WO2016152711A1 - 熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途 - Google Patents

熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途 Download PDF

Info

Publication number
WO2016152711A1
WO2016152711A1 PCT/JP2016/058469 JP2016058469W WO2016152711A1 WO 2016152711 A1 WO2016152711 A1 WO 2016152711A1 JP 2016058469 W JP2016058469 W JP 2016058469W WO 2016152711 A1 WO2016152711 A1 WO 2016152711A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
ethylene
group
copolymer
carbon atoms
Prior art date
Application number
PCT/JP2016/058469
Other languages
English (en)
French (fr)
Inventor
市野 光太郎
智弘 山口
幸雄 相田
裕司 野口
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to BR112017020142-9A priority Critical patent/BR112017020142B1/pt
Priority to KR1020177026298A priority patent/KR101840993B1/ko
Priority to CN201680016771.7A priority patent/CN107428956B/zh
Priority to JP2017508284A priority patent/JP6439039B2/ja
Priority to US15/559,366 priority patent/US11078352B2/en
Priority to EP16768614.6A priority patent/EP3272790B1/en
Publication of WO2016152711A1 publication Critical patent/WO2016152711A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/083Copolymers of ethene with aliphatic polyenes, i.e. containing more than one unsaturated bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2461/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/04Crosslinking with phenolic resin

Definitions

  • the present invention (1) relates to a thermoplastic elastomer composition, and more particularly, to a thermoplastic elastomer composition that can provide a molded article that is lightweight, high in strength, and excellent in oil resistance and mechanical properties.
  • the present invention (2) relates to an ethylene / ⁇ -olefin / non-conjugated polyene copolymer and its use.
  • Olefin-based thermoplastic elastomers are lightweight and easy to recycle. As energy- and resource-saving thermoplastic elastomers, especially as an alternative to vulcanized rubber, hoses, pipes and boots (blow molded products) for automobiles, etc. Widely used in automobile parts and the like (for example, Patent Documents 1 and 2).
  • thermoplastic elastomers used contain a large amount of filler, so the specific gravity tends to be large and hinders weight reduction of the parts.
  • these automobile parts are used in places where they come into contact with lubricating oil or grease.
  • olefin-based thermoplastic elastomers have low oil resistance against paraffin-based process oils, so Even in these automobile parts obtained by including a plastic elastomer, oil resistance is low, and further improvement has been demanded.
  • ethylene / ⁇ -olefin rubbers such as ethylene / propylene copolymer rubber (EPR) and ethylene / propylene / diene copolymer rubber (EPDM) do not have an unsaturated bond in the main chain of the molecular structure.
  • EPR ethylene / propylene copolymer rubber
  • EPDM ethylene / propylene / diene copolymer rubber
  • EPDM is known to use, for example, ethylene / propylene / diene copolymer rubber (EPDM) as a rubber component of a hose forming composition (Patent Document 3).
  • EPDM ethylene / propylene / diene copolymer rubber
  • Patent Document 3 ethylene / propylene / diene copolymer rubber
  • Applications where hoses are used, such as automobiles, are also expected to be used in cold regions. Therefore, in addition to mechanical properties at room temperature (tensile strength, etc.), rubber properties at low temperatures (rubber elasticity, etc.) are also required. Is done.
  • Patent Document 4 An ethylene / 1-butene / ENB copolymer having a maximum B value of 1.12 represented by the following formula, which is an index indicating the quality of randomness, was obtained. Is described.
  • thermoplastic elastomers used contain a large amount of filler, so the specific gravity tends to be large and hinders weight reduction of the parts.
  • these automobile parts are used in places where they come into contact with lubricating oil or grease.
  • olefin-based thermoplastic elastomers have low oil resistance against paraffin-based process oils, so Even in these automobile parts obtained by including a plastic elastomer, oil resistance is low, and further improvement has been demanded.
  • the present invention (1) has been made in order to solve the above-mentioned problems, is lightweight, has oil resistance superior to that of a conventional cross-linked thermoplastic elastomer, and has a conventional cross-link type heat. It is an object of the present invention to provide a thermoplastic elastomer composition that can be a molded product having hardness, mechanical properties such as tensile strength and tensile elongation equivalent to or higher than those of a plastic elastomer.
  • An object of the present invention is to provide molded parts having a better oil resistance obtained by including the thermoplastic elastomer composition, in particular, automotive parts such as hoses, pipes and boots (blow molded articles) for automobiles.
  • the problem of the present invention (2) is that, compared with the already proposed ethylene / ⁇ -olefin / non-conjugated polyene copolymer, the compression set at a low temperature is small and has flexibility,
  • the object is to obtain an ethylene / ⁇ -olefin / non-conjugated polyene copolymer having an excellent balance between rubber elasticity at low temperature and tensile strength at room temperature.
  • hoses that have both low temperature characteristics and mechanical properties are desired.
  • hose-forming composition containing EPDM with a low ethylene content is used, the low-temperature characteristics of the resulting hose are improved, but the tensile strength is reduced.
  • Another object of the present invention (2) is to provide a hose forming composition capable of forming a hose excellent in low temperature characteristics and mechanical properties, and a hose formed from the composition. .
  • the present invention (2) is light in weight, has oil resistance superior to that of conventional cross-linked thermoplastic elastomers, and has hardness and tensile strength equal to or higher than those of conventional cross-linked thermoplastic elastomers.
  • Another object of the present invention is to provide a thermoplastic elastomer composition that can be a molded article having mechanical properties such as tensile elongation. It is another object of the present invention to provide molded parts, particularly automobile parts such as hoses and boots (blow molded articles) for automobiles, which are obtained by including the thermoplastic elastomer composition and have better oil resistance.
  • thermoplastic elastomer composition obtained by dynamically crosslinking a mixture containing a crystalline olefin polymer, a specific ethylene / ⁇ -olefin / non-conjugated polyene copolymer, and a phenol resin crosslinking agent is obtained.
  • the present inventors have found that the above problems can be solved, and have completed the present invention (1).
  • thermoplastic elastomer composition according to the present invention (1) (also referred to as composition (I) in the present invention) is a crystalline olefin polymer (A), which satisfies the following requirements (1) and (2): It is obtained by dynamically crosslinking a mixture containing an ⁇ -olefin (having 4 to 20 carbon atoms), a non-conjugated polyene copolymer (1B), and a phenol resin crosslinking agent (C).
  • the B value represented by the following formula (i) is 1.20 to 1.80.
  • [E], [X] and [Y] are, respectively, the mole fraction of structural units derived from ethylene, the mole fraction of structural units derived from ⁇ -olefins having 4 to 20 carbon atoms, and those derived from non-conjugated polyenes.
  • the molar fraction of the structural unit is indicated, and [EX] indicates the dyad chain fraction of the structural unit derived from ethylene-the structural unit derived from ⁇ -olefin having 4 to 20 carbon atoms.
  • the molar ratio of the structural unit derived from ethylene and the structural unit derived from ⁇ -olefin (having 4 to 20 carbon atoms) in the copolymer (1B) is 40/60 to 90/10.
  • the ⁇ -olefin of the ethylene / ⁇ -olefin / non-conjugated polyene copolymer (1B) is preferably 1-butene.
  • the mixture preferably further contains 2 to 100 parts by weight of the softening agent (D) with respect to 100 parts by weight in total of the crystalline olefin polymer (A) and the copolymer (1B). .
  • the phenol resin-based crosslinking agent (C) is preferably a halogenated phenol resin-based crosslinking agent.
  • the phenol resin-based crosslinking agent (C) is preferably contained in an amount of 0.1 to 20 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin / non-conjugated polyene copolymer (1B).
  • the molded article of the present invention (1) is obtained by including the thermoplastic elastomer composition of the present invention (1).
  • the automobile part of the present invention (1) is characterized by being obtained by including the thermoplastic elastomer composition of the present invention (1).
  • the automobile hose of the present invention (1) is obtained by including the thermoplastic elastomer composition of the present invention (1).
  • the boot for automobiles of the present invention (1) is characterized by being obtained by including the thermoplastic elastomer composition of the present invention (1).
  • the method for producing the thermoplastic elastomer composition (I) of the present invention comprises a crystalline olefin polymer (A) and the ethylene / ⁇ -olefin (having 4 to 20 carbon atoms) / non-conjugated polyene copolymer (1B). And a step of dynamically crosslinking the mixture containing the phenol resin-based crosslinking agent (C).
  • the present inventors have intensively studied to solve the above problems.
  • the compression set at low temperature is small and flexible, and the rubber elasticity at low temperature and room temperature are low.
  • a specific ethylene / ⁇ -olefin / non-conjugated polyene copolymer having an excellent balance with the tensile strength of the resin and a composition containing the copolymer (also referred to as composition (IIA) in the present invention) (2) has been completed.
  • a hose-forming composition capable of forming a hose excellent in low-temperature characteristics and mechanical properties by using a specific ethylene / ⁇ -olefin / non-conjugated polyene copolymer (in the present invention, a composition (Also referred to as (IIB)) and a hose formed from the composition can be provided, and the present invention (2) has been completed.
  • thermoplastic elastomer composition obtained by dynamically crosslinking a mixture containing a crystalline olefin polymer, a specific ethylene / ⁇ -olefin / non-conjugated polyene copolymer, and a phenol resin crosslinking agent (present)
  • the composition also referred to as IIC
  • the composition has oil resistance superior to that of a conventional cross-linked thermoplastic elastomer, and has a hardness, tensile strength and It has been found that a molded article having mechanical properties such as tensile elongation can be obtained, and the thermoplastic elastomer composition (IIC) is a molded article having better oil resistance, in particular, hoses and boots for automobiles ( The present inventors have found that automobile parts such as blow molded products can be provided, and have completed the present invention (2).
  • the present invention (2) relates to the following [1] to [18], for example.
  • the molar ratio [[A] / [B]] of the structural unit derived from ethylene [A] and the structural unit derived from ⁇ -olefin [B] is 40/60 to 90/10
  • the content of structural units derived from the non-conjugated polyene [C] is 0.1 to 6.0 mol%, where the total of the structural units of [A], [B] and [C] is 100 mol%.
  • the B value represented by the following formula (i) is 1.20 to 1.80.
  • B value ([EX] +2 [Y]) / [2 ⁇ [E] ⁇ ([X] + [Y])] (i) [Where [E], [X] and [Y] are the mole fractions of ethylene [A], ⁇ -olefin [B] having 4 to 20 carbon atoms, and non-conjugated polyene [C], respectively. [EX] represents ethylene [A] - ⁇ -olefin [B] dyad chain fraction having 4 to 20 carbon atoms. ]
  • A a transition metal compound represented by the following general formula [VII];
  • B (b-1) an organometallic compound, in the presence of an olefin polymerization catalyst comprising (b-2) an organoaluminum oxy compound, and (b-3) at least one compound selected from compounds that react with the transition metal compound (a) to form an ion pair.
  • An ethylene / ⁇ -olefin / non-conjugated polyene copolymer (2B) obtained by copolymerizing ethylene, an ⁇ -olefin having 4 to 20 carbon atoms, and a non-conjugated polyene, according to [1] or [2] .
  • M is a titanium atom, a zirconium atom or a hafnium atom
  • R 5 and R 6 are substituted aryl groups obtained by substituting one or more hydrogen atoms of an aryl group with an electron donating substituent having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less
  • each of the electron donating substituents may be the same or different, and other than the electron donating substituent, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, nitrogen
  • a substituted aryl which may have a substituent selected from a containing group, an oxygen-containing group, a halogen atom and a halogen-containing group, and when there are a plurality of such substituents, each substituent may be the same or different.
  • Q is selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand and a neutral ligand capable of coordinating with a lone electron pair in the same or different combinations; j is an integer of 1 to 4.
  • a composition comprising the ethylene / ⁇ -olefin / non-conjugated polyene copolymer (2B) according to any one of [1] to [3].
  • [6] [1] A composition for forming a hose comprising the ethylene / ⁇ -olefin / non-conjugated polyene copolymer (2B) according to any one of [1] to [3].
  • the mixture further contains 2 to 100 parts by weight of a softening agent (D) with respect to a total of 100 parts by weight of the crystalline olefin polymer (A) and the copolymer (2B) [9 ].
  • a softening agent (D) with respect to a total of 100 parts by weight of the crystalline olefin polymer (A) and the copolymer (2B) [9 ].
  • thermoplastic elastomer composition according to [9] or [10], wherein the phenol resin crosslinking agent (C) is a halogenated phenol resin crosslinking agent.
  • the phenol resin-based crosslinking agent (C) is contained in an amount of 0.1 to 20 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin / non-conjugated polyene copolymer (2B).
  • the thermoplastic elastomer composition according to any one of the above.
  • thermoplastic elastomer composition obtained by including the thermoplastic elastomer composition according to any one of [12].
  • thermoplastic elastomer composition obtained by including the thermoplastic elastomer composition according to any one of [12].
  • thermoplastic elastomer composition obtained by including the thermoplastic elastomer composition according to any one of [9] to [12].
  • thermoplastic elastomer composition obtained by including the thermoplastic elastomer composition according to any one of [12].
  • B) (b-1) an organometallic compound, in the presence of an olefin polymerization catalyst comprising (b-2) an organoaluminum oxy compound, and (b-3) at least one compound selected from compounds that react with the transition metal compound (a) to form an ion pair.
  • a mixture comprising a crystalline olefin polymer (A), the ethylene / ⁇ -olefin (C4-20) / nonconjugated polyene copolymer (2B), and a phenol resin crosslinking agent (C),
  • a method for producing a thermoplastic elastomer composition comprising a step of dynamically crosslinking.
  • thermoplastic elastomer composition capable of forming a molded article having mechanical properties such as tensile elongation.
  • the ethylene / ⁇ -olefin / non-conjugated polyene copolymer of the present invention (2) has a small compression set at low temperature and has flexibility, and has a rubber elasticity at low temperature and a tensile strength at normal temperature. Since the balance is excellent, a composition containing an ethylene / ⁇ -olefin / non-conjugated polyene copolymer can be suitably used for various applications by taking advantage of such properties.
  • a composition for forming a hose capable of forming a hose excellent in low temperature characteristics such as rubber elasticity at low temperature and mechanical properties such as tensile strength at normal temperature, And a hose formed from the composition.
  • thermoplastic elastomer composition capable of forming a molded article having mechanical properties such as tensile elongation.
  • the crystalline olefin polymer (A) (also referred to as polymer (A) in the present invention) is not particularly limited as long as it is a crystalline polymer obtained from olefin, but one or more monoolefins are converted into a high pressure method.
  • a polymer composed of a crystalline high molecular weight solid product obtained by polymerization by either low pressure method is preferred. Examples of such a polymer include an isotactic monoolefin polymer and a syndiotactic monoolefin polymer.
  • the polymer (A) may be obtained by synthesis by a conventionally known method, or a commercially available product may be used.
  • a polymer (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Monoolefins used as starting materials for the polymer (A) include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 2-methyl-1-propene, 3-methyl- 1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene and the like can be mentioned. These olefins may be used alone or in combination of two or more.
  • a propylene homopolymer or a propylene-based (co) polymer that is a propylene copolymer obtained from a monoolefin mainly composed of propylene is preferable.
  • the content of the structural unit derived from propylene is preferably 40 mol% or more, more preferably 50 mol% or more, and as a monoolefin that becomes a structural unit derived from a monomer other than propylene. Is preferably the above monoolefin other than propylene, more preferably ethylene or butene.
  • the polymerization mode may be random type or block type, and any polymerization mode can be adopted as long as a crystalline resinous material can be obtained.
  • the crystalline olefin polymer (A) has an MFR (ASTM D1238-65T, 230 ° C., 2.16 kg load), usually 0.01 to 100 (g / 10 min), preferably 0.05 to 50 ( g / 10 minutes).
  • the polymer (A) has a melting point (Tm) obtained by differential scanning calorimetry (DSC) of usually 100 ° C. or higher, preferably 105 ° C. or higher.
  • the differential scanning calorimetry is performed, for example, as follows. About 5 mg of a sample is packed in a special aluminum pan, heated to 30 ° C. to 200 ° C. at 320 ° C./min using DSCPyris 1 or DSC 7 manufactured by Perkin Elmer, Inc., held at 200 ° C. for 5 minutes, and then 200 ° C.
  • the melting point is determined from the endothermic curve when the temperature is lowered from 10 to 30 ° C. at 10 ° C./min, held at 30 ° C. for 5 minutes, and then heated at 10 ° C./min.
  • Tm melting point
  • the polymer (A) plays a role of improving the fluidity and heat resistance of the thermoplastic elastomer composition.
  • ⁇ Ethylene / ⁇ -Olefin / Nonconjugated Polyene Copolymer (1B)> The ethylene / ⁇ -olefin / non-conjugated polyene copolymer (1B) used in the present invention (1) (also referred to as copolymer (1B) in the present invention) is a structural unit derived from ethylene and contains at least one carbon number.
  • An ethylene / ⁇ -olefin / non-conjugated polyene copolymer comprising 4 to 20 ⁇ -olefin-derived structural units and at least one structural unit derived from a non-conjugated polyene;
  • [EX] represents the dyad chain fraction of the structural unit derived from ethylene-the structural unit derived from ⁇ -olefin having 4 to 20 carbon atoms), (2) The molar ratio of the structural unit derived from ethylene and the structural unit derived from ⁇ -olefin (having 4 to 20 carbon atoms) in the copolymer (1B) is 40/60 to 90/10.
  • Examples of the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene (4 carbon atoms), 1-nonene (9 carbon atoms), 1-decene (10 carbon atoms), 1-nonadecene (19 carbon atoms), 1- Linear ⁇ -olefin having no side chain such as eicosene (carbon number 20); 4-methyl-1-pentene, 9-methyl-1-decene, 11-methyl-1-dodecene having a side chain, 12- And ⁇ -olefins having a side chain such as ethyl-1-tetradecene. These ⁇ -olefins may be used alone or in combination of two or more.
  • ⁇ -olefins having 4 to 10 carbon atoms are preferable, 1-butene, 1-hexene and 1-octene are more preferable.
  • 1-butene is particularly preferable in the obtained molding.
  • the oil resistance of the body in particular, oil resistance at a relatively high temperature, flexibility and impact resistance can be improved, which is more preferable.
  • Non-conjugated polyenes include chains such as 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, etc.
  • non-conjugated polyenes may be used alone or in combination of two or more.
  • mixtures of cyclic non-conjugated dienes such as 1,4-hexadiene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, 5-ethylidene-2-norbornene and 5-vinyl-2-norbornene are included.
  • 5-Ethylidene-2-norbornene and 5-vinyl-2-norbornene are more preferable.
  • Examples of the copolymer (1B) include ethylene / 1-butene / 1,4-hexadiene copolymer, ethylene / 1-pentene / 1,4-hexadiene copolymer, ethylene / 1-hexene / 1,4-hexadiene.
  • Copolymer ethylene / 1-heptene / 1,4-hexadiene copolymer, ethylene / 1-octene / 1,4-hexadiene copolymer, ethylene / 1-nonene / 1,4-hexadiene copolymer, Ethylene / 1-decene / 1,4-hexadiene copolymer, ethylene / 1-butene / 1-octene / 1,4-hexadiene copolymer, ethylene / 1-butene / 1-octene / 1,4-hexadiene copolymer, ethylene / 1-butene / 5-ethylidene-2-norbornene copolymer Ethylene / 1-pentene / 5-ethylidene-2-norbornene copolymer, ethylene / 1-hexene / 5-ethylidene-2-norbornene copolymer, ethylene 1-
  • the copolymer (1B) may be used alone or in combination of two or more.
  • the copolymer (1B) has (1) a B value represented by the above formula (i) of 1.20 or more, preferably 1.20 to 1.80, particularly preferably 1.22 to 1.40. is there.
  • the copolymer (1B) having a B value of less than 1.20 has a large compression set, and there is a possibility that a thermoplastic elastomer composition having an excellent balance between rubber elasticity and tensile strength may not be obtained.
  • the B value is an index indicating the randomness of the copolymer monomer chain distribution in the copolymer (1B), and [E], [X], [Y], [EX] in the above formula (i). measures the 13 C-NMR spectrum, J. C.Randall [Macromolecules, 15 , 353 (1982)], J. Ray [Macromolecules, 10, 773 (1977)] can be determined based on these reports.
  • the ethylene / ⁇ -olefin / non-conjugated polyene copolymer (1B) comprises (2) a molar ratio [[A] of the structural unit [A] derived from ethylene and the structural unit [B] derived from ⁇ -olefin. / [B]] is in the range of 40/60 to 90/10.
  • the lower limit of the molar ratio [A] / [B] is preferably 45/55, more preferably 50/50, and particularly preferably 55/45.
  • the upper limit of the molar ratio [A] / [B] is preferably 80/20, more preferably 75/25, still more preferably 70/30, and particularly preferably 65/35.
  • thermoplastic elastomer composition (I) excellent in balance with the tensile strength at room temperature can be obtained.
  • the copolymer (1B) preferably satisfies at least one of the following requirements (3) and (4).
  • the copolymer (1B) is obtained as long as the Mooney viscosity ML (1 + 4) (125 ° C.) at 125 ° C. obtained by measuring according to (3) JIS K6300 (1994) exhibits the effects of the present invention. Although not particularly limited, it is preferably in the range of 5 to 100, more preferably 20 to 95, and still more preferably 50 to 90.
  • the content of structural units [C] derived from non-conjugated polyenes is such that the total of structural units of [A], [B] and [C] is 100 mol%. , Preferably 0.1 to 6.0 mol%, more preferably 0.5 to 4.0 mol%, still more preferably 0.5 to 3.5 mol%, particularly preferably 0.5 to 3.0 mol%. % Range.
  • the content of the structural unit [C] derived from the non-conjugated polyene is in the above range, an ethylene copolymer having sufficient crosslinkability and flexibility tends to be obtained.
  • the ethylene / ⁇ -olefin / non-conjugated polyene copolymer (2B) of the present invention (2) (also referred to as copolymer (2B) in the present invention) is a structural unit derived from ethylene [A], having 4 to 4 carbon atoms. 20 structural units derived from ⁇ -olefin [B] and structural units derived from non-conjugated polyene [C], which satisfy the following (1) to (4).
  • Such a specific ethylene / ⁇ -olefin / non-conjugated polyene copolymer is also referred to as “ethylene-based copolymer 2A”.
  • the ⁇ -olefin [B] having 4 to 20 carbon atoms and the non-conjugated polyene [C] may be used alone or in combination of two or more.
  • the copolymer (1B) or (2B) comprises a structural unit derived from ethylene [A], at least one structural unit derived from ⁇ -olefin [B] having 4 to 20 carbon atoms, and at least one non-structural unit. It contains structural units derived from conjugated polyene [C].
  • the molar ratio [[A] / [B]] of the structural unit derived from ethylene [A] and the structural unit derived from ⁇ -olefin [B] is 40/60 to 90/10
  • the content of structural units derived from the non-conjugated polyene [C] is 0.1 to 6.0 mol%, where the total of the structural units of [A], [B] and [C] is 100 mol%.
  • the B value represented by the above formula (i) is 1.20 or more.
  • Formula (i) is the same as Formula (i) of copolymer (1B).
  • Examples of the ⁇ -olefin [B] having 4 to 20 carbon atoms can refer to the examples of the ⁇ -olefin having 4 to 20 carbon atoms in the copolymer (1B).
  • the ⁇ -olefin [B] is preferably an ⁇ -olefin having 4 to 10 carbon atoms, particularly 1-butene, 1-hexene, 1-octene, etc., and particularly 1-butene. Is preferred.
  • the ethylene / propylene / non-conjugated polyene copolymer in which the ⁇ -olefin is propylene tends to have insufficient rubber elasticity at low temperatures, and its use may be limited.
  • the copolymer (2B) since the copolymer (2B) has a structural unit derived from an ⁇ -olefin [B] having 4 to 20 carbon atoms, it has excellent rubber elasticity at low temperatures.
  • non-conjugated polyene [C] examples of the non-conjugated polyene in the copolymer (1B) can be referred to.
  • examples of the non-conjugated polyene [C] include linear non-conjugated dienes such as 1,4-hexadiene, 5-ethylidene-2-norbornene, 5-ethylidene-2-norbornene, 5-vinyl- Cyclic non-conjugated dienes such as 2-norbornene are preferred, among which cyclic non-conjugated dienes are preferred, and 5-ethylidene-2-norbornene and 5-vinyl-2-norbornene are particularly preferred.
  • Examples of the copolymer (1B) can be referred to as the copolymer (2B).
  • the copolymer (2B) one type or two or more types are used as necessary.
  • the molar ratio [[A] / [B]] of (1) the structural unit derived from ethylene [A] and the structural unit derived from ⁇ -olefin [B] is The molar ratio [[A] / [B]] of requirement (2) in the polymer (1B) and the preferable range of the molar ratio are the same.
  • the content of the structural unit derived from (2) non-conjugated polyene [C] in the copolymer (2B) is the same as the content of the requirement (4) in the copolymer (1B), including the preferred range. It is.
  • the copolymer (2B) has (3) Mooney viscosity ML (1 + 4) at 125 ° C. of 125 ° C. exceeding 100 and not exceeding 200, preferably exceeding 100 and not exceeding 150, particularly preferably exceeding 100 and not exceeding 120 It is in the range.
  • the composition (2) containing the copolymer (2B) is preferable because the sealing properties and low temperature characteristics are improved.
  • the (4) B value of the copolymer (2B) is the same as the B value of requirement (1) in the copolymer (1B), including the preferred range.
  • a copolymer having a B value of less than 1.20 has an increased compression set at low temperatures, and is an ethylene-based polymer having an excellent balance between rubber elasticity at low temperatures and tensile strength at normal temperatures. There is a possibility that a copolymer cannot be obtained.
  • B value is an parameter
  • index index which shows the randomness of the copolymerization monomer chain distribution in a copolymer (2B) as detailed in the said copolymer (1B).
  • the molar amount of the structural unit derived from ethylene [A], the structural unit derived from ⁇ -olefin [B], and the structural unit derived from non-conjugated polyene [C] is: It can be determined by intensity measurement with a 1 H-NMR spectrometer.
  • Copolymers (1B) and (2B) can be obtained, for example, by the following production method.
  • (a-3) a transition metal compound represented by the following general formula [VII] (may be abbreviated as “bridged metallocene compound” in the following description), and (b) (b- 1) at least one selected from the group consisting of an organic metal compound, (b-2) an organoaluminum oxy compound, and (b-3) a compound that reacts with the transition metal compound (a-3) to form an ion pair.
  • an olefin polymerization catalyst containing a compound it can be produced by copolymerizing ethylene, an ⁇ -olefin having 4 to 20 carbon atoms and a non-conjugated polyene.
  • Y is an atom selected from the group consisting of a carbon atom, a silicon atom, a germanium atom, and a tin atom, and is preferably a carbon atom.
  • M is a titanium atom, a zirconium atom or a hafnium atom, preferably a hafnium atom.
  • R 5 and R 6 are substituted aryl groups obtained by substituting one or more hydrogen atoms of an aryl group with an electron donating substituent having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less, In the case of having a plurality of electron-donating substituents, the electron-donating substituents may be the same or different.
  • a hydrocarbon group having 1 to 20 carbon atoms, silicon-containing May have a substituent selected from the group consisting of a group, a nitrogen-containing group, an oxygen-containing group, a halogen atom, and a halogen-containing group, and when there are a plurality of such substituents, each substituent may be the same or different.
  • a substituted aryl group hereinafter also referred to as “electron-donating group-containing substituted aryl group”).
  • aryl group phenyl group, 1-naphthyl group, 2-naphthyl group, anthracenyl group, phenanthrenyl group, tetracenyl group, chrysenyl group, pyrenyl group, indenyl group, azulenyl group, pyrrolyl group, pyridyl group, furanyl group, thiophenyl group
  • aryl group is preferably a phenyl group or a 2-naphthyl group.
  • aromatic compounds examples include aromatic hydrocarbons such as benzene, naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, pyrene, indene, azulene, pyrrole, pyridine, furan, thiophene, and heterocyclic aromatic compounds. Is mentioned.
  • Hammett's rule is an empirical rule proposed by L. P. Hammett in 1935 to quantitatively discuss the effect of substituents on the reaction or equilibrium of benzene derivatives, but this is widely accepted today.
  • Substituent constants obtained by Hammett's rule include ⁇ p when substituted at the para-position of the benzene ring and ⁇ m when substituted at the meta-position, and these values can be found in many general literatures. For example, the literature by Hansch and Taft [Chem.
  • an electron donating group having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less means that ⁇ p is ⁇ 0 when the electron donating group is substituted at the para position (position 4) of the phenyl group. .2 or less electron-donating group, and when substituted at the meta position (3-position) of the phenyl group, ⁇ m is an electron-donating group of ⁇ 0.2 or less.
  • ⁇ p is ⁇ 0.2 or less. Electron donating group.
  • the electron donating substituents having Hammett's rule constant ⁇ p or ⁇ m of ⁇ 0.2 or less include p-amino group (4-amino group), p-dimethylamino group (4-dimethylamino group), p- Nitrogen-containing groups such as diethylamino group (4-diethylamino group) and m-diethylamino group (3-diethylamino group), oxygen-containing groups such as p-methoxy group (4-methoxy group) and p-ethoxy group (4-ethoxy group) Groups, tertiary hydrocarbon groups such as pt-butyl group (4-t-butyl group), silicon-containing groups such as p-trimethylsiloxy group (4-trimethylsiloxy group), and the like.
  • the electron donating substituents having Hammett's rule constant ⁇ p or ⁇ m defined in the present invention of ⁇ 0.2 or less are those described in the literature by Hansch and Taft [Chem. Rev., 91, 165 (1991)].
  • the substituents are not limited to those described in Table 1 (pages 168-175). Even if the substituent is not described in the document, the substituent constant ⁇ p or ⁇ m when measured based on Hammett's rule is within the range thereof is the Hammett's rule substituent defined in the present invention.
  • the constant ⁇ p or ⁇ m is included in the electron donating group having ⁇ 0.2 or less. Examples of such a substituent include a pN-morpholinyl group (4-N-morpholinyl group) and an mN-morpholinyl group (3-N-morpholinyl group).
  • each electron-donating substituent may be the same or different.
  • a substituent selected from the group consisting of 1 to 20 hydrocarbon groups, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogen-containing groups may be substituted, and a plurality of the substituents may be substituted.
  • Each substituent may be the same or different, but the sum of the electron donating substituent contained in one substituted aryl group and the Hammett's rule substituent constant ⁇ of each substituent is ⁇ 0. .15 or less is preferable.
  • substituted aryl groups examples include m, p-dimethoxyphenyl group (3,4-dimethoxyphenyl group), p- (dimethylamino) -m-methoxyphenyl group (4- (dimethylamino) -3-methoxyphenyl. Group), p- (dimethylamino) -m-methylphenyl group (4- (dimethylamino) -3-methylphenyl group), p-methoxy-m-methylphenyl group (4-methoxy-3-methylphenyl group) And p-methoxy-m, m-dimethylphenyl group (4-methoxy-3,5-dimethylphenyl group) and the like.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms that the electron-donating group-containing substituted aryl group may have include an alkyl group having 1 to 20 carbon atoms, a cyclic saturated hydrocarbon group having 3 to 20 carbon atoms, and 2 carbon atoms. And a chain unsaturated hydrocarbon group having 20 to 20 and a cyclic unsaturated hydrocarbon group having 3 to 20 carbon atoms. In the case where a plurality of hydrocarbon groups having 1 to 20 carbon atoms are present and the hydrocarbon groups having 1 to 20 carbon atoms are adjacent to each other, they may be bonded to each other to form a ring. Examples of the group in this case include an alkylene group having 1 to 20 carbon atoms and an arylene group having 6 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, and n-nonyl.
  • a straight-chain saturated hydrocarbon group such as n-decanyl group; isopropyl group, isobutyl group, s-butyl group, t-butyl group, t-amyl group, neopentyl group, 3-methylpentyl group, 1,1- Diethylpropyl group, 1,1-dimethylbutyl group, 1-methyl-1-propylbutyl group, 1,1-dipropylbutyl group, 1,1-dimethyl-2-methylpropyl group, 1-methyl-1-isopropyl Examples thereof include branched saturated hydrocarbon groups such as a -2-methylpropyl group and a cyclopropylmethyl group.
  • the alkyl group preferably has 1 to 6 carbon atoms.
  • Examples of the cyclic saturated hydrocarbon group having 3 to 20 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, norbornenyl group, 1-adamantyl group, and 2-adamantyl group.
  • the cyclic saturated hydrocarbon group preferably has 5 to 11 carbon atoms.
  • Examples of the chain unsaturated hydrocarbon group having 2 to 20 carbon atoms include alkenyl groups such as ethenyl group (vinyl group), 1-propenyl group, 2-propenyl group (allyl group), 1-methylethenyl group (isopropenyl group), etc. , An alkynyl group such as ethynyl group, 1-propynyl group, 2-propynyl group (propargyl group), and the like.
  • the chain unsaturated hydrocarbon group preferably has 2 to 4 carbon atoms.
  • cyclic unsaturated hydrocarbon group having 3 to 20 carbon atoms examples include unsubstituted cyclic unsaturated hydrocarbon groups such as cyclopentadienyl group, norbornyl group, phenyl group, naphthyl group, indenyl group, azulenyl group, phenanthryl group and anthracenyl group.
  • Hydrogen group 3-methylphenyl group (m-tolyl group), 4-methylphenyl group (p-tolyl group), 4-ethylphenyl group, 4-t-butylphenyl group, 4-cyclohexylphenyl group, biphenylyl group,
  • a hydrogen atom of an unsubstituted cyclic unsaturated hydrocarbon group such as 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,4,6-trimethylphenyl group (mesityl group),
  • a group substituted by a hydrocarbon group; a hydrogen atom of a linear hydrocarbon group such as a benzyl group or a cumyl group or a branched saturated hydrocarbon group has 3 carbon atoms
  • Such groups are replaced by cyclic saturated hydrocarbon group or a cyclic unsaturated hydrocarbon group et 19 thereof.
  • the number of carbon atoms of the cyclic unsaturated hydrocarbon group is preferably 6-10.
  • alkylene group having 1 to 20 carbon atoms examples include methylene group, ethylene group, dimethylmethylene group (isopropylidene group), ethylmethylene group, 1-methylethylene group, 2-methylethylene group, 1,1-dimethylethylene group, Examples include 1,2-dimethylethylene group and n-propylene group.
  • the alkylene group preferably has 1 to 6 carbon atoms.
  • Examples of the arylene group having 6 to 20 carbon atoms include an o-phenylene group, an m-phenylene group, a p-phenylene group, and a 4,4′-biphenylylene group.
  • the arylene group preferably has 6 to 12 carbon atoms.
  • Examples of the silicon-containing group that the electron-donating group-containing substituted aryl group may have include an alkylsilyl group such as a trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, triisopropylsilyl group; dimethylphenylsilyl group, methyl Arylsilyl groups such as diphenylsilyl group and t-butyldiphenylsilyl group; groups having 1 to 20 carbon atoms such as pentamethyldisiranyl group and trimethylsilylmethyl group, wherein carbon atoms are replaced by silicon atoms, etc. Is mentioned.
  • the alkylsilyl group preferably has 1 to 10 carbon atoms
  • the arylsilyl group preferably has 6 to 18 carbon atoms.
  • Examples of the nitrogen-containing group that the electron-donating group-containing substituted aryl group may have include an amino group, a nitro group, an N-morpholinyl group, the above-described hydrocarbon group having 1 to 20 carbon atoms, or a silicon-containing group.
  • a group in which the CH— structural unit is replaced with a nitrogen atom a group in which the —CH 2 — structural unit is replaced with a nitrogen atom to which a hydrocarbon group having 1 to 20 carbon atoms is bonded, or a —CH 3 structural unit has 1 carbon atom Dimethylamino group, diethylamino group, dimethylaminomethyl group, cyano group, pyrrolidinyl group, piperidinyl group, pyridinyl group, and the like, which are groups substituted by nitrogen atoms or nitrile groups to which 20 to 20 hydrocarbon groups are bonded.
  • the nitrogen-containing group a dimethylamino group and an N-morpholinyl group are preferable.
  • the oxygen-containing group that the electron-donating group-containing substituted aryl group may have includes a hydroxyl group, a —CH 2 — structural unit in the above-described hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, or a nitrogen-containing group.
  • Phenoxy group trimethylsiloxy group, methoxyethoxy group, hydroxymethyl group, methoxymethyl group, ethoxymethyl group, t-butoxymethyl group, 1-hydroxyethyl group, 1-methoxyethyl group, 1-ethoxyethyl group, 2- Hydroxyethyl group, 2-methoxyethyl group, 2-ethoxyethyl group, n-2-oxabutylene group, n-2-oxapenthi Group, n-3-oxapentylene group, aldehyde group, acetyl group, propionyl group, benzoyl group, trimethylsilylcarbonyl group, carbamo
  • halogen atom that the electron-donating group-containing substituted aryl group may have include fluorine, chlorine, bromine and iodine which are Group 17 elements.
  • Examples of the halogen-containing group that the electron-donating group-containing substituted aryl group may have include a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a nitrogen-containing group, or an oxygen-containing group, in which a hydrogen atom is a halogen atom.
  • Examples thereof include a trifluoromethyl group, a tribromomethyl group, a pentafluoroethyl group, and a pentafluorophenyl group, which are groups substituted by atoms.
  • Q is an atom, substituent or ligand selected from the group consisting of a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair, When there are a plurality of Qs, they may be the same or different.
  • halogen atom to be Q and the hydrocarbon group having 1 to 20 carbon atoms are the same as the halogen atom and the hydrocarbon group having 1 to 20 carbon atoms that the electron-donating group-containing substituted aryl group may have. It is.
  • Q is a halogen atom
  • a chlorine atom is preferable.
  • Q is a hydrocarbon group having 1 to 20 carbon atoms
  • the hydrocarbon group preferably has 1 to 7 carbon atoms.
  • anionic ligand examples include alkoxy groups such as methoxy group, t-butoxy group and phenoxy group; carboxylate groups such as acetate and benzoate; sulfonate groups such as mesylate and tosylate.
  • Neutral ligands that can be coordinated by lone pairs include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine; tetrahydrofuran, diethyl ether, dioxane, 1,2-dimethoxyethane, etc. An ether compound etc. are mentioned.
  • J is an integer from 1 to 4, preferably 2.
  • the 2,3,6,7-tetramethylfluorenyl group contained in the bridged metallocene compound (a) represented by the general formula [VII] has four substituents at the 2, 3, 6 and 7 positions. Therefore, it is presumed that the electronic effect is large, and this produces a high polymerization activity and high molecular weight ethylene copolymer.
  • the polymerization catalyst for polymerizing the non-conjugated polyenes should not be bulky in the vicinity of the central metal of the metallocene compound that is the polymerization active site. Presumed to lead to performance improvement.
  • the crosslinked metallocene compound represented by the above general formula [VII] containing a 2,3,6,7-tetramethylfluorenyl group in particular has a high molecular weight and a high non-conjugation of the resulting ethylene copolymer. It is presumed that the polyene copolymerization performance and the high polymerization activity are simultaneously realized at a high level with a good balance.
  • the bridged metallocene compound (a-3) can be synthesized by a simple method such as the following formula [VIII].
  • R 5 and R 6 are as described above.
  • Various ketones satisfying such a condition represented by the general formula R 5 —C ( ⁇ O) —R 6 are generally used. Since it is commercially available from reagent manufacturers, it is easy to obtain the raw material for the bridged metallocene compound (a-3). Even if such a ketone is not commercially available, it can be easily synthesized, for example, by the method of Olah et al. [Heterocycles, 40, 79 (1995)].
  • the bridged metallocene compound (a-3) has a relatively simple and easy production process, further reducing the production cost.
  • the production cost of the ethylene copolymer can be reduced.
  • the advantage that is reduced is obtained.
  • ethylene, an ⁇ -olefin having 4 or more carbon atoms and a non-conjugated polyene are copolymerized in the presence of an olefin polymerization catalyst containing the bridged metallocene compound (a-3), the copolymer to be produced is further increased. An advantage that molecular weight can be obtained is also obtained.
  • R 5 and R 6 are preferably a group selected from the group consisting of an aryl group and a substituted aryl group.
  • R 5 and R 6 are preferably a group selected from the group consisting of an aryl group and a substituted aryl group.
  • the copolymerization performance of the nonconjugated polyene is improved (for example, the content of the nonconjugated polyene unit in the copolymer is increased, and the nonconjugated polyene unit is easily dispersed uniformly in the copolymer). can get.
  • R 5 and R 6 are more preferably the same group.
  • the synthesis process of the bridged metallocene compound is simplified, and the production cost is further reduced.
  • the production cost of the copolymer is reduced.
  • ethylene, an ⁇ -olefin having 4 or more carbon atoms and a non-conjugated polyene are copolymerized in the presence of an olefin polymerization catalyst containing the bridged metallocene compound, the resulting copolymer can have a higher molecular weight. There is an advantage of being.
  • the bridged metallocene compound (a-3) represented by the general formula [VII] has R 5 and R 6 as the above groups.
  • the bridged metallocene compound (a-3) is contained by forming an electron donating group-containing substituted aryl group in which one or more electron donating substituents having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less are substituted.
  • the molecular chain of the olefin polymer produced by the repeated polymerization of olefins on the central metal of the catalyst It is known to grow (growth reaction) and increase the molecular weight of the olefin polymer.
  • a reaction called chain transfer the molecular chain of the olefin polymer is dissociated from the central metal of the catalyst, so that the growth reaction of the molecular chain is stopped, and therefore the increase in the molecular weight of the olefin polymer is also stopped.
  • the molecular weight of the olefin polymer is characterized by the ratio between the frequency of the growth reaction and the frequency of the chain transfer reaction inherent to the organometallic complex catalyst that produces it. That is, the larger the ratio between the frequency of the growth reaction and the frequency of the chain transfer reaction, the higher the molecular weight of the olefin polymer produced, and vice versa.
  • the frequency of each reaction can be estimated from the activation energy of each reaction. A reaction with a low activation energy is high in frequency, and conversely, a reaction with a high activation energy is low in frequency. It is thought that it can be done.
  • the frequency of the growth reaction in olefin polymerization is sufficiently high compared to the frequency of the chain transfer reaction, that is, the activation energy of the growth reaction is sufficiently low compared to the activation energy of the chain transfer reaction.
  • the value obtained by subtracting the activation energy of the growth reaction from the activation energy of the chain transfer reaction (hereinafter referred to as ⁇ Ec) is positive, and the larger the value, the greater the frequency of the growth reaction compared to the frequency of the chain transfer reaction. It is presumed that the molecular weight of the produced olefin polymer is high.
  • R 5 and R 6 are preferably one electron donating substituent having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less.
  • ⁇ Ec increases, and in the presence of an olefin polymerization catalyst containing the bridged metallocene compound (a-3), ⁇ and ⁇ having 4 or more carbon atoms are present.
  • -It is presumed that when the olefin and the non-conjugated polyene are copolymerized, the molecular weight of the resulting copolymer increases.
  • the electron donating substituent contained in R 5 and R 6 is a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group. More preferably it is.
  • These substituents have a particularly low ⁇ in Hammett's rule, and the molecular weight of the ethylene / ⁇ -olefin / non-conjugated polyene copolymer is high, and in particular, the molecular weight can be increased even in high temperature polymerization that generally causes a decrease in molecular weight.
  • R 5 and R 6 are a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as the electron-donating substituent. More preferably, it is a substituted phenyl group.
  • R 5 and R 6 are a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as the electron-donating substituent. More preferably, it is a substituted phenyl group.
  • examples of the substituted phenyl group containing a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as the electron-donating substituent include o-aminophenyl group (2-aminophenyl group), p-aminophenyl Group (4-aminophenyl group), o- (dimethylamino) phenyl group (2- (dimethylamino) phenyl group), p- (dimethylamino) phenyl group (4- (dimethylamino) phenyl group), o- ( Diethylamino) phenyl group (2- (diethylamino) phenyl group), p- (diethylamino) phenyl group (4- (diethylamino) phenyl group), m- (diethylamino) phenyl group (3- (diethylamino) phenyl group), o- Methoxyphenyl group (2-
  • R 5 and R 6 are substituted with the electron donating substituent at the meta position and / or the para position with respect to the bond with the carbon atom as Y. It is more preferably a substituted phenyl group containing a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as a group.
  • a substituted phenyl group containing a group selected from the group consisting of a nitrogen-containing group and an oxygen-containing group as a group for example, when synthesizing according to a method such as the above formula [VIII], the synthesis is facilitated compared to the case where the group is substituted at the ortho position, the production process is simplified, the production cost is further reduced, and this bridged metallocene is eventually produced.
  • the advantage that the production cost of the ethylene copolymer is reduced is obtained by using the compound.
  • R 5 and R 6 are substituted with the electron donating substitution at the meta position and / or the para position with respect to the bond with the carbon atom as Y.
  • the nitrogen-containing group is more preferably a group represented by the following general formula [II].
  • R 7 and R 8 are an atom or a substituent selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, an oxygen-containing group and a halogen-containing group; They may be the same or different, and may be bonded to each other to form a ring, and the line drawn to the right of N represents the bond with the phenyl group.
  • Specific examples and preferred examples of the hydrocarbon group having 1 to 20 carbon atoms, the silicon-containing group, the oxygen-containing group and the halogen-containing group as R 7 and R 8 are the same as those in the above formula [VII].
  • Such a bridged metallocene compound (a-4) is represented by the following general formula [IX].
  • R 7 , R 8 and R 10 are each a hydrogen atom having 1 to 20 carbon atoms.
  • the bridged metallocene compound (transition metal compound) represented by the general formula [IX] has a particularly low ⁇ in the Hammett rule of the NR 7 R 8 represented by the general formula [II], so that ethylene, ⁇ -olefin, non-
  • the molecular weight of the conjugated polyene copolymer can be increased, and in particular, the molecular weight can be increased even in high temperature polymerization that generally causes a decrease in molecular weight.
  • R 5 and R 6 are substituted with the electron donating substitution at the meta position and / or the para position with respect to the bond with the carbon atom as Y.
  • the oxygen-containing group is more preferably a group represented by the following general formula [III].
  • R 9 is an atom or substituent selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a nitrogen-containing group and a halogen-containing group;
  • the line drawn in Fig. 1 represents the bond with the phenyl group.
  • Specific examples and preferred examples of the hydrocarbon group having 1 to 20 carbon atoms, the silicon-containing group, the nitrogen-containing group and the halogen-containing group as R 9 are the same as those in the formula [VII].
  • Such a bridged metallocene compound (a-5) is represented by the following general formula [X].
  • R 9 and R 10 are a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms. , a silicon-containing group, a nitrogen-containing group, an oxygen-containing group, an atom or a substituent selected from the group consisting of halogen atoms and halogen-containing groups, which may be the same as or different from each other, adjacent substituents of R 10 are each OR 9 may be bonded to form a ring, and OR 9 is an oxygen-containing group having a Hammett's rule substituent constant ⁇ of ⁇ 0.2 or less, and when there are a plurality of such oxygen-containing groups, The containing groups may be the same or different from each other, n is an integer of 1 to 3, and m is an integer of 0 to 4.) Specific examples of these substituents can be given as examples of the hydrocarbon group having 1 to 20 carbon atoms, silicon-containing group, oxygen
  • the bridged metallocene compound (transition metal compound) represented by the general formula [X] has a lower ⁇ in the Hammett rule of OR 9 represented by the general formula [III], and therefore, ethylene / ⁇ -olefin / nonconjugated polyene
  • the molecular weight of the copolymer can be increased, and in particular, the molecular weight can be increased even in high temperature polymerization that generally causes a decrease in molecular weight.
  • M is more preferably a hafnium atom.
  • the crosslinked metallocene compound used for the production of the copolymer (1B) or (2B) can be produced by a known method, and the production method is not particularly limited.
  • a manufacturing method for example, J. et al. Organomet. Chem. , 63, 509 (1996), WO2006 / 123759, WO01 / 27124, JP2004-168744, JP2004-175759, and JP2000-, which are publications relating to applications by the present applicant. And the production method described in Japanese Patent No. 212194.
  • the catalyst is (A) a bridged metallocene compound represented by the above general formula [VII], (b) (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, and (b-3) a bridged metallocene compound ( It comprises at least one compound selected from the group consisting of a compound that reacts with a) to form an ion pair, and (c) a particulate carrier, if necessary.
  • a bridged metallocene compound represented by the above general formula [VII] (b) (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, and (b-3) a bridged metallocene compound ( It comprises at least one compound selected from the group consisting of a compound that reacts with a) to form an ion pair, and (c) a particulate carrier, if necessary.
  • Examples of the compound represented by the general formula [X] include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum, tricycloalkylaluminum, isobutylaluminum dichloride, diethylaluminum chloride, ethylaluminum dichloride. , Ethylaluminum sesquichloride, methylaluminum dichloride, dimethylaluminum chloride, diisobutylaluminum hydride and the like.
  • Examples of the compound represented by the general formula [XI] include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .
  • R a and R b may be the same or different and each represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, and M 3 represents Mg, Zn or A dialkyl compound having a metal of Group 2 or Group 12 of the periodic table represented by Cd.
  • organoaluminum compounds such as triethylaluminum, triisobutylaluminum, and tri-n-octylaluminum are preferable.
  • organometallic compounds (b-1) may be used alone or in combination of two or more.
  • the (b-2) organoaluminum oxy compound used in the production of the copolymer (1B) or (2B) may be a conventionally known aluminoxane, and is exemplified in JP-A-2-78687. Such a benzene-insoluble organoaluminum oxy compound may be used.
  • the organoaluminum oxy compound may be used alone or in combination of two or more.
  • the conventionally known aluminoxane can be produced, for example, by the following method and is usually obtained as a solution in a hydrocarbon solvent.
  • Compounds containing adsorbed water or salts containing water of crystallization such as magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate, first cerium chloride hydrate, etc.
  • a method of reacting adsorbed water or crystal water with an organoaluminum compound by adding an organoaluminum compound such as trialkylaluminum to the suspension of the hydrocarbon.
  • the aluminoxane may contain a small amount of an organometallic component. Further, after removing the solvent or the unreacted organoaluminum compound from the recovered aluminoxane solution by distillation, it may be redissolved in a solvent or suspended in a poor aluminoxane solvent.
  • organoaluminum compound used when preparing the aluminoxane include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to the above (b-1a).
  • trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum and triisobutylaluminum are particularly preferable.
  • organoaluminum compounds are used singly or in combination of two or more.
  • (b-2) benzene-insoluble organoaluminum oxycompound which is one embodiment of organoaluminum oxycompound, has an Al component dissolved in benzene at 60 ° C., usually 10% by weight or less with respect to 100% by weight of benzene in terms of Al atom. It is preferably 5% by weight or less, particularly preferably 2% by weight or less, that is, one that is insoluble or hardly soluble in benzene.
  • the organoaluminum oxy compound includes an organoaluminum oxy compound containing boron represented by the following general formula [X].
  • R 1 represents a hydrocarbon group having 1 to 10 carbon atoms
  • R 2 to R 5 may be the same or different from each other, and may be a hydrogen atom, a halogen atom, or a carbon number of 1 to 10 hydrocarbon groups are shown.
  • the organoaluminumoxy compound containing boron represented by the general formula [X] includes an alkyl boronic acid represented by the following general formula [XI], R 1 -B (OH) 2 ...
  • R 1 represents the same group as R 1 in the general formula [X]. It can be produced by reacting an organoaluminum compound with an organoaluminum compound in an inert solvent under an inert gas atmosphere at a temperature of ⁇ 80 ° C. to room temperature for 1 minute to 24 hours.
  • alkyl boronic acid represented by the general formula [XI] include methyl boronic acid, ethyl boronic acid, isopropyl boronic acid, n-propyl boronic acid, n-butyl boronic acid, isobutyl boronic acid, n-hexyl boron.
  • Examples include acid, cyclohexyl boronic acid, phenyl boronic acid, 3,5-difluorophenyl boronic acid, pentafluorophenyl boronic acid, 3,5-bis (trifluoromethyl) phenyl boronic acid and the like.
  • methyl boronic acid n-butyl boronic acid, isobutyl boronic acid, 3,5-difluorophenyl boronic acid, and pentafluorophenyl boronic acid are preferable. These may be used alone or in combination of two or more.
  • organoaluminum compound to be reacted with the alkylboronic acid include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to (b-1a).
  • trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum, triethylaluminum, and triisobutylaluminum are particularly preferable. These may be used alone or in combination of two or more.
  • the (b-2) organoaluminum oxy compounds as described above are used singly or in combination of two or more.
  • ⁇ (B-3) Compound that reacts with transition metal compound (a) to form an ion pair>
  • a compound (b-3) (hereinafter referred to as “ionized ionic compound”) that reacts with the bridged metallocene compound (a) used in the production of the copolymer (1B) or (2B) to form an ion pair.
  • ionized ionic compound that reacts with the bridged metallocene compound (a) used in the production of the copolymer (1B) or (2B) to form an ion pair.
  • Examples thereof include Lewis acids, ionic compounds, borane compounds and carborane compounds described in USP-5321106.
  • heteropoly compounds and isopoly compounds can also be mentioned.
  • Such ionized ionic compounds (b-3) are used singly or in combination of two or more.
  • a compound represented by BR 3 (R is a phenyl group or fluorine which may have a substituent such as fluorine, methyl group or trifluoromethyl group) can be mentioned.
  • R is a phenyl group or fluorine which may have a substituent such as fluorine, methyl group or trifluoromethyl group
  • trifluoroboron triphenylboron, tris (4-fluorophenyl) boron, tris (3,5-difluorophenyl) boron, tris (4-fluoromethylphenyl) boron, tris (pentafluorophenyl) boron, tris ( and p-tolyl) boron, tris (o-tolyl) boron, and tris (3,5-dimethylphenyl) boron.
  • Examples of the ionic compound include compounds represented by the following general formula [XII].
  • examples of R 1+ include H + , carbonium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, and ferrocenium cation having a transition metal.
  • 2 to R 5 may be the same or different from each other, and are an organic group, preferably an aryl group or a substituted aryl group.
  • Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation, tri (methylphenyl) carbonium cation, and tri (dimethylphenyl) carbonium cation.
  • ammonium cation examples include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, tributylammonium cation, and tri (n-butyl) ammonium cation; N, N-dialkylanilinium cations such as N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, 2,4,6-pentamethylanilinium cation; Examples thereof include dialkylammonium cations such as di (isopropyl) ammonium cation and dicyclohexylammonium cation.
  • phosphonium cation examples include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • R 1+ is preferably a carbonium cation, an ammonium cation or the like, and particularly preferably a triphenylcarbonium cation, an N, N-dimethylanilinium cation or an N, N-diethylanilinium cation.
  • Examples of the ionic compound include trialkyl-substituted ammonium salts, N, N-dialkylanilinium salts, dialkylammonium salts, and triarylphosphonium salts.
  • trialkyl-substituted ammonium salts include triethylammonium tetra (phenyl) boron, tripropylammonium tetra (phenyl) boron, tri (n-butyl) ammonium tetra (phenyl) boron, and trimethylammonium tetra (p-tolyl).
  • N, N-dialkylanilinium salt examples include N, N-dimethylanilinium tetra (phenyl) boron, N, N-diethylanilinium tetra (phenyl) boron, N, N, 2,4,6. -Pentamethylanilinium tetra (phenyl) boron and the like.
  • dialkylammonium salt examples include di (1-propyl) ammonium tetra (pentafluorophenyl) boron and dicyclohexylammonium tetra (phenyl) boron.
  • triphenylcarbenium tetrakis (pentafluorophenyl) borate N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, ferrocenium tetra (pentafluorophenyl) borate, triphenylcarbenium pentaphenyl
  • Examples thereof include a cyclopentadienyl complex, an N, N-diethylanilinium pentaphenylcyclopentadienyl complex, and a boron compound represented by the following formula [XIII] or [XIV].
  • the borane compound include decaborane; bis [tri (n-butyl) ammonium] nonaborate, bis [tri (n-butyl) ammonium] decaborate, bis [tri (n-butyl) ammonium] undecaborate, bis Salts of anions such as [tri (n-butyl) ammonium] dodecaborate, bis [tri (n-butyl) ammonium] decachlorodecaborate, bis [tri (n-butyl) ammonium] dodecachlorododecaborate; Metal borane anion salts such as -butyl) ammonium bis (dodecahydridododecaborate) cobaltate (III), bis [tri (n-butyl) ammonium] bis (dodecahydridododecaborate) nickelate (III), etc. Can be mentioned.
  • carborane compound examples include 4-carbanonaborane, 1,3-dicarbanonarborane, 6,9-dicarbadecarborane, dodecahydride-1-phenyl-1,3-dicarbanonarborane, dodecahydride- 1-methyl-1,3-dicarbanonaborane, undecahydride-1,3-dimethyl-1,3-dicarbanonaborane, 7,8-dicarbaundecaborane, 2,7-dicarbaundecaborane, Undecahydride-7,8-dimethyl-7,8-dicarboundecarborane, dodecahydride-11-methyl-2,7-dicarboundecarborane, tri (n-butyl) ammonium 1-carbadecaborate, tri ( n-butyl) ammonium-1-carbaundecaborate, tri (n-butyl) ammonium-1-carba Badodecaborate, tri (n-butyl) ammonium-1-trimethyl
  • the heteropoly compound is composed of atoms selected from silicon, phosphorus, titanium, germanium, arsenic and tin, and one or more atoms selected from vanadium, niobium, molybdenum and tungsten.
  • (B-3) Among the ionized ionic compounds, the above ionic compounds are preferable, and among them, triphenylcarbenium tetrakis (pentafluorophenyl) borate and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate are preferable. More preferred.
  • transition metal compound (a) represented by the general formula [VII] is used as a catalyst, an organometallic compound (b-1) such as triisobutylaluminum, an organoaluminum oxy compound (b-2) such as methylaluminoxane, or the like
  • an ionized ionic compound (b-3) such as triphenylcarbenium tetrakis (pentafluorophenyl) borate is used in combination, it is very difficult to produce an ethylene / ⁇ -olefin / nonconjugated polyene copolymer (1B) or (2B). High polymerization activity.
  • the olefin polymerization catalyst used for the production of the copolymer (1B) or (2B) includes the transition metal compound (a), (b-1) an organometallic compound, and (b-2) an organoaluminum oxy
  • a carrier (c) can be used as necessary together with the compound and (b-3) at least one compound (b) selected from the group consisting of ionized ionic compounds.
  • the carrier (c) is an inorganic compound or an organic compound and is a granular or particulate solid.
  • porous oxides, inorganic halides, clays, clay minerals or ion-exchangeable layered compounds are preferable.
  • porous oxide examples include inorganic oxides such as SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , CaO, ZnO, BaO, and ThO 2 , or composites containing these inorganic oxides. Or, a porous material mainly composed of a mixture can be mentioned. Specific examples of the porous oxide include natural or synthetic zeolites; SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , Examples thereof include porous oxides mainly composed of SiO 2 —V 2 O 5 , SiO 2 —Cr 2 O 3 , SiO 2 —TiO 2 —MgO.
  • porous oxides mainly composed of SiO 2 and / or Al 2 O 3 are preferred.
  • the carrier preferably used in the present invention has a particle size of 10 to 300 ⁇ m, preferably 20 to 200 ⁇ m, and a specific surface area of usually 50 to It is desirable that it is in the range of 1000 m 2 / g, preferably 100 to 700 m 2 / g, and the pore volume is in the range of 0.3 to 3.0 cm 3 / g.
  • Such a carrier is used after being calcined at 100 to 1000 ° C., preferably 150 to 700 ° C., if necessary.
  • the inorganic halide examples include MgCl 2 , MgBr 2 , MnCl 2 , and MnBr 2 .
  • the inorganic halide may be used as it is or after being pulverized by a ball mill or a vibration mill. Further, it is also possible to use a material in which an inorganic halide is dissolved in a solvent such as alcohol and then precipitated into fine particles with a precipitating agent.
  • the clay used as the carrier (c) is usually composed mainly of a clay mineral.
  • the ion-exchangeable layered compound used in the present invention is a compound having a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other with a weak binding force, and the contained ions can be exchanged. .
  • Most clay minerals are ion-exchangeable layered compounds.
  • these clays, clay minerals, and ion-exchange layered compounds are not limited to natural products, and artificial synthetic products can also be used.
  • clay, clay mineral, or ion-exchangeable layered compound clay, clay mineral, ionic crystalline compound having a layered crystal structure such as hexagonal close packing type, antimony type, CdCl 2 type, CdI 2 type, etc. Can be mentioned.
  • clays and clay minerals include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, pyrophyllite, unmo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite, halloysite, etc. Is mentioned.
  • Examples of the ion-exchange layered compound include ⁇ -Zr (HAsO 4 ) 2 ⁇ H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Zr (KPO 4 ) 2 ⁇ 3H 2 O, ⁇ -Ti (HPO 4 ). 2 , ⁇ -Ti (HAsO 4 ) 2 .H 2 O, ⁇ -Sn (HPO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Ti (HPO 4 ) 2 , ⁇ -Ti ( Examples thereof include crystalline acidic salts of polyvalent metals such as NH 4 PO 4 ) 2 .H 2 O.
  • Such a clay, clay mineral or ion exchange layered compound preferably has a pore volume of not less than 0.1 cc / g having a radius of 20 mm or more as measured by a mercury intrusion method, and is preferably from 0.3 to 5 cc / g. Particularly preferred.
  • the pore volume is measured in a pore radius range of 20 to 30000 mm by a mercury intrusion method using a mercury porosimeter.
  • the clay and clay mineral used as the carrier (c) is also preferable to subject the clay and clay mineral used as the carrier (c) to chemical treatment.
  • the chemical treatment any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of clay can be used.
  • Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment.
  • the acid treatment increases the surface area by eluting cations such as Al, Fe, and Mg in the crystal structure.
  • Alkali treatment destroys the crystal structure of the clay, resulting in a change in the structure of the clay.
  • an ion complex, a molecular complex, an organic derivative, and the like can be formed, and the surface area and interlayer distance can be changed.
  • the ion-exchangeable layered compound used as the carrier (c) is a layered compound in which the layers are expanded by exchanging the exchangeable ions between the layers with other large and bulky ions using the ion-exchange property. May be.
  • Such bulky ions play a role of supporting pillars to support the layered structure and are usually called pillars.
  • introducing another substance between the layers of the layered compound in this way is called intercalation.
  • guest compounds to be intercalated include cationic inorganic compounds such as TiCl 4 and ZrCl 4 ; metal alkoxides such as Ti (OR) 4 , Zr (OR) 4 , PO (OR) 3 , and B (OR) 3 ( R is a hydrocarbon group), metal hydroxides such as [Al 13 O 4 (OH) 24 ] 7+ , [Zr 4 (OH) 14 ] 2+ , and [Fe 3 O (OCOCH 3 ) 6 ] + And ions. These compounds can be used alone or in combination of two or more.
  • these compounds were intercalated, they were obtained by hydrolyzing metal alkoxides such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 (R is a hydrocarbon group, etc.).
  • metal alkoxides such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 (R is a hydrocarbon group, etc.
  • Polymers, colloidal inorganic compounds such as SiO 2, and the like can also coexist.
  • the pillar include oxides generated by heat dehydration after intercalation of the metal hydroxide ions between layers.
  • the above clay, clay mineral, and ion-exchange layered compound may be used as they are, or may be used after a treatment such as ball milling or sieving. Further, it may be used after newly adsorbing and adsorbing water or after heat dehydration treatment.
  • These substances to be the carrier (c) may be used alone or in combination of two or more.
  • clay or clay mineral is preferable, and montmorillonite, vermiculite, hectorite, teniolite, and synthetic mica are particularly preferable.
  • Examples of the organic compound include granular or particulate solids having a particle size in the range of 10 to 300 ⁇ m.
  • a (co) polymer produced mainly from an ⁇ -olefin having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, vinylcyclohexane, styrene (Co) polymers produced by the main component, and their modified products.
  • the olefin polymerization catalyst used in the production of the copolymers (1B) and (2B) includes a crosslinked metallocene compound (a), (b-1) an organometallic compound, (b-2) an organoaluminum oxy compound, And (b-3) at least one compound (b) selected from the group consisting of ionized ionic compounds and a carrier (c) used as necessary.
  • At least two of the compound (a), the compound (b) and the carrier (c) may be contacted in advance.
  • the unsupported compound (b) may be added in any order as necessary.
  • the compound (b) may be the same as or different from the compound (b) supported on the carrier (c).
  • the solid catalyst component in which the compound (a) is supported on the carrier (c) and the solid catalyst component in which the compound (a) and the compound (b) are supported on the carrier (c) are prepolymerized with olefin.
  • a catalyst component may be further supported on the prepolymerized solid catalyst component.
  • the ethylene / ⁇ -olefin / non-conjugated polyene copolymer (1B) or (2B) is prepared in the presence of the above-mentioned catalyst for ethylene / ⁇ -olefin / non-conjugated polyene copolymer. And can be prepared by copolymerizing non-conjugated polyenes.
  • the above copolymer (1B) or (2B) can be produced by either a liquid phase polymerization method such as solution (dissolution) polymerization or suspension polymerization, or a gas phase polymerization method.
  • Examples of the inert hydrocarbon medium used in the liquid phase polymerization method include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; fats such as cyclopentane, cyclohexane, and methylcyclopentane. Cyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane.
  • the said inert hydrocarbon medium may be used individually by 1 type, and may be used in combination of 2 or more type.
  • olefin itself can also be used as a solvent.
  • the crosslinked metallocene compound (a) is usually 10 ⁇ 12 to 10 ⁇ 2 mol, preferably 10 ⁇ 10 mol per liter of reaction volume. It is used in an amount of ⁇ 10 ⁇ 8 mol.
  • the molar ratio [(b-1) / M] of the compound (b-1) to all transition metal atoms (M) in the bridged metallocene compound (a) is usually 0. It is used in an amount of 0.01 to 50000, preferably 0.05 to 10000.
  • the organoaluminum oxy compound (b-2) has a molar ratio [(b-2) / M] of the aluminum atoms in the compound (b-2) and the total transition metals (M) in the compound (a).
  • the amount is usually 10 to 50000, preferably 20 to 10000.
  • the molar ratio [(b-3) / M] of the compound (b-3) to the transition metal atom (M) in the compound (a) is usually 1-20.
  • the amount is preferably 1 to 15.
  • the polymerization temperature of the copolymer (1B) or (2B) is usually ⁇ 50 to + 200 ° C., preferably 0 to + 200 ° C., more preferably +80 to + 200 ° C. Depending on the target molecular weight to be reached and the polymerization activity of the catalyst used, the polymerization temperature is preferably higher (+ 80 ° C. or higher) from the viewpoint of productivity.
  • the polymerization pressure of the copolymer (1B) or (2B) is usually in the range of normal pressure to 10 MPa gauge pressure, preferably normal pressure to 5 MPa gauge pressure.
  • the polymerization reaction mode of the copolymer (1B) or (2B) may be any of batch, semi-continuous and continuous.
  • the polymerization can be performed in two or more stages having different reaction conditions.
  • the molecular weight of the obtained copolymer (1B) or (2B) can be adjusted, for example, by allowing hydrogen to be present in the polymerization system or by changing the polymerization temperature.
  • the amount of hydrogen added is suitably about 0.001 to 100 NL per kg of olefin.
  • a compound (b) for example, triisobutylaluminum, methylaluminoxane, diethylzinc etc.
  • the molecular weight of a copolymer can be adjusted with the usage-amount of a compound (b).
  • phenol resin-based crosslinking agent (C) also referred to as a crosslinking agent (C) in the present invention
  • examples of the phenol resin-based crosslinking agent (C) include halogenated phenol resin-based crosslinking agents.
  • the crosslinking agent (C) is a resole resin, which is produced by condensation of an alkyl-substituted phenol or unsubstituted phenol with an aldehyde in an alkaline medium, preferably with formaldehyde, or with a bifunctional phenol dialcohol. It is also preferable.
  • the alkyl-substituted phenol is preferably an alkyl group-substituted product having 1 to 10 carbon atoms. Furthermore, dimethylolphenols or phenol resins substituted with an alkyl group having 1 to 10 carbon atoms in the p-position are preferred.
  • the phenolic resin-based cured resin is typically a heat-crosslinkable resin and is also called a phenolic resin-based crosslinking agent or a phenol resin.
  • phenol resin-based cured resin examples include the following general formula (I).
  • Q is a divalent group selected from the group consisting of —CH 2 — and —CH 2 —O—CH 2 —, m is 0 or a positive integer of 1 to 20, and R ′ Is an organic group).
  • Q is a divalent group —CH 2 —O—CH 2 —
  • m is 0 or a positive integer from 1 to 10
  • R ′ is an organic group having less than 20 carbon atoms. More preferably, m is 0 or a positive integer of 1 to 5, and R ′ is an organic group having 4 to 12 carbon atoms.
  • Specific examples include alkylphenol formaldehyde resins, methylolated alkylphenol resins, halogenated alkylphenol resins, and the like, preferably halogenated alkylphenol resins, and more preferably brominated terminal hydroxyl groups. In the phenol resin-based cured resin, an example in which the terminal is brominated is shown in the following general formula (II).
  • n is an integer of 0 to 10
  • R is a saturated hydrocarbon group having 1 to 15 carbon atoms.
  • Examples of products of the above-mentioned phenolic resin-based cured resins include tackolol (registered trademark) 201 (alkylphenol formaldehyde resin, manufactured by Taoka Chemical Co., Ltd.), tackirol (registered trademark) 250-I (bromination with a bromination rate of 4%) Alkylphenol formaldehyde resin, manufactured by Taoka Chemical Co., Ltd.), Tactrol (registered trademark) 250-III (brominated alkylphenol formaldehyde resin, manufactured by Taoka Chemical Co., Ltd.), PR-4507 (Gunei Chemical Industry Co., Ltd.) Vulkaresat 510E (manufactured by Hoechst), Vulcaresat 532E (manufactured by Hoechst), Vulkaresen® E (manufactured by Hoechst), Vulkaresen 105E (manufactured by Hoechst), Vulkarensen 130E (Hoech)
  • Symform-C-1001 manufactured by Anchor Chem.
  • Tamanol registered trademark
  • Scientady® SP1059 manufactured by Schentechdy® Chem.
  • Scientadey® SP1045 manufactured by Schemedy Chem.
  • CRR-0803 manufactured by U.C.C.
  • Sectectady® SP1055F Schominated alkylphenol Formaldehyde resin
  • Schenectady SP1056 manufactured by Schenectady Chem.
  • halogenated phenol resin-based crosslinking agent is preferable, and brominated alkylphenol / formaldehyde resins such as Tactrol (registered trademark) 250-I, Taccolol (registered trademark) 250-III, and Schenectady SP1055F can be more preferably used.
  • thermoplastic vulcanizates with phenolic resins include US Pat. No. 4,311,628, US Pat. No. 2,972,600 and US Pat. No. 3,287,440. These techniques are also described and can be used in the present invention.
  • U.S. Pat. No. 4,311,628 discloses a phenolic curative system composed of a phenolic curing resin and a cure activator.
  • the basic component of the system is the condensation of substituted phenols (eg halogen-substituted phenols, C 1 -C 2 alkyl-substituted phenols) or unsubstituted phenols with aldehydes, preferably formaldehyde, in an alkaline medium, or bifunctional phenols
  • aldehydes preferably formaldehyde
  • bifunctional phenols A phenol resin-based crosslinking agent produced by condensation of dialcohols (preferably, dimethylolphenols substituted at the para position with a C 5 -C 10 alkyl group).
  • halogenated alkyl-substituted phenolic resin crosslinking agents prepared by halogenation of alkyl-substituted phenolic resin crosslinking agents.
  • a phenolic resin-based crosslinking agent comprising a methylolphenol curable resin, a halogen donor and a metal compound can be particularly recommended, and details thereof are described in US Pat. Nos. 3,287,440 and 3,709,840. Has been.
  • Non-halogenated phenolic resin-based crosslinkers are used simultaneously with the halogen donor, preferably with a hydrogen halide scavenger.
  • halogenated phenolic resin-based crosslinking agents preferably brominated phenolic resin-based crosslinking agents containing 2 to 10% by weight of bromine
  • a halogen donor but for example iron oxide, titanium oxide, oxidation
  • a hydrogen halide scavenger such as a metal oxide such as magnesium, magnesium silicate, silicon dioxide and zinc oxide, preferably zinc oxide.
  • hydrogen halide scavengers such as zinc oxide are usually used in an amount of 1 to 20 parts by weight per 100 parts by weight of the phenol resin-based crosslinking agent.
  • Suitable halogen donors include stannous chloride, ferric chloride, or halogen donating heavys such as chlorinated paraffin, chlorinated polyethylene, chlorosulfonated polyethylene and polychlorobutadiene (neoprene rubber). Coalescence is mentioned.
  • vulcanization accelerator refers to any substance that substantially increases the crosslinking efficiency of a phenolic resin-based crosslinking agent, and includes metal oxides and halogen donors, which are Used alone or in combination. For more details on phenolic vulcanizing systems, see “Vulcanization and Vulcanizing Agents” (W. Hoffman, Palmerton Publishing Company).
  • Suitable phenolic resin-based crosslinkers and brominated phenolic resin-based crosslinkers are commercially available, for example such crosslinkers from Schenectady Chemicals, Inc. under the trade names “SP-1045”, “CRJ-352”, It can be purchased as “SP-1055F” and “SP-1056”. Similar functionally equivalent phenolic resin crosslinkers can also be obtained from other suppliers.
  • the crosslinking agent (C) is a suitable vulcanizing agent from the viewpoint of preventing fogging because it is less likely to generate decomposition products.
  • Crosslinker (C) is used in an amount sufficient to achieve essentially complete vulcanization of the rubber.
  • auxiliary agent Uniform and gentle crosslinking reaction can be expected by using the above auxiliary agent.
  • divinylbenzene is preferable. Divinylbenzene is easy to handle and has good compatibility with the polymer (A) and the copolymer (1B) or copolymer (2B) contained as the main component in the composition (I) or (IIC). And a thermoplastic elastomer having a function of solubilizing the cross-linking agent (C) and acting as a dispersant for the cross-linking agent (C), so that the cross-linking effect by heat treatment is uniform and the fluidity and physical properties are balanced. Composition (I) or (IIC) is obtained.
  • the above auxiliary agent is usually used in an amount of 2 parts by weight or less, preferably 0.3 to 1 part by weight based on 100 parts by weight of the copolymer (1B) or (2B).
  • Decomposition accelerators include tertiary amines such as triethylamine, tributylamine, 2,4,6-tri (dimethylamino) phenol; Naphthenic acid and various metals (for example, Pb, Co, Mn, Ca, Cu, Ni, Fe, Zn, rare earth) such as aluminum, cobalt, vanadium, copper, calcium, zirconium, manganese, magnesium, lead, mercury Examples thereof include naphthenate.
  • composition (I) or (IIC) of the present invention has the effects of the present invention. You may mix
  • the additive examples include rubbers other than the copolymer (1B) or the copolymer (2B) (for example, polyisobutylene, butyl rubber, propylene / ethylene copolymer rubber, propylene / butene copolymer rubber, and propylene / butene).
  • Propylene elastomers such as ethylene copolymer rubber, ethylene elastomers such as ethylene / propylene copolymer rubber, styrene / butadiene / styrene block polymers, styrene / isoprene / styrene block polymers, styrene / isobutylene / styrene block polymers and these Styrene-based elastomers such as hydrogenated products); resins other than crystalline olefin polymers (A) such as thermosetting resins and thermoplastic resins such as polyolefins; UV absorbers; antioxidants
  • additives may be used alone or in combination of two or more.
  • the amount of additives other than those specifically mentioned in the present specification is not particularly limited as long as the effects of the present invention are exhibited, but the polymer (A) and the copolymer (1B) or (2B) ) To 100 parts by weight in total, usually 0.0001 to 10 parts by weight, preferably about 0.01 to 5 parts by weight.
  • the softener (D) a softener usually used for rubber can be used.
  • the softening agent (D) petroleum-based softening agents such as process oil, lubricating oil, paraffin oil, liquid paraffin, petroleum asphalt and petroleum jelly; coal tar-based softening agents such as coal tar and coal tar pitch; castor oil and linseed oil
  • Oil oil softeners such as rapeseed oil, soybean oil, coconut oil; tall oil; sub (factis); waxes such as beeswax, carnauba wax, lanolin; ricinoleic acid, palmitic acid, stearic acid, barium stearate, stear Fatty acids or fatty acid salts such as calcium phosphate and zinc laurate; naphthenic acid; pine oil, rosin or derivatives thereof; synthetic polymer substances such as terpene resin, petroleum resin, atactic polypropylene, coumarone indene resin; dioctyl phthalate, dio
  • softeners (D) are not particularly limited as long as the effects of the present invention are exhibited, but usually 2 parts per 100 parts by weight of the total amount of the polymer (A) and the copolymer (1B) or (2B). It is used in an amount of ⁇ 100 parts by weight, preferably 5 to 80 parts by weight.
  • the softening agent (D) is used in such an amount, the composition (I) or (IIC) has excellent fluidity at the time of preparation and molding, improves the dispersibility of carbon black, etc. It is difficult to lower the mechanical properties, and the obtained molded article is excellent in heat resistance and heat aging resistance.
  • inorganic filler (E) calcium carbonate, calcium silicate, clay, kaolin, talc, silica, diatomaceous earth, mica powder, asbestos, alumina, barium sulfate, aluminum sulfate, calcium sulfate, basic magnesium carbonate, disulfide
  • examples include molybdenum, graphite, carbon black, glass fiber, glass sphere, shirasu balloon, basic magnesium sulfate whisker, calcium titanate whisker, and aluminum borate whisker.
  • These inorganic fillers (E) are usually 1 to 100 parts by weight, preferably 1 to 50 parts by weight, based on 100 parts by weight of the total amount of the polymer (A) and the copolymer (1B) or (2B). Used in parts quantity.
  • anti-aging agent can refer to the composition (2B) described below.
  • the rubber is used in a total amount of 100 parts by weight of the polymer (A) and the copolymer (1B) or (2B).
  • the amount is usually 2 to 200 parts by weight, preferably 5 to 150 parts by weight.
  • thermoplastic elastomer composition (I) or thermoplastic elastomer composition (IIC) The thermoplastic elastomer composition (I) of the present invention (1) is obtained by dynamically crosslinking a mixture containing the polymer (A), the copolymer (1B), and the crosslinking agent (C). The composition (I) is obtained by dynamically crosslinking at least the polymer (A), the copolymer (1B), and the crosslinking agent (C).
  • composition (I) is crosslinked by dynamically heat-treating a mixture containing the polymer (A), the copolymer (1B), and additives that are blended as necessary in the presence of the crosslinking agent (C). It can be obtained by (dynamic crosslinking).
  • composition (I) is obtained.
  • thermoplastic elastomer composition (IIC) of the present invention (2) is obtained by dynamically crosslinking a mixture containing the polymer (A), the copolymer (2B), and the crosslinking agent (C).
  • the composition (IIC) is obtained by dynamically crosslinking at least the polymer (A), the copolymer (2B), and the crosslinking agent (C).
  • composition (IIC) is crosslinked by dynamically heat-treating a mixture containing the polymer (A), the copolymer (2B), and additives that are blended as necessary in the presence of the crosslinking agent (C). It can be obtained by (dynamic crosslinking).
  • dynamically heat-treating refers to kneading the mixture in a molten state in the presence of the crosslinking agent (C).
  • Dynamic crosslinking refers to crosslinking while applying a shearing force to the mixture.
  • composition (I) or (IIC) may be a composition in which a polymer component containing the polymer (A) and the copolymer (1B) or (2B) is partially cross-linked. It may be a crosslinked composition.
  • the weight ratio (A) / (1B) or the weight ratio (A) / (2B) of the polymer (A) and the copolymer (1B) or (2B) is , Preferably 90/10 to 10/90, more preferably 60/40 to 20/80.
  • the weight ratio (A) / (1B) or the weight ratio (A) / (2B) is in the above range, a molded article having excellent mechanical properties and moldability can be obtained.
  • the crosslinking agent (C) is usually 0.1 to 20 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the copolymer (1B) or (2B). It is used in such an amount that it becomes a part.
  • the blending amount of the crosslinking agent (C) within the above range, a composition having excellent moldability can be obtained, and the obtained molded body has high strength, excellent oil resistance, and sufficient Has heat resistance and mechanical properties.
  • the dynamic heat treatment is preferably performed in a non-open type apparatus, and is preferably performed in an inert gas atmosphere such as nitrogen or carbon dioxide.
  • the temperature of the heat treatment is usually in the range from the melting point of the polymer (A) to 300 ° C., preferably 150 to 280 ° C., more preferably 170 to 270 ° C.
  • the kneading time is usually 1 to 20 minutes, preferably 1 to 10 minutes.
  • the applied shear force is usually 10 to 100,000 sec ⁇ 1 at the maximum shear rate, preferably 100 to 50,000 sec ⁇ 1 , more preferably 1,000 to 10,000 sec ⁇ 1 , and still more preferably 2,000. It is in the range of ⁇ 7,000 sec ⁇ 1 .
  • Examples of the kneading apparatus used for kneading include a mixing roll, an intensive mixer (for example, a Banbury mixer, a kneader), a single screw extruder, a twin screw extruder, and the like. These kneading devices are preferably non-open type devices.
  • Composition (I) or (IIC), and a molded product obtained by molding the composition (I) or (IIC) by a conventionally known method are lighter in weight than conventional cross-linked thermoplastic elastomers. It has excellent oil resistance and mechanical properties such as hardness, tensile strength and tensile elongation equivalent to or higher than those of conventional cross-linked thermoplastic elastomers.
  • the molded body of the present invention (1) or the molded body of the present invention (2) The shaped product of the present invention (1) is obtained containing the composition (I) of the present invention (1).
  • the molded product of the present invention (2) is obtained containing the composition (IIC) of the present invention (2).
  • compositions (I) and (IIC) have hardness and mechanical properties (tensile strength, elongation, etc.) equal to or higher than those of conventional cross-linked thermoplastic elastomers, and therefore can be used for various applications.
  • the compositions (I) and (IIC) have excellent oil resistance compared to conventional cross-linked thermoplastic elastomers, it is particularly difficult to use conventional cross-linked thermoplastic elastomers.
  • it can be suitably used for automobile parts such as hoses, pipes and boots (blow-molded products) for automobiles that require superior oil resistance because they come into contact with grease or lubricating oil.
  • Compositions (I) and (IIC) are excellent in lightness, heat resistance, flexibility, rubber elasticity, molding processability, weather resistance, and compatibility.
  • Compositions (I) and (IIC) are excellent in molding processability and can be molded by various molding methods.
  • the molding include extrusion molding, injection molding, compression molding, calendar molding, vacuum molding, press molding, stamping molding, and blow molding.
  • blow molding include breath blow molding, direct blow molding, injection blow molding, and the like.
  • the molded product of the present invention (1) or (2) can be obtained by molding the composition (I) or (IIC).
  • it can be obtained by molding the composition (I) or (IIC) by a conventional plastic molding method such as extrusion molding, injection molding or compression molding.
  • scraps and burrs generated by such a molding method can be recovered and reused.
  • Examples of the molded body of the present invention (1) or (2) include bumper parts, body panels, side shields, glass run channels, instrument panel skins, door skins, ceiling skins, weather strip materials, hoses, steering wheels, boots, Automotive parts such as wire harness covers and seat adjuster covers; electrical parts such as wire covering materials, connectors and cap plugs; footwear such as shoe soles and sandals; leisure for swimming fins, underwater glasses, golf club grips, baseball bat grips, etc. Goods, gaskets, waterproof cloth, belts, garden hoses; various civil engineering and architectural gaskets and sheets.
  • the molded body is particularly suitable for applications requiring oil resistance, and automotive parts such as automobile hoses, boots, wire harness covers, and sheet adjuster covers are particularly preferred applications.
  • the molded body is preferably an automobile part as described above, and more detailed examples of the automobile part include a mechanism member, an interior member, an exterior member, and other members.
  • Mechanical members include CVJ boots, suspension boots, rack and pinion boots, steering rod covers, AT cushions, AT slide covers, leaf spring bushes, ball joint retainers, timing belts, V belts, engine room hoses, air ducts, air Examples include a bag cover and a propeller shaft cover material.
  • Interior materials include various skin materials (instrumental panel, door trim, ceiling, rear pillar), console box, armrest, airbag case lid, shift knob, assist grip, side step mat, reclining cover, trunk seat, seat belt buckle, Examples include lever slide plates, door latch strikers, seat belt parts, and switches.
  • various molding materials inner / outer window moldings, roof moldings, belt moldings, side trim moldings
  • door seals body seals
  • glass run channels glass run channels
  • mudguards kicking plates
  • step mats number plate housings
  • silencer gears Control cable covers and emblems.
  • Other members include air duct packing, air duct hose, air duct cover, air intake pipe, air dam skirt, timing belt cover seal, opening seal / trunk seal member, bonnet cushion, fuel tank band, cable and the like.
  • the molded product of the present invention (1) or (2) may be a miscellaneous goods, daily necessities or these members.
  • Miscellaneous goods, daily necessities or these components include grips (eg, ballpoint pens, mechanical pencils, toothbrushes, cups, disposable razors, handrails, cutters, power tools, screwdrivers, power cables, door grips), assist grips, shift knobs, toys , Notebook skins, gaskets (for example, gaskets for tableware, tappers, etc.), various rubber feet, sports equipment (for example, sheathed soles, ski boots, skis, ski bindings, ski soles, golf balls, goggles members, snowboard members, snowboard shoes) , Snowboard bindings, surfboard members, body boards, banana boats, kiteboards, snorkeling members, water ski members, parasailing members, wakeboard members and other sports equipment), belts (examples) If, belts and watches belt, fashion belt), hairbrush, bath panel button sheet, cap, shoes of the inner sole, and the like health equipment member.
  • composition (IIA) containing ethylene / ⁇ -olefin / non-conjugated polyene copolymer (2B) of the present invention (2) is generally used as a composition containing components other than the copolymer, and a desired molded product can be obtained by molding and crosslinking.
  • Components other than the copolymer (2B) contained in the composition (IIA) are not particularly limited, and the copolymer (2B) may be selected depending on the use and purpose of the composition and a molded body formed from the composition. Ingredients other than) can be appropriately blended.
  • Components other than the copolymer (2B) include softeners, inorganic fillers, crosslinking agents, processing aids, activators, hygroscopic agents, heat stabilizers, weathering stabilizers, antistatic agents, colorants, lubricants and additives. A sticky agent etc. are mentioned.
  • the blending amount is generally 100 parts by weight in total of the copolymer (2B) and other polymers (elastomer, rubber, etc.) blended as necessary.
  • the softening agent is 0.1 to 200 parts by weight, and the filler is 1 to 300 parts by weight.
  • composition (IIA) When the composition (IIA) is used as a rubber composition, other elastomers, rubber and the like can be blended as necessary.
  • the proportion of the copolymer (2B) in the rubber composition is generally 20% by weight or more, preferably 30 to 90% by weight.
  • the composition (IIA) is prepared by kneading the copolymer (2B) and other components blended as necessary at a desired temperature using a kneader such as a mixer, kneader, or roll. can do. Since the copolymer (2B) is excellent in kneadability, the composition can be prepared satisfactorily.
  • a softening agent such as a softening agent, an inorganic filler, a crosslinking agent, a processing aid, an activator, and a hygroscopic agent, for example, those exemplified in the description of the hose forming composition described below are used in the exemplified amounts. be able to.
  • the copolymer (2B) of the present invention (2) is a molded product formed from the copolymer, a molded product formed by crosslinking the copolymer (2B), and a crosslinked copolymer (2B). Molded article formed from a composition containing the copolymer (2B), a molded article formed by crosslinking a composition containing the copolymer (2B), or a copolymer As a molded product obtained by crosslinking the composition containing (2B), it can be used for various applications.
  • the molded body is preferably a molded body formed by crosslinking the composition (IIA) containing the copolymer (2B). Moreover, as a molded object, a crosslinked molded object and a crosslinked foamed body (crosslinked foamed molded object) are preferable.
  • the molded body include tire rubber, O-ring, industrial roll, packing (for example, capacitor packing), gasket, belt (for example, heat insulation belt, copying machine belt), hose (for example, water hose, brake) Reservoir hose, radiator hose), prevention rubber, sponge (for example, weatherstrip sponge, heat insulation sponge, protection sponge, fine foam sponge), cable (ignition cable, cabtire cable, high tension cable), wire covering material (high voltage wire covering) Materials, low-voltage wire covering materials, marine wire covering materials), glass run channels, color skin materials, paper feed rolls, roofing sheets, and the like.
  • packing for example, capacitor packing
  • gasket for example, heat insulation belt, copying machine belt
  • hose for example, water hose, brake
  • prevention rubber for example, weatherstrip sponge, heat insulation sponge, protection sponge, fine foam sponge
  • cable ignition cable, cabtire cable, high tension cable
  • wire covering material high voltage wire covering
  • Materials low-voltage wire covering materials, marine wire covering materials
  • glass run channels color skin materials, paper feed rolls, roofing sheets
  • the copolymer (2B) is a moving hose-forming composition (IIB) containing the copolymer (2B) and a mixture containing the copolymer (2B), the polymer (A) and the crosslinking agent (C). It can be suitably used as a thermoplastic elastomer composition (IIC) obtained by mechanical crosslinking.
  • composition (IIB) for forming hose of the present invention contains a copolymer (2B).
  • the hose-forming composition containing the copolymer (2B) is also referred to as a hose-forming composition.
  • the copolymer (2B) has a low compression set at low temperature and good results of a torsion test at low temperature, so that it has flexibility at low temperature, rubber elasticity at low temperature and normal temperature at room temperature. Excellent balance with tensile strength.
  • the composition for hose formation containing a copolymer (2B) can be used suitably for uses, such as a motor vehicle, a motorbike, an industrial machine, a construction machine, an agricultural machine, which can be used in a cold region.
  • the content ratio of the copolymer (2B) in the composition is usually 20% by mass or more, preferably 20 to 50% by mass, more preferably 25 to 40% by mass.
  • composition (IIB) of the present invention preferably contains a crosslinking agent in addition to the copolymer (2B).
  • Composition (IIB) may contain other polymers in addition to copolymer (2B).
  • examples of other polymers that require crosslinking include cross-linkable rubbers such as natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, acrylic rubber, silicone rubber, fluorine rubber, and urethane rubber. Is mentioned.
  • polymers that do not require crosslinking include, for example, block copolymers of styrene and butadiene (SBS), polystyrene-poly (ethylene-butylene) -polystyrene (SEBS), polystyrene-poly (ethylene-propylene) -polystyrene ( SEPS) styrene thermoplastic elastomer (TPS), olefin thermoplastic elastomer (TPO), vinyl chloride elastomer (TPVC), ester thermoplastic elastomer (TPC), amide thermoplastic elastomer (TPA), urethane heat Examples include elastomers such as a plastic elastomer (TPU) and other thermoplastic elastomers (TPZ).
  • the other polymer can be blended in an amount of usually 100 parts by mass or less, preferably 80 parts by mass or less with respect to 100 parts by mass of the copolymer (2B).
  • the composition (IIB) may contain other additives such as crosslinking aids, vulcanization accelerators, vulcanization aids, softeners, inorganic fillers, reinforcing agents, anti-aging agents, processing aids, You may contain at least 1 sort (s) chosen from an activator, a hygroscopic agent, a heat-resistant stabilizer, a weather-resistant stabilizer, an antistatic agent, a coloring agent, a lubricant, a thickener, and a foaming agent. Also. Each additive may be used individually by 1 type, and may use 2 or more types together.
  • the composition (IIB) is obtained by kneading the copolymer (2B) and other components blended as necessary at a desired temperature using a kneader such as a mixer, a kneader, or a roll. Can be prepared. Since the copolymer (2B) is excellent in kneadability, the composition (IIB) can be prepared favorably.
  • the copolymer (2B) and, if necessary, the other component 1 are added at a predetermined temperature and time, for example, 80 to 200 ° C. for 3 to 30.
  • other components 2 such as a crosslinking agent are added to the obtained kneaded material as necessary, and using a roll at a predetermined temperature and time, for example, 1-30 at a roll temperature of 30-80 ° C.
  • the composition (IIB) can be prepared by kneading for a minute.
  • Examples of other components 1 include other polymers, crosslinking aids, vulcanization accelerators, vulcanization aids, softeners, inorganic fillers, reinforcing agents, anti-aging agents, processing aids, activators, and hygroscopic agents. And at least one selected from a heat stabilizer, a weather stabilizer, an antistatic agent, a colorant, a lubricant, and a thickener.
  • Other components 2 include, for example, a crosslinking agent (vulcanizing agent), a crosslinking aid, a vulcanization accelerator, a vulcanization aid, a softening agent, an inorganic filler, a reinforcing agent, an antiaging agent, a processing aid, And at least one selected from activators, hygroscopic agents, heat stabilizers, weather stabilizers, antistatic agents, colorants, lubricants, thickeners and foaming agents.
  • crosslinking agent examples include organic peroxides, phenol resins, sulfur compounds, hydrosilicon compounds, amino resins, quinones or derivatives thereof, amine compounds, azo compounds, epoxy compounds, isocyanates.
  • the crosslinking agent generally used when bridge
  • organic peroxides examples include dicumyl peroxide, di-tert-butyl peroxide, 2,5-di- (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di- (tert-butyl).
  • the amount of the organic peroxide in the composition (IIB) is determined depending on the copolymer (2B) and other polymers that need to be crosslinked (crosslinking). 0.1 to 20 parts by mass, preferably 0.2 to 15 parts by mass, and more preferably 0.5 to 10 parts by mass with respect to a total of 100 parts by mass of the conductive rubber. When the blending amount of the organic peroxide is within the above range, the composition (IIB) exhibits excellent crosslinking characteristics without blooming to the surface of the hose obtained.
  • crosslinking agent When an organic peroxide is used as the crosslinking agent, it is preferable to use a crosslinking aid in combination.
  • crosslinking aids include sulfur; quinone dioxime crosslinking aids such as p-quinonedioxime; acrylic crosslinking aids such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; diallyl phthalate and triallyl isocyanurate. Allyl-based crosslinking aids such as maleimide-based crosslinking aids; divinylbenzene; zinc oxide (for example, ZnO # 1 and two types of zinc oxide, manufactured by Hakusuitec Co., Ltd.), magnesium oxide, zinc white (for example, “META-Z102”) (Zinc oxide such as “trade name; manufactured by Inoue Lime Industry Co., Ltd.”).
  • the blending amount of the crosslinking aid in the composition (IIB) is usually 0.5 to 10 moles, preferably 0.5 to 7 moles per mole of the organic peroxide.
  • the amount is preferably 1 to 5 mol.
  • sulfur compounds examples include sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, and selenium dithiocarbamate.
  • the compounding amount of the sulfur compound in the composition (IIB) is the copolymer (2B) and other polymers (crosslinkable rubbers) that need to be blended as required.
  • Etc. is usually 0.3 to 10 parts by weight, preferably 0.5 to 7.0 parts by weight, and more preferably 0.7 to 5.0 parts by weight.
  • a sulfur compound is used as the crosslinking agent, it is preferable to use a vulcanization accelerator in combination.
  • vulcanization accelerator examples include N-cyclohexyl-2-benzothiazole sulfenamide, N-oxydiethylene-2-benzothiazole sulfenamide, N, N′-diisopropyl-2-benzothiazole sulfenamide, 2 -Mercaptobenzothiazole (for example, Sunseller M (trade name; manufactured by Sanshin Chemical Industry Co., Ltd.)), 2- (4-morpholinodithio) penzothiazole (for example, Noxeller MDB-P (trade name; Ouchi Shinsei Chemical Industry Co., Ltd.) )), 2- (2,4-dinitrophenyl) mercaptobenzothiazole, 2- (2,6-diethyl-4-morpholinothio) benzothiazole and dibenzothiazyl disulfide (eg Sunceller DM (trade name; three New chemical industry))) and other thiazole vulcanization accelerators; diphenylgu
  • the blending amount of the vulcanization accelerator in the composition (IIB) is the copolymer (2B) and other polymers that need to be blended and blended as necessary (crosslinkable rubber, etc.) ) Is usually 0.1 to 20 parts by mass, preferably 0.2 to 15 parts by mass, and more preferably 0.5 to 10 parts by mass.
  • the composition (IIB) exhibits excellent crosslinking characteristics without blooming on the surface of the hose obtained.
  • a vulcanization aid can be used in combination.
  • vulcanization aid examples include zinc oxide (for example, ZnO # 1 and two types of zinc oxide, manufactured by Hux Itec Co., Ltd.), magnesium oxide, zinc white (for example, “META-Z102” (trade name; Inoue Lime Industry). Zinc oxide) such as manufactured by Co., Ltd.).
  • zinc oxide for example, ZnO # 1 and two types of zinc oxide, manufactured by Hux Itec Co., Ltd.
  • magnesium oxide for example, “META-Z102” (trade name; Inoue Lime Industry).
  • Zinc oxide such as manufactured by Co., Ltd.
  • the blending amount of the vulcanization aid in the composition (IIB) is determined depending on the copolymer (2B) and other polymers that need to be blended (crosslinkable rubber, etc.). ) Is usually 1 to 20 parts by mass per 100 parts by mass in total.
  • the softener As a softener, the illustration of the said softener (D) is mentioned, for example.
  • the softener is preferably a petroleum softener, and particularly preferably process oil.
  • the amount of the softening agent is 100 in total of the copolymer (2B) and other polymers (elastomer, crosslinkable rubber, etc.) blended as necessary.
  • the amount is usually 2 to 100 parts by mass, preferably 10 to 100 parts by mass with respect to parts by mass.
  • Inorganic filler examples include light calcium carbonate, heavy calcium carbonate, talc, clay and the like. Among these, heavy calcium carbonate such as “Whiteon SB” (trade name: Shiraishi Calcium Co., Ltd.) is preferable. .
  • the blending amount of the inorganic filler is that of the copolymer (2B) and other polymers (elastomer, crosslinkable rubber, etc.) blended as necessary.
  • the amount is usually 2 to 100 parts by mass, preferably 5 to 100 parts by mass with respect to 100 parts by mass in total.
  • the blending amount of the inorganic filler is within the above range, the kneadability of the composition (IIB) is excellent, and a hose excellent in mechanical properties can be obtained.
  • the reinforcing agent examples include carbon black, carbon black surface-treated with a silane coupling agent, silica, calcium carbonate, activated calcium carbonate, fine powder talc, and differential silicic acid.
  • the total amount of the reinforcing agent is 100 in total of the copolymer (2B) and other polymers (elastomer, crosslinkable rubber, etc.) compounded as necessary.
  • the amount is usually 30 to 200 parts by mass, preferably 50 to 180 parts by mass with respect to parts by mass.
  • Anti-aging agent (stabilizer) By mix
  • anti-aging agents include conventionally known anti-aging agents such as amine-based anti-aging agents, phenol-based anti-aging agents, and sulfur-based anti-aging agents.
  • the antiaging agent examples include aromatic secondary amine type antiaging agents such as phenylbutylamine and N, N-di-2-naphthyl-p-phenylenediamine; dibutylhydroxytoluene, tetrakis [methylene (3,5-di- -T-butyl-4-hydroxy) hydrocinnamate] phenolic antioxidants such as methane; bis [2-methyl-4- (3-n-alkylthiopropionyloxy) -5-t-butylphenyl] sulfide and the like Thioether-based antioxidants; dithiocarbamate-based antioxidants such as nickel dibutyldithiocarbamate; 2-mercaptobenzoylimidazole, zinc salt of 2-mercaptobenzimidazole, dilaurylthiodipropionate, distearylthiodipropionate, etc.
  • sulfur-based anti-aging agent There is a sulfur-based anti-aging agent.
  • the blending amount of the antioxidant is that of the copolymer (2B) and other polymers (elastomer, crosslinkable rubber, etc.) blended as necessary.
  • the amount is usually 0.3 to 10 parts by mass, preferably 0.5 to 7.0 parts by mass with respect to 100 parts by mass in total.
  • processing aids those generally blended into rubber as processing aids can be widely used.
  • processing aids for example, fatty acids such as ricinoleic acid, stearic acid, palmitic acid, lauric acid, fatty acid salts such as barium stearate, zinc stearate, calcium stearate, ricinoleic acid ester, stearic acid ester, palmitic acid ester, Examples include fatty acid esters such as lauric acid esters, and fatty acid derivatives such as N-substituted fatty acid amides. Of these, stearic acid is preferred.
  • the blending amount of the processing aid is that of the copolymer (2B) and other polymers (elastomer, crosslinkable rubber, etc.) blended as necessary.
  • the amount is usually 10 parts by mass or less, preferably 8.0 parts by mass or less with respect to 100 parts by mass in total.
  • Activator examples include amines such as di-n-butylamine, dicyclohexylamine, and monoelaanolamine; diethylene glycol, polyethylene glycol, lecithin, triarylate melylate, aliphatic carboxylic acid, and aromatic carboxylic acid zinc compound. Activators; zinc peroxide preparations; kutadecyltrimethylammonium bromide, synthetic hydrotalcite, special quaternary ammonium compounds.
  • amines such as di-n-butylamine, dicyclohexylamine, and monoelaanolamine
  • diethylene glycol polyethylene glycol, lecithin, triarylate melylate, aliphatic carboxylic acid, and aromatic carboxylic acid zinc compound.
  • Activators zinc peroxide preparations
  • kutadecyltrimethylammonium bromide synthetic hydrotalcite, special quaternary ammonium compounds.
  • the amount of the active agent is a total of 100 of the copolymer (2B) and other polymers (elastomer, crosslinkable rubber, etc.) to be blended as necessary.
  • the amount is usually 0.2 to 10 parts by mass, preferably 0.3 to 5 parts by mass with respect to parts by mass.
  • hygroscopic agent examples include calcium oxide, silica gel, sodium sulfate, molecular sieve, zeolite, and white carbon.
  • the amount of the hygroscopic agent is 100 in total of the copolymer (2B) and other polymers (elastomer, crosslinkable rubber, etc.) blended as necessary.
  • the amount is usually 0.5 to 15 parts by mass, preferably 1.0 to 12 parts by mass with respect to parts by mass.
  • the hose made of the composition (IIB) may be a non-foamed material or a foamed material.
  • a foaming agent can be used in forming the foam.
  • an inorganic foaming agent such as sodium bicarbonate, sodium carbonate, ammonium bicarbonate, ammonium carbonate, ammonium nitrite; N, N′-dinitroterephthalamide, N, N Nitroso compounds such as'-dinitrosopentamethylenetetramine; azo compounds such as azodicarbonamide, azobisisobutyronitrile, azocyclohexylnitrile, azodiaminobenzene, barium azodicarboxylate; benzenesulfonylhydrazide, toluenesulfonylhydrazide, p , P′-oxybis (benzenesulfonylhydrazide) diphenylsulfone-3,3′-disul
  • the blending amount of the foaming agent is appropriately selected so that the specific gravity of the foamed product after crosslinking foaming is usually 0.01 to 0.9.
  • the blending amount of the foaming agent is usually 0.5 to 30 parts by mass with respect to 100 parts by mass in total of the copolymer (2B) and other polymers (elastomer, crosslinkable rubber, etc.) blended as necessary.
  • the amount is preferably 1 to 20 parts by mass.
  • composition (IIB) By using the composition (IIB), it is possible to form a hose excellent in mechanical properties at room temperature and low temperature properties. For example, it is possible to obtain a hose that is excellent in tensile strength at room temperature, has a low compression set at low temperature, and has a good result of a torsion test at low temperature.
  • the hose of the present invention (2) has a layer formed from the composition (IIB).
  • the hose may be one layer or two or more layers consisting of only the layer formed from the composition (IIB), and other layers such as a layer composed of natural rubber, a fabric layer, a thermoplastic resin layer, and a thermosetting resin. You may have one layer chosen from a layer, or two or more layers.
  • the composition (uncrosslinked composition) is formed into a desired hose shape, and the composition is subjected to a crosslinking treatment simultaneously with or after the forming.
  • a crosslinking treatment simultaneously with or after the forming.
  • (I) a method of forming a desired shape using the composition (IIB) containing a crosslinking agent, and crosslinking by heat treatment, (II) molding the composition (IIB) into a desired shape, and electronic There is a method of crosslinking by irradiating a line.
  • the hose forming composition of the present invention is molded into a hose shape having a hollow portion using an extrusion molding machine, a calender roll, a press molding machine, an injection molding machine, a transfer molding machine or the like.
  • the molded body is heated at 50 to 200 ° C. for 1 to 120 minutes, for example, simultaneously with molding or after molding.
  • a crosslinking process is performed, or a foaming process is performed together with the crosslinking process.
  • the crosslinking tank include a steam vulcanizing can, a hot air vulcanizing tank, a glass bead fluidized bed, a molten salt vulcanizing tank, and a microwave tank. These crosslinking tanks can be used singly or in combination of two or more.
  • an electron beam having an energy of 0.1 to 10 MeV is applied to the molded article simultaneously with or after molding, and the absorbed dose is usually 0.5 to 35 Mrad, preferably 0.5. Irradiate to ⁇ 20 Mrad.
  • the hose of the present invention (2) can be suitably used as a hose used for automobiles, motorbikes, industrial machines, construction machines, agricultural machines and the like. Specifically, radiator hose for cooling the engine, drain hose for radiator overflow, heater hose for indoor heating, air conditioner drain hose, wiper water supply hose, roof drain hose, protract hose, etc. can do.
  • parts means “parts by weight” or “parts by mass” unless otherwise specified.
  • parts by weight and parts by mass are treated synonymously.
  • Mooney viscosity Mooney viscosity ML (1 + 4) 125 ° C. and Mooney viscosity ML (1 + 4) 150 ° C. were measured according to JIS K6300 (1994) using a Mooney viscometer (SMV202 type manufactured by Shimadzu Corporation). .
  • the iodine value of the copolymer obtained in the following synthesis example is a value determined by a titration method. Specifically, the following method was used.
  • B value ([EX] +2 [Y]) / [2 ⁇ [E] ⁇ ([X] + [Y])] (i)
  • [E], [X] and [Y] represent the molar fractions of ethylene [A], ⁇ -olefin [B] having 4 to 20 carbon atoms and non-conjugated polyene [C], respectively
  • [EX ] Represents ethylene [A] - ⁇ -olefin [B] dyad chain fraction having 4 to 20 carbon atoms.
  • the intrinsic viscosity [ ⁇ ] of the ethylene / ⁇ -olefin / non-conjugated polyene copolymer is a value measured at 135 ° C. using a decalin solvent.
  • thermoplastic elastomer compositions (I) and (IIC) in the following examples and comparative examples and methods for evaluating the physical properties of the molded products are as follows.
  • thermoplastic elastomer composition (I) pellets were press-molded at 230 ° C. for 6 minutes and then cooled and pressed at room temperature for 5 minutes to give a thickness of 3 mm.
  • a press sheet was produced. Using this sheet, the value after 5 seconds was measured with a Shore D hardness meter according to JIS K6253.
  • thermoplastic elastomer composition (IIC) pellets were press-molded at 230 ° C. for 6 minutes and then cooled and pressed at room temperature for 5 minutes to give a thickness of 3 mm.
  • a press sheet was produced. Using this sheet, the scale was read immediately after contact with the pressing needle using an A-type measuring instrument in accordance with JIS K6253.
  • thermoplastic elastomer composition (I) or (IIC) pellets were press-molded at 230 ° C. for 6 minutes using a 100-ton automatic heat press (manufactured by Shoji), and then cold-pressed at room temperature for 5 minutes. A press sheet having a thickness of 2 mm was produced.
  • a press sheet having a thickness of 2 mm produced as described above was laminated according to JIS K6250, and a compression set test was performed according to JIS K6262.
  • test conditions were 12 mm thick (4 mm stack of 3 mm pieces) laminated sheets, compressed at 25% compression, -30 ° C, 23 ° C, or 70 ° C for 22 hours each.
  • the sample was compressed under the conditions of 125 ° C. and 72 hours and measured after 30 minutes from the removal of the strain (compression).
  • test piece used was a No. 3 dumbbell piece punched out of a 2 mm thick press sheet.
  • ⁇ Measurement of filler ratio Set the sample (sample weight: about 5 mg) using an alumina pan in order to fully replace the inside of the TGA device (TGA Q50001R, manufactured by T.A. Instruments Japan Co., Ltd.) with a nitrogen atmosphere. Hold at 40 ° C. for 20 minutes. Then, it heated up to 1000 degreeC on the following measurement conditions, and made the remainder at that time into the filler rate with respect to object sample amount (about 5 mg).
  • the heating rate was 10 ° C./min, and the cooling rate was 10 ° C./min.
  • the sample purge gas was nitrogen at 25 ml / min and Air at 25 ml / min.
  • the balance balance purge gas was nitrogen at 10 ml / min.
  • the amount of purge gas into the furnace was 35 ml / min for the sample and balance balance.
  • the specific gravity of the examples was calculated using the specific gravity of each resin component and softener and the number of blended parts thereof.
  • the specific gravity of the comparative example is a catalog value.
  • Unvulcanized physical property test 1 minimum viscosity (Vm) and scorch time (min)
  • the physical property test of the unvulcanized composition was performed according to JIS K6300. Specifically, using a Mooney viscometer (SMV202 type, manufactured by Shimadzu Corporation), the change in Mooney viscosity at 125 ° C. of Formulation 2 obtained in Examples and Comparative Examples was measured. Viscosity (Vm) was determined, and the time required to rise 5 points or 35 points from the minimum viscosity Vm was determined, and this was defined as scorch time (t5, min) and scorch time (t35, min).
  • Vulcanization rate (TC90) was measured as follows using a vulcanization measuring apparatus: MDR2000 (manufactured by ALPHA TECHNOLOGIES) using the formulation 2 obtained in Examples and Comparative Examples.
  • the torque change obtained under the condition of constant temperature and constant shear rate was measured.
  • the time required to reach 90% of the difference between the maximum torque value (S′Max) and the minimum torque value (S′Min) was defined as TC90 (min).
  • the measurement conditions were a temperature of 160 ° C. and a time of 50 minutes. A smaller TC90 indicates a faster vulcanization rate.
  • Strength at break (TB) and elongation at break (EB) was measured.
  • compression set test With respect to the test piece for measuring compression set (CS), the compression set after treatment at 70 ° C., 0 ° C., ⁇ 20 ° C., or ⁇ 40 ° C. ⁇ 22 hours was measured according to JIS K6262 (1997).
  • the solid obtained by distilling off the solvent under reduced pressure was brought into a glove box, washed with hexane, and extracted with dichloromethane.
  • the solid obtained by distilling off the solvent under reduced pressure was dissolved in a small amount of dichloromethane, hexane was added, and recrystallization was performed at ⁇ 20 ° C.
  • ethylene feed amount is 3.2 kg / h
  • 1-butene feed amount is 12 kg / h
  • ENB feed amount is 520 g / h and hydrogen.
  • the polymerizer was continuously fed so that the feed amount was 0.0 NL (normal liter) / h.
  • the catalyst-a1 was used as the main catalyst, and continuously fed to the polymerization vessel so that the feed amount was 0.030 mmol / h. Further, (C 6 H 5 ) 3 CB (C 6 F 5 ) 4 (CB-3) is fed as a cocatalyst at a feed rate of 0.15 mmol / h, and triorganobutylaluminum (TIBA) is fed as an organoaluminum compound at a rate of 10 mmol / h. Then, each was continuously fed to the polymerization vessel.
  • TIBA triorganobutylaluminum
  • an ethylene / 1-butene / ENB copolymer (EBDM-1 (1B)) formed from ethylene, 1-butene and ENB was obtained at a rate of 5.4 kg / hour.
  • Thermoplastic elastomer composition (I) and molded article >> [Example 1] 100 parts by weight of EBDM-1 (1B) obtained in Synthesis Example 1 and polypropylene having a melt flow rate (ASTM-D-1238-65T; 230 ° C., 2.16 kg load) of 2.0 g / 10 min.
  • brominated alkylphenol / formaldehyde resin (trade name: SP-1055F, manufactured by Schenectady) as a phenolic resin-based crosslinking agent
  • phenolic antioxidant Irganox 1010, BASF Japan Ltd.
  • Example 3 the polypropylene blended in the masterbatch preparation process is a polypropylene having a melt flow rate (ASTM-D-1238-65T; 230 ° C., 2.16 kg load) of 2.0 g / 10 min from E-200GP (product)
  • a pellet of a thermoplastic elastomer composition was produced in the same manner as in Example 1 except that the name was changed to Prime Polypro (trademark) B241 (manufactured by Prime Polymer Co., Ltd.).
  • thermoplastic elastomer composition Santoprene (trademark) 103-40 (manufactured by ExxonMobil, specific gravity: 0.95 g / cm 3 (catalog value)), a crosslinked thermoplastic elastomer obtained by dynamically crosslinking EPDM and PP (polypropylene) ) was used to evaluate the physical properties. The results are shown in Table 3.
  • the ethylene feed amount is 4.7 kg / h
  • the 1-butene feed amount is 4.3 kg / h
  • the ENB feed amount is 530 g / h.
  • the hydrogenation amount was continuously supplied to the polymerization reactor so that the hydrogen feed amount was 5.5 NL / h.
  • the catalyst-a1 was used as the main catalyst, and continuously fed to the polymerization vessel so that the feed amount was 0.018 mmol / h. Further, (C 6 H 5 ) 3 CB (C 6 F 5 ) 4 (CB-3) is fed as a cocatalyst at a feed rate of 0.09 mmol / h, and triorganobutylaluminum (TIBA) is fed as an organoaluminum compound at a rate of 5 mmol / h. Then, each was continuously fed to the polymerization vessel.
  • TIBA triorganobutylaluminum
  • an ethylene / 1-butene / ENB copolymer (EBDM-1 (2B)) formed from ethylene, 1-butene and ENB was obtained at a rate of 5.3 kg / hour.
  • Example 5 The ethylene / 1-butene / ENB copolymer (EBDM-2 (2B)) of Example 5 and Example 6 were used in the same manner as in Example 4 except that the polymerization conditions were changed as shown in Table 4. An ethylene / 1-butene / ENB copolymer (EBDM-3 (2B)) was obtained. The results are shown in Table 4.
  • Comparative Example 2 An ethylene / 1-butene / ENB copolymer (EBDM-4) of Comparative Example 2 was obtained in the same manner as in Example 4 except that the polymerization conditions were changed as shown in Table 4. The results are shown in Table 4.
  • Hose Forming Composition (IIB) >> [Example 7] The ethylene / 1-butene / ENB copolymer (EBDM-3 (2B) obtained in Example 6 using MIXRON BB MIXER (manufactured by Kobe Steel, BB-2, volume 1.7 L, rotor 2WH).
  • the kneading conditions were a rotor speed of 40 rpm, a floating weight pressure of 3 kg / cm 2 , a kneading time of 5 minutes, and a kneading discharge temperature of 144 ° C.
  • the compound 2 was vulcanized at 160 ° C. for 20 minutes using a press molding machine to obtain a vulcanized rubber sheet having a thickness of 2 mm.
  • a straight cylindrical test piece having a thickness of 12.7 mm and a diameter of 29 mm was prepared from the compound 2 using a cylindrical mold, and vulcanized at 160 ° C. for 25 minutes to obtain compression set (CS). A test specimen was obtained.
  • the obtained unvulcanized product (unvulcanized rubber) was subjected to an unvulcanized physical property test by the above method. Further, the obtained vulcanizate (vulcanized rubber) was subjected to a hardness test, a tensile test, a low-temperature twist test, and a compression set test by the above methods. The results are shown in Table 5.
  • the low temperature characteristics of the ethylene / ⁇ -olefin / non-conjugated polyene copolymer are largely affected by the crystallization rate of the copolymer due to the ethylene content. That is, Example 7 and Comparative Example 5 were compared, Example 8 and Comparative Example 3 were compared, and Example 9 and Comparative Example 4 were compared. From the results shown in Tables 4 and 5, the use of a polymer having a high ML (1 + 4) 125 ° C. as the ethylene / ⁇ -olefin / non-conjugated polyene copolymer results in a balance between sealing properties and low temperature characteristics. It turns out that it is excellent. Sealability can be evaluated from compression set at high temperature (70 ° C.
  • Thermoplastic elastomer composition (IIC) and molded article >> Example 10 100 parts by weight of EBDM-1 (2B) obtained in Example 4 and polypropylene having a melt flow rate (ASTM-D-1238-65T; 230 ° C., 2.16 kg load) of 2.0 g / 10 min ( Trade name: Prime Polypro (trademark) B241, manufactured by Prime Polymer Co., Ltd.) 40 parts by weight, softener (Diana Process PW-100, paraffin oil, manufactured by Idemitsu Kosan Co., Ltd.) 40 parts by weight, fully mixed with a Banbury mixer Pellets were obtained.
  • the obtained master batch pellets 8.0 parts by weight of brominated alkylphenol / formaldehyde resin (trade name: SP-1055F, manufactured by Schenectady) as a phenolic resin-based crosslinking agent, and phenolic antioxidant (IRGANOX 1010 as an antioxidant) , Manufactured by BASF Japan Ltd.) 0.16 parts by weight, benzotriazole ultraviolet absorber (trade name: Tinuvin 326FL, manufactured by BASF Japan Ltd.) 0.16 parts by weight, hindered amine (HALS) weathering stabilizer (Product name: Sanol LS-770, manufactured by Sankyo Lifetech Co., Ltd.) 0.08 parts by weight, zinc oxide (two types of zinc oxide, manufactured by Hakusui Tech Co., Ltd.) 0.80 parts by weight, carbon black masterbatch (PE4993, manufactured by Cabot) 4.0 parts by weight, softener (Diana Process PW-100, paraffin oil) 75 parts by weight, melt flow rate (ASTM-D-1238-
  • Example 11 The amount of softener (Diana Process PW-100, paraffin oil) mixed with the masterbatch was changed from 75 parts by weight to 73 parts by weight, and the amount of EL-Pro TM P440J was changed from 18 parts by weight to 23 parts by weight. Except that, pellets of the thermoplastic elastomer composition (IIC) were produced in the same manner as in Example 10.
  • softener Diana Process PW-100, paraffin oil
  • Example 12 A pellet of the thermoplastic elastomer composition (IIC) was produced in the same manner as in Example 10, except that EBDM-1 (2B) was changed to EBDM-2 (2B).
  • Table 7 shows the physical property evaluation results.
  • thermoplastic elastomer composition Santoprene TM 121-73W175 (manufactured by ExxonMobil, specific gravity: 0.97 g / cm 3 (catalog value)), a crosslinked thermoplastic elastomer obtained by dynamically crosslinking EPDM and PP (polypropylene) ) was used to evaluate the physical properties.
  • Table 7 shows the physical property evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

[課題]本発明は、軽量であって、従来の架橋型熱可塑性エラストマーよりも優れた耐油性を有し、かつ、従来の架橋型熱可塑性エラストマーと同等以上の、硬度と、引張強度および引張伸度などの機械物性を有する成形体となり得る熱可塑性エラストマー組成物の提供、および低温での圧縮永久ひずみが小さく、且つ、柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れたエチレン・α-オレフィン・非共役ポリエン共重合体の提供を目的とする。 [解決手段]結晶性オレフィン系重合体(A)、特定の要件を満たすエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(1B)、およびフェノール樹脂系架橋剤(C)を含む混合物を動的架橋して得られる熱可塑性エラストマー組成物、および特定の要件を満たすエチレン・α―オレフィン・非共役ポリエン共重合体(2B)を製造する。

Description

熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途
 本発明(1)は熱可塑性エラストマー組成物に関し、さらに詳しくは、軽量であって、高強度であり、耐油性および機械物性に優れる成形体を提供し得る熱可塑性エラストマー組成物に関する。
 本発明(2)は、エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途に関する。
 オレフィン系熱可塑性エラストマーは、軽量でリサイクルが容易なことから、省エネルギー、省資源タイプの熱可塑性エラストマーとして、特に加硫ゴムの代替として、自動車用の、ホース、パイプおよびブーツ(ブロー成形品)などの自動車部品等に広く使用されている(たとえば、特許文献1および2)。
 しかしながら、これらの自動車部品では、燃費改善のため常に軽量化を求められているが、用いられている熱可塑性エラストマーはフィラーを多く含有するため、比重が大きくなりがちであり、部品軽量化を阻害していた。また、これらの自動車部品は、潤滑油やグリースなどと接触する箇所に用いられるが、一般的に、オレフィン系熱可塑性エラストマーは、パラフィン系のプロセスオイルに対して耐油性が低いため、オレフィン系熱可塑性エラストマーを含んで得られるこれらの自動車部品においても、耐油性が低く、更なる改良が求められていた。
 また、エチレン・プロピレン共重合体ゴム(EPR)およびエチレン・プロピレン・ジエン共重合体ゴム(EPDM)などのエチレン・α-オレフィンゴムは、その分子構造の主鎖に不飽和結合を有しないため、汎用の共役ジエンゴムと比べ、耐熱老化性、耐候性、耐オゾン性に優れ、自動車用部品、電線用材料、電気・電子部品、建築土木資材、工業材部品等の用途に広く用いられている。
 近年、エチレン・α-オレフィンゴムの優れた耐熱性、耐候性および柔軟性を活かしたニーズとして、透明架橋シート向けの素材開発、製品開発が盛んに行われている。
 EPDMの用途としては例えば、エチレン・プロピレン・ジエン共重合体ゴム(EPDM)を、ホース形成用組成物のゴム成分として使用することが知られている(特許文献3)。ホースが使用される用途、例えば自動車等は、寒冷地での使用も想定されるため、常温での機械的物性(引張強度等)に加えて、低温でのゴム特性(ゴム弾性等)も要求される。
 エチレン・プロピレン・ジエン共重合体ゴム(EPDM)の低温柔軟性、耐熱老化性を改良する方法として、α‐オレフィンとして、炭素数4~10のα‐オレフィンを用いて、エチレンとα‐オレフィンとのランダム性に優れるエチレン・α-オレフィン・非共役ポリエン共重合体が提案されている(特許文献4)。特許文献4の実施例4には、ランダム性の良否を示す指標である下記式で示されるB値が、最大で、1.12のエチレン・1-ブテン・ENB共重合体が得られたことが記載されている。
  B値=[EX]/(2[E]×[X])・・・(i)
 (式(i)中、[E]および[X]は、エチレン・α―オレフィン・非共役ポリエン共重合体中のエチレンおよび炭素数4~20のα-オレフィンのモル分率をそれぞれ表し、[EX]は、エチレン・炭素数4~20のα-オレフィンのダイアッド連鎖分率を表す。)
 一方、特許文献5の実施例には、特定の遷移金属化合物(架橋メタロセン化合物)を用いて、ランダム性を示すB値(但し、特許文献2に記載のB値とは、幾分定義が異なる)が、1.11~1.24のエチレン・プロピレン・ENB共重合体を得たことが開示されている。なお、特許文献5には、当該エチレン・プロピレン・ENB共重合体の機械的物性は記載されていない。
  〔B値=(c+d)/[2×a×(e+f)] ‥[IV]
(式[IV]中、a、eおよびfはそれぞれ前記エチレン/α-オレフィン/非共役ポリエン共重合体中のエチレンモル分率、α-オレフィンモル分率および非共役ポリエンモル分率であり、cはエチレン-α-オレフィンダイアッドモル分率、dはエチレン-非共役ポリエンダイアッドモル分率である。)
 また、オレフィン系熱可塑性エラストマーは、軽量でリサイクルが容易なことから、省エネルギー、省資源タイプの熱可塑性エラストマーとして、特に加硫ゴムの代替として、自動車用のホース、パイプおよびブーツ(ブロー成形品)などの自動車部品等に広く使用されている(例えば、特許文献6および7)。
 しかしながら、これらの自動車部品では、燃費改善のため常に軽量化を求められているが、用いられている熱可塑性エラストマーはフィラーを多く含有するため、比重が大きくなりがちであり、部品軽量化を阻害していた。また、これらの自動車部品は、潤滑油やグリースなどと接触する箇所に用いられるが、一般的に、オレフィン系熱可塑性エラストマーは、パラフィン系のプロセスオイルに対して耐油性が低いため、オレフィン系熱可塑性エラストマーを含んで得られるこれらの自動車部品においても、耐油性が低く、更なる改良が求められていた。
特開2001-294714号公報 特開2011-202136号公報 特開平9-67485号公報 特開平9-71617号公報 国際公開第2009/081794号 特開2001-294714号公報 特開2011-202136号公報
 本発明(1)は、上記課題を解決するためになされたものであって、軽量であって、従来の架橋型熱可塑性エラストマーよりも優れた耐油性を有し、かつ、従来の架橋型熱可塑性エラストマーと同等以上の、硬度と、引張強度および引張伸度などの機械物性を有する成形体となり得る熱可塑性エラストマー組成物の提供を目的とする。
 該熱可塑エラストマー組成物を含んで得られる、より良好な耐油性を有する、成型体、特に、自動車用の、ホース、パイプおよびブーツ(ブロー成形品)などの自動車部品の提供を目的とする。
 また、本発明(2)の課題は、既に提案されているエチレン・α-オレフィン・非共役ポリエン共重合体に比べ、更に、低温での圧縮永久ひずみが小さく、且つ、柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れたエチレン・α-オレフィン・非共役ポリエン共重合体を得ることにある。
 寒冷地でもホースが使用される可能性を考慮すると、低温特性および機械的物性を両立したホースが望まれる。例えば、エチレン含量が低く抑えられたEPDMを含むホース形成用組成物を用いると、得られるホースの低温特性は改善するが、引張強度が低下することが知られている。
 本発明(2)の別の課題は、低温特性および機械的物性に優れたホースを形成することが可能なホース形成用組成物と、前記組成物から形成されたホースとを提供することにある。
 また、本発明(2)は、軽量であって、従来の架橋型熱可塑性エラストマーよりも優れた耐油性を有し、かつ、従来の架橋型熱可塑性エラストマーと同等以上の、硬度と、引張強度および引張伸度などの機械物性を有する成形体となり得る熱可塑性エラストマー組成物の提供を目的とする。さらに、該熱可塑エラストマー組成物を含んで得られる、より良好な耐油性を有する、成型体、特に、自動車用の、ホースおよびブーツ(ブロー成形品)などの自動車部品の提供を目的とする。
 本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、結晶性オレフィン系重合体と、特定のエチレン・α-オレフィン・非共役ポリエン共重合体と、フェノール樹脂系架橋剤を含む混合物を動的架橋することにより得られる熱可塑性エラストマー組成物が上記課題を解決することができることを見出し、本発明(1)を完成するに至った。
 本発明(1)に係る熱可塑性エラストマー組成物(本発明では、組成物(I)とも称す)は、結晶性オレフィン系重合体(A)、下記要件(1)と(2)とを満たすエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(1B)、およびフェノール樹脂系架橋剤(C)を含む混合物を動的架橋して得られることを特徴とする。
 (1)下記式(i)で表されるB値が1.20~1.80である。
 B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
 ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位のモル分率、炭素数4~20のα-オレフィン由来の構造単位のモル分率、非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位-炭素数4~20のα-オレフィン由来の構造単位のダイアッド連鎖分率を示す。
 (2)共重合体(1B)の、エチレンに由来する構造単位とα-オレフィン(炭素数4~20)に由来する構造単位とのモル比、40/60~90/10である。
 上記エチレン・α-オレフィン・非共役ポリエン共重合体(1B)のα-オレフィンは、1-ブテンであることが好ましい。
 上記混合物には、さらに、軟化剤(D)を、前記結晶性オレフィン系重合体(A)および前記共重合体(1B)の合計100重量部に対して、2~100重量部含むことが好ましい。
 上記フェノール樹脂系架橋剤(C)は、ハロゲン化フェノール樹脂系架橋剤であることが好ましい。
 上記混合物には、結晶性オレフィン系重合体(A)とエチレン・α-オレフィン・非共役ポリエン共重合体(1B)とを、(A)/(1B)=90/10~10/90の重量比で含有し、フェノール樹脂系架橋剤(C)が、エチレン・α-オレフィン・非共役ポリエン共重合体(1B)100重量部に対して、0.1~20重量部含有することが好ましい。
 本発明(1)の成形体は、本発明(1)の熱可塑性エラストマー組成物を含んで得られることを特徴とする。
 本発明(1)の自動車部品は、本発明(1)の熱可塑性エラストマー組成物を含んで得られることを特徴とする。
 本発明(1)の自動車用ホースは、本発明(1)の熱可塑性エラストマー組成物を含んで得られることを特徴とする。
 本発明(1)の自動車用ブーツは、本発明(1)の熱可塑性エラストマー組成物を含んで得られることを特徴とする。
 本発明の熱可塑性エラストマー組成物(I)の製造方法は、結晶性オレフィン系重合体(A)と、前記エチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(1B)と、フェノール樹脂系架橋剤(C)とを含む混合物を、動的架橋する工程を含むことを特徴とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、既に提案されているエチレン・α-オレフィン・非共役ポリエン共重合体に比べ、更に、低温での圧縮永久ひずみが小さく、且つ、柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れた特定のエチレン・α-オレフィン・非共役ポリエン共重合体および該共重合体を含む組成物(本発明では、組成物(IIA)とも称す)を見出し、本発明(2)を完成するに至った。
 また、特定のエチレン・α-オレフィン・非共役ポリエン共重合体を用いることにより、低温特性および機械的物性に優れたホースを形成することが可能なホース形成用組成物(本発明では、組成物(IIB)とも称す)と、前記組成物から形成されたホースとを提供することができることを見出し、本発明(2)を完成するに至った。
 さらに、結晶性オレフィン系重合体と、特定のエチレン・α-オレフィン・非共役ポリエン共重合体と、フェノール樹脂系架橋剤を含む混合物を動的架橋することにより得られる熱可塑性エラストマー組成物(本発明では、組成物(IIC)とも称す)が、従来の架橋型熱可塑性エラストマーよりも優れた耐油性を有し、かつ、従来の架橋型熱可塑性エラストマーと同等以上の、硬度と、引張強度および引張伸度などの機械物性を有する成形体となり得ることを見出し、また、前記熱可塑性エラストマー組成物(IIC)が、より良好な耐油性を有する成型体、特に、自動車用の、ホースおよびブーツ(ブロー成形品)などの自動車部品を提供することができることを見出し、本発明(2)を完成するに至った。
 本発明(2)は、例えば以下の[1]~[18]に関する。
  [1]
 エチレン[A]に由来する構造単位、炭素数4~20のα-オレフィン[B]に由来する構造単位、および非共役ポリエン[C]に由来する構造単位を含み、下記(1)~(4)を満たすエチレン・α―オレフィン・非共役ポリエン共重合体(2B)。
 (1)エチレン[A]に由来する構造単位と、α-オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60~90/10であり、
 (2)非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1~6.0モル%であり、
 (3)125℃におけるムーニー粘度ML(1+4)125℃が、100を超えて200以下であり、
 (4)下記式(i)で表されるB値が1.20~1.80である。
 B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
[ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4~20のα-オレフィン[B]、および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]-炭素数4~20のα-オレフィン[B]ダイアッド連鎖分率を示す。]
  [2]
 炭素数4~20のα-オレフィン[B]が、1-ブテンであることを特徴とする[1]に記載のエチレン・α―オレフィン・非共役ポリエン共重合体(2B)。
  [3]
(a)下記一般式[VII]で表される遷移金属化合物と、
(b)(b-1)有機金属化合物、
   (b-2)有機アルミニウムオキシ化合物、および
   (b-3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物とを含むオレフィン重合触媒の存在下において、エチレン、炭素数4~20のα-オレフィンおよび非共役ポリエンを共重合することにより得られる、[1]または[2]に記載のエチレン・α-オレフィン・非共役ポリエン共重合体(2B)。
Figure JPOXMLDOC01-appb-C000003
(式[VII]において、
 Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
 R5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であり、
 Qはハロゲン原子、炭素数1~20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
 jは1~4の整数である。)
  [4]
 [1]~[3]のいずれか一項に記載のエチレン・α-オレフィン・非共役ポリエン共重合体(2B)を含有する組成物。
  [5]
 [4]に記載の組成物を架橋処理して形成された成形体。
  [6]
 [1]~[3]のいずれか一項に記載のエチレン・α-オレフィン・非共役ポリエン共重合体(2B)を含有するホース形成用組成物。
  [7]
 [6]に記載のホース形成用組成物を架橋処理して形成された層を有するホース。
  [8]
 自動車用、モーターバイク用、工業機械用、建設機械用または農業機械用のいずれかの用途に用いられる、[7]に記載のホース。
  [9]
 結晶性オレフィン系重合体(A)、
 エチレン・α―オレフィン・非共役ポリエン共重合体(2B)、および
 フェノール樹脂系架橋剤(C)を含む混合物を
動的架橋して得られ、
 エチレン・α―オレフィン・非共役ポリエン共重合体(2B)が、[1]~[3]のいずれか一項に記載のエチレン・α―オレフィン・非共役ポリエン共重合体である熱可塑性エラストマー組成物。
  [10]
 前記混合物には、さらに、軟化剤(D)を、前記結晶性オレフィン系重合体(A)および前記共重合体(2B)の合計100重量部に対して、2~100重量部含む、[9]に記載の熱可塑性エラストマー組成物。
  [11]
 フェノール樹脂系架橋剤(C)が、ハロゲン化フェノール樹脂系架橋剤である、[9]または[10]に記載の熱可塑性エラストマー組成物。
  [12]
 結晶性オレフィン系重合体(A)とエチレン・α-オレフィン・非共役ポリエン共重合体(2B)とを、(A)/(2B)=90/10~10/90の質量比で含有し、
 フェノール樹脂系架橋剤(C)を、エチレン・α-オレフィン・非共役ポリエン共重合体(2B)100重量部に対して、0.1~20重量部含有する、[9]~[11]のいずれか一項に記載の熱可塑性エラストマー組成物。
  [13]
 [9]~[12]のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、成形体。
  [14]
 [9]~[12]のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、自動車部品。
  [15]
 [9]~[12]のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、自動車用ホース。
  [16]
 [9]~[12]のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、自動車用ブーツ。
  [17]
 (a)前記一般式[VII]で表される遷移金属化合物と、
 (b)(b-1)有機金属化合物、
    (b-2)有機アルミニウムオキシ化合物、および
    (b-3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物と
を含むオレフィン重合触媒の存在下において、エチレン、炭素数4~20のα-オレフィンおよび非共役ポリエンを共重合する工程を含むことにより得られる、エチレン・α-オレフィン・非共役ポリエン共重合体(2B)の製造方法。
  [18]
 結晶性オレフィン系重合体(A)と、前記エチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(2B)と、フェノール樹脂系架橋剤(C)とを含む混合物を、動的架橋する工程を含むことを特徴とする、熱可塑性エラストマー組成物の製造方法。
 本発明(1)によれば、軽量であって、従来の架橋型熱可塑性エラストマーよりも優れた耐油性を有し、かつ、従来の架橋型熱可塑性エラストマーと同等以上の、硬度と、引張強度および引張伸度などの機械物性を有する成形体となり得る熱可塑性エラストマー組成物が得られる。
 本発明(2)のエチレン・α-オレフィン・非共役ポリエン共重合体は、低温での圧縮永久ひずみが小さく、且つ、柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れるので、エチレン・α-オレフィン・非共役ポリエン共重合体を含有する組成物は、かかる特性を活かし、様々な用途に好適に用いることができる。
 本発明(2)によれば、低温でのゴム弾性等の低温特性と、常温での引張強度等の機械的物性とに優れたホースを形成することが可能なホース形成用組成物と、前記組成物から形成されたホースとを提供することができる。
 本発明(2)によれば、軽量であって、従来の架橋型熱可塑性エラストマーよりも優れた耐油性を有し、かつ、従来の架橋型熱可塑性エラストマーと同等以上の、硬度と、引張強度および引張伸度などの機械物性を有する成形体となり得る熱可塑性エラストマー組成物が得られる。
 <結晶性オレフィン系重合体(A)>
 結晶性オレフィン系重合体(A)(本発明において重合体(A)とも称す)は、オレフィンから得られる結晶性の重合体であれば特に制限されないが、1種以上のモノオレフィンを、高圧法または低圧法の何れかにより重合して得られる結晶性の高分子量固体生成物からなる重合体であることが好ましい。このような重合体としては、アイソタクチックモノオレフィン重合体、シンジオタクチックモノオレフィン重合体等が挙げられる。
 重合体(A)は、従来公知の方法で合成して得てもよく、市販品を用いてもよい。
 重合体(A)は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 重合体(A)の原料となるモノオレフィンとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、2-メチル-1-プロペン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン等が挙げられる。これらのオレフィンは、1種単独で用いてもよいし、2種以上混合して用いてもよい。
 重合体(A)の中でも、耐熱性、耐油性の点からは、プロピレンを主とするモノオレフィンから得られるプロピレン単独重合体またはプロピレン共重合体であるプロピレン系(共)重合体が好ましい。なお、プロピレン共重合体の場合、プロピレン由来の構造単位の含有量は好ましくは40モル%以上、より好ましくは50モル%以上であり、プロピレン以外の単量体由来の構造単位となるモノオレフィンとしては、好ましくはプロピレン以外の上記モノオレフィン、より好ましくはエチレン、ブテンである。
 重合様式はランダム型でもブロック型でも、結晶性の樹脂状物が得られればどのような重合様式を採用しても差支えない。
 上記結晶性オレフィン系重合体(A)は、MFR(ASTM D1238-65T、230℃、2.16kg荷重)が、通常0.01~100(g/10分)、好ましくは0.05~50(g/10分)である。
 重合体(A)は、示差走査熱量分析(DSC)で得られる融点(Tm)が、通常100℃以上、好ましくは105℃以上である。示差走査熱量測定は、たとえば次のようにして行われる。試料5mg程度を専用アルミパンに詰め、(株)パーキンエルマー社製DSCPyris1またはDSC7を用い、30℃から200℃までを320℃/minで昇温し、200℃で5分間保持したのち、200℃から30℃までを10℃/minで降温し、30℃でさらに5分間保持し、次いで10℃/minで昇温する際の吸熱曲線より融点を求める。なお、DSC測定時に、複数のピークが検出される場合は、最も高温側で検出されるピーク温度を融点(Tm)と定義する。
 重合体(A)は、熱可塑性エラストマー組成物の流動性および耐熱性を向上させる役割を果たす。
 <エチレン・α-オレフィン・非共役ポリエン共重合体(1B)>
 本発明(1)で用いるエチレン・α-オレフィン・非共役ポリエン共重合体(1B)(本発明において共重合体(1B)とも称す)は、エチレンに由来する構造単位、少なくとも1種の炭素数4~20のα-オレフィンに由来する構造単位、および少なくとも一種の非共役ポリエンに由来する構造単位を含むエチレン・α-オレフィン・非共役ポリエン共重合体であり、
 (1)下記式(i)で表されるB値が1.20~1.80であり、
   B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
 (ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位のモル分率、炭素数4~20のα-オレフィン由来の構造単位のモル分率、非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位-炭素数4~20のα-オレフィン由来の構造単位のダイアッド連鎖分率を示す)、
 (2)共重合体(1B)の、エチレンに由来する構造単位とα-オレフィン(炭素数4~20)に由来する構造単位とのモル比、40/60~90/10である。
 炭素数4~20のα-オレフィンとしては、1-ブテン(炭素数4)、1-ノネン(炭素数9)、1-デセン(炭素数10)、1-ノナデセン(炭素数19)、1-エイコセン(炭素数20)等の側鎖の無い直鎖状のα-オレフィン;側鎖を有する4-メチル-1-ペンテン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセン等の側鎖を有するα-オレフィンなどが挙げられる。これらα-オレフィンは1種単独で用いてもよいし2種以上組み合わせて用いてもよい。これらの中では、炭素数4~10のα-オレフィンが好ましく、1-ブテン、1-ヘキセン、1-オクテンがより好ましく、1-ブテンが、本発明の効果に加えて、特に、得られる成形体の、耐油性、特に比較的高温での耐油性、柔軟性および耐衝撃性を向上させることができるため、さらに好ましい。
 非共役ポリエンとしては、1,4-ヘキサジエン、1,6-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン等の鎖状非共役ジエン;シクロヘキサジエン、ジシクロペンタジエン、メチルテトラヒドロインデン、5-ビニル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン等の環状非共役ジエン;2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,5-ノルボルナジエン、1,3,7-オクタトリエン、1,4,9-デカトリエン、4,8-ジメチル-1,4,8-デカトリエン、4-エチリデン-8-メチル-1,7-ノナジエン等のトリエンなどが挙げられる。これら非共役ポリエンは、1種単独で用いてもよいし2種以上を組み合わせて用いてもよい。これらの中でも、1,4-ヘキサジエンなどの環状非共役ジエン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-エチリデン-2-ノルボルネンおよび5-ビニル-2-ノルボルネンの混合物が好ましく、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネンがより好ましい。
 共重合体(1B)としては、エチレン・1-ブテン・1,4-ヘキサジエン共重合体、エチレン・1-ペンテン・1,4-ヘキサジエン共重合体、エチレン・1-ヘキセン・1,4-ヘキサジエン共重合体、エチレン・1-へプテン・1,4-ヘキサジエン共重合体、エチレン・1-オクテン・1,4-ヘキサジエン共重合体、エチレン・1-ノネン・1,4-ヘキサジエン共重合体、エチレン・1-デセン・1,4-ヘキサジエン共重合体、エチレン・1-ブテン・1-オクテン・1,4-ヘキサジエン共重合体、エチレン・1-ブテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ペンテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ヘキセン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-へプテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-オクテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ノネン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-デセン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ブテン・1-オクテン・5-エチリデン-2-ノルボルネン共重合体、エチレン・1-ブテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-ペンテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-ヘキセン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-へプテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-オクテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-ノネン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-デセン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、エチレン・1-ブテン・1-オクテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体などが挙げられる。
 共重合体(1B)は、1種単独で用いてもよいし、2種類以上組み合わせて用いてもよい。
 共重合体(1B)は、(1)上記式(i)で表されるB値が1.20以上、好ましくは1.20~1.80、特に好ましくは1.22~1.40範囲にある。
 B値が1.20未満の共重合体(1B)は、圧縮永久ひずみが大きくなり、ゴム弾性と引張強度とのバランスに優れた熱可塑性エラストマー組成物が得られないおそれがある。
 なお、B値は、共重合体(1B)中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式(i)中の[E]、[X]、[Y]、[EX]は、13C-NMRスペクトルを測定し、J. C.Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。
 エチレン・α-オレフィン・非共役ポリエン共重合体(1B)は、(2)エチレンに由来する構造単位[A]と、α-オレフィンに由来する構造単位[B]とのモル比〔[A]/[B]〕が、40/60~90/10の範囲にある。モル比[A]/[B]の下限としては、好ましくは45/55、より好ましくは50/50、特に好ましくは55/45である。また、モル比[A]/[B]の上限としては、好ましくは80/20、より好ましくは75/25、さらに好ましくは70/30、特に好ましくは65/35である。
 エチレンに由来する構造単位[A]と、α-オレフィンに由来する構造単位[B]とのモル比が上記範囲にあると、耐油性、特に比較的高温での耐油性に優れ、ゴム弾性と常温での引張強度とのバランスに優れる熱可塑性エラストマー組成物(I)が得られる。
 共重合体(1B)は、以下の要件(3)および(4)の少なくとも1つを満たすことが望ましい。
 共重合体(1B)は、(3)JIS K6300(1994)に準じて測定して得られた、125℃におけるムーニー粘度ML(1+4)(125℃)が、本発明の効果を奏する限り特に限定されないが、好ましくは5~100、より好ましくは20~95、さらに好ましくは50~90の範囲にある。
 ムーニー粘度が上記範囲にあると、良好な後処理性(リボンハンドリング性)を示すと共に優れたゴム物性を有する傾向にある。
 共重合体(1B)は、(4)非共役ポリエンに由来する構造単位[C]の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%に対して、好ましくは0.1~6.0モル%、より好ましくは0.5~4.0モル%、さらに好ましくは0.5~3.5モル%、特に好ましくは0.5~3.0モル%の範囲にある。非共役ポリエンに由来する構造単位[C]の含有量が上記範囲にあると、十分な架橋性、および柔軟性を有するエチレン系共重合体が得られる傾向にある。
 <エチレン・α-オレフィン・非共役ポリエン共重合体(2B)>
 本発明(2)のエチレン・α-オレフィン・非共役ポリエン共重合体(2B)(本発明において共重合体(2B)とも称す)は、エチレン[A]に由来する構造単位、炭素数4~20のα-オレフィン[B]に由来する構造単位、および非共役ポリエン[C]に由来する構造単位を含み、下記(1)~(4)を満たす。なお、このような特定のエチレン・α-オレフィン・非共役ポリエン共重合体を「エチレン系共重合体2A」ともいう。
 なお、本発明(1)および(2)において、炭素数4~20のα-オレフィン[B]および非共役ポリエン[C]としてはそれぞれを、1種のみ用いても、2種以上用いてもよい。共重合体(1B)または(2B)は、エチレン[A]に由来する構造単位、少なくとも1種類の炭素数4~20のα-オレフィン[B]に由来する構造単位、および少なくとも1種類の非共役ポリエン[C]に由来する構造単位を含む。
 (1)エチレン[A]に由来する構造単位と、α-オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60~90/10であり、
 (2)非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1~6.0モル%であり、
 (3)125℃におけるムーニー粘度ML(1+4)125℃が、100を超えて200以下であり、
 (4)上記式(i)で表されるB値が1.20以上である。
 式(i)は、共重合体(1B)の式(i)と同じである。
 炭素数4~20のα-オレフィン[B]としては、上記共重合体(1B)における炭素数4~20のα-オレフィンの例示を参照できる。共重合体(2B)において、α-オレフィン[B]としては、炭素数4~10のα-オレフィンが好ましく、特に1-ブテン、1-ヘキセン、1-オクテンなどが好ましく、特に1-ブテンが好適である。
 α‐オレフィンがプロピレンであるエチレン・プロピレン・非共役ポリエン共重合体は、低温でのゴム弾性が不充分である傾向があり、用途が限定される場合がある。一方、共重合体(2B)は、炭素数4~20のα-オレフィン[B]に由来する構造単位を有しているので、低温でのゴム弾性に優れている。
 非共役ポリエン[C]としては、上記共重合体(1B)における非共役ポリエンの例示を参照できる。共重合体(2B)において、非共役ポリエン[C]としては、1,4-ヘキサジエンなどの鎖状非共役ジエン、5-エチリデン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネンなどの環状非共役ジエンが好ましく、中でも環状非共役ジエンが好ましく、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネンが特に好ましい。
 共重合体(2B)としては、上記共重合体(1B)の例示を参照できる。共重合体(2B)は、必要に応じて1種類、または2種類以上が用いられる。
 共重合体(2B)における、(1)エチレン[A]に由来する構造単位と、α-オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕は、上記共重合体(1B)における要件(2)のモル比〔[A]/[B]〕と、該モル比の好ましい範囲も含めて同じである。
 共重合体(2B)において、エチレン[A]に由来する構造単位と、α-オレフィン[B]に由来する構造単位とのモル比が上記範囲にあると、低温でのゴム弾性と常温での引張強度とのバランスに優れるエチレン系共重合体が得られる。
 共重合体(2B)における、(2)非共役ポリエン[C]に由来する構造単位の含有量は、上記共重合体(1B)における要件(4)の含有量と、好ましい範囲も含めて同じである。
 共重合体(2B)において、非共役ポリエン[C]に由来する構造単位の含有量が上記範囲にあると、充分な架橋性および柔軟性を有するエチレン系共重合体が得られる。
 共重合体(2B)は、(3)125℃におけるムーニー粘度ML(1+4)125℃が100を超えて200以下、好ましくは100を超えて150以下、特に好ましくは100を超えて120以下の範囲にある。
 ムーニー粘度が上記範囲にあると、共重合体(2B)を含む組成物(2)の、シール性および低温特性が良好となるため好ましい。
 共重合体(2B)の(4)B値は、上記共重合体(1B)における要件(1)のB値と、好ましい範囲も含めて同じである。
 共重合体(2B)において、B値が1.20未満の共重合体は、低温での圧縮永久ひずみが大きくなり、低温でのゴム弾性と常温での引張強度とのバランスに優れたエチレン系共重合体が得られない虞がある。
 なお、B値は、上記共重合体(1B)で詳述した通り、共重合体(2B)中における共重合モノマー連鎖分布のランダム性を示す指標である。共重合体(1B)および(2B)において、エチレン[A]に由来する構造単位、α-オレフィン[B]に由来する構造単位および非共役ポリエン[C]に由来する構造単位のモル量は、1H-NMRスペクトルメーターによる強度測定によって求めることができる。
 (共重合体(1B)および(2B)の製造方法)
 共重合体(1B)および(2B)は、例えば、以下の製造方法により得ることができる。
 具体的には、(a-3)下記一般式[VII]で表される遷移金属化合物(以下の説明では、「架橋メタロセン化合物」と略称する場合がある。)ならびに、(b)(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)遷移金属化合物(a-3)と反応してイオン対を形成する化合物からなる群より選ばれる少なくとも1種の化合物、を含むオレフィン重合触媒の存在下において、エチレン、炭素原子数4~20のα-オレフィンおよび非共役ポリエンとを共重合することにより製造し得る。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体(1B)または(2B)のさらなる高分子量化が可能であるという利点が得られる。
Figure JPOXMLDOC01-appb-C000004
 式[VII]中の、M、R5、R6、Qおよびjを以下に説明する。
 上記Yは、炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子からなる群より選ばれる原子であるが、好ましくは炭素原子である。
 上記Mは、チタン原子、ジルコニウム原子またはハフニウム原子であるが、好ましくはハフニウム原子である。
 上記R5およびR6は、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基(以下「電子供与性基含有置換アリール基」ともいう。)である。
 アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などの芳香族化合物から誘導された置換基等が挙げられる。上記アリール基としては、フェニル基または2-ナフチル基が好ましい。なお、上記芳香族化合物としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどの芳香族炭化水素および複素環式芳香族化合物等が挙げられる。
 ハメット則の置換基定数σが-0.2以下の電子供与性基は、以下のように定義および例示される。ハメット則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年L. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則で求められた置換基定数にはベンゼン環のパラ位に置換した際のσpおよびメタ位に置換した際のσmがあり、これらの値は多くの一般的な文献に見出すことができる。例えば、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]には非常に広範な置換基について詳細な記載がなされている。ただし、これらの文献に記載されているσpおよびσmは、同じ置換基であっても文献によって値が僅かに異なる場合がある。本発明ではこのような状況によって生じる混乱を回避するために、記載のある限りの置換基においてはHanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された値をハメット則の置換基定数σpおよびσmと定義する。本発明においてハメット則の置換基定数σが-0.2以下の電子供与性基とは、該電子供与性基がフェニル基のパラ位(4位)に置換している場合はσpが-0.2以下の電子供与性基であり、フェニル基のメタ位(3位)に置換している場合はσmが-0.2以下の電子供与性基である。また、該電子供与性基がフェニル基のオルト位(2位)に置換している場合、またはフェニル基以外のアリール基の任意の位置に置換している場合は、σpが-0.2以下の電子供与性基である。
 ハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性置換基としては、p-アミノ基(4-アミノ基)、p-ジメチルアミノ基(4-ジメチルアミノ基)、p-ジエチルアミノ基(4-ジエチルアミノ基)、m-ジエチルアミノ基(3-ジエチルアミノ基)などの窒素含有基、p-メトキシ基(4-メトキシ基)、p-エトキシ基(4-エトキシ基)などの酸素含有基、p-t-ブチル基(4-t-ブチル基)などの三級炭化水素基、p-トリメチルシロキシ基(4-トリメチルシロキシ基)などのケイ素含有基などが挙げられる。尚、本発明で定義されるハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性置換基は、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された置換基に限定されない。該文献に記載のない置換基であっても、ハメット則に基づいて測定した場合の置換基定数σpまたはσmがその範囲となるであろう置換基は、本発明で定義するハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性基に含まれる。このような置換基としては、p-N-モルフォリニル基(4-N-モルフォリニル基)、m-N-モルフォリニル基(3-N-モルフォリニル基)などが挙げられる。
 電子供与性基含有置換アリール基において、該電子供与性置換基が複数個置換している場合それぞれの電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外に炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基が置換していてもよく、該置換基が複数個置換している場合それぞれの置換基は同一でも異なっていてもよいが、一つの置換アリール基に含まれる該電子供与性置換基および該置換基の各々のハメット則の置換基定数σの総和は-0.15以下であることが好ましい。このような置換アリール基としては、m,p-ジメトキシフェニル基(3,4-ジメトキシフェニル基)、p-(ジメチルアミノ)-m-メトキシフェニル基(4-(ジメチルアミノ)-3-メトキシフェニル基)、p-(ジメチルアミノ)-m-メチルフェニル基(4-(ジメチルアミノ)-3-メチルフェニル基)、p-メトキシ-m-メチルフェニル基(4-メトキシ-3-メチルフェニル基)、p-メトキシ-m,m-ジメチルフェニル基(4-メトキシ-3,5-ジメチルフェニル基)等が挙げられる。
 電子供与性基含有置換アリール基が有してもよい炭素数1から20の炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20の環状飽和炭化水素基、炭素数2~20の鎖状不飽和炭化水素基、炭素数3~20の環状不飽和炭化水素基等が挙げられる。また、炭素数1~20の炭化水素基を複数有する場合であって、該炭素数1~20の炭化水素基が隣接する場合には、互いに結合して環を形成してもよい。この場合の基としては炭素数1~20のアルキレン基、炭素数6~20のアリーレン基等が例示される。
 炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基などの直鎖状飽和炭化水素基;イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、t-アミル基、ネオペンチル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-ジプロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基、シクロプロピルメチル基などの分岐状飽和炭化水素基等が挙げられる。上記アルキル基の炭素数は好ましくは1~6である。
 炭素数3~20の環状飽和炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1-アダマンチル基、2-アダマンチル基などの無置換の環状飽和炭化水素基; 3-メチルシクロペンチル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基、4-シクロヘキシルシクロヘキシル基、4-フェニルシクロヘキシル基などの無置換の環状飽和炭化水素基の水素原子が炭素数1から17の炭化水素基で置き換えられた基等が挙げられる。上記環状飽和炭化水素基の炭素数は好ましくは5~11である。
 炭素数2~20の鎖状不飽和炭化水素基としては、エテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、1-メチルエテニル基(イソプロペニル基)などのアルケニル基;、アルキニル基であるエチニル基、1-プロピニル基、2-プロピニル基(プロパルギル基)等が挙げられる。上記鎖状不飽和炭化水素基の炭素数は好ましくは2~4である。
 炭素数3~20の環状不飽和炭化水素基としては、シクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基などの無置換の環状不飽和炭化水素基;3-メチルフェニル基(m-トリル基)、4-メチルフェニル基(p-トリル基)、4-エチルフェニル基、4-t-ブチルフェニル基、4-シクロヘキシルフェニル基、ビフェニリル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基(メシチル基)などの無置換の環状不飽和炭化水素基の水素原子が炭素数1から15の炭化水素基で置き換えられた基;ベンジル基、クミル基などの直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が、炭素数3から19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基等が挙げられる。環状不飽和炭化水素基の炭素数は好ましくは6~10である。
 炭素数1~20のアルキレン基としては、メチレン基、エチレン基、ジメチルメチレン基(イソプロピリデン基)、エチルメチレン基、1-メチルエチレン基、2-メチルエチレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基、n-プロピレン基などが例示される。アルキレン基の炭素数は好ましくは1~6である。
 炭素数6~20のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、4,4'-ビフェニリレン基などが例示される。アリーレン基の炭素数は好ましくは6~12である。
 電子供与性基含有置換アリール基が有してもよいケイ素含有基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基などのアルキルシリル基;ジメチルフェニルシリル基、メチルジフェニルシリル基、t-ブチルジフェニルシリル基などのアリールシリル基;ペンタメチルジシラニル基、トリメチルシリルメチル基などの炭素数1から20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基等が挙げられる。アルキルシリル基の炭素数は1~10が好ましく、アリールシリル基の炭素数は6~18が好ましい。
 電子供与性基含有置換アリール基が有してもよい窒素含有基としては、アミノ基、ニトロ基、N-モルフォリニル基や、上述した炭素数1から20の炭化水素基またはケイ素含有基において、=CH-構造単位が窒素原子で置き換えられた基、-CH2-構造単位が炭素数1から20の炭化水素基が結合した窒素原子で置き換えられた基、または-CH3構造単位が炭素数1から20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基等が挙げられる。窒素含有基としては、ジメチルアミノ基、N-モルフォリニル基が好ましい。
 電子供与性基含有置換アリール基が有してもよい酸素含有基としては、水酸基や、上述した炭素数1から20の炭化水素基、ケイ素含有基または窒素含有基において、-CH2-構造単位が酸素原子またはカルボニル基で置き換えられた基、または-CH3構造単位が炭素数1から20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t-ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t-ブトキシメチル基、1-ヒドロキシエチル基、1-メトキシエチル基、1-エトキシエチル基、2-ヒドロキシエチル基、2-メトキシエチル基、2-エトキシエチル基、n-2-オキサブチレン基、n-2-オキサペンチレン基、n-3-オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基等が挙げられる。酸素含有基としては、メトキシ基が好ましい。
 電子供与性基含有置換アリール基が有していてもよいハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素等が挙げられる。
 電子供与性基含有置換アリール基が有していてもよいハロゲン含有基としては、上述した炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等が挙げられる。
 Qは、ハロゲン原子、炭素数1から20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子なる群より選ばれる原子、置換基または配位子であり、Qが複数ある場合には同一でも異なっていてもよい。
 Qとなるハロゲン原子および炭素数1から20の炭化水素基の具体例は、上記電子供与性基含有置換アリール基が有していてもよいハロゲン原子および炭素数1~20の炭化水素基と同様である。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1から20の炭化水素基である場合は、該炭化水素基の炭素数は1から7であることが好ましい。
 アニオン配位子としては、メトキシ基、t-ブトキシ基、フェノキシ基などのアルコキシ基;アセテート、ベンゾエートなどのカルボキシレート基;メシレート、トシレートなどのスルホネート基等が挙げられる。
 孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物;テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタンなどのエーテル化合物等が挙げられる。
 jは1から4の整数であり、好ましくは2である。
 上記一般式[VII]で表される架橋メタロセン化合物(a)に含まれる2,3,6,7-テトラメチルフルオレニル基は、2、3、6および7位に四つの置換基を有するために電子的な効果が大きく、これにより高い重合活性で、かつ高分子量のエチレン系共重合体を生成するものと推測される。一方、概して非共役ポリエンはα-オレフィンに比して嵩高くなるため、これを重合する重合触媒、特に重合活性点となるメタロセン化合物の中心金属近傍は嵩高くない方が非共役ポリエンの共重合性能向上に繋がると推測される。2,3,6,7-テトラメチルフルオレニル基に含まれる四つのメチル基は、他の炭化水素基等に比べて嵩高くないため、このことが高い非共役ポリエン共重合性能に寄与しているものと考えられる。以上より、特に2,3,6,7-テトラメチルフルオレニル基を含む上記一般式[VII]で表される架橋メタロセン化合物が、生成するエチレン系共重合体の高い分子量と、高い非共役ポリエン共重合性能と、高い重合活性とを同時に高いレベルでバランス良く実現するものと推測される。
 架橋メタロセン化合物(a-3)は、例えば下式[VIII]のような簡便な方法で合成することが可能である。
Figure JPOXMLDOC01-appb-C000005
(式[VIII]において、M、R5、R6の定義具体例および好適例は式[VII]の場合と同様である。)
 上記式[VIII]において、R5およびR6は上記のとおりであるが、一般式R5-C(=O)-R6で表される、このような条件を満たす種々のケトンが一般の試薬メーカーより市販されているため、該架橋メタロセン化合物(a-3)の原料の入手が容易である。また、仮にこのようなケトンが市販されていない場合でも、例えばOlahらによる方法[Heterocycles, 40, 79 (1995)]などにより、該ケトンは容易に合成することが可能である。このように、該架橋メタロセン化合物(a-3)は、比較的製造工程が簡素かつ容易であり、製造コストがさらに低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン系共重合体の製造コストが低減されるという利点が得られる。さらに、該架橋メタロセン化合物(a-3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点も得られる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6はアリール基および置換アリール基からなる群より選ばれる基であることが好ましい。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、重合活性のさらなる向上および生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。また同時に、非共役ポリエンの共重合性能の向上(例えば、共重合体中の非共役ポリエン単位の含有量を高める、共重合体中に非共役ポリエン単位が均一に分散されやすくなる)という利点も得られる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は同一の基であることがさらに好ましい。R5およびR6をこのように選択することにより、該架橋メタロセン化合物の合成工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることで共重合体の製造コストが低減されるという利点が得られる。また、該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。
 本出願人は、種々の架橋メタロセン化合物(a)について鋭意検討した結果、上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6を上記基とした場合に、特にハメット則の置換基定数σが-0.2以下の電子供与性置換基が一つ以上置換した電子供与性基含有置換アリール基とすることにより、該架橋メタロセン化合物(a-3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する際、生成する共重合体の分子量がさらに高くできることを初めて見出した。
 本発明の架橋メタロセン化合物(a-3)のような有機金属錯体触媒によるオレフィンの配位重合においては、触媒の中心金属上でオレフィンが繰り返し重合することにより、生成するオレフィン重合体の分子鎖が生長し(生長反応)、該オレフィン重合体の分子量が増大することが知られている。一方、連鎖移動と呼ばれる反応において、オレフィン重合体の分子鎖が触媒の中心金属から解離することにより、該分子鎖の生長反応が停止し、従って該オレフィン重合体の分子量の増大も停止することも知られている。以上より、オレフィン重合体の分子量は、それを生成する有機金属錯体触媒に固有の、生長反応の頻度と連鎖移動反応の頻度との比率によって特徴づけられる。即ち、生長反応の頻度と連鎖移動反応の頻度との比が大きいほど生成するオレフィン重合体の分子量は高くなり、逆に小さいほど分子量は低くなるという関係である。ここで、それぞれの反応の頻度はそれぞれの反応の活性化エネルギーから見積もることができ、活性化エネルギーが低い反応はその頻度が高く、逆に活性化エネルギーが高い反応はその頻度が低いと見做すことができると考えられる。一般に、オレフィン重合における生長反応の頻度は連鎖移動反応の頻度に比して十分に高い、即ち生長反応の活性化エネルギーは連鎖移動反応の活性化エネルギーに比して十分に低いことが知られている。従って、連鎖移動反応の活性化エネルギーから生長反応の活性化エネルギーを減じた値(以下、ΔEc)は正となり、この値が大きいほど連鎖移動反応の頻度に比して生長反応の頻度が大きくなり、生成するオレフィン重合体の分子量が高くなることが推定される。このようにして行うオレフィン重合体の分子量の推定の妥当性は、例えばLaineらの計算結果によっても裏付けられている[Organometallics, 30, 1350 (2011)]。上記一般式[VII]で表される架橋メタロセン化合物(a-3)においては、R5およびR6を、特にハメット則の置換基定数σが-0.2以下の電子供与性置換基が一つ以上置換した電子供与性基含有置換アリール基とした場合に、上記ΔEcが増大し、該架橋メタロセン化合物(a-3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する際に、生成する共重合体の分子量が高くなるものと推測される。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6に含まれる電子供与性置換基は、窒素含有基および酸素含有基からなる群より選ばれる基であることがさらに好ましい。これらの置換基はハメット則におけるσが特に低く、エチレン・α-オレフィン・非共役ポリエン共重合体の分子量を高く、特に一般に分子量の低下を招く高温重合においても分子量を高くすることができる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は、上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、原料となる種々のベンゾフェノンが一般の試薬メーカーより市販されているため原料の入手が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることで上記共重合体(1B)または(2B)の製造コストが低減されるという利点が得られる。
 ここで、上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基としては、o-アミノフェニル基(2-アミノフェニル基)、p-アミノフェニル基(4-アミノフェニル基)、o-(ジメチルアミノ)フェニル基(2-(ジメチルアミノ)フェニル基)、p-(ジメチルアミノ)フェニル基(4-(ジメチルアミノ)フェニル基)、o-(ジエチルアミノ)フェニル基(2-(ジエチルアミノ)フェニル基)、p-(ジエチルアミノ)フェニル基(4-(ジエチルアミノ)フェニル基)、m-(ジエチルアミノ)フェニル基(3-(ジエチルアミノ)フェニル基)、o-メトキシフェニル基(2-メトキシフェニル基)、p-メトキシフェニル基(4-メトキシフェニル基)、o-エトキシフェニル基(2-エトキシフェニル基)、p-エトキシフェニル基(4-エトキシフェニル基)、o-N-モルフォリニルフェニル基(2-N-モルフォリニルフェニル基)、p-N-モルフォリニルフェニル基(4-N-モルフォリニルフェニル基)、m-N-モルフォリニルフェニル基(3-N-モルフォリニルフェニル基)、o,p-ジメトキシフェニル基(2,4-ジメトキシフェニル基)、m,p-ジメトキシフェニル基(3,4-ジメトキシフェニル基)、p-(ジメチルアミノ)-m-メトキシフェニル基(4-(ジメチルアミノ)-3-メトキシフェニル基)、p-(ジメチルアミノ)-m-メチルフェニル基(4-(ジメチルアミノ)-3-メチルフェニル基)、p-メトキシ-m-メチルフェニル基(4-メトキシ-3-メチルフェニル基)、p-メトキシ-m,m-ジメチルフェニル基(4-メトキシ-3,5-ジメチルフェニル基)等が挙げられる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、該基がオルト位に置換した場合に比べて合成が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン系共重合体の製造コストが低減されるという利点が得られる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基を含む置換フェニル基である場合、該窒素含有基は下記一般式[II]で表される基であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000006
(式[II]において、R7およびR8は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよく、Nの右に描かれた線はフェニル基との結合を表す。)
 R7およびR8としての炭素数1から20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基の具体例および好適例は、上記式[VII]の場合と同様である。
 このような架橋メタロセン化合物(a-4)は、下記一般式[IX]で表される。
Figure JPOXMLDOC01-appb-C000007
(式[IX]において、M、Qおよびjの定義、具体例および好適例は式[VII]の場合と同様である。R7、R8およびR10は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基であり、それぞれ同一でも異なっていてもよく、R7、R8およびR10のうちの隣接した置換基は互いに結合して環を形成していてもよく、NR78はハメット則の置換基定数σが-0.2以下の窒素含有基であり、該窒素含有基が複数個存在する場合にはそれぞれの窒素含有基は互いに同一でも異なっていてもよく、nは1から3の整数であり、mは0から4の整数である。)
 R10としての炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基としては、上述したこれらの置換基の具体例を挙げることができる。
 該一般式[IX]で表わされる架橋メタロセン化合物(遷移金属化合物)は、上記一般式[II]で表されるNR78のハメット則におけるσが特に低いため、エチレン・α-オレフィン・非共役ポリエン共重合体の分子量を高く、特に一般に分子量の低下を招く高温重合においても分子量を高くすることができる。
 上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての酸素含有基を含む置換フェニル基である場合、該酸素含有基は下記一般式[III]で表される基であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000008
(式[III]において、R9は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基からなる群より選ばれる原子または置換基であり、Oの右に描かれた線はフェニル基との結合を表す。)
 R9としての炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基の具体例および好適例は、式[VII]の場合と同様である。
このような架橋メタロセン化合物(a-5)は、下記一般式[X]で表される。
Figure JPOXMLDOC01-appb-C000009
(式[X]において、M、Qおよびjの定義、具体例および好適例は式[VII]の場合と同様である。R9およびR10は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、R10の隣接した置換基は互いに結合して環を形成していてもよく、OR9はハメット則の置換基定数σが-0.2以下の酸素含有基であり、該酸素含有基が複数個存在する場合にはそれぞれの酸素含有基は互いに同一でも異なっていてもよく、nは1から3の整数であり、mは0から4の整数である。)
 R10としての炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基としては、上述したこれらの置換基の具体例を挙げることができる。
 該一般式[X]で表わされる架橋メタロセン化合物(遷移金属化合物)は、上記一般式[III]で表されるOR9のハメット則におけるσがさらに低いため、エチレン・α-オレフィン・非共役ポリエン共重合体の分子量を高く、特に一般に分子量の低下を招く高温重合においても分子量を高くすることができる。
 上記一般式[VII]で表される本発明の架橋メタロセン化合物(a-3)、上記一般式[IX]で表される本発明の架橋メタロセン化合物(a-4)または上記一般式[X]で表される本発明の架橋メタロセン化合物(a-5)において、Mはハフニウム原子であることがさらに好ましい。Mがハフニウム原子である上記架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能となり、非共役ポリエンの共重合性能の向上という利点が得られる。
 このような架橋メタロセン化合物(a)としては、
 [ジメチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-n-ブチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、 [ジシクロペンチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [シクロペンチリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[シクロヘキシリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ジフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-1-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-2-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス(3-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-n-ヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-シクロヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-t-ブチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス(3-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-エトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フェノキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリメチルシロキシ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス{3-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-N-モルフォリニルフェニル)(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス{4-(トリメチルシリル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ビス(3-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{3-(トリフルオロメチル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリフルオロメチル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [メチルフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル{4-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ジメチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ(4-メチルフェニル)シリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [ジメチルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
 [1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)エチレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-3-(η5-2,3,6,7-テトラメチルフルオレニル)プロピレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)-1,1,2,2-テトラメチルシリレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)フェニレン]ハフニウムジクロリド、および、これらの化合物のハフニウム原子をジルコニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物等が挙げられる。これら触媒の中でも、[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドが好ましい。
 上記共重合体(1B)または(2B)の製造に使用される架橋メタロセン化合物は公知の方法によって製造可能であり、特に製造方法が限定されるわけではない。製造方法としては、例えば、J.Organomet.Chem.,63,509(1996)、本出願人による出願に係る公報であるWO2006/123759号公報、WO01/27124号公報、特開2004-168744号公報、特開2004-175759号公報、特開2000-212194号公報等記載の製造方法等が挙げられる。
 次に上記架橋メタロセン化合物を、エチレン・α―オレフィン・非共役ポリエン共重合体(1B)または(2B)の製造用触媒(オレフィン重合触媒)として用いる場合の好ましい形態について説明する。
 架橋メタロセン化合物をオレフィン重合触媒成分として用いる場合、触媒は、
(a)上記一般式[VII]で表される架橋メタロセン化合物と、(b)(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)架橋メタロセン化合物(a)と反応してイオン対を形成する化合物、からなる群より選ばれる少なくとも1種の化合物と、さらに必要に応じて、(c)粒子状担体とから構成される。
以下、各成分について具体的に説明する。
 〈(b-1)有機金属化合物〉
 上記共重合体(1B)または(2B)の製造に用いられる(b-1)有機金属化合物として、具体的には下記一般式[X]~[XII]のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
 (b-1a)一般式 Ra mAl(ORbnpq・・・[X]
(式[X]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
 上記一般式[X]で表される化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどのトリアルキルアルミニウム、トリシクロアルキルアルミニウム、イソブチルアルミニウムジクロリド、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、ジイソブチルアルミニウムハイドライド等が挙げられる。
 (b-1b)一般式 M2AlRa 4・・・[XI]
(式[XI]中、M2はLi、NaまたはKを示し、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基である。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
 上記一般式[XI]で表される化合物として、LiAl(C254、LiAl(C7154等が挙げられる。
 (b-1c)一般式 Rab3・・・[XII]
(式[XII]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属を有するジアルキル化合物。
 上記の有機金属化合物(b-1)の中では、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどの有機アルミニウム化合物が好ましい。また、これら有機金属化合物(b-1)は、1種単独で用いてもよいし2種以上組み合わせて用いてもよい。
 〈(b-2)有機アルミニウムオキシ化合物〉
 上記共重合体(1B)または(2B)の製造に用いられる(b-2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。(b-2)有機アルミニウムオキシ化合物は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
 従来公知のアルミノキサンは、例えば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。(1)吸着水を含有する化合物または結晶水を含有する塩類、例えば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
 なお該アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
 アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(b-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
 これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、中でも、トリメチルアルミニウム、トリイソブチルアルミニウムが特に好ましい。
 上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。
 また(b-2)有機アルミニウムオキシ化合物の一態様であるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算でベンゼン100重量%に対して通常10重量%以下、好ましくは5重量%以下、特に好ましくは2重量%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であるものが好ましい。
 (b-2)有機アルミニウムオキシ化合物としては、下記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
Figure JPOXMLDOC01-appb-C000010
 〔式[X]中、R1は炭素数が1~10の炭化水素基を示し、R2~R5は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素数が1~10の炭化水素基を示す。〕
 前記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物は、下記一般式[XI]で表されるアルキルボロン酸と、
 R1-B(OH)2 …[XI]
 (式[XI]中、R1は前記一般式[X]におけるR1と同じ基を示す。)
 有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、-80℃~室温の温度で1分~24時間反応させることにより製造できる。
 前記一般式[XI]で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸などが挙げられる。
 これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
 このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、前記(b-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
 これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。上記のような(b-2)有機アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合せて用いられる。
 〈(b-3)遷移金属化合物(a)と反応してイオン対を形成する化合物〉
 上記共重合体(1B)または(2B)の製造に用いられる架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b-3)(以下、「イオン化イオン性化合物」という。)としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP-5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。このようなイオン化イオン性化合物(b-3)は、1種単独でまたは2種以上組み合せて用いられる。
 具体的には、ルイス酸としては、BR3(Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である)で示される化合物が挙げられ、たとえばトリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロンなどが挙げられる。
 イオン性化合物としては、例えば下記一般式[XII]で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 (式[XII]中、R1+としては、H+、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。R2~R5は、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基または置換アリール基である。)
 前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
 前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン;
 N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N,2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;
 ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
 前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
 R1+としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
 またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩などを挙げることもできる。
 トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(N、N-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(3、5-ジトリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(o-トリル)ホウ素などが挙げられる。
 N,N-ジアルキルアニリニウム塩として具体的には、たとえばN,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、N,N-ジエチルアニリニウムテトラ(フェニル)ホウ素、N,N,2,4,6-ペンタメチルアニリニウムテトラ(フェニル)ホウ素などが挙げられる。
 ジアルキルアンモニウム塩として具体的には、たとえばジ(1-プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素などが挙げられる。
 さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N-ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式[XIII]または[XIV]で表されるホウ素化合物などを挙げることもできる。
Figure JPOXMLDOC01-appb-C000012
 (式[XIII]中、Etはエチル基を示す。)
Figure JPOXMLDOC01-appb-C000013
 (式[XIV]中、Etはエチル基を示す。)
 ボラン化合物として具体的には、たとえばデカボラン;ビス〔トリ(n-ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩;トリ(n-ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
 カルボラン化合物として具体的には、たとえば4-カルバノナボラン、1,3-ジカルバノナボラン、6,9-ジカルバデカボラン、ドデカハイドライド-1-フェニル-1,3-ジカルバノナボラン、ドデカハイドライド-1-メチル-1,3-ジカルバノナボラン、ウンデカハイドライド-1,3-ジメチル-1,3-ジカルバノナボラン、7,8-ジカルバウンデカボラン、2,7-ジカルバウンデカボラン、ウンデカハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボラン、ドデカハイドライド-11-メチル-2,7-ジカルバウンデカボラン、トリ(n-ブチル)アンモニウム1-カルバデカボレート、トリ(n-ブチル)アンモニウム-1-カルバウンデカボレート、トリ(n-ブチル)アンモニウム-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム-1-トリメチルシリル-1-カルバデカボレート、トリ(n-ブチル)アンモニウムブロモ-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム-6-カルバデカボレート、トリ(n-ブチル)アンモニウム-7-カルバウンデカボレート、トリ(n-ブチル)アンモニウム-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウム-2,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムドデカハイドライド-8-メチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-エチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-ブチル―7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-アリル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-9-トリメチルシリル-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-4,6-ジブロモ-7-カルバウンデカボレートなどのアニオンの塩;トリ(n-ブチル)アンモニウムビス(ノナハイドライド-1,3-ジカルバノナボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)銅酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)金酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)クロム酸塩(III)、トリ(n-ブチル)アンモニウムビス(トリブロモオクタハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。
 ヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素および錫から選ばれる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子からなっている。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジン酸、ゲルマノタングストバナジン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、およびこれらの酸の塩、例えば周期表第1族または2族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、トリフェニルエチル塩等の有機塩が使用できるが、この限りではない。
 (b-3)イオン化イオン性化合物の中では、上述のイオン性化合物が好ましく、その中でもトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートがより好ましい。
 上記一般式[VII]で表される遷移金属化合物(a)を触媒とする場合、トリイソブチルアルミニウムなどの有機金属化合物(b-1)、メチルアルミノキサンなどの有機アルミニウムオキシ化合物(b-2)またはトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(b-3)を併用すると、エチレン・α―オレフィン・非共役ポリエン共重合体(1B)または(2B)の製造に際して非常に高い重合活性を示す。
 また、共重合体(1B)または(2B)の製造に使用されるオレフィン重合用触媒は、上記遷移金属化合物(a)と、(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)イオン化イオン性化合物からなる群より選ばれる少なくとも1種の化合物(b)とともに、必要に応じて担体(c)を用いることもできる。
 〈(c)担体〉
 上記担体(c)は、無機化合物または有機化合物であって、顆粒状ないしは微粒子状の固体である。
 上記無機化合物の中でも、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
 多孔質酸化物としては、SiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2などの無機酸化物、またはこれら無機酸化物を含む複合物または混合物を主成分とする多孔質材が挙げられ、多孔質酸化物としては、具体的には、天然または合成ゼオライト;SiO2-MgO、SiO2-Al23、SiO2-TiO2、SiO2-V25、SiO2-Cr23、SiO2-TiO2-MgOなどを主成分とする多孔質酸化物が挙げられる。これらのうち、SiO2および/またはAl23を主成分とする多孔質酸化物が好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が10~300μm、好ましくは20~200μmであって、比表面積が通常50~1000m2/g、好ましくは100~700m2/gの範囲にあり、細孔容積が0.3~3.0cm3/gの範囲にあることが望ましい。このような担体は、必要に応じて100~1000℃、好ましくは150~700℃で焼成してから使用される。
 無機ハロゲン化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が挙げられる。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。
 上記担体(c)として用いられる粘土は、通常粘土鉱物を主成分として構成される。また、本発明で用いられるイオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
 また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物等が挙げられる。
 粘土および粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイト等が挙げられる。
 イオン交換性層状化合物としては、α-Zr(HAsO42・H2O、α-Zr(HPO42、α-Zr(KPO42・3H2O、α-Ti(HPO42、α-Ti(HAsO42・H2O、α-Sn(HPO42・H2O、γ-Zr(HPO42、γ-Ti(HPO42、γ-Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩等が挙げられる。
 このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上のものが好ましく、0.3~5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20~30000Åの範囲について測定される。
 半径20Å以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
 上記担体(c)として用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理としては、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。
 上記担体(c)として用いられるイオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物;Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など);、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオン等が挙げられる。これらの化合物は1種単独で用いることもできるし2種以上組み合わせて用いることもできる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
 上記粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。これら担体(c)となる物質は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
 有機化合物としては、粒径が10~300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2~14のα-オレフィンを主成分として生成される(共)重合体、ビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体が挙げられる。
 上記共重合体(1B)および(2B)の製造に使用されるオレフィン重合用触媒は、架橋メタロセン化合物(a)と、(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)イオン化イオン性化合物からなる群より選ばれる少なくとも1種の化合物(b)と、必要に応じて用いられる担体(c)を含むこともできる。
 〈エチレン・α―オレフィン・非共役ポリエン共重合体用触媒の存在下でモノマー類を重合する方法〉
 エチレン、α-オレフィン、及び非共役ポリエンを共重合させる際、重合触媒を構成する各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
 (1)前記化合物(a)を単独で重合器に添加する方法。
 (2)前記化合物(a)および前記化合物(b)を任意の順序で重合器に添加する方法。
 (3)前記化合物(a)を前記担体(c)に担持した触媒成分、前記化合物(b)を任意の順序で重合器に添加する方法。
 (4)前記化合物(b)を前記担体(c)に担持した触媒成分、前記化合物(a)を任意の順序で重合器に添加する方法。
 (5)前記化合物(a)と前記化合物(b)とを前記担体(c)に担持した触媒成分を重合器に添加する方法。
 上記(2)~(5)の各方法においては、化合物(a)、化合物(b)、担体(c)の少なくとも2つは予め接触されていてもよい。
 化合物(b)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない化合物(b)を、任意の順序で添加してもよい。この場合化合物(b)は、担体(c)に担持されている化合物(b)と同一でも異なっていてもよい。
 また、上記の担体(c)に化合物(a)が担持された固体触媒成分、担体(c)に化合物(a)および化合物(b)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。
 エチレン・α-オレフィン・非共役ポリエン共重合体(1B)または(2B)は、上記のようなエチレン・α-オレフィン・非共役ポリエン共重合体用触媒の存在下に、エチレン、α-オレフィン、および非共役ポリエンを共重合することにより製造し得る。
 上記共重合体(1B)または(2B)の製造は、溶液(溶解)重合、懸濁重合などの液相重合法または気相重合法のいずれによっても可能である。
 液相重合法において用いられる不活性炭化水素媒体としては、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素等が挙げられる。上記不活性炭化水素媒体は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、オレフィン自身を溶媒として用いることもできる。
 上記のような共重合体用触媒を用いて、エチレンなどの重合を行うに際して、架橋メタロセン化合物(a)は、反応容積1リットル当り、通常10-12~10-2モル、好ましくは10-10~10-8モルになるような量で用いられる。
 有機金属化合物(b-1)は、該化合物(b-1)と、架橋メタロセン化合物(a)中の全遷移金属原子(M)とのモル比〔(b-1)/M〕が通常0.01~50000、好ましくは0.05~10000となるような量で用いられる。有機アルミニウムオキシ化合物(b-2)は、該化合物(b-2)中のアルミニウム原子と、化合物(a)中の全遷移金属(M)とのモル比〔(b-2)/M〕が、通常10~50000、好ましくは20~10000となるような量で用いられる。イオン化イオン性化合物(b-3)は、化合物(b-3)と、化合物(a)中の遷移金属原子(M)とのモル比〔(b-3)/M〕が、通常1~20、好ましくは1~15となるような量で用いられる。
 上記共重合体(1B)または(2B)の重合温度は、通常-50~+200℃、好ましくは0~+200℃の範囲、より好ましくは、+80~+200℃の範囲である。目標とする到達分子量、用いる触媒の重合活性によるが、生産性の観点から、重合温度は、より高温(+80℃以上)であることが望ましい。
 上記共重合体(1B)または(2B)の重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の範囲である。また、上記共重合体(1B)または(2B)の重合反応形式は、回分式、半連続式、連続式のいずれであってもよい。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
 得られ共重合体(1B)または(2B)の分子量は、例えば重合系内に水素を存在させることにより、あるいは重合温度を変化させることにより調整できる。水素を重合系内に存在させることに分子量を調整する場合には、水素の添加量はオレフィン1kgあたり0.001~100NL程度が適当である。また、化合物(b)(例えば、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等)を触媒成分と使用する場合には、共重合体の分子量は、化合物(b)の使用量により調節できる。
 <フェノール樹脂系架橋剤(C)>
 フェノール樹脂系架橋剤(C)(本発明において架橋剤(C)とも称す)としては、ハロゲン化フェノール樹脂系架橋剤が挙げられる。
 架橋剤(C)としては、レゾール樹脂でありアルキル置換フェノール又は非置換フェノールのアルカリ媒体中のアルデヒドでの縮合、好ましくはホルムアルデヒドでの縮合、又は二官能性フェノールジアルコール類の縮合により製造されることも好ましい。アルキル置換フェノールは1~10の炭素原子のアルキル基置換体が好ましい。さらにはp-位において1~10の炭素原子を有するアルキル基で置換されたジメチロールフェノール類又はフェノール樹脂が好ましい。フェノール樹脂系硬化樹脂は、典型的には、熱架橋性樹脂であり、フェノール樹脂系架橋剤またはフェノール樹脂とも呼ばれる。
 フェノール樹脂系硬化樹脂(フェノール樹脂系架橋剤)の例としては、下記一般式(I)を挙げることができる。
Figure JPOXMLDOC01-appb-C000014
 (式中、Qは、-CH2-及び-CH2-O-CH2-から成る群から選ばれる二価の基であり、mは0又は1~20の正の整数であり、R'は有機基である)。
 好ましくは、Qは、二価基-CH2-O-CH2-であり、mは0又は1~10の正の整数であり、R'は20未満の炭素原子を有する有機基である。より好ましくは、mは0又は1~5の正の整数であり、R'は4~12の炭素原子を有する有機基である。具体的にはアルキルフェノールホルムアルデヒド樹脂、メチロール化アルキルフェノール樹脂、ハロゲン化アルキルフェノール樹脂等が挙げられ、好ましくはハロゲン化アルキルフェノール樹脂であり、さらに好ましくは、末端の水酸基を臭素化したものである。フェノール樹脂系硬化樹脂において、末端が臭素化されたものの一例を下記一般式(II)に示す。
Figure JPOXMLDOC01-appb-C000015
 式中、nは0~10の整数、Rは炭素数1~15の飽和炭化水素基である。
 上記フェノール樹脂系硬化樹脂の製品例としては、タッキロール(登録商標)201(アルキルフェノールホルムアルデヒド樹脂、田岡化学工業(株)社製)、タッキロール(登録商標)250-I(臭素化率4%の臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業(株)社製)、タッキロール(登録商標)250-III(臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業(株)社製)、PR-4507(群栄化学工業(株)社製)、Vulkaresat510E(Hoechst社 製)、Vulkaresat532E(Hoechst社製)、Vulkaresen E(Hoechst社製)、Vulkaresen105E(Hoechst社製)、Vulkaresen130E(Hoechst社製)、Vulkaresol315E(Hoechst社製)、Amberol ST 137X(Rohm&Haas社製)、スミライトレジン(登録商標)PR-22193(住友デュレズ(株)社製)、Symphorm-C-100(Anchor Chem.社製)、Symphorm-C-1001(Anchor Chem.社製)、タマノル(登録商標)531(荒川化学(株)社製)、Schenectady SP1059(Schenectady Chem.社製)、Schenectady SP1045(SchenectadyChem.社製)、CRR-0803(U.C.C社製)、Schenectady SP1055F(Schenectady Chem.社製、臭素化アルキルフェノール・ホルムアルデヒド樹脂)、Schenectady SP1056(Schenectady Chem.社製)、CRM-0803(昭和ユニオン合成(株)社製)、Vulkadur A(Bayer社製)が挙げられる。その中でも、ハロゲン化フェノール樹脂系架橋剤が好ましく、タッキロール(登録商標)250-I、タッキロール(登録商標)250-III、Schenectady SP1055Fなどの臭素化アルキルフェノール・ホルムアルデヒド樹脂がより好ましく使用できる。
 また、熱可塑性加硫ゴムのフェノール樹脂による架橋の具体的な例としては、米国特許第4,311,628号、米国特許第2,972,600号及び米国特許第3,287,440号に記載され、これらの技術も本発明で用いることができる。
 米国特許第4,311,628号には、フェノール系硬化性樹脂(phenolic curing resin)及び加硫活性剤(cure activator)からなるフェノール系加硫剤系(phenolic curative system)が開示されている。該系の基本成分は、アルカリ媒体中における置換フェノール(例えば、ハロゲン置換フェノール、C1-C2アルキル置換フェノール)又は非置換フェノールとアルデヒド、好ましくはホルムアルデヒドとの縮合によるか、あるいは二官能性フェノールジアルコール類(好ましくは、パラ位がC5-C10アルキル基で置換されたジメチロールフェノール類)の縮合により製造されるフェノール樹脂系架橋剤である。アルキル置換フェノール樹脂系架橋剤のハロゲン化により製造されるハロゲン化されたアルキル置換フェノール樹脂系架橋剤が、特に適している。メチロールフェノール硬化性樹脂、ハロゲン供与体及び金属化合物からなるフェノール樹脂系架橋剤が特に推奨でき、その詳細は米国特許第3,287,440号及び同第3,709,840号各明細書に記載されている。非ハロゲン化フェノール樹脂系架橋剤は、ハロゲン供与体と同時に、好ましくはハロゲン化水素スカベンジャーとともに使用される。通常、ハロゲン化フェノール樹脂系架橋剤、好ましくは、2~10重量%の臭素を含有している臭素化フェノール樹脂系架橋剤はハロゲン供与体を必要としないが、例えば酸化鉄、酸化チタン、酸化マグネシウム、ケイ酸マグネシウム、二酸化ケイ素及び酸化亜鉛、好ましくは酸化亜鉛のような金属酸化物のごときハロゲン化水素スカベンジャーと同時に使用される。これら酸化亜鉛などのハロゲン化水素スカベンジャーは、フェノール樹脂系架橋剤100重量部に対して、通常1~20重量部用いられる。このようなスカベンジャーの存在はフェノール樹脂系架橋剤の架橋作用を促進するが、フェノール樹脂系架橋剤で容易に加硫されないゴムの場合には、ハロゲン供与体及び酸化亜鉛を共用することが望ましい。ハロゲン化フェノール系硬化性樹脂の製法及び酸化亜鉛を使用する加硫剤系におけるこれらの利用は米国特許第2,972,600号及び同第3,093,613号各明細書に記載されており、その開示は前記米国特許第3,287,440号及び同第3,709,840号明細書の開示とともに参考として本明細書にとり入れるものとする。適当なハロゲン供与体の例としては、例えば、塩化第一錫、塩化第二鉄、又は塩素化パラフィン、塩素化ポリエチレン、クロロスルホン化ポリエチレン及びポリクロロブタジエン(ネオプレンゴム)のようなハロゲン供与性重合体が挙げられる。本明細書で使用されている「加硫促進剤」なる用語はフェノール樹脂系架橋剤の架橋効率を実質上増加させるあらゆる物質を意味し、そして金属酸化物及びハロゲン供与体を包含し、これらは単独で、又は組み合わせて使用される。フェノール系加硫剤系のより詳細に関しては、「Vulcanization and Vulcanizing Agents」(W. Hoffman, Palmerton Publishing Company)を参照されたい。適当なフェノール樹脂系架橋剤及び臭素化フェノール樹脂系架橋剤は商業的に入手することができ、例えばかかる架橋剤はSchenectady Chemicals, Inc.から商品名「SP-1045」、「CRJ-352」、「SP-1055F」及び「SP-1056」として購入されうる。同様の作用上等価のフェノール樹脂系架橋剤は、また他の供給者から得ることができる。
 架橋剤(C)は、分解物の発生が少ないため、フォギング防止の観点から好適な加硫剤である。架橋剤(C)は、ゴムの本質的に完全な加硫を達成させるに充分な量で使用される。
 本発明(1)または(2)においては、架橋剤(C)による動的架橋に際し、硫黄、p-キノンジオキシム、p,p'-ジベンゾイルキノンジオキシム、N-メチル-N-4-ジニトロソアニリン、ニトロソベンゼン、ジフェニルグアニジン、トリメチロールプロパン-N,N'-m-フェニレンジマレイミドのようなペルオキシ架橋助剤、ジビニルベンゼン、トリアリルシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレートなどの多官能性メタクリレートモノマー、ビニルブチラート、ビニルステアレートなどの多官能性ビニルモノマー等の助剤を配合することができる。
 上記助剤を用いることにより、均一かつ穏やかな架橋反応が期待できる。上記助剤としては、ジビニルベンゼンが好ましい。ジビニルベンゼンは、取扱い易く、組成物(I)または(IIC)に主成分として含まれる重合体(A)、および共重合体(1B)または共重合体(2B)との相溶性が良好であり、かつ、架橋剤(C)を可溶化する作用を有し、架橋剤(C)の分散剤として働くため、熱処理による架橋効果が均質で、流動性と物性とのバランスのとれた熱可塑性エラストマー組成物(I)または(IIC)が得られる。
 上記助剤は、共重合体(1B)または(2B)100重量部に対して、通常2重量部以下、好ましくは0.3~1重量部となるような量で用いられる。
 また、架橋剤(C)の分解を促進するために、分散促進剤を用いてもよい。分解促進剤としては、トリエチルアミン、トリブチルアミン、2,4,6-トリ(ジメチルアミノ)フェノールなどの三級アミン;
 アルミニウム、コバルト、バナジウム、銅、カルシウム、ジルコニウム、マンガン、マグネシウム、鉛、水銀等、ナフテン酸と種々の金属(たとえば、Pb、Co、Mn、Ca、Cu、Ni、Fe、Zn、希土類)とのナフテン酸塩等が挙げられる。
 <その他の成分>
 本発明の組成物(I)または(IIC)には、重合体(A)、共重合体(1B)または共重合体(2B)、および架橋剤(C)の他に、本発明の効果を損なわない範囲において、添加剤を配合してもよい。添加剤としては、特に限定されないが、軟化剤(D)、無機充填剤(E)等が挙げられる。また、添加剤としては、共重合体(1B)または共重合体(2B)以外のゴム(たとえば、ポリイソブチレン、ブチルゴム、プロピレン・エチレン共重合体ゴム、プロピレン・ブテン共重合体ゴムおよびプロピレン・ブテン・エチレン共重合体ゴムなどのプロピレン系エラストマー、エチレン・プロピレン共重合体ゴムなどのエチレン系エラストマー、スチレン・ブタジエン・スチレンブロックポリマー、スチレン・イソプレン・スチレンブロックポリマー、スチレン・イソブチレン・スチレンブロックポリマーおよびこれらの水素添加物などのスチレン系エラストマー);熱硬化性樹脂、ポリオレフィンなどの熱可塑性樹脂等の結晶性オレフィン系重合体(A)以外の樹脂;紫外線吸収剤;酸化防止剤;耐熱安定剤;老化防止剤;耐光安定剤、耐候安定剤;帯電防止剤;金属セッケン;脂肪族アミド;ワックスなどの滑剤等、ポリオレフィンの分野で用いられている公知の添加剤が挙げられる。
 これら添加剤は、それぞれ1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、本明細書において特に言及している添加剤以外の添加剤の配合量は、本発明の効果を奏する限り特に限定されないが、重合体(A)と、共重合体(1B)または(2B)との合計100重量部に対して、それぞれ通常0.0001~10重量部、好ましくは0.01~5重量部程度である。
 軟化剤(D)としては、通常ゴムに使用される軟化剤を用いることができる。軟化剤(D)としては、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリンなどの石油系軟化剤;コールタール、コールタールピッチなどのコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油などの脂肪油系軟化剤;トール油;サブ(ファクチス);蜜ロウ、カルナウバロウ、ラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛等の脂肪酸または脂肪酸塩;ナフテン酸;パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、アタクチックポリプロピレン、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系軟化剤;マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、液状チオコール、炭化水素系合成潤滑油などが挙げられる。
 これら軟化剤(D)は、本発明の効果を奏する限り特に限定されないが、重合体(A)と、共重合体(1B)または(2B)との合計量100重量部に対して、通常2~100重量部、好ましくは5~80重量部の量で用いられる。軟化剤(D)をこのような量で用いると、組成物(I)または(IIC)の作製時および成形時の流動性に優れ、カーボンブラック等の分散性を向上させ、得られる成形体の機械的物性を低下させ難く、また、得られる成形体は、耐熱性、耐熱老化性に優れる。
 無機充填剤(E)としては、炭酸カルシウム、ケイ酸カルシウム、クレー、カオリン、タルク、シリカ、ケイソウ土、雲母粉、アスベスト、アルミナ、硫酸バリウム、硫酸アルミニウム、硫酸カルシウム、塩基性炭酸マグネシウム、二硫化モリブデン、グラファイト、カーボンブラック、ガラス繊維、ガラス球、シラスバルーン、塩基性硫酸マグネシウムウィスカー、チタン酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー等が挙げられる。
 これら無機充填剤(E)は、重合体(A)と、共重合体(1B)または(2B)との合計量100重量部に対して、通常1~100重量部、好ましくは1~50重量部の量で用いられる。
 老化防止剤としては、後述の組成物(2B)の例示を参照できる。
 共重合体(1B)または(2B)以外のゴムを用いる場合には、該ゴムは、重合体(A)と、共重合体(1B)または(2B)との合計量100重量部に対して、通常2~200重量部、好ましくは5~150重量部の量で用いる。
 [本発明(1)または(2)における組成物、それらの製造方法および成形体]
 〔熱可塑性エラストマー組成物(I)または熱可塑性エラストマー組成物(IIC)〕
 本発明(1)の熱可塑性エラストマー組成物(I)は、重合体(A)、共重合体(1B)、および架橋剤(C)を含む混合物を動的架橋することによって得られる。組成物(I)は、少なくとも重合体(A)、共重合体(1B)、および架橋剤(C)が動的架橋されてなる。
 組成物(I)は、重合体(A)、共重合体(1B)、必要に応じて配合される添加剤を含む混合物を架橋剤(C)の存在下に、動的に熱処理して架橋(動的架橋)することによって得られる。
 重合体(A)と共重合体(1B)とを架橋剤(C)により動的架橋することにより初めて、軽量かつ高強度であって、優れた耐油性を有し、さらに機械物性にも優れた組成物(I)が得られる。
 本発明(2)の熱可塑性エラストマー組成物(IIC)は、重合体(A)、共重合体(2B)、および架橋剤(C)を含む混合物を動的架橋することによって得られる。組成物(IIC)は、少なくとも重合体(A)、共重合体(2B)、および架橋剤(C)が動的架橋されてなる。
 組成物(IIC)は、重合体(A)、共重合体(2B)、必要に応じて配合される添加剤を含む混合物を架橋剤(C)の存在下に、動的に熱処理して架橋(動的架橋)することによって得られる。
 重合体(A)と、共重合体(2B)とを架橋剤(C)により動的架橋することにより初めて、軽量かつ高強度であって、優れた耐油性を有し、さらに機械物性にも優れた組成物(IIC)が得られる。
 本発明において、「動的に熱処理する」とは、架橋剤(C)の存在下で、前記混合物を溶融状態で混練することをいう。また、「動的架橋」とは、混合物にせん断力を加えながら架橋することをいう。
 組成物(I)または(IIC)は、重合体(A)と、共重合体(1B)または(2B)とを含む重合体成分が部分的架橋された組成物であってもよく、完全に架橋された組成物であってもよい。
 組成物(I)または(IIC)では、重合体(A)と、共重合体(1B)または(2B)との重量比(A)/(1B)または重量比(A)/(2B)は、好ましくは90/10~10/90、より好ましくは60/40~20/80である。重量比(A)/(1B)または重量比(A)/(2B)が上記範囲にあると、機械物性、成形性に優れた成形体が得られる。
 組成物(I)または(IIC)では、架橋剤(C)は、共重合体(1B)または(2B)100重量部に対して、通常0.1~20重量部、好ましくは1~10重量部となるような量で用いられる。架橋剤(C)の配合量を上記範囲にすることにより、成形性に優れる組成物が得られ、また、得られる成形体は、高強度であって、優れた耐油性を有し、十分な耐熱性および機械物性を有する。
 動的な熱処理は、非開放型の装置中で行なうことが好ましく、また窒素、炭酸ガス等の不活性ガス雰囲気下で行うことが好ましい。熱処理の温度は、通常重合体(A)の融点から300℃の範囲であり、好ましくは150~280℃、より好ましくは170~270℃である。混練時間は、通常1~20分間、好ましくは1~10分間である。また、加えられる剪断力は、最高剪断速度で通常10~100,000sec-1、好ましくは100~50,000sec-1、より好ましくは1,000~10,000sec-1、さらに好ましくは2,000~7,000sec-1の範囲である。
 混練の際の混練装置としては、ミキシングロール、インテンシブミキサー(例えばバンバリーミキサー、ニーダー)、一軸押出機、二軸押出機等が挙げられる。なお、これら混練装置としては、非開放型の装置が好ましい。
 組成物(I)または(IIC)、および該組成物(I)または(IIC)を従来公知の方法で成形して得られる成形体は、軽量であって、従来の架橋型熱可塑性エラストマーよりも優れた耐油性を有し、かつ、従来の架橋型熱可塑性エラストマーと同等以上の、硬度と、引張強度および引張伸度などの機械物性を有する。
 〔本発明(1)の成形体または本発明(2)の成形体〕
 本発明(1)の成形体は、本発明(1)の組成物(I)を含んで得られる。
 本発明(2)の成形体は、本発明(2)の組成物(IIC)を含んで得られる。
 組成物(I)および(IIC)は、従来の架橋型熱可塑性エラストマーと同等以上の、硬度と、機械特性(引張強度、伸び等)を有しているため、各種用途に用いることができる。また、組成物(I)および(IIC)は、従来の架橋型熱可塑性エラストマーと比べて優れた耐油性を有しているため、特に、従来の架橋型熱可塑性エラストマーを用いることが困難な分野、たとえば、グリースや潤滑油と接触するため、より優れた耐油性が求められる、自動車用の、ホース、パイプおよびブーツ(ブロー成形品)などの自動車部品に好適に用いることができる。
 組成物(I)および(IIC)は、軽量性、耐熱性、柔軟性、ゴム弾性、成形加工性、耐候性、相溶性にも優れている。
 組成物(I)および(IIC)は、成形加工性に優れているため、様々な成形法により、成形が可能である。前記成形としては、押出成形、射出成形、圧縮成形、カレンダー成形、真空成形、プレス成形、スタンピング成形、ブロー成形等が挙げられる。なお、ブロー成形としては、ブレスブロー成形、ダイレクトブロー成形、インジェクションブロー成形等が挙げられる。
 本発明(1)または(2)の成形体は、組成物(I)または(IIC)を、成形することにより得られる。例えば組成物(I)または(IIC)を、押出成形、射出成形、圧縮成形等の従来のプラスチック成形法によって成形することにより得られる。また、このような成形法によって生じた屑やバリを回収して再利用することもできる。
 本発明(1)または(2)の成形体としては、例えばバンパー部品、ボディパネル、サイドシールド、グラスランチャンネル、インストルメントパネル表皮、ドア表皮、天井表皮、ウェザーストリップ材、ホース、ステアリングホイール、ブーツ、ワイヤーハーネスカバー、シートアジャスターカバー等の自動車部品;電線被覆材、コネクター、キャッププラグ等の電気部品;靴底、サンダル等の履物;水泳用フィン、水中眼鏡、ゴルフクラブグリップ、野球バットグリップ等のレジャー用品、ガスケット、防水布、ベルト、ガーデンホース;土木・建築用各種ガスケットおよびシートなどが挙げられる。成形体としては、特に耐油性が求められる用途に適しており、自動車用の、ホース、ブーツ、ワイヤーハーネスカバー、シートアジャスターカバー等の自動車部品が特に好ましい用途として挙げられる。
 成形体としては、前述のように自動車部品が好ましく、自動車部品のより詳細な例としては、機構部材、内装部材、外装部材、その他部材が挙げられる。
 機構部材としては、CVJブーツ、サスペンションブーツ、ラック&ピニオンブーツ、ステアリングロッドカバー、ATクッション、ATスライドカバー、リーフスプリングブッシュ、ボールジョイントリテーナ、タイミングベルト、Vベルト、エンジンルーム内ホース、エアーダクト、エアバッグカバー、プロペラシャフトカバー材などが挙げられる。
 内装部材としては、各種表皮材(インストルメンタルパネル、ドアトリム、天井、リアピラー)、コンソールボックス、アームレスト、エアバックケースリッド、シフトノブ、アシストグリップ、サイドステップマット、リクライニングカバー、トランク内シート、シートベルトバックル、レバースライドプレート、ドアラッチストライカー、シートベルト部品、スイッチ類などが挙げられる。
 外装部材としては、各種モール材(インナー/アウターウィンドウモール、ルーフモール、ベルトモール、サイドトリムモール)、ドアシール、ボディシール、グラスランチャンネル、泥よけ、キッキングプレート、ステップマット、ナンバープレートハウジング、消音ギア、コントロールケーブルカバー、エンブレムなどが挙げられる。
 その他部材としては、エアダクトパッキン、エアダクトホース、エアダクトカバー、エアインテークパイプ、エアダムスカート、タイミングベルトカバーシール、オープニングシール・トランクシール部材、ボンネットクッション、燃料タンクバンド、ケーブルなどが挙げられる。
 本発明(1)または(2)の成形体としては、雑貨、日用品またはこれらの部材であってもよい。雑貨、日用品またはこれらの部材としては、グリップ(例えば、ボールペン、シャープペンシル、歯ブラシ、カップ、使い捨てカミソリ、手すり、カッター、電動工具、ドライバー、電源ケーブル、ドアなどのグリップ)、アシストグリップ、シフトノブ、玩具、手帳表皮、ガスケット(例えば食器・タッパーなどのガスケット)、各種足ゴム、スポーツ用品(例えば、シーズソール、スキーブーツ、スキー板、スキービンディング、スキーソール、ゴルフボール、ゴーグル部材、スノーボード部材、スノーボードシューズ、スノーボードビンディング、サーフボード部材、ボディボード、バナナボート、カイトボード、シュノーケリング部材、水上スキー部材、パラセーリング部材、ウェイクボード部材などのスポーツ用品)、ベルト(例えば、時計用ベルト、ファッションベルトなどのベルト)、ヘアブラシ、浴槽パネルボタンシート、キャップ、靴のインナーソール、健康器具部材などが挙げられる。
 〔本発明(2)のエチレン・α-オレフィン・非共役ポリエン共重合体(2B)を含有する組成物(IIA)〕
 本発明(2)の共重合体(2B)は、一般に該共重合体以外の成分を含有する組成物として用いられ、成形し、架橋されることにより所望の成形体を得ることができる。
 組成物(IIA)に含有される共重合体(2B)以外の成分については特に限定はなく、組成物や該組成物から形成された成形体の用途、目的に応じて、共重合体(2B)以外の成分を、適宜配合することができる。共重合体(2B)以外の成分としては、軟化剤、無機充填剤、架橋剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤および増粘剤等が挙げられる。
 軟化剤や充填剤が配合される場合には、配合量は、共重合体(2B)および必要に応じて配合される他のポリマー(エラストマー、ゴム等)の合計100重量部に対して、一般に軟化剤0.1~200重量部、充填剤1~300重量部である。
 組成物(IIA)を、ゴム組成物として用いる場合には、必要に応じて他のエラストマー、ゴム等を配合することもできる。
 ゴム組成物として用いられる場合、ゴム組成物中の共重合体(2B)の割合は、一般に20重量%以上、好ましくは30~90重量%である。
 組成物(IIA)は、共重合体(2B)と、必要に応じて配合されるその他の成分を、例えば、ミキサー、ニーダー、ロールなどの混練機を用いて所望の温度で混練することにより調製することができる。共重合体(2B)は、混練性に優れているので、組成物の調製を良好に行うことができる。
 軟化剤、無機充填剤、架橋剤、加工助剤、活性剤、吸湿剤等のその他の成分としては、例えば、後述のホース形成用組成物についての説明で例示したものを、例示した量で用いることができる。
 〔本発明(2)の成形体〕
 本発明(2)の共重合体(2B)は、該共重合体から形成された成形体、共重合体(2B)を架橋処理して形成された成形体、共重合体(2B)を架橋してなる成形体、共重合体(2B)を含有する組成物から形成された成形体、共重合体(2B)を含有する組成物を架橋処理して形成された成形体、または共重合体(2B)を含む組成物を架橋してなる成形体として、様々の用途に用いることができる。
 成形体としては、共重合体(2B)を含有する組成物(IIA)を架橋処理して形成された成形体が好ましい。また、成形体としては架橋成形体や、架橋発泡体(架橋発泡成形体)が好ましい。
 成形体としては具体的には、タイヤ用ゴム、O-リング、工業用ロール、パッキン(例えばコンデンサーパッキン)、ガスケット、ベルト(例えば、断熱ベルト、複写機ベルト)、ホース(例えば、ウォーターホース、ブレーキリザーバーホース、ラジエターホース)、防止ゴム、スポンジ(例えば、ウェザーストリップスポンジ、断熱スポンジ、プロテクトスポンジ、微発泡スポンジ)、ケーブル(イグニッションケーブル、キャブタイヤケーブル、ハイテンションケーブル)、電線被覆材(高圧電線被覆材、低電圧電線被覆材、舶用電線被覆材)、グラスランチャネル、カラー表皮材、給紙ロール、ルーフィングシート等を例示できる。
 共重合体(2B)は、共重合体(2B)を含有するホース形成用組成物(IIB)、並びに共重合体(2B)、重合体(A)および架橋剤(C)を含む混合物を動的架橋して得られる熱可塑性エラストマー組成物(IIC)として好適に用いることが可能である。
 〔本発明(2)のホース形成用組成物(IIB)〕
 本発明のホース形成用組成物(IIB)は、共重合体(2B)を含有する。共重合体(2B)を含有するホース形成用組成物を、ホース形成用組成物とも記す。
 共重合体(2B)は、低温での圧縮永久ひずみが小さく、また低温での捻り試験の結果が良好であることから、低温での柔軟性を有し、低温でのゴム弾性と常温での引張強度とのバランスに優れる。このため、共重合体(2B)を含有するホース形成用組成物は、寒冷地において使用されうる、自動車、モーターバイク、工業機械、建設機械、農業機械等の用途に好適に用いることができる。
 組成物(IIB)において、当該組成物中の共重合体(2B)の含有割合は、通常20質量%以上、好ましくは20~50質量%、より好ましくは25~40質量%である。
 《その他の成分》
 本発明の組成物(IIB)は、共重合体(2B)に加えて、架橋剤を含有することが好ましい。
 組成物(IIB)は、共重合体(2B)以外に、他のポリマーを含有してもよい。架橋が必要な他のポリマーとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等の架橋性ゴムが挙げられる。架橋が不要な他のポリマーとしては、例えば、スチレンとブタジエンとのブロック共重合体(SBS)、ポリスチレン-ポリ(エチレン-ブチレン)-ポリスチレン(SEBS)、ポリスチレン-ポリ(エチレン-プロピレン)-ポリスチレン(SEPS)等のスチレン系熱可塑性エラストマー(TPS)、オレフィン系熱可塑性エラストマー(TPO)、塩ビ系エラストマー(TPVC)、エステル系熱可塑性エラストマー(TPC)、アミド系熱可塑性エラストマー(TPA)、ウレタン系熱可塑性エラストマー(TPU)、その他の熱可塑性エラストマー(TPZ)等のエラストマーが挙げられる。他のポリマーは、共重合体(2B)100質量部に対して、通常100質量部以下、好ましくは80質量部以下の量で配合することができる。
 組成物(IIB)は、目的に応じて他の添加剤、例えば、架橋助剤、加硫促進剤、加硫助剤、軟化剤、無機充填剤、補強剤、老化防止剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、増粘剤および発泡剤から選ばれる少なくとも1種を含有してもよい。また。それぞれの添加剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 組成物(IIB)は、共重合体(2B)と、必要に応じて配合されるその他の成分とを、例えば、ミキサー、ニーダー、ロールなどの混練機を用いて所望の温度で混練することにより調製することができる。共重合体(2B)は、混練性に優れているので、組成物(IIB)の調製を良好に行うことができる。
 具体的には、ミキサー、ニーダー等の従来公知の混練機を用いて、共重合体(2B)および必要に応じてその他の成分1を所定の温度および時間、例えば80~200℃で3~30分、で混練した後、得られた混練物に必要に応じて架橋剤等のその他の成分2を加えて、ロールを用いて所定の温度および時間、例えばロール温度30~80℃で1~30分間、で混練することにより、組成物(IIB)を調製することができる。
 その他の成分1としては、例えば、他のポリマー、架橋助剤、加硫促進剤、加硫助剤、軟化剤、無機充填剤、補強剤、老化防止剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤および増粘剤から選ばれる少なくとも1種が挙げられる。その他の成分2としては、例えば、架橋剤(加硫剤)と、架橋助剤、加硫促進剤、加硫助剤、軟化剤、無機充填剤、補強剤、老化防止剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、増粘剤および発泡剤から選ばれる少なくとも1種とが挙げられる。
 〈架橋剤、架橋助剤、加硫促進剤および加硫助剤〉
 組成物(IIB)において、架橋剤としては、有機過酸化物、フェノール樹脂、硫黄系化合物、ヒドロシリコーン系化合物、アミノ樹脂、キノンまたはその誘導体、アミン系化合物、アゾ系化合物、エポキシ系化合物、イソシアネート系化合物等の、ゴムを架橋する際に一般に使用される架橋剤が挙げられる。これらのうちでは、有機過酸化物、硫黄系化合物(以下「加硫剤」ともいう)が好適である。
 有機過酸化物としては、例えば、ジクミルペルオキシド、ジ-tert-ブチルペルオキシド、2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、tert-ブチルペルオキシベンゾエート、ert-ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert-ブチルクミルペルオキシドが挙げられる。
 これらのうちでは、2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート等の2官能性の有機過酸化物が好ましく、2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサンが最も好ましい。
 架橋剤として有機過酸化物を用いる場合、組成物(IIB)中の有機過酸化物の配合量は、共重合体(2B)および必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常0.1~20質量部、好ましくは0.2~15質量部、さらに好ましくは0.5~10質量部である。有機過酸化物の配合量が上記範囲内であると、得られるホースの表面へのブルームなく、組成物(IIB)が優れた架橋特性を示す。
 架橋剤として有機過酸化物を用いる場合、架橋助剤を併用することが好ましい。
 架橋助剤としては、例えば、イオウ;p-キノンジオキシム等のキノンジオキシム系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル系架橋助剤;ジアリルフタレート、トリアリルイソシアヌレート等のアリル系架橋助剤;マレイミド系架橋助剤;ジビニルベンゼン;酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META-Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)等の金属酸化物が挙げられる。
 架橋助剤を用いる場合、組成物(IIB)中の架橋助剤の配合量は、有機過酸化物1モルに対して、通常0.5~10モル、好ましくは0.5~7モル、より好ましくは1~5モルである。
 硫黄系化合物(加硫剤)としては、例えば、硫黄、塩化硫黄、二塩化硫黄、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレンが挙げられる。
 架橋剤として硫黄系化合物を用いる場合、組成物(IIB)中の硫黄系化合物の配合量は、共重合体(2B)および必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常0.3~10質量部、好ましくは0.5~7.0質量部、さらに好ましくは0.7~5.0質量部である。硫黄系化合物の配合量が上記範囲内であると、得られるホースの表面へのブルームがなく、組成物(IIB)が優れた架橋特性を示す。
 架橋剤として硫黄系化合物を用いる場合、加硫促進剤を併用することが好ましい。
 加硫促進剤としては、例えば、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾールスルフェンアミド、N,N'-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、2-メルカプトベンゾチアゾール(例えば、サンセラーM(商品名;三新化学工業社製))、2-(4-モルホリノジチオ)ペンゾチアゾール(例えば、ノクセラーMDB-P(商品名;大内新興化学工業社製))、2-(2,4-ジニトロフェニル)メルカプトベンゾチアゾール、2-(2,6-ジエチル-4-モルフォリノチオ)ベンゾチアゾールおよびジベンゾチアジルジスルフィド(例えば、サンセラーDM(商品名;三新化学工業社製))などのチアゾール系加硫促進剤;ジフェニルグアニジン、トリフェニルグアニジンおよびジオルソトリルグアニジンなどのグアニジン系加硫促進剤;アセトアルデヒド・アニリン縮合物およびブチルアルデヒド・アニリン縮合物などのアルデヒドアミン系加硫促進剤;2-メルカプトイミダゾリンなどのイミダゾリン系加硫促進剤;テトラメチルチウラムモノスルフィド(例えば、サンセラーTS(商品名;三新化学工業社製))、テトラメチルチウラムジスルフィド(例えば、サンセラーTT(商品名;三新化学工業社製))、テトラエチルチウラムジスルフィド(例えば、サンセラーTET(商品名;三新化学工業社製))、テトラブチルチウラムジスルフィド(例えば、サンセラーTBT(商品名;三新化学工業社製))およびジペンタメチレンチウラムテトラスルフィド(例えば、サンセラーTRA(商品名;三新化学工業社製))などのチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛(例えば、サンセラーPZ、サンセラーBZおよびサンセラーEZ(商品名;三新化学工業社製))およびジエチルジチオカルバミン酸テルルなどのジチオ酸塩系加硫促進剤;エチレンチオ尿素(例えば、サンセラーBUR(商品名;三新化学工業社製)、サンセラー22-C(商品名;三新化学工業社製))、N,N'-ジエチルチオ尿素およびN,N'-ジブチルチオ尿素などのチオウレア系加硫促進剤;ジブチルキサトゲン酸亜鉛などのザンテート系加硫促進剤が挙げられる。
 加硫促進剤を用いる場合、組成物(IIB)中の加硫促進剤の配合量は、共重合体(2B)および必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常0.1~20質量部、好ましくは0.2~15質量部、さらに好ましくは0.5~10質量部である。加硫促進剤の配合量が上記範囲内であると、得られるホースの表面へのブルームなく、組成物(IIB)が優れた架橋特性を示す。
 架橋剤として硫黄系化合物を用いる場合、加硫助剤を併用することができる。
 加硫助剤としては、例えば、酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META-Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)が挙げられる。
 加硫助剤を用いる場合、組成物(IIB)中の加硫助剤の配合量は、共重合体(2B)および必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常1~20質量部である。
 〈軟化剤〉
 軟化剤としては、例えば、前記軟化剤(D)の例示が挙げられる。組成物(IIB)において、軟化剤は、石油系軟化剤が好ましく、プロセスオイルが特に好ましい。
 組成物(IIB)が軟化剤を含有する場合には、軟化剤の配合量は、共重合体(2B)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常2~100質量部、好ましくは10~100質量部である。
 〈無機充填剤〉
 無機充填剤としては、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどが挙げられ、これらのうちでは、「ホワイトンSB」(商品名;白石カルシウム株式会社)等の重質炭酸カルシウムが好ましい。
 組成物(IIB)が無機充填剤を含有する場合には、無機充填剤の配合量は、共重合体(2B)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常2~100質量部、好ましくは5~100質量部である。無機充填剤の配合量が上記範囲内であると、組成物(IIB)の混練加工性が優れており、機械特性に優れたホースを得ることができる。
 〈補強剤〉
 補強剤としては、カーボンブラック、シランカップリング剤で表面処理したカーボンブラック、シリカ、炭酸カルシウム、活性化炭酸カルシウム、微粉タルク、微分ケイ酸などが挙げられる。
 組成物(IIB)が補強剤を含有する場合には、補強剤の配合量は、共重合体(2B)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常30~200質量部、好ましくは50~180質量部である。
 〈老化防止剤(安定剤)〉
 組成物(IIB)に、老化防止剤(安定剤)を配合することにより、これから形成されるホースの寿命を長くすることができる。このような老化防止剤として、従来公知の老化防止剤、例えば、アミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤などがある。
 老化防止剤としては、例えば、フェニルブチルアミン、N,N-ジ-2-ナフチル-p-フェニレンジアミン等の芳香族第2アミン系老化防止剤;ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5-ジ-t-ブチル-4-ヒドロキシ)ヒドロシンナメート]メタン等のフェノール系老化防止剤;ビス[2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-t-ブチルフェニル]スルフィド等のチオエーテル系老化防止剤;ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系老化防止剤;2-メルカプトベンゾイルイミダゾール、2-メルカプトベンゾイミダゾールの亜鉛塩、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系老化防止剤がある。
 組成物(IIB)が老化防止剤を含有する場合には、老化防止剤の配合量は、共重合体(2B)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.3~10質量部、好ましくは0.5~7.0質量部である。老化防止剤の配合量が上記範囲内であると、得られるホースの表面のブルームがなく、さらに加硫阻害の発生を抑制することができる。
 〈加工助剤〉
 加工助剤としては、一般に加工助剤としてゴムに配合されるものを広く用いることができる。加工助剤としては、例えば、リシノール酸、ステアリン酸、パルミチン酸、ラウリン酸等の脂肪酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸塩、リシノール酸エステル、ステアリン酸エステル、パルチミン酸エステル、ラウリン酸エステル類等の脂肪酸エステル類、N-置換脂肪酸アミドなどの脂肪酸誘導体が挙げられる。これらのうちでは、ステアリン酸が好ましい。
 組成物(IIB)が加工助剤を含有する場合には、加工助剤の配合量は、共重合体(2B)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常10質量部以下、好ましくは8.0質量部以下である。
 〈活性剤〉
 活性剤としては、例えば、ジ-n-ブチルアミン、ジシクロヘキシルアミン、モノエラノールアミン等のアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルートメリレート、脂肪族カルボン酸または芳香族カルボン酸の亜鉛化合物等の活性剤;過酸化亜鉛調整物;クタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物が挙げられる。
 組成物(IIB)が活性剤を含有する場合には、活性剤の配合量は、共重合体(2B)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.2~10質量部、好ましくは0.3~5質量部である。
 〈吸湿剤〉
 吸湿剤としては、例えば、酸化カルシウム、シリカゲル、硫酸ナトリウム、モレキュラーシーブ、ゼオライト、ホワイトカーボンが挙げられる。
 組成物(IIB)が吸湿剤を含有する場合には、吸湿剤の配合量は、共重合体(2B)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.5~15質量部、好ましくは1.0~12質量部である。
 〈発泡剤〉
 組成物(IIB)からなるホースは、非発泡体であってもよいし、発泡体であってもよい。発泡体形成に際して発泡剤を使用することができ、例えば、重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム等の無機系発泡剤;N,N'-ジニトロテレフタルアミド、N,N'-ジニトロソペンタメチレンテトラミン等のニトロソ化合物;アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;ベンゼンスルフォニルヒドラジド、トルエンスルフォニルヒドラジド、p,p'-オキシビス(ベンゼンスルフォニルヒドラジド)ジフェニルスルフォン-3,3'-ジスルフェニルヒドラジド等のスルフォニルヒドラジド化合物;カルシウムアジド、4,4'-ジフェニルスルホニルアジド、パラトルエンスルホニルアジド等のアジド化合物が挙げられる。
 組成物(IIB)が発泡剤を含有する場合には、発泡剤の配合量は、架橋発泡後の発泡体の比重が通常0.01~0.9になるよう適宜選択される。発泡剤の配合量は、共重合体(2B)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.5~30質量部、好ましくは1~20質量部である。
 [ホース形成用組成物(IIB)の物性]
 組成物(IIB)を用いることにより、常温での機械的特性および低温特性に優れるホースを形成することができる。例えば、常温での引張強度にも優れるとともに、低温での圧縮永久ひずみが小さく、また低温での捻り試験の結果が良好であるホースを得ることができる。
 [ホース]
 本発明(2)のホースは、組成物(IIB)から形成された層を有する。ホースは、組成物(IIB)から形成された層のみからなる1層または2層以上のホースでもよく、他の層、例えば天然ゴムからなる層、布帛層、熱可塑性樹脂層および熱硬化性樹脂層から選ばれる1層または2層以上の層、を有してもよい。
 組成物(IIB)からホースを製造する方法としては、例えば、前記組成物(未架橋型組成物)を、所望のホース形状に成形し、この成形と同時または成形後に、前記組成物を架橋処理する方法が挙げられる。
 例えば、(I)架橋剤を含む組成物(IIB)を用い、所望形状に成形し、および加熱処理して架橋する方法、(II)組成物(IIB)を、所望形状に成形し、および電子線を照射して架橋する方法が挙げられる。
 上記成形では、押出成形機、カレンダーロール、プレス成形機、射出成形機、トランスファー成形機等を用いて、本発明のホース形成用組成物を、中空部を有するホース形状に成形する。
 上記(I)の方法では、成形と同時または成形後に、その成形体を、例えば50~200℃で1~120分間、加熱する。この加熱により、架橋処理を行い、または架橋処理とともに発泡処理を行う。架橋槽としては、例えば、スチーム加硫缶、熱空気加硫槽、ガラスビーズ流動床、溶融塩加硫槽、マイクロ波槽が挙げられる。これらの架橋槽は、1種単独で、または2種以上を組み合せて使用することができる。
 上記(II)の方法では、成形と同時または成形後に、その成形体に対して、0.1~10MeVのエネルギーを有する電子線を、吸収線量が通常0.5~35Mrad、好ましくは0.5~20Mradになるように照射する。
 さらに、上記のようにして得られたホースの中空部にマンドレルを挿入して加熱する、賦形処理を行ってもよい。賦形処理の後、ホースを冷却する。賦形処理では、架橋後のホースにマンドレルを挿入した後、最終賦形を行っているので、マンドレルの挿入時に表面傷や端部の潰れを防止することができ、不良品の発生を低下させて、複雑な形状のホースであっても、効率よくホースを製造することができる。
 本発明(2)のホースは、自動車用、モーターバイク用、工業機械用、建設機械用、農業機械用等に用いられるホースとして、好適に利用することができる。具体的には、エンジンを冷却するためのラジエーターホース、ラジエーターオーバーフロー用ドレインホース、室内暖房用ヒーターホース、エアコンドレインホース、ワイパー送水ホース、ルーフドレインホース、プロラクトホース等の各種ホースとして、好適に利用することができる。
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。以下の実施例等の記載において、特に言及しない限り「部」は「重量部」または「質量部」を示す。本発明において、重量部と質量部は、同義で扱う。
 〔測定方法〕
 [エチレン・α-オレフィン・非共役ポリエン共重合体]
 〔各構造単位のモル量および質量〕
 エチレン[A]に由来する構造単位、α-オレフィン[B]に由来する構造単位および非共役ポリエン[C]に由来する構造単位のモル量および質量は、1H-NMRスペクトルメーターによる強度測定によって求めた。
 〔ムーニー粘度〕
 ムーニー粘度ML(1+4)125℃およびムーニー粘度ML(1+4)150℃は、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
 [ヨウ素価]
 下記合成例で得られた共重合体のヨウ素価は、滴定法により求めた値である。具体的には、以下の方法で行った。
 得られた共重合体0.5gを四塩化炭素60mlに溶解し、少量のウィス試薬および20%ヨウ化カリウム溶液を加え、0.1mol/Lチオ硫酸ナトリウム溶液で適定した。終点付近では澱粉指示薬を加え、よく攪拌しながら薄紫色が消えるところまで適定し、試料100gに対する消費されるハロゲンの量としてヨウ素のg数を算出した。
 〔B値〕
 o-ジクロロベンゼン-d4/ベンゼン-d6(4/1[v/v])を測定溶媒とし、測定温度120℃にて、13C-NMRスペクトル(100MHz、日本電子製ECX400P)を測定し、下記式(i)に基づき、B値を算出した。
 B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
 ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4~20のα-オレフィン[B]および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]-炭素数4~20のα-オレフィン[B]ダイアッド連鎖分率を示す。
 〔極限粘度〕
 エチレン・α-オレフィン・非共役ポリエン共重合体の極限粘度[η]は、デカリン溶媒を用いて、135℃で測定した値である。
 具体的には、エチレン・α-オレフィン・非共役ポリエン共重合体約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた(下式参照)。
  [η]=lim(ηsp/C) (C→0)」
 [熱可塑性エラストマー組成物(I)、(IIC)、および成形体の物性]
 下記実施例および比較例における熱可塑性エラストマー組成物(I)、(IIC)、および成形体の物性の評価方法は次の通りである。
 [ショアーD硬度]
 100t電熱自動プレス(ショージ社製)を用いて、得られた熱可塑性エラストマー組成物(I)のペレットを230℃で6分間プレス成形し、その後、室温で5分間冷却プレスして厚さ3mmのプレスシートを作製した。該シートを用いて、JIS K6253に準拠して、ショアーD硬度計により5秒後の値を測定した。
 [ショアーA硬度]
 100t電熱自動プレス(ショージ社製)を用いて、得られた熱可塑性エラストマー組成物(IIC)のペレットを230℃で6分間プレス成形し、その後、室温で5分間冷却プレスして厚さ3mmのプレスシートを作製した。該シートを用いて、JIS K6253に準拠して、A型測定器を用い、押針接触後直ちに目盛りを読み取った。
 [MFR(g/10分)]
 JIS K6721に準拠して、230℃で10kgfの荷重にて測定した。
 [圧縮永久歪(CS)]
 100t電熱自動プレス(ショージ社製)を用いて、得られた熱可塑性エラストマー組成物(I)または(IIC)のペレットを230℃で6分間プレス成形し、その後、室温で5分間冷却プレスして厚さ2mmのプレスシートを作製した。
 JIS K6250に準拠して、上述のようにして作製された厚さ2mmのプレスシートを積層し、JIS K6262に準拠して圧縮永久ひずみ試験を行った。
 試験条件は、厚み12mm(厚み3mm片の4枚重ね)の積層されたシートを用い、25%圧縮、-30℃、23℃、または70℃を、それぞれ22時間の条件で圧縮を行い、また、125℃、72時間の条件で圧縮を行い、それぞれ歪み除去(圧縮)後30分経過後に測定した。
 [引張特性]
 JIS K6301の方法に従って測定した。
 なお、試験片は、厚さ2mmのプレスシートから3号ダンベル片を打ち抜いて用いた。
 測定温度:23℃
 M25:25%伸び時の応力(MPa)
 M50:50%伸び時の応力(MPa)
 M100:100%伸び時の応力(MPa)
 M200:200%伸び時の応力(MPa)
 M300:300%伸び時の応力(MPa)
 TB:引張破断強度(MPa)
 EB:引張破断点伸び(%)
 [重量変化率]
 試験油として流動パラフィン(軟質)(ナカライテスク社製コード番号:26132-35)を使用し、2mmプレスシートを80℃×24時間浸漬した。その後サンプル表面をふき取り、n数=2にて重量変化率を測定した。
 比較例1および7においては、組成物中に含まれるフィラー率を測定し、組成物の全重量から該フィラー分を差し引いた値を用いて補正重量変化率を算出した。フィラー率は、熱量計測定装置(TGA)を用いて以下の方法により測定した。
 <フィラー率の測定>
 TGA装置(ティー・エイ・インスツルメント・ジャパン(株)社製TGA Q50001R)の系内を窒素雰囲気に十分置換するため、アルミナパンを用いてサンプル(サンプル重量:約5mg)をセットしてから40℃で20分間保持した。その後、次の測定条件にて1000℃まで昇温し、その時の残分を対象サンプル量(約5mg)に対するフィラー率とした。
 (測定条件)
 ・40℃(20分)→600℃→400℃[窒素雰囲気]
 →400℃(20分)→1000℃[Air雰囲気]
 ・かっこ内は保持時間を表す。
 ・昇温速度は10℃/分で、降温速度は10℃/分で行った。
 ・サンプル用パージガスは、窒素が25ml/分で、Airが25ml/分で行った。天秤バランス用パージガスは、窒素10ml/分で行った。炉体内へのパージガス量はサンプル用と天秤バランス用の合計35ml/分とした。
 [比重]
 実施例の比重は、各樹脂分および軟化剤の比重と、これらの配合部数を用いて算出した。比較例の比重は、カタログ値である。
 [ホース形成用組成物(IIB)および加硫物の物性]
 下記比較例で用いたゴムの詳細、実施例および比較例におけるホース形成用組成物(IIB)および加硫物の物性の評価方法は次の通りである。
 比較例で用いたゴムの詳細は以下のとおりである。
 3090EM:三井化学(株)製、EPDM、エチレン含量=48wt%、ジエン含量=5.2wt%、ムーニー粘度ML(1+4)125℃=59、油展量=10(PHR)
 3072EM:三井化学(株)製、EPDM、エチレン含量=64wt%、ジエン含量=5.4wt%、ムーニー粘度ML(1+4)125℃=51、油展量=40(PHR)
 上記製品の物性値はカタログ値である。
 〔未加硫物物性試験1:最低粘度(Vm)およびスコーチ時間(min)〕
 未加硫組成物の物性試験は、JIS K6300に準拠して行った。具体的には、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、実施例・比較例で得られた配合物2の125℃におけるムーニー粘度の変化を測定し、測定開始から最低粘度(Vm)を求め、さらにその最低粘度Vmより5ポイントまたは35ポイント上昇するまでの時間を求め、これをスコーチ時間(t5、min)およびスコーチ時間(t35、min)とした。
 〔未加硫物物性試験2:加硫特性評価〕
 実施例・比較例で得られた配合物2を用いて、加硫測定装置:MDR2000(ALPHA TECHNOLOGIES社製)により、加硫速度(TC90)を以下のとおり測定した。
 一定の温度および一定のせん断速度の条件下で得られるトルク変化を測定した。トルクの最大値(S'Max)とトルクの最小値(S'Min)との差の90%のトルクに達成するまでの時間を、TC90(min)とした。測定条件は、温度160℃、時間50分とした。このTC90が小さいほど、加硫速度が速いことを示す。
 〔硬度試験(Durometer-A)〕
 実施例・比較例で得られた厚さ2mmの加硫ゴムシートの平らな部分を重ねて厚さ12mmのシートとし、JIS K6253に従い、硬度(JIS-A)を測定した。
 〔引張試験〕
 実施例・比較例で得られた厚さ2mmの加硫ゴムシートについて、JIS K6251に従い、測定温度23℃、引張速度500mm/分の条件で引張試験を行い、伸び率が25%であるときの引張応力(25%モジュラス(M25))、伸び率が50%であるときの引張応力(50%モジュラス(M50))、伸び率が100%であるときの引張応力(100%モジュラス(M100))、伸び率が200%であるときの引張応力(200%モジュラス(M200))、伸び率が300%であるときの引張応力(300%モジュラス(M300))、破断時強度(TB)および破断伸び(EB)を測定した。
 〔圧縮永久歪試験〕
 圧縮永久歪(CS)測定用試験片について、JIS K6262(1997)に従って、70℃、0℃、-20℃、または-40℃×22時間処理後の圧縮永久歪みを測定した。
 <低温捻り試験(ゲーマン捻り試験)>
 低温捻り試験は、JIS K6261(1993)に従って、ゲーマン捻り試験機を用いて、実施例・比較例で得られた厚さ2mmの加硫ゴムシートについて、T2(℃)、T5(℃)、T10(℃)およびTg(℃)を測定した。これらの温度は、加硫ゴムの低温での柔軟性の指標となる。例えばT2が低いほど、低温での柔軟性は良好である。
 〔合成方法〕
 〔遷移金属化合物の合成〕
 [ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド(触媒-a1)の合成
 (i)6,6-ビス(4-メトキシフェニル)フルベンの合成
 窒素雰囲気下、500 ml三口フラスコにリチウムシクロペンタジエニド8.28 g(115mmol)および脱水THF(テトラヒドロフラン)200 mlを加えた。氷浴で冷却しながらDMI(1,3-ジメチル-2-イミダゾリジノン)13.6 g (119 mmol)を添加し、室温で30分間攪拌した。その後4,4'-ジメトキシベンゾフェノン 25.3 g (105 mol)を加え、加熱還流下で1週間攪拌した。氷浴で冷却しながら水 100 mlを徐々に添加し、更にジクロロメタン 200 mlを加えて室温で30分間攪拌した。得られた二層の溶液を500 ml分液漏斗に移し、有機層を水 200 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。シリカゲルクロマトグラフ(700 g、ヘキサン:酢酸エチル = 4:1)による分離を行い、赤色溶液を得た。減圧下で溶媒を留去し、橙色固体として6,6-ビス(4-メトキシフェニル)フルベン 9.32 g (32.1 mmol、30.7%)を得た。6,6-ビス(4-メトキシフェニル)フルベンの同定は1H NMRスペクトルにて行った。以下にその測定値を示す。
 1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.28-7.23 (m, 4H), 6.92-6.87 (m, 4H), 6.59-6.57 (m, 2H), 6.30-6.28 (m, 2H), 3.84 (s, 6H)
 (ii)ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの合成
 窒素雰囲気下、100 ml三口フラスコに2,3,6,7-テトラメチルフルオレン 500 mg (2.25 mmol)および脱水t-ブチルメチルエーテル 40 mlを添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 1.45 ml (2.36 mmol)を徐々に添加し、室温で18時間攪拌した。6,6-ビス(4-メトキシフェニル)フルベン 591 mg (2.03 mmol)を添加した後、3日間加熱還流を行った。氷浴で冷却しながら水 50 mlを徐々に添加し、得られた溶液を300 ml分液漏斗に移した。ジクロロメタン 50 mlを加えて数回振った後水層を分離し、有機層を水 50 mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、白色固体を得た。更に、洗浄液の溶媒を減圧下で留去し、得られた固体を少量のジエチルエーテルで洗浄して白色固体を採取し、先に得た白色固体と合わせた。この固体を減圧下で乾燥し、ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 793 mg (1.55 mmol、76.0%)を得た。ビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタンの同定はFD-MSスペクトルにて行った。以下にその測定値を示す。
 FD-MSスペクトル: M/z 512 (M+)
 (iii)[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの合成
 窒素雰囲気下、100 mlシュレンク管にビス(4-メトキシフェニル)(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)メタン 272 mg (0.531 mmol)、脱水トルエン 20 mlおよびTHF90μl (1.1 mmol)を順次添加した。氷浴で冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.63 M) 0.68 ml (1.1 mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル 20 mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム 164 mg (0.511 mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、黄色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて-20℃で再結晶した。析出した固体を採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド 275 mg (0.362 mmol、70.8%)(触媒-a1)を得た。[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H NMRスペクトルおよびFD-MSスペクトルにて行った。以下にその測定値を示す。
1H NMRスペクトル(270 MHz, CDCl3): δ/ppm 7.87 (s, 2H), 7.80-7.66 (m, 4H), 6.94-6.83 (m, 4H), 6.24 (t, J = 2.6 Hz, 2H), 6.15 (s, 2H), 5.65 (t, J = 2.6 Hz, 2H), 3.80 (s, 6H), 2.47 (s, 6H), 2.05 (s, 6H)
FD-MSスペクトル: M/z 760 (M+)
 得られた触媒-a1の化学式を以下に示す。
Figure JPOXMLDOC01-appb-C000016
 (1B)エチレン・1-ブテン・5-エチリデン-2-ノルボルネン共重合体(EBDM-1(1B))
 〔合成例1〕
 攪拌翼を備えた容積300Lの重合器を用いて、連続的に、エチレン、1-ブテン、5-エチリデン-2-ノルボルネン(ENB)の重合反応を95℃にて行った。
 重合溶媒としてはヘキサン(フィード量:32L/h)を用いて、連続的に、エチレンフィード量が3.2kg/h、1-ブテンフィード量が12kg/h、ENBフィード量が520g/hおよび水素フィード量が0.0NL(ノルマルリットル)/hとなるように、重合器に連続供給した。
 重合圧力を1.6MPaG、重合温度を95℃に保ちながら、主触媒として、前記触媒-a1を用いて、フィード量0.030mmol/hとなるよう、重合器に連続的に供給した。また、共触媒として(C65)3CB(C65)4(CB-3)をフィード量0.15mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(TIBA)をフィード量10mmol/hとなるように、それぞれ重合器に連続的に供給した。
 このようにして、エチレン、1-ブテンおよびENBから形成されたエチレン・1-ブテン・ENB共重合体を15重量%含む溶液が得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・1-ブテン・ENB共重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。
 以上の操作によって、エチレン、1-ブテンおよびENBから形成されたエチレン・1-ブテン・ENB共重合体(EBDM-1(1B))が、毎時5.4kgの速度で得られた。
 得られたEBDM-1(1B)の物性を前記記載の方法で測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000017
 《熱可塑性エラストマー組成物(I)および成形体》
 〔実施例1〕
 合成例1で得られたEBDM-1(1B)を100重量部と、メルトフローレート(ASTM-D-1238-65T;230℃、2.16kg荷重)が2.0g/10分であるポリプロピレン(商品名:プライムポリプロ(商標)E-200GP、プライムポリマー社製)40重量部、軟化剤(ダイアナプロセスPW-100、パラフィンオイル、出光興産社製)10部を、バンバリーミキサーで十分に混合したマスターバッチペレットを得た。
 これにフェノール樹脂系架橋剤として臭素化アルキルフェノール・ホルムアルデヒド樹脂(商品名:SP-1055F、Schenectady社製)8.0部、酸化防止剤としてフェノール系酸化防止剤(イルガノックス1010、BASFジャパン(株)製)0.20重量部と、ベンゾトリアゾール系紫外線吸収剤(商品名:Tinuvin 326FL、BASFジャパン(株)社製)0.20重量部、ヒンダードアミン(HALS)系耐候安定剤(商品名:サノールLS-770、三共ライフテック社製)0.10重量部、酸化亜鉛(酸化亜鉛2種、ハクスイテック社製)0.80重量部、カーボンブラックマスターバッチ(PE4993、Cabot社製)4.0重量部と、軟化剤(ダイアナプロセスPW-100、パラフィンオイル)105部、メルトフローレート(ASTM-D-1238-65T;230℃、2.16kg荷重)が2.0g/10分であるポリプロピレン(商品名:プライムポリプロ(商標)E-200GP、プライムポリマー社製)50重量部およびメルトフローレート(ASTM-D-1238-65T;230℃、2.16kg荷重)が0.5g/10分であるポリプロピレン(商品名:プライムポリプロ(商標)E-111G、プライムポリマー社製)140重量部を押出機(品番 KTX-30、神戸製鋼(株)製、シリンダー温度:C1:50℃、C2:90℃、C3:100℃、C4:120℃、C5:180℃、C6:200℃、C7~C14:200℃、ダイス温度:200℃、スクリュー回転数:500rpm、押出量:40kg/h)にて、得られた混合物の動的架橋を行い、熱可塑性エラストマー組成物のペレットを得た。配合を表2に、結果を表3に示す。
 〔実施例2〕
 実施例1において、軟化剤(ダイアナプロセスPW-100、パラフィンオイル)の配合比率をマスターバッチ作成工程と動的架橋工程で変えた以外は、実施例1と同様にして熱可塑性エラストマー組成物のペレットを製造した。
 該ペレットを用いて物性評価を行った。配合を表2に、結果を表3に示す。
 〔実施例3〕
 実施例1において、マスターバッチ作成工程で配合するポリプロピレンをE-200GPからメルトフローレート(ASTM-D-1238-65T;230℃、2.16kg荷重)が2.0g/10分であるポリプロピレン(商品名:プライムポリプロ(商標)B241、プライムポリマー社製)に変えた以外は、実施例1と同様にして熱可塑性エラストマー組成物のペレットを製造した。
 該ペレットを用いて物性評価を行った。配合を表2に、結果を表3に示す。
 〔比較例1〕
 熱可塑性エラストマー組成物として、Santoprene(商標)103-40(ExxonMobil社製、比重:0.95g/cm3(カタログ値)、EPDMとPP(ポリプロピレン)を動的架橋してなる架橋型熱可塑性エラストマー)を使用して物性評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 (2B)エチレン・1-ブテン・5-エチリデン-2-ノルボルネン共重合体(EBDM-1(2B)~EBDM-3(2B)およびEBDM-4)
 〔実施例4〕
 攪拌翼を備えた容積300Lの重合器を用いて、連続的に、エチレン、1-ブテン、5-エチリデン-2-ノルボルネン(ENB)の重合反応を95℃にて行った。
 重合溶媒としてはヘキサン(フィード量:41L/h)を用いて、連続的に、エチレンフィード量が4.7kg/h、1-ブテンフィード量が4.3kg/h、ENBフィード量が530g/hおよび水素フィード量が5.5NL/hとなるように、重合器に連続供給した。
 重合圧力を1.6MPaG、重合温度を95℃に保ちながら、主触媒として、前記触媒-a1を用いて、フィード量0.018mmol/hとなるよう、重合器に連続的に供給した。また、共触媒として(C65)3CB(C65)4(CB-3)をフィード量0.09mmol/h、有機アルミニウム化合物としてトリイソブチルアルミニウム(TIBA)をフィード量5mmol/hとなるように、それぞれ重合器に連続的に供給した。
 このようにして、エチレン、1-ブテンおよびENBから形成されたエチレン・1-ブテン・ENB共重合体を15質量%含む溶液が得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・1-ブテン・ENB共重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。
 以上の操作によって、エチレン、1-ブテンおよびENBから形成されたエチレン・1-ブテン・ENB共重合体(EBDM-1(2B))が、毎時5.3kgの速度で得られた。
 得られたEBDM-1(2B)の物性を前記記載の方法で測定した。結果を表4に示す。
 〔実施例5、6〕
 重合条件を表4に記載したとおりに変更したこと以外は実施例4と同様にして、実施例5のエチレン・1-ブテン・ENB共重合体(EBDM-2(2B))、実施例6のエチレン・1-ブテン・ENB共重合体(EBDM-3(2B))を得た。結果を表4に示す。
 〔比較例2〕
 重合条件を表4に記載したとおりに変更したこと以外は実施例4と同様にして、比較例2のエチレン・1-ブテン・ENB共重合体(EBDM-4)を得た。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000020
 《ホース形成用組成物(IIB)》
 [実施例7]
 MIXTRON BB MIXER(神戸製鋼所社製、BB-2型、容積1.7L、ローター2WH)を用いて、実施例6で得られたエチレン・1-ブテン・ENB共重合体(EBDM-3(2B))100部に対して、架橋助剤として酸化亜鉛(ZnO#1・酸化亜鉛2種(JIS規格(K-1410))、ハクスイテック(株)製)を5部、加工助剤としてステアリン酸を1部、補強剤としてカーボンブラック(FEFカーボン)「旭#60G」(商品名;旭カーボン(株)製)を80部、軟化剤としてパラフィン系プロセスオイル「ダイアナプロセスオイルPS-430」(商品名;出光興産株式会社製)を50部の配合量で配合した後に混練し、配合物1を得た。
 混練条件は、ローター回転数が40rpm、フローティングウェイト圧力が3kg/cm2、混練時間が5分間で行い、混練排出温度は144℃であった。
 次いで、配合物1が温度40℃となったことを確認した後、6インチロールを用いて、配合物1に、加硫促進剤として、2-メルカプトベンゾチアゾール「サンセラーM」(商品名;三新化学工業株式会社製)を0.5部、テトラメチルチウラムジスルフィド「サンセラーTT」(商品名;三新化学工業株式会社製)を1.0部、イオウを1.5部の配合量で添加して混練し、配合物2を得た。
 混練条件は、ロール温度を前ロール/後ロール=50℃/50℃、ロール周速さを前ロール/後ロール=18rpm/15rpm、ロール間隙を3mmとして、混練時間8分間で分出し、配合物2を得た。
 また、配合物2に、プレス成形機を用いて160℃で20分間加硫を行って、厚さ2mmの加硫ゴムシートを得た。
 また、配合物2から、円柱状金型を用いて、厚さ12.7mm、直径29mmの直円柱形の試験片を作成し、160℃で25分間加硫して、圧縮永久歪(CS)試験用試験片を得た。
 得られた未加硫物(未加硫ゴム)について未加硫物物性試験を上記の方法により行った。また、得られた加硫物(加硫ゴム)について、硬度試験、引張試験、低温捻り試験、圧縮永久歪試験を上記の方法により行った。結果を表5に示す。
 [実施例8、9、比較例3~5]
 配合組成を表5に記載したとおりに変更したこと以外は実施例7と同様にして、実施例8、9、および比較例3~5それぞれについて、配合物1~配合物2を得た。実施例7と同様にしてシート、試験片を作成し、各種評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000021
 エチレン・α―オレフィン・非共役ポリエン共重合体の低温特性は、エチレン含量による共重合体の結晶化率の影響が大きいため、エチレン含量が近い共重合体で実施例と比較例とを対比、すなわち、実施例7と比較例5とを対比、実施例8と比較例3とを対比、実施例9と比較例4とを対比した。表4、表5に記載した結果から、エチレン・α―オレフィン・非共役ポリエン共重合体としてML(1+4)125℃が高い重合体を用いることにより、シール性と、低温特性とのバランスにすぐれることがわかる。なお、シール性は高温での圧縮永久歪み(70℃×22h)から評価することが可能であり、低温特性は、低温での圧縮永久歪み(-40℃×22h)から評価することが可能である。また、機械的物性についても優れることがわかる。このような特性を有することから、実施例の上記ホース形成用組成物(IIB)を用いて、シール性と、低温特性と、機械的物性とのバランスに優れたホースを製造することができる。
 《熱可塑性エラストマー組成物(IIC)および成形体》
 〔実施例10〕
 実施例4で得られたEBDM-1(2B)を100重量部と、メルトフローレート(ASTM-D-1238-65T;230℃、2.16kg荷重)が2.0g/10分であるポリプロピレン(商品名:プライムポリプロ(商標)B241、プライムポリマー社製)40重量部、軟化剤(ダイアナプロセスPW-100、パラフィンオイル、出光興産社製)40重量部を、バンバリーミキサーで充分に混合したマスターバッチペレットを得た。
 得られたマスターバッチペレットと、フェノール樹脂系架橋剤として臭素化アルキルフェノール・ホルムアルデヒド樹脂(商品名:SP-1055F、Schenectady社製)8.0重量部、酸化防止剤としてフェノール系酸化防止剤(IRGANOX 1010、BASFジャパン(株)製)0.16重量部と、ベンゾトリアゾール系紫外線吸収剤(商品名:Tinuvin 326FL、BASFジャパン(株)社製)0.16重量部、ヒンダードアミン(HALS)系耐候安定剤(商品名:サノールLS-770、三共ライフテック社製)0.08重量部、酸化亜鉛(酸化亜鉛2種、ハクスイテック社製)0.80重量部、カーボンブラックマスターバッチ(PE4993、Cabot社製)4.0重量部、軟化剤(ダイアナプロセスPW-100、パラフィンオイル)75重量部、メルトフローレート(ASTM-D-1238-65T;230℃、2.16kg荷重)が5g/10分であるポリプロピレン(商品名:EL-ProTM P440J、SCG Chemicals Co., Ltd.製)18重量部およびメルトフローレート(ASTM-D-1238-65T;230℃、2.16kg荷重)が9.0g/10分であるポリプロピレン(商品名:プライムポリプロ(商標)J105P、プライムポリマー社製)16重量部とを、押出機(品番 KTX-30、神戸製鋼(株)製、シリンダー温度:C1:50℃、C2:90℃、C3:100℃、C4:120℃、C5:180℃、C6:200℃、C7~C14:200℃、ダイス温度:200℃、スクリュー回転数:500rpm、押出量:40kg/h)にて、混合および得られた混合物の動的架橋を行い、熱可塑性エラストマー組成物(IIC)のペレットを得た。
 該ペレットを用いて物性評価を行った。配合を表6に、物性の評価結果を表7に示す。
 〔実施例11〕
 マスターバッチと混合される軟化剤(ダイアナプロセスPW-100、パラフィンオイル)の量を75重量部から、73重量部に変更し、EL-ProTM P440Jの量を18重量部から23重量部に変更した以外は、実施例10と同様にして熱可塑性エラストマー組成物(IIC)のペレットを製造した。
 該ペレットを用いて物性評価を行った。配合を表6に、物性の評価結果を表7に示す。
 〔実施例12〕
 EBDM-1(2B)を、EBDM-2(2B)に変更した以外は、実施例10と同様にして熱可塑性エラストマー組成物(IIC)のペレットを製造した。
 該ペレットを用いて物性評価を行った。配合を表6に、物性の評価結果を表7に示す。
 〔比較例6〕
 熱可塑性エラストマー組成物として、Sarlink(商標)4175(Teknor Apex社製、比重:0.96g/cm3(カタログ値)、EPDMを含んでなる架橋型熱可塑性エラストマー)を使用して物性評価を行った。
 物性の評価結果を表7に示す。
 〔比較例7〕
 熱可塑性エラストマー組成物として、Santoprene(商標)121-73W175(ExxonMobil社製、比重:0.97g/cm3(カタログ値)、EPDMとPP(ポリプロピレン)を動的架橋してなる架橋型熱可塑性エラストマー)を使用して物性評価を行った。
 物性の評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023

Claims (28)

  1.  結晶性オレフィン系重合体(A)、
     下記要件(1)と(2)とを満たすエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(1B)、および
     フェノール樹脂系架橋剤(C)を含む混合物を
    動的架橋して得られる熱可塑性エラストマー組成物。
     (1)下記式(i)で表されるB値が1.20~1.80である。
     B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
     ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位のモル分率、炭素数4~20のα-オレフィン由来の構造単位のモル分率、非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位-炭素数4~20のα-オレフィン由来の構造単位のダイアッド連鎖分率を示す。
     (2)共重合体(1B)の、エチレンに由来する構造単位とα-オレフィン(炭素数4~20)に由来する構造単位とのモル比が、40/60~90/10である。
  2.  エチレン・α-オレフィン・非共役ポリエン共重合体(1B)のα-オレフィンが、1-ブテンである、請求項1に記載の熱可塑性エラストマー組成物。
  3.  前記混合物には、さらに、軟化剤(D)を、前記結晶性オレフィン系重合体(A)および前記共重合体(1B)の合計100重量部に対して、2~100重量部含む、請求項1または2に記載の熱可塑性エラストマー組成物。
  4.  フェノール樹脂系架橋剤(C)が、ハロゲン化フェノール樹脂系架橋剤である、請求項1~3のいずれか一項に記載の熱可塑性エラストマー組成物。
  5.  結晶性オレフィン系重合体(A)とエチレン・α-オレフィン・非共役ポリエン共重合体(1B)とを、(A)/(1B)=90/10~10/90の重量比で含有し、
     フェノール樹脂系架橋剤(C)が、エチレン・α-オレフィン・非共役ポリエン共重合体(1B)100重量部に対して、0.1~20重量部含有する、請求項1~4のいずれかに記載の熱可塑性エラストマー組成物。
  6.  請求項1~5のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、成形体。
  7.  請求項1~5のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、自動車部品。
  8.  請求項1~5のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、自動車用ホース。
  9.  請求項1~5のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、自動車用ブーツ。
  10.  結晶性オレフィン系重合体(A)と、下記要件(1)と(2)とを満たすエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(1B)と、フェノール樹脂系架橋剤(C)とを含む混合物を、動的架橋する工程を含むことを特徴とする、熱可塑性エラストマー組成物の製造方法。
     (1)下記式(i)で表されるB値が1.20~1.80である。
     B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
     ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位のモル分率、炭素数4~20のα-オレフィン由来の構造単位のモル分率、非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位-炭素数4~20のα-オレフィン由来の構造単位のダイアッド連鎖分率を示す。
     (2)共重合体(1B)の、エチレンに由来する構造単位とα-オレフィン(炭素数4~20)に由来する構造単位とのモル比が、40/60~90/10である。
  11.  エチレン[A]に由来する構造単位、炭素数4~20のα-オレフィン[B]に由来する構造単位、および非共役ポリエン[C]に由来する構造単位を含み、下記(1)~(4)を満たすエチレン・α―オレフィン・非共役ポリエン共重合体(2B)。
     (1)エチレン[A]に由来する構造単位と、α-オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60~90/10であり、
     (2)非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1~6.0モル%であり、
     (3)125℃におけるムーニー粘度ML(1+4)125℃が、100を超えて200以下であり、
     (4)下記式(i)で表されるB値が1.20~1.80である。
     B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
    [ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4~20のα-オレフィン[B]、および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]-炭素数4~20のα-オレフィン[B]ダイアッド連鎖分率を示す。]
  12.  炭素数4~20のα-オレフィン[B]が、1-ブテンであることを特徴とする請求項11に記載のエチレン・α―オレフィン・非共役ポリエン共重合体(2B)。
  13.  (a)下記一般式[VII]で表される遷移金属化合物と、
     (b)(b-1)有機金属化合物、
        (b-2)有機アルミニウムオキシ化合物、および
        (b-3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物と
    を含むオレフィン重合触媒の存在下において、エチレン、炭素数4~20のα-オレフィンおよび非共役ポリエンを共重合することにより得られる、請求項11または12に記載のエチレン・α-オレフィン・非共役ポリエン共重合体(2B)。
    Figure JPOXMLDOC01-appb-C000001
    (式[VII]において、
     Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
     R5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であり、
     Qはハロゲン原子、炭素数1~20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
     jは1~4の整数である。)
  14.  請求項11~13のいずれか一項に記載のエチレン・α-オレフィン・非共役ポリエン共重合体(2B)を含有する組成物。
  15.  請求項14に記載の組成物を架橋処理して形成された成形体。
  16.  請求項11~13のいずれか一項に記載のエチレン・α-オレフィン・非共役ポリエン共重合体(2B)を含有するホース形成用組成物。
  17.  請求項16に記載のホース形成用組成物を架橋処理して形成された層を有するホース。
  18.  自動車用、モーターバイク用、工業機械用、建設機械用または農業機械用のいずれかの用途に用いられる、請求項17に記載のホース。
  19.  結晶性オレフィン系重合体(A)、
     エチレン・α―オレフィン・非共役ポリエン共重合体(2B)、および
     フェノール樹脂系架橋剤(C)を含む混合物を
    動的架橋して得られ、
     エチレン・α―オレフィン・非共役ポリエン共重合体(2B)が、請求項11~13のいずれか一項に記載のエチレン・α―オレフィン・非共役ポリエン共重合体(2B)である熱可塑性エラストマー組成物。
  20.  前記混合物には、さらに、軟化剤(D)を、前記結晶性オレフィン系重合体(A)および前記共重合体(2B)の合計100重量部に対して、2~100重量部含む、請求項19に記載の熱可塑性エラストマー組成物。
  21.  フェノール樹脂系架橋剤(C)が、ハロゲン化フェノール樹脂系架橋剤である、請求項19または20に記載の熱可塑性エラストマー組成物。
  22.  結晶性オレフィン系重合体(A)とエチレン・α-オレフィン・非共役ポリエン共重合体(2B)とを、(A)/(2B)=90/10~10/90の質量比で含有し、
     フェノール樹脂系架橋剤(C)を、エチレン・α-オレフィン・非共役ポリエン共重合体(2B)100重量部に対して、0.1~20重量部含有する、請求項19~21のいずれか一項に記載の熱可塑性エラストマー組成物。
  23.  請求項19~22のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、成形体。
  24.  請求項19~22のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、自動車部品。
  25.  請求項19~22のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、自動車用ホース。
  26.  請求項19~22のいずれか一項に記載の熱可塑性エラストマー組成物を含んで得られる、自動車用ブーツ。
  27.  (a)下記一般式[VII]で表される遷移金属化合物と、
     (b)(b-1)有機金属化合物、
        (b-2)有機アルミニウムオキシ化合物、および
        (b-3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物と
    を含むオレフィン重合触媒の存在下において、エチレン、炭素数4~20のα-オレフィンおよび非共役ポリエンを共重合する工程を含むことにより得られる、エチレン・α-オレフィン・非共役ポリエン共重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式[VII]において、
     Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
     R5およびR6が、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基であり、
     Qはハロゲン原子、炭素数1~20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
     jは1~4の整数である。)
  28.  結晶性オレフィン系重合体(A)と、エチレン[A]に由来する構造単位、炭素数4~20のα-オレフィン[B]に由来する構造単位、および非共役ポリエン[C]に由来する構造単位を含み、下記(1)~(4)を満たすエチレン・α-オレフィン(炭素数4~20)・非共役ポリエン共重合体(2B)と、フェノール樹脂系架橋剤(C)とを含む混合物を、動的架橋する工程を含むことを特徴とする、熱可塑性エラストマー組成物の製造方法。
     (1)エチレン[A]に由来する構造単位と、α-オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60~90/10であり、
     (2)非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1~6.0モル%であり、
     (3)125℃におけるムーニー粘度ML(1+4)125℃が、100を超えて200以下であり、
     (4)下記式(i)で表されるB値が1.20~1.80である。
     B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
    [ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4~20のα-オレフィン[B]、および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]-炭素数4~20のα-オレフィン[B]ダイアッド連鎖分率を示す。]
PCT/JP2016/058469 2015-03-20 2016-03-17 熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途 WO2016152711A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112017020142-9A BR112017020142B1 (pt) 2015-03-20 2016-03-17 Composição de elastômero termoplástico, métodos para produzir a mesma, artigo moldado, peça de automóvel, mangueira de automóvel e porta-mala de automóvel compreendendo a referida composição
KR1020177026298A KR101840993B1 (ko) 2015-03-20 2016-03-17 열가소성 엘라스토머 조성물, 그의 용도, 그의 제조 방법, 에틸렌·α-올레핀·비공액 폴리엔 공중합체 및 그의 용도
CN201680016771.7A CN107428956B (zh) 2015-03-20 2016-03-17 热塑性弹性体组合物、其用途、其制造方法、乙烯-α-烯烃-非共轭多烯共聚物及其用途
JP2017508284A JP6439039B2 (ja) 2015-03-20 2016-03-17 熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途
US15/559,366 US11078352B2 (en) 2015-03-20 2016-03-17 Thermoplastic elastomer composition, use thereof, method for producing same, ethylene/α-olefin/unconjugated polyene copolymer and use thereof
EP16768614.6A EP3272790B1 (en) 2015-03-20 2016-03-17 Thermoplastic elastomer composition, use thereof, method for producing same, ethylene/ -olefin/unconjugated polyene copolymer and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-057728 2015-03-20
JP2015057728 2015-03-20
JP2015-081744 2015-04-13
JP2015081744 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016152711A1 true WO2016152711A1 (ja) 2016-09-29

Family

ID=56978993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058469 WO2016152711A1 (ja) 2015-03-20 2016-03-17 熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途

Country Status (8)

Country Link
US (1) US11078352B2 (ja)
EP (1) EP3272790B1 (ja)
JP (1) JP6439039B2 (ja)
KR (1) KR101840993B1 (ja)
CN (1) CN107428956B (ja)
BR (1) BR112017020142B1 (ja)
TW (1) TWI683847B (ja)
WO (1) WO2016152711A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145350A (ja) * 2017-03-08 2018-09-20 三井化学株式会社 熱可塑性エラストマー組成物、その成形体及びそれらの製造方法
WO2018181106A1 (ja) * 2017-03-27 2018-10-04 三井化学株式会社 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
JP2018172553A (ja) * 2017-03-31 2018-11-08 三井化学株式会社 熱可塑性エラストマー組成物
JP2018178006A (ja) * 2017-04-17 2018-11-15 三井化学株式会社 熱可塑性エラストマー組成物、並びにその用途及び製造方法
JP2019206680A (ja) * 2018-05-30 2019-12-05 三井化学株式会社 重合体組成物、及び重合体組成物からなる成形体
JP2020094185A (ja) * 2018-11-29 2020-06-18 三井化学株式会社 伝動ベルト用組成物
WO2020171019A1 (ja) 2019-02-22 2020-08-27 三井化学株式会社 オレフィン系重合体組成物及びその成形体
JP2020193264A (ja) * 2019-05-28 2020-12-03 三井化学株式会社 伝動ベルト用組成物
JP2021066844A (ja) * 2019-10-28 2021-04-30 Nok株式会社 有機過酸化物架橋性ゴム組成物
KR102337085B1 (ko) * 2021-03-25 2021-12-08 (주)제이아이테크 수상 구조물용 계류 로프
CN116410546A (zh) * 2021-12-31 2023-07-11 中国石油天然气股份有限公司 一种聚丙烯树脂及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102520418B1 (ko) 2018-02-14 2023-04-11 다우 글로벌 테크놀로지스 엘엘씨 지속적 고온 내열성이 개선된 에틸렌/알파-올레핀 혼성중합체 조성물
CN111836854A (zh) * 2018-03-28 2020-10-27 Nok株式会社 橡胶组合物
CN111712538A (zh) * 2018-03-30 2020-09-25 日本瑞翁株式会社 未交联弹性体组合物及其交联物
DE102018131917A1 (de) 2018-12-12 2020-06-18 Veritas Ag Fluidleitung zum Leiten eines Fluids
CN109796655B (zh) * 2018-12-24 2021-11-30 浙江万里新材料科技有限公司 一种辐照交联聚乙烯泡棉材料及其制备方法
KR20200142635A (ko) 2019-06-12 2020-12-23 현대자동차주식회사 열가소성 탄성체 조성물
KR102387168B1 (ko) * 2021-12-01 2022-04-15 (주)제이아이테크 로프 및 케이싱 부재를 포함하는 계류 장치
JP2023093156A (ja) * 2021-12-22 2023-07-04 住友ゴム工業株式会社 シート搬送ローラ用ゴム組成物およびシート搬送ローラ
CN117859995B (zh) * 2024-03-11 2024-05-07 晋江市鑫铭鞋材科技有限公司 一种基于改性橡胶制成的防滑鞋底及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011247A (ja) * 1999-06-28 2001-01-16 Mitsui Chemicals Inc 自動車用シール部材
WO2009081792A1 (ja) * 2007-12-21 2009-07-02 Mitsui Chemicals, Inc. エチレン/α-オレフィン/非共役ポリエン共重合体の製造方法
JP2011001489A (ja) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc ゴム組成物およびその用途
JP2015137305A (ja) * 2014-01-22 2015-07-30 三井化学株式会社 重合体組成物および熱可塑性エラストマー組成物
WO2015122415A1 (ja) * 2014-02-13 2015-08-20 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093613A (en) 1957-06-12 1963-06-11 Exxon Research Engineering Co Vulcanization of synthetic rubber with polyhalomethyl phenol substances
US2972600A (en) 1957-09-27 1961-02-21 Schenectady Varnish Company In Substituted phenols
BE632223A (ja) 1961-11-24 1900-01-01
US3709840A (en) 1970-10-08 1973-01-09 Vanderbilt Co R T Curing agent for epoxy resin comprising a cyclic anhydride treated with an amino alcohol
JPS5641817A (en) 1979-09-06 1981-04-18 Mitsubishi Chem Ind Ltd Manufacture of molded carbon material
US5264405A (en) 1989-09-13 1993-11-23 Exxon Chemical Patents Inc. Monocyclopentadienyl titanium metal compounds for ethylene-α-olefin-copolymer production catalysts
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
US5241025A (en) 1987-01-30 1993-08-31 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
PL276385A1 (en) 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
US5384299A (en) 1987-01-30 1995-01-24 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US5621126A (en) 1987-01-30 1997-04-15 Exxon Chemical Patents Inc. Monocyclopentadienyl metal compounds for ethylene-α-olefin-copolymer production catalysts
US5153157A (en) 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US7163907B1 (en) 1987-01-30 2007-01-16 Exxonmobil Chemical Patents Inc. Aluminum-free monocyclopentadienyl metallocene catalysts for olefin polymerization
US5391629A (en) 1987-01-30 1995-02-21 Exxon Chemical Patents Inc. Block copolymers from ionic catalysts
US5096867A (en) 1990-06-04 1992-03-17 Exxon Chemical Patents Inc. Monocyclopentadienyl transition metal olefin polymerization catalysts
US5055438A (en) 1989-09-13 1991-10-08 Exxon Chemical Patents, Inc. Olefin polymerization catalysts
US5408017A (en) 1987-01-30 1995-04-18 Exxon Chemical Patents Inc. High temperature polymerization process using ionic catalysts to produce polyolefins
US5158920A (en) 1988-07-15 1992-10-27 Fina Technology, Inc. Process for producing stereospecific polymers
US5223467A (en) 1988-07-15 1993-06-29 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5223468A (en) 1988-07-15 1993-06-29 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5155080A (en) 1988-07-15 1992-10-13 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5304523A (en) 1988-07-15 1994-04-19 Fina Technology, Inc. Process and catalyst for producing crystalline polyolefins
US5162278A (en) 1988-07-15 1992-11-10 Fina Technology, Inc. Non-bridged syndiospecific metallocene catalysts and polymerization process
US5292838A (en) 1988-07-15 1994-03-08 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5225500A (en) 1988-07-15 1993-07-06 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5243002A (en) 1988-07-15 1993-09-07 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US4892851A (en) 1988-07-15 1990-01-09 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US7041841B1 (en) 1989-09-13 2006-05-09 Exxonmobil Chemical Patents Inc. Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5547675A (en) 1989-09-13 1996-08-20 Exxon Chemical Patents Inc. Modified monocyclopentadienyl transition metal/alumoxane catalyst system for polymerization of olefins
US5504169A (en) 1989-09-13 1996-04-02 Exxon Chemical Patents Inc. Process for producing amorphous poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5026798A (en) 1989-09-13 1991-06-25 Exxon Chemical Patents Inc. Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5057475A (en) 1989-09-13 1991-10-15 Exxon Chemical Patents Inc. Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization
US6265338B1 (en) 1989-09-13 2001-07-24 Exxon Chemical Patents, Inc. Monocyclopentadienyl titanium metal compounds for ethylene-α-olefin copolymer production catalysts
US5227440A (en) 1989-09-13 1993-07-13 Exxon Chemical Patents Inc. Mono-Cp heteroatom containing Group IVB transition metal complexes with MAO: supported catalysts for olefin polymerization
US5420217A (en) 1989-09-13 1995-05-30 Exxon Chemical Patents Inc. Process for producing amorphous poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
EP0427697B1 (en) 1989-10-10 1996-05-08 Fina Technology, Inc. Metallocene catalysts with Lewis acids and aluminum alkyls
US5763549A (en) 1989-10-10 1998-06-09 Fina Technology, Inc. Cationic metallocene catalysts based on organoaluminum anions
DE69018376T3 (de) 1989-10-30 2002-05-16 Fina Technology, Inc. Herstellung von Metallocenkatalysatoren für Olefinpolymerisation.
EP0426638B2 (en) 1989-10-30 2005-03-02 Fina Technology, Inc. Addition of aluminium alkyl for improved metallocene catalyst
US5387568A (en) 1989-10-30 1995-02-07 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
US6294625B1 (en) 1990-03-20 2001-09-25 Exxonmobil Chemical Patents Inc. Catalyst system of enhanced productivity and its use in polymerization process
FR2662756B1 (fr) 1990-06-05 1992-08-14 Snecma Dispositif de transmission etanche entre deux arbres coaxiaux montes dans des boitiers fixes l'un a l'autre, autorisant une intervention rapide notamment en cas de fuite.
US5801113A (en) 1990-06-22 1998-09-01 Exxon Chemical Patents, Inc. Polymerization catalyst systems, their production and use
JP2545006B2 (ja) 1990-07-03 1996-10-16 ザ ダウ ケミカル カンパニー 付加重合触媒
TW383313B (en) 1994-12-20 2000-03-01 Mitsui Petrochemical Ind Preparation of ethylene-alpha-olefin-nonconjugate polyene random copolymers, the copolymers obtaining which, and the use of the copolymers
JP3483176B2 (ja) 1994-12-20 2004-01-06 三井化学株式会社 エチレン・α−オレフィン・非共役ポリエンランダム共重合体および該共重合体の用途
MY114719A (en) * 1995-06-29 2002-12-31 Mitsui Chemicals Inc Olefin thermoplastic elastomer compositions
JP3344183B2 (ja) 1995-08-30 2002-11-11 豊田合成株式会社 エチレンプロピレンゴム配合物及びこれを用いたホース
US6417120B1 (en) 1998-12-31 2002-07-09 Kimberly-Clark Worldwide, Inc. Particle-containing meltblown webs
JP2001172335A (ja) * 1999-01-21 2001-06-26 Jsr Corp エチレン−1−ブテンランダム共重合体およびそれを用いたポリプロピレン樹脂組成物
JP2000212194A (ja) 1999-01-25 2000-08-02 Mitsui Chemicals Inc メタロセン化合物、オレフィン重合用触媒およびオレフィンの重合方法
JP3907859B2 (ja) * 1999-02-08 2007-04-18 三井化学株式会社 プロピレン系樹脂組成物およびその成形体
JP2001011246A (ja) * 1999-06-28 2001-01-16 Mitsui Chemicals Inc 自動車内装表皮材
KR100575121B1 (ko) 1999-06-28 2006-05-03 미쓰이 가가쿠 가부시키가이샤 올레핀계 열가소성 엘라스토머 조성물의 제조 방법 및 그 제조 방법에 의해 얻을 수 있는 조성물
DE60034308T2 (de) 1999-10-08 2007-12-20 Mitsui Chemicals, Inc. Metallocene, ein Verfahren zur deren Herstellung, Olefinpolymerisationskatalysator, und ein Verfahren zur Herstellung von Polyolefinen
US20020155776A1 (en) 1999-10-15 2002-10-24 Mitchler Patricia Ann Particle-containing meltblown webs
JP2001294714A (ja) 2000-02-09 2001-10-23 Mitsui Chemicals Inc 低フォギング性熱可塑性エラストマー組成物並びに該組成物の製造方法及び用途
DE60127477T2 (de) * 2000-02-09 2007-07-12 Mitsui Chemicals, Inc. Thermoplast-Elastomer Komposition mit fogging arme Eigenschaften, ihre Benutzung und Herstellungsverfahren
DE60124829T2 (de) 2000-09-07 2007-06-28 Mitsui Chemicals, Inc. Polare Gruppen enthaltendes Olefin-Copolymer, Verfahren zu seiner Herstellung, dieses Copolymer enthaltende thermoplastische Harzzusammensetzung und deren Verwendung
JP4367686B2 (ja) 2002-11-22 2009-11-18 三井化学株式会社 オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
EP2465878B1 (en) 2002-09-27 2020-04-01 Mitsui Chemicals, Inc. Bridged metallocene compound for olefin polymerization and method of polymerizing olefin using the same
JP4367688B2 (ja) 2002-11-28 2009-11-18 三井化学株式会社 オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
CN1922261A (zh) 2003-12-26 2007-02-28 Jsr株式会社 热塑性弹性体组合物及其成形品
EP2275451B1 (en) 2005-05-18 2016-10-19 Mitsui Chemicals, Inc. Method for producing propylene-based copolymer
US20080064805A1 (en) * 2005-10-07 2008-03-13 Mitsui Chemicals, Inc. Process for producing injection molded product
EP2020426B1 (en) * 2006-05-17 2012-10-24 Mitsui Chemicals, Inc. Foam, composition for foam, and use of the foam
JPWO2008059746A1 (ja) * 2006-11-17 2010-03-04 三井化学株式会社 プロピレン系樹脂組成物、プロピレン系樹脂組成物の製造方法、プロピレン系重合体組成物、該プロピレン系樹脂組成物からなる成形体および電線
JP5631589B2 (ja) * 2007-06-14 2014-11-26 三井化学株式会社 熱可塑性エラストマー組成物
WO2009081794A1 (ja) 2007-12-21 2009-07-02 Mitsui Chemicals, Inc. エチレン/α-オレフィン/非共役ポリエン共重合体の製造方法
JP5204727B2 (ja) * 2009-06-19 2013-06-05 三井化学株式会社 ゴム組成物およびその用途
JP2011202136A (ja) 2010-03-26 2011-10-13 Mitsui Chemicals Inc 熱可塑性エラストマーおよびその製法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011247A (ja) * 1999-06-28 2001-01-16 Mitsui Chemicals Inc 自動車用シール部材
WO2009081792A1 (ja) * 2007-12-21 2009-07-02 Mitsui Chemicals, Inc. エチレン/α-オレフィン/非共役ポリエン共重合体の製造方法
JP2011001489A (ja) * 2009-06-19 2011-01-06 Mitsui Chemicals Inc ゴム組成物およびその用途
JP2015137305A (ja) * 2014-01-22 2015-07-30 三井化学株式会社 重合体組成物および熱可塑性エラストマー組成物
WO2015122415A1 (ja) * 2014-02-13 2015-08-20 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3272790A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145350A (ja) * 2017-03-08 2018-09-20 三井化学株式会社 熱可塑性エラストマー組成物、その成形体及びそれらの製造方法
WO2018181106A1 (ja) * 2017-03-27 2018-10-04 三井化学株式会社 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
JPWO2018181106A1 (ja) * 2017-03-27 2020-01-16 三井化学株式会社 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
JP2018172553A (ja) * 2017-03-31 2018-11-08 三井化学株式会社 熱可塑性エラストマー組成物
JP2018178006A (ja) * 2017-04-17 2018-11-15 三井化学株式会社 熱可塑性エラストマー組成物、並びにその用途及び製造方法
JP7100498B2 (ja) 2018-05-30 2022-07-13 三井化学株式会社 重合体組成物、及び重合体組成物からなる成形体
JP2019206680A (ja) * 2018-05-30 2019-12-05 三井化学株式会社 重合体組成物、及び重合体組成物からなる成形体
JP2020094185A (ja) * 2018-11-29 2020-06-18 三井化学株式会社 伝動ベルト用組成物
JP7421307B2 (ja) 2018-11-29 2024-01-24 三井化学株式会社 伝動ベルト用組成物
WO2020171019A1 (ja) 2019-02-22 2020-08-27 三井化学株式会社 オレフィン系重合体組成物及びその成形体
JP2020193264A (ja) * 2019-05-28 2020-12-03 三井化学株式会社 伝動ベルト用組成物
JP7340958B2 (ja) 2019-05-28 2023-09-08 三井化学株式会社 伝動ベルト用組成物
JP7356863B2 (ja) 2019-10-28 2023-10-05 Nok株式会社 有機過酸化物架橋性ゴム組成物
JP2021066844A (ja) * 2019-10-28 2021-04-30 Nok株式会社 有機過酸化物架橋性ゴム組成物
KR102337085B1 (ko) * 2021-03-25 2021-12-08 (주)제이아이테크 수상 구조물용 계류 로프
CN116410546A (zh) * 2021-12-31 2023-07-11 中国石油天然气股份有限公司 一种聚丙烯树脂及其制备方法

Also Published As

Publication number Publication date
TWI683847B (zh) 2020-02-01
US20180072877A1 (en) 2018-03-15
US11078352B2 (en) 2021-08-03
CN107428956A (zh) 2017-12-01
TW201641563A (zh) 2016-12-01
KR20170118196A (ko) 2017-10-24
KR101840993B1 (ko) 2018-03-21
EP3272790A1 (en) 2018-01-24
BR112017020142B1 (pt) 2022-04-12
BR112017020142A2 (ja) 2018-07-03
EP3272790A4 (en) 2018-10-24
JPWO2016152711A1 (ja) 2017-12-21
JP6439039B2 (ja) 2018-12-19
CN107428956B (zh) 2022-05-17
EP3272790B1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
JP6439039B2 (ja) 熱可塑性エラストマー組成物、その用途、その製造方法、エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途
JP6774184B2 (ja) エチレン・α−オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法
EP3106481B1 (en) Ethylene/alpha-olefin/non-conjugated polyene copolymer, production method therefor, and use therefor
JP6426829B2 (ja) 熱可塑性エラストマー組成物およびその製造方法
JP2011001489A (ja) ゴム組成物およびその用途
JP5204727B2 (ja) ゴム組成物およびその用途
JP6859153B2 (ja) パッキン用エチレン共重合体組成物及びパッキン用途
JP6806881B2 (ja) 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
JP6859032B2 (ja) 防振ゴム用組成物およびその用途
JP6709641B2 (ja) シールパッキン
JP6938000B2 (ja) 熱可塑性エラストマー組成物
JP6426513B2 (ja) ゴム組成物
JP6930931B2 (ja) 熱可塑性エラストマー組成物からなる蛇腹状成形体
JP7033457B2 (ja) 熱可塑性エラストマー組成物からなる蛇腹状成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508284

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177026298

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559366

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016768614

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017020142

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017020142

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170920