WO2016121510A1 - 鉛蓄電池及びそれを備える自動車 - Google Patents

鉛蓄電池及びそれを備える自動車 Download PDF

Info

Publication number
WO2016121510A1
WO2016121510A1 PCT/JP2016/051002 JP2016051002W WO2016121510A1 WO 2016121510 A1 WO2016121510 A1 WO 2016121510A1 JP 2016051002 W JP2016051002 W JP 2016051002W WO 2016121510 A1 WO2016121510 A1 WO 2016121510A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
group
separator
lead
Prior art date
Application number
PCT/JP2016/051002
Other languages
English (en)
French (fr)
Inventor
和也 丸山
真輔 小林
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201680007153.6A priority Critical patent/CN107210495A/zh
Priority to JP2016571922A priority patent/JPWO2016121510A1/ja
Priority to EP16743114.7A priority patent/EP3252863A4/en
Publication of WO2016121510A1 publication Critical patent/WO2016121510A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead-acid battery and an automobile including the same.
  • ISS vehicle an idling stop vehicle
  • the fuel efficiency improvement function of ISS vehicles has two main features.
  • One characteristic is that kinetic energy is converted into electrical energy during braking and the electrical energy is stored and used in a lead storage battery (that is, the use of regenerative energy).
  • Another feature is that extra energy is not consumed by turning off the engine while the vehicle is stopped.
  • dark current discharge a small current (for example, a current of 20 to 100 mA) called “dark current” flows through a lead-acid battery mounted in an automobile in order to maintain a backup and control computer for electrical components even after the engine is stopped (hereinafter referred to as “dark current discharge”), and many are in a discharge state.
  • Patent Document 1 discloses a technique for adjusting the area of an opening in a substantially rhombic shape in a positive electrode lattice and the DBP (dibutyl phthalate) oil absorption amount of carbon black. Is disclosed.
  • the present invention has been made in view of the above circumstances, and can suppress an excessive voltage drop in a dark current discharge state, and has a lead-acid battery having excellent charging performance even when the SOC is reduced by dark current discharge, And it aims at providing the motor vehicle provided with the said lead acid battery.
  • the present inventors have found that the above problem can be solved by including at least one selected from the group consisting of potassium ions, aluminum ions, cesium ions and phosphate ions in the lead storage battery. I found it.
  • the first aspect of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, the positive electrode includes a positive electrode material including a positive electrode active material, and the negative electrode includes a negative electrode material including a negative electrode active material.
  • a second aspect of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, the positive electrode includes a positive electrode material including a positive electrode active material, the negative electrode includes a negative electrode material including a negative electrode active material, and electrolysis A lead acid battery in which the liquid contains aluminum ions.
  • a third aspect of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, the positive electrode includes a positive electrode material including a positive electrode active material, the negative electrode includes a negative electrode material including a negative electrode active material, and electrolysis A lead acid battery in which the liquid contains cesium ions.
  • a fourth aspect of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, the positive electrode includes a positive electrode material including a positive electrode active material, the negative electrode includes a negative electrode material including a negative electrode active material, and electrolysis A lead acid battery in which the liquid contains phosphate ions.
  • the lead storage battery according to the present invention can suppress an excessive voltage drop in a dark current discharge state, and has excellent charge performance (charge performance after dark current discharge) even when the SOC is reduced by dark current discharge. Have. Moreover, the lead acid battery according to the present invention has excellent charging performance (initial charging performance) even in the initial state.
  • the lead acid battery according to the present invention specific ions (at least one ion selected from the group consisting of potassium ions, aluminum ions, cesium ions, and phosphate ions) contained in the electrolyte are caused by dark current discharge.
  • specific ions at least one ion selected from the group consisting of potassium ions, aluminum ions, cesium ions, and phosphate ions contained in the electrolyte are caused by dark current discharge.
  • the generation of sulfate ions at the reaction interface of the negative electrode during charging is promoted.
  • the lead acid battery according to the present invention has excellent charging performance even when the SOC is reduced by dark current discharge.
  • the concentration of potassium ions in the electrolytic solution is preferably 0.003 to 0.15 mol / L. In this case, the charge performance after dark current discharge and the initial charge performance can be further improved.
  • the concentration of aluminum ions in the electrolytic solution is preferably 0.005 to 0.4 mol / L. In this case, the charge performance after dark current discharge and the initial charge performance can be further improved.
  • the concentration of cesium ions in the electrolytic solution is preferably 0.005 to 0.4 mol / L. In this case, the charge performance after dark current discharge and the initial charge performance can be further improved.
  • the electrolytic solution preferably further contains phosphate ions in addition to at least one selected from the group consisting of potassium ions, aluminum ions and cesium ions.
  • phosphate ions in addition to at least one selected from the group consisting of potassium ions, aluminum ions and cesium ions.
  • the concentration of phosphate ions in the electrolytic solution is preferably 0.005 to 0.2 mol / L. In this case, the charge performance after dark current discharge and the initial charge performance can be further improved.
  • the negative electrode material preferably further contains carbon black. In this case, the charging performance after dark current discharge can be further improved.
  • the negative electrode material further includes a resin having at least one selected from the group consisting of a sulfone group and a sulfonate group. In this case, the low temperature high rate discharge performance can be improved.
  • the resin preferably contains at least one selected from the group consisting of a bisphenol-based resin having at least one selected from the group consisting of a sulfone group and a sulfonate group, lignin sulfonic acid, and lignin sulfonate.
  • the charge acceptability can be further improved.
  • the resin preferably includes a bisphenol resin having at least one selected from the group consisting of a sulfone group and a sulfonate group. In this case, the charge acceptability can be further improved.
  • the bisphenol-based resin includes a bisphenol-based compound, at least one selected from the group consisting of aminoalkylsulfonic acid, aminoalkylsulfonic acid derivatives, aminoarylsulfonic acid and aminoarylsulfonic acid derivatives, and a group consisting of formaldehyde and formaldehyde derivatives. It is preferably a resin derived from a reaction with at least one selected. In this case, the charge acceptability can be further improved.
  • the specific surface area of the negative electrode material is preferably 0.5 to 2 m 2 / g. In this case, the charging performance after dark current discharge can be further improved.
  • the specific surface area of the positive electrode material is preferably 4 m 2 / g or more. In this case, the reactivity between the electrolytic solution and the positive electrode active material can be increased.
  • the separator preferably contains polyolefin and silica. In this case, the short-circuit suppressing effect is excellent.
  • the total mass of oxygen and silicon in the separator is preferably 30 to 80% by mass based on the total mass of carbon, oxygen and silicon. In this case, it is possible to improve the separator strength while further improving the short-circuit suppressing effect.
  • the separator preferably has a convex rib and a base portion that supports the rib, and the ratio H / T of the rib height H to the thickness T of the base portion is 2 or more. In this case, the oxidation resistance of the separator is excellent.
  • a fifth aspect of the present invention is an automobile including the lead storage battery according to the present invention, wherein the lead storage battery discharges at a current value of 20 to 100 mA when the engine is stopped.
  • the present invention it is possible to provide an application of a lead storage battery to an automobile that is charged by an alternator after being left for a long time in a dark current discharge state.
  • ADVANTAGE OF THE INVENTION the application of the lead storage battery to the motor vehicle which discharge
  • a micro electric current For example, the electric current which has a current value of 20-100 mA in an engine stop state
  • PSOC Partial State Of Charge
  • the application of the lead storage battery to a micro hybrid vehicle can be provided.
  • ADVANTAGE OF THE INVENTION the application of the lead storage battery to an ISS vehicle can be provided.
  • FIG. 1 shows a separator.
  • FIG. 2 is a cross-sectional view of the separator and the electrode.
  • FIG. 3 is a drawing showing a bag-shaped separator and electrodes accommodated in the bag-shaped separator.
  • the lead storage battery according to the present embodiment includes, for example, a battery case, an electrode (electrode plate or the like), an electrolytic solution (dilute sulfuric acid or the like), and a separator.
  • the electrode and the electrolytic solution are accommodated in the battery case.
  • the electrode has a positive electrode (such as a positive electrode plate) and a negative electrode (such as a negative electrode plate) that face each other with a separator interposed therebetween.
  • Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, and the like, and a liquid lead storage battery is preferable.
  • the positive electrode and the negative electrode constitute, for example, an electrode group (electrode plate group or the like) by being laminated via a separator.
  • the positive electrode has a current collector (positive electrode current collector) and a positive electrode material held by the current collector.
  • the negative electrode has a current collector (negative electrode current collector) and a negative electrode material held by the current collector.
  • the positive electrode material and the negative electrode material are, for example, electrode materials after chemical conversion (for example, in a fully charged state). When the electrode material is unformed, the electrode materials (unformed positive electrode material and unformed negative electrode material) contain the raw materials and the like.
  • the current collector constitutes a conductive path for current from the electrode material.
  • the electrolytic solution contains at least one selected from the group consisting of potassium ions, aluminum ions, cesium ions, and phosphate ions.
  • the same configuration as that of a conventional lead storage battery can be used.
  • the lead storage battery according to this embodiment is useful as a lead storage battery that is charged by an alternator after being left for a long time in a dark current discharge state.
  • the lead storage battery according to the present embodiment is useful as a lead storage battery that discharges with a minute current (for example, a current having a current value of 20 to 100 mA when the engine is stopped).
  • the lead acid battery according to the present embodiment is useful as a lead acid battery in which charging is performed by an alternator in a partially charged state (PSOC) after charging is intermittently performed.
  • PSOC partially charged state
  • the lead storage battery according to the present embodiment is suitably used in automobiles (ISS cars, micro hybrid cars, etc.) provided with these lead storage batteries.
  • the minute electric current discharge in the engine stop state in the lead storage battery mounted on the automobile can be measured by using, for example, a clamp meter.
  • the positive electrode material contains a positive electrode active material.
  • the positive electrode active material can be obtained by aging and drying a positive electrode material paste containing a raw material for the positive electrode active material to obtain an unformed positive electrode active material and then forming an unformed positive electrode active material.
  • the positive electrode active material after chemical conversion preferably contains ⁇ -lead dioxide ( ⁇ -PbO 2 ), and may further contain ⁇ -lead dioxide ( ⁇ -PbO 2 ).
  • ⁇ -PbO 2 ⁇ -lead dioxide
  • lead powder is mentioned.
  • the lead powder for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ).
  • Red lead as a raw material of the positive electrode active material (Pb 3 O 4) may be used.
  • the unformed positive electrode material preferably contains an unformed positive electrode active material containing tribasic lead sulfate as a main component.
  • the average particle diameter of the positive electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more from the viewpoint of further improving the charging performance and initial charging performance after dark current discharge and further improving the cycle characteristics. Preferably, 0.7 ⁇ m or more is more preferable.
  • the average particle diameter of the positive electrode active material is preferably 2.5 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less from the viewpoint of further improving the cycle characteristics.
  • the average particle diameter of the positive electrode active material is an average particle diameter of the positive electrode active material in the positive electrode material after chemical conversion.
  • the average particle diameter of the positive electrode active material is, for example, the length of all positive electrode active material particles in a scanning electron micrograph (1000 times) image in the range of 10 ⁇ m in length ⁇ 10 ⁇ m in the positive electrode material in the center of the positive electrode after chemical conversion
  • the value of the side length (maximum particle diameter) can be obtained as an arithmetic average value.
  • the content of the positive electrode active material is preferably 95% by mass or more based on the total mass of the positive electrode material from the viewpoint of further excellent battery characteristics (capacity, low-temperature high-rate discharge performance, charge acceptance, cycle characteristics, etc.), 97 The mass% or more is more preferable, and 99 mass% or more is still more preferable.
  • the upper limit of the content of the positive electrode active material may be 100% by mass or less.
  • the content of the positive electrode active material is the content of the positive electrode active material in the positive electrode material after chemical conversion.
  • the positive electrode material may further contain an additive.
  • the additive include carbon materials (carbonaceous conductive material, excluding carbon fibers), reinforcing short fibers, and the like.
  • the carbon material include carbon black and graphite.
  • the carbon black include furnace black (Ketjen Black (registered trademark, the same applies hereinafter)), channel black, acetylene black, thermal black, and the like.
  • the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
  • the specific surface area of the cathode material from the viewpoint of enhancing the reactivity with a liquid electrolyte and the positive electrode active material, preferably at least 2m 2 / g, more preferably at least 3m 2 / g, more 4m 2 / g is more preferable.
  • the specific surface area of the positive electrode material may be 5 m 2 / g or more, or 6 m 2 / g or more.
  • the specific surface area of the cathode material, from the viewpoint of excellent utilization, is preferably from 12m 2 / g, more preferably not more than 11m 2 / g, 10m 2 / g or less is more preferable.
  • the specific surface area of the positive electrode material may be 8 m 2 / g or less. From these viewpoints, the specific surface area of the cathode material is preferably 2 ⁇ 12m 2 / g, more preferably 3 ⁇ 11m 2 / g, more preferably 4 ⁇ 10m 2 / g. The specific surface area of the positive electrode material may be 5 to 8 m 2 / g, or 6 to 8 m 2 / g. The specific surface area of the positive electrode material is the specific surface area of the positive electrode material after chemical conversion.
  • the specific surface area of the positive electrode material changes, for example, the method of adjusting the addition amount of dilute sulfuric acid and water when preparing the positive electrode material paste, the method of refining the active material at the stage of the unformed positive electrode active material, and the chemical conversion conditions It can adjust by the method of making it.
  • the specific surface area of the positive electrode material can be measured by, for example, the BET method.
  • the BET method is a method in which an inert gas (for example, nitrogen gas) having a known molecular size is adsorbed on the surface of a measurement sample, and the surface area is obtained from the adsorption amount and the area occupied by the inert gas. This is a general method for measuring the surface area.
  • the negative electrode material contains a negative electrode active material.
  • the negative electrode active material can be obtained by chemical conversion of an unformed negative electrode active material after obtaining an unformed negative electrode active material by aging and drying a negative electrode material paste containing a raw material of the negative electrode active material.
  • Examples of the negative electrode active material after chemical conversion include spongy lead. The spongy lead tends to react with dilute sulfuric acid in the electrolyte and gradually change to lead sulfate (PbSO 4 ).
  • Examples of the raw material for the negative electrode active material include lead powder.
  • the lead powder for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ).
  • the unformed negative electrode active material is composed of, for example, basic lead sulfate, metallic lead, and a lower oxide.
  • the average particle diameter of the negative electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.7 ⁇ m or more from the viewpoint of further improving the cycle characteristics.
  • the average particle diameter of the negative electrode active material is preferably 2.5 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less from the viewpoint of further improving cycle characteristics.
  • the average particle diameter of the negative electrode active material is an average particle diameter of the negative electrode active material in the negative electrode material after chemical conversion.
  • the average particle diameter of the negative electrode active material is, for example, the length of all negative electrode active material particles in an image of a scanning electron micrograph (1000 times) in the range of 10 ⁇ m in length ⁇ 10 ⁇ m in the negative electrode material at the center of the negative electrode after chemical conversion
  • the value of the side length (maximum particle diameter) can be obtained as an arithmetic average value.
  • the content of the negative electrode active material is preferably 93% by mass or more based on the total mass of the negative electrode material, from the viewpoint of further excellent battery characteristics (capacity, low-temperature high-rate discharge performance, charge acceptance, cycle characteristics, etc.), 95 More preferably, it is more preferably 98% by mass or more.
  • the upper limit of the content of the negative electrode active material may be 100% by mass or less.
  • the said content of a negative electrode active material is content of the negative electrode active material in the negative electrode material after chemical conversion.
  • the negative electrode material may further contain an additive.
  • Additives include: barium sulfate; carbon material (carbonaceous conductive material, excluding carbon fiber); reinforcing short fiber; sulfone group (sulfonic acid group, sulfo group) and sulfonate group (sulfon group hydrogen is alkali metal) And a resin having at least one selected from the group consisting of a substituted group and the like (a resin having a sulfone group and / or a sulfonate group).
  • the negative electrode material contains a resin having at least one selected from the group consisting of a sulfone group and a sulfonate group, the low-temperature high-rate discharge performance can be further improved.
  • Examples of the carbon material include carbon black and graphite.
  • carbon black is preferable from the viewpoint of further improving the charge characteristics after dark current discharge.
  • Examples of carbon black include furnace black (Ketjen black, etc.), channel black, acetylene black, thermal black, and the like.
  • furnace black produced by a furnace method is preferable.
  • Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
  • the average particle size of carbon black is preferably 10 nm or more, more preferably 20 nm or more, and even more preferably 25 nm or more, from the viewpoint of excellent handleability.
  • the average particle size of the carbon black is preferably 100 nm or less, more preferably 50 nm or less, and still more preferably 40 nm or less, from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. From these viewpoints, the average particle size of carbon black is preferably 10 to 100 nm, more preferably 20 to 50 nm, and further preferably 25 to 40 nm.
  • the average particle size of carbon black is 100 nm or less, since the specific surface area of the entire carbon black is large, the conductivity between the active materials is improved, so that the charging performance after the dark current discharge and the initial charging performance are further improved. Presumed to improve.
  • the average particle size of carbon black is, for example, the length of all particles in an image of a scanning electron micrograph in the range of 100 ⁇ m in length ⁇ 100 ⁇ m in the center of the substrate after carbon black particles are deposited on the substrate.
  • the value of the side length (maximum particle diameter) can be obtained as an arithmetic average value.
  • the average particle size When the average particle size is small (when the average particle size can be expected to be 0.1 ⁇ m or less), the long side length of all the particles in the scanning electron micrograph image in the range of 1 ⁇ m in length ⁇ 1 ⁇ m in width is used. It can be obtained as a numerical value obtained by arithmetically averaging the values.
  • image analysis software for two-dimensional images manufactured by Sumitomo Metal Technology, particle analysis Ver3.5 can also be used.
  • the average particle size of graphite is preferably as small as possible.
  • the average particle diameter of graphite is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more from a practical viewpoint.
  • the average particle diameter of graphite is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 50 ⁇ m or less, from the viewpoint of further improving the charge performance after dark current discharge and the initial charge performance. From these viewpoints, the average particle diameter of graphite is preferably 1 to 500 ⁇ m, more preferably 1 to 100 ⁇ m, and still more preferably 1 to 50 ⁇ m.
  • the average particle size of graphite may be 10 to 500 ⁇ m, or 20 to 500 ⁇ m.
  • the average particle diameter of graphite can be measured by the same method as the average particle diameter of carbon black.
  • the content of the carbon material is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the total mass of the negative electrode material, from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. More preferably, 0.15 mass% or more is further more preferable, and 0.2 mass% or more is particularly preferable.
  • the content of the carbon material is preferably 3% by mass or less, more preferably 1.4% by mass or less, based on the total mass of the negative electrode material, from the viewpoint of further improving the charge performance after dark current discharge and the initial charge performance. 0.5% by mass or less is more preferable, 0.4% by mass or less is particularly preferable, and 0.3% by mass or less is extremely preferable.
  • the content of the carbon material is preferably 0.05 to 3% by mass, more preferably 0.1 to 3%, still more preferably 0.15 to 3% by mass, based on the total mass of the negative electrode material.
