JP6938000B2 - 熱可塑性エラストマー組成物 - Google Patents

熱可塑性エラストマー組成物 Download PDF

Info

Publication number
JP6938000B2
JP6938000B2 JP2017072011A JP2017072011A JP6938000B2 JP 6938000 B2 JP6938000 B2 JP 6938000B2 JP 2017072011 A JP2017072011 A JP 2017072011A JP 2017072011 A JP2017072011 A JP 2017072011A JP 6938000 B2 JP6938000 B2 JP 6938000B2
Authority
JP
Japan
Prior art keywords
group
thermoplastic elastomer
copolymer
elastomer composition
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017072011A
Other languages
English (en)
Other versions
JP2018172553A (ja
Inventor
市野 光太郎
光太郎 市野
達弥 坂井
達弥 坂井
一樹 三田
一樹 三田
公典 内田
公典 内田
諒平 佐伯
諒平 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2017072011A priority Critical patent/JP6938000B2/ja
Publication of JP2018172553A publication Critical patent/JP2018172553A/ja
Application granted granted Critical
Publication of JP6938000B2 publication Critical patent/JP6938000B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

本発明は熱可塑性エラストマー組成物に関する。より詳しくは、耐油性に優れた動的架橋型熱可塑性エラストマーを提供し得るオレフィン系熱可塑性エラストマー組成物、該組成物を動的架橋してなる動的架橋型熱可塑性エラストマー、ならびにその製造方法およびその用途に関する。
オレフィン系熱可塑性エラストマー(TPO)は、軽量でリサイクルが容易なことから、省エネルギー、省資源タイプの熱可塑性エラストマーとして、特に加硫ゴムの代替として自動車部品、工業機械部品、電子・電気機器部品、建材等に広く使用されている。
しかしながら、従来のオレフィン系熱可塑性エラストマーは、加硫ゴムに比べて、引張強度、破断伸度、圧縮永久歪が劣るという欠点があり、その改良が強く求められていた。
これらの特性を改良したオレフィン系熱可塑性エラストマーとして、特許文献1には、結晶性ポリオレフィン樹脂とエチレン・プロピレン・非共役ポリエン共重合体ゴムとを特定の条件下で動的架橋することで得られる動的架橋型熱可塑性エラストマー(TPV)が提案されている。
また、用途によっては(例えば自動車部品用途)、あえて架橋することなく、動的熱処理(動的混練)のみ行うことにより得られる熱可塑性エラストマーが用いられることがある(特許文献2参照)。
しかしながら、自動車部品用途では、燃費改善のため常に軽量化を求められているが、用いられている熱可塑性エラストマーはフィラーを多く含有するため、比重が大きくなりがちであり、部品軽量化を阻害していた。また、自動車部品は、潤滑油やグリースなどと接触する箇所に用いられることが多いが、一般的に、結晶性ポリオレフィンとオレフィン系ゴムからなるオレフィン系熱可塑性エラストマー組成物は、原料がいずれもパラフィン系オイルと親和性が高く、特にゴム成分は室温での結晶性も低いのでオイルを吸収しやすいことから、組成物としての耐油性が十分ではなかった。そのため、オレフィン系熱可塑性エラストマーを含んで得られるこれらの自動車部品においても、耐油性が低く、更なる改良が求められていた。
特開平09−012797号公報 特開2002−146105号公報
本発明は、軽量であって、硬度、引張強度および引張伸度などの機械物性ならびに耐油性に優れる成形体を得ることができる熱可塑性エラストマー組成物を提供することを課題とする。
本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、動的架橋型熱可塑性エラストマー(TPV)の原料として通常用いられているエチレン・プロピレン・非共役ジエン(EPDM)に代えて、エチレン・1−ブテン・非共役ジエン(EBDM)等のエチレン・炭素数4〜20のα−オレフィン・非共役ポリエンを用いることにより、TPVからなる成形体の耐油性が向上することを見出した。これは、EBDM等のゴム成分が、EPDMを用いた場合よりも、ポリプロピレン等の結晶性ポリオレフィン中に微分散化して特定の分散構造サイズを有することにより、TPV中の可塑剤の移動が制限されることが原因であると判明した。
また、従来、熱可塑性エラストマーにおける分散性の評価は、主に断面写真中のゴム成分の分散粒子径で行っていたが、X線散乱測定によって定量的な評価が可能になることが判明した。
本発明者らは、これらの知見に基づいて、本発明を完成するに至った。
すなわち、本発明の熱可塑性エラストマー組成物は、
結晶性オレフィン系重合体(A)と、
エチレン・炭素数4〜20のα−オレフィン・非共役ポリエン共重合体(B)と
を含み、かつ、下記要件(1)を満たすことを特徴とする。
(1)前記熱可塑性エラストマー組成物を架橋剤の存在下で動的架橋してなる動的架橋型熱可塑性エラストマーのX線散乱測定によって得られた散乱強度曲線(ただし、縦軸を散乱強度I(q)、横軸を散乱ベクトルの大きさqとする。)に対して、下記式(1)を用いたカーブフィッティングにより得られるパラメーターAが10〜125nmの範囲である。
Figure 0006938000
[式(1)中、I(0)はq=0に外挿した時の散乱強度であり、qは入射光の波長λ(nm)と散乱角2θ(rad)との間に下記式(2)の関係を有する。]
λq=4πsinθ (2)
本発明によれば、軽量であって、硬度、引張強度および引張伸度などの機械物性ならびに耐油性に優れる成形体を得ることができる熱可塑性エラストマー組成物が得られる。
X線散乱測定の配置の例を示す模式図である。 実施例1および比較例1で得られたTPVについて、TEMを用いてモルフォロジー観察を行った際の写真である。 実施例1および比較例1で得られたTPVのX線散乱測定によって得られた散乱強度曲線である。
以下、本発明について詳細に説明する。
[熱可塑性エラストマー組成物]
本発明の熱可塑性エラストマー組成物(以下「組成物(I)」ともいう。)は、結晶性オレフィン系重合体(A)(以下単に「重合体(A)」ともいう。)と、エチレン・炭素数4〜20のα−オレフィン・非共役ポリエン共重合体(B)(以下単に「共重合体(B)」ともいう。)とを含み、かつ、下記要件(1)を満たすことを特徴とする。
要件(1);前記組成物(I)を架橋剤の存在下で動的架橋してなる動的架橋型熱可塑性エラストマーのX線散乱測定によって得られた散乱強度曲線(ただし、縦軸を散乱強度I(q)、横軸を散乱ベクトルの大きさqとする。)に対して、下記式(1)を用いたカーブフィッティングにより得られるパラメーターAが10〜125nm、好ましくは50〜120nm、より好ましくは80〜115nmの範囲である。
Figure 0006938000
式(1)中、I(0)はq=0に外挿した時の散乱強度であり、qは入射光の波長λ(nm)と散乱角2θ(rad)との間に下記式(2)の関係を有する。
λq=4πsinθ (2)
上記フィッティングにより得られるパラメーターAが、動的架橋型熱可塑性エラストマーにおける分散構造サイズの特徴的長さとなる。すなわち、X線散乱測定によって熱可塑性エラストマーにおける分散性を定量的に評価することができる。
前記分散構造が高分子多成分系の相分離構造であるという観点から、X線散乱測定は小角X線散乱測定または超小角X線散乱測定であることが好ましい。
X線散乱測定は、一般的なX線散乱測定装置を用いて実施することができるが、例えば大型放射光施設SPring−8(兵庫県)に設置されている高分子専用ビームラインBL03XUを用いて測定することができる。図1に示した通り、試料に対してX線を入射し、入射X線に対して試料の背面方向に検出器を配置してもよいし、図1以外の配置、例えばBonse-Hart型などを採用してもよい(「Takenaka, M. NIPPON GOMU KYOKAISHI 2011, 84, (1), 7-13」参照)。
本発明の組成物(I)は、上記動的架橋を行う際の架橋剤として、フェノール樹脂系架橋剤(C)を含有してもよい。また、本発明の組成物(I)は、前記成分(A)〜(C)以外の他の成分を含有してもよい。
<結晶性オレフィン系重合体(A)>
重合体(A)は、オレフィンから得られる結晶性の重合体であれば特に制限されないが、1種以上のモノオレフィンを、高圧法または低圧法の何れかにより重合して得られる結晶性の高分子量固体生成物からなる重合体であることが好ましい。このような重合体としては、アイソタクチックモノオレフィン重合体、シンジオタクチックモノオレフィン重合体等が挙げられる。
重合体(A)は、従来公知の方法で合成して得てもよく、市販品を用いてもよい。また、重合体(A)は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
重合体(A)の原料となるモノオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、2−メチル−1−プロペン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、5−メチル−1−ヘキセン等が挙げられる。これらのオレフィンは、1種単独で用いてもよいし、2種以上混合して用いてもよい。
重合体(A)の中でも、耐熱性、耐油性の点からは、プロピレンを主とするモノオレフィンから得られるプロピレン単独重合体またはプロピレン共重合体であるプロピレン系(共)重合体が好ましい。なお、プロピレン共重合体の場合、プロピレン由来の構造単位の含有量は好ましくは40モル%以上、より好ましくは50モル%以上であり、プロピレン以外の単量体由来の構造単位となるモノオレフィンとしては、好ましくはプロピレン以外の上記モノオレフィン、より好ましくはエチレン、ブテンである。
重合様式はランダム型でもブロック型でも、結晶性の樹脂状物が得られればどのような重合様式を採用しても差支えない。
重合体(A)は、MFR(ASTM D1238−65T、230℃、2.16kg荷重)が、通常0.01〜100(g/10分)、好ましくは0.05〜50(g/10分)である。
重合体(A)は、示差走査熱量分析(DSC)で得られる融点(Tm)が、通常100℃以上、好ましくは105℃以上である。示差走査熱量測定は、たとえば次のようにして行われる。試料5mg程度を専用アルミパンに詰め、(株)パーキンエルマー社製DSCPyris1またはDSC7を用い、30℃から200℃までを320℃/minで昇温し、200℃で5分間保持したのち、200℃から30℃までを10℃/minで降温し、30℃でさらに5分間保持し、次いで10℃/minで昇温する際の吸熱曲線より融点を求める。なお、DSC測定時に、複数のピークが検出される場合は、最も高温側で検出されるピーク温度を融点(Tm)と定義する。
重合体(A)は、熱可塑性エラストマー組成物の流動性および耐熱性を向上させる役割を果たす。
<共重合体(B)>
共重合体(B)は、エチレンに由来する構造単位(B1)、少なくとも1種の炭素数4〜20のα−オレフィンに由来する構造単位(B2)、および少なくとも1種の非共役ポリエンに由来する構造単位(B3)を含み、好ましくは下記要件(2)および(3)を満たす。
(2)下記式(i)で表されるB値が1.20以上である。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
式(i)中、[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位(B1)のモル分率、炭素数4〜20のα−オレフィン由来の構造単位(B2)のモル分率、非共役ポリエン由来の構造単位(B3)のモル分率を示し、[EX]はエチレン由来の構造単位(B1)−炭素数4〜20のα−オレフィン由来の構造単位(B2)のダイアッド連鎖分率を示す。
(3)エチレンに由来する構造単位(B1)と炭素数4〜20のα−オレフィンに由来する構造単位(B2)とのモル比[(B1)/(B2)]が、40/60〜90/10である。
炭素数4〜20のα−オレフィンとしては、1−ブテン(炭素数4)、1−ノネン(炭素数9)、1−デセン(炭素数10)、1−ノナデセン(炭素数19)、1−エイコセン(炭素数20)等の側鎖の無い直鎖状のα−オレフィン;側鎖を有する4−メチル−1−ペンテン、9−メチル−1−デセン、11−メチル−1−ドデセン、12−エチル−1−テトラデセン等の側鎖を有するα−オレフィンなどが挙げられる。これらα−オレフィンは1種単独で用いてもよいし2種以上組み合わせて用いてもよい。これらの中では、炭素数4〜10のα−オレフィンが好ましく、1−ブテン、1−ヘキセン、1−オクテンがより好ましく、1−ブテンが、得られる成形体の耐油性、特に比較的高温での耐油性、柔軟性および耐衝撃性を向上させることができるため、さらに好ましい。
非共役ポリエンとしては、1,4−ヘキサジエン、1,6−オクタジエン、2−メチル−1,5−ヘキサジエン、6−メチル−1,5−ヘプタジエン、7−メチル−1,6−オクタジエン等の鎖状非共役ジエン;シクロヘキサジエン、ジシクロペンタジエン、メチルテトラヒドロインデン、5−ビニル−2−ノルボルネン、5−エチリデン−2−ノルボルネン、5−メチレン−2−ノルボルネン、5−イソプロピリデン−2−ノルボルネン、6−クロロメチル−5−イソプロペニル−2−ノルボルネン等の環状非共役ジエン;2,3−ジイソプロピリデン−5−ノルボルネン、2−エチリデン−3−イソプロピリデン−5−ノルボルネン、2−プロペニル−2,5−ノルボルナジエン、1,3,7−オクタトリエン、1,4,9−デカトリエン、4,8−ジメチル−1,4,8−デカトリエン、4−エチリデン−8−メチル−1,7−ノナジエン等のトリエンなどが挙げられる。これら非共役ポリエンは、1種単独で用いてもよいし2種以上を組み合わせて用いてもよい。これらの中でも、1,4−ヘキサジエンなどの環状非共役ジエン、5−エチリデン−2−ノルボルネン、5−ビニル−2−ノルボルネン、5−エチリデン−2−ノルボルネンおよび5−ビニル−2−ノルボルネンの混合物が好ましく、5−エチリデン−2−ノルボルネン、5−ビニル−2−ノルボルネンがより好ましい。
共重合体(B)としては、エチレン・1−ブテン・1,4−ヘキサジエン共重合体、エチレン・1−ペンテン・1,4−ヘキサジエン共重合体、エチレン・1−ヘキセン・1,4−ヘキサジエン共重合体、エチレン・1−へプテン・1,4−ヘキサジエン共重合体、エチレン・1−オクテン・1,4−ヘキサジエン共重合体、エチレン・1−ノネン・1,4−ヘキサジエン共重合体、エチレン・1−デセン・1,4−ヘキサジエン共重合体、エチレン・1−ブテン・1−オクテン・1,4−ヘキサジエン共重合体、エチレン・1−ブテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ペンテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ヘキセン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−へプテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−オクテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ノネン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−デセン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ブテン・1−オクテン・5−エチリデン−2−ノルボルネン共重合体、エチレン・1−ブテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−ペンテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−ヘキセン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−へプテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−オクテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−ノネン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−デセン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体、エチレン・1−ブテン・1−オクテン・5−エチリデン−2−ノルボルネン・5−ビニル−2−ノルボルネン共重合体などが挙げられる。
共重合体(B)は、1種単独で用いてもよいし、2種類以上組み合わせて用いてもよい。
共重合体(B)の前記B値は、1.20以上であり、好ましくは1.21〜1.80、より好ましくは1.22〜1.40の範囲にある。
B値が1.20未満であると、圧縮永久ひずみが大きくなり、ゴム弾性と引張強度とのバランスに優れた熱可塑性エラストマー組成物が得られないおそれがある。
なお、B値は、共重合体(B)中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式(i)中の[E]、[X]、[Y]、[EX]は、13C−NMRスペクトルを測定し、J. C.Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。
共重合体(B)は、エチレンに由来する構造単位(B1)と、α−オレフィンに由来する構造単位(B2)とのモル比[(B1)/(B2)]が、40/60〜90/10の範囲にある。前記モル比の下限としては、好ましくは45/55、より好ましくは50/50、特に好ましくは55/45である。また、前記モル比の上限としては、好ましくは80/20、より好ましくは75/25、さらに好ましくは70/30である。
エチレンに由来する構造単位(B1)と、α−オレフィンに由来する構造単位(B2)とのモル比が上記範囲にあると、耐油性、特に比較的高温での耐油性に優れ、ゴム弾性と常温での引張強度とのバランスに優れる熱可塑性エラストマー組成物が得られる。
共重合体(B)は、さらに以下の要件(4)および(5)の少なくとも1つを満たすことが望ましい。
(4)JIS K6300(1994)に準じて測定して得られた、125℃におけるムーニー粘度ML(1+4)(125℃)が、本発明の効果を奏する限り特に限定されないが、好ましくは5〜120、より好ましくは20〜115、さらに好ましくは50〜110の範囲にある。
ムーニー粘度が上記範囲にあると、良好な後処理性(リボンハンドリング性)を示すと共に優れたゴム物性を有する傾向にある。
(5)非共役ポリエンに由来する構造単位(B3)の含有量が、(B1)、(B2)および(B3)の構造単位の合計を100モル%に対して、好ましくは0.1〜6.0モル%の範囲である。構造単位(B3)の含有量の下限としては、好ましくは0.5モル%である。構造単位(B3)の含有量の上限としては、好ましくは4.0モル%、より好ましくは3.5モル%、さらに好ましくは3.0モル%である。非共役ポリエンに由来する構造単位(B3)の含有量が上記範囲にあると、十分な架橋性および柔軟性を有するエチレン系共重合体が得られる傾向にある。
本発明の組成物(I)において、結晶性オレフィン系重合体(A)とエチレン・α−オレフィン・非共役ポリエン共重合体(B)との重量比(A)/(B)は、好ましくは90/10〜10/90、より好ましくは60/40〜20/80である。重量比(A)/(B)が上記範囲にあると、機械物性、成形性に優れた成形体が得られる。
共重合体(B)は、例えば、
(a)下記一般式[VII]で表される遷移金属化合物(以下「架橋メタロセン化合物(a)」ともいう。)と、
(b)(b−1)有機金属化合物、
(b−2)有機アルミニウムオキシ化合物、および
(b−3)遷移金属化合物(a)と反応してイオン対を形成する化合物(以下「イオン化イオン性化合物(b−3)」ともいう。)
からなる群より選ばれる少なくとも1種の化合物と、
さらに必要に応じて
(c)粒子状担体(以下単に「担体(c)」ともいう。)と
を含むオレフィン重合触媒の存在下において、エチレン、炭素数4〜20のα−オレフィンおよび非共役ポリエンを共重合することにより製造することができる。該架橋メタロセン化合物(a)を含むオレフィン重合触媒の存在下でエチレンと炭素数4〜20のα−オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。
≪架橋メタロセン化合物(a)≫
Figure 0006938000
式[VII]中の、M、R5、R6、Qおよびjを以下に説明する。
上記Yは、炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子からなる群より選ばれる原子であるが、好ましくは炭素原子である。
上記Mは、チタン原子、ジルコニウム原子またはハフニウム原子であるが、好ましくはハフニウム原子である。
上記R5およびR6は、アリール基の水素原子の一つ以上をハメット則の置換基定数σが−0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基(以下「電子供与性基含有置換アリール基」ともいう。)である。
アリール基としては、フェニル基、1−ナフチル基、2−ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などの芳香族化合物から誘導された置換基等が挙げられる。上記アリール基としては、フェニル基または2−ナフチル基が好ましい。なお、上記芳香族化合物としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどの芳香族炭化水素および複素環式芳香族化合物等が挙げられる。
ハメット則の置換基定数σが−0.2以下の電子供与性基は、以下のように定義および例示される。ハメット則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年L. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則で求められた置換基定数にはベンゼン環のパラ位に置換した際のσpおよびメタ位に置換した際のσmがあり、これらの値は多くの一般的な文献に見出すことができる。例えば、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]には非常に広範な置換基について詳細な記載がなされている。ただし、これらの文献に記載されているσpおよびσmは、同じ置換基であっても文献によって値が僅かに異なる場合がある。本発明ではこのような状況によって生じる混乱を回避するために、記載のある限りの置換基においてはHanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された値をハメット則の置換基定数σpおよびσmと定義する。本発明においてハメット則の置換基定数σが−0.2以下の電子供与性基とは、該電子供与性基がフェニル基のパラ位(4位)に置換している場合はσpが−0.2以下の電子供与性基であり、フェニル基のメタ位(3位)に置換している場合はσmが−0.2以下の電子供与性基である。また、該電子供与性基がフェニル基のオルト位(2位)に置換している場合、またはフェニル基以外のアリール基の任意の位置に置換している場合は、σpが−0.2以下の電子供与性基である。
ハメット則の置換基定数σpまたはσmが−0.2以下の電子供与性置換基としては、p−アミノ基(4−アミノ基)、p−ジメチルアミノ基(4−ジメチルアミノ基)、p−ジエチルアミノ基(4−ジエチルアミノ基)、m−ジエチルアミノ基(3−ジエチルアミノ基)などの窒素含有基、p−メトキシ基(4−メトキシ基)、p−エトキシ基(4−エトキシ基)などの酸素含有基、p−t−ブチル基(4−t−ブチル基)などの三級炭化水素基、p−トリメチルシロキシ基(4−トリメチルシロキシ基)などのケイ素含有基などが挙げられる。尚、本発明で定義されるハメット則の置換基定数σpまたはσmが−0.2以下の電子供与性置換基は、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された置換基に限定されない。該文献に記載のない置換基であっても、ハメット則に基づいて測定した場合の置換基定数σpまたはσmがその範囲となるであろう置換基は、本発明で定義するハメット則の置換基定数σpまたはσmが−0.2以下の電子供与性基に含まれる。このような置換基としては、p−N−モルフォリニル基(4−N−モルフォリニル基)、m−N−モルフォリニル基(3−N−モルフォリニル基)などが挙げられる。
電子供与性基含有置換アリール基において、該電子供与性置換基が複数個置換している場合それぞれの電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外に炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基が置換していてもよく、該置換基が複数個置換している場合それぞれの置換基は同一でも異なっていてもよいが、一つの置換アリール基に含まれる該電子供与性置換基および該置換基の各々のハメット則の置換基定数σの総和は−0.15以下であることが好ましい。このような置換アリール基としては、m,p−ジメトキシフェニル基(3,4−ジメトキシフェニル基)、p−(ジメチルアミノ)−m−メトキシフェニル基(4−(ジメチルアミノ)−3−メトキシフェニル基)、p−(ジメチルアミノ)−m−メチルフェニル基(4−(ジメチルアミノ)−3−メチルフェニル基)、p−メトキシ−m−メチルフェニル基(4−メトキシ−3−メチルフェニル基)、p−メトキシ−m,m−ジメチルフェニル基(4−メトキシ−3,5−ジメチルフェニル基)等が挙げられる。
電子供与性基含有置換アリール基が有してもよい炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数3〜20の環状飽和炭化水素基、炭素数2〜20の鎖状不飽和炭化水素基、炭素数3〜20の環状不飽和炭化水素基等が挙げられる。
炭素数1〜20のアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デカニル基などの直鎖状飽和炭化水素基;イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、t−アミル基、ネオペンチル基、3−メチルペンチル基、1,1−ジエチルプロピル基、1,1−ジメチルブチル基、1−メチル−1−プロピルブチル基、1,1−ジプロピルブチル基、1,1−ジメチル−2−メチルプロピル基、1−メチル−1−イソプロピル−2−メチルプロピル基、シクロプロピルメチル基などの分岐状飽和炭化水素基等が挙げられる。上記アルキル基の炭素数は好ましくは1〜6である。
炭素数3〜20の環状飽和炭化水素基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1−アダマンチル基、2−アダマンチル基などの無置換の環状飽和炭化水素基; 3−メチルシクロペンチル基、3−メチルシクロヘキシル基、4−メチルシクロヘキシル基、4−シクロヘキシルシクロヘキシル基、4−フェニルシクロヘキシル基などの無置換の環状飽和炭化水素基の水素原子が炭素数1〜17の炭化水素基で置き換えられた基等が挙げられる。上記環状飽和炭化水素基の炭素数は好ましくは5〜11である。
炭素数2〜20の鎖状不飽和炭化水素基としては、エテニル基(ビニル基)、1−プロペニル基、2−プロペニル基(アリル基)、1−メチルエテニル基(イソプロペニル基)などのアルケニル基;、アルキニル基であるエチニル基、1−プロピニル基、2−プロピニル基(プロパルギル基)等が挙げられる。上記鎖状不飽和炭化水素基の炭素数は好ましくは2〜4である。
炭素数3〜20の環状不飽和炭化水素基としては、シクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基などの無置換の環状不飽和炭化水素基;3−メチルフェニル基(m−トリル基)、4−メチルフェニル基(p−トリル基)、4−エチルフェニル基、4−t−ブチルフェニル基、4−シクロヘキシルフェニル基、ビフェニリル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基(メシチル基)などの無置換の環状不飽和炭化水素基の水素原子が炭素数1〜15の炭化水素基で置き換えられた基;ベンジル基、クミル基などの直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が、炭素数3から19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基等が挙げられる。環状不飽和炭化水素基の炭素数は好ましくは6〜10である。
電子供与性基含有置換アリール基が有してもよいケイ素含有基としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基などのアルキルシリル基;ジメチルフェニルシリル基、メチルジフェニルシリル基、t-ブチルジフェニルシリル基などのアリールシリル基;ペンタメチルジシラニル基、トリメチルシリルメチル基などの炭素数1〜20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基等が挙げられる。アルキルシリル基の炭素数は1〜10が好ましく、アリールシリル基の炭素数は6〜18が好ましい。
電子供与性基含有置換アリール基が有してもよい窒素含有基としては、アミノ基、ニトロ基、N−モルフォリニル基や、上述した炭素数1〜20の炭化水素基またはケイ素含有基において、=CH−構造単位が窒素原子で置き換えられた基、−CH2−構造単位が炭素数1〜20の炭化水素基が結合した窒素原子で置き換えられた基、または−CH3構造単位が炭素数1〜20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基等が挙げられる。窒素含有基としては、ジメチルアミノ基、N−モルフォリニル基が好ましい。
電子供与性基含有置換アリール基が有してもよい酸素含有基としては、水酸基や、上述した炭素数1〜20の炭化水素基、ケイ素含有基または窒素含有基において、−CH2−構造単位が酸素原子またはカルボニル基で置き換えられた基、または−CH3構造単位が炭素数1〜20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t−ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t−ブトキシメチル基、1−ヒドロキシエチル基、1−メトキシエチル基、1−エトキシエチル基、2−ヒドロキシエチル基、2−メトキシエチル基、2−エトキシエチル基、n−2−オキサブチレン基、n−2−オキサペンチレン基、n−3−オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基等が挙げられる。酸素含有基としては、メトキシ基が好ましい。
電子供与性基含有置換アリール基が有していてもよいハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素等が挙げられる。
電子供与性基含有置換アリール基が有していてもよいハロゲン含有基としては、上述した炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等が挙げられる。
Qは、ハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子なる群より選ばれる原子、置換基または配位子であり、Qが複数ある場合には同一でも異なっていてもよい。
Qとなるハロゲン原子および炭素数1〜20の炭化水素基の具体例は、上記電子供与性基含有置換アリール基が有していてもよいハロゲン原子および炭素数1〜20の炭化水素基と同様である。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1〜20の炭化水素基である場合は、該炭化水素基の炭素数は1〜7であることが好ましい。
アニオン配位子としては、メトキシ基、t-ブトキシ基、フェノキシ基などのアルコキシ基;アセテート、ベンゾエートなどのカルボキシレート基;メシレート、トシレートなどのスルホネート基等が挙げられる。
孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物;テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2−ジメトキシエタンなどのエーテル化合物等が挙げられる。
jは1〜4の整数であり、好ましくは2である。
上記架橋メタロセン化合物(a)に含まれる2,3,6,7−テトラメチルフルオレニル基は、2、3、6および7位に四つの置換基を有するために電子的な効果が大きく、これにより高い重合活性で、かつ高分子量のエチレン系共重合体を生成するものと推測される。一方、概して非共役ポリエンはα−オレフィンに比して嵩高くなるため、これを重合する重合触媒、特に重合活性点となるメタロセン化合物の中心金属近傍は嵩高くない方が非共役ポリエンの共重合性能向上に繋がると推測される。2,3,6,7−テトラメチルフルオレニル基に含まれる四つのメチル基は、他の炭化水素基等に比べて嵩高くないため、このことが高い非共役ポリエン共重合性能に寄与しているものと考えられる。以上より、特に2,3,6,7−テトラメチルフルオレニル基を含む上記架橋メタロセン化合物(a)が、生成するエチレン系共重合体の高い分子量と、高い非共役ポリエン共重合性能と、高い重合活性とを同時に高いレベルでバランス良く実現するものと推測される。
架橋メタロセン化合物(a)は、例えば下式[VIII]のような簡便な方法で合成することが可能である。
Figure 0006938000
式[VIII]において、M、R5、R6の定義具体例および好適例は式[VII]の場合と同様である。
上記式[VIII]において、R5およびR6は上記のとおりであるが、一般式R5−C(=O)−R6で表される、このような条件を満たす種々のケトンが一般の試薬メーカーより市販されているため、該架橋メタロセン化合物(a)の原料の入手が容易である。また、仮にこのようなケトンが市販されていない場合でも、例えばOlahらによる方法[Heterocycles, 40, 79 (1995)]などにより、該ケトンは容易に合成することが可能である。このように、該架橋メタロセン化合物(a)は、比較的製造工程が簡素かつ容易であり、製造コストがさらに低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレ系共重合体の製造コストが低減されるという利点が得られる。さらに、該架橋メタロセン化合物(a)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点も得られる。
上記架橋メタロセン化合物(a)において、R5およびR6はアリール基および置換アリール基からなる群より選ばれる基であることが好ましい。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数4以上のα−オレフィンと非共役ポリエンとを共重合する場合、重合活性のさらなる向上および生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。また同時に、非共役ポリエンの共重合性能の向上(例えば、共重合体中の非共役ポリエン単位の含有量を高める、共重合体中に非共役ポリエン単位が均一に分散されやすくなる)という利点も得られる。
上記架橋メタロセン化合物(a)において、R5およびR6は同一の基であることがさらに好ましい。R5およびR6をこのように選択することにより、該架橋メタロセン化合物の合成工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることで共重合体の製造コストが低減されるという利点が得られる。また、該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能であるという利点が得られる。
本出願人は、種々の架橋メタロセン化合物について鋭意検討した結果、上記架橋メタロセン化合物(a)において、R5およびR6を上記基とした場合に、該架橋メタロセン化合物(a)を含むオレフィン重合触媒の存在下でエチレンと炭素数4〜20のα−オレフィンと非共役ポリエンとを共重合する際、生成する共重合体の分子量がさらに高くできることを初めて見出した。
架橋メタロセン化合物(a)のような有機金属錯体触媒によるオレフィンの配位重合においては、触媒の中心金属上でオレフィンが繰り返し重合することにより、生成するオレフィン重合体の分子鎖が生長し(生長反応)、該オレフィン重合体の分子量が増大することが知られている。一方、連鎖移動と呼ばれる反応において、オレフィン重合体の分子鎖が触媒の中心金属から解離することにより、該分子鎖の生長反応が停止し、従って該オレフィン重合体の分子量の増大も停止することも知られている。以上より、オレフィン重合体の分子量は、それを生成する有機金属錯体触媒に固有の、生長反応の頻度と連鎖移動反応の頻度との比率によって特徴づけられる。即ち、生長反応の頻度と連鎖移動反応の頻度との比が大きいほど生成するオレフィン重合体の分子量は高くなり、逆に小さいほど分子量は低くなるという関係である。ここで、それぞれの反応の頻度はそれぞれの反応の活性化エネルギーから見積もることができ、活性化エネルギーが低い反応はその頻度が高く、逆に活性化エネルギーが高い反応はその頻度が低いと見做すことができると考えられる。一般に、オレフィン重合における生長反応の頻度は連鎖移動反応の頻度に比して十分に高い、即ち生長反応の活性化エネルギーは連鎖移動反応の活性化エネルギーに比して十分に低いことが知られている。従って、連鎖移動反応の活性化エネルギーから生長反応の活性化エネルギーを減じた値(以下、ΔEc)は正となり、この値が大きいほど連鎖移動反応の頻度に比して生長反応の頻度が大きくなり、生成するオレフィン重合体の分子量が高くなることが推定される。このようにして行うオレフィン重合体の分子量の推定の妥当性は、例えばLaineらの計算結果によっても裏付けられている[Organometallics, 30, 1350 (2011)]。上記架橋メタロセン化合物(a)においては、R5およびR6を、特にハメット則の置換基定数σが−0.2以下の電子供与性置換基が一つ以上置換した電子供与性基含有置換アリール基とした場合に、上記ΔEcが増大し、該架橋メタロセン化合物(a)を含むオレフィン重合触媒の存在下でエチレンと炭素数4〜20のα−オレフィンと非共役ポリエンとを共重合する際に、生成する共重合体の分子量が高くなるものと推測される。
上記架橋メタロセン化合物(a)において、R5およびR6に含まれる電子供与性置換基は、窒素含有基および酸素含有基からなる群より選ばれる基であることがさらに好ましい。
上記架橋メタロセン化合物(a)において、R5およびR6は、上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、原料となる種々のベンゾフェノンが一般の試薬メーカーより市販されているため原料の入手が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることで共重合体(B)の製造コストが低減されるという利点が得られる。
ここで、上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基としては、o−アミノフェニル基(2−アミノフェニル基)、p−アミノフェニル基(4−アミノフェニル基)、o−(ジメチルアミノ)フェニル基(2−(ジメチルアミノ)フェニル基)、p−(ジメチルアミノ)フェニル基(4−(ジメチルアミノ)フェニル基)、o−(ジエチルアミノ)フェニル基(2−(ジエチルアミノ)フェニル基)、p−(ジエチルアミノ)フェニル基(4−(ジエチルアミノ)フェニル基)、m−(ジエチルアミノ)フェニル基(3−(ジエチルアミノ)フェニル基)、o−メトキシフェニル基(2−メトキシフェニル基)、p−メトキシフェニル基(4−メトキシフェニル基)、o−エトキシフェニル基(2−エトキシフェニル基)、p−エトキシフェニル基(4−エトキシフェニル基)、o−N−モルフォリニルフェニル基(2−N−モルフォリニルフェニル基)、p−N−モルフォリニルフェニル基(4−N−モルフォリニルフェニル基)、m−N−モルフォリニルフェニル基(3−N−モルフォリニルフェニル基)、o,p−ジメトキシフェニル基(2,4−ジメトキシフェニル基)、m,p−ジメトキシフェニル基(3,4−ジメトキシフェニル基)、p−(ジメチルアミノ)−m−メトキシフェニル基(4−(ジメチルアミノ)−3−メトキシフェニル基)、p−(ジメチルアミノ)−m−メチルフェニル基(4−(ジメチルアミノ)−3−メチルフェニル基)、p−メトキシ−m−メチルフェニル基(4−メトキシ−3−メチルフェニル基)、p−メトキシ−m,m−ジメチルフェニル基(4−メトキシ−3,5−ジメチルフェニル基)等が挙げられる。
上記架橋メタロセン化合物(a)において、R5およびR6は、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基および酸素含有基からなる群より選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、該基がオルト位に置換した場合に比べて合成が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン系共重合体の製造コストが低減されるという利点が得られる。
上記架橋メタロセン化合物(a)において、R5およびR6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基を含む置換フェニル基である場合、該窒素含有基は下記一般式[II]で表される基であることがさらに好ましい。
Figure 0006938000
式[II]において、R7およびR8は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよく、Nの右に描かれた線はフェニル基との結合を表す。
7およびR8としての炭素数1から20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基の具体例および好適例は、上記式[VII]の場合と同様である。
このような架橋メタロセン化合物(a−4)は、下記一般式[IX]で表される。
Figure 0006938000
式[IX]において、M、Qおよびjの定義、具体例および好適例は式[VII]の場合と同様である。R7、R8およびR10は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる置換基であり、それぞれ同一でも異なっていてもよく、R7、R8およびR10のうちの隣接した置換基は互いに結合して環を形成していてもよく、NR78はハメット則の置換基定数σが−0.2以下の窒素含有基であり、該窒素含有基が複数個存在する場合にはそれぞれの窒素含有基は互いに同一でも異なっていてもよく、nは1から3の整数であり、mは0から4の整数である。
上記架橋メタロセン化合物(a)において、R5およびR6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての酸素含有基を含む置換フェニル基である場合、該酸素含有基は下記一般式[III]で表される基であることがさらに好ましい。
Figure 0006938000
式[III]において、R9は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基からなる群より選ばれる原子または置換基であり、Oの右に描かれた線はフェニル基との結合を表す。
9としての炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基の具体例および好適例は、式[VII]の場合と同様である。
このような架橋メタロセン化合物(a−5)は、下記一般式[X]で表される。
Figure 0006938000
式[X]において、M、Qおよびjの定義、具体例および好適例は式[VII]の場合と同様である。R9およびR10は水素原子、炭素数1から20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群より選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、R10の隣接した置換基は互いに結合して環を形成していてもよく、OR9はハメット則の置換基定数σが−0.2以下の酸素含有基であり、該酸素含有基が複数個存在する場合にはそれぞれの酸素含有基は互いに同一でも異なっていてもよく、nは1から3の整数であり、mは0から4の整数である。
上記一般式[VII]で表される架橋メタロセン化合物(a)、上記一般式[IX]で表される架橋メタロセン化合物(a−4)または上記一般式[X]で表される架橋メタロセン化合物(a−5)において、Mはハフニウム原子であることがさらに好ましい。Mがハフニウム原子である上記架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα−オレフィンと非共役ポリエンとを共重合する場合、生成する共重合体のさらなる高分子量化が可能となり、非共役ポリエンの共重合性能の向上という利点が得られる。
このような架橋メタロセン化合物(a−6)としては、
[ジメチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-n-ブチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、 [ジシクロペンチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[シクロペンチリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[シクロヘキシリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-1-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-2-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-n-ヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-シクロヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-t-ブチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3-メチルフェニル)メチレン(η5−シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-エトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フェノキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリメチルシロキシ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス{3-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-N-モルフォリニルフェニル)(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス{4-(トリメチルシリル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{3-(トリフルオロメチル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリフルオロメチル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[メチルフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル{4-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジメチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ(4-メチルフェニル)シリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジメチルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)エチレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-3-(η5-2,3,6,7-テトラメチルフルオレニル)プロピレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)-1,1,2,2-テトラメチルシリレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)フェニレン]ハフニウムジクロリド、および、これらの化合物のハフニウム原子をジルコニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物等が挙げられる。これら触媒の中でも、[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリドが好ましい。
共重合体(B)の製造に使用される架橋メタロセン化合物は公知の方法によって製造可能であり、特に製造方法が限定されるわけではない。製造方法としては、例えば、J.Organomet.Chem.,63,509(1996)、本出願人による出願に係る公報であるWO2006/123759号公報、WO01/27124号公報、特開2004−168744号公報、特開2004−175759号公報、特開2000−212194号公報等記載の製造方法等が挙げられる。
≪化合物(b)≫
上記化合物(b)は、(b−1)有機金属化合物、(b−2)有機アルミニウムオキシ化合物、および(b−3)架橋メタロセン化合物(a)と反応してイオン対を形成する化合物、からなる群より選ばれる少なくとも1種の化合物である。
(b−1)有機金属化合物
共重合体(B)の製造に用いられる有機金属化合物(b−1)として、具体的には下記一般式[X]〜[XII]のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
a)一般式 Ra mAl(ORbnpq・・・[X]
(式[X]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
一般式[X]で表される化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn−オクチルアルミニウムなどのトリアルキルアルミニウム、トリシクロアルキルアルミニウム、イソブチルアルミニウムジクロリド、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、ジイソブチルアルミニウムハイドライド等が挙げられる。
b)一般式 M2AlRa 4・・・[XI]
(式[XI]中、M2はLi、NaまたはKを示し、Raは炭素原子数が1〜15、好ましくは1〜4の炭化水素基である。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
一般式[XI]で表される化合物として、LiAl(C254、LiAl(C7154等が挙げられる。
c)一般式 Rab3・・・[XII]
(式[XII]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属を有するジアルキル化合物。
上記の有機金属化合物(b−1)の中では、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn−オクチルアルミニウムなどの有機アルミニウム化合物が好ましい。また、これら有機金属化合物(b−1)は、1種単独で用いてもよいし2種以上組み合わせて用いてもよい。
(b−2)有機アルミニウムオキシ化合物
共重合体(B)の製造に用いられる有機アルミニウムオキシ化合物(b−2)は、従来公知のアルミノキサンであってもよく、また特開平2−78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。有機アルミニウムオキシ化合物(b−2)は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
(b−3)イオン化イオン性化合物
共重合体(B)の製造に用いられるイオン化イオン性化合物(b−3)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、USP−5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
上記イオン化イオン性化合物(b−3)の中では、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが好ましい。イオン化イオン性化合物(b−3)は、1種単独で用いてもよいし2種以上組み合せて用いてもよい。
上記架橋メタロセン化合物(a)を触媒とする場合、トリイソブチルアルミニウムなどの有機金属化合物(b−1)、メチルアルミノキサンなどの有機アルミニウムオキシ化合物(b−2)またはトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(b−3)を併用すると、共重合体(B)の製造に際して非常に高い重合活性を示す。
≪担体(c)≫
上記担体(c)は、無機化合物または有機化合物であって、顆粒状ないしは微粒子状の固体である。
上記無機化合物の中でも、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
多孔質酸化物としては、SiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2などの無機酸化物、またはこれら無機酸化物を含む複合物または混合物を主成分とする多孔質材が挙げられ、多孔質酸化物としては、具体的には、天然または合成ゼオライト;SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、SiO2−TiO2−MgOなどを主成分とする多孔質酸化物が挙げられる。これらのうち、SiO2および/またはAl23を主成分とする多孔質酸化物が好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が10〜300μm、好ましくは20〜200μmであって、比表面積が通常50〜1000m2/g、好ましくは100〜700m2/gの範囲にあり、細孔容積が0.3〜3.0cm3/gの範囲にあることが望ましい。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成してから使用される。
無機ハロゲン化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が挙げられる。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。
上記担体(c)として用いられる粘土は、通常粘土鉱物を主成分として構成される。また、本発明で用いられるイオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物等が挙げられる。
粘土および粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイト等が挙げられる。
イオン交換性層状化合物としては、α−Zr(HAsO42・H2O、α−Zr(HPO42、α−Zr(KPO42・3H2O、α−Ti(HPO42、α−Ti(HAsO42・H2O、α−Sn(HPO42・H2O、γ−Zr(HPO42、γ−Ti(HPO42、γ−Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩等が挙げられる。
このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上のものが好ましく、0.3〜5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20〜30000Åの範囲について測定される。
半径20Å以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
上記担体(c)として用いられる粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理としては、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。
上記担体(c)として用いられるイオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物;Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など);、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオン等が挙げられる。これらの化合物は1種単独で用いることもできるし2種以上組み合わせて用いることもできる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
上記粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。これら担体(c)となる物質は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
有機化合物としては、粒径が10〜300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテンなどの炭素原子数が2〜14のα−オレフィンを主成分として生成される(共)重合体、ビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体が挙げられる。
≪共重合体(B)の製造≫
エチレン、α−オレフィン、及び非共役ポリエンを共重合させる際、重合触媒を構成する各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
(1)前記化合物(a)を単独で重合器に添加する方法。
(2)前記化合物(a)および前記化合物(b)を任意の順序で重合器に添加する方法。
(3)前記化合物(a)を前記担体(c)に担持した触媒成分、前記化合物(b)を任意の順序で重合器に添加する方法。
(4)前記化合物(b)を前記担体(c)に担持した触媒成分、前記化合物(a)を任意の順序で重合器に添加する方法。
(5)前記化合物(a)と前記化合物(b)とを前記担体(c)に担持した触媒成分を重合器に添加する方法。
上記(2)〜(5)の各方法においては、化合物(a)、化合物(b)、担体(c)の少なくとも2つは予め接触されていてもよい。
化合物(b)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない化合物(b)を、任意の順序で添加してもよい。この場合化合物(b)は、担体(c)に担持されている化合物(b)と同一でも異なっていてもよい。
また、上記の担体(c)に化合物(a)が担持された固体触媒成分、担体(c)に化合物(a)および化合物(b)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。
共重合体(B)の製造は、溶液(溶解)重合、懸濁重合などの液相重合法または気相重合法のいずれによっても可能である。
液相重合法において用いられる不活性炭化水素媒体としては、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素等が挙げられる。上記不活性炭化水素媒体は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、オレフィン自身を溶媒として用いることもできる。
上記のような共重合体用触媒を用いて、エチレンなどの重合を行うに際して、架橋メタロセン化合物(a)は、反応容積1リットル当り、通常10-12〜10-2モル、好ましくは10-10〜10-8モルになるような量で用いられる。
有機金属化合物(b−1)は、該化合物(b−1)と、架橋メタロセン化合物(a)中の全遷移金属原子(M)とのモル比〔(b−1)/M〕が通常0.01〜50000、好ましくは0.05〜10000となるような量で用いられる。有機アルミニウムオキシ化合物(b−2)は、該化合物(b−2)中のアルミニウム原子と、化合物(a)中の全遷移金属(M)とのモル比〔(b−2)/M〕が、通常10〜50000、好ましくは20〜10000となるような量で用いられる。イオン化イオン性化合物(b−3)は、化合物(b−3)と、化合物(a)中の遷移金属原子(M)とのモル比〔(b−3)/M〕が、通常1〜20、好ましくは1〜15となるような量で用いられる。
共重合体(B)の重合温度は、通常−50〜+200℃、好ましくは0〜+200℃の範囲、より好ましくは、+80〜+200℃の範囲である。
目標とする到達分子量、用いる触媒の重合活性によるが、生産性の観点から、重合温度は、より高温(+80℃以上)であることが望ましい。
共重合体(B)の重合圧力は、通常常圧〜10MPaゲージ圧、好ましくは常圧〜5MPaゲージ圧の範囲である。共重合体(B)の重合反応形式は、回分式、半連続式、連続式のいずれであってもよい。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
得られ共重合体(B)の分子量は、例えば重合系内に水素を存在させることにより、あるいは重合温度を変化させることにより調整できる。水素を重合系内に存在させることに分子量を調整する場合には、水素の添加量はオレフィン1kgあたり0.001〜100NL程度が適当である。また、化合物(b)(例えば、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等)を触媒成分と使用する場合には、共重合体の分子量は、化合物(b)の使用量により調節できる。
<フェノール樹脂系架橋剤(C)>
フェノール樹脂系架橋剤(C)(以下「架橋剤(C)」ともいう。)としては、ハロゲン化フェノール樹脂系架橋剤が挙げられる。
架橋剤(C)としては、レゾール樹脂でありアルキル置換フェノール又は非置換フェノールのアルカリ媒体中のアルデヒドでの縮合、好ましくはホルムアルデヒドでの縮合、又は二官能性フェノールジアルコール類の縮合により製造されることも好ましい。アルキル置換フェノールは1〜10の炭素原子のアルキル基置換体が好ましい。さらにはp−位において1〜10の炭素原子を有するアルキル基で置換されたジメチロールフェノール類又はフェノール樹脂が好ましい。フェノール樹脂系硬化樹脂は、典型的には、熱架橋性樹脂であり、フェノール樹脂系架橋剤またはフェノール樹脂とも呼ばれる。
フェノール樹脂系硬化樹脂(フェノール樹脂系架橋剤)の例としては、下記一般式(I)を挙げることができる。
Figure 0006938000
式(I)中、Qは、−CH2−及び−CH2−O−CH2−から成る群から選ばれる二価の基であり、mは0又は1〜20の正の整数であり、R'は有機基である。
好ましくは、Qは、二価基−CH2−O−CH2−であり、mは0又は1〜10の正の整数であり、R'は20未満の炭素原子を有する有機基である。より好ましくは、mは0又は1〜5の正の整数であり、R'は4〜12の炭素原子を有する有機基である。具体的にはアルキルフェノールホルムアルデヒド樹脂、メチロール化アルキルフェノール樹脂、ハロゲン化アルキルフェノール樹脂等が挙げられ、好ましくはハロゲン化アルキルフェノール樹脂であり、さらに好ましくは、末端の水酸基を臭素化したものである。フェノール樹脂系硬化樹脂において、末端が臭素化されたものの一例を下記一般式(II)に示す。
Figure 0006938000
式(II)中、nは0〜10の整数、Rは炭素数1〜15の飽和炭化水素基である。
上記フェノール樹脂系硬化樹脂の製品例としては、タッキロール(登録商標)201(アルキルフェノールホルムアルデヒド樹脂、田岡化学工業(株)社製)、タッキロール(登録商標)250−I(臭素化率4%の臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業(株)社製)、タッキロール(登録商標)250−III(臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業(株)社製)、PR−4507(群栄化学工業(株)社製)、Vulkaresat510E(Hoechst社 製)、Vulkaresat532E(Hoechst社製)、Vulkaresen E(Hoechst社製)、Vulkaresen105E(Hoechst社製)、Vulkaresen130E(Hoechst社製)、Vulkaresol315E(Hoechst社製)、Amberol ST 137X(Rohm&Haas社製)、スミライトレジン(登録商標)PR−22193(住友デュレズ(株)社製)、Symphorm−C−100(Anchor Chem.社製)、Symphorm−C−1001(Anchor Chem.社製)、タマノル(登録商標)531(荒川化学(株)社製)、Schenectady SP1059(Schenectady Chem.社製)、Schenectady SP1045(SchenectadyChem.社製)、CRR−0803(U.C.C社製)、Schenectady SP1055F(Schenectady Chem.社製、臭素化アルキルフェノール・ホルムアルデヒド樹脂)、Schenectady SP1056(Schenectady Chem.社製)、CRM−0803(昭和ユニオン合成(株)社製)、Vulkadur A(Bayer社製)が挙げられる。これらの中でも、ハロゲン化フェノール樹脂系架橋剤が好ましく、タッキロール(登録商標)250−I、タッキロール(登録商標)250−III、Schenectady SP1055Fなどの臭素化アルキルフェノール・ホルムアルデヒド樹脂がより好ましく使用できる。
また、熱可塑性加硫ゴムのフェノール樹脂による架橋の具体的な例としては、米国特許第4,311,628号、米国特許第2,972,600号及び米国特許第3,287,440号に記載され、これらの技術も本発明で用いることができる。
米国特許第4,311,628号には、フェノール系硬化性樹脂(phenolic curing resin)及び加硫活性剤(cure activator)からなるフェノール系加硫剤系(phenolic curative system)が開示されている。該系の基本成分は、アルカリ媒体中における置換フェノール(例えば、ハロゲン置換フェノール、C1−C2アルキル置換フェノール)又は非置換フェノールとアルデヒド、好ましくはホルムアルデヒドとの縮合によるか、あるいは二官能性フェノールジアルコール類(好ましくは、パラ位がC5−C10アルキル基で置換されたジメチロールフェノール類)の縮合により製造されるフェノール樹脂系架橋剤である。アルキル置換フェノール樹脂系架橋剤のハロゲン化により製造されるハロゲン化されたアルキル置換フェノール樹脂系架橋剤が、特に適している。メチロールフェノール硬化性樹脂、ハロゲン供与体及び金属化合物からなるフェノール樹脂系架橋剤が特に推奨でき、その詳細は米国特許第3,287,440号及び同第3,709,840号各明細書に記載されている。非ハロゲン化フェノール樹脂系架橋剤は、ハロゲン供与体と同時に、好ましくはハロゲン化水素スカベンジャーとともに使用される。通常、ハロゲン化フェノール樹脂系架橋剤、好ましくは、2〜10重量%の臭素を含有している臭素化フェノール樹脂系架橋剤はハロゲン供与体を必要としないが、例えば酸化鉄、酸化チタン、酸化マグネシウム、ケイ酸マグネシウム、二酸化ケイ素及び酸化亜鉛、好ましくは酸化亜鉛のような金属酸化物のごときハロゲン化水素スカベンジャーと同時に使用される。これら酸化亜鉛などのハロゲン化水素スカベンジャーは、フェノール樹脂系架橋剤100重量部に対して、通常1〜20重量部用いられる。このようなスカベンジャーの存在はフェノール樹脂系架橋剤の架橋作用を促進するが、フェノール樹脂系架橋剤で容易に加硫されないゴムの場合には、ハロゲン供与体及び酸化亜鉛を共用することが望ましい。ハロゲン化フェノール系硬化性樹脂の製法及び酸化亜鉛を使用する加硫剤系におけるこれらの利用は米国特許第2,972,600号及び同第3,093,613号各明細書に記載されており、その開示は前記米国特許第3,287,440号及び同第3,709,840号明細書の開示とともに参考として本明細書にとり入れるものとする。適当なハロゲン供与体の例としては、例えば、塩化第一錫、塩化第二鉄、又は塩素化パラフィン、塩素化ポリエチレン、クロロスルホン化ポリエチレン及びポリクロロブタジエン(ネオプレンゴム)のようなハロゲン供与性重合体が挙げられる。本明細書で使用されている「加硫促進剤」なる用語はフェノール樹脂系架橋剤の架橋効率を実質上増加させるあらゆる物質を意味し、そして金属酸化物及びハロゲン供与体を包含し、これらは単独で、又は組み合わせて使用される。フェノール系加硫剤系のより詳細に関しては、「Vulcanization and Vulcanizing Agents」(W. Hoffman, Palmerton Publishing Company)を参照されたい。適当なフェノール樹脂系架橋剤及び臭素化フェノール樹脂系架橋剤は商業的に入手することができ、例えばかかる架橋剤はSchenectady Chemicals, Inc.から商品名「SP−1045」、「CRJ−352」、「SP−1055F」及び「SP−1056」として購入できる。同様の作用上等価のフェノール樹脂系架橋剤は、また他の供給者から得ることができる。
架橋剤(C)は、分解物の発生が少ないため、フォギング防止の観点から好適な加硫剤である。架橋剤(C)は、ゴムの本質的に完全な加硫を達成させるに充分な量で使用される。
本発明においては、架橋剤(C)による動的架橋に際し、硫黄、p−キノンジオキシム、p,p'−ジベンゾイルキノンジオキシム、N−メチル−N−4−ジニトロソアニリン、ニトロソベンゼン、ジフェニルグアニジン、トリメチロールプロパン−N,N'−m−フェニレンジマレイミドのようなペルオキシ架橋助剤、ジビニルベンゼン、トリアリルシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アリルメタクリレートなどの多官能性メタクリレートモノマー、ビニルブチラート、ビニルステアレートなどの多官能性ビニルモノマー等の助剤を配合することができる。
上記助剤を用いることにより、均一かつ穏やかな架橋反応が期待できる。上記助剤としては、ジビニルベンゼンが好ましい。ジビニルベンゼンは、取扱い易く、重合体(A)および共重合体(B)との相溶性が良好であり、かつ、架橋剤(C)を可溶化する作用を有し、架橋剤(C)の分散剤として働くため、熱処理による架橋効果が均質で、流動性と物性のバランスのとれた熱可塑性エラストマー組成物が得られる。
上記助剤は、共重合体(B)100重量部に対して、通常2重量部以下、好ましくは0.3〜1重量部となるような量で用いられる。
また、架橋剤(C)の分解を促進するために、分散促進剤を用いてもよい。分解促進剤としては、トリエチルアミン、トリブチルアミン、2,4,6−トリ(ジメチルアミノ)フェノールなどの三級アミン;
アルミニウム、コバルト、バナジウム、銅、カルシウム、ジルコニウム、マンガン、マグネシウム、鉛、水銀等、ナフテン酸と種々の金属(たとえば、Pb、Co、Mn、Ca、Cu、Ni、Fe、Zn、希土類)とのナフテン酸塩等が挙げられる。
本発明の組成物(I)では、架橋剤(C)は、共重合体(B)100重量部に対して、通常0.1〜20重量部、好ましくは1〜10重量部となるような量で用いられる。架橋剤(C)の配合量を上記範囲にすることにより、成形性に優れる組成物が得られ、また、得られる成形体は、高強度であって、優れた耐油性を有し、十分な耐熱性および機械物性を有する。
<その他の成分>
本発明の組成物(I)には、重合体(A)、共重合体(B)および架橋剤(C)の他に、本発明の効果を損なわない範囲において、添加剤を配合してもよい。添加剤としては、特に限定されないが、軟化剤(D)、無機充填剤(E)等が挙げられる。また、添加剤としては、共重合体(B)以外のゴム(たとえば、ポリイソブチレン、ブチルゴム、プロピレン・エチレン共重合体ゴム、プロピレン・ブテン共重合体ゴムおよびプロピレン・ブテン・エチレン共重合体ゴムなどのプロピレン系エラストマー、エチレン・プロピレン共重合体ゴムなどのエチレン系エラストマー、スチレン・ブタジエン・スチレンブロックポリマー、スチレン・イソプレン・スチレンブロックポリマー、スチレン・イソブチレン・スチレンブロックポリマーおよびこれらの水素添加物などのスチレン系エラストマー);熱硬化性樹脂、結晶性オレフィン系重合体(A)以外のポリオレフィンなどの樹脂;紫外線吸収剤;酸化防止剤;耐熱安定剤;老化防止剤;耐光安定剤、耐候安定剤;帯電防止剤;金属セッケン;脂肪族アミド;ワックスなどの滑剤等、ポリオレフィンの分野で用いられている公知の添加剤が挙げられる。
これら添加剤は、それぞれ1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
また、本明細書において特に言及している添加剤以外の添加剤の配合量は、本発明の効果を奏する限り特に限定されないが、重合体(A)と、共重合体(B)との合計100重量部に対して、それぞれ通常0.0001〜10重量部、好ましくは0.01〜5重量部程度である。
軟化剤(D)としては、通常ゴムに使用される軟化剤を用いることができる。軟化剤(D)としては、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリンなどの石油系軟化剤;コールタール、コールタールピッチなどのコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油などの脂肪油系軟化剤;トール油;サブ(ファクチス);蜜ロウ、カルナウバロウ、ラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム、ラウリン酸亜鉛等の脂肪酸または脂肪酸塩;ナフテン酸;パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、アタクチックポリプロピレン、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系軟化剤;マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、液状チオコール、炭化水素系合成潤滑油などが挙げられる。
軟化剤(D)は、本発明の効果を奏する限り特に限定されないが、重合体(A)および共重合体(B)の合計100重量部に対して、通常2〜100重量部、好ましくは5〜80重量部の量で用いられる。軟化剤(D)をこのような量で用いると、熱可塑性エラストマー組成物の調製時および成形時の流動性に優れ、カーボンブラック等の分散性を向上させ、得られる成形体の機械的物性を低下させ難く、また、得られる成形体は、耐熱性、耐熱老化性に優れる。
無機充填剤(E)としては、炭酸カルシウム、ケイ酸カルシウム、クレー、カオリン、タルク、シリカ、ケイソウ土、雲母粉、アスベスト、アルミナ、硫酸バリウム、硫酸アルミニウム、硫酸カルシウム、塩基性炭酸マグネシウム、二硫化モリブデン、グラファイト、カーボンブラック、ガラス繊維、ガラス球、シラスバルーン、塩基性硫酸マグネシウムウィスカー、チタン酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー等が挙げられる。
これら無機充填剤(E)は、重合体(A)と、共重合体(B)との合計量100重量部に対して、通常1〜100重量部、好ましくは1〜50重量部の量で用いられる。
共重合体(B)以外のゴムを用いる場合には、該ゴムは、重合体(A)と、共重合体(B)との合計量100重量部に対して、通常2〜200重量部、好ましくは5〜150重量部の量で用いる。
[動的架橋型熱可塑性エラストマー]
本発明の動的架橋型熱可塑性エラストマー(以下「組成物(II)」ともいう。)は、熱可塑性エラストマー組成物(I)を動的架橋することによって得られる。より具体的には、組成物(II)は、重合体(A)、共重合体(B)、必要に応じて配合される添加剤を含む混合物を、架橋剤、好ましくは架橋剤(C)の存在下に、動的に熱処理して架橋(動的架橋)することによって得られる。
重合体(A)と共重合体(B)とを架橋剤により動的架橋することにより初めて、軽量かつ高強度であって、優れた耐油性を有し、さらに機械物性にも優れた組成物(II)が得られる。
本発明において、「動的に熱処理する」とは、架橋剤の存在下で、前記混合物を溶融状態で混練することをいう。また、「動的架橋」とは、混合物にせん断力を加えながら架橋することをいう。
組成物(II)は、重合体(A)および共重合体(B)を含む重合体成分が部分的に架橋された組成物であってもよく、完全に架橋された組成物であってもよい。
動的な熱処理は、非開放型の装置中で行なうことが好ましく、また窒素、炭酸ガス等の不活性ガス雰囲気下で行うことが好ましい。熱処理の温度は、通常重合体(A)の融点〜300℃の範囲であり、好ましくは150〜280℃、より好ましくは170〜270℃である。混練時間は、通常1〜20分間、好ましくは1〜10分間である。また、加えられる剪断力は、最高剪断速度で通常10〜100,000sec-1、好ましくは100〜50,000sec-1、より好ましくは1,000〜10,000sec-1、さらに好ましくは2,000〜7,000sec-1の範囲である。
混練の際の混練装置としては、ミキシングロール、インテンシブミキサー(例えばバンバリーミキサー、ニーダー)、一軸押出機、二軸押出機等が挙げられる。なお、これら混練装置としては、非開放型の装置が好ましい。
本発明の組成物(II)は、従来の架橋型熱可塑性エラストマーと同等以上の、硬度と、機械特性(引張強度、伸び等)を有しているため、各種用途に用いることができる。また、本発明の組成物(II)は、従来の架橋型熱可塑性エラストマーと比べて優れた耐油性を有しているため、特に、従来の架橋型熱可塑性エラストマーを用いることが困難な分野、たとえば、グリースや潤滑油と接触するため、より優れた耐油性が求められる、自動車用の、ホース、パイプおよびブーツ(ブロー成形品)などの自動車部品に好適に用いることができる。
本発明の組成物(II)は、軽量性、耐熱性、柔軟性、ゴム弾性、耐候性、相溶性にも優れている。
また、本発明の組成物(II)は、成形加工性に優れているため、様々な成形法により、成形が可能である。前記成形としては、押出成形、射出成形、圧縮成形、カレンダー成形、真空成形、プレス成形、スタンピング成形、ブロー成形等が挙げられる。なお、ブロー成形としては、ブレスブロー成形、ダイレクトブロー成形、インジェクションブロー成形等が挙げられる。
[成形体]
本発明の成形体は、本発明の組成物(II)を、成形することにより得られる。例えば組成物(I)または(IIC)を、押出成形、射出成形、圧縮成形等の従来のプラスチック成形法によって成形することにより得られる。また、このような成形法によって生じた屑やバリを回収して再利用することもできる。
本発明の成形体としては、例えばバンパー部品、ボディパネル、サイドシールド、グラスランチャンネル、インストルメントパネル表皮、ドア表皮、天井表皮、ウェザーストリップ材、ホース、ステアリングホイール、ブーツ、ワイヤーハーネスカバー、シートアジャスターカバー等の自動車部品;電線被覆材、コネクター、キャッププラグ等の電気部品;靴底、サンダル等の履物;水泳用フィン、水中眼鏡、ゴルフクラブグリップ、野球バットグリップ等のレジャー用品、ガスケット、防水布、ベルト、ガーデンホース;土木・建築用各種ガスケットおよびシートなどが挙げられる。成形体としては、特に耐油性が求められる用途に適しており、自動車用の、ホース、ブーツ、ワイヤーハーネスカバー、シートアジャスターカバー等の自動車部品が特に好ましい用途として挙げられる。
成形体としては、前述のように自動車部品が好ましく、自動車部品のより詳細な例としては、機構部材、内装部材、外装部材、その他部材が挙げられる。
機構部材としては、CVJブーツ、サスペンションブーツ、ラック&ピニオンブーツ、ステアリングロッドカバー、ATクッション、ATスライドカバー、リーフスプリングブッシュ、ボールジョイントリテーナ、タイミングベルト、Vベルト、エンジンルーム内ホース、エアーダクト、エアバッグカバー、プロペラシャフトカバー材などが挙げられる。
内装部材としては、各種表皮材(インストルメンタルパネル、ドアトリム、天井、リアピラー)、コンソールボックス、アームレスト、エアバックケースリッド、シフトノブ、アシストグリップ、サイドステップマット、リクライニングカバー、トランク内シート、シートベルトバックル、レバースライドプレート、ドアラッチストライカー、シートベルト部品、スイッチ類などが挙げられる。
外装部材としては、各種モール材(インナー/アウターウィンドウモール、ルーフモール、ベルトモール、サイドトリムモール)、ドアシール、ボディシール、グラスランチャンネル、泥よけ、キッキングプレート、ステップマット、ナンバープレートハウジング、消音ギア、コントロールケーブルカバー、エンブレムなどが挙げられる。
その他部材としては、エアダクトパッキン、エアダクトホース、エアダクトカバー、エアインテークパイプ、エアダムスカート、タイミングベルトカバーシール、オープニングシール・トランクシール部材、ボンネットクッション、燃料タンクバンド、ケーブルなどが挙げられる。
本発明の成形体としては、雑貨、日用品またはこれらの部材であってもよい。雑貨、日用品またはこれらの部材としては、グリップ(例えば、ボールペン、シャープペンシル、歯ブラシ、カップ、使い捨てカミソリ、手すり、カッター、電動工具、ドライバー、電源ケーブル、ドアなどのグリップ)、アシストグリップ、シフトノブ、玩具、手帳表皮、ガスケット(例えば食器・タッパーなどのガスケット)、各種足ゴム、スポーツ用品(例えば、シーズソール、スキーブーツ、スキー板、スキービンディング、スキーソール、ゴルフボール、ゴーグル部材、スノーボード部材、スノーボードシューズ、スノーボードビンディング、サーフボード部材、ボディボード、バナナボート、カイトボード、シュノーケリング部材、水上スキー部材、パラセーリング部材、ウェイクボード部材などのスポーツ用品)、ベルト(例えば、時計用ベルト、ファッションベルトなどのベルト)、ヘアブラシ、浴槽パネルボタンシート、キャップ、靴のインナーソール、健康器具部材などが挙げられる。
以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、以下において、特に言及しない限り「部」は「重量部」または「質量部」を示す。本発明において、重量部と質量部は、同義で扱う。
[遷移金属化合物の合成]
[ビス(4-メトキシフェニル)メチレン(η 5 -シクロペンタジエニル)(η 5 -2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド(触媒−a1)の合成
(i)6,6−ビス(4−メトキシフェニル)フルベンの合成
窒素雰囲気下、500ml三口フラスコにリチウムシクロペンタジエニド8.28g(115mmol)および脱水THF(テトラヒドロフラン)200mlを加えた。氷浴で冷却しながらDMI(1,3−ジメチル−2−イミダゾリジノン)13.6g(119mmol)を添加し、室温で30分間攪拌した。その後4,4'−ジメトキシベンゾフェノン25.3g(105mol)を加え、加熱還流下で1週間攪拌した。氷浴で冷却しながら水100mlを徐々に添加し、更にジクロロメタン200mlを加えて室温で30分間攪拌した。得られた二層の溶液を500ml分液漏斗に移し、有機層を水200mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去して橙褐色固体を得た。シリカゲルクロマトグラフ(700g、ヘキサン:酢酸エチル=4:1)による分離を行い、赤色溶液を得た。減圧下で溶媒を留去し、橙色固体として6,6−ビス(4−メトキシフェニル)フルベン9.32g(32.1mmol、30.7%)を得た。6,6−ビス(4−メトキシフェニル)フルベンの同定は1H−NMRスペクトルにて行った。以下にその測定値を示す。
1H−NMRスペクトル(270MHz,CDCl3):δ/ppm 7.28−7.23(m,4H),6.92−6.87(m,4H),6.59−6.57(m,2H),6.30−6.28(m,2H),3.84(s,6H)
(ii)ビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタンの合成
窒素雰囲気下、100ml三口フラスコに2,3,6,7−テトラメチルフルオレン500mg(2.25mmol)および脱水t−ブチルメチルエーテル40mlを添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.63M)1.45ml(2.36mmol)を徐々に添加し、室温で18時間攪拌した。6,6−ビス(4−メトキシフェニル)フルベン591mg(2.03mmol)を添加した後、3日間加熱還流を行った。氷浴で冷却しながら水50mlを徐々に添加し、得られた溶液を300ml分液漏斗に移した。ジクロロメタン50mlを加えて数回振った後水層を分離し、有機層を水50mlで3回洗った。無水硫酸マグネシウムで30分間乾燥した後、減圧下で溶媒を留去した。得られた固体を少量のジエチルエーテルで洗浄し、白色固体を得た。更に、洗浄液の溶媒を減圧下で留去し、得られた固体を少量のジエチルエーテルで洗浄して白色固体を採取し、先に得た白色固体と合わせた。この固体を減圧下で乾燥し、ビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタン793mg(1.55mmol、76.0%)を得た。ビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタンの同定はFD−MSスペクトルにて行った。以下にその測定値を示す。
FD−MSスペクトル:M/z512(M+
(iii)[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリドの合成
窒素雰囲気下、100mlシュレンク管にビス(4−メトキシフェニル)(シクロペンタジエニル)(2,3,6,7−テトラメチルフルオレニル)メタン272mg(0.531mmol)、脱水トルエン20mlおよびTHF90μl(1.1mmol)を順次添加した。氷浴で冷却しながらn−ブチルリチウム/ヘキサン溶液(1.63M)0.68ml(1.1mmol)を徐々に添加し、45℃で5時間攪拌したところ赤色溶液が得られた。減圧下で溶媒を留去し、脱水ジエチルエーテル20mlを添加して再び赤色溶液とした。メタノール/ドライアイス浴で冷却しながら四塩化ハフニウム164mg(0.511mmol)を添加し、室温まで徐々に昇温しながら16時間攪拌したところ、黄色スラリーが得られた。減圧下で溶媒を留去して得られた固体をグローブボックス内に持ち込み、ヘキサンで洗浄した後ジクロロメタンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジクロロメタンに溶解し、ヘキサンを加えて−20℃で再結晶した。析出した固体を採取し、ヘキサンで洗浄した後減圧下で乾燥することにより、黄色固体として[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリド275mg(0.362mmol、70.8%)を得た。[ビス(4−メトキシフェニル)メチレン(η5−シクロペンタジエニル)(η5−2,3,6,7−テトラメチルフルオレニル)]ハフニウムジクロリドの同定は1H−NMRスペクトルおよびFD−MSスペクトルにて行った。以下にその測定値を示す。
1H−NMRスペクトル(270MHz,CDCl3):δ/ppm 7.87(s,2H),7.80−7.66(m,4H),6.94−6.83(m,4H),6.24(t,J=2.6Hz,2H),6.15(s,2H),5.65(t,J=2.6Hz,2H),3.80(s,6H),2.47(s,6H),2.05(s,6H)
FD−MSスペクトル:M/z 760(M+
得られた触媒−a1の化学式を以下に示す。
Figure 0006938000
[合成例1]
攪拌翼を備えた容積300Lの重合器を用いて、連続的に、エチレン、1−ブテン、5−エチリデン−2−ノルボルネン(ENB)の重合反応を95℃にて行った。
重合溶媒としてヘキサン(フィード量:33L/h)を用いて、連続的に、エチレンのフィード量が3.4kg/h、1−ブテンのフィード量が11.0kg/h、ENBのフィード量が450g/hおよび水素のフィード量が0.2NL/hとなるように、重合器に連続供給した。
重合圧力を1.6MPaG、重合温度を95℃に保ちながら、主触媒として前記触媒−a1をフィード量0.020mmol/hとなるように重合器に連続的に供給した。また、共触媒として、(C65)3CB(C65)4をフィード量0.10mmol/h、トリイソブチルアルミニウム(TIBA)をフィード量10mmol/hとなるように、それぞれ重合器に連続的に供給した。
このようにして、エチレン、1−ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体を13質量%含む溶液が得られた。重合器下部から抜き出した重合反応液中に少量のメタノールを添加して重合反応を停止させ、スチームストリッピング処理にてエチレン・1−ブテン・ENB共重合体を溶媒から分離した後、80℃で一昼夜減圧乾燥した。
以上の操作によって、エチレン、1−ブテンおよびENBから形成されたエチレン・1−ブテン・ENB共重合体(EBDM−1)が、毎時5.0kgの速度で得られた。得られたEBDM−1の物性を後述する方法で測定した。結果を表1に示す。
[物性の測定方法]
<共重合体の組成>
エチレン由来の構造単位、炭素数4〜20のα−オレフィン由来の構造単位および非共役ポリエン由来の構造単位のモル量および質量は、1H−NMRスペクトルメーターによる強度測定によって求めた。
<ヨウ素価>
共重合体のヨウ素価を滴定法により求めた。具体的には、得られた共重合体0.5gを四塩化炭素60mlに溶解し、少量のウィス試薬および20%ヨウ化カリウム溶液を加え、0.1mol/Lチオ硫酸ナトリウム溶液で適定した。終点付近では澱粉指示薬を加え、よく攪拌しながら薄紫色が消えるところまで適定し、試料100gに対する消費されるハロゲンの量としてヨウ素のg数を算出した。
<B値>
o−ジクロロベンゼン−d4/ベンゼン−d6(4/1[v/v])を測定溶媒とし、測定温度120℃にて、13C−NMRスペクトル(100MHz、日本電子製ECX400P)を測定し、下記式(i)に基づき、共重合体のB値を算出した。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
ここで[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位、炭素数4〜20のα−オレフィン由来の構造単位および非共役ポリエン由来の構造単位のモル分率を示し、[EX]はエチレン由来の構造単位−炭素数4〜20のα−オレフィン由来の構造単位のダイアッド連鎖分率を示す。
<ムーニー粘度>
ムーニー粘度ML(1+4)125℃およびムーニー粘度ML(1+4)150℃は、ムーニー粘度計((株)島津製作所製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
<極限粘度>
共重合体の極限粘度[η]は、デカリン溶媒を用いて、135℃で測定した値である。具体的には、共重合体約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた(下式参照)。
[η]=lim(ηsp/C) (C→0)」
Figure 0006938000
[実施例1]
東洋精機製作所製ラボプラストミル[型式:R-100H、容量:約100cc(有効混練体積:80cc)]を用いて、混練温度を170℃に設定し、合成例1で得られたEBDM−1を100重量部と、メルトフローレート(ASTM−D−1238−65T;230℃、2.16kg荷重)が2.0g/10分であるポリプロピレン(商品名:プライムポリプロ(商標)E−200GP、プライムポリマー社製)を71重量部とを、回転数10rpmで投入した。次いで、回転数を10rpm(10秒)→30rpm(10秒)→50rpm(10秒)→70rpm(10秒)→90rpm(10秒)と迅速に上げ、これを3セット繰り返した。次いで、回転数10rpmで、軟化剤(ダイアナプロセスPW−100、パラフィンオイル、出光興産社製)114部を、ローターが空回りしないように、少しずつ滴下した。回転数を10rpm→30rpm→50rpm→70rpm→90rpmと迅速に上げた後、回転数を10rpmとし、樹脂温度が170℃まで下がるのを待った。次いで、フェノール樹脂系架橋剤として臭素化アルキルフェノール・ホルムアルデヒド樹脂(商品名:SP−1055F、Schenectady社製)8部と、酸化亜鉛(酸化亜鉛2種、ハクスイテック社製)0.5部とを投入した後、回転数を10rpm→30rpm→50rpm→70rpm→90rpmと迅速に上げた。トルクがピークに達してから3分間90rpmで混練した。以上の操作により、動的架橋型熱可塑性エラストマー(以下「組成物(II-1)」ともいう。)を得た。
50t電熱半自動プレス(コータキ(株)製「KMF100-1E」)を用いて、得られた組成物(II-1)を190℃で6分間予備プレスし、次いで4分間本プレスした後、室温で5分間冷却プレスして、厚さ2mmのプレスシートを作製した。得られた組成物(II-1)およびシートを用いて、以下の方法で評価を行った。結果を表2に示す。
[評価方法]
<MFR>
得られた組成物(II-1)を用いて、ASTM D 1238に準拠して、230℃、10kg荷重で測定した。
<硬度>
上記で得られた2mm厚のシートを重ねて厚さ12mmとし、JIS K6253に従って、硬度(JIS-A)を測定した。
<引張試験>
上記で得られたシートを用いて、JIS K6251に従って、測定温度23℃、引張速度500mm/分の条件で引張試験を行い、モジュラス、破断時強度(TB)、破断伸び(EB)を測定した。
<圧縮永久歪み(CS)>
上記で得られたシートを用いて、JIS K6250の6.5の要領で、JIS K6262 (2013)に従って、所定の温度にて、22時間処理後の圧縮永久歪みを測定した。
<耐油性(体積変化率)>
上記で得られたシートを用いて、JIS K6258に従い、試験用潤滑油としてIRM903を用いて、所定の温度および時間で処理後の体積変化率を測定した。
<TEM観察>
上記で得られたシートを下記方法で前処理したサンプルを用いて、透過型電子顕微鏡(TEM)[(株)日立ハイテクノロジーズ製「H-7650」]によりモルフォロジー観察を行った。結果を図2に示す。
前処理:トリミング・面出し(凍結)→RuO4染色→超薄切片作製(凍結)→カーボン補強
<X線散乱測定>
上記で得られたシートを用いて、大型放射光施設SPring−8(兵庫県)に設置されている高分子専用ビームラインBL03XUによりX線散乱測定を行った。得られた散乱強度曲線を図3に示す。また、得られた散乱強度曲線に対して、下記式(1)を用いたカーブフィッティングを行い、パラメーターAを求めた。
Figure 0006938000
[比較例1]
実施例1において、合成例1で得られたEBDM−1の代わりに、三井化学(株)製「3072EM」(EPDM、エチレン含量:64wt%、ジエン含量:5.4wt%、ムーニー粘度ML(1+4)125℃:51、油展量:40(PHR))を用いたこと以外は、実施例1と同様にして動的架橋型熱可塑性エラストマーを調製し、シートを作製して評価を行った。結果を表2、図2および図3に示す。
Figure 0006938000

Claims (9)

  1. 結晶性オレフィン系重合体(A)と、
    エチレン・炭素数4〜20のα−オレフィン・非共役ポリエン共重合体(B)と
    を含む熱可塑性エラストマー組成物について、下記方法(1)により熱可塑性エラストマーにおける分散性を定量的に評価することを特徴とする熱可塑性エラストマー組成物の評価方法
    (1)前記熱可塑性エラストマー組成物を架橋剤の存在下で動的架橋してなる動的架橋型熱可塑性エラストマーのX線散乱測定によって得られた散乱強度曲線(ただし、縦軸を散乱強度I(q)、横軸を散乱ベクトルの大きさqとする。)に対して、下記式(1)を用いたカーブフィッティングによりパラメーターAを求める
    Figure 0006938000
    [式(1)中、I(0)はq=0に外挿した時の散乱強度であり、qは入射光の波長λ(nm)と散乱角2θ(rad)との間に下記式(2)の関係を有する。]
    λq=4πsinθ (2)
  2. 前記共重合体(B)が、下記要件(2)および(3)を満たすことを特徴とする請求項1に記載の熱可塑性エラストマー組成物の評価方法
    (2)下記式(i)で表されるB値が1.20以上である;
    B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
    [式(i)中、[E]、[X]および[Y]は、それぞれ、エチレン由来の構造単位(B1)のモル分率、炭素数4〜20のα−オレフィン由来の構造単位(B2)のモル分率、非共役ポリエン由来の構造単位(B3)のモル分率を示し、[EX]はエチレン由来の構造単位(B1)−炭素数4〜20のα−オレフィン由来の構造単位(B2)のダイアッド連鎖分率を示す。]
    (3)エチレンに由来する構造単位(B1)と炭素数4〜20のα−オレフィンに由来する構造単位(B2)とのモル比[(B1)/(B2)]が、40/60〜90/10の範囲である。
  3. 前記共重合体(B)におけるα−オレフィンが1−ブテンであることを特徴とする請求項1または2に記載の熱可塑性エラストマー組成物の評価方法
  4. 前記熱可塑性エラストマー組成物が、さらに、フェノール樹脂系架橋剤(C)を含むことを特徴とする請求項1〜3のいずれか1項に記載の熱可塑性エラストマー組成物の評価方法
  5. 前記フェノール系架橋剤(C)が、ハロゲン化フェノール樹脂系架橋剤であることを特徴とする請求項4に記載の熱可塑性エラストマー組成物の評価方法
  6. 前記熱可塑性エラストマー組成物における前記結晶性オレフィン系重合体(A)と前記共重合体(B)との重量比[(A)/(B)]が、90/10〜10/90の範囲であり、
    前記熱可塑性エラストマー組成物における前記フェノール樹脂系架橋剤(C)の含有量が、前記共重合体(B)100重量部に対して、0.1〜20重量の範囲であることを特徴とする請求項4または5に記載の熱可塑性エラストマー組成物の評価方法
  7. 前記熱可塑性エラストマー組成物が、さらに、軟化剤(D)を、前記結晶性オレフィン系重合体(A)および前記共重合体(B)の合計100重量部に対して、2〜100重量部の範囲で含むことを特徴とする請求項1〜6のいずれか1項に記載の熱可塑性エラストマー組成物の評価方法
  8. 請求項1〜7のいずれか1項に記載の評価方法により得られたパラメーターAが10〜125nmの範囲の熱可塑性エラストマー組成物を動的架橋することを特徴とする動的架橋型熱可塑性エラストマーの製造方法。
  9. 請求項8に記載の製造方法により得られた動的架橋型熱可塑性エラストマーを成形する工程を含むことを特徴とする成形体の製造方法
JP2017072011A 2017-03-31 2017-03-31 熱可塑性エラストマー組成物 Active JP6938000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072011A JP6938000B2 (ja) 2017-03-31 2017-03-31 熱可塑性エラストマー組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072011A JP6938000B2 (ja) 2017-03-31 2017-03-31 熱可塑性エラストマー組成物

Publications (2)

Publication Number Publication Date
JP2018172553A JP2018172553A (ja) 2018-11-08
JP6938000B2 true JP6938000B2 (ja) 2021-09-22

Family

ID=64108433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072011A Active JP6938000B2 (ja) 2017-03-31 2017-03-31 熱可塑性エラストマー組成物

Country Status (1)

Country Link
JP (1) JP6938000B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421307B2 (ja) 2018-11-29 2024-01-24 三井化学株式会社 伝動ベルト用組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912797A (ja) * 1995-06-23 1997-01-14 Sumitomo Chem Co Ltd 遮音材
JP2002146105A (ja) * 2000-11-09 2002-05-22 Sumitomo Chem Co Ltd 熱可塑性エラストマー組成物
BR112017020142B1 (pt) * 2015-03-20 2022-04-12 Mitsui Chemicals, Inc Composição de elastômero termoplástico, métodos para produzir a mesma, artigo moldado, peça de automóvel, mangueira de automóvel e porta-mala de automóvel compreendendo a referida composição

Also Published As

Publication number Publication date
JP2018172553A (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
TWI683847B (zh) 熱可塑性彈性體組成物、其用途、其製造方法、乙烯.α-烯烴.非共軛多烯共聚合體及其用途
KR101913992B1 (ko) 수지 조성물 및 그의 용도
US9382356B2 (en) Catalyst for olefin polymerization, method for producing olefin polymer, method for producing propylene-based copolymer, propylene polymer, propylene-based polymer composition, and use of those
US20070173591A1 (en) Thermoplastic elastomer composition, formed article and sealing material having low hardness
KR101902139B1 (ko) 열가소성 엘라스토머 조성물 및 그의 제조 방법
JP2022523796A (ja) ポリプロピレン系複合材及びこの製造方法
JP6806881B2 (ja) 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
JP6938000B2 (ja) 熱可塑性エラストマー組成物
JP6930931B2 (ja) 熱可塑性エラストマー組成物からなる蛇腹状成形体
JP6426514B2 (ja) 重合体組成物
JP7033457B2 (ja) 熱可塑性エラストマー組成物からなる蛇腹状成形体
JP2009013428A (ja) 熱可塑性エラストマー組成物
JP2016074842A (ja) 低フォギング性熱可塑性エラストマー組成物及びその成形体
JP2016172836A (ja) ゴム組成物
JPS60168739A (ja) エチレン共重合体の加硫組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210820

R150 Certificate of patent or registration of utility model

Ref document number: 6938000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150