5 R 6 or SR 4 (wherein R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other)
  • R 7 and R 8 independently of one another represent a C 1-8 alkyl group, or R 7 and R 8 are bonded together and together with the nitrogen atom to which they are bonded 5 to 5
  • a 6-membered heterocycle may be formed
  • a ⁇ represents a counter anion
  • the wavy line indicates that the configuration regarding the double bond between Z 1 and R A may be E or Z. ].
  • a method for producing a compound represented by the following formula (3) comprising reacting a compound represented by the following formula (1) and a compound represented by the following formula (2):
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group
  • R A represents OR 4 , NR 5 R 6 or SR 4 (wherein R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other)
  • Y 1 represents an oxygen atom or N + R 7 R 8 ⁇ A ⁇ (wherein R 7 and R 8 independently of each other represent a C1-8 alkyl group, or R 7 and R 8 are And may be combined with each other to form a 5- to 6-membered heterocycle together with the nitrogen atom to which they are bonded, and A ⁇ represents a counter anion.
  • X 3 represents a halogen atom, The wavy line indicates that the configuration regarding the double bond between Z 1 and R A may be E or Z. ].
  • R 12 represents a C1-8 alkyl group
  • R 13 represents a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group
  • X 11 and X 12 each independently represent a fluorine atom or a chlorine atom
  • a compound in which R 12 is a methyl group, R 13 is a nitrogen protecting group, and X 11 and X 12 are fluorine atoms is excluded.
  • R 12 represents a C1-8 alkyl group
  • R 15 and R 16 independently of each other represent a hydrogen atom or a C1-8 alkyl group, or R 15 and R 16 are bonded together and together with the nitrogen atom to which they are bonded.
  • X 11 and X 12 each independently represent a fluorine atom or a chlorine atom
  • Y 11 represents an oxygen atom or N + R 17 R 18 ⁇ A ⁇
  • R 17 and R 18 independently of each other represent a C1-8 alkyl group, or R 17 and R 18 are And may be combined with each other to form a 5- to 6-membered heterocycle together with the nitrogen atom to which they are bonded
  • a ⁇ represents a counter anion.
  • the wavy line indicates that the configuration regarding the double bond of NR 15 R 16 may be E or Z. ].
  • R 14 represents a C1-2 alkyl group
  • the wavy line indicates that the configuration regarding the double bond of OR 14 may be E or Z. ].
  • a pyrazole derivative useful as an intermediate for pharmaceuticals and agricultural chemicals can be produced by an industrially advantageous and economical method. That is, the substrate and reaction materials used in the production method of the present invention are selected from those that are easy to handle and obtain, and no special reaction equipment or reaction conditions are used in each reaction. Suitable as In addition, the reaction in this production method proceeds regioselectively with respect to two nitrogen atoms of the pyrazole ring, and the target derivative can be produced with high yield and high selectivity. It is also an excellent method from an economical point of view. Furthermore, this invention provides the novel intermediate usefully used in this manufacturing method.
  • the “C1-8 alkyl group” means a linear or branched alkyl group having 1 to 8 carbon atoms, and includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Examples include isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group and the like.
  • the “C1-12 alkyl group” means a linear or branched alkyl group having 1 to 12 carbon atoms, and includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Examples include isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group and the like.
  • the “C1-8 haloalkyl group” means a group in which one or more hydrogen atoms of the alkyl group are substituted with a halogen atom.
  • the halogen atom include a bromine atom, an iodine atom, a fluorine atom, and a chlorine atom.
  • Examples of the C1-8 haloalkyl group include bromomethyl group, 2-bromoethyl group, 3-bromopropyl group, 4-bromobutyl group, 5-bromopentyl group, 6-bromohexyl group, iodomethyl group, 2-iodoethyl group, 3 -Iodopropyl group, 4-iodobutyl group, 5-iodopentyl group, 6-iodohexyl group, fluoromethyl group, 2-fluoroethyl group, 3-fluoropropyl group, 4-fluorobutyl group, 5-fluoropentyl group, Examples include 6-fluorohexyl group, tribromomethyl group, trichloromethyl group, trifluoromethyl group and the like.
  • C3-8 cycloalkyl group means a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • the “substituent” is a known substituent and is selected from groups that do not participate in the reaction in the production method of the present invention.
  • “C3-C8 cycloalkyl group having a substituent” means a group in which one or more hydrogen atoms of the cycloalkyl group are substituted with a substituent.
  • the substituent is selected from groups not involved in the reaction in the production method of the present invention, and includes a C1-8 alkyl group, a C1-8 alkoxy group, an aryl group, and the like.
  • the carbon number of the C3-8 cycloalkyl group having a substituent is 3-8 including the carbon number of the substituent.
  • Examples of the C3-8 cycloalkyl group having a substituent include a 2-methylcyclopropyl group, a 1-methylcyclopentyl group, and a 4-methylcyclohexyl group.
  • C1-8 alkoxy group means a group RO— (wherein R is a C1-8 alkyl group), and includes a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutyloxy group. Group, s-butyloxy group, t-butyloxy group, hexyloxy group and the like.
  • C3-8 cycloalkoxy group means a group RO— (wherein R is a C3-8 cycloalkyl group), and includes a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group. Etc. can be illustrated.
  • Aryl group means an aromatic hydrocarbon group having 6 to 18 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and an anthryl group.
  • the “aryl group having a substituent” means a group in which one or more hydrogen atoms of the aryl group are substituted with a substituent.
  • the substituent is selected from groups not involved in the reaction in the production method of the present invention, and is a C1-8 alkyl group, a C1-8 alkoxy group, a C3-8 cycloalkyl group, a C3-8 cycloalkoxy group. And halogen atoms.
  • Examples of the aryl group having a substituent include 2-methylphenyl group (o-tolyl group), 3-methylphenyl group (m-tolyl group), 4-methylphenyl group (p-tolyl group), 2,4- Examples thereof include a di-t-butylphenyl group, a 4-methoxyphenyl group, and a 4-chlorophenyl group.
  • Heteroaryl group means a 3- to 10-membered monovalent aromatic heterocyclic group containing at least one heteroatom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom.
  • heteroaryl group having a substituent means a group in which one or more hydrogen atoms of the heteroaryl group are substituted with a substituent.
  • the substituent is selected from groups not involved in the reaction in the production method of the present invention, and is a C1-8 alkyl group, a C1-8 alkoxy group, a C3-8 cycloalkyl group, a C3-8 cycloalkoxy group. , Halogen atom, aryl group and the like.
  • the substituent in the “C1-12 alkyl group having a substituent” is selected from groups that do not participate in the reaction in the production method of the present invention, and is —X A , —OR B , —SR B , —N (R B ) (R C ), —Si (R B ) (R C ) (R D ), —COOR B , — (C ⁇ O) R B , —CN and —CON (R B ) (R C ) (Wherein, R B , R C and R D each independently represents a hydrogen atom or a C1-8 alkyl group, and X A represents a fluorine atom or a chlorine atom). .
  • R 5 and R 6 , and R 7 and R 8 may be bonded together to form a “5- to 6-membered heterocycle” formed together with the nitrogen atom to which they are bonded, 5- to 6-membered monovalent saturated or unsaturated complex containing one nitrogen atom and optionally at least one additional heteroatom selected from the group consisting of nitrogen, oxygen and sulfur atoms
  • 5- to 6-membered heterocycles include pyrrole, pyrroline, pyrrolidine, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, pyrazolidine, pyridine, piperidine, pyrazine, piperazine, pyrimidine, pyridazine, thiazole, Thiazoline, thiazolidine, isothiazole, isothiazoline, isothiazolidine, oxazole, oxazoline, oxazolid , Isoxazole, isoxazoline, isoxazolidine,
  • C3-8 cycloalkane which may be formed by combining R 9 and R 10 together with the carbon atom to which they are bonded, means a cycloalkane having 3 to 8 carbon atoms. , Cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclooctane and the like.
  • the “C3-C8 cycloalkane having a substituent” which R 9 and R 10 may be bonded to each other and formed together with the carbon atom to which they are bonded is the hydrogen atom of the cycloalkane.
  • One or more means a group substituted with a substituent.
  • the substituent is selected from groups not involved in the reaction in the production method of the present invention, and includes a C1-8 alkyl group, a C1-8 alkoxy group, an aryl group, and the like.
  • the carbon number of the C3-8 cycloalkane having a substituent is 3-8 including the carbon number of the substituent. Examples of the C3-8 cycloalkane having a substituent include 2-methylcyclopropane, 1-methylcyclopentane, 4-methylcyclohexane and the like.
  • the “3- to 8-membered heterocycle” that R 9 and R 10 may be bonded to each other and formed together with the carbon atom to which they are bonded includes at least one nitrogen atom, Means a 3-8 membered monovalent saturated or unsaturated heterocycle optionally containing at least one additional heteroatom selected from the group consisting of nitrogen, oxygen and sulfur atoms;
  • member heterocycles include aziridine, azetidine, pyrrole, pyrroline, pyrrolidine, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, pyrazolidine, pyridine, piperidine, pyrazine, piperazine, pyrimidine, pyridazine, thiazole, thiazoline, thiazolidine, Isothiazole, isothiazoline, isothiazolidine, oxazole, oxazoline, oxazoly Emissions, isoxazole, isoxazo
  • the “3- to 8-membered heterocycle having a substituent” that R 9 and R 10 may be bonded to each other and formed together with the carbon atom to which they are bonded is the above-mentioned 3 to 8 member Means a group in which one or more of the hydrogen atoms of the heterocyclic ring are substituted with a substituent.
  • the substituent is selected from groups not involved in the reaction in the production method of the present invention, and is a C1-8 alkyl group, a C1-8 alkoxy group, a C3-8 cycloalkyl group, a C3-8 cycloalkoxy group. , Halogen atom, aryl group and the like.
  • Halogen atom means an iodine atom, a bromine atom, a chlorine atom or a fluorine atom.
  • the “nitrogen protecting group” is not eliminated by each reaction in the production method of the present invention, and other chemical methods (for example, hydrogenolysis, hydrolysis, electrolysis, light, generally used in organic synthetic chemistry). It means a protecting group which is eliminated by a chemical method such as decomposition to become NH.
  • protecting groups are selected from known or well-known protecting groups generally known as amino protecting groups. For example, a t-butyldiphenylsilyl group, t-butyldiphenylsilyl group known to those skilled in the art from reference books in organic synthetic chemistry such as “Protective ⁇ Groups in Organic Synthesis ”(TWGreene et.al, John Wiley & Sons, inc.).
  • Alkyl carbamate protecting groups such as butyldimethylsilyl group, methoxycarbonyl group, ethoxycarbonyl group, t-butoxycarbonyl (Boc) group; arylalkyl carbamate protecting groups such as 9-fluorenylmethyloxycarbonyl (Fmoc) group; Examples thereof include arylsulfonamide protecting groups such as benzenesulfonyl group and p-toluenesulfonyl (Ts) group; or amide protecting groups such as formamide group, acetamide group and trifluoroacetamide (TFA) group.
  • Counter anion includes a group consisting of halide ion, fluorohydrogen anion ((HF) n F ⁇ , where n represents an integer), halogen oxoacid ion, inorganic acid ion and organic acid ion.
  • An anion selected from is preferred.
  • halide ions include fluoride ions (F ⁇ ), chloride ions (Cl ⁇ ), bromide ions (Br ⁇ ), and iodide ions (I ⁇ ).
  • halogen oxoacid ions examples include hypochlorite ion (ClO ⁇ ), chlorite ion (ClO 2 ⁇ ), chlorate ion (ClO 3 ⁇ ), perchlorate ion (ClO 4 ⁇ ), hypobromite Acid ion (BrO ⁇ ), bromate ion (BrO 2 ⁇ ), bromate ion (BrO 3 ⁇ ), perbromate ion (BrO 4 ⁇ ), hypoiodite ion (IO ⁇ ), iodate ion (IO 2 ⁇ ), iodate ion (IO 3 ⁇ ), periodate ion (IO 4 ⁇ ) and the like.
  • inorganic acid ions include hydroxide ion, carbonate ion, hydrogen carbonate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, nitrate ion, borate ion, tetrafluoro Examples thereof include borate ions.
  • organic acid ions include acetate ion, trifluoroacetate ion, trifluoromethanesulfonate ion, tetraphenylborate ion, and the like.
  • counter cation include Na + , K + , 1 / 2Ca 2+ , NH 4 + and the like.
  • each step may be performed independently, or part or all of them may be performed continuously. May be.
  • the next step may be performed after stopping the reaction for each step, or the next step may be performed without stopping the reaction.
  • finish of a process the next process may be performed and you may perform the next process, without refine
  • reaction of a some process may be performed by the same reaction container, and may be performed by a different reaction container.
  • Compound (n) means a compound represented by the formula (n).
  • R 1 represents a hydrogen atom, a halogen atom or a C1-8 haloalkyl group.
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • R 3 represents a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group.
  • R A represents OR 4 , NR 5 R 6 or SR 4 (wherein R 4 represents a C1-8 alkyl group, aryl group or aryl group having a substituent, and R 5 and R 6 are independent of each other) Each represents a hydrogen atom or a C1-8 alkyl group, or R 5 and R 6 are bonded together to form a 5-6 membered heterocycle together with the nitrogen atom to which they are attached. May be formed).
  • X 1 and X 2 each independently represent a fluorine atom or a chlorine atom.
  • Z 1 represents a hydrogen atom or a C1-8 alkyl group.
  • Y 1 represents an oxygen atom or N + R 7 R 8 ⁇ A ⁇ (wherein R 7 and R 8 independently of each other represent a C1-8 alkyl group, or R 7 and R 8 are And may be combined with each other to form a 5- to 6-membered heterocycle together with the nitrogen atom to which they are bonded, and A ⁇ represents a counter anion.
  • R 9 and R 10 are each independently a hydrogen atom, a C1-12 alkyl group, a C1-12 alkyl group having a substituent, a C3-8 cycloalkyl group, or a C3-8 cycloalkyl having a substituent.
  • X 3 represents a halogen atom.
  • the wavy line in the formula (2) and (3) show that conformation about the double bond of Z 1 and R A can be a Z be E.
  • Step 1 Compound (3) can be produced by reacting compound (1) with compound (2).
  • step 1 the step of producing compound (3) from compound (1) is referred to as step 1.
  • X 1 and X 2 are each independently a fluorine atom or a chlorine atom, preferably a fluorine atom.
  • X 3 is a halogen atom, preferably a fluorine atom or a chlorine atom.
  • R 1 is a hydrogen atom, a halogen atom or a C1-8 haloalkyl group, preferably a hydrogen atom or a halogen atom, more preferably a hydrogen atom or a fluorine atom, and most preferably a hydrogen atom.
  • R 1 is a hydrogen atom
  • both X 1 and X 2 are fluorine atoms.
  • Y 1 is an oxygen atom or N + R 7 R 8 ⁇ A ⁇ .
  • the compound (1) in which Y 1 is an oxygen atom is a compound represented by the following formula (1a).
  • the compound (1) in which Y 1 is N + R 7 R 8 ⁇ A ⁇ is a compound represented by the following formula (1b).
  • R 7 and R 8 are, independently of each other, a C1-8 alkyl group, or R 7 and R 8 are bonded to each other and together with the nitrogen atom to which they are bonded, 5 to A 6-membered heterocycle may be formed.
  • R 7 and R 8 are preferably, independently of one another, a methyl group or an ethyl group, or R 7 and R 8 are preferably bonded together and together with the nitrogen atom to which they are bonded.
  • a ⁇ is a counter anion, preferably a halide ion such as fluoride ion or chloride ion, or tetrafluoroborate ion (BF 4 ⁇ ).
  • Compound (1a) in which Y 1 of compound (1) is an oxygen atom is commercially available.
  • 2,2-difluoroacetic acid chloride can be easily obtained as a commercial product.
  • Compound (1a) is a commercially available product of the corresponding carboxylic acid (CR 1 X 1 X 2 COOH) according to a known method (for example, Journal of Fluorine Chemistry 23 (1983) 383-388, Japanese Patent No. 3632243). Can be synthesized.
  • the compound (1b) in which Y 1 of the compound (1) is N + R 7 R 8 ⁇ A ⁇ is a commercially available product of a corresponding amine (CR 1 X 1 X 2 CX 3 2 NR 7 R 8 ) and an acid ( The acid can be produced from a counter anion (A ⁇ ) source according to a known method (for example, International Publication No. 2008-022777).
  • a ⁇ counter anion
  • the compound (1) When the compound (1) is produced by a known method, it may be used as a starting compound in Step 1 after performing post-treatment after the reaction, or may be used after further purification and purification.
  • the compound (1) may be decomposed under the influence of water, air, heat or the like, it is preferable to use it for the reaction of the step 1 without performing the purification step. Since compound (1) is cheaper and can be obtained in a short process, compound (1a) in which Y 1 of compound (1) is an oxygen atom is preferred.
  • Z 1 is a hydrogen atom or a C1-8 alkyl group, preferably a hydrogen atom or a methyl group.
  • R 2 represents a C1-8 alkyl group, a C3-8 cycloalkyl group, a C3-8 cycloalkyl group having a substituent, an aryl group, an aryl group having a substituent, a heteroaryl group, or a heteroaryl having a substituent.
  • R A is OR 4 , NR 5 R 6 or SR 4 .
  • the compound (2) in which R A is OR 4 is a compound represented by the following formula (2a).
  • the compound (2) in which R A is NR 5 R 6 is a compound represented by the following formula (2b).
  • R 4 is a C1-8 alkyl group, aryl group or aryl group having a substituent, preferably a C1-8 alkyl group or aryl group, more preferably a methyl group, an ethyl group or a phenyl group. is there.
  • R 5 and R 6 are, independently of one another, a hydrogen atom or a C1-8 alkyl group, or R 5 and R 6 are bonded together and together with the nitrogen atom to which they are bonded. May form a 5- to 6-membered heterocycle.
  • R 5 and R 6 are preferably, independently of one another, a hydrogen atom, a methyl group or an ethyl group, or R 5 and R 6 are preferably bonded to each other and the nitrogen to which they are bonded. Together with the atoms form pyrrolidine, piperidine or morpholine.
  • the wavy line indicates that the configuration regarding the double bond between Z 1 and R A may be E or Z.
  • the E / Z may or may not change before and after the reaction in Step 1.
  • Compound (2) is commercially available, for example, 4-methoxy-3-but-2-one (example of compound (2a)) and 1- (dimethylamino) -1-buten-3-one (compound (2b) In the example of), a commercially available product can be easily obtained. Moreover, it can manufacture according to a well-known method from a commercially available reagent. For example, compound (2a) can be produced by the method described in US 20080287421 A1, and compound (2b) can be produced by the method described in CN 101781222 A. When the compound (2) is produced by a known method, it may be used as a starting compound in the step (2) after post-treatment after the reaction, or may be used after further purification and purification.
  • step 1 there is no particular limitation on the order of addition of compound (1) and compound (2).
  • the amount of compound (2) to be used is not particularly limited, and from the viewpoint of economy, it is preferably 0.8 to 3.0 mol, more preferably 0.9 to 2.0 mol, relative to 1 mol of compound (1). 0.9 to 1.8 mol is more preferable.
  • Bases include metal hydrides such as sodium hydride, potassium hydride, calcium hydride; imidazole, pyridine, 2,6-lutidine, s-collidine, N-methylpyrrolidine, N-methylpiperidine, ethyldiisopropylamine, triethylamine And organic amines such as tri (C1-4 alkyl) amine including tributylamine; inorganic salts such as sodium hydroxide, potassium hydroxide, potassium carbonate, sodium bicarbonate, sodium fluoride, potassium fluoride, and the like.
  • the base an organic amine is preferable because the yield is improved, and pyridine and triethylamine are more preferable.
  • the amount of the base used is preferably 0.3 to 4.0 mol, more preferably 0.3 to 2.0 mol, still more preferably 0.5 to 1.5 mol, per 1 mol of compound (1). .
  • an acidic impurity impurities at the time of manufacture of a compound (1) etc.
  • the amount of the base used is preferably 0.3 to 5.0 mol, more preferably 0.3 to 3.0 mol, and more preferably 0.5 to 1.5 mol with respect to 1 mol of compound (1). Is more preferable.
  • the reaction between the compound (1) and the compound (2) may be performed in the presence of a solvent.
  • the solvent is preferably selected from solvents that are inert to the reaction, and is appropriately selected according to the reaction temperature, the solubility of the substrate, and the like.
  • ether solvents such as diethyl ether, tetrahydrofuran and dioxane
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • carboxylic acid solvents such as acetic acid and propionic acid, methyl acetate, ethyl acetate, butyl acetate and ethyl propionate
  • Ester solvents such as benzene, toluene, xylene, mesitylene and other aromatic hydrocarbon solvents, monochlorobenzene, dichlorobenzene and other aromatic halogen solvents, hexane, heptane, octane,
  • the solvent is preferably an aromatic hydrocarbon solvent, an aliphatic halogen solvent or a nitrile solvent, more preferably toluene, methylene chloride, chloroform or acetonitrile, methylene chloride, chloroform. Alternatively, it is most preferable to use acetonitrile.
  • the amount of the solvent used is not particularly limited and is preferably 1 to 50 times (weight basis), more preferably 2 to 10 times (weight basis) with respect to compound (1).
  • the lower limit of the reaction temperature in Step 1 is preferably about ⁇ 80 ° C., and the upper limit is suitably adjusted as the boiling point of the solvent. From the viewpoint of reaction rate and reaction efficiency, ⁇ 30 ° C. to 120 ° C. is preferable, and ⁇ 30 ° C. to 80 ° C is more preferable, and -30 ° C to 50 ° C is still more preferable.
  • the reaction time is appropriately set according to the amount and type of the substrate and the solvent, the reaction temperature, etc., and from the viewpoint of reaction rate and reaction efficiency, 5 minutes to 24 hours are preferable, 10 minutes to 6 hours are more preferable, 30 More preferably, min to 2 hours.
  • the reaction pressure is appropriately set as necessary, and may be any of pressurization, reduced pressure, and atmospheric pressure, and atmospheric pressure is preferable.
  • the reaction atmosphere can be appropriately selected as necessary, but is preferably an inert gas atmosphere such as nitrogen or argon in order to prevent decomposition of the compound (1).
  • reaction crude product produced by the reaction between the compound (1) and the compound (2) may be used for the next reaction as it is, or a by-product (for example, hydrogen halide, halogenated) contained in the reaction crude product.
  • a by-product for example, hydrogen halide, halogenated
  • washing with water or filtration of a solid salt may be performed.
  • compound (3) may be isolated and purified from the reaction crude product. Examples of isolation / purification methods include solvent extraction, distillation, sublimation, crystallization, silica gel column chromatography, preparative thin layer chromatography, preparative liquid chromatography, and solvent washing, which are known or well known to those skilled in the art. The method can be adopted.
  • the solvent used for isolation / purification is preferably selected from solvents that do not decompose the compound (3), and aliphatic halogen solvents such as dichloromethane, chloroform, 1,2-dichloroethane; benzene, toluene, xylene, anisole, etc.
  • Aromatic hydrocarbon solvents such as diethyl ether, t-butyl methyl ether, diisopropyl ether, 1,2-dimethoxyethane; alcohol solvents such as methanol, ethanol, isopropyl alcohol; heptane, hexane, cyclohexane, methyl Aliphatic hydrocarbon solvents such as cyclohexane; ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate; nitrile solvents such as acetonitrile and propionitrile; ketone solvents such as methyl isobutyl ketone; water and the like.
  • ether solvents such as diethyl ether, t-butyl methyl ether, diisopropyl ether, 1,2-dimethoxyethane
  • alcohol solvents such as methanol, ethanol, isopropyl alcohol
  • heptane hexane,
  • Only one type of solvent may be used, or two or more types of mixed solvents may be used.
  • these solvents halogen solvents and ether solvents are preferable, and methylene chloride and t-butyl methyl ether are particularly preferable.
  • Step 1-i [Production Process of Compound (3b) from Compound (3a) (Step 1-i)]
  • a method for producing compound (3) other than step 1 a compound represented by the following formula (3a) in which Y 1 in formula (3) is N + R 7 R 8 ⁇ A — is used under acidic conditions and basic conditions.
  • step 1-i the step of producing compound (3b) from compound (3a) is referred to as step 1-i.
  • Step 1-i can be employed when the availability and price of the raw material compound and the reaction yield in Step 1 are low when Y 1 is an oxygen atom.
  • R 1 , R 2 , R 7 , R 8 , R A , X 1 , X 2 and Z 1 are the same as in Step 1.
  • step 1-i When the step 1-i is carried out under acidic conditions or basic conditions, it can be carried out, for example, by allowing an acid or a base to coexist with water to be reacted.
  • the order of addition of compound (3a), water, and acid or base is not particularly limited as long as compound (3a) is not decomposed.
  • the compound (3a) may be added to an acidic or basic aqueous solution, and the acid or base may be added to a mixed solution of the compound (3a) and water.
  • the acid or base may be added all at once, sequentially, or continuously.
  • Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as trifluoroacetic acid, methanesulfonic acid, and paratoluenesulfonic acid.
  • Examples of the base include inorganic bases such as sodium carbonate, sodium hydrogen carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide and cesium hydroxide, and organic bases such as triethylamine and pyridine.
  • the amount of the acid or base to be used is preferably 0.8 to 5.0 mol, more preferably 0.9 to 4.0 mol, and 1.0 to 2.0 mol relative to 1 mol of compound (3a). Further preferred.
  • the amount of water used is not particularly limited, and is preferably 0.5 to 20 times (weight basis), more preferably 0.8 to 5 times (weight basis) based on compound (3a).
  • Step 1-i can be performed under acidic conditions, neutral conditions, or basic conditions, but is preferably performed under basic conditions.
  • the reaction of compound (3a) and water may be performed in the presence of a solvent.
  • the solvent is preferably selected from solvents that are inert to the reaction, and is appropriately selected according to the reaction temperature, the solubility of the substrate, and the like.
  • ether solvents such as diethyl ether, tetrahydrofuran and dioxane
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • carboxylic acid solvents such as acetic acid and propionic acid, methyl acetate, ethyl acetate, butyl acetate and ethyl propionate
  • Ester solvents such as benzene, toluene, xylene, mesitylene and other aromatic hydrocarbon solvents, monochlorobenzene, dichlorobenzene and other aromatic halogen solvents, hexane, heptane, octane,
  • the reaction solution may be a homogeneous system or a two-phase system of an organic phase and an aqueous phase.
  • an aromatic hydrocarbon solvent an aliphatic halogen solvent or a nitrile solvent, and more preferably toluene, methylene chloride or acetonitrile.
  • the amount of the solvent to be used is not particularly limited, and is preferably 1 to 50 times (weight basis), more preferably 2 to 10 times (weight basis) with respect to compound (3a).
  • the lower limit of the reaction temperature in Step 1-i is about ⁇ 50 ° C., and the upper limit is preferably room temperature (25 ° C.). From the viewpoint of reaction rate and reaction efficiency, ⁇ 20 ° C. to 0 ° C. is more preferable.
  • the reaction time is appropriately set according to the amount and type of the substrate and solvent, the reaction temperature, and the like, and is preferably 5 minutes to 12 hours, more preferably 30 minutes to 6 hours from the viewpoint of reaction rate and reaction efficiency.
  • Step 2 Production Step of Compound (5) from Compound (3) (Step 2)]
  • the compound (3) can be reacted with the compound (4a) or the compound (4b) to produce the compound (5).
  • step 2 the step of producing compound (5) from compound (3) is referred to as step 2.
  • R 1 , R 2 , R A , X 1 , X 2 , Y 1 and Z 1 are the same as in Step 1.
  • step 2 compound (3b) is preferably used as compound (3).
  • compound (3b) is used, there is an advantage that the production of by-products in the cyclization reaction is suppressed and the yield is higher than when the compound (3a) is used.
  • Compound (3b) can be synthesized according to Step 1 or Step 1-i.
  • R 3 is a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group, a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a benzoyl group, a t-butoxycarbonyl group. Group and the like.
  • R 3 is preferably a hydrogen atom or a C1-8 alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group.
  • the compound (4a) examples include hydrazine (a compound in which R 3 is a hydrogen atom), methyl hydrazine (a compound in which R 3 is a methyl group), ethyl hydrazine (a compound in which R 3 is an ethyl group), and the like. It can. These are easily available as commercial products.
  • a hydrate or an aqueous solution may be used.
  • hydrazine monohydrate or methylhydrazine 40% aqueous solution may be used.
  • R 3 is a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group, and is a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, benzoyl group, t-butoxycarbonyl group. Group and the like.
  • R 3 is preferably a hydrogen atom or a C1-8 alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group.
  • R 9 and R 10 are each independently a hydrogen atom, a C1-12 alkyl group, a C1-12 alkyl group having a substituent, a C3-8 cycloalkyl group, or a C3-8 cycloalkyl having a substituent.
  • An alkyl group, an aryl group, an aryl group having a substituent, a heteroaryl group or a heteroaryl group having a substituent, or R 9 and R 10 are bonded to each other, and the carbon atom to which they are bonded, and Together, they may form a 3- to 8-membered cycloalkane, a substituted 3- to 8-membered cycloalkane, a 3- to 8-membered heterocycle or a substituted 3- to 8-membered heterocycle.
  • R 9 and R 10 are preferably independently of each other a hydrogen atom, a C1-12 alkyl group or an aryl group, or R 9 and R 10 are preferably bonded to each other so that they are bonded Together with the carbon atom, it forms a 3-8 membered cycloalkane.
  • R 9 and R 10 are more preferably independently of each other a hydrogen atom, methyl group, ethyl group, t-butyl group or phenyl group, or R 9 and R 10 are more preferably bonded to each other. Together with the carbon atom to which they are attached, forms cyclopentane or cyclohexane.
  • R 9 and R 10 are more preferably independently of each other a hydrogen atom, a methyl group or an ethyl group, or R 9 and R 10 are more preferably bonded to each other, Together with the carbon atoms present, cyclopentane or cyclohexane is formed.
  • Specific examples of the compound (4b) include compounds in which R 3 is a methyl group, and R 9 and R 10 are both methyl groups, R 3 is a methyl group, and R 9 and R 10 are bonded to each other.
  • a compound in which cyclohexane is formed with bonded carbon atoms a compound in which R 3 is a methyl group, R 9 is a methyl group, and R 10 is an ethyl group, R 3 is a methyl group, and R 9 is a hydrogen atom
  • R 10 is a phenyl group
  • Compound (4b) can be synthesized by a known method, for example, by the method described in JP-T-2011-513446.
  • step 2 there is no particular limitation on the order of addition of compound (3) and compound (4a) or compound (4b).
  • Compound (4a) and compound (4b) may be used alone or in combination.
  • the ratio in the case of using together is not specifically limited.
  • the amount of compound (4a) or compound (4b) to be used is not particularly limited, but from the viewpoint of economy, it is preferably 0.8 to 3.0 mol, preferably 0.9 to 2 with respect to 1 mol of compound (3). 0.0 mol is more preferable, 1.0 to 1.8 mol is more preferable, and 1.0 to 1.5 mol is particularly preferable.
  • the total amount when the compound (4a) and the compound (4b) are used in combination is preferably 0.8 to 3.0 mol, more preferably 0.9 to 2.0 mol, relative to 1 mol of the compound (3).
  • 1.0 to 1.8 mol is more preferable, and 1.0 to 1.5 mol is particularly preferable.
  • the reaction between the compound (3) and the compound (4a) or the compound (4b) may be performed in the presence of a solvent.
  • the solvent is preferably selected from solvents that are inert to the reaction, and is appropriately selected according to the reaction temperature, the solubility of the substrate, and the like.
  • ether solvents such as diethyl ether, tetrahydrofuran and dioxane, carboxylic acid solvents such as acetic acid and propionic acid, ester solvents such as methyl acetate, ethyl acetate, butyl acetate and ethyl propionate, benzene, toluene, xylene and mesitylene
  • Aromatic hydrocarbon solvents such as monochlorobenzene and dichlorobenzene, aliphatic hydrocarbon solvents such as hexane, heptane, octane and cyclohexane, methylene chloride, chloroform, 1,2-dichloroethane, etc.
  • Aliphatic halogen solvents, acetonitrile, propionitrile, nitrile solvents such as benzonitrile, etc., or a mixed solvent of these solvents and water can be used. Only one type of solvent may be used, or two or more types of mixed solvents may be used.
  • the reaction solution may be a homogeneous system or a two-phase system of an organic phase and an aqueous phase. From the viewpoint of the reaction rate, it is preferable to use an aliphatic halogen solvent or a nitrile solvent, and it is more preferable to use methylene chloride, chloroform or acetonitrile.
  • the amount of the solvent to be used is not particularly limited and is preferably 1 to 50 times (weight basis), more preferably 2 to 10 times (weight basis) with respect to compound (3).
  • the reaction temperature in step 2 is preferably adjusted as appropriate with the lower limit as the freezing point of the solvent and the upper limit as the boiling point of the solvent. From the viewpoint of reaction rate and reaction efficiency, ⁇ 50 ° C. to 50 ° C. is preferable, and ⁇ 40 ° C. to room temperature. (About 25 ° C.) is more preferable, and ⁇ 40 ° C. to 0 ° C. is particularly preferable.
  • the reaction time is appropriately set according to the amount and type of the substrate and the solvent, the reaction temperature, etc., and from the viewpoint of reaction rate and reaction efficiency, 5 minutes to 24 hours are preferable, 10 minutes to 8 hours are more preferable, 30 More preferably, min to 4 hours.
  • the reaction pressure is appropriately set as necessary, and may be any of pressurization, reduced pressure, and atmospheric pressure, and atmospheric pressure is preferable.
  • the reaction atmosphere can be suitably selected as necessary, but is preferably in air or an inert gas atmosphere such as nitrogen or argon.
  • Step 2 of the production method of the present invention can proceed with high selectivity beyond expectations. Therefore, in Step 2, the target compound (5) can be obtained in high yield. That is, the amount of cyclization by-product relative to the total amount of compound (5) and cyclization by-product can achieve a high yield of less than 5 mol%, particularly less than 3 mol%.
  • the reaction of compound (3) with compound (4a) or compound (4b) may be carried out in the presence of a base.
  • the base include organic bases and inorganic bases.
  • organic bases include chain secondary or tertiary amines such as dimethylamine, trimethylamine, triethylamine, diisopropylethylamine, tert-butyldimethylamine, ethyldicyclohexylamine; N-methylpyrrolidine, N-methylpiperidine, Cyclic tertiary amines such as N-methylmorpholine, N, N′-dimethylpiperazine, pyridine, collidine, lutidine, 4-dimethylaminopyridine; diazabicycloundecene (DBU), diazabicyclononene (DBN), etc.
  • DBU diazabicycloundecene
  • DBN diazabicyclononene
  • inorganic bases include alkali metals and alkaline earth metal hydroxides such as ammonia, sodium hydroxide, potassium hydroxide and calcium hydroxide; alkali metals and alkalis such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide.
  • the base is preferably an organic base from the viewpoint of improving selectivity, more preferably ammonia and a chain-like secondary or tertiary amine, particularly preferably a chain-like secondary or tertiary amine, and chain-like.
  • the secondary amine is more preferred, and dimethylamine is most preferred.
  • the amount of the base is not particularly limited, but is preferably 0.001 to 10 mol, more preferably 0.1 to 5 mol, and still more preferably 0.2 to 3 mol with respect to 1 mol of the compound (3).
  • the reaction crude product produced by the reaction of the compound (3) and the compound (4a) or the compound (4b) may be used for the next reaction as it is, or the compound (5) is isolated from the reaction crude product. It may be purified. Isolation / purification methods include those known to those skilled in the art, such as solvent extraction, distillation, sublimation, crystallization, silica gel column chromatography, preparative thin layer chromatography, preparative liquid chromatography, and solvent washing. This method can be adopted.
  • the solvent used for isolation and purification is preferably selected from solvents that do not affect the stability and recovery rate of the reaction product as much as possible.
  • Aromatic halogen solvents such as monochlorobenzene and dichlorobenzene; dichloromethane, chloroform, Aliphatic halogen solvents such as 1,2-dichloroethane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, anisole; ethers such as diethyl ether, t-butyl methyl ether, diisopropyl ether, 1,2-dimethoxyethane Solvents; alcohol solvents such as methanol, ethanol and isopropyl alcohol; aliphatic hydrocarbon solvents such as heptane, hexane, cyclohexane and methylcyclohexane; ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate; acetonitrile and propionite Nitrile solvents such as Le; ketone solvents such as methyl isobutyl ketone; water and
  • the solvent is preferably an ester solvent, an aliphatic halogen solvent, an aliphatic hydrocarbon solvent, water, or a mixed solvent thereof, and a solvent selected from chloroform, ethyl acetate, toluene, and water, and heptane, methylcyclohexane, and ethyl.
  • a combination of solvents selected from cyclohexane is particularly preferable, a mixed solvent of chloroform and methylcyclohexane, a mixed solvent of heptane and ethyl acetate, a combination of water and an aliphatic hydrocarbon solvent, etc. are more preferable, and a combination of chloroform and methylcyclohexane is the most preferable. preferable.
  • Compound (6) can be produced by reacting compound (5) with an oxidizing agent.
  • process 3 the process of manufacturing a compound (6) from a compound (5) is called process 3.
  • the concept of the reaction in step 3 can be expressed by the following equation.
  • compound (5) is converted to compound (6) by reacting compound (6a) with an acid via a compound represented by the following formula (6a).
  • R 1 , R 2 , X 1 , X 2 and Z 1 are the same as in Step 1
  • the definition and preferred embodiments of R 3 are the same as in Step 2
  • M is a carboxylic acid counter.
  • a cation for example, Na + , K + , 1 / 2Ca 2+ , NH 4 + and the like.