  • 0.2 to 1.4 mass% is particularly preferable, 0.2 to 0.5 mass% is very preferable, 0.2 to 0.4 mass% is very preferable, and 0.2 to 0.3 mass%. Is even more preferable.
  • the said content of a carbon material is content of the carbon material in the negative electrode material after chemical conversion.
  • a bisphenol resin having at least one selected from the group consisting of a sulfone group and a sulfonate group (a bisphenol resin having a sulfone group and / or a sulfonate group.
  • Bisphenol resin a bisphenol resin having a sulfone group and / or a sulfonate group.
  • Bisphenol resin lignin sulfonic acid, lignin sulfonate and the like.
  • Lignin sulfonic acid is a compound in which a part of the degradation product of lignin is sulfonated.
  • the lignin sulfonate examples include potassium lignin sulfonate and sodium lignin sulfonate.
  • the resin having a sulfone group and / or a sulfonate group is preferably at least one selected from the group consisting of bisphenol resins, lignin sulfonic acids, and lignin sulfonates from the viewpoint of further improving charge acceptance. A resin is more preferable.
  • the bisphenol-based resin is at least one selected from the group consisting of a bisphenol-based compound, an aminoalkyl sulfonic acid, an aminoalkyl sulfonic acid derivative, an aminoaryl sulfonic acid, and an aminoaryl sulfonic acid derivative, from the viewpoint of further improving charge acceptability.
  • a resin obtained by reacting at least one selected from the group consisting of formaldehyde and formaldehyde derivatives from bisphenol compounds, aminoalkyl sulfonic acids, aminoalkyl sulfonic acid derivatives, aminoaryl sulfonic acids and aminoaryl sulfonic acid derivatives
  • a bisphenol compound is a compound having two hydroxyphenyl groups.
  • Examples of bisphenol compounds include 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis (4-hydroxy Phenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone (hereinafter “ Bisphenol S ").
  • aminoalkylsulfonic acid examples include aminomethanesulfonic acid, 2-aminoethanesulfonic acid, 3-aminopropanesulfonic acid, 2-methylaminoethanesulfonic acid and the like.
  • aminoalkyl sulfonic acid derivatives include compounds in which the hydrogen atom of aminoalkyl sulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, and sulfone groups of aminoalkyl sulfonic acid (—SO 3 H).
  • alkali metal salts in which a hydrogen atom is substituted with an alkali metal (for example, sodium or potassium).
  • aminoarylsulfonic acid examples include aminobenzenesulfonic acid (4-aminobenzenesulfonic acid and the like), aminonaphthalenesulfonic acid and the like.
  • aminoaryl sulfonic acid derivatives include compounds in which a hydrogen atom of aminoaryl sulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, a sulfone group of aminoaryl sulfonic acid (—SO 3 H)
  • alkali metal salts in which a hydrogen atom is substituted with an alkali metal (for example, sodium or potassium).
  • formaldehyde derivatives examples include paraformaldehyde, hexamethylenetetramine, and trioxane.
  • the bisphenol-based resin preferably has at least one selected from the group consisting of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II).
  • X 1 represents a divalent group
  • a 1 represents an alkylene group having 1 to 4 carbon atoms, or an arylene group
  • R 11 represents an alkali metal or a hydrogen atom
  • R 12 represents a methylol group (—CH 2 OH)
  • R 13 and R 14 each independently represents an alkali metal or a hydrogen atom
  • n11 represents an integer of 1 to 600
  • n12 represents 1 to 3 N13 represents 0 or 1.
  • X 2 represents a divalent group
  • a 2 represents an alkylene group having 1 to 4 carbon atoms, or an arylene group
  • R 21 represents an alkali metal or a hydrogen atom
  • R 22 represents a methylol group (—CH 2 OH)
  • R 23 and R 24 each independently represents an alkali metal or a hydrogen atom
  • n 21 represents an integer of 1 to 600
  • n 22 represents 1 to 3 N23 represents 0 or 1.
  • the ratio of the structural unit represented by the formula (I) and the structural unit represented by the formula (II) is not particularly limited, and may vary depending on synthesis conditions and the like.
  • a resin having only one of the structural unit represented by the formula (I) and the structural unit represented by the formula (II) may be used.
  • X 1 and X 2 include, for example, alkylidene groups (methylidene group, ethylidene group, isopropylidene group, sec-butylidene group, etc.), cycloalkylidene groups (cyclohexylidene group, etc.), phenylalkylidene groups (diphenylmethylidene group,
  • An organic group such as a phenylethylidene group; a sulfonyl group, and the isopropylidene group (—C (CH 3 ) 2 —) is preferable from the viewpoint of further improving charging performance, and the sulfonyl group from the viewpoint of further improving discharge characteristics. (—SO 2 —) is preferred.
  • X 1 and X 2 may be substituted with a halogen atom such as a fluorine atom.
  • a halogen atom such as a fluorine atom.
  • the hydrocarbon ring may be substituted with an alkyl group or the like.
  • Examples of A 1 and A 2 include alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, and a butylene group; and divalent arylene groups such as a phenylene group and a naphthylene group.
  • the arylene group may be substituted with an alkyl group or the like.
  • Examples of the alkali metal of R 11 , R 13 , R 14 , R 21 , R 23 and R 24 include sodium and potassium.
  • n11 and n21 are preferably 5 to 300 from the viewpoint of further excellent cycle characteristics and solubility in a solvent.
  • n12 and n22 are preferably 1 or 2, and more preferably 1, from the viewpoint of improving the charge performance, discharge characteristics, and cycle characteristics in a well-balanced manner.
  • n13 and n23 vary depending on the production conditions, but 0 is preferable from the viewpoint of further excellent cycle characteristics and excellent storage stability of the bisphenol-based resin.
  • the weight average molecular weight of a resin having a sulfonic group and / or a sulfonic acid group suppresses the elution of a resin having a sulfonic group and / or a sulfonic acid group from an electrode to an electrolytic solution in a lead storage battery.
  • the weight average molecular weight of the resin having a sulfone group and / or a sulfonate group is 200000 or less from the viewpoint that the cycle characteristics are easily improved by suppressing the adsorptivity to the electrode active material and the dispersibility. Is preferable, 150,000 or less is more preferable, and 100,000 or less is still more preferable.
  • the weight average molecular weight of the resin having a sulfone group and / or a sulfonate group can be measured, for example, by gel permeation chromatography (hereinafter referred to as “GPC”) under the following conditions.
  • GPC gel permeation chromatography
  • the content of the resin having a sulfone group and / or a sulfonate group is based on the total mass of the negative electrode material from the viewpoint of further improving discharge characteristics. It is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.1% by mass or more in terms of minutes.
  • the content of the resin having a sulfone group and / or a sulfonate group is preferably 2% by mass or less, preferably 1% by mass or less in terms of resin solids, based on the total mass of the negative electrode material, from the viewpoint of further excellent charge acceptance. Is more preferable, and 0.5 mass% or less is still more preferable.
  • the specific surface area of the negative electrode material is preferably 0.5 m 2 / g or more, more preferably 0.55 m 2 / g or more, and 0.6 m 2 / g or more from the viewpoint of increasing the reactivity between the electrolytic solution and the negative electrode active material. Is more preferable.
  • the specific surface area of the negative electrode material, from the viewpoint of suppressing the shrinkage of the negative electrode is preferably 2m 2 / g or less, more preferably 1.2m 2 / g, 0.8m 2 / g or less is more preferable.
  • the specific surface area of the negative electrode material is preferably 0.5 ⁇ 2m 2 / g, more preferably 0.55 ⁇ 1.2m 2 / g, 0.6 ⁇ 0.8m 2 / g more preferable.
  • the specific surface area of the negative electrode material is the specific surface area of the negative electrode material after chemical conversion.
  • the specific surface area of the negative electrode material changes, for example, the method of adjusting the amount of dilute sulfuric acid and water added when preparing the negative electrode material paste, the method of refining the active material at the stage of the unformed negative electrode active material, and the chemical conversion conditions It can adjust by the method of making it.
  • the specific surface area of the negative electrode material can be measured by, for example, the BET method.
  • Examples of the method for producing the current collector include a casting method, an expanding method, and a punching method.
  • Examples of the current collector material include a lead-calcium-tin alloy and a lead-antimony alloy. A small amount of selenium, silver, bismuth or the like can be added to these.
  • the current collector can be obtained by forming these materials into a lattice shape or a mesh shape by the above-described manufacturing method.
  • the manufacturing method or material of the current collector for the positive electrode and the negative electrode may be the same as or different from each other.
  • the electrolyte solution of the lead storage battery according to this embodiment includes at least one selected from the group consisting of potassium ions, aluminum ions, cesium ions, and phosphate ions.
  • the electrolytic solution preferably further contains phosphate ions.
  • the electrolytic solution further contains phosphate ions in addition to potassium ions, the charge performance after dark current discharge and the initial charge performance tend to be further improved.
  • the electrolytic solution further contains phosphate ions in addition to aluminum ions, the charge performance after dark current discharge and the initial charge performance tend to be further improved.
  • the electrolytic solution further contains phosphate ions in addition to cesium ions, the charging performance after dark current discharge and the initial charging performance tend to be further improved.
  • the concentration of potassium ions in the electrolytic solution is 0.003 mol / L or more based on the total amount of the electrolytic solution from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. Is preferable, 0.005 mol / L or more is more preferable, and 0.01 mol / L or more is still more preferable.
  • the potassium ion concentration may be 0.02 mol / L or more.
  • the concentration of potassium ions in the electrolytic solution is preferably 0.15 mol / L or less, preferably 0.12 mol / L or less, based on the total amount of the electrolytic solution, from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance.
  • the concentration of potassium ions may be 0.08 mol / L or less, or 0.05 mol / L or less.
  • the concentration of potassium ions in the electrolytic solution is preferably 0.003 to 0.15 mol / L based on the total amount of the electrolytic solution, from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance, and 0.005 Is more preferably 0.1 to 0.15 mol / L, still more preferably 0.01 to 0.12 mol / L, and particularly preferably 0.01 to 0.1 mol / L.
  • the concentration of aluminum ions in the electrolytic solution is 0.005 mol / L or more based on the total amount of the electrolytic solution from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. Is preferable, 0.01 mol / L or more is more preferable, and 0.04 mol / L or more is still more preferable.
  • the concentration of the aluminum ions may be 0.05 mol / L or more, or 0.1 mol / L or more.
  • the concentration of aluminum ions in the electrolytic solution is preferably 0.4 mol / L or less, preferably 0.3 mol / L or less, based on the total amount of the electrolytic solution, from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. Is more preferable, and 0.2 mol / L or less is still more preferable.
  • the concentration of the aluminum ions may be 0.15 mol / L or less.
  • the concentration of aluminum ions in the electrolytic solution is preferably 0.005 to 0.4 mol / L based on the total amount of the electrolytic solution from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance, Is more preferably 0.3 to 0.3 mol / L, still more preferably 0.04 to 0.2 mol / L.
  • the concentration of cesium ions in the electrolytic solution is 0.005 mol / L or more based on the total amount of the electrolytic solution from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. Is preferable, 0.01 mol / L or more is more preferable, and 0.04 mol / L or more is still more preferable.
  • the concentration of the cesium ion may be 0.1 mol / L or more, or 0.15 mol / L or more.
  • the concentration of cesium ions in the electrolytic solution is preferably 0.4 mol / L or less and 0.3 mol / L or less based on the total amount of the electrolytic solution from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. Is more preferable, and 0.2 mol / L or less is still more preferable.
  • the concentration of cesium ions in the electrolytic solution is preferably 0.005 to 0.4 mol / L based on the total amount of the electrolytic solution from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance, Is more preferably 0.3 to 0.3 mol / L, still more preferably 0.04 to 0.2 mol / L.
  • the concentration of the phosphate ions in the electrolytic solution is 0.005 mol / liter based on the total amount of the electrolytic solution from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance.
  • L or more is preferable, 0.01 mol / L or more is more preferable, and 0.03 mol / L or more is still more preferable.
  • the concentration of the phosphate ions may be 0.04 mol / L or more.
  • the concentration of phosphate ions in the electrolytic solution is preferably 0.2 mol / L or less, based on the total amount of the electrolytic solution, from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance, and 0.1 mol / L.
  • the concentration of the phosphate ion may be 0.07 mol / L or less.
  • the concentration of phosphate ions in the electrolytic solution is preferably 0.005 to 0.2 mol / L based on the total amount of the electrolytic solution from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. 01 to 0.1 mol / L is more preferable, and 0.03 to 0.08 mol / L is still more preferable.
  • the phosphate ion concentration may be 0.04 to 0.07 mol / L.
  • the concentrations of potassium ion, aluminum ion, cesium ion and phosphate ion can also be measured by, for example, ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
  • the method for manufacturing a lead storage battery according to the present embodiment includes, for example, an electrode manufacturing process for obtaining electrodes (positive electrode and negative electrode) and an assembly process for obtaining a lead storage battery by assembling constituent members including the electrodes.
  • the positive electrode material paste contains, for example, a raw material (lead powder or the like) of the positive electrode active material, and may further contain other additives.
  • the negative electrode material paste preferably contains a raw material for the negative electrode active material (such as lead powder), and preferably contains a resin having a sulfone group and / or a sulfonate group (such as a bisphenol-based resin) as a dispersant. Further, other additives may be further contained.
  • the positive electrode material paste can be obtained, for example, by the following method. First, an additive (such as reinforcing short fibers) and water are added to the raw material of the positive electrode active material. Next, after adding dilute sulfuric acid, the mixture is kneaded to obtain a positive electrode material paste. In producing the positive electrode material paste, lead (Pb 3 O 4 ) may be used as a raw material for the positive electrode active material from the viewpoint of shortening the chemical formation time. A non-chemically formed positive electrode can be obtained by aging and drying after filling the positive electrode material paste into the current collector.
  • an additive such as reinforcing short fibers
  • water water
  • dilute sulfuric acid the mixture is kneaded to obtain a positive electrode material paste.
  • lead (Pb 3 O 4 ) may be used as a raw material for the positive electrode active material from the viewpoint of shortening the chemical formation time.
  • a non-chemically formed positive electrode can be obtained by aging and drying after filling the positive electrode material paste into the current collector
  • the blending amount of the reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode active material (lead powder, etc.) 0.05 to 0.3% by mass is more preferable.
  • aging conditions for obtaining an unformed positive electrode 15 to 60 hours are preferable in an atmosphere of a temperature of 35 to 85 ° C. and a relative humidity of 50 to 98 RH%.
  • the drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
  • the negative electrode material paste can be obtained, for example, by the following method. First, an additive (a resin having a sulfone group and / or a sulfonate group, a carbon material, a reinforcing short fiber, barium sulfate, or the like) is added to the raw material of the negative electrode active material and dry mixed to obtain a mixture. Then, dilute sulfuric acid and a solvent (water such as ion exchange water, organic solvent, etc.) are added to this mixture and kneaded to obtain a negative electrode material paste. An unformed negative electrode can be obtained by filling the negative electrode material paste into the current collector and then aging and drying.
  • an additive a resin having a sulfone group and / or a sulfonate group, a carbon material, a reinforcing short fiber, barium sulfate, or the like
  • dilute sulfuric acid and a solvent water such as ion exchange water, organic solvent, etc.
  • the amount of each component is preferably within the following range.
  • the amount of the resin having a sulfone group and / or a sulfonate group is preferably 0.01 to 2.0% by mass in terms of resin solid content based on the total mass of the raw material of the negative electrode active material (such as lead powder). 0.05 to 1.0 mass% is more preferable, 0.1 to 0.5 mass% is still more preferable, and 0.1 to 0.3 mass% is particularly preferable.
  • the blending amount of the reinforcing short fibers is preferably 0.05 to 0.3% by mass based on the total mass of the negative electrode active material (lead powder or the like).
  • the compounding amount of barium sulfate is preferably 0.01 to 2.0% by mass, more preferably 0.3 to 2.0% by mass, based on the total mass of the raw material of the negative electrode active material (lead powder or the like).
  • the blending amount of the carbon material is preferably 0.05% by mass or more based on the total mass of the negative electrode active material (lead powder, etc.) from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. 0.1% by mass or more is more preferable, 0.15% by mass or more is more preferable, and 0.2% by mass or more is particularly preferable.
  • the blending amount of the carbon material is preferably 3% by mass or less based on the total mass of the negative electrode active material (lead powder, etc.), from the viewpoint of further improving the charging performance after dark current discharge and the initial charging performance. Is preferably 4% by mass or less, more preferably 0.5% by mass or less, particularly preferably 0.4% by mass or less, and extremely preferably 0.3% by mass or less.
  • the blending amount of the carbon material is preferably 0.05 to 3% by mass, more preferably 0.1 to 3% by mass based on the total mass of the negative electrode active material (lead powder or the like). 0.15 to 3% by weight is more preferable, 0.2 to 1.4% by weight is particularly preferable, 0.2 to 0.5% by weight is very preferable, and 0.2 to 0.4% by weight is very preferable 0.2 to 0.3% by mass is even more preferable.
  • the aging conditions for obtaining the unformed negative electrode are preferably 15 to 30 hours in an atmosphere of a temperature of 45 to 65 ° C. and a relative humidity of 70 to 98 RH%.
  • the drying conditions are preferably 45 to 60 ° C. and 15 to 30 hours.
  • the unformed negative electrode and the unformed positive electrode produced as described above are alternately stacked via separators, and the current collectors of the same polarity electrodes are connected (welded, etc.) with a strap.
  • An electrode group is obtained.
  • This electrode group is arranged in a battery case to produce an unformed battery.
  • a direct current is applied to form a battery case.
  • the lead acid battery can be obtained by adjusting the specific gravity of the electrolyte after the formation to an appropriate specific gravity.
  • the electrolyte includes, for example, dilute sulfuric acid and at least one selected from the group consisting of potassium ions, aluminum ions, cesium ions, and phosphate ions.
  • the electrolytic solution may further contain ions (sodium ions, lithium ions, titanium ions, etc.) other than potassium ions, aluminum ions, cesium ions, and phosphate ions.
  • the electrolytic solution according to the present embodiment is obtained by, for example, dissolving an ion source containing at least one selected from the group consisting of potassium ions, aluminum ions, cesium ions, and phosphate ions in dilute sulfuric acid so as to have a predetermined ion concentration.
  • the ion source is not particularly limited as long as it is a compound soluble in dilute sulfuric acid, for example.
  • a salt crystal salt etc.
  • a hydroxide, an oxide, and a metal are mentioned, for example.
  • Examples of the salt include sulfate, sulfite, carbonate, hydrogen carbonate, phosphate, borate, and metal acid salt.
  • Examples of the ion source of phosphate ions include phosphate and metal ion phosphate.
  • a commercially available phosphoric acid can be used.
  • an electrolytic solution containing potassium ions and phosphate ions can be obtained by adding a crystal salt of potassium phosphate to dilute sulfuric acid.
  • the ion source may be an anhydride or a hydrate.
  • the electrolytic solution to be injected into the battery case may be an electrolytic solution containing at least one selected from the group consisting of potassium ions, aluminum ions, cesium ions, and phosphate ions. Potassium ions, aluminum ions, cesium ions, and An electrolyte solution that does not contain phosphate ions may also be used.
  • the electrolyte to be injected does not contain potassium ions, aluminum ions, cesium ions, and phosphate ions
  • the above-mentioned ion source is added to the electrode material and the electrolyte
  • a method of eluting ions into the electrolytic solution by installing the above-mentioned ion source at a position in contact with the electrolytic solution in the battery case.
  • the specific gravity after the formation of the electrolytic solution is preferably in the following range.
  • the specific gravity of the electrolytic solution is preferably 1.25 or more, more preferably 1.26 or more, further preferably 1.27 or more, and 1.28 or more from the viewpoint of suppressing osmotic short-circuiting or freezing and further improving discharge characteristics. Particularly preferred.
  • the specific gravity of the electrolytic solution is preferably 1.33 or less, more preferably 1.32 or less, and further preferably 1.31 or less from the viewpoint of further improving the charging performance after dark current discharge, initial charging performance, and cycle characteristics. Preferably, 1.30 or less is particularly preferable, and 1.29 or less is very preferable.
  • the value of the specific gravity of the electrolytic solution can be measured by, for example, a floating hydrometer or a digital hydrometer manufactured by Kyoto Electronics Industry Co., Ltd.
  • the battery case can accommodate electrodes (electrode plates, etc.) inside.
  • the battery case preferably has a box body whose upper surface is opened and a lid body that covers the upper surface of the box body from the viewpoint of easily accommodating the electrode.
  • an adhesive, heat welding, laser welding, ultrasonic welding, or the like can be appropriately used for bonding the box and the lid.
  • the shape of the battery case is not particularly limited, but a rectangular shape is preferable so that an ineffective space is reduced when an electrode (a plate plate or the like) is accommodated.
  • the material of the battery case is not particularly limited, but it needs to be resistant to an electrolytic solution (such as dilute sulfuric acid).
  • Specific examples of the material for the battery case include PP (polypropylene), PE (polyethylene), and ABS resin.
  • PP polypropylene
  • PE polyethylene
  • ABS resin ABS resin
  • the material of the box and the lid may be the same material or different materials.
  • materials having the same thermal expansion coefficient are preferable from the viewpoint of not generating excessive stress.
  • separator examples include a microporous polyethylene sheet; a nonwoven fabric made of glass fiber and synthetic resin.
  • the separator prevents electrical connection between the positive electrode and the negative electrode and allows sulfate ions in the electrolytic solution to pass therethrough.
  • the separator preferably contains polyolefin and silica from the viewpoint of excellent short-circuit suppressing effect, and mainly contains polyolefin and silica (for example, the content (total amount) of polyolefin and silica is 50% by mass or more based on the total mass of the separator). It is more preferable that the material is made of the material.
  • the polyolefin for example, a homopolymer or copolymer such as ethylene, propylene, butene, methylpentene, or a mixture thereof can be used.
  • Examples of the homopolymer include polyethylene, polypropylene, polybutene, polymethylpentene and the like.
  • polyethylene is preferable from the viewpoint of excellent moldability and economy.
  • Polyethylene has a lower melt molding temperature than polypropylene and good productivity.
  • the weight average molecular weight of the polyolefin is preferably 500,000 or more and more preferably 1,000,000 or more from the viewpoint of excellent mechanical strength of the separator. Although there is no restriction
  • the weight average molecular weight of polyolefin can be measured, for example with a high temperature GPC apparatus, using toluene or xylene as an eluent.
  • silica particles as silica.
  • the specific surface area of the silica particles is preferably 100 m 2 / g or more.
  • the pore structure of the separator is further refined (densified) and complicated to further improve the short-circuit resistance, and to increase the electrolyte solution holding power.
  • a hydrophilic group such as —OH
  • the specific surface area of a silica particle is 400 m ⁇ 2 > / g or less from a viewpoint that a silica particle can disperse
  • the specific surface area of the silica particles can be measured by, for example, the BET method.
  • the number of silica particles having a particle size (longest diameter) of 2 ⁇ m or more in the separator is arbitrarily selected when the cross section of the separator is analyzed with a scanning electron microscope (SEM) from the viewpoint of excellent uniformity of separator strength ⁇ 30 ⁇ m ⁇ Within the range of 40 ⁇ m, the number is preferably 20 or less, and more preferably 10 or less.
  • the total mass of oxygen and silicon (silicon) in the separator is from the viewpoint of further improving the short-circuit suppressing effect and improving the separator strength.
  • the following ranges are preferred based on the total mass of carbon, oxygen and silicon.
  • the total of the masses of oxygen and silicon is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more.
  • the total mass of oxygen and silicon may be 55% by mass or more, or 60% by mass or more.
  • the total of the masses of oxygen and silicon is preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less.
  • the total of the masses of oxygen and silicon may be 65% by mass or less.
  • the total of the masses of oxygen and silicon is preferably 30 to 80% by mass, more preferably 40 to 75% by mass, and still more preferably 50 to 70% by mass.
  • the total of the masses of oxygen and silicon may be 55 to 75% by mass or 60 to 65% by mass.
  • the masses of carbon, oxygen, and silicon in the separator can be obtained, for example, by analyzing the cross section of the separator by energy dispersive X-ray spectroscopy (EDX). That is, the total mass of oxygen and silicon is preferably in the above range based on the total mass of carbon, oxygen, and silicon detected when the cross section of the separator is analyzed by EDX.
  • EDX energy dispersive X-ray spectroscopy
  • the separator of this embodiment can be obtained, for example, by melt-kneading a raw material composition mainly composed of polyolefin, silica, and a plasticizer to form a sheet-like material having a predetermined shape.
  • separators include surfactants (hydrophilic agents), antioxidants, UV absorbers, weathering agents, lubricants, antibacterial agents, antifungal agents, pigments, dyes, colorants, antifogging agents, as necessary. You may contain additives, such as a matting agent, in the range which does not impair the objective and effect of this invention.
  • the separator preferably has a convex rib and a base portion that supports the rib.
  • FIG. 1 (a) is a front view showing a separator
  • FIG. 1 (b) is a cross-sectional view of the separator
  • FIG. 2 is a cross-sectional view of the separator and the electrode.
  • the separator 10 includes a flat base portion 11, a plurality of convex ribs 12, and mini-ribs 13.
  • the base portion 11 supports the rib 12 and the mini rib 13.
  • the rib 12 is formed in plural (many) in the center in the width direction of the separator 10 so as to extend in the longitudinal direction of the separator 10.
  • the plurality of ribs 12 are disposed substantially parallel to each other on the one surface 10 a of the separator 10.
  • the interval between the ribs 12 is, for example, 3 to 15 mm.
  • One end in the height direction of the rib 12 is integrated with the base portion 11, and the other end in the height direction of the rib 12 is in contact with one electrode 14a of the positive electrode and the negative electrode (see FIG. 2).
  • the base portion 11 faces the electrode 14 a in the height direction of the rib 12.
  • Ribs are not disposed on the other surface 10b of the separator 10, and the other surface 10b of the separator 10 faces or is in contact with the other electrode 14b (see FIG. 2) of the positive electrode and the negative electrode.
  • a plurality of (many) mini-ribs 13 are formed on both sides of the separator 10 in the width direction so as to extend in the longitudinal direction of the separator 10.
  • the mini-rib 13 has a function of improving the separator strength in order to prevent the corners of the electrodes from breaking through the separator when the lead storage battery vibrates in the lateral direction.
  • the height, width, and interval of the mini-ribs 13 are preferably smaller than the ribs 12.
  • the cross-sectional shape of the mini-rib 13 may be the same as or different from that of the rib 12.
  • the cross-sectional shape of the mini-rib 13 is preferably a semicircular shape. Further, the mini-rib 13 may not be formed in the separator 10.
  • the upper limit of the thickness T of the base portion 11 is preferably 0.4 mm or less, more preferably 0.3 mm or less, and even more preferably 0.25 mm or less from the viewpoint of obtaining further excellent charge acceptance and discharge characteristics.
  • 0.05 mm or more is preferable and 0.1 mm or more is more preferable from a viewpoint which is further excellent in the suppression effect of a short circuit.
  • the upper limit of the height H of the rib 12 (the height in the facing direction of the base portion 11 and the electrode 14) H is preferably 1 mm or less, more preferably 0.8 mm or less, from the viewpoint of obtaining further excellent charge acceptance. More preferably, it is 6 mm or less.
  • the lower limit of the height H of the rib 12 is preferably 0.3 mm or more, more preferably 0.4 mm or more, and still more preferably 0.5 mm or more, from the viewpoint of suppressing oxidative deterioration at the positive electrode.
  • the lower limit of the ratio H / T of the height H of the rib 12 to the thickness T of the base portion 11 is preferably 2 or more from the viewpoint of excellent oxidation resistance of the separator.
  • the ratio H / T is 2 or more, a portion that does not contact the electrode (for example, the positive electrode) can be sufficiently secured, so that it is estimated that the oxidation resistance of the separator is improved.
  • the lower limit of the ratio H / T is more preferably 2.3 or more, and even more preferably 2.5 or more, from the viewpoint of excellent oxidation resistance and productivity of the separator.
  • the upper limit of the ratio H / T is preferably 6 or less from the viewpoint of excellent rib shape retention and the effect of suppressing a short circuit. If the ratio H / T is 6 or less, the distance between the positive electrode and the negative electrode is sufficient, and it is estimated that the short circuit is further suppressed. Further, when the ratio H / T is 6 or less, it is presumed that the battery characteristics such as charge acceptability are favorably maintained without damaging the ribs when the lead storage battery is assembled.
  • the upper limit of the ratio H / T is more preferably 5 or less, further preferably 4 or less, and particularly preferably 3 or less from the viewpoint of further excellent short-circuit suppressing effect and excellent rib shape retention.
  • the upper base width B of the rib 12 is preferably 0.1 to 2 mm, more preferably 0.2 to 1 mm, from the viewpoint of excellent shape retention and oxidation resistance of the rib. More preferably, it is 0.2 to 0.8 mm.
  • the bottom bottom width A of the rib is preferably 0.2 to 4 mm, more preferably 0.3 to 2 mm, and still more preferably 0.4 to 1 mm from the viewpoint of excellent rib shape retention.
  • the ratio (B / A) between the upper base width B and the lower base width A is preferably 0.1 to 1, more preferably 0.2 to 0.8, from the viewpoint of excellent rib shape retention. More preferably, 0.6 is used.
  • the separator 10 preferably has a bag shape surrounding at least one of a positive electrode and a negative electrode.
  • a mode in which one of the positive electrode and the negative electrode is accommodated in a bag-shaped separator and is alternately laminated with the other of the positive electrode and the negative electrode is preferable.
  • the negative electrode is accommodated in the bag-shaped separator because the positive electrode may penetrate the separator due to the elongation of the positive electrode current collector.
  • a microporous polyethylene sheet can be used.
  • a microporous polyethylene sheet As the separator 10, a microporous polyethylene sheet; what stuck glass fiber and acid-resistant paper, etc. can be used.
  • the separator is preferably cut according to the length of the negative electrode (negative electrode plate or the like) in the step of laminating the electrodes (electrode plate or the like). Further, the cut separator 10 may be folded in two and wrapping the negative electrode by crimping both sides.
  • FIG. 3 is a view showing a bag-like separator 20 and an electrode (for example, a negative electrode) 14 accommodated in the separator 20.
  • the separator 10 used for preparation of the separator 20 is formed in the elongate sheet form, for example.
  • the separator 20 shown in FIG. 3 is obtained by cutting the separator 10 into an appropriate length, folding it in the longitudinal direction of the separator 10 and placing the electrodes 14 on the inside thereof, and superimposing them on both sides. It is obtained by welding (for example, reference numeral 22 in FIG. 3 indicates a mechanical seal portion).
  • the electrolytic solution of the lead storage battery according to the present embodiment contains aluminum ions
  • an excellent short-circuit suppressing effect can be obtained even when a separator containing silica is used.
  • the reason why a short circuit is likely to occur when a separator containing silica is used and the reason why the occurrence of a short circuit can be suppressed when the electrolyte contains aluminum ions are not clear, but the present inventors speculate as follows: To do.
  • the positive electrode side tends to be in an alkaline atmosphere, and when aluminum ions are not present in the electrolytic solution, silica is easily dissolved when it becomes alkaline.
  • silica is easily dissolved when it becomes alkaline.
  • the solubility of lead sulfate increases at the positive electrode, and the solubility and the pH decrease during charging (the pH decreases). From the difference in the solubility of lead sulfate when shifting to the acidic side), it is presumed that lead sulfate precipitates are likely to be generated inside the separator, and the short circuit is accelerated.
  • the electrolytic solution of the lead storage battery according to the present embodiment contains aluminum ions
  • an aluminum compound such as aluminum hydroxide is deposited inside the separator during discharge. Since the dissolution of silica is suppressed by precipitation of an aluminum compound such as aluminum hydroxide in this manner, the thickness of the separator can be maintained.
  • the pH of the electrolytic solution is increased by the precipitation reaction of an aluminum compound such as aluminum hydroxide (the pH is shifted to the alkali side), an increase in the solubility of lead sulfate can be suppressed. By these, it is estimated that a short circuit can be suppressed because aluminum ion exists in electrolyte solution.
  • Chemical conversion conditions and specific gravity of dilute sulfuric acid can be adjusted according to the properties of the electrode active material.
  • the chemical conversion treatment is not limited to being performed after the assembly process, and may be performed after aging and drying in the electrode manufacturing process (tank chemical conversion).
  • the pH of the solution immediately after adding bisphenol A and bisphenol S (at the start of the reaction) was measured under the following measurement conditions.
  • the pH was 8.6.
  • ⁇ PH measurement conditions ⁇ Testing machine: Twin pH (manufactured by ASONE Corporation)
  • Calibration solution pH 6.86 (25 ° C.), pH 4.01 (25 ° C.)
  • Measurement temperature 25 ° C
  • Measurement procedure Two-point calibration was performed using a calibration solution. After cleaning the sensor part of the tester, the measurement solution was sucked with a dropper and 0.1 to 0.3 mL was dropped onto the sensor part. The pH at the end of measurement on the screen was taken as the measured value.
  • Solution C prepared above was transferred to a heat-resistant container.
  • Resin powder bisphenol / aminobenzenesulfonic acid / formaldehyde condensate
  • the weight average molecular weight of the resin powder was measured by GPC under the following conditions. The weight average molecular weight was 53900.
  • This positive electrode material paste was filled in an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process. Next, the positive electrode material paste was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried and produced the unchemically formed positive electrode plate.
  • Lead powder was used as a raw material for the negative electrode active material. 0.2% by mass (converted to solid content) of the bisphenol resin obtained above, 0.1% by mass of reinforcing short fibers (acrylic fibers), 1.0% by mass of barium sulfate, furnace black (average particle size) : About 30 nm) was added to the lead powder and then dry-mixed (the blending amount is based on the total mass of the raw material of the negative electrode active material). Next, the mixture was kneaded after adding water. Subsequently, the mixture was kneaded while dilute sulfuric acid (specific gravity 1.260) was added little by little to prepare a negative electrode material paste.
  • dilute sulfuric acid specific gravity 1.260
  • the negative electrode material paste was filled in an expanded lattice produced by subjecting a rolled sheet made of a lead alloy to an expanding process. Next, the negative electrode material paste was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Then, it dried and produced the unchemically formed negative electrode plate.
  • An electrolytic solution was prepared by adding an aqueous aluminum sulfate solution and an aqueous phosphoric acid solution to dilute sulfuric acid so that the aluminum ion concentration and the phosphate ion concentration in the electrolytic solution were as shown in Table 1.
  • a separator (bag-like) formed by processing a sheet-like material containing polyethylene and silica particles and having a plurality of linear ribs on one side into a bag shape so that the side on which the ribs are formed is on the outside (Separator) was prepared (see FIGS. 1 and 3). Details of the separator are shown below.
  • silica particles The number of silica particles having a particle size (longest diameter) of 2 ⁇ m or more is 9 within the range of 30 ⁇ m ⁇ 40 ⁇ m arbitrarily selected when the cross section of the separator is analyzed with a scanning electron microscope (SEM). there were.
  • the unformed negative electrode plate was accommodated in the bag-shaped separator. Subsequently, six unformed positive electrode plates and seven unformed negative electrode plates accommodated in the bag-like separator are alternately laminated, and then the ears of the same polarity electrode plates are cast-on-strap (COS). ) Method was used to prepare the electrode plate group.
  • the electrode plate group was inserted into a battery case to assemble a 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301). After injecting the electrolytic solution (specific gravity 1.28) prepared above into this battery, it was formed in a 40 ° C. water tank at an electric current of 17.5 A for 16 hours to obtain a lead storage battery.
  • the specific gravity of the electrolyte after the formation was adjusted to be 1.28. In the following Experimental Examples 2 to 35, the same specific gravity was adjusted.
  • the content of furnace black (average particle diameter: about 30 nm) with respect to the total mass of the negative electrode material after chemical conversion was 0.2% by mass.
  • the separator before battery assembly was cut by an ion milling apparatus E-3500 (trade name, manufactured by Hitachi High-Technologies Corporation) to expose the cross section.
  • EDX analysis of the separator cross section was performed using a scanning electron microscope (trade name: JSM-6010LA, manufactured by JEOL Ltd.). Mapping analysis was performed at a magnification of 300 times, and after the measurement, the separator portion was selected, and the abundances of carbon, oxygen, and silicon were quantified and converted to the mass of each element. Based on the total mass of carbon, oxygen and silicon obtained, the total mass (% by mass) of oxygen and silicon in the separator was calculated.
  • mapping analysis The conditions for mapping analysis are as follows: acceleration voltage is 15 kV, spot size is 72, pressure is 35 Pa in low vacuum mode, dwell time is 1 millisecond, process time is T4, number of pixels is 512 ⁇ 384, and integration is 5 times. It was. The quantitative results of each element were 40 (mass%) for carbon, 38 (mass%) for oxygen, and 22 (mass%) for silicon based on the total mass of carbon, oxygen and silicon.
  • a sample for measuring the specific surface area was prepared by the following procedure. First, the formed battery was disassembled, the electrode plates (positive electrode plate and negative electrode plate) were taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 2 g of an electrode material (a positive electrode material and a negative electrode material) was collected from the center of the electrode plate and dried at 130 ° C. for 30 minutes to prepare a measurement sample.
  • the specific surface areas of the positive electrode material and the negative electrode material after chemical conversion were calculated according to the BET method by measuring the nitrogen gas adsorption amount at a liquid nitrogen temperature by a multipoint method while cooling the measurement sample prepared above with liquid nitrogen.
  • the measurement conditions were as follows. As a result of the measurement, the specific surface area of the positive electrode material was 6 m 2 / g, and the specific surface area of the negative electrode material was 0.7 m 2 / g. In the following Experimental Examples 2 to 35, the specific surface area was the same. ⁇ Measurement conditions for specific surface area ⁇ Apparatus: Macsorb1201 (manufactured by Mountec Co., Ltd.) Degassing time: 10 minutes at 130 ° C. Cooling: 5 minutes with liquid nitrogen Adsorbed gas flow rate: 25 mL / min
  • Example 7 A lead storage battery was produced in the same manner as in Experimental Example 1 except that cesium sulfate was used instead of aluminum sulfate and the cesium ion concentration and phosphate ion concentration were adjusted to the concentrations shown in Table 1.
  • Example 8 A lead-acid battery was produced in the same manner as in Experimental Example 7 except that the cesium ion concentration and phosphate ion concentration were adjusted to the concentrations shown in Table 1.
  • Example 14 A lead storage battery was produced in the same manner as in Experimental Example 1, except that potassium sulfate was used instead of aluminum sulfate and the potassium ion concentration and phosphate ion concentration were adjusted to the concentrations shown in Table 1.
  • Example 26 Experiments except that dilute sulfuric acid not containing potassium ion, aluminum ion, cesium ion, lithium ion, titanium ion and phosphate ion was used as the electrolyte, and furnace black was not used when preparing the negative electrode plate A lead storage battery was produced in the same manner as in Example 1.
  • Example 27 A lead-acid battery was produced in the same manner as in Experimental Example 1 except that dilute sulfuric acid not containing potassium ion, aluminum ion, cesium ion, lithium ion, titanium ion and phosphate ion was used as the electrolyte.
  • Example 30 A lead storage battery was fabricated in the same manner as in Experimental Example 4 except that titanium sulfate was used instead of aluminum sulfate and the titanium ion concentration was adjusted to the concentration shown in Table 1.
  • Example 31 A lead-acid battery was produced in the same manner as in Experimental Example 3 except that graphite (average particle diameter: about 500 ⁇ m) was used instead of furnace black when producing the negative electrode plate.
  • Example 32 A lead-acid battery was produced in the same manner as in Experimental Example 9 except that graphite (average particle size: about 500 ⁇ m) was used instead of furnace black when producing the negative electrode plate.
  • Example 33 A lead-acid battery was produced in the same manner as in Experimental Example 12 except that graphite (average particle size: about 500 ⁇ m) was used instead of furnace black when producing the negative electrode plate.
  • Example 34 A lead-acid battery was produced in the same manner as in Experimental Example 16 except that graphite (average particle diameter: about 500 ⁇ m) was used instead of furnace black when producing the negative electrode plate.
  • Example 35 A lead storage battery was produced in the same manner as in Experimental Example 27, except that graphite (average particle size: about 500 ⁇ m) was used instead of furnace black when producing the negative electrode plate.
  • the current values I 1 of the experimental examples 31 to 35 were relatively evaluated based on the current value I 1 of the experimental example 27 (I 1 in Table 2). reference). Further, assuming that the current value I 1 of the experimental example 35 is 100, the current values I 1 of the experimental examples 31 to 34 were relatively evaluated based on the current value I 1 of the experimental example 35 (I 4 in Table 2). reference). The initial charging performance higher the current value I 1 is evaluated as a good battery. The evaluation results are shown in Tables 1 and 2.
  • Experimental Example 27 it was confirmed that a very low current value could be obtained after dark current discharge.
  • Experimental Examples 1 to 25 using at least one selected from the group consisting of potassium ions, aluminum ions, cesium ions, and phosphate ions, a higher current value than that in Experimental Example 27 was obtained after dark current discharge. It was confirmed that it was obtained.
  • Experimental Examples 1 to 25 it was confirmed that a higher current value was obtained than in Experimental Example 27 even in the initial stage.
  • Experimental Example 35 it was confirmed that a very low current value could be obtained after dark current discharge.
  • Experimental Examples 31 to 34 using at least one selected from the group consisting of potassium ions, aluminum ions, cesium ions, and phosphate ions, a higher current value than that in Experimental Example 35 was obtained after dark current discharge. It was confirmed that it was obtained.
  • Experimental Examples 31 to 34 it was confirmed that a higher current value was obtained than in Experimental Example 35 even in the initial stage.
  • Furnace black is considered to have improved charging performance because it has smaller particles and a larger specific surface area than graphite, and can adhere well to coarsened lead sulfate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

 正極と負極と電解液とセパレータとを備え、正極が、正極活物質を含む正極材を有し、負極が、負極活物質を含む負極材を有し、電解液が、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種を含む、鉛蓄電池。

Description

鉛蓄電池及びそれを備える自動車
 本発明は、鉛蓄電池及びそれを備える自動車に関する。
 地球温暖化防止への取り組みの一つとして、自動車からのCO排出量規制及び燃費規制が各国で強化されている。このような状況から、自動車業界ではCO排出量を抑制する次世代環境自動車を開発することが急務となっている。次世代環境自動車の中でもアイドリングストップ車(以下、「ISS車」という。)は、既存の設計を大きく変えることなく安価であり、燃費を向上できるという利点がある。
 ISS車の燃費向上機能は、主に2つの特徴を有している。1つは、ブレーキ制動の際に運動エネルギーを電気エネルギーに変換し、この電気エネルギーを鉛蓄電池に蓄えて利用するという特徴(すなわち回生エネルギーの利用)である。もう1つは、自動車の停車中にエンジンを切ることで余分なエネルギーを消費させないという特徴である。
 近年、長時間を要する自動車の海外輸送の増加、たまの日にしか運転しないドライバーの増加等により、エンジンを長期間始動しない自動車が急増している。また、自動車に搭載される鉛蓄電池には、エンジン停止後も電装品のバックアップ及び制御コンピュータを維持するために、「暗電流」という微小電流(例えば20~100mAの電流)が流れ(以下、「暗電流放電」という。)、放電状態となるものが多い。このような鉛蓄電池においては、エンジンを長期間始動させない場合、充電されず、暗電流による放電状態(以下、「暗電流放電状態」という。)が長期間続き、SOC(State Of Charge)が低下する。
 SOCがある程度低い状態で自動車を長期間放置すると、エンジンを始動できない等、鉛蓄電池を有効に使用できないことが分かってきている。このような問題を解決するために、例えば、下記特許文献1には、正極格子における略菱形状に開いた開口部の面積と、カーボンブラックのDBP(フタル酸ジブチル)吸油量とを調整する技術が開示されている。
国際公開第2013/073091号
 ところで、本発明者の鋭意検討の結果、暗電流放電状態が長時間続くことによって鉛蓄電池のSOCが低下した場合、鉛蓄電池の充電性能が著しく低下することが分かってきた。また、鉛蓄電池に対しては、暗電流放電状態における過剰な電圧降下を抑制することが求められている。
 本発明は、上記事情に鑑みなされたものであり、暗電流放電状態における過剰な電圧降下を抑制できると共に、暗電流放電によりSOCが低下した場合であっても優れた充電性能を有する鉛蓄電池、及び、当該鉛蓄電池を備える自動車を提供することを目的とする。
 本発明者らは、鋭意検討の結果、鉛蓄電池において電解液が、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種を含むことにより上記課題を解決し得ることを見出した。
 すなわち、本発明の第一の態様は、正極と負極と電解液とセパレータとを備え、正極が、正極活物質を含む正極材を有し、負極が、負極活物質を含む負極材を有し、電解液がカリウムイオンを含む、鉛蓄電池である。
 本発明の第二の態様は、正極と負極と電解液とセパレータとを備え、正極が、正極活物質を含む正極材を有し、負極が、負極活物質を含む負極材を有し、電解液がアルミニウムイオンを含む、鉛蓄電池である。
 本発明の第三の態様は、正極と負極と電解液とセパレータとを備え、正極が、正極活物質を含む正極材を有し、負極が、負極活物質を含む負極材を有し、電解液がセシウムイオンを含む、鉛蓄電池である。
 本発明の第四の態様は、正極と負極と電解液とセパレータとを備え、正極が、正極活物質を含む正極材を有し、負極が、負極活物質を含む負極材を有し、電解液がリン酸イオンを含む、鉛蓄電池である。
 上記本発明に係る鉛蓄電池は、暗電流放電状態における過剰な電圧降下を抑制できると共に、暗電流放電によりSOCが低下した場合であっても優れた充電性能(暗電流放電後の充電性能)を有する。また、上記本発明に係る鉛蓄電池は、初期の状態においても優れた充電性能(初期充電性能)を有する。
 暗電流放電によりSOCが低下した場合に鉛蓄電池の充電性能が低下する原因、及び、本発明においてこのような充電性能の低下を抑制できる原因の詳細については明らかではないが、本発明者らは以下のように推測している。すなわち、暗電流放電状態では、放電生成物である硫酸鉛の生成速度が遅く、暗電流放電状態で長期間放置された場合には、硫酸鉛の溶解と合体が起きる。その結果、硫酸鉛粒子が凝集及び粗大化して充電性能が低下する。これに対し、本発明に係る鉛蓄電池では、電解液に含まれる特定のイオン(カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種のイオン)が、暗電流放電による硫酸鉛粒子の凝集及び粗大化を抑制するため、充電時における負極の反応界面での硫酸イオンの生成が促進される。これにより、本発明に係る鉛蓄電池は、暗電流放電によりSOCが低下した場合であっても優れた充電性能を有する。
 電解液におけるカリウムイオンの濃度は、0.003~0.15mol/Lであることが好ましい。この場合、暗電流放電後の充電性能及び初期充電性能を更に向上させることができる。
 電解液におけるアルミニウムイオンの濃度は、0.005~0.4mol/Lであることが好ましい。この場合、暗電流放電後の充電性能及び初期充電性能を更に向上させることができる。
 電解液におけるセシウムイオンの濃度は、0.005~0.4mol/Lであることが好ましい。この場合、暗電流放電後の充電性能及び初期充電性能を更に向上させることができる。
 電解液は、カリウムイオン、アルミニウムイオン及びセシウムイオンからなる群より選ばれる少なくとも一種に加えてリン酸イオンを更に含むことが好ましい。この場合、暗電流放電後の充電性能及び初期充電性能を更に向上させることができる。
 電解液におけるリン酸イオンの濃度は、0.005~0.2mol/Lであることが好ましい。この場合、暗電流放電後の充電性能及び初期充電性能を更に向上させることができる。
 前記負極材は、カーボンブラックを更に含むことが好ましい。この場合、暗電流放電後の充電性能を更に向上させることができる。
 前記負極材は、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂を更に含むことが好ましい。この場合、低温高率放電性能を向上させることができる。
 前記樹脂は、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有するビスフェノール系樹脂、リグニンスルホン酸、並びに、リグニンスルホン酸塩からなる群より選ばれる少なくとも一種を含むことが好ましい。この場合、充電受け入れ性を更に向上させることができる。
 前記樹脂は、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有するビスフェノール系樹脂を含むことが好ましい。この場合、充電受け入れ性を更に向上させることができる。
 前記ビスフェノール系樹脂は、ビスフェノール系化合物と、アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、の反応由来の樹脂であることが好ましい。この場合、充電受け入れ性を更に向上させることができる。
 前記負極材の比表面積は、0.5~2m/gであることが好ましい。この場合、暗電流放電後の充電性能を更に向上させることができる。
 前記正極材の比表面積は、4m/g以上であることが好ましい。この場合、電解液と正極活物質との反応性を高めることができる。
 前記セパレータは、ポリオレフィン及びシリカを含むことが好ましい。この場合、短絡の抑制効果に優れる。
 エネルギー分散型X線分光法による元素分析において、前記セパレータにおける酸素及びケイ素の質量の合計は、炭素、酸素及びケイ素の質量の合計を基準として30~80質量%であることが好ましい。この場合、短絡の抑制効果に更に優れると共に、セパレータ強度を向上させることができる。
 前記セパレータは、凸状のリブと、当該リブを支持するベース部と、を有し、前記ベース部の厚みTに対する前記リブの高さHの比率H/Tが2以上である態様が好ましい。この場合、セパレータの耐酸化性に優れる。
 本発明の第五の態様は、上記本発明に係る鉛蓄電池を備え、鉛蓄電池がエンジン停止状態において20~100mAの電流値で放電する、自動車である。
 本発明によれば、暗電流放電状態における過剰な電圧降下を抑制できると共に、暗電流放電によりSOCが低下した場合であっても優れた充電性能を有する鉛蓄電池、及び、当該鉛蓄電池を備える自動車を提供することができる。
 本発明によれば、暗電流放電状態で長期間放置された後にオルタネータによる充電が行われる自動車への鉛蓄電池の応用を提供できる。本発明によれば、微小電流(例えば、エンジン停止状態において20~100mAの電流値を有する電流)の放電が起こる自動車への鉛蓄電池の応用を提供できる。また、本発明によれば、充電が間欠的に行われた後に部分充電状態(PSOC:Partial State Of Charge)でオルタネータによる充電が行われる自動車への鉛蓄電池の応用が提供できる。本発明によれば、マイクロハイブリッド車への鉛蓄電池の応用を提供できる。本発明によれば、ISS車への鉛蓄電池の応用を提供できる。
図1は、セパレータを示す図面である。 図2は、セパレータ及び電極の断面図である。 図3は、袋状のセパレータと、袋状のセパレータに収容される電極とを示す図面である。
 以下、本発明の実施形態について詳細に説明する。なお、比重は、温度によって変化するため、本明細書においては20℃で換算した比重と定義する。
<鉛蓄電池>
 本実施形態に係る鉛蓄電池は、例えば、電槽、電極(電極板等)、電解液(希硫酸等)及びセパレータを備えている。電極及び電解液は、電槽内に収容されている。電極は、セパレータを介して対向する正極(正極板等)及び負極(負極板等)を有している。本実施形態に係る鉛蓄電池としては、液式鉛蓄電池、制御弁式鉛蓄電池等が挙げられ、液式鉛蓄電池が好ましい。
 正極及び負極は、例えば、セパレータを介して積層されることにより電極群(極板群等)を構成している。正極は、集電体(正極集電体)と、当該集電体に保持された正極材と、を有している。負極は、集電体(負極集電体)と、当該集電体に保持された負極材と、を有している。本実施形態において正極材及び負極材は、例えば、化成後(例えば満充電状態)の電極材である。電極材が未化成である場合、電極材(未化成の正極材及び未化成の負極材)は、その原料等を含有している。集電体は、電極材からの電流の導電路を構成する。本実施形態において電解液は、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種を含む。鉛蓄電池の基本構成としては、従来の鉛蓄電池と同様の構成を用いることができる。
 これまで鉛蓄電池においては、充電性能を向上させる目的で、初期充電性能、及び、サイクル後の充電性能を向上させる検討が行われてきた。しかしながら、本発明者の鋭意検討の結果、暗電流放電によって充電性能が大幅に低下することが明らかとなり、鉛蓄電池においては、初期充電性能と共に暗電流放電後の充電性能を向上させることが必要である。また、鉛蓄電池に対しては、暗電流放電状態における過剰な電圧降下を抑制することも求められている。これに対し、本実施形態に係る鉛蓄電池によれば、暗電流放電状態における過剰な電圧降下を抑制しつつ、暗電流放電による充電性能の低下を抑制することが可能であり、暗電流放電状態における過剰な電圧降下を抑制できると共に、暗電流放電によりSOCが低下した場合であっても優れた充電性能を得ることができる。また、本実施形態に係る鉛蓄電池によれば、初期充電性能と共に暗電流放電後の充電性能を向上させることができる。
 本実施形態に係る鉛蓄電池は、暗電流放電状態で長期間放置された後にオルタネータによる充電が行われる鉛蓄電池として有用である。例えば、本実施形態に係る鉛蓄電池は、微小電流(例えば、エンジン停止状態において20~100mAの電流値を有する電流)で放電する鉛蓄電池として有用である。また、本実施形態に係る鉛蓄電池は、充電が間欠的に行われた後に部分充電状態(PSOC)でオルタネータによる充電が行われる鉛蓄電池として有用である。本実施形態に係る鉛蓄電池は、これらの鉛蓄電池を備える自動車(ISS車、マイクロハイブリッド車等)において好適に用いられる。なお、自動車に搭載されている鉛蓄電池におけるエンジン停止状態での微小電流放電は、例えば、クランプメータ等を用いることで測定できる。
(正極材)
[正極活物質]
 正極材は、正極活物質を含有している。正極活物質は、正極活物質の原料を含む正極材ペーストを熟成及び乾燥することにより未化成の正極活物質を得た後に未化成の正極活物質を化成することで得ることができる。化成後の正極活物質は、β-二酸化鉛(β-PbO)を含むことが好ましく、α-二酸化鉛(α-PbO)を更に含んでいてもよい。正極活物質の原料としては、特に制限はなく、例えば鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。正極活物質の原料として鉛丹(Pb)を用いてもよい。未化成の正極材は、主成分として、三塩基性硫酸鉛を含む未化成の正極活物質を含有することが好ましい。
 正極活物質の平均粒径は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点、及び、サイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上が更に好ましい。正極活物質の平均粒径は、サイクル特性が更に向上する観点から、2.5μm以下が好ましく、2μm以下がより好ましく、1.5μm以下が更に好ましい。正極活物質の前記平均粒径は、化成後の正極材における正極活物質の平均粒径である。正極活物質の平均粒径は、例えば、化成後の正極中央部の正極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)の画像内における全ての正極活物質粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。
 正極活物質の含有量は、電池特性(容量、低温高率放電性能、充電受け入れ性、サイクル特性等)に更に優れる観点から、正極材の全質量を基準として、95質量%以上が好ましく、97質量%以上がより好ましく、99質量%以上が更に好ましい。正極活物質の含有量の上限は、100質量%以下であってもよい。正極活物質の前記含有量は、化成後の正極材における正極活物質の含有量である。
[正極添加剤]
 正極材は、添加剤を更に含有していてもよい。添加剤としては、炭素材料(炭素質導電材。炭素繊維を除く)、補強用短繊維等が挙げられる。炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(ケッチェンブラック(登録商標、以下同様)等)、チャンネルブラック、アセチレンブラック、サーマルブラックなどが挙げられる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。
[正極材の物性]
 正極材の比表面積は、電解液と正極活物質との反応性を高める観点から、2m/g以上が好ましく、3m/g以上がより好ましく、4m/g以上が更に好ましい。正極材の前記比表面積は、5m/g以上であってもよく、6m/g以上であってもよい。正極材の比表面積は、利用率に優れる観点から、12m/g以下が好ましく、11m/g以下がより好ましく、10m/g以下が更に好ましい。正極材の前記比表面積は、8m/g以下であってもよい。これらの観点から、正極材の前記比表面積は、2~12m/gが好ましく、3~11m/gがより好ましく、4~10m/gが更に好ましい。正極材の前記比表面積は、5~8m/gであってもよく、6~8m/gであってもよい。正極材の前記比表面積は、化成後の正極材の比表面積である。正極材の比表面積は、例えば、正極材ペーストを作製する際の希硫酸及び水の添加量を調整する方法、未化成の正極活物質の段階で活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。
 正極材の比表面積は、例えば、BET法で測定することができる。BET法は、一つの分子の大きさが既知の不活性ガス(例えば窒素ガス)を測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積の一般的な測定手法である。
(負極材)
[負極活物質]
 負極材は、負極活物質を含有している。負極活物質は、負極活物質の原料を含む負極材ペーストを熟成及び乾燥することにより未化成の負極活物質を得た後に未化成の負極活物質を化成することで得ることができる。化成後の負極活物質としては、海綿状鉛(Spongylead)等が挙げられる。前記海綿状鉛は、電解液中の希硫酸と反応して、次第に硫酸鉛(PbSO)に変わる傾向がある。負極活物質の原料としては、鉛粉等が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。未化成の負極活物質は、例えば、塩基性硫酸鉛及び金属鉛、並びに、低級酸化物から構成される。
 負極活物質の平均粒径は、サイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上が更に好ましい。負極活物質の平均粒径は、サイクル特性が更に向上する観点から、2.5μm以下が好ましく、2μm以下がより好ましく、1.5μm以下が更に好ましい。負極活物質の前記平均粒径は、化成後の負極材における負極活物質の平均粒径である。負極活物質の平均粒径は、例えば、化成後の負極中央部の負極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)の画像内における全ての負極活物質粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。
 負極活物質の含有量は、電池特性(容量、低温高率放電性能、充電受け入れ性、サイクル特性等)に更に優れる観点から、負極材の全質量を基準として、93質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。負極活物質の含有量の上限は、100質量%以下であってもよい。負極活物質の前記含有量は、化成後の負極材における負極活物質の含有量である。
[負極添加剤]
 負極材は、添加剤を更に含有していてもよい。添加剤としては、硫酸バリウム;炭素材料(炭素質導電材。炭素繊維を除く);補強用短繊維;スルホン基(スルホン酸基、スルホ基)及びスルホン酸塩基(スルホン基の水素がアルカリ金属で置換された基等)からなる群より選ばれる少なくとも一種を有する樹脂(スルホン基及び/又はスルホン酸塩基を有する樹脂)などが挙げられる。スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂を負極材が含むことにより、低温高率放電性能を更に向上させることができる。
 炭素材料としては、カーボンブラック、黒鉛等が挙げられる。炭素材料としては、暗電流放電後の充電特性が更に向上する観点から、カーボンブラックが好ましい。カーボンブラックとしては、ファーネスブラック(ケッチェンブラック等)、チャンネルブラック、アセチレンブラック、サーマルブラック等が挙げられる。カーボンブラックの中でも、ファーネス法により製造されるファーネスブラックが好ましい。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。
 添加剤としてカーボンブラックを用いる場合、カーボンブラックの平均粒径は、取り扱い性に優れる観点から、10nm以上が好ましく、20nm以上がより好ましく、25nm以上が更に好ましい。カーボンブラックの平均粒径は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、100nm以下が好ましく、50nm以下がより好ましく、40nm以下が更に好ましい。これらの観点から、カーボンブラックの平均粒径は、10~100nmが好ましく、20~50nmがより好ましく、25~40nmが更に好ましい。カーボンブラックの平均粒径が100nm以下であると、カーボンブラック全体としての比表面積が大きいため、活物質間での導電性が向上することから、暗電流放電後の充電性能及び初期充電性能が更に向上すると推測される。カーボンブラックの平均粒径は、例えば、カーボンブラックの粒子を基板に蒸着させた後、前記基板の中央部の縦100μm×横100μmの範囲の走査型電子顕微鏡写真の画像内における全ての粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。なお、平均粒径が小さい場合(平均粒径が0.1μm以下と予想できる場合)は、縦1μm×横1μmの範囲の走査型電子顕微鏡写真の画像内における全ての粒子の長辺長さの値を算術平均化した数値として得ることができる。また、平均粒径を自動的に求める方法として、二次元画像の画像解析ソフト(住友金属テクノロジー製、粒子解析Ver3.5)を用いることもできる。
 添加剤として黒鉛を用いる場合、黒鉛の平均粒径は、可能な限り小さいことが好ましい。黒鉛の平均粒径は、実用的な観点からは、1μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。黒鉛の平均粒径は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、500μm以下が好ましく、100μm以下がより好ましく、50μm以下が更に好ましい。これらの観点から、黒鉛の平均粒径は、1~500μmが好ましく、1~100μmがより好ましく、1~50μmが更に好ましい。黒鉛の平均粒径は、10~500μmであってもよく、20~500μmであってもよい。黒鉛の平均粒径は、カーボンブラックの平均粒径と同様の方法により測定することができる。
 炭素材料の含有量は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、負極材の全質量を基準として、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.15質量%以上が更に好ましく、0.2質量%以上が特に好ましい。炭素材料の含有量は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、負極材の全質量を基準として、3質量%以下が好ましく、1.4質量%以下がより好ましく、0.5質量%以下が更に好ましく、0.4質量%以下が特に好ましく、0.3質量%以下が極めて好ましい。これらの観点から、炭素材料の含有量は、負極材の全質量を基準として、0.05~3質量%が好ましく、0.1~3がより好ましく、0.15~3質量%が更に好ましく、0.2~1.4質量%が特に好ましく、0.2~0.5質量%が極めて好ましく、0.2~0.4質量%が非常に好ましく、0.2~0.3質量%がより一層好ましい。炭素材料の前記含有量は、化成後の負極材における炭素材料の含有量である。
 スルホン基及び/又はスルホン酸塩基を有する樹脂としては、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有するビスフェノール系樹脂(スルホン基及び/又はスルホン酸塩基を有するビスフェノール樹脂。以下、単に「ビスフェノール系樹脂」という)、リグニンスルホン酸、リグニンスルホン酸塩等が挙げられる。リグニンスルホン酸は、リグニンの分解物の一部がスルホン化された化合物である。リグニンスルホン酸塩としては、例えば、リグニンスルホン酸カリウム及びリグニンスルホン酸ナトリウムが挙げられる。スルホン基及び/又はスルホン酸塩基を有する樹脂は、充電受け入れ性が更に向上する観点から、ビスフェノール系樹脂、リグニンスルホン酸、及び、リグニンスルホン酸塩からなる群より選ばれる少なくとも一種が好ましく、ビスフェノール系樹脂がより好ましい。
 ビスフェノール系樹脂は、充電受け入れ性が更に向上する観点から、ビスフェノール系化合物と、アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、を反応させて得られる樹脂(ビスフェノール系化合物と、アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、の反応由来の樹脂。縮合物等)であることが好ましい。
 ビスフェノール系化合物は、2個のヒドロキシフェニル基を有する化合物である。ビスフェノール系化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」という)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン(以下、「ビスフェノールS」という)等が挙げられる。
 アミノアルキルスルホン酸としては、アミノメタンスルホン酸、2-アミノエタンスルホン酸、3-アミノプロパンスルホン酸、2-メチルアミノエタンスルホン酸等が挙げられる。アミノアルキルスルホン酸誘導体としては、アミノアルキルスルホン酸の水素原子がアルキル基(例えば炭素数1~5のアルキル基)等で置換された化合物、アミノアルキルスルホン酸のスルホン基(-SOH)の水素原子がアルカリ金属(例えばナトリウム又はカリウム)で置換されたアルカリ金属塩などが挙げられる。アミノアリールスルホン酸としては、アミノベンゼンスルホン酸(4-アミノベンゼンスルホン酸等)、アミノナフタレンスルホン酸などが挙げられる。アミノアリールスルホン酸誘導体としては、アミノアリールスルホン酸の水素原子がアルキル基(例えば炭素数1~5のアルキル基)等で置換された化合物、アミノアリールスルホン酸のスルホン基(-SOH)の水素原子がアルカリ金属(例えばナトリウム又はカリウム)で置換されたアルカリ金属塩などが挙げられる。
 ホルムアルデヒド誘導体としては、パラホルムアルデヒド、ヘキサメチレンテトラミン、トリオキサン等が挙げられる。
 ビスフェノール系樹脂は、下記式(I)で表される構造単位、及び、下記式(II)で表される構造単位からなる群より選ばれる少なくとも一種を有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
[式(I)中、Xは、2価の基を示し、Aは、炭素数1~4のアルキレン基、又は、アリーレン基を示し、R11は、アルカリ金属又は水素原子を示し、R12は、メチロール基(-CHOH)を示し、R13及びR14は、それぞれ独立にアルカリ金属又は水素原子を示し、n11は、1~600の整数を示し、n12は、1~3の整数を示し、n13は、0又は1を示す。]
Figure JPOXMLDOC01-appb-C000002
[式(II)中、Xは、2価の基を示し、Aは、炭素数1~4のアルキレン基、又は、アリーレン基を示し、R21は、アルカリ金属又は水素原子を示し、R22は、メチロール基(-CHOH)を示し、R23及びR24は、それぞれ独立にアルカリ金属又は水素原子を示し、n21は、1~600の整数を示し、n22は、1~3の整数を示し、n23は、0又は1を示す。]
 式(I)で表される構造単位、及び、式(II)で表される構造単位の比率は、特に制限はなく、合成条件等によって変化し得る。ビスフェノール系樹脂としては、式(I)で表される構造単位、及び、式(II)で表される構造単位のいずれか一方のみを有する樹脂を用いてもよい。
 X及びXとしては、例えば、アルキリデン基(メチリデン基、エチリデン基、イソプロピリデン基、sec-ブチリデン基等)、シクロアルキリデン基(シクロヘキシリデン基等)、フェニルアルキリデン基(ジフェニルメチリデン基、フェニルエチリデン基等)などの有機基;スルホニル基が挙げられ、充電性能に更に優れる観点からはイソプロピリデン基(-C(CH-)が好ましく、放電特性に更に優れる観点からはスルホニル基(-SO-)が好ましい。X及びXは、フッ素原子等のハロゲン原子により置換されていてもよい。X及びXがシクロアルキリデン基である場合、炭化水素環はアルキル基等により置換されていてもよい。
 A及びAとしては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等の炭素数1~4のアルキレン基;フェニレン基、ナフチレン基等の2価のアリーレン基が挙げられる。前記アリーレン基は、アルキル基等により置換されていてもよい。
 R11、R13、R14、R21、R23及びR24のアルカリ金属としては、例えば、ナトリウム及びカリウムが挙げられる。n11及びn21は、サイクル特性及び溶媒への溶解性に更に優れる観点から、5~300が好ましい。n12及びn22は、充電性能、放電特性及びサイクル特性がバランス良く向上する観点から、1又は2が好ましく、1がより好ましい。n13及びn23は、製造条件により変化するが、サイクル特性に更に優れると共にビスフェノール系樹脂の保存安定性に優れる観点から、0が好ましい。
 スルホン基及び/又はスルホン酸塩基を有する樹脂(ビスフェノール系樹脂等)の重量平均分子量は、スルホン基及び/又はスルホン酸塩基を有する樹脂が鉛蓄電池において電極から電解液に溶出することを抑制することによりサイクル特性が向上しやすくなる観点から、3000以上が好ましく、10000以上がより好ましく、20000以上が更に好ましく、30000以上が特に好ましい。スルホン基及び/又はスルホン酸塩基を有する樹脂の重量平均分子量は、電極活物質に対する吸着性が低下して分散性が低下することを抑制することによりサイクル特性が向上しやすくなる観点から、200000以下が好ましく、150000以下がより好ましく、100000以下が更に好ましい。
 スルホン基及び/又はスルホン酸塩基を有する樹脂の重量平均分子量は、例えば、下記条件のゲルパーミエイションクロマトグラフィー(以下、「GPC」という)により測定することができる。
(GPC条件)
 装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
    ポンプ:PU-2080
    示差屈折率計:RI-2031
    検出器:紫外可視吸光光度計UV-2075(λ:254nm)
    カラムオーブン:CO-2065
 カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
 カラム温度:40℃
 溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
 流速:0.6mL/分
 分子量標準試料:ポリエチレングリコール(分子量:1.10×10、5.80×10、2.55×10、1.46×10、1.01×10、4.49×10、2.70×10、2.10×10;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×10;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×10;キシダ化学株式会社製)
 スルホン基及び/又はスルホン酸塩基を有する樹脂を用いる場合、スルホン基及び/又はスルホン酸塩基を有する樹脂の含有量は、放電特性に更に優れる観点から、負極材の全質量を基準として、樹脂固形分換算で0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。スルホン基及び/又はスルホン酸塩基を有する樹脂の含有量は、充電受け入れ性に更に優れる観点から、負極材の全質量を基準として、樹脂固形分換算で2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。
[負極材の物性]
 負極材の比表面積は、電解液と負極活物質との反応性を高める観点から、0.5m/g以上が好ましく、0.55m/g以上がより好ましく、0.6m/g以上が更に好ましい。負極材の比表面積は、負極の収縮を抑制する観点から、2m/g以下が好ましく、1.2m/g以下がより好ましく、0.8m/g以下が更に好ましい。これらの観点から、負極材の比表面積は、0.5~2m/gが好ましく、0.55~1.2m/gがより好ましく、0.6~0.8m/g更に好ましい。負極材の前記比表面積は、化成後の負極材の比表面積である。負極材の比表面積は、例えば、負極材ペーストを作製する際の希硫酸及び水の添加量を調整する方法、未化成の負極活物質の段階で活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。負極材の比表面積は、例えば、BET法で測定することができる。
(集電体)
 集電体の製造法としては、鋳造方式、エキスパンド方式、打ち抜き方式等が挙げられる。集電体の材料としては、例えば、鉛-カルシウム-錫系合金及び鉛-アンチモン系合金が挙げられる。これらにセレン、銀、ビスマス等を微量添加することができる。例えば、これらの材料を前述の製造法で格子状又はメッシュ状に形成することにより集電体を得ることができる。正極及び負極の集電体の製造法又は材料は、互いに同一であってもよく、互いに異なっていてもよい。
(電解液)
 本実施形態に係る鉛蓄電池の電解液は、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種を含む。電解液がカリウムイオン、アルミニウムイオン及びセシウムイオンからなる群より選ばれる少なくとも一種を含む場合、電解液はリン酸イオンを更に含むことが好ましい。電解液がカリウムイオンに加えてリン酸イオンを更に含む場合、暗電流放電後の充電性能及び初期充電性能が更に向上する傾向がある。電解液がアルミニウムイオンに加えてリン酸イオンを更に含む場合、暗電流放電後の充電性能及び初期充電性能が更に向上する傾向がある。電解液がセシウムイオンに加えてリン酸イオンを更に含む場合、暗電流放電後の充電性能及び初期充電性能が更に向上する傾向がある。
 電解液がカリウムイオンを含む場合、電解液におけるカリウムイオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.003mol/L以上が好ましく、0.005mol/L以上がより好ましく、0.01mol/L以上が更に好ましい。前記カリウムイオンの濃度は、0.02mol/L以上であってもよい。電解液におけるカリウムイオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.15mol/L以下が好ましく、0.12mol/L以下がより好ましく、0.1mol/L以下が更に好ましい。前記カリウムイオンの濃度は、0.08mol/L以下であってもよく、0.05mol/L以下であってもよい。電解液におけるカリウムイオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.003~0.15mol/Lが好ましく、0.005~0.15mol/Lがより好ましく、0.01~0.12mol/Lが更に好ましく、0.01~0.1mol/Lが特に好ましい。
 電解液がアルミニウムイオンを含む場合、電解液におけるアルミニウムイオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.005mol/L以上が好ましく、0.01mol/L以上がより好ましく、0.04mol/L以上が更に好ましい。前記アルミニウムイオンの濃度は、0.05mol/L以上であってもよく、0.1mol/L以上であってもよい。電解液におけるアルミニウムイオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.4mol/L以下が好ましく、0.3mol/L以下がより好ましく、0.2mol/L以下が更に好ましい。前記アルミニウムイオンの濃度は、0.15mol/L以下であってもよい。電解液におけるアルミニウムイオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.005~0.4mol/Lが好ましく、0.01~0.3mol/Lがより好ましく、0.04~0.2mol/Lが更に好ましい。
 電解液がセシウムイオンを含む場合、電解液におけるセシウムイオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.005mol/L以上が好ましく、0.01mol/L以上がより好ましく、0.04mol/L以上が更に好ましい。前記セシウムイオンの濃度は、0.1mol/L以上であってもよく、0.15mol/L以上であってもよい。電解液におけるセシウムイオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.4mol/L以下が好ましく、0.3mol/L以下がより好ましく、0.2mol/L以下が更に好ましい。電解液におけるセシウムイオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.005~0.4mol/Lが好ましく、0.01~0.3mol/Lがより好ましく、0.04~0.2mol/Lが更に好ましい。
 電解液がリン酸イオンを含む場合、電解液におけるリン酸イオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.005mol/L以上が好ましく、0.01mol/L以上がより好ましく、0.03mol/L以上が更に好ましい。前記リン酸イオンの濃度は、0.04mol/L以上であってもよい。電解液におけるリン酸イオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.2mol/L以下が好ましく、0.1mol/L以下がより好ましく、0.08mol/L以下が更に好ましい。前記リン酸イオンの濃度は、0.07mol/L以下であってもよい。電解液におけるリン酸イオンの濃度は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、電解液の全量を基準として、0.005~0.2mol/Lが好ましく、0.01~0.1mol/Lがより好ましく、0.03~0.08mol/Lが更に好ましい。前記リン酸イオンの濃度は、0.04~0.07mol/Lであってもよい。
 カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンの濃度は、例えば、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により測定することもできる。
<鉛蓄電池の製造方法>
 本実施形態に係る鉛蓄電池の製造方法は、例えば、電極(正極及び負極)を得る電極製造工程と、前記電極を含む構成部材を組み立てて鉛蓄電池を得る組み立て工程とを備えている。
 電極製造工程では、例えば、電極材ペースト(正極材ペースト及び負極材ペースト)を集電体(例えば、鋳造方式により得られる鋳造格子体、及び、エキスパンド方式により得られるエキスパンド格子体)に充填した後に、熟成及び乾燥を行うことにより未化成の電極を得る。正極材ペーストは、例えば、正極活物質の原料(鉛粉等)を含有しており、他の添加剤を更に含有していてもよい。負極材ペーストは、負極活物質の原料(鉛粉等)を含有しており、分散剤として、スルホン基及び/又はスルホン酸塩基を有する樹脂(ビスフェノール系樹脂等)を含有していることが好ましく、他の添加剤を更に含有していてもよい。
 正極材ペーストは、例えば、下記の方法により得ることができる。まず、正極活物質の原料に添加剤(補強用短繊維等)及び水を加える。次に、希硫酸を加えた後、混練して正極材ペーストが得られる。正極材ペーストを作製するに際しては、化成時間を短縮できる観点から、正極活物質の原料として鉛丹(Pb)を用いてもよい。この正極材ペーストを集電体に充填した後に熟成及び乾燥を行うことにより未化成の正極を得ることができる。
 正極材ペーストにおいて補強用短繊維を用いる場合、補強用短繊維の配合量は、正極活物質の原料(鉛粉等)の全質量を基準として、0.005~0.3質量%が好ましく、0.05~0.3質量%がより好ましい。
 未化成の正極を得るための熟成条件としては、温度35~85℃、相対湿度50~98RH%の雰囲気で15~60時間が好ましい。乾燥条件は、温度45~80℃で15~30時間が好ましい。
 負極材ペーストは、例えば、下記の方法により得ることができる。まず、負極活物質の原料に添加剤(スルホン基及び/又はスルホン酸塩基を有する樹脂、炭素材料、補強用短繊維、硫酸バリウム等)を添加して乾式混合することにより混合物を得る。そして、この混合物に希硫酸及び溶媒(イオン交換水等の水、有機溶媒など)を加えて混練することにより負極材ペーストが得られる。この負極材ペーストを集電体に充填した後に熟成及び乾燥を行うことにより未化成の負極を得ることができる。
 負極材ペーストにおいて、スルホン基及び/又はスルホン酸塩基を有する樹脂(ビスフェノール系樹脂等)、炭素材料、補強用短繊維又は硫酸バリウムを用いる場合、各成分の配合量は下記の範囲が好ましい。スルホン基及び/又はスルホン酸塩基を有する樹脂の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、樹脂固形分換算で、0.01~2.0質量%が好ましく、0.05~1.0質量%がより好ましく、0.1~0.5質量%が更に好ましく、0.1~0.3質量%が特に好ましい。補強用短繊維の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として0.05~0.3質量%が好ましい。硫酸バリウムの配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、0.01~2.0質量%が好ましく、0.3~2.0質量%がより好ましい。
 炭素材料の配合量は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、負極活物質の原料(鉛粉等)の全質量を基準として、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.15質量%以上が更に好ましく、0.2質量%以上が特に好ましい。炭素材料の配合量は、暗電流放電後の充電性能及び初期充電性能が更に向上する観点から、負極活物質の原料(鉛粉等)の全質量を基準として、3質量%以下が好ましく、1.4質量%以下がより好ましく、0.5質量%以下が更に好ましく、0.4質量%以下が特に好ましく、0.3質量%以下が極めて好ましい。これらの観点から、炭素材料の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、0.05~3質量%が好ましく、0.1~3質量%がより好ましく、0.15~3質量%が更に好ましく、0.2~1.4質量%が特に好ましく、0.2~0.5質量%が極めて好ましく、0.2~0.4質量%が非常に好ましく、0.2~0.3質量%がより一層好ましい。
 未化成の負極を得るための熟成条件としては、温度45~65℃、相対湿度70~98RH%の雰囲気で15~30時間が好ましい。乾燥条件は、温度45~60℃で15~30時間が好ましい。
 組み立て工程では、例えば、前記のように作製した未化成の負極及び未化成の正極を、セパレータを介して交互に積層し、同極性の電極の集電部をストラップで連結(溶接等)させて電極群を得る。この電極群を電槽内に配置して未化成の電池を作製する。次に、未化成の電池に電解液を注入した後、直流電流を通電して電槽化成する。化成後の電解液の比重を適切な比重に調整して鉛蓄電池が得られる。
 前記電解液は、例えば、希硫酸と、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種とを含む。電解液は、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオン以外のイオン(ナトリウムイオン、リチウムイオン、チタンイオン等)を更に含んでいてもよい。
 本実施形態に係る電解液は、例えば、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種を含むイオン源を所定のイオン濃度になるように希硫酸に溶解させることにより調製できる。イオン源としては、例えば、希硫酸に可溶な化合物であれば特に限定されない。カリウムイオン、アルミニウムイオン及びセシウムイオンのイオン源としては、例えば、塩(結晶塩等)、水酸化物、酸化物、及び、金属が挙げられる。塩としては、例えば、硫酸塩、亜硫酸塩、炭酸塩、炭酸水素塩、リン酸塩、ホウ酸塩、及び、金属酸塩が挙げられる。リン酸イオンのイオン源としては、例えば、リン酸、及び、金属イオンのリン酸塩が挙げられる。リン酸としては、市販のものを用いることができる。例えば、希硫酸にリン酸カリウムの結晶塩を添加することにより、カリウムイオンとリン酸イオンとを含む電解液を得ることができる。イオン源は、無水物であってもよく、水和物であってもよい。
 なお、電槽に注入する電解液は、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種を含む電解液であってもよく、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンを含まない電解液であってもよい。注入される電解液がカリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンを含まない場合、電解液にこれらのイオンを含有させる方法としては、上述のイオン源を電極材中に添加して電解液にイオンを溶出させる方法、電槽中の電解液に接する所に上述のイオン源を設置して電解液にイオンを溶出させる方法等が挙げられる。
 電解液の化成後の比重は下記の範囲であることが好ましい。電解液の比重は、浸透短絡又は凍結を抑制すると共に放電特性に更に優れる観点から、1.25以上が好ましく、1.26以上がより好ましく、1.27以上が更に好ましく、1.28以上が特に好ましい。電解液の比重は、暗電流放電後の充電性能、初期充電性能、及び、サイクル特性が更に向上する観点から、1.33以下が好ましく、1.32以下がより好ましく、1.31以下が更に好ましく、1.30以下が特に好ましく、1.29以下が極めて好ましい。電解液の比重の値は、例えば、浮式比重計、又は、京都電子工業株式会社製のデジタル比重計によって測定することができる。
 電槽は、内部に電極(極板等)を収納可能なものである。電槽は、電極を収納しやすい観点から、上面が開放された箱体と、この箱体の上面を覆う蓋体とを有するものが好ましい。なお、箱体と蓋体との接着には、接着剤、熱溶着、レーザ溶着、超音波溶着等を適宜用いることができる。電槽の形状としては、特に限定されるものではないが、電極(板状体である極板等)の収納時に無効空間が少なくなるように方形のものが好ましい。
 電槽の材料は、特に制限されるものではないが、電解液(希硫酸等)に対し耐性を有するものである必要がある。電槽の材料の具体例としては、PP(ポリプロピレン)、PE(ポリエチレン)、ABS樹脂等が挙げられる。材料がPPであると、耐酸性、加工性及び経済性の面で有利である。PPは、電槽と蓋の熱溶着が困難であるABS樹脂と比較して加工性の面で有利である。
 電槽が箱体及び蓋体により構成される場合、箱体及び蓋体の材料は、互いに同一の材料であってもよく、互いに異なる材料であってもよい。箱体及び蓋体の材料としては、無理な応力が発生しない観点から、熱膨張係数の等しい材料が好ましい。
(セパレータ)
 セパレータとしては、微多孔性ポリエチレンシート;ガラス繊維と合成樹脂からなる不織布等が挙げられる。
 セパレータは、正極と負極との電気的な接続を阻止し、且つ、電解液の硫酸イオンを透過させるものである。セパレータは、短絡の抑制効果に優れる観点から、ポリオレフィン及びシリカを含むことが好ましく、ポリオレフィン及びシリカを主体(例えば、ポリオレフィン及びシリカの含有量(合計量)がセパレータの全質量基準で50質量%以上)とした材料から構成されていることがより好ましい。ポリオレフィンとしては、例えば、エチレン、プロピレン、ブテン、メチルペンテン等の単独重合体若しくは共重合体、又は、これらの混合物を使用できる。前記単独重合体としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等が挙げられる。これらの中でも、成形性及び経済性に優れる観点から、ポリエチレンが好ましい。ポリエチレンは、溶融成形温度がポリプロピレンよりも低く、生産性が良好である。
 ポリオレフィンの重量平均分子量は、セパレータの機械的強度に優れる観点から、50万以上が好ましく、100万以上がより好ましい。重量平均分子量の上限に特に制限はないが、実用的な観点から、500万以下が好ましい。なお、ポリオレフィンの重量平均分子量は、例えば、高温GPC装置により、溶離液としてトルエン又はキシレンを用いて測定することができる。
 本実施形態においては、シリカとしてシリカ粒子を用いることが好ましい。シリカ粒子としては、粒径が細かく、内部及び表面に孔構造を備えている粒子が好ましい。シリカ粒子の比表面積は、100m/g以上であることが好ましい。比表面積が100m/g以上であると、セパレータの孔構造を更に微細化(緻密化)及び複雑化して耐短絡性を更に高め、且つ、電解液保持力を高め、粉体表面に多数の親水基(-OH等)を備えることによりセパレータの親水性を更に高めることができる。また、シリカ粒子の比表面積は、セパレータ中でシリカ粒子が均一に分散できる観点から、400m/g以下であることが好ましい。これらの観点から、シリカ粒子の比表面積は、100~400m/gであることが好ましい。シリカ粒子の比表面積は、例えばBET法により測定できる。
 セパレータにおける粒径(最長径)2μm以上のシリカ粒子の数は、セパレータ強度の均一性に優れる観点から、セパレータの断面を走査型電子顕微鏡(SEM)で分析した際に任意に選択される30μm×40μmの範囲内において20個以下であることが好ましく、10個以下であることがより好ましい。
 エネルギー分散型X線分光法(EDX)による元素分析において、セパレータにおける酸素及びケイ素(シリコン)の質量の合計は、短絡の抑制効果に更に優れる観点、及び、セパレータ強度を向上させる観点から、セパレータにおける炭素、酸素及びケイ素の質量の合計を基準として、下記の範囲であることが好ましい。酸素及びケイ素の質量の前記合計は、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上が更に好ましい。酸素及びケイ素の質量の前記合計は、55質量%以上であってもよく、60質量%以上であってもよい。酸素及びケイ素の質量の前記合計は、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下が更に好ましい。酸素及びケイ素の質量の前記合計は、65質量%以下であってもよい。酸素及びケイ素の質量の前記合計は、30~80質量%が好ましく、40~75質量%がより好ましく、50~70質量%が更に好ましい。酸素及びケイ素の質量の前記合計は、55~75質量%であってもよく、60~65質量%であってもよい。
 セパレータ中の炭素、酸素及びケイ素の質量は、例えば、セパレータの断面をエネルギー分散型X線分光法(EDX)で分析することにより求められる。すなわち、セパレータの断面をEDXで分析した際に検出される炭素、酸素及びケイ素の質量の合計を基準にして酸素及びケイ素の質量の合計が上記範囲であることが好ましい。
 本実施形態のセパレータは、例えば、ポリオレフィン、シリカ及び可塑剤を主体とした原料組成物を溶融混練して所定形状のシート状物に成形することにより得ることができる。
 セパレータは、その他、必要に応じて、界面活性剤(親水化剤)、酸化防止剤、紫外線吸収剤、耐候剤、滑剤、抗菌剤、防黴剤、顔料、染料、着色剤、防曇剤、艶消し剤等の添加剤を、本発明の目的及び効果を損なわない範囲で含有してもよい。
 セパレータは、凸状のリブと、当該リブを支持するベース部と、を有することが好ましい。以下、本実施形態のセパレータの一態様を、図1~図3を用いて説明する。
 図1(a)は、セパレータを示す正面図であり、図1(b)は、セパレータの断面図である。図2は、セパレータ及び電極の断面図である。図1に示すように、セパレータ10は、平板状のベース部11と、凸状の複数のリブ12と、ミニリブ13とを備えている。ベース部11は、リブ12及びミニリブ13を支持している。リブ12は、セパレータ10の幅方向における中央において、セパレータ10の長手方向に延びるように複数(多数本)形成されている。複数のリブ12は、セパレータ10の一方面10aにおいて互いに略平行に配置されている。リブ12の間隔は、例えば3~15mmである。リブ12の高さ方向の一端はベース部11に一体化しており、リブ12の高さ方向の他端は、正極及び負極のうちの一方の電極14aに接している(図2参照)。ベース部11は、リブ12の高さ方向において電極14aと対向している。セパレータ10の他方面10bにはリブは配置されておらず、セパレータ10の他方面10bは、正極及び負極のうちの他方の電極14b(図2参照)と対向又は接している。
 ミニリブ13は、セパレータ10の幅方向における両側において、セパレータ10の長手方向に延びるように複数(多数本)形成されている。ミニリブ13は、鉛蓄電池が横方向に振動した際に、電極の角がセパレータを突き破って短絡することを防止するためにセパレータ強度を向上させる機能を有する。なお、ミニリブ13の高さ、幅及び間隔は、何れもリブ12よりも小さいことが好ましい。また、ミニリブ13の断面形状は、リブ12と同一であってもよく、異なっていてもよい。ミニリブ13の断面形状は、半円型であることが好ましい。また、セパレータ10においてミニリブ13は形成されていなくてもよい。
 ベース部11の厚みTの上限は、更に優れた充電受け入れ性及び放電特性を得る観点から、0.4mm以下が好ましく、0.3mm以下がより好ましく、0.25mm以下が更に好ましい。ベース部11の厚みTの下限は、特に制限はないが、短絡の抑制効果に更に優れる観点から、0.05mm以上が好ましく、0.1mm以上がより好ましい。
 リブ12の高さ(ベース部11及び電極14の対向方向の高さ)Hの上限は、更に優れた充電受け入れ性を得る観点から、1mm以下が好ましく、0.8mm以下がより好ましく、0.6mm以下が更に好ましい。リブ12の高さHの下限は、正極での酸化劣化を抑制する観点から、0.3mm以上が好ましく、0.4mm以上がより好ましく、0.5mm以上が更に好ましい。
 ベース部11の厚みTに対するリブ12の高さHの比率H/Tの下限は、セパレータの耐酸化性に優れる観点から、2以上が好ましい。比率H/Tが2以上であると、電極(例えば正極)と接触しない部分を充分に確保できるため、セパレータの耐酸化性が向上すると推測される。
 比率H/Tの下限は、セパレータの耐酸化性及び生産性に優れる観点から、2.3以上がより好ましく、2.5以上が更に好ましい。比率H/Tの上限は、リブの形状保持性に優れる観点、及び、短絡の抑制効果に更に優れる観点から、6以下が好ましい。比率H/Tが6以下であると、正極と負極との間の距離が充分であることから短絡が更に抑制されると推測される。また、比率H/Tが6以下であると、鉛蓄電池を組み立てた際にリブが破損することなく、充電受け入れ性等の電池特性が良好に維持されると推測される。比率H/Tの上限は、短絡の抑制効果に更に優れる観点、及び、リブの形状保持性に優れる観点から、5以下がより好ましく、4以下が更に好ましく、3以下が特に好ましい。
 また、リブ12の上底幅B(図1(b)参照)は、リブの形状保持性及び耐酸化性に優れる観点から、0.1~2mmが好ましく、0.2~1mmがより好ましく、0.2~0.8mmが更に好ましい。リブの下底幅Aは、リブの形状保持性に優れる観点から、0.2~4mmが好ましく、0.3~2mmがより好ましく、0.4~1mmが更に好ましい。上底幅Bと下底幅Aの比率(B/A)は、リブの形状保持性に優れる観点から、0.1~1が好ましく、0.2~0.8がより好ましく、0.3~0.6が更に好ましい。
 前記セパレータ10は、正極及び負極の少なくとも一方の電極を包む袋状であることが好ましい。例えば、正極及び負極のうちの一方が袋状のセパレータに収容され、且つ、正極及び負極のうちの他方と交互に積層されている態様が好ましい。例えば、袋状のセパレータを正極に適用した場合、正極集電体の伸びにより正極がセパレータを貫通する可能性があることから、負極が袋状のセパレータに収容されていることが好ましい。
 セパレータ10としては、微多孔性ポリエチレンシートを用いることができる。また、セパレータ10としては、微多孔性ポリエチレンシート;ガラス繊維と耐酸紙とを貼りあわせたもの等を用いることができる。セパレータは、電極(極板等)を積層する工程の際に、負極(負極板等)の長さに応じて切断されることが好ましい。また、前記切断されたセパレータ10は、2つに折り、両サイドを圧着することで負極を包み込む形であってもよい。
 図3は、袋状のセパレータ20と、セパレータ20に収容される電極(例えば負極)14とを示す図面である。図1(a)に示すように、セパレータ20の作製に用いるセパレータ10は、例えば、長尺のシート状に形成されている。図3に示すセパレータ20は、セパレータ10を適切な長さに切断し、セパレータ10の長手方向に二つ折りにしてその内側に電極14を配置して重ね合せ、両側部をメカニカルシール、圧着又は熱溶着することにより得られる(例えば、図3の符号22はメカニカルシール部を示す)。
 本実施形態に係る鉛蓄電池の電解液がアルミニウムイオンを含んでいる場合、シリカを含むセパレータを用いた場合であっても優れた短絡の抑制効果が得られる。シリカを含むセパレータを用いた場合に短絡が起こりやすくなる原因、及び、電解液がアルミニウムイオンを含むことにより短絡の発生を抑制できる原因は明らかではないが、本発明者らは次のように推測する。
 まず、放電反応のときには正極側がアルカリ雰囲気になりやすく、電解液中にアルミニウムイオンが存在しない場合、アルカリ性になるとシリカが溶解しやすくなる。シリカが溶解すると、セパレータが収縮してセパレータの厚みが減少するために短絡が生じやすくなると推測される。また、正極の放電反応による水素イオンの消費によりpHが上昇する(pHがアルカリ側にシフトする)と、正極において硫酸鉛の溶解度が上昇し、当該溶解度と、充電時にpHが低下する(pHが酸性側にシフトする)際の硫酸鉛の溶解度との差からセパレータ内部に硫酸鉛の析出物が生じやすくなり、短絡が加速するものと推測される。
 一方、本実施形態に係る鉛蓄電池の電解液がアルミニウムイオンを含んでいる場合には、放電時にセパレータ内部に水酸化アルミニウム等のアルミニウム化合物が析出する。このように水酸化アルミニウム等のアルミニウム化合物が析出することによりシリカの溶解が抑制されるため、セパレータの厚みを保持することができる。また、水酸化アルミニウム等のアルミニウム化合物の析出反応により電解液のpHが上昇すること(pHがアルカリ側にシフトすること)も緩和できるため、硫酸鉛の溶解度の上昇を抑制できる。これらにより、アルミニウムイオンが電解液中に存在することで、短絡を抑制することができると推測される。
 化成条件及び希硫酸の比重は電極活物質の性状に応じて調整することができる。また、化成処理は、組み立て工程後に実施されることに限られず、電極製造工程における熟成及び乾燥後に実施されてもよい(タンク化成)。
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。
<ビスフェノール系樹脂の調製>
 ジムロート、メカニカルスターラー及び温度計を装着したセパラブルフラスコに水酸化ナトリウム42質量部(1.05mol)及びイオン交換水792.6質量部(44mol)を加えた後、150rpm(=min-1)で5分間撹拌して水酸化ナトリウム水溶液を調製した。この水酸化ナトリウム水溶液に4-アミノベンゼンスルホン酸173.2質量部(1.0mol)を加えた後、25℃にて30分間撹拌して均一な溶液Aを得た。溶液Aにパラホルムアルデヒド90.9質量部(ホルムアルデヒド換算、3.0mol、三井化学株式会社製)を加えた後に5分間撹拌してパラホルムアルデヒドを溶解し、均一な溶液Bを得た。次いで、溶液BにビスフェノールA219.2質量部(0.96mol)及びビスフェノールS10.4質量部(0.04mol)を加えた後、90℃に設定したオイルバスを用いて加熱しながら10時間撹拌して溶液Cを得た。
 ビスフェノールA及びビスフェノールSを加えた直後(反応開始時)における溶液のpHを下記の測定条件で測定した。pHは8.6であった。
{pH測定条件}
 試験機:Twin pH(アズワン株式会社製)
 校正液:pH6.86(25℃)、pH4.01(25℃)
 測定温度:25℃
 測定手順:校正液を用いて2点校正を行った。試験機のセンサ部の洗浄を行った後、測定溶液をスポイトで吸い取り、センサ部に0.1~0.3mL滴下した。画面上に測定終了の表示が現れたときのpHを測定値とした。
 上記で作製した溶液Cを耐熱容器に移した。溶液Cが入った耐熱容器を、60℃に設定した真空乾燥機に投入した後、1kPa以下の減圧状態で10時間乾燥することにより樹脂粉末(ビスフェノール・アミノベンゼンスルホン酸・ホルムアルデヒド縮合物)を得た。樹脂粉末の重量平均分子量を下記条件のGPCにより測定した。重量平均分子量は53900であった。
{GPC測定条件}
 装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
    ポンプ:PU-2080
    示差屈折率計:RI-2031
    検出器:紫外可視吸光光度計UV-2075(λ:254nm)
    カラムオーブン:CO-2065
 カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
 カラム温度:40℃
 溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
 流速:0.6mL/分
 分子量標準試料:ポリエチレングリコール(分子量:1.10×10、5.80×10、2.55×10、1.46×10、1.01×10、4.49×10、2.70×10、2.10×10;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×10;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×10;キシダ化学株式会社製)
<鉛蓄電池の作製>
(実験例1)
[正極板の作製]
 正極活物質の原料として鉛粉及び鉛丹(Pb)を用いた(鉛粉:鉛丹=96:4(質量比))。正極活物質の原料と、0.07質量%(基準:正極活物質の原料の全質量)の補強用短繊維(アクリル繊維)と、水とを混合して混練した。続いて、希硫酸(比重1.280)を少量ずつ添加しながら混練して、正極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体にこの正極材ペーストを充填した。次いで、正極材ペーストを温度50℃、湿度98%の雰囲気で24時間熟成した。その後、乾燥して未化成の正極板を作製した。
[負極板の作製]
 負極活物質の原料として鉛粉を用いた。上記で得られたビスフェノール系樹脂を0.2質量%(固形分換算)、補強用短繊維(アクリル繊維)を0.1質量%、硫酸バリウムを1.0質量%、ファーネスブラック(平均粒径:約30nm)を0.2質量%含む混合物を前記鉛粉に添加した後に乾式混合した(前記配合量は、負極活物質の原料の全質量を基準とした配合量である)。次に、水を加えた後に混練した。続いて、希硫酸(比重1.260)を少量ずつ添加しながら混練して、負極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体にこの負極材ペーストを充填した。次いで、負極材ペーストを温度50℃、湿度98%の雰囲気で24時間熟成した。その後、乾燥して未化成の負極板を作製した。
[電解液の調製]
 電解液におけるアルミニウムイオン濃度及びリン酸イオン濃度が表1に示す濃度になるように、希硫酸に硫酸アルミニウム水溶液及びリン酸水溶液を加えて電解液を調製した。
[セパレータの準備]
 ポリエチレン及びシリカ粒子を含み且つ一方面に複数の線状のリブが形成されているシート状物を、リブが形成されている面が外側になるように袋状に加工してなるセパレータ(袋状セパレータ)を用意した(図1及び図3参照)。セパレータの詳細を以下に示す。
 ・総厚み:0.75mm(ベース部の厚みT:0.2mm、リブの高さH:0.55mm、H/T=2.75)
 ・リブの間隔:7.35mm、リブの上底幅B:0.4mm、リブの下底幅A:0.8mm
 ・シリカ粒子:粒径(最長径)2μm以上のシリカ粒子の数は、セパレータの断面を走査型電子顕微鏡(SEM)で分析した際に任意に選択される30μm×40μmの範囲内において9個であった。
[電池の組み立て]
 まず、前記袋状セパレータに未化成の負極板を収容した。続いて、未化成の正極板6枚と、前記袋状セパレータに収容された未化成の負極板7枚とを交互に積層した後、同極性の極板の耳部同士をキャストオンストラップ(COS)方式で溶接して極板群を作製した。前記極板群を電槽に挿入して2V単セル電池(JIS D 5301規定のB19サイズの単セルに相当)を組み立てた。上記で調製した電解液(比重1.28)をこの電池に注入した後、40℃の水槽中、通電電流17.5Aで16時間化成して鉛蓄電池を得た。化成後の電解液の比重は、1.28になるように調整した。なお、以下の実験例2~35においても同様の比重に調整した。化成後の負極材全質量に対するファーネスブラック(平均粒径:約30nm)の含有量は0.2質量%であった。
[セパレータ中における酸素及びケイ素の合計量]
 まず、イオンミリング装置E-3500(株式会社日立ハイテクノロジーズ製、商品名)により、電池の組み立て前のセパレータを切断して断面を露出させた。次に、走査型電子顕微鏡(商品名:JSM-6010LA、日本電子株式会社製)を用いてセパレータ断面のEDX分析を行った。倍率300倍でマッピング分析を行い、測定後、セパレータ部分を選択して炭素、酸素及びケイ素の存在量を定量し、各元素の質量へ換算した。得られた炭素、酸素及びケイ素の質量の合計を基準として、セパレータ中における酸素及びケイ素の質量の合計量(質量%)を計算した。なお、マッピング分析の条件は、加速電圧が15kV、スポットサイズが72、低真空モードで圧力が35Pa、ドゥエルタイムが1ミリ秒、プロセスタイムがT4、画素数が512×384、積算回数を5回とした。各元素の定量結果は、炭素、酸素及びケイ素の質量の合計を基準として、炭素が40(質量%)、酸素が38(質量%)、ケイ素が22(質量%)であった。
[比表面積の測定]
 比表面積の測定試料は、下記の手順により作製した。まず、化成した電池を分解して電極板(正極板及び負極板)を取り出して水洗した後、50℃で24時間乾燥した。次に、前記電極板の中央部から電極材(正極材及び負極材)を2g採取して、130℃で30分乾燥して測定試料を作製した。
 化成後の正極材及び負極材の比表面積は、前記で作製された測定試料を液体窒素で冷却しながら液体窒素温度で窒素ガス吸着量を多点法で測定し、BET法に従って算出した。測定条件は下記のとおりであった。このようにして測定した結果、正極材の比表面積は6m/gであり、負極材の比表面積は0.7m/gであった。なお、以下の実験例2~35においても同様の比表面積であった。
{比表面積の測定条件}
 装置:Macsorb1201(株式会社マウンテック製)
 脱気時間:130℃で10分
 冷却:液体窒素で5分間
 吸着ガス流量:25mL/分
(実験例2及び3)
 アルミニウムイオン濃度及びリン酸イオン濃度を表1に示す濃度に調整したこと以外は実験例1と同様にして鉛蓄電池を作製した。
(実験例4~6)
 リン酸イオンを用いることなく、アルミニウムイオン濃度を表1に示す濃度に調整したこと以外は実験例1と同様にして鉛蓄電池を作製した。
(実験例7)
 硫酸アルミニウムに代えて硫酸セシウムを用いて、セシウムイオン濃度及びリン酸イオン濃度を表1に示す濃度に調整したこと以外は実験例1と同様にして鉛蓄電池を作製した。
(実験例8及び9)
 セシウムイオン濃度及びリン酸イオン濃度を表1に示す濃度に調整したこと以外は実験例7と同様にして鉛蓄電池を作製した。
(実験例10~13)
 リン酸イオンを用いることなく、セシウムイオン濃度を表1に示す濃度に調整したこと以外は実験例7と同様にして鉛蓄電池を作製した。
(実験例14)
 硫酸アルミニウムに代えて硫酸カリウムを用いて、カリウムイオン濃度及びリン酸イオン濃度を表1に示す濃度に調整したこと以外は実験例1と同様にして鉛蓄電池を作製した。
(実験例15及び16)
 カリウムイオン濃度及びリン酸イオン濃度を表1に示す濃度に調整したこと以外は実験例14と同様にして鉛蓄電池を作製した。
(実験例17~20)
 リン酸イオンを用いることなく、カリウムイオン濃度を表1に示す濃度に調整したこと以外は実験例14と同様にして鉛蓄電池を作製した。
(実験例21~25)
 アルミニウムイオンを用いることなく、リン酸イオン濃度を表1に示す濃度に調整したこと以外は実験例1と同様にして鉛蓄電池を作製した。
(実験例26)
 カリウムイオン、アルミニウムイオン、セシウムイオン、リチウムイオン、チタンイオン及びリン酸イオンを含まない希硫酸を電解液として用いたこと、及び、負極板を作製する際にファーネスブラックを用いなかったこと以外は実験例1と同様にして鉛蓄電池を作製した。
(実験例27)
 カリウムイオン、アルミニウムイオン、セシウムイオン、リチウムイオン、チタンイオン及びリン酸イオンを含まない希硫酸を電解液として用いたこと以外は実験例1と同様にして鉛蓄電池を作製した。
(実験例28及び29)
 硫酸アルミニウムに代えて硫酸リチウムを用いて、リチウムイオン濃度を表1に示す濃度に調整したこと以外は実験例4と同様にして鉛蓄電池を作製した。
(実験例30)
 硫酸アルミニウムに代えて硫酸チタンを用いて、チタンイオン濃度を表1に示す濃度に調整したこと以外は実験例4と同様にして鉛蓄電池を作製した。
(実験例31)
 負極板を作製する際にファーネスブラックに代えて黒鉛(平均粒径:約500μm)を用いたこと以外は実験例3と同様にして鉛蓄電池を作製した。
(実験例32)
 負極板を作製する際にファーネスブラックに代えて黒鉛(平均粒径:約500μm)を用いたこと以外は実験例9と同様にして鉛蓄電池を作製した。
(実験例33)
 負極板を作製する際にファーネスブラックに代えて黒鉛(平均粒径:約500μm)を用いたこと以外は実験例12と同様にして鉛蓄電池を作製した。
(実験例34)
 負極板を作製する際にファーネスブラックに代えて黒鉛(平均粒径:約500μm)を用いたこと以外は実験例16と同様にして鉛蓄電池を作製した。
(実験例35)
 負極板を作製する際にファーネスブラックに代えて黒鉛(平均粒径:約500μm)を用いたこと以外は実験例27と同様にして鉛蓄電池を作製した。
<電池特性の評価>
 実験例1~29及び31~35の鉛蓄電池の初期充電性能及び暗電流放電後の充電性能を以下の方法により評価した。また、実験例1~35の鉛蓄電池の暗電流放電状態における電圧降下を以下の方法により確認した。なお、後述するように、実験例30の鉛蓄電池は実験例1~29及び31~35の鉛蓄電池に比べて暗電流放電状態における電圧降下が顕著に大きく、実用的でないことが明らかになったため、実験例30の鉛蓄電池の初期充電性能及び暗電流放電後の充電性能の評価は行わなかった。
(初期充電性能)
 まず、満充電状態(SOC=100%)の鉛蓄電池を雰囲気温度25℃において、電流値10.4Aで定電流放電し、満充電状態から電池容量の10%を放電することにより、充電状態(SOC)が90%である状態に調整した。次に、2.33Vで定電圧充電し、充電開始から5秒経過した時点での電流値Iを測定した。実験例27の電流値Iが100であると仮定し、実験例27の電流値Iを基準に実験例1~26、28及び29の電流値Iを相対評価した(表1中のI参照)。また、実験例27の電流値Iが100であると仮定し、実験例27の電流値Iを基準に実験例31~35の電流値Iを相対評価した(表2中のI参照)。さらに、実験例35の電流値Iが100であると仮定し、実験例35の電流値Iを基準に実験例31~34の電流値Iを相対評価した(表2中のI参照)。なお、電流値Iが大きいほど初期充電性能が良い電池であると評価される。評価結果を表1及び表2に示す。
(暗電流放電後の充電性能)
 まず、満充電状態(SOC=100%)の鉛蓄電池を雰囲気温度25℃において、電流値20mAで定電流放電し、満充電状態から電池容量の10%を放電することにより、充電状態(SOC)が90%である状態に調整した。次に、2.33Vで定電圧充電し、充電開始から5秒経過した時点での電流値Iを測定した。実験例27の電流値Iが100であると仮定し、実験例27の電流値Iを基準に実験例1~26、28及び29の電流値Iを相対評価した(表1中のI参照)。また、実験例27の電流値Iが100であると仮定し、実験例27の電流値Iを基準に実験例31~34の電流値Iを相対評価した(表2中のI参照)。電流値Iが大きいほど暗電流放電後の充電性能が良い電池であると評価される。評価結果を表1及び表2に示す。
 なお、表1には、実験例27の電流値Iが100であると仮定し、実験例27の電流値Iを基準に実験例1~26、28及び29の電流値Iを相対評価するための相対値I(=実験例1~29の電流値I/実験例27の電流値I×100)を示した。また、表2には、実験例35の電流値Iが100であると仮定し、実験例35の電流値Iを基準に実験例31~34の電流値Iを相対評価するための相対値I(=実験例31~35の電流値I/実験例35の電流値I×100)を示した。
(暗電流放電状態における電圧降下の確認)
 満充電状態(SOC=100%)の鉛蓄電池を雰囲気温度25℃において、電流値20mAで定電流放電し、満充電状態から電池容量の10%を放電する際の電圧降下を確認した。その結果、実験例1~29及び31~35の鉛蓄電池は、電圧降下が充分に小さく(約0.02V以下の電圧降下)、過剰な電圧降下が抑制されていることが確認された。一方、実験例30の鉛蓄電池は、実験例1~29及び31~35の鉛蓄電池に比べて電圧降下が顕著に大きく(約0.08Vの電圧降下)、実用的でないことが明らかになった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実験例27では、暗電流放電後において非常に低い電流値が得られることが確認された。これに対し、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種を用いた実験例1~25では、暗電流放電後において、実験例27と比べて高い電流値が得られることが確認された。また、実験例1~25では、初期においても、実験例27と比べて高い電流値が得られることが確認された。
 実験例35では、暗電流放電後において非常に低い電流値が得られることが確認された。これに対し、カリウムイオン、アルミニウムイオン、セシウムイオン及びリン酸イオンからなる群より選ばれる少なくとも一種を用いた実験例31~34では、暗電流放電後において、実験例35と比べて高い電流値が得られることが確認された。また、実験例31~34では、初期においても、実験例35と比べて高い電流値が得られることが確認された。
 黒鉛をファーネスブラックに変更すると、初期充電性能及び暗電流放電後の充電性能が更に向上した。ファーネスブラックは、黒鉛に比べて粒子が小さく且つ比表面積が大きいため、粗大化した硫酸鉛に良好に密着できるため、充電性能が向上したと考えられる。
 アルミニウムイオン、セシウムイオン又はカリウムイオンと、リン酸イオンとを併用した場合には、初期充電性能及び暗電流放電後の充電性能が更に向上しやすいことが確認された。この理由は、アニオンとカチオンとで反応時の作用が異なり、互いに阻害しないためと考えられる。
 10,20…セパレータ、10a…一方面、10b…他方面、11…ベース部、12…リブ、13…ミニリブ、14,14a,14b…電極、22…メカニカルシール部、A…リブの下底幅、B…リブの上底幅、H…リブの高さ、T…ベース部の厚み。

Claims (20)

  1.  正極と負極と電解液とセパレータとを備え、
     前記正極が、正極活物質を含む正極材を有し、
     前記負極が、負極活物質を含む負極材を有し、
     前記電解液がカリウムイオンを含む、鉛蓄電池。
  2.  正極と負極と電解液とセパレータとを備え、
     前記正極が、正極活物質を含む正極材を有し、
     前記負極が、負極活物質を含む負極材を有し、
     前記電解液がアルミニウムイオンを含む、鉛蓄電池。
  3.  正極と負極と電解液とセパレータとを備え、
     前記正極が、正極活物質を含む正極材を有し、
     前記負極が、負極活物質を含む負極材を有し、
     前記電解液がセシウムイオンを含む、鉛蓄電池。
  4.  前記電解液における前記カリウムイオンの濃度が0.003~0.15mol/Lである、請求項1に記載の鉛蓄電池。
  5.  前記電解液における前記アルミニウムイオンの濃度が0.005~0.4mol/Lである、請求項2に記載の鉛蓄電池。
  6.  前記電解液における前記セシウムイオンの濃度が0.005~0.4mol/Lである、請求項3に記載の鉛蓄電池。
  7.  前記電解液がリン酸イオンを更に含む、請求項1~6のいずれか一項に記載の鉛蓄電池。
  8.  正極と負極と電解液とセパレータとを備え、
     前記正極が、正極活物質を含む正極材を有し、
     前記負極が、負極活物質を含む負極材を有し、
     前記電解液がリン酸イオンを含む、鉛蓄電池。
  9.  前記電解液における前記リン酸イオンの濃度が0.005~0.2mol/Lである、請求項7又は8に記載の鉛蓄電池。
  10.  前記負極材がカーボンブラックを更に含む、請求項1~9のいずれか一項に記載の鉛蓄電池。
  11.  前記負極材が、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂を更に含む、請求項1~10のいずれか一項に記載の鉛蓄電池。
  12.  前記樹脂が、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有するビスフェノール系樹脂、リグニンスルホン酸、並びに、リグニンスルホン酸塩からなる群より選ばれる少なくとも一種を含む、請求項11に記載の鉛蓄電池。
  13.  前記樹脂が、スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有するビスフェノール系樹脂を含む、請求項11に記載の鉛蓄電池。
  14.  前記ビスフェノール系樹脂が、ビスフェノール系化合物と、アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、の反応由来の樹脂である、請求項12又は13に記載の鉛蓄電池。
  15.  前記負極材の比表面積が0.5~2m/gである、請求項1~14のいずれか一項に記載の鉛蓄電池。
  16.  前記正極材の比表面積が4m/g以上である、請求項1~15のいずれか一項に記載の鉛蓄電池。
  17.  前記セパレータが、ポリオレフィン及びシリカを含む、請求項1~16のいずれか一項に記載の鉛蓄電池。
  18.  エネルギー分散型X線分光法による元素分析において、前記セパレータにおける酸素及びケイ素の質量の合計が炭素、酸素及びケイ素の質量の合計を基準として30~80質量%である、請求項1~17のいずれか一項に記載の鉛蓄電池。
  19.  前記セパレータが、凸状のリブと、当該リブを支持するベース部と、を有し、
     前記ベース部の厚みTに対する前記リブの高さHの比率H/Tが2以上である、請求項1~18のいずれか一項に記載の鉛蓄電池。
  20.  請求項1~19のいずれか一項に記載の鉛蓄電池を備え、
     前記鉛蓄電池がエンジン停止状態において20~100mAの電流値で放電する、自動車。
PCT/JP2016/051002 2015-01-28 2016-01-14 鉛蓄電池及びそれを備える自動車 WO2016121510A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680007153.6A CN107210495A (zh) 2015-01-28 2016-01-14 铅蓄电池和具备其的汽车
JP2016571922A JPWO2016121510A1 (ja) 2015-01-28 2016-01-14 鉛蓄電池及びそれを備える自動車
EP16743114.7A EP3252863A4 (en) 2015-01-28 2016-01-14 Lead storage cell and automobile provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-014071 2015-01-28
JP2015014071 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016121510A1 true WO2016121510A1 (ja) 2016-08-04

Family

ID=56543129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051002 WO2016121510A1 (ja) 2015-01-28 2016-01-14 鉛蓄電池及びそれを備える自動車

Country Status (4)

Country Link
EP (1) EP3252863A4 (ja)
JP (2) JPWO2016121510A1 (ja)
CN (1) CN107210495A (ja)
WO (1) WO2016121510A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204049A1 (ja) * 2015-06-18 2016-12-22 日立化成株式会社 鉛蓄電池
WO2017212590A1 (ja) * 2016-06-08 2017-12-14 日立化成株式会社 鉛蓄電池
WO2018105005A1 (ja) * 2016-12-05 2018-06-14 日立化成株式会社 鉛蓄電池
WO2019087680A1 (ja) * 2017-10-31 2019-05-09 株式会社Gsユアサ 鉛蓄電池
WO2019097575A1 (ja) * 2017-11-14 2019-05-23 日立化成株式会社 鉛蓄電池
WO2019234860A1 (ja) * 2018-06-06 2019-12-12 日立化成株式会社 鉛蓄電池
WO2019235216A1 (ja) * 2018-06-06 2019-12-12 日立化成株式会社 鉛蓄電池
EP3683885A4 (en) * 2017-10-31 2021-06-30 GS Yuasa International Ltd. LEAD ACCUMULATOR

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170422A1 (ja) * 2016-03-30 2017-10-05 日立化成株式会社 鉛蓄電池、マイクロハイブリッド車及びアイドリングストップシステム車
JP7147777B2 (ja) * 2017-10-31 2022-10-05 株式会社Gsユアサ 鉛蓄電池
JP7331856B2 (ja) * 2018-09-25 2023-08-23 株式会社Gsユアサ 鉛蓄電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142220A1 (ja) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション 鉛蓄電池及びその製造方法
WO2013073420A1 (ja) * 2011-11-16 2013-05-23 新神戸電機株式会社 鉛蓄電池
JP2013131389A (ja) * 2011-12-21 2013-07-04 Gs Yuasa Corp 鉛蓄電池
JP2013218894A (ja) * 2012-04-09 2013-10-24 Gs Yuasa Corp 鉛蓄電池
JP2014137970A (ja) * 2013-01-18 2014-07-28 Gs Yuasa Corp 鉛蓄電池

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091572A (ja) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd 密閉形鉛蓄電池
JPS63213264A (ja) * 1987-02-27 1988-09-06 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
US6074782A (en) * 1996-03-29 2000-06-13 Aisin Seiki Kabushiki Kaisha Lead storage battery containing a negative electrode active substance including a negative electrode additive
JPH09306497A (ja) * 1996-05-20 1997-11-28 Japan Storage Battery Co Ltd 鉛蓄電池用負極板
US6704192B2 (en) * 1999-02-19 2004-03-09 Amtek Research International Llc Electrically conductive, freestanding microporous sheet for use in an ultracapacitor
JP4544791B2 (ja) * 2001-07-19 2010-09-15 古河電池株式会社 シール型鉛蓄電池
JP3936157B2 (ja) * 2001-08-07 2007-06-27 古河電池株式会社 シール型鉛蓄電池の製造法
JP4140277B2 (ja) * 2002-05-21 2008-08-27 松下電器産業株式会社 制御弁式鉛蓄電池
JP2006228637A (ja) * 2005-02-18 2006-08-31 Nippon Sheet Glass Co Ltd 鉛蓄電池用セパレータ及び鉛蓄電池
JP4992226B2 (ja) * 2005-11-09 2012-08-08 パナソニック株式会社 鉛蓄電池
JP2008243493A (ja) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The 鉛蓄電池
WO2009023329A2 (en) * 2007-05-15 2009-02-19 Amtek Research International, Llc In-situ pore generation in lead-acid battery separator
JP2009004220A (ja) * 2007-06-21 2009-01-08 Nippon Sheet Glass Co Ltd 鉛蓄電池用リブ付きセパレータの製造方法
CN101330140B (zh) * 2008-08-04 2010-06-23 风帆股份有限公司 一种车辆用高温铅酸蓄电池负极铅膏及制备方法
JP5531746B2 (ja) * 2010-04-14 2014-06-25 株式会社Gsユアサ 鉛蓄電池
CN101882681A (zh) * 2010-06-21 2010-11-10 冯家齐 一种铅酸蓄电池正、负极板添加剂及其制备方法
JP5618253B2 (ja) * 2010-09-30 2014-11-05 株式会社Gsユアサ 鉛蓄電池
JP5500315B2 (ja) * 2011-05-13 2014-05-21 新神戸電機株式会社 鉛蓄電池
JP2013134957A (ja) * 2011-12-27 2013-07-08 Gs Yuasa Corp 鉛蓄電池の製造方法と鉛蓄電池
JP5757235B2 (ja) * 2011-12-28 2015-07-29 株式会社Gsユアサ 液式鉛蓄電池とこれを用いた電池システム及び液式鉛蓄電池の使用方法
JP6015427B2 (ja) * 2012-12-21 2016-10-26 株式会社Gsユアサ 鉛蓄電池用負極板及びその製造方法
JP6153073B2 (ja) * 2013-08-02 2017-06-28 株式会社Gsユアサ 鉛蓄電池
WO2015163287A1 (ja) * 2014-04-22 2015-10-29 日立化成株式会社 ビスフェノール系樹脂、電極及び鉛蓄電池
EP3059796B1 (en) * 2015-02-18 2018-05-16 GS Yuasa International Ltd. Lead-acid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142220A1 (ja) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション 鉛蓄電池及びその製造方法
WO2013073420A1 (ja) * 2011-11-16 2013-05-23 新神戸電機株式会社 鉛蓄電池
JP2013131389A (ja) * 2011-12-21 2013-07-04 Gs Yuasa Corp 鉛蓄電池
JP2013218894A (ja) * 2012-04-09 2013-10-24 Gs Yuasa Corp 鉛蓄電池
JP2014137970A (ja) * 2013-01-18 2014-07-28 Gs Yuasa Corp 鉛蓄電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252863A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204049A1 (ja) * 2015-06-18 2016-12-22 日立化成株式会社 鉛蓄電池
WO2017212590A1 (ja) * 2016-06-08 2017-12-14 日立化成株式会社 鉛蓄電池
WO2018105005A1 (ja) * 2016-12-05 2018-06-14 日立化成株式会社 鉛蓄電池
EP3683885A4 (en) * 2017-10-31 2021-06-30 GS Yuasa International Ltd. LEAD ACCUMULATOR
WO2019087680A1 (ja) * 2017-10-31 2019-05-09 株式会社Gsユアサ 鉛蓄電池
JP7167934B2 (ja) 2017-10-31 2022-11-09 株式会社Gsユアサ 鉛蓄電池
JPWO2019087680A1 (ja) * 2017-10-31 2020-11-12 株式会社Gsユアサ 鉛蓄電池
WO2019097575A1 (ja) * 2017-11-14 2019-05-23 日立化成株式会社 鉛蓄電池
JPWO2019097575A1 (ja) * 2017-11-14 2020-11-19 日立化成株式会社 鉛蓄電池
JP7093788B2 (ja) 2017-11-14 2022-06-30 昭和電工マテリアルズ株式会社 鉛蓄電池
WO2019235216A1 (ja) * 2018-06-06 2019-12-12 日立化成株式会社 鉛蓄電池
JPWO2019235216A1 (ja) * 2018-06-06 2021-06-17 昭和電工マテリアルズ株式会社 鉛蓄電池
WO2019234860A1 (ja) * 2018-06-06 2019-12-12 日立化成株式会社 鉛蓄電池
JP7372914B2 (ja) 2018-06-06 2023-11-01 エナジーウィズ株式会社 鉛蓄電池

Also Published As

Publication number Publication date
JPWO2016121510A1 (ja) 2017-08-31
CN107210495A (zh) 2017-09-26
JP2018125294A (ja) 2018-08-09
EP3252863A4 (en) 2018-11-14
EP3252863A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
WO2016121510A1 (ja) 鉛蓄電池及びそれを備える自動車
JP6614273B2 (ja) 鉛蓄電池
WO2017098666A1 (ja) 鉛蓄電池
JP6361513B2 (ja) 鉛蓄電池
JP6421895B2 (ja) 鉛蓄電池
JP6432609B2 (ja) 鉛蓄電池、マイクロハイブリッド車及びアイドリングストップシステム車
JP7014501B2 (ja) 鉛蓄電池
JPWO2017170422A1 (ja) 鉛蓄電池、マイクロハイブリッド車及びアイドリングストップシステム車
JP6515935B2 (ja) 鉛蓄電池、マイクロハイブリッド車及びアイドリングストップシステム車
JP6597994B2 (ja) アイドリングストップ車用液式鉛蓄電池
JP2017045539A (ja) 鉛蓄電池
JP2017054629A (ja) 鉛蓄電池
JP6638241B2 (ja) 鉛蓄電池
JP6582637B2 (ja) 鉛蓄電池
JP6958693B2 (ja) 鉛蓄電池
JP6601536B2 (ja) 鉛蓄電池
JP6760347B2 (ja) 鉛蓄電池
JP6856113B2 (ja) 鉛蓄電池
WO2018100639A1 (ja) 鉛蓄電池及びその製造方法
WO2018100635A1 (ja) 鉛蓄電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571922

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016743114

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE