WO2018074411A1 - 含窒素化合物の製造方法 - Google Patents

含窒素化合物の製造方法 Download PDF

Info

Publication number
WO2018074411A1
WO2018074411A1 PCT/JP2017/037350 JP2017037350W WO2018074411A1 WO 2018074411 A1 WO2018074411 A1 WO 2018074411A1 JP 2017037350 W JP2017037350 W JP 2017037350W WO 2018074411 A1 WO2018074411 A1 WO 2018074411A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
compound represented
reaction mixture
reaction
Prior art date
Application number
PCT/JP2017/037350
Other languages
English (en)
French (fr)
Inventor
祐輔 山崎
正紀 澤口
雄一郎 石橋
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP17862001.9A priority Critical patent/EP3530645B1/en
Priority to CN202211088443.1A priority patent/CN115322152A/zh
Priority to CN201780064282.3A priority patent/CN109863134B/zh
Priority to US16/340,207 priority patent/US20200039920A1/en
Priority to JP2018546321A priority patent/JP6922924B2/ja
Priority to KR1020197013007A priority patent/KR102556594B1/ko
Publication of WO2018074411A1 publication Critical patent/WO2018074411A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/02Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C225/14Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being unsaturated

Definitions

  • the present invention relates to a method for producing a nitrogen-containing compound useful as an optical material or a raw material for medical and agricultural chemicals.
  • a nitrogen-containing compound having a structure of —C (O) CH ⁇ CHN ⁇ structure is a compound useful as an optical material or a raw material for medical and agricultural chemicals.
  • CH 3 C (O) CH ⁇ CHN (CH 3 ) 2 is useful as a raw material for 3-difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid used in pyrazolylcarboxanilide fungicides. (See Patent Document 1).
  • a compound represented by the following formula (4) is reacted with a compound represented by the following formula (3) in an amount of more than 6 times the molar amount of the compound represented by the following formula (3).
  • a compound represented by the following formula (1) is obtained by obtaining a reaction mixture with the compound represented by 3) and reacting the reaction mixture with the compound represented by the following formula (2) using a basic compound.
  • the amount of the compound represented by the above formula (2) is more than 3 times and 20 times or less the compound represented by the above formula (4), and the reaction mixture and the above formula (2)
  • the amount of the compound represented by the above formula (2) is more than 12 times moles relative to the compound represented by the above formula (4), and is represented by the above reaction mixture and the above formula (2).
  • the production method according to [5] or [6], wherein the reaction temperature when the compound is reacted with a basic compound is not higher than the boiling point of the compound represented by the formula (2).
  • a compound represented by the above formula (1) is obtained by the production method described in any one of [1] to [10], and the compound represented by the formula (1) and the following formula (5) To obtain a compound represented by the following formula (6), and react the compound represented by the formula (6) with the compound represented by the following formula (7).
  • Formula (5) R F C (O) Z Formula (7) R 4 NHNH 2
  • Z represents a fluorine atom or a chlorine atom
  • R F represents a haloalkyl group having 1 to 3 carbon atoms
  • R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 6 carbon atoms
  • R 4 represents an alkyl group having 1 to 3 carbon atoms.
  • a nitrogen-containing compound useful as an optical material or a raw material for medical and agricultural chemicals can be produced industrially and efficiently from an easily available and inexpensive compound.
  • a compound represented by the formula (x) is referred to as a compound (x).
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the following compound (4) is reacted with more than 6 moles of the following compound (3) to obtain a reaction mixture of the following compound (4) and the following compound (3),
  • a method for producing the following compound (1) in which the following compound (2) is reacted with a basic compound is provided.
  • the compound (1) is a “nitrogen-containing compound”, which is also referred to as ketoenamine.
  • Formula (3) NR 1 R 2 C (O) H Formula (2) R 3 C (O) CH 3 Formula (1) R 3 C (O) CH ⁇ CHNR 1 R 2 X represents a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom, and more preferably a chlorine atom.
  • the three Xs may be the same or different and are preferably the same, more preferably the same and a chlorine atom. That is, the compound (4) is preferably cyanuric chloride.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms in R 1 and R 2 may be linear or branched, is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • R 1 and R 2 may be the same or different and are preferably the same, more preferably the same and a methyl group. That is, the compound (3) is preferably dimethylformamide.
  • R 3 represents an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms in R 3 may be linear or branched, and is preferably an n-propyl group, an iso-propyl group, an ethyl group, or a methyl group, and the methyl group is More preferred. That is, the compound (2) is preferably acetone.
  • the steric configuration of R 3 C (O) — and NR 1 R 2 — bonded to —CH ⁇ CH— may be cis or trans.
  • reaction mixture is a salt represented by the formula [NR 1 R 2 CH ⁇ NCH ⁇ NR 1 R 2 ] + ⁇ X ⁇ formed by the reaction of the compound (4) with decarboxylation and the compound (3) , R 1 , R 2 and X ⁇ have the same meaning as described above, and so on.
  • the stoichiometry in the salt formation reaction is 6 moles of the compound (3) with respect to the compound (4).
  • the reaction mixture is prepared by using the compound (3) in an amount exceeding 6 times mol of the compound (3) relative to the compound (4), that is, exceeding the stoichiometry.
  • the reaction mixture in the present invention contains compound (3) in an amount exceeding the stoichiometry.
  • the inventors of the present invention have the advantage that the compound (3) in excess of the stoichiometry promotes the solution (preferably homogeneous solution) of the salt as a solvent, and the reaction mixture and the compound (2) in such a solution state.
  • compound (1) which is a nitrogen compound that can be said to be ketoenamine, can be obtained efficiently.
  • the reaction mixture in the present invention is preferably obtained by reacting 8 to 40 times mol of compound (3) with compound (4), and obtained by reacting 10 to 30 times mol of compound (3). Is more preferable. Within this range, the compound (1) is particularly easily obtained in a high yield.
  • a reaction mixture of the compound (4) and the compound (3) in the presence of ether.
  • Ether is used as a solvent.
  • the ether is preferably an aprotic ether and a saturated compound.
  • the ether may be a cyclic ether or a chain ether. Specific examples of the ether include diethyl ether, tert-butyl methyl ether, dioxane, tetrahydrofuran, and cyclopentyl methyl ether.
  • the amount of ether used is preferably 1 volume or more based on the volume of the compound (4).
  • the upper limit is not particularly limited, and is preferably 10 times or less, and more preferably 2 times or less from the viewpoint of volume efficiency.
  • the temperature in the preparation of the reaction mixture is preferably 0 to 200 ° C, more preferably 30 to 100 ° C.
  • the pressure in the preparation of the reaction mixture is not particularly limited, and is usually performed under atmospheric pressure.
  • the amount of the compound (2) used is preferably 3 times mol or more, more preferably more than 3 times mol, based on the amount of the compound (4) used for preparing the reaction mixture.
  • the upper limit of the amount used is not particularly limited, and is preferably 100 times mol or less, more preferably 20 times mol or less. Within this range, the compound (1) is easily obtained efficiently and in high yield.
  • the basic compound is not particularly limited as long as it activates R 1 and R 2 of the compound (3), and is preferably an alkali metal alkoxide, a tertiary amine, or an alkali metal hydride, and an alkali metal alkoxide. Is more preferable.
  • the alkali metal is preferably sodium or potassium, and the alkoxide is preferably methoxide, ethoxide or isopropoxide.
  • the alkali metal alkoxide is preferably sodium methoxide.
  • the use form of the alkali metal alkoxide is not particularly limited, and the alkali metal alkoxide may be used as it is (only with the solid alkali metal alkoxide itself) or used as an alcohol solution of the alkali metal alkoxide. Alternatively, it is preferable to use an alkali metal alkoxide as it is.
  • Examples of the tertiary amine include trialkylamine having an alkyl group having 1 to 4 carbon atoms, imidazole, pyridine, 2,6-lutidine, s-collidine, N-methylpyrrolidine, and N-methylpiperidine.
  • a trialkylamine having an alkyl group having 1 to 4 carbon atoms is preferable, triethylamine, tributylamine or ethyldiisopropylamine is more preferable, and triethylamine is further preferable.
  • the alkali metal hydride is preferably LiAlH 4 , NaBH 4 , NaH, or LiN (CH (CH 3 ) 2 ) 2 .
  • the amount of the basic compound used in the reaction is preferably 3 times mol or more, more preferably more than 3 times mol based on the compound (4) used for the preparation of the reaction mixture.
  • the upper limit of the amount used is not particularly limited, and is preferably 6 times mole or less. Within this range, compound (1) can be obtained efficiently and in high yield.
  • compound (3) in an amount exceeding the stoichiometry used in the preparation of the reaction mixture is present as a solvent, but may be performed in the presence of another organic solvent.
  • Another organic solvent is not specifically limited, It determines suitably by the kind of basic compound, and when a basic compound is an alkali metal alkoxide, an above-described ether or alcohol is mentioned. Specific examples of the alcohol include methanol, ethanol, n-propanol, iso-propanol, n-butanol, and iso-butanol.
  • an aromatic hydrocarbon or a saturated aliphatic hydrocarbon is preferable. Specific examples of the aromatic hydrocarbon include toluene and xylene. Specific examples of the saturated aliphatic hydrocarbon include heptane and hexane.
  • the total amount of solvent used in the reaction is preferably 1 volume or more based on the compound (4) used in the preparation of the reaction mixture.
  • An upper limit is not specifically limited, 20 times volume or less is preferable. Within this range, the compound (1) is easily obtained efficiently and in high yield.
  • the total amount of the solvent used is the total amount including compound (3) and another organic solvent in excess of the stoichiometric amount.
  • the temperature in the reaction is preferably ⁇ 78 to + 200 ° C., more preferably ⁇ 60 to + 100 ° C., further preferably ⁇ 30 ° C. or more and less than 60 ° C., and particularly preferably ⁇ 30 to + 40 ° C.
  • the pressure in the preparation of the reaction product is not particularly limited, and is usually performed under atmospheric pressure.
  • reaction time is not specifically limited, What is necessary is just to complete reaction when the reaction end point is reached.
  • the compound (4) is reacted with more than 6-fold mol of the compound (3) to obtain a reaction mixture of the compound (4) and the compound (3)
  • a reaction mixture of the compound (4) and the compound (3) An embodiment in which the reaction mixture and the compound (2) are reacted with a basic compound without essentially removing the compound (3) contained in the reaction mixture is exemplified.
  • the basic compound is an alkali metal alkoxide of an alcohol represented by the formula R A —OH (wherein R A is a methyl group, an ethyl group or an isopropyl group). It is preferable that an aminoacetal represented by NR 1 R 2 CH ⁇ NCH (OR A ) (N (R 1 R 2 )) is formed.
  • a mode in which a basic compound is added to the reaction mixture and then the compound (2) is added to react the reaction mixture with the compound (2) is preferable. That is, an embodiment is preferred in which the reaction mixture and the basic compound are mixed to obtain a mixture, the mixture and the compound (2) are mixed, and the reaction mixture and the compound (2) are reacted.
  • the basic compound is preferably the alkali metal alkoxide described above.
  • the reaction between the reaction mixture and the compound (2) can be carried out by selecting various suitable conditions.
  • the amount of the compound (2) used is more than 3 times and 20 times or less (preferably, the amount of the compound (4) used for the preparation of the reaction mixture). 4 to 12 times mole) or more than 12 times mole (preferably 16 to 100 times mole, more preferably 24 to 72 times mole).
  • the amount of compound (2) used is in the former range, compound (2) is in excess of the salt formed by the reaction of compound (4) and compound (3) contained in the reaction mixture, and Since the above-mentioned salt, compound (2) and alkoxide are highly compatible, the reaction activity is increased, and the compound (1) is easily obtained efficiently and in high yield.
  • the reaction temperature in the reaction between the reaction mixture and compound (2) is preferably more than 40 ° C., more preferably 60 ° C. or more.
  • the reaction temperature is preferably 200 ° C. or lower, and more preferably 100 ° C. or lower.
  • the amount of the compound (2) used is in the latter range, the compound (2) contained in a large excess promotes the compatibility between the salt and the alkali metal alkoxide as a polar solvent, and increases the reaction activity. Compound (1) is easily obtained efficiently and in high yield.
  • the reaction temperature in the reaction between the reaction mixture and compound (2) is preferably not higher than the boiling point of compound (2), more preferably from ⁇ 30 ° C.
  • the alkali metal alkoxide is preferably a solid alkali metal alkoxide itself. The reason is not necessarily clear, but when using the solid alkali metal alkoxide itself, the reaction mixture and the alkali metal alkoxide are attracted by the presence of alcohol compared to using the alcohol solution. This is considered to be because the decomposition of the above-mentioned amino acetal formed from the above is suppressed.
  • reaction product obtained by the production method of the present invention contains compound (1) and aldimine in parallel.
  • the aldimine in the present invention is a compound having a low boiling point as compared with the compound (1).
  • Aldimine may be converted to compound (3) by reacting with water produced as a by-product in this production method.
  • a compound having a low boiling point compared to the compound (1) such as aldimine, solvent, etc. contained in the reaction product (hereinafter referred to as “low-boiling compound”) is preferably reduced or removed to produce a high-purity compound (1).
  • the temperature in the distillation operation is preferably less than 70 ° C, more preferably less than 60 ° C, and even more preferably 30 ° C or less. In the upper limit range of this temperature, it is easy to efficiently purify the compound (1) in a high yield. Although the reason is not necessarily clear, it is considered that by-product formation of a side reaction product between aldimine coexisting in the reaction product and compound (1) is suppressed in the upper temperature range.
  • Specific examples of the side reaction product include compounds represented by the following formula (py) or the following formula (ap).
  • the lower limit of the temperature in the distillation operation is not particularly limited, and is usually 0 ° C. or higher. If the temperature is in the range of 0 to 30 ° C., the purification of compound (1) can be efficiently performed in high yield. Cheap.
  • the pressure in the distillation operation is not particularly limited, and is usually carried out under reduced pressure conditions from the viewpoint of allowing the distillation to proceed efficiently.
  • the crude product obtained by reducing or removing the low boiling point compound obtained by distilling off the reaction product is further purified by distillation to obtain a high purity compound (1) purified as a fraction thereof. Is preferred.
  • the temperature in the distillation operation is not particularly limited, and is preferably 180 ° C. or lower, and more preferably 140 ° C. or lower.
  • the lower limit is not particularly limited, and is usually 40 ° C. or higher.
  • the pressure in the distillation operation is not particularly limited, and is usually performed under reduced pressure conditions from the viewpoint of efficiency.
  • the compound (1) obtained by the production method of the present invention can be used to produce a compound useful as an optical material or an intermediate for medical and agricultural chemicals. Specifically, the compound (1) is obtained by the production method of the present invention, the compound (1) and the following compound (5) are reacted to obtain the following compound (6), and the compound (6) The following compound (8) can be produced by reacting the following compound (7).
  • R F represents a haloalkyl group having 1 to 3 carbon atoms, preferably a difluoromethyl group, a chlorodifluoromethyl group, a dichloromethyl group, a trifluoromethyl group or a trichloromethyl group, more preferably a difluoromethyl group.
  • R 1 to R 3 have the same meaning as described above, and the preferred range thereof is also the same.
  • R 4 represents an alkyl group having 1 to 3 carbon atoms, preferably an n-propyl group, an iso-propyl group, an ethyl group or a methyl group, and more preferably a methyl group.
  • a nitrogen-containing compound can be produced efficiently and in high yield using a readily available and inexpensive compound as a raw material. That is, the production method of the present invention is an economical production method of nitrogen-containing compounds useful as optical materials and raw materials for medical and agricultural chemicals.
  • Example 1 Under an air atmosphere, cyanuric chloride (38.4 g) and dimethylformamide (198 g) are added to the flask, and the inside of the flask is stirred at 60 ° C. for 2 hours to obtain a reaction mixture. Next, the methanol temperature of sodium methoxide mixed with sodium methoxide (33.8 g) and methanol (276 g) was added to the flask while stirring the flask temperature while maintaining the flask internal temperature at 40 ° C., and left for 1 hour. Hold.
  • Example 1 summarizes the results of the synthesis of compound (1 1 ) according to the same procedure as in Example 1, except that the amount of each component charged and the use of another organic solvent were changed.
  • Examples 3 and 4 use tetrahydrolane and Example 5 uses isopropyl alcohol.
  • Example 6 From the reaction solution obtained in Example 1, a low-boiling compound in the reaction solution is removed by distillation under reduced pressure at a temperature of 20 to 30 ° C. and a pressure of 10 to 30 Pa to obtain a crude product. The crude product is further distilled under reduced pressure to obtain a compound (1 1 ) having a purity exceeding 99% as a fraction at a distillation yield of 93% and a yield based on cyanuric chloride of 63%.
  • Example 7 From the reaction solution obtained in Example 1, low boiling point compounds in the reaction solution are removed by distillation under reduced pressure under conditions of a temperature of 70 to 90 ° C. and a pressure of 12000 to 20000 Pa to obtain a crude product. The crude product is further distilled under reduced pressure to obtain a compound (1 1 ) having a purity of more than 99% as a fraction at a distillation yield of 74% and a yield based on cyanuric chloride of 50%.
  • the cyanuric chloride that is one embodiment of the compound (4) is used in an amount exceeding 6 times the molar amount of the dimethylformamide that is one embodiment of the compound (3). It can be seen that compound (1) can be obtained in high yield when the reacted reaction mixture is used. As is clear from the comparison between Example 6 and Example 7, when the obtained reaction product was subjected to a distillation operation at a low temperature (20 to 30 ° C.), it was distilled at a high temperature (70 to 90 ° C.). It can be seen that the compound (1) can be obtained in a high yield as compared with the case where it was subjected to the last operation.
  • Example 9 Under an air atmosphere, cyanuric chloride (12.8 g) and dimethylformamide (182 g) are placed in a flask, and the inside of the flask is stirred at 60 ° C. for 2 hours to obtain a reaction mixture. Next, while maintaining the flask internal temperature at 25 ° C., stirring the inside of the flask, sodium methoxide (11.4 g) is added to the flask and maintained for 2 hours. Next, while maintaining the temperature inside the flask at 25 ° C., stirring the inside of the flask, acetone (150 g) is added to the flask and allowed to react at 25 ° C. for 5 hours.
  • the compound (1 1 ) is produced in a yield of 99% based on cyanuric chloride.
  • the flask contents are filtered and the filtrate is collected to obtain a reaction liquid containing the compound (1 1 ).
  • Example 10 to 14 Compound (1 1 ) was synthesized according to the same procedure as in Example 9, except that sodium methoxide was used (alone or methanol solution), the amount of acetone used, and the reaction temperature after acetone was added. The results obtained are summarized in Table 2. In the table, “single substance” means that solid sodium methoxide was added to the flask as it was.
  • Example 15 The compound (1 1 ) obtained in Example 9, triethylamine and methylene chloride are put into a reactor under a nitrogen atmosphere to prepare a solution. Next, while stirring the inside of the reactor at room temperature, CHF 2 C (O) F is introduced into the reactor in a gaseous state to cause a reaction. After the reaction, while cooling the reactor with ice, water is added to the reactor, and the first organic phase containing the following compound (6 1 ) is recovered. Next, a 40% aqueous solution of methyl hydrazine and methylene chloride are placed in a reactor under a nitrogen atmosphere to prepare a solution.
  • the reaction is carried out by introducing the first organic phase into the reactor while stirring the inside of the reactor at ⁇ 20 ° C. After the reaction, water is added to the reactor to recover the second organic phase. The second organic phase is dried over sodium sulfate and then distilled off under reduced pressure to obtain the following compound (8 1 ).
  • the present invention can provide a method capable of producing a nitrogen-containing compound useful as an optical material or a raw material for medical and agricultural chemicals from an easily available and inexpensive compound in an industrially efficient manner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

効率がよい経済的な含窒素化合物の製造方法を提供する。下式(4)で表される化合物に対して式NRC(O)Hで表される化合物の6倍モル超を反応させて、該式(4)で表される化合物および該式NRC(O)Hで表される化合物の反応混合物を得て、該反応混合物と式RC(O)CHで表される化合物とを塩基性化合物を用いて反応させる、式RC(O)CH=CHNRで表される化合物の製造方法(式中、Xは、ハロゲン原子を示し、R、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示す。)

Description

含窒素化合物の製造方法
 本発明は、光学材料や医農薬原料として有用な含窒素化合物の製造方法に関する。
 -C(O)CH=CHN<構造を有する含窒素化合物は、光学材料や医農薬原料として有用な化合物である。たとえば、CHC(O)CH=CHN(CHは、ピラゾリルカルボキサニリド系殺菌剤に使用される3-ジフルオロメチル-1-メチル-1H-ピラゾール-4-カルボン酸の原料として有用である(特許文献1参照)。
 CHC(O)CH=CHN(CHの製造方法として、非特許文献1には、[N(CHCH=NCHN(CH・Clとナトリウムメトキシドのメタノール溶液とを反応させて得られるN(CHCH=NCH(OCH)(N(CH)と、CHC(O)CHとを反応させる方法が記載されている。
国際公開2016/152886号パンフレット
Bull.Soc.Chim.Belg,1994,697頁~703頁
 しかし、非特許文献1に記載の方法と条件では、CHC(O)CH=CHN(CHは、低収率でしか得られない。
 本発明は、入手容易かつ安価な化合物から、工業的に効率よく、光学材料や医農薬原料として有用な含窒素化合物を製造できる、含窒素化合物の製造方法の提供を課題とする。
 本発明者らは、効率よく経済的に含窒素化合物を製造する方法に関して、鋭意検討した結果、後述する式(4)で表される化合物、アルキルケトン(後述の式(2)で表される化合物。)、N,N-ジアルキルホルムアミド(後述の式(3)で表される化合物。)という、いずれも入手容易かつ安価な化合物を、特定の条件にて反応させた場合に、効率よく経済的に含窒素化合物を製造できることを知見した。さらに、反応物を特定の条件にて精製した場合には、効率よく経済的に、高純度な含窒素化合物を製造できることを知見した。
 つまり、本発明者らは、入手容易かつ安価な化合物を用いた、効率がよい経済的な含窒素化合物の製造方法を知見した。
 すなわち、本発明は以下の発明を包含するものである。
 [1] 下式(4)で表される化合物に対して下式(3)で表される化合物の6倍モル超を反応させて、下式(4)で表される化合物と下式(3)で表される化合物との反応混合物を得て、該反応混合物と下式(2)で表される化合物とを塩基性化合物を用いて反応させて下式(1)で表される化合物を得る、下式(1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000004
 式(3) NRC(O)H
 式(2) RC(O)CH
 式(1) RC(O)CH=CHNR
 式中、Xは、ハロゲン原子を示し、R、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示す。
 [2] 上記反応混合物を、上記式(4)で表される化合物に対して上記式(3)で表される化合物の8~40倍モルを反応させて得る、[1]に記載の製造方法。
 [3] 上記反応混合物と塩基性化合物を混合して混合物を得て、該混合物と上記式(2)で表される化合物とを混合して、上記反応混合物と上記式(2)で表される化合物とを反応させる、[1]または[2]に記載の製造方法。
 [4] エーテルの存在下で、上記式(4)で表される化合物と上記式(3)で表される化合物の反応混合物を得る、[1]~[3]のいずれかに記載の製造方法。
 [5] 上記塩基性化合物がアルカリ金属のアルコキシドである、[1]~[4]のいずれかに記載の製造方法。
 [6] 上記アルカリ金属のアルコキシドが、固体状のアルカリ金属のアルコキシドである、[5]に記載の製造方法。
 [7] 上記式(2)で表される化合物の使用量が上記式(4)で表される化合物に対して3倍モル超20倍モル以下であり、上記反応混合物と上記式(2)で表される化合物とを塩基性化合物を用いて反応させる際の反応温度が40℃超である、[5]または[6]に記載の製造方法。
 [8] 上記式(2)で表される化合物の使用量が上記式(4)で表される化合物に対して、12倍モル超であり、上記反応混合物と上記式(2)で表される化合物とを塩基性化合物を用いて反応させる際の反応温度が上記式(2)で表される化合物の沸点以下である、[5]または[6]に記載の製造方法。
 [9] [1]~[8]のいずれかに記載された製造方法により、上記式(1)で表される化合物を含む反応物を得て、つぎに該反応物から、留去操作によって、該反応物に含まれる低沸点化合物を低減または除去して粗精製物を得て、つぎに該粗精製物を蒸留して精製された上記式(1)で表される化合物を得る、上記式(1)で表される化合物の製造方法。
 [10] 上記反応物から、70℃未満にて留去操作によって、上記反応物に含まれる低沸点化合物を低減または除去して粗精製物を得る、[9]に記載の製造方法。
 [11] [1]~[10]のいずれかに記載された製造方法により上記式(1)で表される化合物を得て、該式(1)で表される化合物と下式(5)で表される化合物とを反応させて下式(6)で表される化合物を得て、該式(6)で表される化合物と下式(7)で表される化合物とを反応させる下式(8)で表される化合物の製造方法。
 式(5) RC(O)Z
 式(7) RNHNH
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 式中、Zはフッ素原子または塩素原子を示し、Rは炭素数1~3のハロアルキル基を示し、R、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示し、Rは炭素数1~3のアルキル基を示す。
 本発明の製造方法によれば、入手容易かつ安価な化合物から、工業的に効率よく、光学材料や医農薬原料として有用な含窒素化合物を製造できる。
 本明細書においては、式(x)で表される化合物を化合物(x)と記す。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 以下に、本発明の実施の形態について詳細に説明する。
 本発明は、下記化合物(4)に対して下記化合物(3)の6倍モル超を反応させて、下記化合物(4)と下記化合物(3)との反応混合物を得て、該反応混合物と下記化合物(2)とを塩基性化合物を用いて反応させる下記化合物(1)の製造方法を提供する。本明細書において、化合物(1)は「含窒素化合物」であり、ケトエナミンとも称される化合物である。
Figure JPOXMLDOC01-appb-C000007
 式(3) NRC(O)H
 式(2) RC(O)CH
 式(1) RC(O)CH=CHNR
 Xは、ハロゲン原子を示し、塩素原子、臭素原子またはヨウ素原子が好ましく、塩素原子がより好ましい。
 3個のXは、同一であってもよく、異なっていてもよく、同一であるのが好ましく、同一でありかつ塩素原子であるのがより好ましい。つまり、化合物(4)は、塩化シアヌルが好ましい。
 RおよびRは、それぞれ独立に、炭素数1~6のアルキル基を示す。
 RおよびRにおける炭素数1~6のアルキル基は、直鎖状であっても、分岐状であってもよく、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 RおよびRは、同一であってもよく、異なっていてもよく、同一であるのが好ましく、同一でありメチル基であるのがより好ましい。つまり、化合物(3)は、ジメチルホルムアミドが好ましい。
 Rは、炭素数1~6のアルキル基を示す。
 Rにおける炭素数1~6のアルキル基は、直鎖状であっても、分岐状であってもよく、n-プロピル基、iso-プロピル基、エチル基またはメチル基が好ましく、メチル基がより好ましい。つまり、化合物(2)は、アセトンが好ましい。
 なお、化合物(1)において、-CH=CH-に結合する、RC(O)-とNR-の立体配置は、cisであっても、transであってもよい。
 つぎに、本発明における、化合物(4)と化合物(3)との反応混合物(以下、「反応混合物」と称す。)に関して、詳細に説明する。
 反応混合物は、脱炭酸を伴う化合物(4)と化合物(3)の反応により形成される、式[NRCH=NCH=NR・Xで表される塩(ただし、R、RおよびXは、上記と同じ意味を示す。以下同様。)を含むと考えられる。塩の形成反応における化学量論は、化合物(4)に対して化合物(3)の6倍モルである。
 本発明においては、化合物(4)に対して化合物(3)の6倍モル超、つまり、化学量論を超える量の化合物(3)を使用して反応混合物を調製する。よって、本発明における反応混合物には化学量論を超える分の化合物(3)が含まれる。本発明者らは、化学量論を超える分の化合物(3)が溶媒として上記塩の溶液化(好ましくは均一溶液化)を促進する点と、かかる溶液状態にある反応混合物および化合物(2)の反応においてケトエナミンとも言える窒素化合物である化合物(1)が効率よく得られる点とを知見したのである。
 本発明における反応混合物は、化合物(4)に対して、化合物(3)の8~40倍モルを反応させて得るのが好ましく、化合物(3)の10~30倍モルを反応させて得るのがより好ましい。この範囲において、化合物(1)が、特に効率よく高収率に得られやすい。
 また、反応混合物の溶液状態を調整する観点から、エーテルの存在下で、化合物(4)と化合物(3)の反応混合物を得るのが好ましい。エーテルは、溶媒として用いられる。エーテルは、非プロトン性でありかつ飽和化合物であるエーテルが好ましい。エーテルは、環状エーテルであっても、鎖状エーテルであってもよい。エーテルの具体例としては、ジエチルエーテル、tert-ブチルメチルエーテル、ジオキサン、テトラヒドロフラン、シクロペンチルメチルエーテルが挙げられる。エーテルの存在下に反応混合物を調製する場合、エーテルの使用量は、化合物(4)の容積を基準として、1倍容積以上が好ましい。その上限は特に限定されず、10倍容積以下が好ましく、容積効率の観点から、2倍容積以下がより好ましい。
 反応混合物の調製における温度は、0~200℃が好ましく、30~100℃がより好ましい。反応混合物の調製における圧力は、特に限定されず、通常は、大気圧下で行われる。
 つぎに、本発明における、塩基性化合物を用いた、反応混合物と化合物(2)との反応について、詳細に説明する。
 反応において、化合物(2)の使用量は、反応混合物の調製に使用した化合物(4)の物質量を基準として、3倍モル以上が好ましく、3倍モル超がより好ましい。使用量の上限は特に限定されず、100倍モル以下が好ましく、20倍モル以下がより好ましい。この範囲において、化合物(1)が効率よく高収率に得られやすい。
 塩基性化合物は、化合物(3)のRおよびRを活性化する化合物であれば、特に限定されず、アルカリ金属のアルコキシド、3級アミン、またはアルカリ金属水素化物が好ましく、アルカリ金属のアルコキシドがより好ましい。
 アルカリ金属のアルコキシドにおいて、アルカリ金属はナトリウムまたはカリウムが好ましく、アルコキシドはメトキシド、エトキシドまたはイソプロポキシドが好ましい。アルカリ金属のアルコキシドは、ナトリウムメトキシドが好ましい。また、アルカリ金属のアルコキシドの使用形態も、特に限定されず、アルカリ金属のアルコキシドをそのままで(固体状のアルカリ金属のアルコキシドそれのみで)使用してもよく、アルカリ金属のアルコキシドのアルコール溶液として使用してもよく、アルカリ金属のアルコキシドをそのままで使用するのが好ましい。
 3級アミンとしては、例えば、炭素数1~4のアルキル基をもつトリアルキルアミン、イミダゾール、ピリジン、2,6-ルチジン、s-コリジン、N-メチルピロリジン、N-メチルピペリジンが挙げられる。炭素数1~4のアルキル基をもつトリアルキルアミンが好ましく、トリエチルアミン、トリブチルアミンまたはエチルジイソプロピルアミンがより好ましく、トリエチルアミンがさらに好ましい。
 アルカリ金属水素化物は、LiAlH、NaBH、NaH、またはLiN(CH(CHが好ましい。
 反応における塩基性化合物の使用量は、反応混合物の調製に使用した化合物(4)を基準として、3倍モル以上が好ましく、3倍モル超がより好ましい。使用量の上限は特に限定されず、6倍モル以下が好ましい。この範囲において、化合物(1)が効率よく高収率に得られる。
 反応においては、上記したように、反応混合物の調製において使用された化学量論を超える分の化合物(3)が溶媒として存在するが、さらに別の有機溶媒の存在下に行ってもよい。別の有機溶媒は、特に限定されず、塩基性化合物の種類によって適宜決定され、塩基性化合物がアルカリ金属のアルコキシドである場合には、上記したエーテルまたはアルコールが挙げられる。アルコールの具体例としては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノールが挙げられる。また、塩基性化合物が、3級アミンまたはアルカリ金属水素化物である場合には、芳香族炭化水素または飽和脂肪族炭化水素が好ましい。芳香族炭化水素の具体例としては、トルエン、キシレンが挙げられる。飽和脂肪族炭化水素の具体例としては、ヘプタン、ヘキサンが挙げられる。
 反応における溶媒の総使用量は、反応混合物の調製に使用した化合物(4)を基準として、1倍容積以上が好ましい。上限は特に限定されず、20倍容積以下が好ましい。この範囲において、化合物(1)が効率よく高収率に得られやすい。なお、上記溶媒の総使用量は、化学量論を超える分の化合物(3)および別の有機溶媒を含めた総量である。
 反応における温度は、-78~+200℃が好ましく、-60~+100℃がより好ましく、-30℃以上60℃未満がさらに好ましく、-30~+40℃が特に好ましい。反応物の調製における圧力は、特に限定されず、通常は、大気圧下で行われる。また、反応時間は、特に限定されず、反応終点に達した時点で反応を終了すればよい。
 本発明の製造方法の具体的な態様としては、化合物(4)に対して化合物(3)の6倍モル超を反応させて化合物(4)と化合物(3)の反応混合物を得て、該反応混合物に含まれる化合物(3)を本質的に除去することなく、該反応混合物と化合物(2)とを塩基性化合物を用いて反応させる態様が挙げられる。該態様において、塩基性化合物は、式R-OHで表されるアルコール(ただし、Rはメチル基、エチル基またはイソプロピル基である。)のアルカリ金属のアルコキシドであり、反応混合物から、式NRCH=NCH(OR)(N(R))で表されるアミノアセタールが形成されるのが好ましい。
 また、反応混合物と化合物(2)の反応においては、反応混合物に塩基性化合物を加え、つぎに、化合物(2)を加えて、該反応混合物と化合物(2)を反応させる態様が好ましい。つまり、反応混合物と塩基性化合物とを混合して混合物を得て、該混合物と化合物(2)とを混合して、該反応混合物と化合物(2)とを反応させる態様が好ましい。
 該態様において、塩基性化合物は、上記したアルカリ金属のアルコキシドが好ましい。
 上記したとおり、反応混合物と化合物(2)との反応は、種々の好適な条件を選択して実施できる。
 塩基性化合物がアルカリ金属のアルコキシドである場合、化合物(2)の使用量は、反応混合物の調製に使用した化合物(4)の物質量を基準として、3倍モル超20倍モル以下(好ましくは4~12倍モル)とするか、または、12倍モル超(好ましくは16~100倍モル、より好ましくは24~72倍モル)とするのが好ましい。
 化合物(2)の使用量が前者の範囲にある場合、反応混合物に含まれる上記化合物(4)と化合物(3)の反応により形成される塩に対して化合物(2)が過剰であり、かつ、上記塩、化合物(2)およびアルコキシドが高度に相溶するため、反応活性が高まり、化合物(1)が効率よく高収率に得られやすい。この範囲にある場合、反応混合物と化合物(2)との反応における反応温度は、40℃超が好ましく、60℃以上がより好ましい。上記反応温度は、200℃以下が好ましく、100℃以下がより好ましい。
 化合物(2)の使用量が後者の範囲にある場合、大過剰に含まれる化合物(2)が、極性溶媒として、上記塩とアルカリ金属のアルコキシドとの相溶を促し、反応活性を高めるため、化合物(1)が効率よく高収率に得られやすい。反応混合物と化合物(2)の反応における反応温度は、化合物(2)の沸点以下が好ましく、-30℃以上60℃未満がより好ましく、-30~+40℃がさらに好ましい。
 なお、上記したとおり、アルカリ金属のアルコキシドは、固体状のアルカリ金属のアルコキシドそれ自体を使用するのが好ましい。その理由は必ずしも明確ではないが、固体状のアルカリ金属のアルコキシドそれ自体を使用する場合、そのアルコール溶液を使用する場合に比較して、アルコールの存在によって誘引される、反応混合物とアルカリ金属のアルコキシドから形成される上記するアミノアセタールの分解が抑制されるためと考えられる。
 本発明における反応混合物と化合物(2)の反応においては、化合物(1)と同時に、式NRCH=NHで表される化合物(以下、「アルジミン」と称す。式中のRとRは、上記と同じ意味を示す。)が生成するため、本発明の製造方法により得られる反応物には、化合物(1)とアルジミンとが並存して含まれる。本発明におけるアルジミンは、化合物(1)に比較して低沸点な化合物である。
 なお、アルジミンは、本製造方法において副生する水と反応し、化合物(3)に変換されていてもよい。
 本発明の製造方法により得られた化合物(1)を含む反応物から、留去操作によって、該反応物に含まれる、アルジミン、溶媒等の化合物(1)に比較して低沸点な化合物(以下、「低沸点化合物」と称す。)を低減または除去して、高純度な化合物(1)を製造するのが好ましい。
 留去操作における温度は、70℃未満が好ましく、60℃未満がより好ましく、30℃以下がさらに好ましい。この温度の上限範囲において、化合物(1)の高純度化を、効率よく高収率に実施しやすい。その理由は必ずしも明確ではないが、上記温度の上限範囲において、反応物に並存するアルジミンと、化合物(1)との副反応物の副生が抑制されるためと考えられる。上記副反応物の具体例としては、下式(py)または下式(ap)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 留去操作における温度の下限は、特に限定されず、通常は0℃以上であり、0~30℃の範囲であれば、化合物(1)の高純度化を、効率よく高収率に実施しやすい。
 留去操作における圧力は、特に限定されず、効率よく留去を進行させる観点から、通常は減圧条件にて実施される。
 さらに、反応物の留去操作によって得られる、低沸点化合物が低減または除去された粗精製物を、さらに蒸留により精製して、その留分として精製された高純度な化合物(1)を得るのが好ましい。
 蒸留操作における温度は、特に限定されず、180℃以下が好ましく、140℃以下がより好ましい。その下限は、特に限定されず、通常は40℃以上である。蒸留操作における圧力は、特に限定されず、効率の観点から、通常は減圧条件にて実施される。
 本発明の製造方法で得られる化合物(1)を用いて、光学材料や医農薬中間体として有用な化合物を製造できる。
 具体的には、本発明の製造方法により化合物(1)を得て、該化合物(1)と下記化合物(5)とを反応させて下記化合物(6)を得て、該化合物(6)と下記化合物(7)とを反応させることにより、下記化合物(8)を製造できる。
 式(5) RC(O)Z
 式(7) RNHNH
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 Zは、フッ素原子または塩素原子を示し、フッ素原子が好ましい。
 Rは、炭素数1~3のハロアルキル基を示し、ジフルオロメチル基、クロロジフルオロメチル基、ジクロロメチル基、トリフルオロメチル基またはトリクロロメチル基が好ましく、ジフルオロメチル基がより好ましい。
 R~Rは、前記と同じ意味を示し、その好適な範囲も同様である。
 Rは、炭素数1~3のアルキル基を示し、n-プロピル基、iso-プロピル基、エチル基またはメチル基が好ましく、メチル基がより好ましい。
 化合物(8)を酸化することにより、医農薬原料として有用な高純度な、3-ハロアルキル-1-アルキル-1H-ピラゾール-4-カルボン酸(特に、3-ジフルオロメチル-1-メチル-1H-ピラゾール-4-カルボン酸)を容易に製造できる。
 以上のとおり、本発明の製造方法によれば、入手容易かつ安価な化合物を原料として、含窒素化合物を効率よく高収率に製造できる。つまり、本発明の製造方法は、光学材料や医農薬原料として有用な含窒素化合物の経済的な製造方法である。
 以下、実施例により、本発明を説明するが、本発明はこれらの実施例に限定されない。
 [例1]
 空気雰囲気下、フラスコに、塩化シアヌル(38.4g)、ジメチルホルムアミド(198g)を入れ、フラスコ内温60℃にてフラスコ内を2時間撹拌して、反応混合物が得られる。つぎに、フラスコ内温を40℃に保持し、フラスコ内を撹拌しながら、フラスコにナトリウムメトキシド(33.8g)とメタノール(276g)を混合したナトリウムメトキシドのメタノール溶液を加え、そのまま1時間保持する。つぎに、フラスコ内温を25℃に保持し、フラスコ内を撹拌しながら、フラスコにアセトン(36.3g)を入れ、そのまま18時間反応させる。
 フラスコ内容物を分析した結果、CHC(O)CH=CHN(CH(以下、化合物(1)とも記す。)が、塩化シアヌルを基準として収率68%で生成していることが確認される。フラスコ内容物を濾過して濾液を回収して、CHC(O)CH=CHN(CHを含む反応液が得られる。
 [例2~5]
 各成分の仕込み量、および、別の有機溶媒の使用有無を変更する以外は、例1と同様の手順に従い、化合物(1)の合成を行った結果を、表1にまとめて示す。表1における別の有機溶媒としては、例3および4はテトラヒドロランを用い、例5はイソプロピルアルコールを用いる。
Figure JPOXMLDOC01-appb-T000011
 [例6]
 例1で得られた反応液から、温度20~30℃、圧力10~30Paの条件にて減圧留去操作によって、反応液中の低沸点化合物を除去して粗精製物を得る。粗精製物をさらに減圧蒸留して、留分として純度99%超の化合物(1)が、蒸留収率として93%、塩化シアヌルを基準とした収率として63%で得られる。
 [例7]
 例1で得られた反応液から、温度70~90℃、圧力12000~20000Paの条件にて減圧留去操作によって、反応液中の低沸点化合物を除去して粗精製物を得る。粗精製物をさらに減圧蒸留して、留分として純度99%超の化合物(1)が、蒸留収率として74%、塩化シアヌルを基準とした収率として収率50%で得られる。
 例1~3と例4~5の対比から明らかである様に、化合物(4)の一態様である塩化シアヌルに対して、化合物(3)の一態様であるジメチルホルムアミドの6倍モル超を反応させた反応混合物を使用する場合に、化合物(1)が高収率に得られることが分かる。また、例6と例7の対比から明らかである様に、得られた反応物を、低温(20~30℃)で留去操作に供した場合には、高温(70~90℃)で留去操作に供した場合に比較して、化合物(1)が高収率に得られることが分かる。
 [例9]
 空気雰囲気下、フラスコに、塩化シアヌル(12.8g)、ジメチルホルムアミド(182g)を入れ、フラスコ内温60℃にてフラスコ内を2時間撹拌して、反応混合物が得られる。つぎに、フラスコ内温を25℃に保持し、フラスコ内を撹拌しながら、フラスコにナトリウムメトキシド(11.4g)を加え、そのまま2時間保持する。つぎに、フラスコ内温を25℃に保持し、フラスコ内を撹拌しながら、フラスコにアセトン(150g)を入れ、そのまま25℃にて5時間反応させる。
 フラスコ内容物を分析した結果、化合物(1)が、塩化シアヌルを基準として収率99%で生成していることが確認される。フラスコ内容物を濾過して濾液を回収して、化合物(1)を含む反応液が得られる。
 [例10~14]
 ナトリウムメトキシドの使用態様(単体またはメタノール溶液)、アセトンの使用量、及び、アセトンを入れた後の反応温度を変更する以外は、例9と同様の手順に従い、化合物(1)の合成を行った結果を、表2にまとめて示す。
 なお、表中の「単体」とは、固体状のナトリウムメトキシドをそのままフラスコに添加したことを意味する。
Figure JPOXMLDOC01-appb-T000012
 [例15]
 窒素雰囲気下の反応器に、例9で得られた化合物(1)とトリエチルアミンと塩化メチレンを入れ、溶液を調製する。つぎに、室温にて、反応器内を撹拌しながら、反応器にCHFC(O)Fをガス状で導入して反応させる。反応後、反応器を氷冷しながら、反応器に水を加え、下記化合物(6)を含む第1有機相を回収する。
 つぎに、窒素雰囲気下の反応器に、40%メチルヒドラジン水溶液と塩化メチレンを入れ、溶液を調製する。つぎに、-20℃にて、反応器内を撹拌しながら、反応器に第1有機相を導入して反応させる。反応後、反応器に水を加えて、第2有機相を回収する。第2有機相を硫酸ナトリウムで乾燥後、減圧留去して下記化合物(8)が得られる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本発明は、入手容易かつ安価な化合物から、工業的に効率よく、光学材料や医農薬原料として有用な含窒素化合物を製造できる方法を提供することができる。
 本出願は、日本で出願された特願2016-205020および特願2017-61391を基礎としており、それらの内容は本明細書にすべて包含されるものである。

Claims (11)

  1.  下式(4)で表される化合物に対して下式(3)で表される化合物の6倍モル超を反応させて、下式(4)で表される化合物と下式(3)で表される化合物との反応混合物を得て、該反応混合物と下式(2)で表される化合物とを塩基性化合物を用いて反応させて下式(1)で表される化合物を得る、下式(1)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式(3) NRC(O)H
     式(2) RC(O)CH
     式(1) RC(O)CH=CHNR
     式中、Xは、ハロゲン原子を示し、R、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示す。
  2.  前記反応混合物を、前記式(4)で表される化合物に対して前記式(3)で表される化合物の8~40倍モルを反応させて得る、請求項1に記載の製造方法。
  3.  前記反応混合物と塩基性化合物を混合して混合物を得て、該混合物と前記式(2)で表される化合物とを混合して、前記反応混合物と前記式(2)で表される化合物とを反応させる、請求項1または2に記載の製造方法。
  4.  エーテルの存在下で、前記式(4)で表される化合物と前記式(3)で表される化合物の反応混合物を得る、請求項1~3のいずれか1項に記載の製造方法。
  5.  前記塩基性化合物がアルカリ金属のアルコキシドである、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記アルカリ金属のアルコキシドが、固体状のアルカリ金属のアルコキシドである、請求項5に記載の製造方法。
  7.  前記式(2)で表される化合物の使用量が前記式(4)で表される化合物に対して3倍モル超20倍モル以下であり、前記反応混合物と前記式(2)で表される化合物とを塩基性化合物を用いて反応させる際の反応温度が40℃超である、請求項5または6に記載の製造方法。
  8.  前記式(2)で表される化合物の使用量が前記式(4)で表される化合物に対して、12倍モル超であり、前記反応混合物と前記式(2)で表される化合物とを塩基性化合物を用いて反応させる際の反応温度が前記式(2)で表される化合物の沸点以下である、請求項5または6に記載の製造方法。
  9.  請求項1~8のいずれか1項に記載された製造方法により、前記式(1)で表される化合物を含む反応物を得て、つぎに該反応物から、留去操作によって、該反応物に含まれる低沸点化合物を低減または除去して粗精製物を得て、つぎに該粗精製物を蒸留して精製された前記式(1)で表される化合物を得る、前記式(1)で表される化合物の製造方法。
  10.  前記反応物から、70℃未満にて留去操作によって、前記反応物に含まれる低沸点化合物を低減または除去して粗精製物を得る、請求項9に記載の製造方法。
  11.  請求項1~10のいずれか1項に記載された製造方法により前記式(1)で表される化合物を得て、該式(1)で表される化合物と下式(5)で表される化合物とを反応させて下式(6)で表される化合物を得て、該式(6)で表される化合物と下式(7)で表される化合物とを反応させる下記式(8)で表される化合物の製造方法。
     式(5) RC(O)Z
     式(7) RNHNH
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     式中、Zはフッ素原子または塩素原子を示し、Rは炭素数1~3のハロアルキル基を示し、R、RおよびRは、それぞれ独立に炭素数1~6のアルキル基を示し、Rは炭素数1~3のアルキル基を示す。
PCT/JP2017/037350 2016-10-19 2017-10-16 含窒素化合物の製造方法 WO2018074411A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17862001.9A EP3530645B1 (en) 2016-10-19 2017-10-16 Method for producing nitrogen-containing compound
CN202211088443.1A CN115322152A (zh) 2016-10-19 2017-10-16 含氮化合物的制造方法
CN201780064282.3A CN109863134B (zh) 2016-10-19 2017-10-16 含氮化合物的制造方法
US16/340,207 US20200039920A1 (en) 2016-10-19 2017-10-16 Method for producing nitrogen-containing compound
JP2018546321A JP6922924B2 (ja) 2016-10-19 2017-10-16 含窒素化合物の製造方法
KR1020197013007A KR102556594B1 (ko) 2016-10-19 2017-10-16 함질소 화합물의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016205020 2016-10-19
JP2016-205020 2016-10-19
JP2017-061391 2017-03-27
JP2017061391 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018074411A1 true WO2018074411A1 (ja) 2018-04-26

Family

ID=62018710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037350 WO2018074411A1 (ja) 2016-10-19 2017-10-16 含窒素化合物の製造方法

Country Status (7)

Country Link
US (1) US20200039920A1 (ja)
EP (1) EP3530645B1 (ja)
JP (1) JP6922924B2 (ja)
KR (1) KR102556594B1 (ja)
CN (2) CN109863134B (ja)
TW (1) TW201821400A (ja)
WO (1) WO2018074411A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781222A (zh) * 2010-01-26 2010-07-21 广东药学院 一种制备烯胺酮类化合物的方法
JP2015511944A (ja) * 2012-02-16 2015-04-23 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Cf3o−含有エナミノケトンおよびcf3o−含有ピラゾールの調製のためのそれらの利用
WO2016152886A1 (ja) * 2015-03-26 2016-09-29 旭硝子株式会社 ピラゾール誘導体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE207062T1 (de) * 1997-01-13 2001-11-15 Lonza Ag Verfahren zur herstellung von substituierten pyrimidinderivaten
WO2001090036A2 (de) * 2000-05-19 2001-11-29 Lonza Ag Verfahren zur herstellung von dicarbonyl-verbindungen
CN101550106A (zh) * 2008-04-03 2009-10-07 上海药明康德新药开发有限公司 一种n-烷基取代-咪唑-5-羧酸/酯类化合物的工业化制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781222A (zh) * 2010-01-26 2010-07-21 广东药学院 一种制备烯胺酮类化合物的方法
JP2015511944A (ja) * 2012-02-16 2015-04-23 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Cf3o−含有エナミノケトンおよびcf3o−含有ピラゾールの調製のためのそれらの利用
WO2016152886A1 (ja) * 2015-03-26 2016-09-29 旭硝子株式会社 ピラゾール誘導体の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHUPPE, A. W. ET AL.: "Scalable synthesis of enaminones utilizing Gold's reagents", TETRAHEDRON, vol. 73, no. 26, June 2017 (2017-06-01), pages 3643 - 3651, XP055478128 *
See also references of EP3530645A4 *

Also Published As

Publication number Publication date
CN115322152A (zh) 2022-11-11
EP3530645A1 (en) 2019-08-28
EP3530645B1 (en) 2023-12-06
KR102556594B1 (ko) 2023-07-17
EP3530645C0 (en) 2023-12-06
EP3530645A4 (en) 2020-05-27
US20200039920A1 (en) 2020-02-06
TW201821400A (zh) 2018-06-16
CN109863134A (zh) 2019-06-07
JPWO2018074411A1 (ja) 2019-08-08
JP6922924B2 (ja) 2021-08-18
KR20190071738A (ko) 2019-06-24
CN109863134B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US9783506B2 (en) Process for the large scale production of 1H-[1,2,3]triazole and its intermediate 1-benzyl-1H-[1,2,3]triazole
JP5559066B2 (ja) 2−アルコキシメチレン−4,4−ジフルオロ−3−オキソ酪酸アルキルの製造方法
JP2013528200A (ja) エステルアミド化合物を調製する方法
WO2014117452A1 (zh) 二氟亚甲基鳞内盐的合成及其应用
US20090036700A1 (en) Process For Preparing Alkyl(Methoxymethyl)Trimethylsilanylmethylamines
US9346772B2 (en) Preparation method for an imine compound and reduction method for solid powder of a carbamic acid derivative
WO2018074411A1 (ja) 含窒素化合物の製造方法
KR20160027536A (ko) 실로도신 합성에 유용한 중간체의 제조방법
JP4320059B2 (ja) 5−アミノメチル−クロロピリジン類の製造方法
JP4879907B2 (ja) フェニル2−ピリミジニルケトン類の製造方法及びその新規中間体
KR101305053B1 (ko) 카르밤 산 유도체 분말 제조 방법
KR20120039020A (ko) 2,4-디옥소테트라하이드로퓨란-3-카복실레이트의 제조방법
CN101805367B (zh) 合成磷脂酰乙醇胺的方法
JP5351103B2 (ja) スルホニウム塩の製造方法およびそれによって製造されたスルホニウム塩
KR100625649B1 (ko) β-히드록시부틸산 알킬 에스테르의 제조방법
JP5573079B2 (ja) 3−メルカプト−1−プロパノールの製造方法
JP5609041B2 (ja) ヒドロキシ(アルキル)ピペラジン類の製造方法
JP2006232743A (ja) 1,3−ジベンジル−2−オキソイミダゾリジン−4,5−ジカルボン酸ジメチルの製造方法
JP5397907B2 (ja) 光学活性リン化合物の製造方法
KR100638171B1 (ko) 2,n-디메틸-n-(3,3-디페닐프로필)-1-아미노-2-프로판올의제조방법
KR20140063792A (ko) 2-옥소-2H-사이클로헵타[b]푸란 유사체의 제조 방법
JPH06345737A (ja) ナファゾリンまたはその塩の製造方法
JP2007186475A (ja) 4,5−ジヒドロキシ−2−イミダゾリジノン化合物の製法
EP1963309A1 (en) Method for producing metal salts of losartan
JP2004269411A (ja) 4−ヒドロキシメチルイミダゾールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197013007

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017862001

Country of ref document: EP

Effective date: 20190520