  • the oxidizing agent is not particularly limited, but is preferably halogen (chlorine, bromine, iodine), halogen oxoacids and salts thereof (hypochlorous acid and salts thereof, hypobromite and salts thereof, chlorous acid and salts thereof) Salt, chloric acid and its salt, iodic acid and its salt, periodic acid and its salt), peroxide (such as hydrogen peroxide), oxygen molecule, ozone and the like.
  • halogen chlorine, bromine, iodine
  • halogen oxoacids and salts thereof hypoochlorous acid and salts thereof, hypobromite and salts thereof, chlorous acid and salts thereof
  • Salt chloric acid and its salt, iodic acid and its salt, periodic acid and its salt
  • peroxide such as hydrogen peroxide
  • an oxidizing agent containing chlorine is preferable, hypochlorous acid or a salt thereof is more preferable, and hypochlorite is particularly preferable.
  • the oxidation reaction may be any of acidic conditions, neutral conditions, and basic conditions. Under basic conditions, for example, when a basic oxidizing agent is used as the oxidizing agent, or when an oxidation reaction is performed in the presence of a base, the compound (6a) which is a carboxylate is converted from the compound (5). And then converted to compound (6) by reaction with an acid.
  • the base include inorganic bases and organic bases.
  • inorganic bases include alkali metal and alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; alkali metals and alkaline earth such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide Metal oxides; alkali metal and alkaline earth metal carbonates such as lithium carbonate and calcium carbonate; alkali metal bicarbonates such as sodium bicarbonate and potassium bicarbonate; lithium hydride, sodium hydride, potassium hydride, hydrogenated Alkali metal such as calcium and alkaline earth metal hydride; alkali metal amide such as lithium amide, sodium amide, potassium amide; and the like.
  • the organic base include amines such as triethylamine and dimethylamine, and ammonia.
  • alkali metal and alkaline earth metal hydroxide As the base, alkali metal and alkaline earth metal hydroxide, alkali metal and alkaline earth metal oxide, alkali metal and alkaline earth metal carbonate, and alkali metal bicarbonate are preferable from the viewpoint of cost, and alkali metal and alkali are preferable.
  • An earth metal hydroxide is more preferable, and sodium hydroxide, potassium hydroxide, and calcium hydroxide are most preferable.
  • hypochlorite As the oxidizing agent in the method of performing the reaction under basic conditions, hypochlorite is usually marketed as a basic aqueous solution, and as the reaction proceeds, Since the compound is formed, the reaction system becomes basic. Hypochlorite can be prepared by reacting chlorine with an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • the order of adding the compound (5) and the oxidizing agent is no particular limitation on the order of adding the compound (5) and the oxidizing agent.
  • the amount of the oxidizing agent is not particularly limited, but is preferably 1 to 10 mol with respect to 1 mol of compound (5).
  • the reaction between the compound (5) and the oxidizing agent may be performed in the presence of a solvent.
  • the solvent is preferably selected from solvents that are inert to the reaction, and is appropriately selected according to the reaction temperature, the solubility of the substrate, and the like.
  • ether solvents such as diethyl ether, tetrahydrofuran and dioxane; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; carboxylic solvents such as acetic acid and propionic acid; methyl acetate, ethyl acetate, butyl acetate and ethyl propionate
  • Ester solvents such as: aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylene; aromatic halogen solvents such as monochlorobenzene and dichlorobenzene; aliphatic hydrocarbon solvents such as hexane, heptane, octane, and cyclohexane
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylene
  • aromatic halogen solvents such as monochlorobenzene and dichlor
  • Only one type of solvent may be used, or two or more types of mixed solvents may be used.
  • the solvent ether solvents, aliphatic halogen solvents and water are preferable, and tetrahydrofuran, dioxane, chloroform, carbon tetrachloride and water are particularly preferable. Most preferred solvents are chloroform and water in view of cost and simplicity of the isolation and purification operation after the reaction.
  • the amount of the solvent to be used is not particularly limited and is preferably 1 to 50 times (weight basis), more preferably 2 to 15 times (weight basis) with respect to compound (5).
  • the lower limit of the reaction temperature in Step 3 is ⁇ 30 ° C., preferably 0 ° C., and the upper limit is suitably adjusted as the boiling point of the solvent. From the viewpoint of reaction rate and reaction efficiency, ⁇ 20 to 120 ° C. is preferable, and 0 More preferred is ⁇ 70 ° C.
  • the reaction time is appropriately set according to the amount, type and reaction temperature of the substrate, oxidizing agent and solvent, and is preferably 5 minutes to 24 hours from the viewpoint of reaction rate and reaction efficiency, more preferably 10 minutes to 8 hours. 30 minutes to 4 hours is more preferable.
  • the reaction pressure is appropriately set as necessary, and may be any of pressurization, reduced pressure, and atmospheric pressure, and atmospheric pressure is preferable.
  • the reaction atmosphere can be suitably selected as necessary, but is preferably in air or an inert gas atmosphere such as nitrogen or argon.
  • a phase transfer catalyst may be used to promote the reaction.
  • the phase transfer catalyst a known compound such as a quaternary ammonium salt may be used, or the compound (6) produced in Step 3 or the intermediate compound (6a) may be used.
  • the addition of the phase transfer catalyst is particularly effective when the compound (5) is hardly soluble in water or when the reaction is carried out in a two-phase system using an organic solvent incompatible with water and water as a solvent.
  • the compound hardly soluble in water means a compound having a solubility in water of about 2% or less.
  • the amount of the phase transfer catalyst is not particularly limited, but is usually 0.001 to 1 mol, preferably 0.01 to 0.1 mol, relative to 1 mol of the compound (5).
  • the reaction between the compound (5) and the oxidizing agent is carried out under basic conditions
  • the reaction between the next compound (6a) and the acid is performed by adding an acid to the reaction mixture after the post-treatment at the end of the oxidation reaction. It may be carried out by adding an acid to the reaction system containing the compound (6a) after completion of the oxidation reaction.
  • the type of acid those having sufficient acidity to generate carboxylic acid are preferable.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, trifluoroacetic acid, methanesulfonic acid, paratoluenesulfonic acid Organic acids such as are preferred.
  • the amount of the acid used may be sufficient to convert the compound (6a) to the compound (6), and the amount of the acid after the addition of the acid is 5 or less, preferably 3 or less.
  • the compound (6) obtained as a free carboxylic acid by the above method has sufficiently high purity without purification, and can be further purified by washing with a solvent such as water.
  • Compound (6) can also be isolated and purified from the reaction crude product produced by the reaction of compound (5) and an oxidizing agent.
  • isolation / purification methods include solvent extraction, distillation, sublimation, crystallization, silica gel column chromatography, preparative thin layer chromatography, preparative liquid chromatography, and solvent washing, which are known or well known to those skilled in the art. The method can be adopted.
  • the solvent used for isolation / purification is preferably selected from solvents that do not decompose the compound (6), and aliphatic halogen solvents such as dichloromethane, chloroform, 1,2-dichloroethane; benzene, toluene, xylene, anisole, etc.
  • Aromatic hydrocarbon solvents such as diethyl ether, t-butyl methyl ether, diisopropyl ether, 1,2-dimethoxyethane; alcohol solvents such as methanol, ethanol, isopropyl alcohol; heptane, hexane, cyclohexane, methyl Aliphatic hydrocarbon solvents such as cyclohexane; ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate; nitrile solvents such as acetonitrile and propionitrile; and ketone solvents such as methyl isobutyl ketone, water and the like . Only one type of solvent may be used, or two or more types of mixed solvents may be used. As a solvent used for solvent washing, water is preferable.
  • R 12 is a C1-8 alkyl group, preferably a methyl group, an ethyl group, a propyl group or an isopropyl group, more preferably a methyl group or an ethyl group, still more preferably a methyl group.
  • R 13 is a hydrogen atom, a C1-8 alkyl group or a nitrogen protecting group, preferably a hydrogen atom or a C1-8 alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, still more preferably. Is a methyl group.
  • X 11 and X 12 are each independently a fluorine atom or a chlorine atom, preferably a fluorine atom. However, in the compound (5a), a compound in which R 12 is a methyl group, R 13 is a nitrogen protecting group, and X 11 and X 12 are fluorine atoms is excluded.
  • Specific examples of the compound (5a) include the following compounds. 1- (3-difluoromethyl-1-methyl-1H-pyrazol-4-yl) -1-propanone, 1- (3-difluoromethyl-1-methyl-1H-pyrazol-4-yl) -1-butanone, 1- (3-difluoromethyl-1-methyl-1H-pyrazol-4-yl) -2-methyl-1-propanone, 1- (3-difluoromethyl-1H-pyrazol-4-yl) ethanone, 1- (3-difluoromethyl-1H-pyrazol-4-yl) -1-propanone, 1- (3-difluoromethyl-1H-pyrazol-4-yl) -1-butanone, 1- (3-Difluoromethyl-1H-pyrazol-4-yl) -2-methyl-1-propanone.
  • the compound represented by the following formula (3c) is a new and useful compound. That is, the present invention provides a novel compound represented by the following formula (3c).
  • R 12 is a C1-8 alkyl group, preferably a methyl group, an ethyl group, a propyl group or an isopropyl group, more preferably a methyl group or an ethyl group, still more preferably a methyl group. It is a group.
  • R 15 and R 16 are, independently of each other, a hydrogen atom or a C1-8 alkyl group, or R 15 and R 16 are bonded together and together with the nitrogen atom to which they are bonded. May form a 5- to 6-membered heterocycle.
  • R 15 and R 16 are preferably, independently of one another, a hydrogen atom, a methyl group or an ethyl group, or R 15 and R 16 are preferably bonded to each other, and the nitrogen to which they are bonded. Together with the atoms form pyrrolidine, piperidine or morpholine.
  • X 11 and X 12 are each independently a fluorine atom or a chlorine atom, preferably a fluorine atom.
  • Y 11 is an oxygen atom or N + R 17 R 18 ⁇ A ⁇ , preferably an oxygen atom.
  • R 17 and R 18 are, independently of one another, a C1-8 alkyl group, or R 17 and R 18 are bonded together and together with the nitrogen atom to which they are bonded, 5 to 5 A 6-membered heterocycle may be formed.
  • R 17 and R 18 are preferably, independently of one another, a methyl group or an ethyl group, or R 17 and R 18 are preferably bonded together and together with the nitrogen atom to which they are bonded.
  • a ⁇ is a counter anion, preferably a halide ion such as fluoride ion or chloride ion, or tetrafluoroborate ion (BF 4 ⁇ ).
  • R 12 is a C1-8 alkyl group
  • R 15 and R 16 are each independently a C1-8 alkyl group
  • X 11 and X 12 are fluorine atoms
  • Y A compound in which 11 is an oxygen atom is particularly preferable.
  • the compound represented by the following formula (3d) is a new and useful compound. That is, the present invention provides a novel compound represented by the following formula (3d).
  • R 14 is a C1-2 alkyl group, that is, an ethyl group or a methyl group.
  • the wavy line in the formula (3d) indicates that the configuration regarding the double bond of OR 14 may be E or Z.
  • Compound (3c), Compound (3d) and Compound (5a) are intermediate compounds useful for the production method of the present invention. 4-ketopyrazole derivatives and pyrazole-4-carboxylic acid derivatives obtained from these intermediates are further useful as intermediates for pharmaceuticals and agricultural chemicals.
  • the compound (3c), the compound (3d) and the compound (5a) can be easily obtained from inexpensive raw materials and are easy to handle, the production method using these intermediates is an industrial process. Also excellent.
  • R n represents a protecting group for the carbonyl group, and is a group capable of leaving by hydrolysis; an acetal protecting group such as 1,3-dioxane; a monothioacetal based protecting group such as 1,3-oxathiolane) A dithioacetal protecting group such as 1,3-dithiane; or a hydrazone protecting group such as methylhydrazone, the other symbols are the same as above.
  • Compound n means a compound represented by the formula (n).
  • the NMR used in the analysis of the examples and comparative examples was JNM-ECP400 (400 MHz) manufactured by JEOL. Tetramethylsilane was set to 0 PPM for 1 H NMR, and C 6 F 6 was set to ⁇ 162 PPM for 19 F NMR. .
  • HPLC Agilent 1260LC, 1200LC and Shimadzu LC-20 were used.
  • the unit of the yield (%) described in the examples is mol%.
  • the unit of the concentration of the reaction reagent is the weight concentration (wt%).
  • Example 2-2 Synthesis of compound (5-1) by subjecting difluoroacetic acid fluoride (1a-1) to continuous reaction (one-pot method) in the same reactor Under nitrogen atmosphere, 50.0 g (97.6 wt%) of compound (2b-1) Purity, 431.3 mmol) and 109.1 g (1078.1 mmol) of triethylamine in 250 mL of methylene chloride were ice-cooled, and difluoroacetic acid fluoride (1a-1) synthesized from ethyl-1,1,2,2-tetrafluoroethyl ether ) 67.64 g (690.1 mmol) was added without isolation. After stirring at 25 ° C.
  • Example 3-2 Synthesis of Compound (6-1) by Oxidation of Compound (5-1)
  • a 14% sodium hypochlorite aqueous solution (18.2 g, 34.4 mmol, pH 11) in an air atmosphere
  • the method of [Example 2] was used. 2.01 g (11.5 mmol) of the obtained compound (5-1) was added at 20 ° C.
  • the mixture was stirred at 20 ° C. for 2 hours and then ice-cooled, and 10 mL of chloroform was added to separate the layers.
  • (* 1) is the solvent volume ratio (ml / g) to the amount of compound (2b-1), (* 2) is 1.4 times mol of triethylamine to compound (1a-1). It shows that it was used as a base and solvent.
  • AcOEt represents ethyl acetate and PhCl represents monochlorobenzene.
  • chloroform 250 ml as a solvent was added to a mixture of methylhydrazine (26.4 g, 575 mmol) and a 50% aqueous solution of dimethylamine (94 g, 1046 mmol) as an additive, and the mixture was cooled to ⁇ 40 ° C.
  • compound (5-1) As a result of quantifying the organic phase by HPLC, compound (5-1) was obtained with a yield of 93% based on compound (3b-1).
  • Compound (5-imp1-1) as a cyclization by-product is 1.4%
  • compound (5-imp2-2) As a result of quantifying the organic phase by HPLC, compound (5-imp2-5) was obtained with a yield of 93% based on compound (3b-1).
  • Compound (5-imp1-1) as a cyclization by-product is 1.4%
  • compound (5-imp2-1), compound (5-imp2-2), compound (5-imp2-3), compound (5 Both -imp2-4) and compound (5-imp2-5) were by-produced in amounts of less than 1%.
  • Example 27 Crystallization of Compound (5-1)
  • the solvent of the organic phase of Compound (5-1) obtained in Example 18 was distilled off under reduced pressure, and water of crystallization solvent having a volume 5 times that of Compound (5-1) was added.
  • the temperature was raised to 80 ° C. and then cooled to 0 ° C. for crystallization.
  • the precipitated solid of the compound (5-1) was collected and dried to obtain a compound (5-1) having a purity of 98.2% (HPLC area ratio) with a crystallization yield of 92%.
  • Example 28 to 32 Crystallization of Compound (5-1) Crystallization was carried out under the same conditions as in Example 27 except that the type of crystallization solvent was changed. Conditions and results are summarized in Table 3.
  • heptane / toluene is a mixed solvent in which heptane and toluene are sequentially mixed at a ratio (volume ratio) of 9: 1
  • heptane / ethyl acetate is a ratio of 9: 1 in order of heptane and ethyl acetate
  • (Mixylcyclohexane / CHCl 3 ) is a mixed solvent in which methylcyclohexane and CHCl 3 are sequentially mixed at a ratio (volume ratio) of 9: 1.
  • phase transfer catalyst compound (6-1) (10.2 g, 57 mmol), sodium hydroxide (2.7 g, 68 mmol), and water (200 g) were added in order to the reactor and dissolved.
  • the compound (5-1) 100 g, 569 mmol obtained in the same manner as in Example 18 was dissolved in chloroform (450 g, 300 ml) as a solvent while maintaining the internal temperature at 20 ° C. to 30 ° C. The solution was added dropwise over 1 hour to carry out the reaction.
  • the precipitated solid was collected by filtration, washed with water and dried.
  • the dried solid was a compound (6-1) having a purity of 99.9% (HPLC area ratio), and the yield was 97% (compound (5-1) added as a correlated transfer catalyst). (Based on the total amount of compound (6-1)).
  • (* 4) in Table 4 is the ratio (ml / g) of the organic solvent volume to the amount of the compound (5-1) (ml / g), and (* 5) is the ratio of the amount of the phase transfer catalyst to the amount of the compound (5-1) (mol). / Mol).
  • Example 38 Synthesis of Compound (6-1)
  • Compound (5-1) (38 g, 218 mmol) obtained in the same manner as in Example 18 and compound (6-1) of a phase transfer catalyst in an air atmosphere in a reactor (3.9 g, 22.2 mmol), sodium hydroxide (1.1 g, 27.5 mmol) and water (80 g) are suspended and maintained at an internal temperature of 20 ° C. to 30 ° C.
  • Aqueous sodium chlorate (364 g, 709 mmol) was added into the reactor.
  • NMR and HPLC As a result of analyzing the reaction solution 2 hours after completion of the dropping by NMR and HPLC, it was confirmed that the compound (5-1) disappeared and the compound (6a-1) was produced.
  • a 10% aqueous sodium sulfite solution (111 g) was added to the aqueous phase collected by separating the reaction liquid, and it was confirmed by potential measurement and iodine test paper that no sodium hypochlorite remained.
  • concentrated sulfuric acid 44 g was added to the aqueous phase. When the pH of the liquid became 3 or less, a white solid was precipitated. The precipitated solid was collected by filtration, washed with water and dried. As a result of HPLC analysis, the dried solid was a compound (6-1) having a purity of 99.5% (HPLC area ratio), and the yield was 97% (same as in Example 33).
  • Example 39 Synthesis of Compound (6-1)
  • Compound (5-1) (40 g, 230 mmol) obtained in the same manner as in Example 18 and compound (6-1) of a phase transfer catalyst in a reactor in an air atmosphere (4.0 g, 22.7 mmol), sodium hydroxide (1.1 g, 27.5 mmol) and water (80 g) are suspended and maintained at an internal temperature of 5 ° C. to 15 ° C.
  • An aqueous sodium chlorate solution (372 g, 700 mmol) was added into the reactor.
  • As a result of analyzing the reaction solution 2 hours after completion of the dropping by NMR and HPLC it was confirmed that the compound (5-1) disappeared and the compound (6a-1) was produced.
  • a 10% aqueous sodium sulfite solution (111 g) was added to the aqueous phase collected by separating the reaction liquid, and it was confirmed by potential measurement and iodine test paper that no sodium hypochlorite remained.
  • concentrated sulfuric acid 44 g was added to the aqueous phase. When the pH of the liquid became 3 or less, a white solid was precipitated. The precipitated solid was collected by filtration, washed with water and dried. As a result of HPLC analysis, the dried solid was a compound (6-1) having a purity of 99.9% (HPLC area ratio), and the yield was 97% (same as in Example 33).
  • a pyrazole derivative useful as an intermediate for pharmaceuticals and agrochemicals can be produced by an industrially advantageous and economical method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 本発明は、医薬や農薬の中間体として有用なピラゾール誘導体の新規な製造方法、並びに前記方法における新規な中間体化合物を提供する。 本発明は、化合物(5)と酸化剤とを反応させ、ピラゾール誘導体(6)の製造方法に関する。(式中、R、R、R、X、X及びZは、請求の範囲及び明細書と同義である。)

Description

ピラゾール誘導体の製造方法
 本発明は、医薬や農薬の中間体として有用なピラゾリルケトン誘導体及びピラゾール-4-カルボン酸誘導体等のピラゾール誘導体の新規な製造方法、並びに前記製造方法の中間体として有用な新規な化合物に関する。
 3-ジフルオロメチル-1-メチル-1H-ピラゾール-4-カルボン酸及び3-トリフルオロメチル-1-メチル-1H-ピラゾール-4-カルボン酸は、ピラゾリルカルボキサニリド殺菌剤の製造において有用な中間体である(例えば、特許文献1及び2参照)。これらの中間体を製造する方法としては、複数の方法が知られている(例えば、非特許文献1参照)。ピラゾール環の4位の置換基をカルボキシル基に変換してカルボン酸を得る方法としては、アルデヒドをカルボン酸に酸化する方法が知られている(例えば、特許文献3参照)。
国際公開公報第03/070705号 国際公開公報第03/074491号 国際公開公報第2009/000441号
Journal of Fluorine Chemistry 152 (2013) 2-11
 本発明は、ピラゾール誘導体の新規かつ工業的に有用な製造方法、前記製造方法の中間体である新規な化合物、及び該新規な化合物の製造方法の提供を課題とする。
 本発明者らは、上記課題を鑑み鋭意検討を重ねた結果、本発明を完成するに至った。
 本発明は以下のとおりである:
[1] 下式(5)で表される化合物と酸化剤とを反応させることを特徴とする、下式(6)で表されるピラゾール誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000017
(式中、
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
 Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
 Zは、水素原子又はC1~8のアルキル基を表す。)。
[2] 下式(5)で表される化合物と酸化剤とを塩基性条件下に反応させた後、酸と反応させることを特徴とする、下式(6)で表されるピラゾール誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000018
(式中、
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
 Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
 Zは、水素原子又はC1~8のアルキル基を表す。)。
[3] 下式(5)で表される化合物と酸化剤とを塩基の存在下に反応させることを特徴とする、下式(6a)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000019
(式中、
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
 Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
 Zは、水素原子又はC1~8のアルキル基を表し、
 Mは、カルボン酸のカウンターカチオンを表す。)。
[4] Rにおける置換基が、反応に関与しない不活性な基又は原子である、[1]~[3]のいずれかに記載の製造方法。
[5] 下式(5)で表される化合物を、下式(3)で表される化合物と下式(4a)又は(4b)で表される化合物とを反応させることにより得る、[1]~[4]のいずれかに記載の製造方法。
Figure JPOXMLDOC01-appb-C000020
[式中、
 R、R、R、X、X及びZは、[1]と同義であり、
 Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
 Yは、酸素原子又はN・A(式中、R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表し、
 R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基を表すか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよく、
 波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
[5A] 式(5)で表される化合物を、下式(3)で表される化合物と下式(4a)で表される化合物とを反応させることにより得る、上記[1]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000021
[式中、
 R、R、R、X、X及びZは、[1]と同義であり、
 Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
 Yは、酸素原子又はN・A(式中、R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表し、
 波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
[6] R及びR10における置換基を有するC1~12のアルキル基の置換基が、互いに独立して、-X、-OR、-SR、-N(R)(R)、-Si(R)(R)(R)、-COOR、-(C=O)R、-CN及び-CON(R)(R)からなる群から選択される(式中、R、R、Rは、それぞれ独立に、水素原子又はC1~8のアルキル基を表し、Xはフッ素原子または塩素原子を表す)、[5]または[5A]に記載の製造方法。
[7] 式(3)で表される化合物と式(4a)又は(4b)で表される化合物との反応を、有機塩基の存在下で行う、[5]または[5A]に記載に記載の製造方法。
[8] 有機塩基が、鎖状第二級又は第三級アミンである、[7]に記載の製造方法。
[9] 有機塩基が、ジメチルアミンである、[7]に記載の製造方法。
[10] 下式(3b)で表される化合物と下式(4a)又は(4b)で表される化合物とを反応させることにより下式(5)で表される化合物を得て、該式(5)で表される化合物と酸化剤とを反応させることを特徴とする、下式(6)で表されるピラゾール誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000022
[式中、
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
 Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
 Zは、水素原子又はC1~8のアルキル基を表し、
 Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
 R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基を表すか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよく、
 波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
[10A] 下式(3b)で表される化合物と下式(4a)で表される化合物とを反応させることにより下式(5)で表される化合物を得て、該式(5)で表される化合物と酸化剤とを反応させることを特徴とする、下式(6)で表されるピラゾール誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000023
[式中、
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
 Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
 Zは、水素原子又はC1~8のアルキル基を表し、
 Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
 波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
[11] 下式(3b)で表される化合物と下式(4a)又は(4b)で表される化合物とを反応させることにより下式(5)で表される化合物を得て、該式(5)で表される化合物と酸化剤とを塩基性条件下に反応させた後、酸と反応させることを特徴とする、下式(6)で表されるピラゾール誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000024
[式中、
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
 Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
 Zは、水素原子又はC1~8のアルキル基を表し、
 Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
 R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基を表すか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよく、
 波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
[12] R及びR10における置換基を有するC1~12のアルキル基の置換基が、互いに独立して、-X、-OR、-SR、-N(R)(R)、-Si(R)(R)(R)、-COOR、-(C=O)R、-CN及び-CON(R)(R)からなる群から選択される(式中、R、R、Rは、それぞれ独立に、水素原子又はC1~8のアルキル基を表し、Xはフッ素原子または塩素原子を表す。)、[10]又は[11]に記載の製造方法。
[13] 下式(3b)で表される化合物を、下式(3a)で表される化合物を水と反応させることにより得る、[10]~[12]のいずれかに記載の製造方法。
Figure JPOXMLDOC01-appb-C000025
(式中、
、R、R、X、X、Z及び波線は、[10]と同義であり、
及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、
は、カウンターアニオンを表す。)。
[14] 式(3a)で表される化合物と水との反応を塩基性条件下で行う、[13]に記載の製造方法。
[15] 下式(3)で表される化合物を、下式(1)で表される化合物と下式(2)で表される化合物とを反応させることにより得る、[5]~[9]のいずれかに記載の製造方法。
Figure JPOXMLDOC01-appb-C000026
(式中、
 R、R、X、X及びZは、[1]と同義であり、
 R、Y及び波線は、[5]と同義であり、
 Xは、ハロゲン原子を表す。)。
[16] 酸化剤が次亜塩素酸塩である、[1]~[15]のいずれかに記載の製造方法。
[17] Rが水素原子である、[1]~[16]のいずれかに記載の製造方法。
[18] 1,1,2,2-テトラフルオロ-N,N-ジメチルエタンアミンとBFを反応させて下式(1b-1)で表される化合物を得て、当該化合物を下式(2b-1)で表される化合物と反応させることを特徴とする、下式(3a-1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000027
[19] [18]の方法で得られた式(3a-1)で表される化合物とメチルヒドラジンとを反応させることを特徴とする、下式(5-1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000028
[20] 下式(3)で表される化合物と下式(4a)又は(4b)で表される化合物とを反応させることを特徴とする、下式(5)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000029
[式中、
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
 Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
 Zは、水素原子又はC1~8のアルキル基を表し、
 Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
 Yは、酸素原子又はN・A(式中、R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表し、
 R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基を表すか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよく、
 波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
[21] 下式(3a)で表される化合物を水と反応させることを特徴とする、下式(3b)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000030
[式中、
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
 Zは、水素原子又はC1~8のアルキル基を表し、
 Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
 R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、
 Aは、カウンターアニオンを表し、
 波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
[22] 下式(1)で表される化合物と下式(2)で表される化合物とを反応させることを特徴とする、下式(3)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000031
[式中、
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
 Zは、水素原子又はC1~8のアルキル基を表し、
 Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
 Yは、酸素原子又はN・A(式中、R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表し、
 Xは、ハロゲン原子を表し、
 波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
[23] 下式(5a)で表される化合物。
Figure JPOXMLDOC01-appb-C000032
(式中、
 R12は、C1~8のアルキル基を表し、
 R13は、水素原子、C1~8のアルキル基又は窒素保護基を表し、
 X11及びX12は、互いに独立して、フッ素原子又は塩素原子を表し、
 ただし、R12がメチル基、R13が窒素保護基、かつX11及びX12がフッ素原子である化合物を除く。)。
[24] R12が、メチル基又はエチル基であり、R13が、水素原子、メチル基又はエチル基であり、かつX11及びX12が、フッ素原子である、[23]に記載の化合物。
[25] 下式(3c)で表される化合物。
Figure JPOXMLDOC01-appb-C000033
[式中、
 R12は、C1~8のアルキル基を表し、
 R15及びR16は、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR15及びR16は、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、
 X11及びX12は、互いに独立して、フッ素原子又は塩素原子を表し、
 Y11は、酸素原子又はN1718・A(式中、R17及びR18は、互いに独立して、C1~8のアルキル基を表すか、又はR17及びR18は、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表し、
 波線は、NR1516の二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
[26] 下式(3d)で表される化合物。
Figure JPOXMLDOC01-appb-C000034
[式中、
 R14は、C1~2のアルキル基を表し、
 波線は、OR14の二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
 本発明の製造方法によれば、医薬や農薬の中間体として有用なピラゾール誘導体を、工業的に有利、かつ、経済的に優れた方法で製造できる。すなわち、本発明の製造方法に用いる基質や反応資材は、取扱いや入手が容易であるものから選択され、各反応においては特殊な反応装置や反応条件を用いることもないため、工業的な製造方法として適する。また本製造方法における反応は、ピラゾール環の2つの窒素原子に対して位置選択的に進み、目的とする誘導体を高収率、高選択率で製造できるため、該反応を使った本製造方法は、経済的な点でも優れた方法である。
 さらに、本発明は該製造方法において有用に用いる新規な中間体を提供する。
 以下に本発明の実施の形態について詳細に説明する。
[用語の定義]
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 C1とは炭素数が1であることを示し、他の表現においても同様である。
 本発明において、「C1~8のアルキル基」は、炭素数1~8の、直鎖状又は分岐鎖状のアルキル基を意味し、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等を例示できる。
 本発明において、「C1~12のアルキル基」は、炭素数1~12の、直鎖状又は分岐鎖状のアルキル基を意味し、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等を例示できる。
 「C1~8のハロアルキル基」は、前記アルキル基の水素原子の1個以上が、ハロゲン原子で置換された基を意味する。ハロゲン原子としては、臭素原子、ヨウ素原子、フッ素原子、および塩素原子が挙げられる。該C1~8のハロアルキル基としては、ブロモメチル基、2-ブロモエチル基、3-ブロモプロピル基、4-ブロモブチル基、5-ブロモペンチル基、6-ブロモヘキシル基、ヨードメチル基、2-ヨードエチル基、3-ヨードプロピル基、4-ヨードブチル基、5-ヨードペンチル基、6-ヨードヘキシル基、フルオロメチル基、2-フルオロエチル基、3-フルオロプロピル基、4-フルオロブチル基、5-フルオロペンチル基、6-フルオロヘキシル基、トリブロモメチル基、トリクロロメチル基、トリフルオロメチル基等を例示できる。
 「C3~8のシクロアルキル基」は、炭素数3~8のシクロアルキル基を意味し、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等を例示できる。
 「置換基」は、公知の置換基であり、本発明の製造方法における反応に関与しない基から選択される。
 「置換基を有するC3~8のシクロアルキル基」は、前記シクロアルキル基の水素原子の1個以上が、置換基で置換された基を意味する。該置換基としては、本発明の製造方法における反応に関与しない基から選択され、C1~8のアルキル基、C1~8のアルコキシ基、アリール基等が挙げられる。置換基を有するC3~8のシクロアルキル基の炭素数は、置換基の炭素数を含めて3~8である。置換基を有するC3~8のシクロアルキル基の例として、2-メチルシクロプロピル基、1-メチルシクロペンチル基、4-メチルシクロヘキシル基等を挙げることができる。
 「C1~8のアルコキシ基」は、基RO-(ここで、Rは、C1~8のアルキル基)を意味し、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基、s-ブチルオキシ基、t-ブチルオキシ基、ヘキシルオキシ基等を例示できる。
 「C3~8のシクロアルコキシ基」は、基RO-(ここで、Rは、C3~8のシクロアルキル基)を意味し、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基等を例示できる。
 「アリール基」は、炭素数6~18の芳香族炭化水素基を意味し、フェニル基、ナフチル基、アントリル基等を例示できる。
 「置換基を有するアリール基」は、前記アリール基の水素原子の1個以上が、置換基で置換された基を意味する。該置換基としては、本発明の製造方法における反応に関与しない基から選択され、C1~8のアルキル基、C1~8のアルコキシ基、C3~8のシクロアルキル基、C3~8のシクロアルコキシ基、ハロゲン原子等が挙げられる。置換基を有するアリール基の例として、2-メチルフェニル基(o-トリル基)、3-メチルフェニル基(m-トリル基)、4-メチルフェニル基(p-トリル基)、2,4-ジ-t-ブチルフェニル基、4-メトキシフェニル基、4-クロロフェニル基等を例示できる。
 「ヘテロアリール基」は、窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも1個のヘテロ原子を含む、3~10員の1価の芳香族複素環基を意味し、例としては、フリル、ベンゾフラニル、ジベンゾフラニル、チエニル、ベンゾチエニル、ジベンゾチエニル、ピロリル、インドリル、カルバゾリル、イミダゾリル、ベンゾイミダゾリル、ピラゾリル、オキサゾリル、ベンゾオキサゾリル、チアゾリル、ベンゾチアゾリル、フラザニル、ピリジル、ピラニル、ピラジニル、ピリミジニル、ピリダジニル、トリアジニル、キノリル、インドリジニル、シンノリニル、プリニル、カルボニリル、フェナントロリニル、イミダゾピリミジニル等が挙げられる。
 「置換基を有するヘテロアリール基」は、前記ヘテロアリール基の水素原子の1個以上が置換基で置換された基を意味する。該置換基としては、本発明の製造方法における反応に関与しない基から選択され、C1~8のアルキル基、C1~8のアルコキシ基、C3~8のシクロアルキル基、C3~8のシクロアルコキシ基、ハロゲン原子、アリール基等が挙げられる。
 「置換基を有するC1~12のアルキル基」における置換基としては、本発明の製造方法における反応に関与しない基から選択され、-X、-OR、-SR、-N(R)(R)、-Si(R)(R)(R)、-COOR、-(C=O)R、-CN及び-CON(R)(R)からなる群から選択される基(式中、R、R、Rは、それぞれ独立に、水素原子又はC1~8のアルキル基を表し、Xはフッ素原子または塩素原子を表す。)が挙げられる。
 R及びR、並びに、R及びRが互いに結合して、それらが結合している窒素原子と一緒になって形成してもよい「5~6員のヘテロ環」とは、少なくとも1個の窒素原子を含み、場合により窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも1個の追加のヘテロ原子を含む、5~6員の1価の飽和又は不飽和の複素環を意味し、5~6員のヘテロ環の例としては、ピロール、ピロリン、ピロリジン、イミダゾール、イミダゾリン、イミダゾリジン、ピラゾール、ピラゾリン、ピラゾリジン、ピリジン、ピペリジン、ピラジン、ピペラジン、ピリミジン、ピリダジン、チアゾール、チアゾリン、チアゾリジン、イソチアゾール、イソチアゾリン、イソチアゾリジン、オキサゾール、オキサゾリン、オキサゾリジン、イソオキサゾール、イソオキサゾリン、イソオキサゾリジン、モルホリン等が挙げられる。
 R及びR10が互いに結合して、それらが結合している炭素原子と一緒になって形成してもよい「C3~8のシクロアルカン」は、炭素数3~8のシクロアルカンを意味し、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロオクタン等を例示できる。
 R及びR10が互いに結合して、それらが結合している炭素原子と一緒になって形成してもよい「置換基を有するC3~8のシクロアルカン」は、前記シクロアルカンの水素原子の1個以上が、置換基で置換された基を意味する。該置換基としては、本発明の製造方法における反応に関与しない基から選択され、C1~8のアルキル基、C1~8のアルコキシ基、アリール基等が挙げられる。置換基を有するC3~8のシクロアルカンの炭素数は、置換基の炭素数を含めて3~8である。置換基を有するC3~8のシクロアルカンの例として、2-メチルシクロプロパン、1-メチルシクロペンタン、4-メチルシクロヘキサン等を挙げることができる。
 R及びR10が互いに結合して、それらが結合している炭素原子と一緒になって形成してもよい「3~8員のヘテロ環」とは、少なくとも1個の窒素原子を含み、場合により窒素原子、酸素原子及び硫黄原子からなる群より選択される少なくとも1個の追加のヘテロ原子を含む、3~8員の1価の飽和又は不飽和の複素環を意味し、3~8員のヘテロ環の例としては、アジリジン、アゼチジン、ピロール、ピロリン、ピロリジン、イミダゾール、イミダゾリン、イミダゾリジン、ピラゾール、ピラゾリン、ピラゾリジン、ピリジン、ピペリジン、ピラジン、ピペラジン、ピリミジン、ピリダジン、チアゾール、チアゾリン、チアゾリジン、イソチアゾール、イソチアゾリン、イソチアゾリジン、オキサゾール、オキサゾリン、オキサゾリジン、イソオキサゾール、イソオキサゾリン、イソオキサゾリジン、モルホリン、アゼパン、アゼピン等が挙げられる。
 R及びR10が互いに結合して、それらが結合している炭素原子と一緒になって形成してもよい「置換基を有する3~8員のヘテロ環」とは、前記3~8員のヘテロ環の水素原子の1個以上が置換基で置換された基を意味する。該置換基としては、本発明の製造方法における反応に関与しない基から選択され、C1~8のアルキル基、C1~8のアルコキシ基、C3~8のシクロアルキル基、C3~8のシクロアルコキシ基、ハロゲン原子、アリール基等が挙げられる。
 「ハロゲン原子」は、ヨウ素原子、臭素原子、塩素原子又はフッ素原子を意味する。
 「窒素保護基」は、本発明の製造方法における各反応により脱離せず、かつ他の化学的方法(例えば、有機合成化学で一般的に用いられる、加水素分解、加水分解、電気分解、光分解のような化学的方法)により脱離して、N-Hとなる保護基を意味する。そのような保護基は、一般的にアミノ基の保護基として知られる公知ないしは周知の保護基から選択される。例えば「Protective Groups in Organic Synthesis」(T.W.Greene et.al, John Wiley & Sons, inc.)等の有機合成化学における参考書により、当業者には公知である、t-ブチルジフェニルシリル基、t-ブチルジメチルシリル基、メトキシカルボニル基、エトキシカルボニル基、t-ブトキシカルボニル(Boc)基等のアルキルカルバメート系保護基;9-フルオレニルメチルオキシカルボニル(Fmoc)基等のアリールアルキルカルバメート系保護基;ベンゼンスルホニル基、p-トルエンスルホニル(Ts)基等のアリールスルホンアミド系保護基;またはホルムアミド基、アセトアミド基、トリフルオロアセトアミド(TFA)基等のアミド系保護基が挙げられる。
 「カウンターアニオン」としては、ハロゲン化物イオン、フルオロハイドロジェネートアニオン((HF)、式中、nは整数を表す。)、ハロゲンオキソ酸イオン、無機酸イオン及び有機酸イオンからなる群から選ばれる陰イオンが好ましい。ハロゲン化物イオンの例として、フッ化物イオン(F)、塩化物イオン(Cl)、臭化物イオン(Br)及びヨウ化物イオン(I)が挙げられる。ハロゲンオキソ酸イオンの例として、次亜塩素酸イオン(ClO)、亜塩素酸イオン(ClO )、塩素酸イオン(ClO )、過塩素酸イオン(ClO )、次亜臭素酸イオン(BrO)、亜臭素酸イオン(BrO )、臭素酸イオン(BrO )、過臭素酸イオン(BrO )、次亜ヨウ素酸イオン(IO)、亜ヨウ素酸イオン(IO )、ヨウ素酸イオン(IO )、過ヨウ素酸イオン(IO )等が挙げられる。無機酸イオンの例として、水酸化物イオン、炭酸イオン、炭酸水素イオン、硫酸イオン、硫酸水素イオン、リン酸イオン、リン酸水素イオン、リン酸二水素イオン、硝酸イオン、ホウ酸イオン、テトラフルオロホウ酸イオン等が挙げられる。有機酸イオンの例として、酢酸イオン、トリフルオロ酢酸イオン、トリフルオロメタンスルホン酸イオン、テトラフェニルホウ酸イオン等が挙げられる。
 「カウンターカチオン」としては、Na、K、1/2Ca2+、NH 等が挙げられる。
[本発明の製造ルート]
 以下のスキーム1に、本発明の製造ルートの概要を示す。以下、本発明の実施態様について、スキーム1の工程毎に詳細に説明するが、本発明の実施態様では、各工程をそれぞれ独立に実施してもよく、また一部又は全部を連続的に実施してもよい。複数の工程を連続的に実施する場合は、工程毎に反応を停止させた後に次の工程を行ってもよく、反応を停止させずに次の工程を行ってもよい。また、工程終了後に精製を行った後に次の工程を行ってもよく、精製を行わずに次の工程を行ってもよい。これらの工程を実施する、しないは、任意に選択すればよい。また複数の工程の反応は、同じ反応容器で行ってもよく、異なる反応容器で行ってもよい。「化合物(n)」は、式(n)で表される化合物を意味する。
Figure JPOXMLDOC01-appb-C000035
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表す。
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表す。
 Rは、水素原子、C1~8のアルキル基又は窒素保護基を表す。
 Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表す。
 X及びXは、互いに独立して、フッ素原子又は塩素原子を表す。
 Zは、水素原子又はC1~8のアルキル基を表す。
 Yは、酸素原子又はN・A(式中、R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表す。
 R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基を表すか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよい。
は、ハロゲン原子を表す。
 また、式(2)及び(3)における波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。
[化合物(1)→化合物(3)の製造工程(工程1)]
 化合物(3)は、化合物(1)を化合物(2)と反応させて製造できる。以下、化合物(1)から化合物(3)を製造する工程を工程1という。
Figure JPOXMLDOC01-appb-C000036
 化合物(1)において、X及びXは、互いに独立して、フッ素原子又は塩素原子であり、好ましくはフッ素原子である。
 Xは、ハロゲン原子であり、好ましくはフッ素原子又は塩素原子である。
 Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基であり、好ましくは水素原子又はハロゲン原子であり、より好ましくは水素原子又はフッ素原子であり、最も好ましくは水素原子である。
 Rが水素原子であり、X及びXがともにフッ素原子である化合物(1)が最も好ましい。
 Yは、酸素原子又はN・Aである。Yが酸素原子である化合物(1)は、下式(1a)で表される化合物である。YがN・Aである化合物(1)は、下式(1b)で表される化合物である。
Figure JPOXMLDOC01-appb-C000037
 R及びRは、互いに独立して、C1~8のアルキル基であるか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。R及びRは、好ましくは、互いに独立して、メチル基もしくはエチル基であるか、又はR及びRは、好ましくは、互いに結合して、それらが結合している窒素原子と一緒になってピロリジン、ピペリジンもしくはモルホリンを形成する。
 Aは、カウンターアニオンであり、好ましくはフッ化物イオン、塩化物イオン等のハロゲン化物イオン又はテトラフルオロホウ酸イオン(BF )である。
 化合物(1)のYが酸素原子である化合物(1a)は市販されており、例えば2,2-ジフルオロ酢酸クロリドは容易に市販品を入手できる。また化合物(1a)は市販品である対応するカルボン酸(CRCOOH)から公知の方法(例えば、Journal of Fluorine Chemistry 23 (1983) 383-388、特許第3632243号公報)に準じて合成できる。
 化合物(1)のYがN・Aである化合物(1b)は、市販品である対応するアミン(CRCX NR)と酸(酸は、カウンターアニオン(A)源になる)から公知の方法(例えば、国際公開第2008-022777号公報)に準じて製造できる。
 化合物(1)は、公知の方法で製造した場合、反応後の後処理を行った後、工程1の出発化合物として用いてもよく、さらに精製して高純度化して用いてもよい。化合物(1)が、水、空気、熱等の影響を受けて分解する可能性がある場合は、精製工程を行わずに工程1の反応に用いるのが好ましい。
 化合物(1)は、より安価で短工程で入手できることから、化合物(1)のYが酸素原子である化合物(1a)が好ましい。
 化合物(2)において、Zは、水素原子又はC1~8のアルキル基であり、好ましくは水素原子又はメチル基である。
 Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基であり、好ましくはC1~8のアルキル基、C3~8のシクロアルキル基、アリール基又はヘテロアリール基であり、より好ましくはC1~8のアルキル基であり、より好ましくはメチル基又はエチル基であり、さらに好ましくはメチル基である。
 Rは、OR、NR又はSRである。RがORである化合物(2)は、下式(2a)で表される化合物である。RがNRである化合物(2)は、下式(2b)で表される化合物である。
Figure JPOXMLDOC01-appb-C000038
 Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基であり、好ましくはC1~8のアルキル基又はアリール基であり、より好ましくは、メチル基、エチル基又はフェニル基である。
 R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基であるか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。R及びRは、好ましくは、互いに独立して、水素原子、メチル基もしくはエチル基であるか、又はR及びRは、好ましくは、互いに結合して、それらが結合している窒素原子と一緒になってピロリジン、ピペリジンもしくはモルホリンを形成する。
 波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。工程1の反応の前後でE/Zは変化しても、変化しなくてもよい。
 化合物(2)は市販されており、例えば4-メトキシ-3-ブテ-2-オン(化合物(2a)の例)や1-(ジメチルアミノ)-1-ブテン-3-オン(化合物(2b)の例)は、容易に市販品を入手できる。また市販の試薬から公知の方法に準じて製造できる。たとえば、化合物(2a)については、US 20080287421 A1に記載される方法により、化合物(2b)については、CN 101781222 Aに記載される方法により製造できる。化合物(2)は、公知の方法で製造した場合、反応後に後処理を行った後、工程(2)の出発化合物として用いてもよく、さらに精製して高純度化して用いてもよい。
 工程1において、化合物(1)と化合物(2)の添加順序に特に制限はない。化合物(2)の使用量は特に限定されず、経済性の観点から、化合物(1)1モルに対して、0.8~3.0モルが好ましく、0.9~2.0モルがより好ましく、0.9~1.8モルが更に好ましい。
 化合物(1)と化合物(2)の反応においては、酸性の副生物が生成するため、これを捕捉する塩基の存在下に実施してもよい。塩基としては、水素化ナトリウム、水素化カリウム、水素化カルシウム等の金属水素化物;イミダゾール、ピリジン、2,6-ルチジン、s-コリジン、N-メチルピロリジン、N-メチルピペリジン、エチルジイソプロピルアミン、トリエチルアミン、トリブチルアミンを含むトリ(C1~4アルキル)アミン等の有機アミン;水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素ナトリウム、フッ化ナトリウム、フッ化カリウム等の無機塩等を例示できる。塩基としては、収率が向上することから、有機アミンが好ましく、さらにピリジンおよびトリエチルアミンが好ましい。
 塩基の使用量は、化合物(1)1モルに対して、0.3~4.0モルが好ましく、0.3~2.0モルがより好ましく、0.5~1.5モルが更に好ましい。なお、化合物(1)に酸性の不純物(化合物(1)製造時の不純物等)が含まれる場合は、塩基の使用量を増量することが好ましい。この場合、塩基の使用量は、化合物(1)1モルに対して、0.3~5.0モルが好ましく、0.3~3.0モルがより好ましく、0.5~1.5モルが更に好ましい。
 化合物(1)と化合物(2)の反応は、溶媒の存在下で行ってもよい。溶媒としては、反応に不活性な溶媒から選択するのが好ましく、反応温度や基質の溶解性等に応じて適宜選択される。例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、酢酸、プロピオン酸等のカルボン酸系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸エチル等のエステル系溶媒、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒、モノクロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン系溶媒、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶媒、塩化メチレン、クロロホルム、1,2-ジクロロエタン等の脂肪族ハロゲン系溶媒、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒等が挙げられる。溶媒は1種のみであっても、2種類以上の混合溶媒であってもよい。溶媒は、反応率の観点から、芳香族炭化水素系溶媒、脂肪族ハロゲン系溶媒又はニトリル系溶媒を用いることが好ましく、トルエン、塩化メチレン、クロロホルム又はアセトニトリルを用いることが更に好ましく、塩化メチレン、クロロホルム又はアセトニトリルを用いることが最も好ましい。
 溶媒の使用量は、特に制限はなく、化合物(1)に対して、1~50倍量(重量基準)が好ましく、2~10倍量(重量基準)がより好ましい。
 工程1における反応温度は、下限を-80℃程度とし、上限は溶媒の沸点として適宜調節するのが好ましく、反応速度と反応効率の観点から、-30℃~120℃が好ましく、-30℃~80℃がより好ましく、-30℃~50℃が更に好ましい。反応時間は、基質や溶媒の量、種類、及び反応温度等に応じて適宜設定され、反応速度と反応効率の観点から、5分~24時間が好ましく、10分~6時間がより好ましく、30分~2時間が更に好ましい。反応圧力は、必要に応じて適宜設定され、加圧、減圧、大気圧のいずれでもよく、大気圧が好ましい。反応雰囲気は、必要に応じて適宜選ばれた雰囲気で行うことができるが、化合物(1)の分解を防ぐため、窒素もしくはアルゴン等の不活性ガス雰囲気下が好ましい。
 化合物(1)と化合物(2)の反応により生成する反応粗生成物は、そのまま次の反応に用いてもよいし、反応粗生成物中に含まれる副生物(たとえば、ハロゲン化水素、ハロゲン化水素酸塩等)を除去するために、水洗、または固体塩のろ別等を行ってもよい。またさらに、反応粗生成物から化合物(3)を単離・精製してもよい。単離・精製方法としては、当業者に公知ないしは周知の方法である溶媒抽出、蒸留、昇華、晶析、シリカゲルカラムクロマトグラフィー、分取薄層クロマトグラフィー、分取液体クロマトグラフィー、溶媒洗浄等の方法が採用できる。
 単離・精製に用いる溶媒は、化合物(3)が分解しない溶媒から選択するのが好ましく、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の脂肪族ハロゲン系溶媒;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素系溶媒;ジエチルエーテル、t-ブチルメチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン等のエーテル系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;ヘプタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒、メチルイソブチルケトン等のケトン系溶媒、水等が挙げられる。溶媒は1種のみであっても、2種類以上の混合溶媒であってもよい。該溶媒としては、これらのうちハロゲン系溶媒、エーテル系溶媒が好ましく、塩化メチレン及びt-ブチルメチルエーテルが特に好ましい。
[化合物(3a)から化合物(3b)の製造工程(工程1-i)]
 工程1以外の化合物(3)の製造方法として、式(3)のYがN・Aである下式(3a)で表される化合物を、酸性条件、塩基性条件又は中性条件で、水と反応させて、式(3)のYが酸素原子である化合物(3b)を製造する方法もある。以下、化合物(3a)から化合物(3b)を製造する工程を工程1-iという。工程1-iは、原料化合物の入手容易性や価格、工程1の反応収率が、Yが酸素原子であると低くなる場合等に、採用されうる。
Figure JPOXMLDOC01-appb-C000039
 R、R、R、R、R、X、X及びZの定義及び好ましい態様は、工程1と同じである。
 工程1-iは、酸性条件又は塩基性条件で行う場合には、たとえば、反応させる水とともに、酸又は塩基を併存させることにより実施でできる。酸性条件又は塩基性条件で反応を行う場合、化合物(3a)、水、及び酸又は塩基の添加順序は、化合物(3a)が分解しない限り特に限定されない。例えば、酸性又は塩基性の水溶液に化合物(3a)と添加してもよく、化合物(3a)と水との混合液に酸又は塩基を添加してもよい。酸又は塩基の添加は、一括添加、逐次添加、連続添加のいずれでもよい。酸としては、塩酸、硫酸、硝酸、リン酸などの無機酸、トリフルオロ酢酸、メタンスルホン酸、パラトルエンスルホン酸などの有機酸等が挙げられる。塩基としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等の無機塩基、トリエチルアミン、ピリジン等の有機塩基等が挙げられる。酸又は塩基の使用量は、化合物(3a)1モルに対して、0.8~5.0モルが好ましく、0.9~4.0モルがより好ましく、1.0~2.0モルが更に好ましい。水の使用量は、特に制限はなく、化合物(3a)に対して、0.5~20倍量(重量基準)が好ましく、0.8~5倍量(重量基準)が更に好ましい。
 工程1-iは、酸性条件、中性条件、塩基性条件のいずれでも行うことができるが、塩基性条件で行うことが好ましい。
 化合物(3a)と水との反応は、溶媒の存在下で行ってもよい。溶媒としては、反応に不活性な溶媒から選択するのが好ましく、反応温度や基質の溶解性等に応じて適宜選択される。例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、酢酸、プロピオン酸等のカルボン酸系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸エチル等のエステル系溶媒、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒、モノクロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン系溶媒、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶媒、塩化メチレン、クロロホルム、1,2-ジクロロエタン等の脂肪族ハロゲン系溶媒、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒等又はそれらの溶媒と水との混合溶媒を使用できる。溶媒は1種のみであっても、2種類以上の混合溶媒であってもよい。有機溶媒と水の混合溶媒を用いる場合、反応液は均一系でも有機相-水相の2相系でもよい。反応率の観点から、芳香族炭化水素系溶媒、脂肪族ハロゲン系溶媒又はニトリル系溶媒を用いることが好ましく、トルエン、塩化メチレン又はアセトニトリルを用いることが更に好ましい。
 溶媒の使用量は、特に制限はなく、化合物(3a)に対して、1~50倍量(重量基準)が好ましく、2~10倍量(重量基準)がより好ましい。
 工程1-iにおける反応温度は、下限を-50℃程度とし、上限は室温(25℃)が好ましく、反応速度と反応効率の観点から、-20℃~0℃がより好ましい。反応時間は、基質や溶媒の量、種類、及び反応温度等に応じて適宜設定され、反応速度と反応効率の観点から、5分~12時間が好ましく、30分~6時間がより好ましい。工程1-iにより、化合物(3a)から化合物(3b)を効率よく製造できる。
[工程2:化合物(3)から化合物(5)の製造工程(工程2)]
 つぎに、化合物(3)を、化合物(4a)又は化合物(4b)と反応させて化合物(5)を製造できる。以下、化合物(3)から化合物(5)を製造する工程を工程2という。
Figure JPOXMLDOC01-appb-C000040
 R、R、R、X、X、Y及びZの定義及び好ましい態様は、工程1と同じである。
 工程2においては、化合物(3)として、化合物(3b)を用いることが好ましい。化合物(3b)を使用した場合には、化合物(3a)を用いる場合よりも、環化反応における副生物の生成が抑制され、収率が高くなる利点がある。化合物(3b)は、工程1又は工程1-iに従い合成できる。
 化合物(4a)において、Rは、水素原子、C1~8のアルキル基又は窒素保護基であり、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、ベンゾイル基、t-ブトキシカルボニル基などが挙げられる。Rは、好ましくは水素原子又はC1~8のアルキル基であり、より好ましくは水素原子、メチル基又はエチル基である。化合物(4a)の具体例としては、ヒドラジン(Rが水素原子である化合物)、メチルヒドラジン(Rがメチル基である化合物)、エチルヒドラジン(Rがエチル基である化合物)等を例示できる。これらは市販品が容易に入手できる。化合物(4a)は水和物や水溶液を用いてもよい。たとえばヒドラジン一水和物やメチルヒドラジン40%水溶液を用いることもできる。
 化合物(4b)において、Rは、水素原子、C1~8のアルキル基又は窒素保護基であり、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、ベンゾイル基、t-ブトキシカルボニル基などが挙げられる。Rは、好ましくは水素原子又はC1~8のアルキル基であり、より好ましくは水素原子、メチル基又はエチル基である。
 R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基であるか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよい。R及びR10は、好ましくは、互いに独立して、水素原子、C1~12のアルキル基もしくはアリール基であるか、又はR及びR10は、好ましくは、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカンを形成する。R及びR10は、より好ましくは、互いに独立して、水素原子、メチル基、エチル基、t-ブチル基もしくはフェニル基であるか、又はRとR10は、より好ましくは、互いに結合して、それらが結合している炭素原子と一緒になってシクロペンタン又はシクロヘキサンを形成する。R及びR10は、さらに好ましくは、互いに独立して、水素原子、メチル基もしくはエチル基であるか、又はRとR10は、さらに好ましくは、互いに結合して、それらが結合している炭素原子と一緒になってシクロペンタンまたはシクロヘキサンを形成する。
 化合物(4b)の具体例としては、Rがメチル基、かつR及びR10が共にメチル基である化合物、Rがメチル基、かつR及びR10が互いに結合して、それらが結合している炭素原子と一緒になってシクロヘキサンを形成した化合物、Rがメチル基、Rがメチル基、かつR10がエチル基である化合物、Rがメチル基、Rが水素原子、かつR10がフェニル基である化合物、Rがメチル基、Rがメチル基、かつR10がt-ブチル基である化合物等が挙げられる。
 化合物(4b)は公知の方法で合成でき、例えば特表2011-513446号公報に記載の方法で合成できる。
 工程2において、化合物(3)と化合物(4a)又は化合物(4b)の添加順序に特に制限はない。化合物(4a)と化合物(4b)は、それぞれ単独で用いても、併用してもよい。併用する場合の割合は特に限定されない。化合物(4a)または化合物(4b)の使用量は特に限定されないが、経済性の観点から、化合物(3)1モルに対して、0.8~3.0モルが好ましく、0.9~2.0モルがより好ましく、1.0~1.8モルが更に好ましく、1.0~1.5モルが特に好ましい。化合物(4a)と化合物(4b)を併用する場合の総量は、化合物(3)に1モルに対して、0.8~3.0モルが好ましく、0.9~2.0モルがより好ましく、1.0~1.8モルが更に好ましく、1.0~1.5モルが特に好ましい。
 化合物(3)と化合物(4a)又は化合物(4b)の反応は、溶媒の存在下で行ってもよい。溶媒としては、反応に不活性な溶媒から選択するのが好ましく、反応温度や基質の溶解性等に応じて適宜選択される。例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸、プロピオン酸等のカルボン酸系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸エチル等のエステル系溶媒、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒、モノクロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン系溶媒、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶媒、塩化メチレン、クロロホルム、1,2-ジクロロエタン等の脂肪族ハロゲン系溶媒、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒等、又はそれらの溶媒と水との混合溶媒を使用できる。溶媒は1種のみであっても、2種類以上の混合溶媒であってもよい。有機溶媒と水の混合溶媒を用いる場合、反応液は均一系でも有機相-水相の2相系でもよい。反応率の観点から、脂肪族ハロゲン系溶媒又はニトリル系溶媒を用いることが好ましく、塩化メチレン、クロロホルム又はアセトニトリルを用いることが更に好ましい。
 溶媒の使用量は、特に制限はなく、化合物(3)に対して、1~50倍量(重量基準)が好ましく、2~10倍量(重量基準)がより好ましい。
 工程2における反応温度は、下限を溶媒の凝固点とし、上限は溶媒の沸点として適宜調節するのが好ましく、反応速度と反応効率の観点から、-50℃~50℃が好ましく、-40℃~室温(約25℃)が更に好ましく、-40℃から0℃が特に好ましい。反応時間は、基質や溶媒の量、種類、及び反応温度等に応じて適宜設定され、反応速度と反応効率の観点から、5分~24時間が好ましく、10分~8時間がより好ましく、30分~4時間が更に好ましい。反応圧力は、必要に応じて適宜設定され、加圧、減圧、大気圧のいずれでもよく、大気圧が好ましい。反応雰囲気は、必要に応じて適宜選ばれた雰囲気で行うことができるが、空気中、又は窒素もしくはアルゴン等の不活性ガス雰囲気下が好ましい。
 工程2の反応においては、化合物(5)とともに、下式で表される化合物(5-imp1)、(5-imp2)、(5-imp3)、(5-imp4)または(5-imp5)が、環化副生物として、理論上生成すると予想された。
Figure JPOXMLDOC01-appb-C000041
 R、R、R、X、X、Z及びYは、前記と同義である。
 しかし、本発明の製造方法の工程2の反応は、予想を超えて高選択率で進行させることができる。よって、工程2では、目的とする化合物(5)を高収率で得られる。即ち、化合物(5)と環化副生物の総量に対する環化副生物量は、5モル%未満、特に3モル%未満という高収率を達成できる。
 化合物(3)と化合物(4a)または化合物(4b)の反応は、塩基の存在下で行ってもよい。
 塩基としては有機塩基と無機塩基が挙げられる。有機塩基の例としては、ジメチルアミン、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、tert-ブチルジメチルアミン、エチルジシクロヘキシルアミン等の鎖状の第二級又は第三級アミン;N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、N,N’-ジメチルピペラジン、ピリジン、コリジン、ルチジン、4-ジメチルアミノピリジン等の環状第三級アミン;ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)等の二環式アミン;等が挙げられる。
 無機塩基の例としては、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属およびアルカリ土類金属水酸化物;酸化リチウム、酸化ナトリウム、酸化カルシウム、酸化マグネシウム等のアルカリ金属およびアルカリ土類金属酸化物;炭酸リチウム、炭酸カルシウム等のアルカリ金属およびアルカリ土類金属炭酸塩;重炭酸ナトリウム、重炭酸カリウム等のアルカリ金属重炭酸塩;水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等のアルカリ金属およびアルカリ土類金属水素化物;リチウムアミド、ナトリウムアミド、カリウムアミド等のアルカリ金属アミド;等が挙げられる。
 塩基としては、選択性向上の観点から、有機塩基が好ましく、アンモニアおよび鎖状の第二級又は第三級アミンがより好ましく、鎖状の第二級又は第三級アミンが特に好ましく、鎖状の第二級アミンがさらに好ましく、ジメチルアミンが最も好ましい。
 塩基の量は、特に限定されないが、化合物(3)の1モルに対して0.001~10モルが好ましく、0.1~5モルがより好ましく、0.2~3モルが更に好ましい。
 化合物(3)と化合物(4a)または化合物(4b)との反応を、塩基の存在下で行った場合は、化合物(5-imp1)、化合物(5-imp2)、化合物(5-imp3)、化合物(5-imp4)、化合物(5-imp5)等の環化副生物の生成が抑制され、化合物(5)を高収率、高選択率で得ることができる。
 化合物(3)と化合物(4a)または化合物(4b)の反応により生成する反応粗生成物は、そのまま次の反応に用いてもよいし、反応粗生成物中から化合物(5)を単離・精製してもよい。単離・精製方法としては、当業者に公知ないしは周知の方法である溶媒抽出、蒸留、昇華、晶析、シリカゲルカラムクロマトグラフィー、分取薄層クロマトグラフィー、分取液体クロマトグラフィー、溶媒による洗浄等の方法が採用できる。
 単離・精製に使用する溶媒は、反応生成物の安定性や回収率にできるだけ影響を与えない溶媒から選択するのが好ましく、モノクロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の脂肪族ハロゲン系溶媒;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素系溶媒;ジエチルエーテル、t-ブチルメチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン等のエーテル系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;ヘプタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;メチルイソブチルケトン等のケトン系溶媒;水等が挙げられる。溶媒は1種のみであっても、2種類以上の混合溶媒であってもよい。溶媒としては、エステル系溶媒、脂肪族ハロゲン系溶媒、脂肪族炭化水素系溶媒、水、またはこれらの混合溶媒が好ましく、クロロホルム、酢酸エチル、トルエンおよび水から選ばれる溶媒とヘプタン、メチルシクロヘキサンおよびエチルシクロヘキサンから選ばれる溶媒の組み合わせが特に好ましく、クロロホルムとメチルシクロヘキサンの混合溶媒、ヘプタンと酢酸エチルの混合溶媒、水と脂肪族炭化水素系溶媒の組み合わせ等がさらに好ましく、クロロホルムとメチルシクロヘキサンの組み合わせが最も好ましい。
[化合物(5)から化合物(6)の製造工程(工程3)]
 化合物(6)は、化合物(5)を、酸化剤と反応させて製造できる。以下、化合物(5)から化合物(6)を製造する工程を工程3という。工程3の反応の概念は下式で表わすことができる。塩基性条件下で反応させた場合、化合物(5)は、下式(6a)で表される化合物を経由し、続いて化合物(6a)を酸と反応させることにより化合物(6)になる。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 R、R、X、X及びZの定義及び好ましい態様は、工程1と同じであり、Rの定義及び好ましい態様は、工程2と同じであり、Mはカルボン酸のカウンターカチオンを示し、例えば、Na、K、1/2Ca2+、NH 等が挙げられる。
 酸化剤としては、特に制限されないが、好ましくはハロゲン(塩素、臭素、ヨウ素)、ハロゲンのオキソ酸およびその塩(次亜塩素酸およびその塩、次亜臭素酸およびその塩、亜塩素酸およびその塩、塩素酸およびその塩、ヨウ素酸およびその塩、過ヨウ素酸およびその塩など)、過酸化物(過酸化水素など)、酸素分子、オゾン等を挙げることができる。オキソ酸塩のカウンターカチオンとしては、Na、K、1/2Ca2+、NH 等が挙げられる。
 酸化剤としては、塩素を含む酸化剤が好ましく、次亜塩素酸またはその塩がより好ましく、次亜塩素酸塩が特に好ましい。
 酸化反応は、酸性条件、中性条件、塩基性条件のいずれであってもよい。塩基性条件下、たとえば、酸化剤として塩基性の酸化剤を用いた場合、または、塩基の存在下に酸化反応を行った場合は、化合物(5)からカルボン酸塩である化合物(6a)が生成し、次に酸と反応させることにより化合物(6)に変換される。
 塩基としては、無機塩基および有機塩基が挙げられる。無機塩基の例としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属およびアルカリ土類金属水酸化物;酸化リチウム、酸化ナトリウム、酸化カルシウム、酸化マグネシウム等のアルカリ金属およびアルカリ土類金属酸化物;炭酸リチウム、炭酸カルシウム等のアルカリ金属およびアルカリ土類金属炭酸塩;重炭酸ナトリウム、重炭酸カリウム等のアルカリ金属重炭酸塩;水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等のアルカリ金属およびアルカリ土類金属水素化物;リチウムアミド、ナトリウムアミド、カリウムアミド等のアルカリ金属アミド;等が挙げられる。有機塩基の例としてはトリエチルアミン、ジメチルアミンなどのアミンやアンモニアが挙げられる。塩基としてはコストの点からアルカリ金属およびアルカリ土類金属水酸化物、アルカリ金属およびアルカリ土類金属酸化物、アルカリ金属およびアルカリ土類金属炭酸塩、アルカリ金属重炭酸塩が好ましく、アルカリ金属およびアルカリ土類金属水酸化物がさらに好ましく、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムが最も好ましい。
 化合物(5)が酸性条件で副反応を起こす場合、例えば酸性条件下で塩素を用いて酸化すると望まない部位の塩素化や脱炭酸が進行する場合は塩基性条件下で反応を行うことが好ましい。
 塩基性条件で反応を行う方法において、酸化剤に次亜塩素酸塩を用いる場合には、通常、次亜塩素酸塩は塩基性の水溶液として市販されており、反応の進行に伴い塩基性の化合物を生成することから、反応系は塩基性になる。また次亜塩素酸塩は、水酸化ナトリウム水溶液や水酸化カリウム水溶液に塩素を反応させることにより調製できる。
 化合物(5)と酸化剤の添加順序に特に制限はない。酸化剤が不足する条件において反応中間体が分解しやすい基質を用いる場合は、酸化剤に化合物(5)を添加するのが好ましい。酸化剤の量は特に制限はないが、化合物(5)1モルに対して、1~10モルが好ましい。
 化合物(5)と酸化剤の反応は、溶媒の存在下で行ってもよい。溶媒としては、反応に不活性な溶媒から選択するのが好ましく、反応温度や基質の溶解性等に応じて適宜選択される。例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;酢酸、プロピオン酸等のカルボン酸系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸エチル等のエステル系溶媒;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;モノクロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン系溶媒;ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶媒;塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等の脂肪族ハロゲン系溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒;水を用いることができる。溶媒は1種のみであっても、2種類以上の混合溶媒であってもよい。溶媒としては、エーテル系溶媒、脂肪族ハロゲン系溶媒および水が好ましく、テトラヒドロフラン、ジオキサン、クロロホルム、四塩化炭素および水が特に好ましい。コストおよび反応後の単離精製操作の簡便性の点で最も好ましい溶媒はクロロホルムおよび水である。
 溶媒の使用量は、特に制限はなく、化合物(5)に対して、1~50倍量(重量基準)が好ましく、2~15倍量(重量基準)がより好ましい。
 工程3における反応温度は、下限を-30℃、好ましくは0℃とし、上限は溶媒の沸点として適宜調節するのが好ましく、反応速度と反応効率の観点から、-20~120℃が好ましく、0~70℃が更に好ましい。反応時間は、基質、酸化剤及び溶媒の量、種類、及び反応温度等に応じて適宜設定され、反応速度と反応効率の観点から、5分~24時間が好ましく、10分~8時間がより好ましく、30分~4時間が更に好ましい。反応圧力は、必要に応じて適宜設定され、加圧、減圧、大気圧のいずれでもよく、大気圧が好ましい。反応雰囲気は、必要に応じて適宜選ばれた雰囲気で行うことができるが、空気中、又は窒素もしくはアルゴン等の不活性ガス雰囲気下が好ましい。
 反応を促進させるために相関移動触媒を用いても良い。相関移動触媒としては第四級アンモニウム塩のような公知の化合物を用いても良いし、工程3で生成する化合物(6)や中間体である化合物(6a)を用いても良い。相関移動触媒の添加は化合物(5)が水に難溶な場合や、水と相溶しない有機溶媒と水を溶媒として用いて2相系で反応を行う場合に特に有効である。ここで水に難溶な化合物とは、水に対する溶解度が2%程度以下の化合物をいう。相関移動触媒の量は特に制限は無いが、通常は、化合物(5)1モルに対して0.001~1モル、好ましくは0.01~0.1モルである。
 化合物(5)と酸化剤との反応を塩基性条件下で行った場合、次の化合物(6a)と酸の反応は、酸化反応終了に後処理を行った後の反応混合物に酸を添加して行ってもよいし、酸化反応終了後の化合物(6a)を含む反応系中に酸を添加して行ってもよい。
 酸の種類としてはカルボン酸を生成させるに十分な酸性度を持ったものが好ましく、例えば、塩酸、硫酸、硝酸、リン酸などの無機酸や、トリフルオロ酢酸、メタンスルホン酸、パラトルエンスルホン酸などの有機酸が好ましい。
 酸の使用量は、化合物(6a)を化合物(6)に変換するのに十分であればよく、酸添加後の系のpHを5以下、好ましくは3以下にする量が好ましい。
 上記の方法により遊離のカルボン酸として得られた化合物(6)は精製しなくても十分に高純度であり、水などの溶媒洗浄によりさらに高純度にすることもできる。
 化合物(5)と酸化剤の反応により生成する反応粗生成物からは、化合物(6)を単離・精製してすることもできる。単離・精製方法としては、当業者に公知ないしは周知の方法である溶媒抽出、蒸留、昇華、晶析、シリカゲルカラムクロマトグラフィー、分取薄層クロマトグラフィー、分取液体クロマトグラフィー、溶媒洗浄等の方法が採用できる。
 単離・精製に用いる溶媒は、化合物(6)が分解しない溶媒から選択するのが好ましく、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の脂肪族ハロゲン系溶媒;ベンゼン、トルエン、キシレン、アニソール等の芳香族炭化水素系溶媒;ジエチルエーテル、t-ブチルメチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン等のエーテル系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;ヘプタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;およびメチルイソブチルケトン等のケトン系溶媒、水等が挙げられる。溶媒は1種のみであっても、2種類以上の混合溶媒であってもよい。溶媒洗浄に用いる溶媒としては水が好ましい。
[中間体化合物]
 化合物(3)と化合物(4)との反応で生成する化合物(5)のうち、下式(5a)で表される化合物は、新規で有用な化合物である。すなわち、本発明は、新規な下式(5a)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000044
 R12は、C1~8のアルキル基であり、好ましくはメチル基、エチル基、プロピル基又はイソプロピル基であり、より好ましくはメチル基又はエチル基であり、更に好ましくはメチル基である。
 R13は、水素原子、C1~8のアルキル基又は窒素保護基であり、好ましくは水素原子又はC1~8のアルキル基であり、より好ましくは水素原子、メチル基又はエチル基であり、さらに好ましくはメチル基である。
 X11及びX12は、互いに独立して、フッ素原子又は塩素原子であり、好ましくはフッ素原子である。
 ただし、化合物(5a)において、R12がメチル基、R13が窒素保護基、かつX11及びX12がフッ素原子である化合物は除かれる。
 化合物(5a)の具体例は、下記化合物が挙げられる。
 1-(3-ジフルオロメチル-1-メチル-1H-ピラゾール-4-イル)-1-プロパノン、
 1-(3-ジフルオロメチル-1-メチル-1H-ピラゾール-4-イル)-1-ブタノン、
 1-(3-ジフルオロメチル-1-メチル-1H-ピラゾール-4-イル)-2-メチル-1-プロパノン、
 1-(3-ジフルオロメチル-1H-ピラゾール-4-イル)エタノン、
 1-(3-ジフルオロメチル-1H-ピラゾール-4-イル)-1-プロパノン、
 1-(3-ジフルオロメチル-1H-ピラゾール-4-イル)-1-ブタノン、
 1-(3-ジフルオロメチル-1H-ピラゾール-4-イル)-2-メチル-1-プロパノン。
 化合物(1)と化合物(2)との反応で生成する化合物(3)のうち、下式(3c)で表される化合物は、新規で有用な化合物である。すなわち、本発明は、新規な下式(3c)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000045
 化合物(3c)において、R12は、C1~8のアルキル基であり、好ましくはメチル基、エチル基、プロピル基又はイソプロピル基であり、より好ましくはメチル基又はエチル基であり、更に好ましくはメチル基である。
 R15及びR16は、互いに独立して、水素原子もしくはC1~8のアルキル基であるか、又はR15及びR16は、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。R15及びR16は、好ましくは、互いに独立して、水素原子、メチル基もしくはエチル基であるか、又はR15及びR16は、好ましくは、互いに結合して、それらが結合している窒素原子と一緒になってピロリジン、ピペリジンもしくはモルホリンを形成する。
 X11及びX12は、互いに独立して、フッ素原子又は塩素原子であり、好ましくはフッ素原子である。
 Y11は、酸素原子又はN1718・Aであり、好ましくは酸素原子である。R17及びR18は、互いに独立して、C1~8のアルキル基であるか、又はR17及びR18は、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。R17及びR18は、好ましくは、互いに独立して、メチル基もしくはエチル基であるか、又はR17及びR18は、好ましくは、互いに結合して、それらが結合している窒素原子と一緒になってピロリジン、ピペリジンもしくはモルホリンを形成する。
 Aは、カウンターアニオンであり、好ましくはフッ化物イオン、塩化物イオン等のハロゲン化物イオン又はテトラフルオロホウ酸イオン(BF4-)である。
 また、式(3c)における波線は、NR1516の二重結合に関する立体配置がEであってもZであってもよいことを示す。
 中でも、R12が、C1~8のアルキル基であり、R15及びR16が、互いに独立して、C1~8のアルキル基であり、X11及びX12が、フッ素原子であり、かつY11が、酸素原子である化合物が特に好ましい。
 化合物(3c)の具体例は、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000046
 化合物(1)と化合物(2)との反応で生成する化合物(3)のうち、下式(3d)で表される化合物は、新規で有用な化合物である。すなわち、本発明は、新規な下式(3d)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000047
 化合物(3d)において、R14は、C1~2のアルキル基であり、すなわちエチル基又はメチル基である。
 式(3d)における波線は、OR14の二重結合に関する立体配置がEであってもZであってもよいことを示す。
 化合物(3d)の具体例は、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000048
 化合物(3c)、化合物(3d)及び化合物(5a)は、本発明の製造方法に有用な中間体化合物である。これらの中間体より得られる4-ケトピラゾール誘導体及びピラゾール-4-カルボン酸誘導体は、更に、医薬や農薬の中間体として有用である。また、化合物(3c)、化合物(3d)及び化合物(5a)は、安価な原料から容易に入手することができ、かつ取扱いも容易であることから、これらの中間体を用いる製造方法は、工業的にも優れている。
 本発明における化合物(2)のかわりに下記化合物(2n)を用いる態様も可能である。化合物(2n)を用いた場合には、化合物(3)に対応する化合物は下記化合物(3n)となり、化合物(5)に対応する化合物は下記化合物(5n)となる。つまり、化合物(5n)を加水分解することにより化合物(5)を製造してもよい。
(式中のRは、カルボニル基の保護基であって加水分解により脱離する基を示し、1,3-ジオキサン等のアセタール系保護基;1,3-オキサチオラン等のモノチオアセタール系保護基;1,3-ジチアン等のジチオアセタール系保護基;またはメチルヒドラゾン等のヒドラゾン系保護基である。他の記号は前記と同じである。)
Figure JPOXMLDOC01-appb-C000049
 化合物(2n)の具体例としては、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000050
 化合物(3n)の具体例としては、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000051
 化合物(5n)の具体例としては、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000052
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。「化合物n」は、式(n)で表される化合物を意味する。
 実施例、比較例の分析に使用したNMRは日本電子製JNM-ECP400(400MHz)であり、H NMRではテトラメチルシランを0PPM、19F NMRではCを-162PPMの基準値とした。HPLCはAgilent製1260LC、1200LCおよび島津製作所製LC-20を使用した。実施例中に記載する収率(%)の単位は、モル%である。反応試薬の濃度の単位は、重量濃度(wt%)である。
[実施例1]
 ジフルオロ酢酸フルオリド(1a-1)と化合物(2b-1)の反応による化合物(3b-1)の合成
Figure JPOXMLDOC01-appb-C000053
 窒素雰囲気下、化合物(2b-1)17.6g(140.0mmol)とトリエチルアミン57.5g(567.9mmol)の塩化メチレン200ml溶液を氷冷し、ジフルオロ酢酸フルオリド(1a-1)13.7g(140.0mmol)を添加した。室温(25℃)で1時間撹拌後に氷冷し、水道水100mlでクエンチし、分液した。水相を塩化メチレン100mlで1回抽出後、有機相を合わせて粗液をGCで定量したところ、化合物(3b-1)が化合物(2b-1)基準で収率96%で生成していることを確認した。
H NMR(CDOD) δ=2.28(s,3H),2.80(s,3H),3.30(S,3H),6.49(t,1H),8.04(s,1H). 
19F NMR(CDOD) δ=-123.6(d,2F).
[実施例2]
 化合物(3b-1)とメチルヒドラジンの反応による化合物(5-1)の合成
Figure JPOXMLDOC01-appb-C000054
 窒素雰囲気下、40%メチルヒドラジン水溶液4.0g(34.5mmol)に塩化メチレン15mlを加え、-20℃に冷却した。前記の方法で得た化合物(3b-1)6.0g(31.4mmol)の塩化メチレン15ml溶液をゆっくり滴下し、-20℃で2時間撹拌後、水30mlを加えてクエンチした。反応液を分液後、水相を塩化メチレン15mlで2回抽出し、有機相を合わせて飽和食塩水15mlで洗浄した。有機相を硫酸ナトリウムで乾燥後に溶媒を減圧下で留去した。得られた生成粗体をNMR、HPLCで分析したところ、化合物(5-1)の収率は86%であった。環化副生物である化合物(5-imp1-1)は2%、化合物(5-imp2-1)は1%未満の痕跡量であった。
化合物(5-1)
H NMR(重アセトン) δ=2.41(s,3H),3.99(s,3H),7.17(t,1H),8.41(s,1H).
19F NMR(重アセトン) δ=-113.8(d,2F).
化合物(5a-1)
19F NMR(重アセトン) δ=-114.4(d,2F).
[実施例2-2]
 ジフルオロ酢酸フルオリド(1a-1)を、同一反応器での連続反応(ワンポット法)させることによる化合物(5-1)の合成
 窒素雰囲気下、化合物(2b-1)50.0g(97.6wt%純度,431.3mmol)とトリエチルアミン109.1g(1078.1mmol)の塩化メチレン250mL溶液を氷冷し、エチル-1,1,2,2-テトラフルオロエチルエーテルから合成したジフルオロ酢酸フルオリド(1a-1)67.64g(690.1mmol)を単離することなく添加した。25℃で20分間撹拌した後、得られた粗液(全体534.8g)の一部をそのまま次工程に用いた。粗液をNMRで定量したところ、化合物(3b-1)が化合物(2b-1)基準で収率96.3%で生成していることを確認した。
 窒素雰囲気下、40%メチルヒドラジン水溶液2.01g(17.3mmol)に塩化メチレン7.5mLを加え、-20℃に冷却した。上記の方法で得た粗液の一部27.6g(化合物(3b-1)15.7mmol含有)をゆっくり滴下し、-20℃で2時間撹拌後、さらに40%メチルヒドラジン水溶液1.28g(11.0mmol)を加え、-20℃で3時間撹拌した。水8mLを加えてクエンチし、反応液を分液後、水相を塩化メチレン5mLで2回抽出した。有機相を合わせた後、溶媒を減圧下で留去して目的とする化合物(5-1)を得た。
[実施例3]
 NaOClを用いる化合物(5-1)の酸化による化合物(6-1)の合成
Figure JPOXMLDOC01-appb-C000055
 空気雰囲気下、水酸化ナトリウム0.72g(18.0mmol)、8%次亜塩素酸ナトリウム水溶液16.2g(17.5mmol)溶液に[実施例2]の方法で得た化合物(5-1)1.01g(5.7mmol)を室温(25℃)で添加し、2時間70℃で撹拌した。反応液を氷冷後飽和亜硫酸ナトリウム水溶液5mlを加えてクエンチし、水相に濃塩酸33gを加え、酢酸イソプロピル30mlで2回抽出した。溶媒を減圧下で留去した。得られた生成粗体をHPLCで分析したところ、化合物(6-1)の収率は98%であった。
H NMR(CDOD) δ=3.95(s,3H),7.13(t,1H),8.15(s,1H).
19F NMR(CDOD) δ=-114.2(d,2F).
[実施例3-2]
 化合物(5-1)の酸化による化合物(6-1)の合成
 空気雰囲気下、14%次亜塩素酸ナトリウム水溶液18.2g(34.4mmol、pH11)溶液に、[実施例2]の方法で得た化合物(5-1)2.01g(11.5mmol)を20℃で添加した。2時間20℃で撹拌後に氷冷し、クロロホルム10mLを加え、分液した。得られた水相を氷冷後飽和亜硫酸ナトリウム水溶液5mlを加えて撹拌し、35%塩酸2.5gを加えて系を酸性(pH=1)にしたところ、化合物(6-1)が析出した。0℃で1時間撹拌後に、減圧下で濾過をし、得られた精製粗体を水洗した。溶媒を減圧下で留去して化合物(6-1)を得た。収率は97%であり、HPLC純度は99.9%であった。
H NMR(CDOD) δ=3.95(s,3H),7.13(t,1H),8.15(s,1H).
19F NMR(CDOD) δ=-114.2(d,2F).
[実施例4]
 塩素ガスと水酸化ナトリウムから系中で発生させたNaOClを用いる化合物(5-1)の酸化による化合物(6-1)の合成
Figure JPOXMLDOC01-appb-C000056
 空気雰囲気下、[実施例2]の方法で得た化合物(5-1)1.85g(10.6mmol)を20重量%水酸化ナトリウム水溶液92g(459mmol)に懸濁させ、室温(25℃)で塩素ガス3.1g(43.1mmol)を加えた。反応液を氷冷後飽和亜硫酸ナトリウム水溶液を加えてクエンチし、水相に濃塩酸を加え、塩化メチレン40mlで2回抽出した。溶媒を減圧下で留去した。得られた生成粗体をHPLCで分析したところ、化合物(6-1)の収率は89%であった。
H NMR(CDOD) δ=3.95(s,3H),7.13(t,1H),8.15(s,1H).
19F NMR(CDOD) δ=-114.2(d,2F).
[実施例5]
 1,1,2,2-テトラフルオロ-N,N-ジメチルエタンアミン(TFEDMA)とBF3、化合物(2b-1)の反応によるビナミニジウム塩(3a-1)の合成
Figure JPOXMLDOC01-appb-C000057
 窒素雰囲気下、BFの19%アセトニトリル溶液38.9g(108.6mmol)を氷冷し、TFEDMA16.2g(110.2mmol)をゆっくり添加した。19F NMRの内部標準としてヘキサフルオロベンゼン1.1g(5.7mmol)を添加してから室温(25℃)に昇温し、室温(25℃)で1時間撹拌後反応液を氷冷し、化合物(2b-1)12.3g(109.7mmol)を脱水アセトニトリル16mlに溶解した溶液をゆっくり添加した。化合物(2b-1)添加終了後に室温(25℃)に昇温して2時間撹拌し、反応液をサンプリングして19F NMRで分析したところ、ビナミジニウム塩(3a-1)が83%の収率で生成していた。反応液80.0gのうち20.0gを小分けして減圧下で留去したところ褐色の油状物質が9.3g得られた。
19F NMR(アセトニトリル) δ=-119.0(d,2F).
[実施例6]
 ビナミニジウム塩とメチルヒドラジンの反応による化合物(5-1)の合成
Figure JPOXMLDOC01-appb-C000058
 窒素雰囲気下、BFの19%アセトニトリル溶液9.3g(27.3mmol)を氷冷し、TFEDMA4.0g(27.28mmol)をゆっくり添加した。室温(25℃)に昇温し、室温(25℃)で1時間撹拌後反応液を氷冷して化合物(2b-1)3.1g(27.4mmol)をゆっくり添加した。化合物(2b-1)添加終了後に室温(25℃)に昇温して3時間撹拌し、氷冷してメチルヒドラジン1.5g(32.6mmol)のアセトニトリル3ml溶液をゆっくり添加した。室温(25℃)に昇温して64時間撹拌後、氷冷し、飽和重曹水10mlでクエンチし、分液した。水相を酢酸エチル5mlで2回抽出後、有機相を合わせて飽和食塩水10mlで洗浄し、硫酸ナトリウムで乾燥し、減圧下で溶媒を留去した。得られた粗生成物をカラムクロマトグラフィー(展開溶媒:ヘキサン、酢酸エチル)で精製したところ、化合物(5-1)が21%の収率で得られた。
化合物(5-1)
H NMR(重アセトン) δ=2.41(s,3H),3.99(s,3H),7.17(t,1H),8.41(s,1H).
19F NMR(重アセトン) δ=-113.8(d,2F).
[実施例7]
ビナミニジウム塩(3a-1)の加水分解による化合物(3b-1)の合成
Figure JPOXMLDOC01-appb-C000059
 窒素雰囲気下、実施例4で得られたビナミニジウム塩(3a-1)9.3g(定量による物質量22.8mmol)を脱水塩化メチレン20mlに溶解し、氷冷した。10%水酸化ナトリウム水溶液11.0g(27.5mmol)をゆっくり添加し、氷冷下1時間撹拌後、分液し、水相を塩化メチレン10mlで2回抽出した。有機相を合わせて飽和食塩水20mlで洗浄し、硫酸ナトリウムで乾燥し、減圧下で溶媒を留去した。得られた粗生成物をカラムクロマトグラフィー(展開溶媒:ヘキサン、酢酸エチル、メタノール)で精製したところ、化合物(3b-1)が66%の収率で得られた。
H NMR(CDOD) δ=2.28(s,3H),2.80(s,3H),3.30(S,3H),6.49(t,1H)、8.04(s,1H).
19F NMR(CDOD) δ=-123.6(d,2F).
[実施例8]
化合物(3b-1)の合成
Figure JPOXMLDOC01-appb-C000060
 窒素雰囲気下、反応器に、化合物(2b-1)(316g,2793mmol)と塩基のトリエチルアミン(203g,2009mmol)の溶媒のクロロホルム(948ml)を仕込み、撹拌しながら、内温を0℃に保持して、ジフルオロ酢酸フルオリド(1a-1)(278g,2840mmol)を添加した。内温を-5℃~+5℃に保持して、30分間撹拌後に反応液をNMRで分析した結果、化合物(3b-1)が、化合物(2b-1)を基準として収率100%で生成していることを確認した。
[実施例9~17]
化合物(3b-1)の合成
 溶媒の種類と比率、反応温度を変更する以外は実施例8と同様の条件で反応を行った。条件と結果を、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000061
 表1中の(※1)は化合物(2b-1)量に対する溶媒容積の比率(ml/g)を、(※2)は化合物(1a-1)に対して1.4倍molのトリエチルアミンを塩基兼溶媒として使用したことを示す。表1中、AcOEtは酢酸エチルを、PhClはモノクロロベンゼンを示す。
[実施例18]
化合物(5-1)の合成
Figure JPOXMLDOC01-appb-C000062
 窒素雰囲気下、メチルヒドラジン(26.4g,575mmol)と添加剤のジメチルアミン50%水溶液(94g,1046mmol)の混合液に溶媒のクロロホルム(250ml)を加え、-40℃に冷却した。実施例8で得た反応液である、化合物(3b-1)(100g,523mmol)とトリエチルアミンフッ化水素塩を含むクロロホルム溶液(410g)を、ゆっくり滴下し、-40℃で1時間撹拌した。0℃から10℃の間まで昇温後、水(260ml)を加えてから分液した。有機相をHPLCで定量した結果、化合物(3b-1)を基準として収率93%で、化合物(5-1)を得た。環化副生物である化合物(5-imp1-1)は1.4%、化合物(5-imp2-1)、化合物(5-imp2-2)、化合物(5-imp2-3)、化合物(5-imp2-4)および化合物(5-imp2-5)は、いずれも1%未満の痕跡量しか副生していなかった。
[実施例19~26]
化合物(5-1)の合成
 溶媒の種類と添加剤の種類と量、反応温度を変更する以外は、実施例18と同様の条件で反応を実施した。条件と結果を、表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000063
 表2中の(※3)は化合物(3b-1)量に対する添加剤量の比率(mol/mol)を示す。
[実施例27]
化合物(5-1)の晶析
 実施例18で得られた化合物(5-1)の有機相の溶媒を減圧留去し、化合物(5-1)の5倍容積の晶析溶媒の水を加え、80℃に昇温後0℃まで冷却させて晶析を実施した。析出した化合物(5-1)の固体を回収、乾燥させて、純度98.2%(HPLC面積率)の化合物(5-1)を晶析収率92%で得た。
[実施例28~32]
化合物(5-1)の晶析
 晶析溶媒の種類を変更する以外は、実施例27と同様の条件で晶析を実施した。条件と結果を、表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000064
 表3中のへプタン/トルエンは、ヘプタンとトルエンを順に9:1の割合(容積比)で混合した混合溶媒であり、ヘプタン/酢酸エチルは、ヘプタンと酢酸エチルを順に9:1の割合(容積比)で混合した混合溶媒であり、メチルシクロヘキサン/CHClは、メチルシクロヘキサンとCHClを順に9:1の割合(容積比)で混合した混合溶媒である。
[実施例33]
化合物(6-1)の合成
Figure JPOXMLDOC01-appb-C000065
 空気雰囲気下、反応器に、相関移動触媒の化合物(6-1)(10.2g,57mmol)、水酸化ナトリウム(2.7g,68mmol)、水(200g)を順に加え溶解させてから、13.75%次亜塩素酸ナトリウム水溶液(1016g,1877mmol)を加えた。撹拌しながら、内温を20℃から30℃に保持しつつ、実施例18と同様にして得られた化合物(5-1)(100g,569mmol)を溶媒のクロロホルム(450g,300ml)に溶解させた溶液を1時間かけて滴下して、反応を実施した。
 滴下終了1時間後の反応液をNMRとHPLCにて分析した結果、化合物(5-1)の消失と化合物(6a-1)の生成を確認した。反応液を分液して回収した水相に、10%亜硫酸ナトリウム水溶液(289g,229mmol)を30℃以下に保持しながら加えた。
 次いで、次亜塩素酸ナトリウムが残存しないことを電位測定およびヨウ素デンプン反応で確認した後に、濃硫酸114g(1137mmol)を内温30℃以下に保持しながら加えた。液のpHが4以下になると白色固体が析出し、最終的には液のpHは1となった。析出した固体を濾別して回収し、水洗した後に乾燥した。乾燥した固体は、HPLC分析した結果、純度99.9%(HPLC面積率)の化合物(6-1)であり、その収率は97%(化合物(5-1)と相関異動触媒として加えた化合物(6-1)の総物質量を基準とする。)であった。
[実施例34~37]
化合物(6-1)の合成
 相関移動触媒の量、反応温度を変更する以外は、実施例33と同様の条件で反応を実施した。条件と結果を、表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000066
 表4中の(※4)は化合物(5-1)量に対する有機溶媒容積の比率(ml/g)を、(※5)は化合物(5-1)量に対する相関移動触媒量の比率(mol/mol)を示す。
[実施例38]
化合物(6-1)の合成
 空気雰囲気下、反応器内にて、実施例18と同様にして得られた化合物(5-1)(38g,218mmol)と相関移動触媒の化合物(6-1)(3.9g,22.2mmol)、水酸化ナトリウム(1.1g,27.5mmol)と水(80g)を懸濁させ、内温20℃から30℃に保持しつつ、14.5%次亜塩素酸ナトリウム水溶液(364g,709mmol)を反応器内に添加した。
 滴下終了2時間後の反応液をNMRとHPLCにて分析した結果、化合物(5-1)の消失と化合物(6a-1)の生成を確認した。反応液を分液して回収した水相に、10%亜硫酸ナトリウム水溶液(111g)を加え、次亜塩素酸ナトリウムが残存しないことを電位測定およびヨウ素試験紙で確認した。つぎに、水相に濃硫酸(44g)を加えた。液のpHが3以下になると白色固体が析出した。析出した固体を濾別して回収し、水洗した後に乾燥した。乾燥した固体は、HPLC分析した結果、純度99.5%(HPLC面積率)の化合物(6-1)であり、その収率は97%(例33と同様基準。)であった。
[実施例39]
化合物(6-1)の合成
 空気雰囲気下、反応器内にて、実施例18と同様にして得られた化合物(5-1)(40g,230mmol)と相関移動触媒の化合物(6-1)(4.0g,22.7mmol)、水酸化ナトリウム(1.1g,27.5mmol)と水(80g)を懸濁させ、内温5℃から15℃に保持しつつ、14.5%次亜塩素酸ナトリウム水溶液(372g,700mmol)を反応器内に添加した。
 滴下終了2時間後の反応液をNMRとHPLCにて分析した結果、化合物(5-1)の消失と化合物(6a-1)の生成を確認した。反応液を分液して回収した水相に、10%亜硫酸ナトリウム水溶液(111g)を加え、次亜塩素酸ナトリウムが残存しないことを電位測定およびヨウ素試験紙で確認した。つぎに、水相に濃硫酸(44g)を加えた。液のpHが3以下になると白色固体が析出した。析出した固体を濾別して回収し、水洗した後に乾燥した。乾燥した固体は、HPLC分析した結果、純度99.9%(HPLC面積率)の化合物(6-1)であり、その収率は97%(例33と同様基準。)であった。
 本発明の製造方法によれば、医薬や農薬の中間体として有用なピラゾール誘導体を、工業的に有利、かつ、経済的に優れた方法で製造できる。
 本出願は、日本で2015年3月26日に出願された特願2015-65271号および2015年6月1日に出願された特願2015-111722号を基礎としており、その内容は本明細書にすべて包含される。

Claims (26)

  1.  下式(5)で表される化合物と酸化剤とを反応させることを特徴とする、下式(6)で表されるピラゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
     Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
     Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
     X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
     Zは、水素原子又はC1~8のアルキル基を表す。)。
  2.  下式(5)で表される化合物と酸化剤とを塩基性条件下に反応させた後、酸と反応させることを特徴とする、下式(6)で表されるピラゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
     Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
     Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
     X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
     Zは、水素原子又はC1~8のアルキル基を表す。)。
  3.  下式(5)で表される化合物と酸化剤とを塩基の存在下に反応させることを特徴とする、下式(6a)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、
     Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
     Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
     Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
     X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
     Zは、水素原子又はC1~8のアルキル基を表し、
     Mは、カルボン酸のカウンターカチオンを表す。)。
  4.  Rにおける置換基が、反応に関与しない不活性な基又は原子である、請求項1~3のいずれかに記載の製造方法。
  5.  下式(5)で表される化合物を、下式(3)で表される化合物と下式(4a)又は(4b)で表される化合物とを反応させることにより得る、請求項1~4のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     R、R、R、X、X及びZは、請求項1と同義であり、
     Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
     Yは、酸素原子又はN・A(式中、R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表し、
     R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基を表すか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよく、
     波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
  6.  R及びR10における置換基を有するC1~12のアルキル基の置換基が、互いに独立して、-X、-OR、-SR、-N(R)(R)、-Si(R)(R)(R)、-COOR、-(C=O)R、-CN及び-CON(R)(R)からなる群から選択される(式中、R、R、Rは、それぞれ独立に、水素原子又はC1~8のアルキル基を表し、Xはフッ素原子または塩素原子を表す)、請求項5に記載の製造方法。
  7.  式(3)で表される化合物と式(4a)又は(4b)で表される化合物との反応を、有機塩基の存在下で行う、請求項5に記載の製造方法。
  8.  有機塩基が、鎖状第二級又は第三級アミンである、請求項7に記載の製造方法。
  9.  有機塩基が、ジメチルアミンである、請求項7に記載の製造方法。
  10.  下式(3b)で表される化合物と下式(4a)又は(4b)で表される化合物とを反応させることにより下式(5)で表される化合物を得て、該式(5)で表される化合物と酸化剤とを反応させることを特徴とする、下式(6)で表されるピラゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
     Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
     Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
     X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
     Zは、水素原子又はC1~8のアルキル基を表し、
     Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
     R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基を表すか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよく、
     波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
  11.  下式(3b)で表される化合物と下式(4a)又は(4b)で表される化合物とを反応させることにより下式(5)で表される化合物を得て、該式(5)で表される化合物と酸化剤とを塩基性条件下に反応させた後、酸と反応させることを特徴とする、下式(6)で表されるピラゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
     Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
     Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
     X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
     Zは、水素原子又はC1~8のアルキル基を表し、
     Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
     R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基を表すか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよく、
     波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
  12.  R及びR10における置換基を有するC1~12のアルキル基の置換基が、互いに独立して、-X、-OR、-SR、-N(R)(R)、-Si(R)(R)(R)、-COOR、-(C=O)R、-CN及び-CON(R)(R)からなる群から選択される(式中、R、R、Rは、それぞれ独立に、水素原子又はC1~8のアルキル基を表し、Xはフッ素原子または塩素原子を表す。)、請求項10又は11に記載の製造方法。
  13.  下式(3b)で表される化合物を、下式(3a)で表される化合物を水と反応させることにより得る、請求項10~12のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式中、
    、R、R、X、X、Z及び波線は、請求項10と同義であり、
    及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、
    は、カウンターアニオンを表す。)。
  14.  式(3a)で表される化合物と水との反応を塩基性条件下で行う、請求項13に記載の製造方法。
  15.  下式(3)で表される化合物を、下式(1)で表される化合物と下式(2)で表される化合物とを反応させることにより得る、請求項5~9のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (式中、
     R、R、X、X及びZは、請求項1と同義であり、
     R、Y及び波線は、請求項5と同義であり、
     Xは、ハロゲン原子を表す。)。
  16.  酸化剤が次亜塩素酸塩である、請求項1~15のいずれかに記載の製造方法。
  17.  Rが水素原子である、請求項1~16のいずれかに記載の製造方法。
  18.  1,1,2,2-テトラフルオロ-N,N-ジメチルエタンアミンとBFを反応させて下式(1b-1)で表される化合物を得て、当該化合物を下式(2b-1)で表される化合物と反応させることを特徴とする、下式(3a-1)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000009
  19.  請求項18の方法で得られた式(3a-1)で表される化合物とメチルヒドラジンとを反応させることを特徴とする、下式(5-1)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000010
  20.  下式(3)で表される化合物と下式(4a)又は(4b)で表される化合物とを反応させることを特徴とする、下式(5)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    [式中、
     Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
     Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
     Rは、水素原子、C1~8のアルキル基又は窒素保護基を表し、
     X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
     Zは、水素原子又はC1~8のアルキル基を表し、
     Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
     Yは、酸素原子又はN・A(式中、R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表し、
     R及びR10は、互いに独立して、水素原子、C1~12のアルキル基、置換基を有するC1~12のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基もしくは置換基を有するヘテロアリール基を表すか、又はR及びR10は、互いに結合して、それらが結合している炭素原子と一緒になって3~8員のシクロアルカン、置換基を有する3~8員のシクロアルカン、3~8員のヘテロ環もしくは置換基を有する3~8員のヘテロ環を形成してもよく、
     波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
  21.  下式(3a)で表される化合物を水と反応させることを特徴とする、下式(3b)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000012
    [式中、
     Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
     Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
     X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
     Zは、水素原子又はC1~8のアルキル基を表し、
     Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
     R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、
     Aは、カウンターアニオンを表し、
     波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
  22.  下式(1)で表される化合物と下式(2)で表される化合物とを反応させることを特徴とする、下式(3)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000013
    [式中、
     Rは、水素原子、ハロゲン原子又はC1~8のハロアルキル基を表し、
     Rは、C1~8のアルキル基、C3~8のシクロアルキル基、置換基を有するC3~8のシクロアルキル基、アリール基、置換基を有するアリール基、ヘテロアリール基又は置換基を有するヘテロアリール基を表し、
     X及びXは、互いに独立して、フッ素原子又は塩素原子を表し、
     Zは、水素原子又はC1~8のアルキル基を表し、
     Rは、OR、NR又はSR(式中、Rは、C1~8のアルキル基、アリール基又は置換基を有するアリール基を表し、R及びRは、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよい。)を表し、
     Yは、酸素原子又はN・A(式中、R及びRは、互いに独立して、C1~8のアルキル基を表すか、又はR及びRは、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表し、
     Xは、ハロゲン原子を表し、
     波線は、ZとRの二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
  23.  下式(5a)で表される化合物。
    Figure JPOXMLDOC01-appb-C000014
    (式中、
     R12は、C1~8のアルキル基を表し、
     R13は、水素原子、C1~8のアルキル基又は窒素保護基を表し、
     X11及びX12は、互いに独立して、フッ素原子又は塩素原子を表し、
     ただし、R12がメチル基、R13が窒素保護基、かつX11及びX12がフッ素原子である化合物を除く。)。
  24.  R12が、メチル基又はエチル基であり、R13が、水素原子、メチル基又はエチル基であり、かつX11及びX12が、フッ素原子である、請求項23に記載の化合物。
  25.  下式(3c)で表される化合物。
    Figure JPOXMLDOC01-appb-C000015
    [式中、
     R12は、C1~8のアルキル基を表し、
     R15及びR16は、互いに独立して、水素原子もしくはC1~8のアルキル基を表すか、又はR15及びR16は、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、
     X11及びX12は、互いに独立して、フッ素原子又は塩素原子を表し、
     Y11は、酸素原子又はN1718・A(式中、R17及びR18は、互いに独立して、C1~8のアルキル基を表すか、又はR17及びR18は、互いに結合して、それらが結合している窒素原子と一緒になって5~6員のヘテロ環を形成してもよく、Aは、カウンターアニオンを表す。)を表し、
     波線は、NR1516の二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
  26.  下式(3d)で表される化合物。
    Figure JPOXMLDOC01-appb-C000016
    [式中、
     R14は、C1~2のアルキル基を表し、
     波線は、OR14の二重結合に関する立体配置がEであってもZであってもよいことを示す。]。
PCT/JP2016/059101 2015-03-26 2016-03-23 ピラゾール誘導体の製造方法 WO2016152886A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES16768789T ES2899825T3 (es) 2015-03-26 2016-03-23 Derivados de pirazolilcetona para uso como intermedios
EP19158520.7A EP3521277B1 (en) 2015-03-26 2016-03-23 Method for producing a pyrazole-4-carboxylic acid derivative
JP2017508374A JP6658736B2 (ja) 2015-03-26 2016-03-23 ピラゾール誘導体の製造方法
EP16768789.6A EP3275868B1 (en) 2015-03-26 2016-03-23 Pyrazolylketone derivates for use as intermediates
US15/560,934 US10239841B2 (en) 2015-03-26 2016-03-23 Method for producing pyrazole derivative
KR1020177019062A KR101982952B1 (ko) 2015-03-26 2016-03-23 피라졸 유도체의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015065271 2015-03-26
JP2015-065271 2015-03-26
JP2015111722 2015-06-01
JP2015-111722 2015-06-01

Publications (1)

Publication Number Publication Date
WO2016152886A1 true WO2016152886A1 (ja) 2016-09-29

Family

ID=55821331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059101 WO2016152886A1 (ja) 2015-03-26 2016-03-23 ピラゾール誘導体の製造方法

Country Status (9)

Country Link
US (1) US10239841B2 (ja)
EP (2) EP3275868B1 (ja)
JP (1) JP6658736B2 (ja)
KR (1) KR101982952B1 (ja)
CN (1) CN105541716B (ja)
ES (1) ES2899825T3 (ja)
HU (1) HUE057057T2 (ja)
TW (1) TWI703119B (ja)
WO (1) WO2016152886A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064550A1 (zh) * 2015-09-28 2017-04-20 苏威氟有限公司 3-氟代烷基-1-甲基吡唑-4-羧酸的制备方法
WO2018074411A1 (ja) * 2016-10-19 2018-04-26 旭硝子株式会社 含窒素化合物の製造方法
WO2018180944A1 (ja) 2017-03-27 2018-10-04 Agc株式会社 ハロゲン含有ピラゾールカルボン酸の製造方法
WO2018180943A1 (ja) 2017-03-27 2018-10-04 Agc株式会社 ハロゲン含有ピラゾールカルボン酸及びその中間体の製造方法
WO2018202677A1 (en) 2017-05-02 2018-11-08 Solvay Sa Process for the manufacture of carboxylic acids or carboxylic acid derivatives
WO2019043238A1 (en) 2017-09-04 2019-03-07 Solvay Sa PROCESS AND INTERMEDIARY FOR MANUFACTURING DIFLUOROACETYL CHLORIDE
US10239841B2 (en) 2015-03-26 2019-03-26 AGC Inc. Method for producing pyrazole derivative
EP3495351A1 (en) 2017-12-08 2019-06-12 Solvay Sa Oxidation of a pyrazolyl ketone compound to the corresponding carboxylic acid
WO2019122194A1 (en) 2017-12-22 2019-06-27 Solvay Sa Process for the manufacture of iminium compounds and their application in the manufacture of pyrazole derivatives
WO2019122164A1 (en) 2017-12-22 2019-06-27 Solvay Sa Process for the manufacture of pyrazole carboxylic derivatives and precursors thereof
WO2019122204A1 (en) 2017-12-22 2019-06-27 Solvay Sa Process for the manufacture of pyrazole compounds
US20190276409A1 (en) * 2016-11-07 2019-09-12 Solvay Sa Process for the manufacture of carboxylic acids or carboxylic acid derivatives

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104945325B (zh) * 2015-06-19 2017-04-05 浙江永太科技股份有限公司 一种吡唑甲酸衍生物的制备方法
US10407413B2 (en) 2015-06-19 2019-09-10 Zhejiang Yongtai Technology Co., Ltd. Method for preparing pyrazolecarboxylic acid derivative, and intermediate thereof
CN104945387B (zh) * 2015-06-19 2017-03-22 浙江永太科技股份有限公司 一种用于制备吡唑甲酸衍生物的中间体
CN106554311B (zh) * 2015-09-28 2019-03-01 常州市卜弋科研化工有限公司 3-氟代烷基-1-甲基吡唑-4-羧酸的制备方法
CN107663172B (zh) * 2016-07-27 2021-04-16 宿迁市科莱博生物化学有限公司 一种吡唑衍生物的制备方法
KR20190033515A (ko) 2016-07-29 2019-03-29 에이지씨 가부시키가이샤 함불소 피라졸카르복실산 할라이드류의 제조 방법
WO2018024644A1 (en) * 2016-08-02 2018-02-08 Solvay Sa Manufacture of hydrazinyl compounds useful in the manufacture of pyrazole carboxylic acid and derivatives, hydrazinyl compounds and their use
CN106045910B (zh) * 2016-08-15 2017-10-10 浙江永太科技股份有限公司 一种3‑(二氟甲基)‑1‑甲基‑1h‑吡唑‑4‑羧酸的合成方法
CN111825583A (zh) * 2019-04-23 2020-10-27 帕潘纳(北京)科技有限公司 异噁唑类除草剂中间体的制备方法
CN117384096A (zh) * 2023-12-13 2024-01-12 山东国邦药业有限公司 一种二氟吡唑酸的制备方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004725A1 (fr) * 1993-08-10 1995-02-16 Nissan Chemical Industries, Ltd. Nouveau derive de pyrimidine servant d'herbicide et de regulateur de croissance vegetale
JPH08198857A (ja) * 1995-01-20 1996-08-06 Nissan Chem Ind Ltd 新規ピリミジン誘導体及び除草、植調剤
JP2001125224A (ja) * 1999-08-17 2001-05-11 Konica Corp 熱現像材料
JP2005511782A (ja) * 2001-12-17 2005-04-28 バイエル ケミカルズ アクチエンゲゼルシャフト 2−ハロゲンアシル−3−アミノ−アクリル酸−誘導体の製造方法
JP2007509850A (ja) * 2003-10-23 2007-04-19 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 2−ジハロアシル−3−アミノ−アクリル酸エステルおよび3−ジハロメチル−ピラゾール−4−カルボン酸エステルの製造方法
JP2010501502A (ja) * 2006-08-25 2010-01-21 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 3−ジハロメチルピラゾール−4−カルボン酸誘導体の調製方法
JP2010513411A (ja) * 2006-12-21 2010-04-30 ビーエーエスエフ ソシエタス・ヨーロピア フルオロメチル置換複素環式化合物の調製方法
JP2010116334A (ja) * 2008-11-12 2010-05-27 Central Glass Co Ltd ピラゾール化合物の製造方法
JP2010531315A (ja) * 2007-06-27 2010-09-24 シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト ピラゾールの調製方法
JP2010534626A (ja) * 2007-07-26 2010-11-11 シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト 新規殺菌剤
JP2010540477A (ja) * 2007-09-26 2010-12-24 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 2−ジハロアシル−3−アミノアクリル酸誘導体の調製方法
JP2011518767A (ja) * 2008-02-25 2011-06-30 バイエル・クロップサイエンス・アーゲー 1−アルキル−3−ハロアルキル−ピラゾール−4−カルボン酸誘導体を位置選択的に合成する方法
WO2012009009A2 (en) * 2010-07-14 2012-01-19 Addex Pharma S.A. Novel 2-amino-4-pyrazolyl-thiazole derivatives and their use as allosteric modulators of metabotropic glutamate receptors
WO2012176717A1 (ja) * 2011-06-22 2012-12-27 セントラル硝子株式会社 ピラゾール化合物の製造方法
JP2013006781A (ja) * 2011-06-22 2013-01-10 Central Glass Co Ltd ピラゾール化合物の製造方法
JP2013006778A (ja) * 2011-06-22 2013-01-10 Central Glass Co Ltd ピラゾール化合物の製造方法
WO2014160668A1 (en) * 2013-03-25 2014-10-02 Bristol-Myers Squibb Company Tetrahydroisoquinolines containing substituted azoles as factor xia inhibitors
WO2015003289A1 (zh) * 2013-07-12 2015-01-15 雅本化学股份有限公司 3-氟代烷基-1-取代吡唑-4-羧酸及其制备方法
CN104496903A (zh) * 2014-12-19 2015-04-08 浙江泰达作物科技有限公司 1-烷基-3-卤代烷基吡唑衍生物的高区域选择性的合成方法
WO2015105129A1 (ja) * 2014-01-10 2015-07-16 旭硝子株式会社 エーテル性酸素原子含有ペルフルオロアルキル基置換ピラゾール環化合物およびその製造方法
CN104945325A (zh) * 2015-06-19 2015-09-30 浙江永太科技股份有限公司 一种吡唑甲酸衍生物的制备方法
CN105541716A (zh) * 2015-03-26 2016-05-04 旭硝子株式会社 吡唑衍生物的制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738704A (en) 1980-08-21 1982-03-03 Asahi Chem Ind Co Ltd Antifouling agent
JPH0873441A (ja) 1993-11-01 1996-03-19 Nissan Chem Ind Ltd 新規4,5−ジ置換ピリミジン誘導体及び除草剤
DE10215292A1 (de) 2002-02-19 2003-08-28 Bayer Cropscience Ag Disubstitutierte Pyrazolylcarbocanilide
RU2323931C2 (ru) 2002-03-05 2008-05-10 Синджента Партисипейшнс Аг О-циклопропилкарбоксанилиды и их применение в качестве фунгицидов
US7553833B2 (en) 2007-05-17 2009-06-30 Hoffmann-La Roche Inc. 3,3-spiroindolinone derivatives
EP2100883A1 (de) 2008-03-10 2009-09-16 Bayer CropScience AG Verfahren zur regioselektiven Synthese von 1-Alkyl-3-haloalkyl-pyrazol-4carbonsäure-Derivaten
EP2278631A1 (de) 2009-07-20 2011-01-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzellenbaugruppe sowie Solarzellenanordnung
CN101781222A (zh) 2010-01-26 2010-07-21 广东药学院 一种制备烯胺酮类化合物的方法
JP6141160B2 (ja) 2013-09-25 2017-06-07 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子およびその動作方法、並びに電子機器およびその動作方法
US10407413B2 (en) 2015-06-19 2019-09-10 Zhejiang Yongtai Technology Co., Ltd. Method for preparing pyrazolecarboxylic acid derivative, and intermediate thereof
KR101730393B1 (ko) 2015-08-06 2017-05-11 (주)부흥산업사 피라졸 카르복실산 유도체의 제조방법
WO2017054112A1 (zh) 2015-09-28 2017-04-06 常州市卜弋科研化工有限公司 3-氟代烷基-1-甲基吡唑-4-羧酸的制备方法
JP2019504840A (ja) 2016-01-28 2019-02-21 ソルヴェイ(ソシエテ アノニム) ハロゲン置換ジケトン、ピラゾール化合物およびピラゾール化合物の製造方法
JP2019507136A (ja) 2016-02-18 2019-03-14 ソルヴェイ(ソシエテ アノニム) カルボキサミドの製造方法

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004725A1 (fr) * 1993-08-10 1995-02-16 Nissan Chemical Industries, Ltd. Nouveau derive de pyrimidine servant d'herbicide et de regulateur de croissance vegetale
JPH08198857A (ja) * 1995-01-20 1996-08-06 Nissan Chem Ind Ltd 新規ピリミジン誘導体及び除草、植調剤
JP2001125224A (ja) * 1999-08-17 2001-05-11 Konica Corp 熱現像材料
JP2005511782A (ja) * 2001-12-17 2005-04-28 バイエル ケミカルズ アクチエンゲゼルシャフト 2−ハロゲンアシル−3−アミノ−アクリル酸−誘導体の製造方法
JP2007509850A (ja) * 2003-10-23 2007-04-19 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 2−ジハロアシル−3−アミノ−アクリル酸エステルおよび3−ジハロメチル−ピラゾール−4−カルボン酸エステルの製造方法
JP2010501502A (ja) * 2006-08-25 2010-01-21 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 3−ジハロメチルピラゾール−4−カルボン酸誘導体の調製方法
JP2010513411A (ja) * 2006-12-21 2010-04-30 ビーエーエスエフ ソシエタス・ヨーロピア フルオロメチル置換複素環式化合物の調製方法
JP2010531314A (ja) * 2007-06-27 2010-09-24 シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト ピラゾールの調製方法
JP2010531315A (ja) * 2007-06-27 2010-09-24 シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト ピラゾールの調製方法
JP2010534626A (ja) * 2007-07-26 2010-11-11 シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト 新規殺菌剤
JP2010540477A (ja) * 2007-09-26 2010-12-24 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 2−ジハロアシル−3−アミノアクリル酸誘導体の調製方法
JP2011518767A (ja) * 2008-02-25 2011-06-30 バイエル・クロップサイエンス・アーゲー 1−アルキル−3−ハロアルキル−ピラゾール−4−カルボン酸誘導体を位置選択的に合成する方法
JP2010116334A (ja) * 2008-11-12 2010-05-27 Central Glass Co Ltd ピラゾール化合物の製造方法
WO2012009009A2 (en) * 2010-07-14 2012-01-19 Addex Pharma S.A. Novel 2-amino-4-pyrazolyl-thiazole derivatives and their use as allosteric modulators of metabotropic glutamate receptors
JP2013006778A (ja) * 2011-06-22 2013-01-10 Central Glass Co Ltd ピラゾール化合物の製造方法
JP2013006781A (ja) * 2011-06-22 2013-01-10 Central Glass Co Ltd ピラゾール化合物の製造方法
WO2012176717A1 (ja) * 2011-06-22 2012-12-27 セントラル硝子株式会社 ピラゾール化合物の製造方法
WO2014160668A1 (en) * 2013-03-25 2014-10-02 Bristol-Myers Squibb Company Tetrahydroisoquinolines containing substituted azoles as factor xia inhibitors
WO2015003289A1 (zh) * 2013-07-12 2015-01-15 雅本化学股份有限公司 3-氟代烷基-1-取代吡唑-4-羧酸及其制备方法
WO2015105129A1 (ja) * 2014-01-10 2015-07-16 旭硝子株式会社 エーテル性酸素原子含有ペルフルオロアルキル基置換ピラゾール環化合物およびその製造方法
CN104496903A (zh) * 2014-12-19 2015-04-08 浙江泰达作物科技有限公司 1-烷基-3-卤代烷基吡唑衍生物的高区域选择性的合成方法
CN105541716A (zh) * 2015-03-26 2016-05-04 旭硝子株式会社 吡唑衍生物的制造方法
CN104945325A (zh) * 2015-06-19 2015-09-30 浙江永太科技股份有限公司 一种吡唑甲酸衍生物的制备方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
GHOSH C. K. ET AL.: "Heterocyclic System II. Electrophilic Substitution on 1-Phenyl-4-(2- hydroxybenzoyl)pyrazole", JOURNAL OF THE INDIAN CHEMICAL SOCIETY, vol. 55, no. 3, 1978, pages 268 - 271, XP009506192, ISSN: 0019-4522 *
HAMMOUDA H. A. ET AL.: "1- Benzoyl-1- Phenylhydrazine as a Pyrazole Precursor", ACTA CHIMICA HUNGARICA, vol. 116, no. 1, 1984, pages 21 - 27, XP009506179, ISSN: 0231-3146 *
OKADA ETSUJI ET AL.: "Facile Synthetic Methods for 3- and 5-Trifluoromethyl-4-Trifluoroacetyl- Pyrazoles and Their -Conversion into Pyrazole- 4-Carboxylic Acids", HETEROCYCLES, vol. 34, no. 4, 1992, pages 791 - 798, XP009103121, ISSN: 1881-0942 *
SCHMITT ETIENNE ET AL.: "In Situ Generated Fluorinated Iminium Salts for Difluoromethylation and Difluoroacetylation", ORGANIC LETTERS, vol. 17, no. 18, pages 4510 - 4513, XP055485150, ISSN: 1523-7052 *
See also references of EP3275868A4 *
SINIGH SHIV. P. ET AL.: "A Facile Synthesis of 5- Methyl-1-(phenyl/heterocyclyl)-4- trifluoroacethylpyrazoles", JOURNAL OF CHEMICAL RESEARCH SYNOPSES, 1997, pages 142 - 143, XP055315912, ISSN: 0308-2342 *
TANAKA KIYOSHI ET AL.: "Reactions of Trifluoroacetonitrile Oxide or -nitrilimines with beta-Diketones and beta- Keto Esters", BULLETIN OF CHEMICAL SOCIETY OF JAPAN, vol. 59, 1986, pages 2631 - 2632, XP002688704, ISSN: 0009-2673 *
TOUZOT ALINE ET AL.: "Synthesis of trifluoromethylated pyrazoles from trifluoromethylenaminones and monosubstituted hydrazines", JOURNAL OF FLUORINE CHEMISTRY, vol. 125, 2004, pages 1299 - 1304, XP004534450, ISSN: 0022-1139 *
VASIL'EV L.S. ET AL.: "2-(N-Alkylamino)-1- (trifluoroacetimidoyl)vinyl ketone derivatives as potential reagents in heterocyclic synthesis", RUSSIAN CHEMICAL BULLETIN, vol. 57, no. 11, 2008, pages 2359 - 2363, XP019753329, ISSN: 1066-5285 *
ZIKAN V ET AL.: "Substanzen mit Antineoplastischer Wirkung XIX. Substituterte Pyrazole Durch Reaktion Von beta-4- Methoxybenzoyl-beta-chlor(brom)acrylsaure mit Diazomethan", COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, vol. 32, no. 10, 1967, pages 3587 - 3596, XP055485144, ISSN: 1212-6950 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10239841B2 (en) 2015-03-26 2019-03-26 AGC Inc. Method for producing pyrazole derivative
JP2018531285A (ja) * 2015-09-28 2018-10-25 ソルヴェイ フルール ゲーエムベーハー 3−フルオロアルキル−1−メチルピラゾール−4−カルボン酸の合成方法
US10457645B2 (en) 2015-09-28 2019-10-29 Changzhou Keylab Biochemical Co., Ltd. Method for the preparation of 3-fluoroalkyl-1-methylpyrazol-4-carboxylic acid
WO2017064550A1 (zh) * 2015-09-28 2017-04-20 苏威氟有限公司 3-氟代烷基-1-甲基吡唑-4-羧酸的制备方法
KR20190071738A (ko) * 2016-10-19 2019-06-24 에이지씨 가부시키가이샤 함질소 화합물의 제조 방법
WO2018074411A1 (ja) * 2016-10-19 2018-04-26 旭硝子株式会社 含窒素化合物の製造方法
KR102556594B1 (ko) 2016-10-19 2023-07-17 에이지씨 가부시키가이샤 함질소 화합물의 제조 방법
EP3530645A4 (en) * 2016-10-19 2020-05-27 Agc Inc. PROCESS FOR PRODUCING NITROGEN-CONTAINING COMPOUND
JPWO2018074411A1 (ja) * 2016-10-19 2019-08-08 Agc株式会社 含窒素化合物の製造方法
US20190276409A1 (en) * 2016-11-07 2019-09-12 Solvay Sa Process for the manufacture of carboxylic acids or carboxylic acid derivatives
KR20190132657A (ko) 2017-03-27 2019-11-28 에이지씨 가부시키가이샤 할로겐 함유 피라졸카르복실산의 제조 방법
WO2018180944A1 (ja) 2017-03-27 2018-10-04 Agc株式会社 ハロゲン含有ピラゾールカルボン酸の製造方法
EP3604283A4 (en) * 2017-03-27 2020-09-09 AGC Inc. PROCESS FOR THE PRODUCTION OF HALOGENATED PYRAZOLECARBOXYLIC ACID
WO2018180943A1 (ja) 2017-03-27 2018-10-04 Agc株式会社 ハロゲン含有ピラゾールカルボン酸及びその中間体の製造方法
JPWO2018180944A1 (ja) * 2017-03-27 2020-02-06 Agc株式会社 ハロゲン含有ピラゾールカルボン酸の製造方法
KR20190133189A (ko) 2017-03-27 2019-12-02 에이지씨 가부시키가이샤 할로겐 함유 피라졸카르복실산 및 그 중간체의 제조 방법
WO2018202677A1 (en) 2017-05-02 2018-11-08 Solvay Sa Process for the manufacture of carboxylic acids or carboxylic acid derivatives
WO2019043238A1 (en) 2017-09-04 2019-03-07 Solvay Sa PROCESS AND INTERMEDIARY FOR MANUFACTURING DIFLUOROACETYL CHLORIDE
WO2019110795A1 (en) 2017-12-08 2019-06-13 Solvay Sa Oxidation of a pyrazolyl ketone compound to the corresponding carboxylic acid
EP3495351A1 (en) 2017-12-08 2019-06-12 Solvay Sa Oxidation of a pyrazolyl ketone compound to the corresponding carboxylic acid
WO2019122204A1 (en) 2017-12-22 2019-06-27 Solvay Sa Process for the manufacture of pyrazole compounds
WO2019122164A1 (en) 2017-12-22 2019-06-27 Solvay Sa Process for the manufacture of pyrazole carboxylic derivatives and precursors thereof
WO2019122194A1 (en) 2017-12-22 2019-06-27 Solvay Sa Process for the manufacture of iminium compounds and their application in the manufacture of pyrazole derivatives

Also Published As

Publication number Publication date
EP3275868A1 (en) 2018-01-31
KR20170090500A (ko) 2017-08-07
TW201639806A (zh) 2016-11-16
JP6658736B2 (ja) 2020-03-04
KR101982952B1 (ko) 2019-05-27
TWI703119B (zh) 2020-09-01
HUE057057T2 (hu) 2022-04-28
CN105541716A (zh) 2016-05-04
EP3521277B1 (en) 2022-08-03
CN105541716B (zh) 2024-02-23
EP3521277A1 (en) 2019-08-07
EP3275868B1 (en) 2021-09-29
US10239841B2 (en) 2019-03-26
ES2899825T3 (es) 2022-03-14
US20180079725A1 (en) 2018-03-22
EP3275868A4 (en) 2018-08-22
JPWO2016152886A1 (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6658736B2 (ja) ピラゾール誘導体の製造方法
EP4204407B1 (en) Process
JP5450079B2 (ja) ピラゾール誘導体のスルフィニル化の方法
WO2016152831A1 (ja) ピラゾール誘導体の製造方法
JP5140776B1 (ja) 1−置換−3−フルオロアルキルピラゾール−4−カルボン酸エステルの製造方法
JP6643735B2 (ja) 含フッ素α−ケトカルボン酸エステル類の実用的な製造方法
JP5793983B2 (ja) ピラゾール化合物の製造方法
JP5915004B2 (ja) ピラゾール化合物の製造方法
JP5605104B2 (ja) ピラゾール化合物の製造方法
JP2013006782A (ja) ピラゾール化合物の製造方法
JP6477187B2 (ja) 2−アミノ−6−メチルニコチン酸エステルの製造方法
TW201321359A (zh) 用於製備n取代的吡唑化合物的方法
JP5232335B1 (ja) 1−置換−3−フルオロアルキルピラゾール−4−カルボン酸エステルの製造方法
JP2013006779A (ja) ピラゾール化合物の製造方法
JP4273271B2 (ja) ピラゾール化合物及びその製造法
JP4271924B2 (ja) 4−メルカプトフェノール類の製造方法
JP5790195B2 (ja) ピラゾール化合物の製造方法
JP5631741B2 (ja) ピラジン誘導体類の製造方法及びその中間体類
WO2010122793A1 (ja) ピラジン誘導体の製造方法及びその中間体
JPH09136874A (ja) イソチオシアン酸誘導体の改良製造法
JP2008208047A (ja) 1,3,4−トリメチルピラゾール−5−カルボン酸エステルの製造方法ならびに製造中間体
KR20040091318A (ko) 6-클로로벤족사졸-2-온의 새로운 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177019062

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016768789

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017508374

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560934

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE