WO2016117295A1 - 包接化合物の製造方法 - Google Patents

包接化合物の製造方法 Download PDF

Info

Publication number
WO2016117295A1
WO2016117295A1 PCT/JP2016/000128 JP2016000128W WO2016117295A1 WO 2016117295 A1 WO2016117295 A1 WO 2016117295A1 JP 2016000128 W JP2016000128 W JP 2016000128W WO 2016117295 A1 WO2016117295 A1 WO 2016117295A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solvent
compound
component
alkyl group
Prior art date
Application number
PCT/JP2016/000128
Other languages
English (en)
French (fr)
Inventor
小野 和男
英司 星
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to CN201680004145.6A priority Critical patent/CN107001282A/zh
Priority to JP2016570534A priority patent/JP6301504B2/ja
Priority to US15/540,135 priority patent/US10508068B2/en
Priority to KR1020177016030A priority patent/KR102049646B1/ko
Priority to EP16739906.2A priority patent/EP3248965A4/en
Publication of WO2016117295A1 publication Critical patent/WO2016117295A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4223Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aromatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/01Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups
    • C07C65/03Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing hydroxy or O-metal groups monocyclic and having all hydroxy or O-metal groups bound to the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a novel method for producing an inclusion compound.
  • Imidazole compounds are widely used as raw materials for medicines and agricultural chemicals, or as metal surface treatment agents, epoxy resin curing agents, and curing accelerators.
  • an imidazole compound When used as a curing agent or curing accelerator for an epoxy resin, it can be cured at a low temperature and in a short time, and the cured product has good advantages such as mechanical properties and electrical properties. There was a problem that storage stability was lowered. Thus, attempts have been made so far to make it latent by inclusion of an imidazole compound, and the following methods are known as methods for producing an inclusion compound containing an imidazole compound.
  • Patent Document 1 discloses 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane (hereinafter also referred to as TEP) and 2-phenyl-4-methyl-5-hydroxymethylimidazole (hereinafter also referred to as 2P4MHZ). ), The TEP and 2P4MHZ are suspended in ethyl acetate, heated and refluxed for 3 hours, and then cooled to room temperature, whereby crystals of the clathrate compound are obtained. .
  • TEP 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane
  • 2P4MHZ 2-phenyl-4-methyl-5-hydroxymethylimidazole
  • Patent Document 2 discloses a production method thereof in which a 2-nitroisophthalic acid (hereinafter, also referred to as NIPA) solution in a 2- It is described that a clathrate crystal can be obtained by adding a methanol solution of ethyl-4-methylimidazole (hereinafter, also referred to as 2E4MZ) with stirring under heating and refluxing and cooling at room temperature overnight after heating. ing.
  • NIPA 2-nitroisophthalic acid
  • 2E4MZ methanol solution of ethyl-4-methylimidazole
  • Patent Document 3 discloses (A) an epoxy resin and (B) an epoxy resin for encapsulating a semiconductor, which contains an inclusion complex containing 5-hydroxyisophthalic acid and 2-ethyl-4-methylimidazole.
  • a 2E4MZ ethyl acetate solution is dropped into a mixture of 5-hydroxyisophthalic acid (hereinafter also referred to as HIPA) and ethyl acetate while heating and refluxed for 2 hours to obtain inclusion complex crystals. It is described.
  • HIPA 5-hydroxyisophthalic acid
  • An object of the present invention is to provide a novel and industrially advantageous production method of an inclusion compound that can obtain a thermodynamically stable inclusion compound crystal with high purity.
  • the present inventors have mixed and heated a mixed solvent containing a protic solvent, TEP or specific isophthalic acid, and an imidazole compound.
  • the inventors have found that a thermodynamically stable crystalline clathrate compound can be obtained as compared with the clathrate compound obtained by the production method, and the present invention has been completed.
  • the present invention (1) A method for producing an inclusion compound comprising a mixing step of mixing the following component (A), component (B), and component (C), and a heating step; (A) Mixed solvent containing protic solvent (B) At least one selected from the group consisting of 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 5-hydroxyisophthalic acid, and 5-nitroisophthalic acid Species (C) Formula (I) [Wherein, R 1 represents a hydrogen atom, a C1-C10 alkyl group, an aryl group, an aralkyl group, or a cyanoethyl group, and R 2 -R 4 represent a hydrogen atom, a nitro group, a halogen atom, or a C1-C20 alkyl group.
  • a method for producing an inclusion compound by crystal conversion comprising a mixing step of mixing at least one selected from the group consisting of imidazole compounds represented by (2) the following component (A) and component (D), and a heating step: , (A) Mixed solvent containing protic solvent (D) At least one selected from the group consisting of 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 5-hydroxyisophthalic acid, and 5-nitroisophthalic acid
  • a clathrate comprising at least one selected from the group consisting of a species and an imidazole compound represented by the following formula (I): [Wherein, R 1 represents a hydrogen atom, a C1-C10 alkyl group, an aryl group, an aralkyl group, or a cyanoethyl group, and R 2 -R 4
  • the imidazole compound represented by the formula (I) is 2-phenyl-4-methyl-5-hydroxymethylimidazole or 2-ethyl-4-methylimidazole (1) or (2)
  • the production method according to the present invention is a method having a high industrial utility value because a high-purity inclusion compound can be obtained even when a low-grade raw material is used. Since the clathrate compound obtained by the production method according to the present invention has a more stable crystal form than the clathrate compound obtained by the conventional production method, excellent curing when used as a curing agent or curing accelerator for epoxy resin Demonstrate the characteristics.
  • the production method of the clathrate compound of the present invention is not particularly limited as long as it includes a mixing step of mixing the following component (A), component (B) and component (C) and a heating step. Absent.
  • C At least one selected from the group consisting of imidazole compounds represented by formula (I)
  • an inclusion compound is a compound composed of two or more chemical species that can exist stably alone, and one of these chemical species creates a molecular-scale space, and the shape and dimensions in that space.
  • the host and guest are bonded by an interaction other than a covalent bond such as a hydrogen bond, van der Waals force, or ionic bond. It can be said that an ionic crystal or salt structure is formed in the case of an ion-binding clathrate compound.
  • Component (A) of the present invention is not particularly limited as long as at least one solvent is a mixed solvent, but is a mixed solvent containing a first solvent and a second solvent.
  • the first solvent is at least one selected from the group consisting of water and methanol
  • the second solvent is an alcohol solvent, an ester solvent, a ketone solvent, an aliphatic hydrocarbon solvent, and an aromatic solvent. It is at least one selected from the group consisting of hydrocarbon solvents.
  • the solvent used for the second solvent include alcohol solvents such as methanol and 2-propanol; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as methyl ethyl ketone and acetone; hexane and heptane And aliphatic hydrocarbon solvents such as cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene.
  • alcohol solvents such as methanol and 2-propanol
  • ester solvents such as ethyl acetate and butyl acetate
  • ketone solvents such as methyl ethyl ketone and acetone
  • aliphatic hydrocarbon solvents such as cyclohexane
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene.
  • Preferred combinations of the first solvent and the second solvent include water and methanol, water and methyl ethyl ketone, methanol and methyl ethyl ketone, methanol and ethyl acetate, water and ethyl acetate, water and hexane, and the like.
  • the first solvent and the second solvent are different solvents, and the solubility of the host compound and the guest compound in the solvent, the crystallinity of the clathrate compound to be produced, the miscibility of the solvents, etc. Combinations and ratios of solvents can be selected. However, when the first solvent is methanol, it is preferable to select a solvent other than the alcohol solvent as the second solvent.
  • the ratio of the first solvent to the second solvent in the mixed solvent is not particularly limited, but the mass ratio of the first solvent / the second solvent is 1/99 to 99/99 at the start of the reaction. 1, preferably 2/98 to 80/20, more preferably 2/98 to 70/30.
  • this mixed solvent is used to carry out the reaction while heating and stirring the reaction solution.
  • the amount of the mixed solvent used varies depending on the type and ratio of the mixed solvent and is not particularly limited. However, the amount of the mixed solvent is 1 part by weight of the total amount of the component (B) and the component (C) or the component (D). The amount is 0.5 to 50 parts by weight with respect to 1 part by weight.
  • the host compound is at least one component (B) selected from the group consisting of 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 5-hydroxyisophthalic acid, and 5-nitroisophthalic acid.
  • component (B) is a compound having a carboxylic acid group
  • the hydrogen bond is stronger than that of a compound having a hydroxyl group, so that the clathrate compound has a strong crystal structure. Since the clathrate compound obtained has different thermal properties depending on the host compound, it can be appropriately selected depending on the use mode.
  • the guest compound is at least one component (C) selected from the group consisting of imidazole compounds represented by the following formula (I).
  • R 1 represents a hydrogen atom, a C1-C10 alkyl group, an aryl group, an aralkyl group, or a cyanoethyl group
  • R 2 -R 4 represent a hydrogen atom, a nitro group, a halogen atom, or a C1-C20 alkyl group.
  • Examples of the C1-C10 alkyl group of R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a cyclobutyl group, and a cyclopropylmethyl group.
  • Pentyl group isopentyl group, 2-methylbutyl group, neopentyl group, 1-ethylpropyl group, hexyl group, isohexyl group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group 3,3-dimethylbutyl group, 2,2-dimethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1 -Ethylbutyl group, 2-ethylbutyl group, octyl group, nonyl group, decyl group and the like.
  • Examples of the C1 to C20 alkyl group of R 2 to R 4 include the undecyl group, lauryl group, palmityl group, stearyl group and the like in addition to those exemplified as the alkyl group of R 1 .
  • Examples of the C1-C20 alkyl group substituted with the hydroxy group of R 2 to R 4 include a hydroxymethyl group and a hydroxyethyl group.
  • the acyl groups of C1 to C20 of R 2 to R 4 include formyl group; acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, hexanoyl group, octanoyl group, decanoyl group, lauroyl group Alkyl substituted acyl groups such as acryloyl group and methacryloyl group; aryl substituted acyl groups such as benzoyl group, toluoyl group and naphthoyl group; cyclohexane such as cyclohexylcarbonyl group; An alkyl-substituted acyl group; an acyl group having a halogen atom such as a chloroformyl group;
  • the aryl group of R 2 to R 4 means a monocyclic or polycyclic aryl group.
  • a partially saturated group is included in addition to the fully unsaturated group.
  • examples thereof include C6-10 aryl groups such as phenyl group, naphthyl group, azulenyl group, indenyl group, indanyl group and tetralinyl group.
  • the aralkyl group of R 2 to R 4 is a group in which the aryl group and the alkyl group are bonded, and includes a benzyl group, a phenethyl group, a 3-phenyl-n-propyl group, a 1-phenyl-n-hexyl group, a naphthalene- Examples include C6-10 aryl C1-6 alkyl groups such as 1-ylmethyl group, naphthalen-2-ylethyl group, 1-naphthalen-2-yl-n-propyl group, and inden-1-ylmethyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group, aryl group, aralkyl group, and acyl group of R 1 to R 4 may have a substituent, and examples of the substituent include an alkyl group, a hydroxy group, an alkoxy group, an aryl group, an aralkyl group, and a halogen atom. Can be mentioned. Specific examples of these groups as substituents include the same groups as described above.
  • the alkyl group part of an alkoxy group the same thing as the said alkyl group can be mentioned.
  • imidazole compound examples include imidazole, 1-methylimidazole, 2-methylimidazole, 3-methylimidazole, 4-methylimidazole, 5-methylimidazole, 1-ethylimidazole, 2-ethylimidazole, 3-ethylimidazole, 4-ethylimidazole, 5-ethylimidazole, 1-n-propylimidazole, 2-n-propylimidazole, 1-isopropylimidazole, 2-isopropylimidazole, 1-n-butylimidazole, 2-n-butylimidazole, 1- Isobutylimidazole, 2-isobutylimidazole, 2-undecyl-1H-imidazole, 2-heptadecyl-1H-imidazole, 1,2-dimethylimidazole, 1,3-dimethylimidazole, 2, -Dimethylimidazole, 2-ethyl,
  • At least one imidazole compound selected from the group consisting of 2-ethyl-4-methylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole is more preferable.
  • the mixed solvent described in Component (A), the compound described in Component (B) (hereinafter also referred to as host compound), and the compound described in Component (C) (hereinafter also referred to as guest compound). ) Is not particularly limited, and examples thereof include the following methods.
  • the host compound and guest compound are dissolved or suspended in the mixed solvent, but it is preferable that both are dissolved in the solvent.
  • the entire amount does not need to be dissolved in the solvent, and at least a part of the amount only needs to be dissolved in the solvent.
  • a guest compound is solid, after melting, you may mix with a guest compound and / or a mixed solvent.
  • the mixing ratio of the host compound and the guest compound at the time of production of the clathrate compound is preferably 0.1 to 10 mol of the guest compound with respect to 1 mol of the host compound, 0.5 to 5.0 More preferably, it is a mole.
  • Heating process The heating process of the present invention is not particularly limited as long as a heating process is included somewhere in the manufacturing process, but it is preferable to perform the heating process during and / or after the mixing process.
  • the heating temperature varies depending on the type of solvent used, it is, for example, in the range of 40 to 150 ° C., and preferably heated to reflux.
  • the heating time is 5 minutes to 12 hours, preferably 1 to 3 hours.
  • the production method of the clathrate compound of the present invention may have other steps before and after any of the mixing step or the heating step as long as the effects of the present invention are not impaired.
  • steps for example, Cooling the mixture after the heating step; Filtering the cooled mixture; Drying the substance obtained by filtration to obtain clathrate crystals;
  • the host compound or guest compound is a solid, a step of pulverizing the host compound or guest compound before the mixing step; Etc.
  • the particle size of the host compound or guest compound is not particularly limited as long as the effects of the present invention are obtained, but the average particle size is preferably 50 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the ratio of the host compound and guest compound contained in the clathrate compound is not particularly limited as long as the clathrate compound can be formed, but the guest compound should be 0.1 to 10 mol relative to 1 mol of the host compound. Is more preferable, and more preferably 0.5 to 5.0 mol.
  • the third component is preferably 40 mol% or less, more preferably 10 mol% or less, particularly not containing the third component, based on the total amount of the clathrate compound. Most preferred.
  • the inclusion compound which consists of three or more components can also be obtained by making 2 or more types of guest compounds react with a host compound.
  • a method for obtaining an equivalent of the clathrate compound obtained by the above-described method by crystal-transforming the clathrate compound obtained by a known production method is also included in the present invention.
  • the manufacturing method of the clathrate compound in that case will not be restrict
  • A Mixed solvent containing protic solvent
  • D At least one selected from the group consisting of 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 5-hydroxyisophthalic acid, and 5-nitroisophthalic acid
  • An inclusion compound comprising at least one selected from the group consisting of a species and an imidazole compound represented by the following formula (I):
  • R 1 represents a hydrogen atom, a C1-C10 alkyl group, an aryl group, an aralkyl group, or a cyanoethyl group
  • R 2 -R 4 represent a hydrogen atom, a nitro group, a halogen atom, or a C1-C20 alkyl group.
  • the component (A) is as described above.
  • the inclusion compound described in the component (D) can be produced using a known method. For example, after adding a host compound and a guest compound to a solvent, heat treatment or heat reflux treatment with stirring as necessary, and then precipitating or dissolving the host compound and guest compound in the solvent Examples of the method include a crystallization method in which the solvent is cooled and crystals are precipitated, but is not limited to these methods.
  • the imidazole compound contained in the said component (D) is as above-mentioned.
  • the mixing step and the heating step can be performed in the same manner as the mixing step and the heating step described above.
  • the clathrate compound produced by the method according to the present invention is used for curing an epoxy resin, for example, an epoxy resin adhesive, a semiconductor encapsulant, a laminate for a printed wiring board, a varnish, a powder coating, an ink, a fiber reinforced It can be suitably used for applications such as composite materials.
  • an epoxy resin for example, an epoxy resin adhesive, a semiconductor encapsulant, a laminate for a printed wiring board, a varnish, a powder coating, an ink, a fiber reinforced It can be suitably used for applications such as composite materials.
  • thermogravimetry and differential scanning calorimetry uses thermogravimetry (product name: TGA-DSC1, manufactured by METTLER TOLEDO) to place about 3 mg of crystals in an aluminum container and raise the temperature under a nitrogen purge (flow rate 50 mL / min). The measurement was performed at a rate of 20 ° C./min and a temperature range of 30 to 500 ° C. As a result, the release temperature of 2P4MHZ of the resulting clathrate was 231 ° C. The same measurement results were obtained for Examples 2 to 8.
  • Example 9 The amount of the clathrate compound (crystal A) and the mixed solvent shown in Table 2 were added to the flask, and the mixture was heated to reflux with stirring for 3 hours. After cooling, filtration and drying were performed to obtain an inclusion compound (crystal B). The TG-DSC of each clathrate compound was measured, and the same result as in Example 1 was obtained.
  • Example 12 The TG-DSC of the clathrate compound obtained in Example 12 was measured using the same apparatus and conditions as in Example 1. As a result, the release temperature of 2E4MZ of the obtained inclusion compound was 189 ° C. The same measurement results were obtained for Examples 13 to 16.
  • Example 17 to [Example 23]
  • the amount of clathrate compound (crystal C) and mixed solvent shown in Table 4 were added to the flask, and the mixture was refluxed with heating for 3 hours while stirring. After cooling, filtration and drying were performed to obtain an inclusion compound (crystal D). TG-DSC of each clathrate compound was measured, and the same result as in Example 12 was obtained.
  • Example 24 Low-grade TEP, 2P4MHZ and a mixed solvent containing a large amount of sodium components in the amounts shown in Table 5 were added, and the mixture was refluxed with heating for 3 hours while stirring. After cooling, filtration and drying were performed to obtain an inclusion compound.
  • Table 5 shows the results of measuring the concentration of sodium element contained in each component with ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer). From this result, the sodium element contained in the low-grade TEP is eluted in the filtrate after filtration and does not remain in the resulting inclusion compound. Therefore, when the production method of the present invention is used, the low-grade raw material is used. However, it was found that a high purity inclusion compound can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、5-ヒドロキシイソフタル酸、及び5-ニトロイソフタル酸からなる群から選ばれる少なくとも1種をホスト化合物とし、イミダゾール化合物をゲスト化合物とする、熱力学的により安定な包接化合物の新規な製造方法を提供することを課題とする。 本発明の包接化合物の製造方法は、プロトン性溶媒を含む混合溶媒と、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、5-ヒドロキシイソフタル酸、及び5-ニトロイソフタル酸からなる群から選ばれる少なくとも1種と、イミダゾール化合物とを混合する混合工程と、加熱工程とを含む。

Description

包接化合物の製造方法
 本発明は、包接化合物の新規な製造方法に関する。
 本願は、2015年1月19日に出願された日本国特許出願第2015-7987号に対し優先権を主張し、その内容をここに援用する。
 イミダゾール化合物は、医薬や農薬原料として、又は金属表面処理剤、エポキシ樹脂の硬化剤、硬化促進剤として広く用いられている。
 エポキシ樹脂の硬化剤、硬化促進剤としてイミダゾール化合物を用いた場合、低温かつ短時間で硬化でき、硬化物の機械特性、電気特性等がよい利点がある一方で、室温から硬化反応が開始してしまって保存安定性が低下する問題があった。そこでこれまでに、イミダゾール化合物を包接化することにより潜在性を持たせる試みがなされており、イミダゾール化合物を含む包接化合物の製造方法として以下のような方法が知られている。
 特許文献1には、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン(以下、TEPともいう)と、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(以下、2P4MHZともいう)とを含む包接化合物の製造方法として、酢酸エチル中にTEPと2P4MHZを懸濁させ、3時間加熱還流した後、室温まで冷却すると、包接化合物の結晶が得られることが記載されている。
 また、イソフタル酸化合物とイミダゾール化合物とを少なくとも含む包接化合物が知られており、特許文献2にはその製造方法として、5-ニトロイソフタル酸(以下、NIPAともいう)のメタノール溶液に、2-エチル-4-メチルイミダゾール(以下、2E4MZともいう)のメタノール溶液を、加熱還流下、攪拌しながら加え、加熱後に室温で一晩冷却することで、包接化合物の結晶が得られることが記載されている。
 特許文献3には、(A)エポキシ樹脂及び(B)5-ヒドロキシイソフタル酸と2-エチル-4-メチルイミダゾールを含有する包接錯体とを含有することを特徴とする半導体封止用エポキシ樹脂組成物において、5-ヒドロキシイソフタル酸(以下、HIPAともいう)と酢酸エチルの混合物に、加熱しながら2E4MZの酢酸エチル溶液を滴下し、加熱還流を2時間行うと包接錯体の結晶が得られることが記載されている。
特開2007-191450号公報 WO2008/075427パンフレット 特開2010-180337号公報
 本発明の課題は、熱力学的に安定な包接化合物の結晶を高純度で得ることのできる、新規で工業的に有利な包接化合物の製造方法を提供することである。
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、プロトン性溶媒を含む混合溶媒と、TEP又は特定のイソフタル酸と、イミダゾール化合物とを混合して加熱することにより、従来の製造方法で得られた包接化合物と比して熱力学的に安定な結晶の包接化合物が得られることを見出し、本発明を完成するに至った。
 すなわち本発明は、
(1)下記成分(A)、成分(B)、及び成分(C)を混合する混合工程と、加熱工程とを含む包接化合物の製造方法、
(A)プロトン性溶媒を含む混合溶媒
(B)1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、5-ヒドロキシイソフタル酸、及び5-ニトロイソフタル酸からなる群から選ばれる少なくとも1種
(C)下記式(I)
Figure JPOXMLDOC01-appb-C000001
[式中、Rは、水素原子、C1~C10のアルキル基、アリール基、アラルキル基又はシアノエチル基を表し、R~Rは、水素原子、ニトロ基、ハロゲン原子、C1~C20のアルキル基、ヒドロキシ基で置換されたC1~C20のアルキル基、アリール基、アラルキル基又はC1~C20のアシル基を表す。]
で表されるイミダゾール化合物からなる群から選ばれる少なくとも1種
(2)下記成分(A)及び成分(D)を混合する混合工程と、加熱工程とを含む、結晶変換による包接化合物の製造方法、
(A)プロトン性溶媒を含む混合溶媒
(D)1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、5-ヒドロキシイソフタル酸、及び5-ニトロイソフタル酸からなる群から選ばれる少なくとも1種及び下記式(I)で表されるイミダゾール化合物からなる群から選ばれる少なくとも1種とを含む包接化合物
Figure JPOXMLDOC01-appb-C000002
[式中、Rは、水素原子、C1~C10のアルキル基、アリール基、アラルキル基又はシアノエチル基を表し、R~Rは、水素原子、ニトロ基、ハロゲン原子、C1~C20のアルキル基、ヒドロキシ基で置換されたC1~C20のアルキル基、アリール基、アラルキル基又はC1~C20のアシル基を表す。]
(3)前記混合溶媒が、水及びメタノールからなる群から選ばれる少なくとも1種である第一の溶媒と、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、脂肪族炭化水素系溶媒、及び芳香族炭化水素系溶媒からなる群から選ばれる少なくとも1種であり、かつ前記第一の溶媒とは異なる種類の溶媒である第二の溶媒と、を含む(1)又は(2)に記載の製造方法、及び
(4)前記式(I)で表されるイミダゾール化合物が、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール又は2-エチル-4-メチルイミダゾールである、(1)又は(2)に記載の製造方法、
に関する。
 本発明に係る製造方法は、低品位な原料を使用しても高純度の包接化合物を得ることができるため、工業上の利用価値が高い方法である。本発明に係る製造方法で得られる包接化合物は、従来の製造方法で得られる包接化合物より安定な結晶形であるため、エポキシ樹脂の硬化剤又は硬化促進剤として用いたときに優れた硬化特性を発揮する。
(本発明の包接化合物の製造方法)
 本発明の包接化合物の製造方法は、以下の成分(A)、成分(B)及び成分(C)を混合する混合工程と、加熱工程とを含む方法であれば、特に制限されるものではない。
(A)プロトン性溶媒を含む混合溶媒
(B)1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、5-ヒドロキシイソフタル酸、及び5-ニトロイソフタル酸からなる群から選ばれる少なくとも1種
(C)式(I)で表されるイミダゾール化合物からなる群から選ばれる少なくとも1種
 ここで包接化合物とは、単独で安定に存在することのできる2種以上の化学種により構成される化合物で、そのうちの一方の化学種が分子規模の空間をつくり、その空間に形状と寸法が適合することを第一要件として、他方の化学種を取り込む(包接する)ことにより特定の結晶構造をなしている化合物である。空間を提供する側の化学種をホスト、包接される側の化学種をゲストと言う。ホストとゲスト間は、水素結合、ファンデルワールス力、イオン結合等の共有結合以外の相互作用により結合している。イオン結合性の包接化合物であれば、イオン結晶、塩構造を形成しているとも言える。 
(プロトン性溶媒を含む混合溶媒)
 本発明の成分(A)は、少なくとも1種の溶媒がプロトン性である混合溶媒であれば、特に制限されるものではないが、第一の溶媒と第二の溶媒を含む混合溶媒であることが好ましい。
 ここで、前記第一の溶媒は水及びメタノールからなる群から選ばれる少なくとも1種で、第二の溶媒はアルコール系溶媒、エステル系溶媒、ケトン系溶媒、脂肪族炭化水素系溶媒、及び芳香族炭化水素系溶媒からなる群から選ばれる少なくとも1種である。
 前記第二の溶媒に用いられる溶媒として、具体的には、メタノール、2-プロパノール等のアルコール系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;メチルエチルケトン、アセトン等のケトン系溶媒;ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒等を例示することができる。
 好ましい第一の溶媒と第二の溶媒の組み合わせとして、水とメタノール、水とメチルエチルケトン、メタノールとメチルエチルケトン、メタノールと酢酸エチル、水と酢酸エチル、水とヘキサン等を例示できる。
 前記第一の溶媒と前記第二の溶媒は異種溶媒であり、ホスト化合物とゲスト化合物の溶媒への溶解性、生成する包接化合物の結晶性、溶媒同士の混和性等を考慮して、適宜溶媒の組み合わせや比率を選択することができる。ただし、第一の溶媒がメタノールの場合は、第二の溶媒はアルコール溶媒以外の溶媒を選択することが好ましい。
 混合溶媒における第一の溶媒と第二の溶媒の比率は、特に制限されるものではないが、反応開始時に該第一の溶媒/該第二の溶媒の質量比が、1/99~99/1であり、好ましくは、2/98~80/20であり、より好ましくは2/98~70/30である。本実施の形態においては、この混合溶媒を用い、反応液の加熱・撹拌下に反応を行う。
 混合溶媒の使用量は、混合溶媒の種類や比率によっても異なり特に制限されるものではないが、成分(B)及び成分(C)の合計量の1重量部に対して、もしくは成分(D)1重量部に対して、0.5~50重量部である。
(ホスト化合物)
 ホスト化合物は、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、5-ヒドロキシイソフタル酸、及び5-ニトロイソフタル酸からなる群から選ばれる少なくとも1種の成分(B)である。成分(B)の化合物がカルボン酸基を有する化合物の場合、水酸基を有する化合物よりも水素結合が強いため、包接化合物として強固な結晶構造になる。ホスト化合物の違いにより得られる包接化合物の熱特性等が異なることから、使用様態に応じて適宜選択することができる。
(ゲスト化合物)
 ゲスト化合物は、下記式(I)で表されるイミダゾール化合物からなる群から選ばれる少なくとも1種の成分(C)である。
Figure JPOXMLDOC01-appb-C000003
[式中、Rは、水素原子、C1~C10のアルキル基、アリール基、アラルキル基又はシアノエチル基を表し、R~Rは、水素原子、ニトロ基、ハロゲン原子、C1~C20のアルキル基、ヒドロキシ基で置換されたC1~C20のアルキル基、アリール基、アラルキル基又はC1~C20のアシル基を表す。]
 RのC1~C10のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、シクロプロピルメチル基、ペンチル基、イソペンチル基、2-メチルブチル基、ネオペンチル基、1-エチルプロピル基、ヘキシル基、イソヘキシル基、4-メチルペンチル基、3-メチルペンチル基、2-メチルペンチル基、1-メチルペンチル基、3,3-ジメチルブチル基、2,2-ジメチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、オクチル基、ノニル基、デシル基等が挙げられる。
 R~RのC1~C20のアルキル基としては、Rのアルキル基として挙げたもののほか、ウンデシル基、ラウリル基、パルミチル基、ステアリル基等が挙げられる。
 R~Rのヒドロキシ基で置換されたC1~C20のアルキル基としては、ヒドロキシメチル基又はヒドロキシエチル基等が挙げられる。
 R~RのC1~C20のアシル基としては、ホルミル基;アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基などのアルキル置換アシル基;アクリロイル基、メタクリロイル基などのアルケニル置換アシル基;ベンゾイル基、トルオイル基、ナフトイル基などのアリール置換のアシル基;シクロヘキシルカルボニル基等のシクロアルキル置換アシル基;クロロホルミル基等のハロゲン原子を有するアシル基等が挙げられる。
 R~Rのアリール基は、単環又は多環のアリール基を意味する。ここで、多環アリール基の場合は、完全不飽和に加え、部分飽和の基も包含する。例えばフェニル基、ナフチル基、アズレニル基、インデニル基、インダニル基、テトラリニル基等のC6-10アリール基が挙げられる。
 R~Rのアラルキル基は、上記アリール基とアルキル基が結合した基であり、 ベンジル基、フェネチル基、3-フェニル-n-プロピル基、1-フェニル-n-へキシル基、ナフタレン-1-イルメチル基、ナフタレン-2-イルエチル基、1-ナフタレン-2-イル-n-プロピル基、インデン-1-イルメチル基等のC6-10アリールC1-6アルキル基が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、沃素原子が挙げられる。
 R~Rのアルキル基、アリール基、アラルキル基、アシル基は置換基を有していてもよく、置換基としてはアルキル基、ヒドロキシ基、アルコキシ基、アリール基、アラルキル基、ハロゲン原子を挙げることができる。
 置換基としてのこれらの基の具体例としては、上記と同様の基を挙げることができる。なお、アルコキシ基のアルキル基部分の具体例としては、上記アルキル基と同じものを挙げることができる。
 イミダゾール化合物として具体的に例えば、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾール、3-メチルイミダゾール、4-メチルイミダゾール、5-メチルイミダゾール、1-エチルイミダゾール、2-エチルイミダゾール、3-エチルイミダゾール、4-エチルイミダゾール、5-エチルイミダゾール、1-n-プロピルイミダゾール、2-n-プロピルイミダゾール、1-イソプロピルイミダゾール、2-イソプロピルイミダゾール、1-n-ブチルイミダゾール、2-n-ブチルイミダゾール、1-イソブチルイミダゾール、2-イソブチルイミダゾール、2-ウンデシル-1H-イミダゾール、2-ヘプタデシル-1H-イミダゾール、1,2-ジメチルイミダゾール、1,3-ジメチルイミダゾール、2,4-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-フェニルイミダゾール、2-フェニル-1H-イミダゾール、4-メチル-2-フェニル-1H-イミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール等が挙げられる。
 中でも、2-エチル-4-メチルイミダゾール、及び、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールからなる群から選ばれる少なくとも1種のイミダゾール化合物がより好ましい。
(混合工程)
 本発明の混合工程は、成分(A)に記載の混合溶媒、成分(B)に記載の化合物(以下、ホスト化合物ともいう)、及び成分(C)に記載の化合物(以下、ゲスト化合物ともいう)を混合するのであれば特に制限はなく、例えば、以下のような方法を例示できる。
(a)混合溶媒に、ホスト化合物とゲスト化合物とを加える
(b)混合溶媒にホスト化合物を加えた後、ゲスト化合物を加える
(c)混合溶媒にゲスト化合物を加えた後、ホスト化合物を加える
(d)混合溶媒にホスト化合物を加えた後、溶媒に溶解させたゲスト化合物を加える(ただし、ゲスト化合物の溶解に用いる溶媒は、混合溶媒を構成する溶媒成分のうちの少なくとも1種と同一であることが好ましい)
(e)混合溶媒にホスト化合物を加えた後、加熱溶融させたゲスト化合物を加える(ただし、ゲスト化合物が固体の場合)
(f)混合溶媒とホスト化合物を混合した後、該混合物を加熱しながらゲスト化合物を加える
(g)ゲスト化合物に、混合溶媒に溶解したホスト化合物を加える
 ホスト化合物及びゲスト化合物は混合溶媒に溶解又は懸濁するが、両方とも溶媒に溶解することが好ましい。溶媒に溶解する場合、その全量が溶媒に溶解する必要はなく、少なくともごく一部が溶媒に溶解すればよい。また、ゲスト化合物が固体の場合、溶融させてからゲスト化合物及び/又は混合溶媒と混合してもよい。
 包接化合物の製造時におけるホスト化合物とゲスト化合物との混合割合としては、ホスト化合物1モルに対して、ゲスト化合物が、0.1~10モルであることが好ましく、0.5~5.0モルであることがより好ましい。
(加熱工程)
 本発明の加熱工程とは、製造工程のどこかに加熱処理を行う工程が含まれていれば特に制限はないが、前記混合工程時及び/又は前記混合工程後に加熱処理を行うことが好ましい。
 加熱温度は、用いる溶媒の種類によっても異なるが、例えば40~150℃の範囲内であり、好ましくは加熱還流することである。加熱時間は5分~12時間、好ましくは1~3時間である。
(その他の工程)
 本発明の包接化合物の製造方法は、本発明の効果が損なわれない範囲で、上記混合工程又は上記加熱工程のいずれかの工程の前後に、他の工程を有していてもよい。他の工程として例えば、
前記加熱工程の後に混合物を冷却する工程;
冷却した混合物を濾過する工程;
濾過して得られた物質を乾燥させて、包接化合物の結晶を得る工程;
ホスト化合物やゲスト化合物が固体の場合、前記混合工程の前に、該ホスト化合物や該ゲスト化合物を粉砕する工程;
等が挙げられる。
 ここで、ホスト化合物やゲスト化合物の粒径は、本発明の効果が得られる限り特に制限されないが、平均粒径を50μm以下とすることが好ましく、20μm以下とすることがより好ましい。 
(包接化合物)
 包接化合物に含まれるホスト化合物及びゲスト化合物の割合は、包接化合物を形成しうる限り特に制限はないが、ホスト化合物1モルに対して、ゲスト化合物が、0.1~10モルであることが好ましく、0.5~5.0モルであることがより好ましい。
 第3成分を含有する場合には、第3成分は包接化合物全量に対して40モル%以下であることが好ましく、さらには10モル%以下が好ましく、特に、第3成分を含まないことが最も好ましい。また、ホスト化合物に対して、二種類以上のゲスト化合物を反応させることにより、三成分以上の多成分からなる包接化合物を得ることもできる。
(結晶変換による包接化合物の製造方法)
 公知の製造方法で得られる包接化合物を結晶変換することにより、前述した方法で得られる包接化合物と同等のものを得る方法も、本発明に含まれる。
 その場合の包接化合物の製造方法は、成分(A)及び成分(D)を混合する混合工程と、加熱工程とを含む方法であれば特に制限されるものではない。
(A)プロトン性溶媒を含む混合溶媒
(D)1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、5-ヒドロキシイソフタル酸、及び5-ニトロイソフタル酸からなる群から選ばれる少なくとも1種及び下記式(I)で表されるイミダゾール化合物からなる群から選ばれる少なくとも1種を含む包接化合物
Figure JPOXMLDOC01-appb-C000004
[式中、Rは、水素原子、C1~C10のアルキル基、アリール基、アラルキル基又はシアノエチル基を表し、R~Rは、水素原子、ニトロ基、ハロゲン原子、C1~C20のアルキル基、ヒドロキシ基で置換されたC1~C20のアルキル基、アリール基、アラルキル基又はC1~C20のアシル基を表す。]
 前記成分(A)は前述したとおりである。
 前記成分(D)に記載の包接化合物は、公知の方法を用いて製造することができる。例えば、ホスト化合物とゲスト化合物を溶媒に添加後、必要に応じて攪拌しながら加熱処理又は加熱還流処理を行った後、析出させることにより得る方法や、前記ホスト化合物及びゲスト化合物を溶媒にいったん溶解させた後、該溶媒を冷却して結晶を析出させる晶析法等を例示することができるが、これらの方法に限定されるものではない。なお、前記成分(D)に含まれるイミダゾール化合物は前述のとおりである。
 前記混合工程及び前記加熱工程は、前述の混合工程及び加熱工程と同様に行うことができる。
 本発明に係る方法で製造した包接化合物は、エポキシ樹脂を硬化させる用途、例えば、エポキシ樹脂系接着剤、半導体封止材、プリント配線板用積層板、ワニス、粉体塗料、インク、繊維強化複合材料等の用途に好適に使用することができる。
 以下、実施例を示して本発明を詳細に説明するが、本発明は、実施例に限定されるものではない。
[実施例1]~[実施例8]
 フラスコに表1に示す量のTEP(製品名:TEP-DF、旭有機材工業(株)製)、2P4MHZ(製品名:2P4MHZ-PW、四国化成工業(株)製)、及び混合溶媒を加え、攪拌しながら加熱還流を3時間行った。冷却後、ろ過、乾燥を行い、包接比(TEP:2P4MHZ)=1:2の包接化合物(結晶B)を得た。
 実施例1で得られた包接化合物につき、熱重量測定・示差走査熱量測定(TG-DSC)を行った。TG-DSCは、熱重量測定装置(製品名:TGA-DSC1、メトラー・トレド社製)を用いて、アルミ容器内に約3mgの結晶を設置し、窒素パージ下(流速50mL/分)昇温速度20℃/分、30~500℃の温度範囲で測定した。その結果、得られた包接化合物の2P4MHZの放出温度は231℃であった。実施例2~8についても同じ測定結果を得た。
Figure JPOXMLDOC01-appb-T000001
[比較例1]
 特許文献1に記載の方法に準じてTEPと2P4MHZの包接化合物を製造して包接化合物(結晶A)を得た。
 得られた包接化合物のTG-DSCを、実施例1と同様の装置及び条件で測定した。その結果、得られた包接化合物の2P4MHZの放出温度は223℃であった。結晶Bは結晶Aと比して前記放出温度が高く、結晶Bの方が熱力学的に安定な結晶形であることがわかった。
[実施例9]~[実施例11]
 フラスコに表2に示す量の包接化合物(結晶A)及び混合溶媒を加え、攪拌しながら加熱還流を3時間行った。冷却後、ろ過、乾燥を行うことで包接化合物(結晶B)を得た。それぞれの包接化合物のTG-DSCを測定し、実施例1と同じ結果を得た。
Figure JPOXMLDOC01-appb-T000002
[実施例12]~[実施例16]
 フラスコに、3.04g(16.7mmol)のHIPAと表3に記載の量の混合溶媒を加え、攪拌した。そこへ予め酢酸エチル又はメチルエチルケトンに溶解させた1.84g(16.7mmol)の2E4MZ(製品名:2E4MZ、四国化成工業(株)製)を滴下した後、攪拌しながら加熱還流を3時間行った。冷却後、ろ過、乾燥を行い、包接比(HIPA:2E4MZ)=1:1の包接化合物(結晶D)を得た。
 実施例12で得られた包接化合物のTG-DSCを、実施例1と同様の装置及び条件で測定した。その結果、得られた包接化合物の2E4MZの放出温度は189℃であった。実施例13~16についても同じ測定結果を得た。
Figure JPOXMLDOC01-appb-T000003
[比較例2]
 特許文献3に記載の方法に準じてHIPAと2E4MZの包接化合物を製造して包接化合物(結晶C)を得た。
 得られた包接化合物のTG-DSCを、実施例1と同様の装置及び条件で測定した。その結果、得られた包接化合物の2E4MZの放出温度は173℃であった。結晶Dは結晶Cと比して前記放出温度が高く、結晶Dの方が熱力学的に安定な結晶形であることがわかった。
[実施例17]~[実施例23]
 フラスコに表4に示す量の包接化合物(結晶C)及び混合溶媒を加え、攪拌しながら加熱還流を3時間行った。冷却後、ろ過、乾燥を行うことで、包接化合物(結晶D)を得た。それぞれの包接化合物のTG-DSCを測定し、実施例12と同じ結果を得た。
Figure JPOXMLDOC01-appb-T000004
[実施例24]
 表5に示す量の、ナトリウム成分を多く含む低品位TEP、2P4MHZ、及び混合溶媒を加え、攪拌しながら加熱還流を3時間行った。冷却後、ろ過、乾燥を行い、包接化合物を得た。
 各成分に含まれるナトリウム元素濃度を、ICP-AES(誘導結合プラズマ発光分光分析装置)にて測定した結果を表5に示す。この結果より、低品位TEPに含まれるナトリウム元素はろ過後のろ液中に溶出し、得られる包接化合物に残存しないことから、本発明の製造方法を用いると、低品位原料を用いた場合でも高純度の包接化合物を得ることができることがわかった。
Figure JPOXMLDOC01-appb-T000005

Claims (4)

  1.  下記成分(A)、成分(B)、及び成分(C)を混合する混合工程と、加熱工程とを含む包接化合物の製造方法。
    (A)プロトン性溶媒を含む混合溶媒
    (B)1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、5-ヒドロキシイソフタル酸、及び5-ニトロイソフタル酸からなる群から選ばれる少なくとも1種
    (C)下記式(I)
    Figure JPOXMLDOC01-appb-C000005
    [式中、Rは、水素原子、C1~C10のアルキル基、アリール基、アラルキル基又はシアノエチル基を表し、R~Rは、水素原子、ニトロ基、ハロゲン原子、C1~C20のアルキル基、ヒドロキシ基で置換されたC1~C20のアルキル基、アリール基、アラルキル基又はC1~C20のアシル基を表す。]
    で表されるイミダゾール化合物からなる群から選ばれる少なくとも1種
  2.  下記成分(A)及び成分(D)を混合する混合工程と、加熱工程とを含む、結晶変換による包接化合物の製造方法。
    (A)プロトン性溶媒を含む混合溶媒
    (D)1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、5-ヒドロキシイソフタル酸、及び5-ニトロイソフタル酸からなる群から選ばれる少なくとも1種と、下記式(I)で表されるイミダゾール化合物からなる群から選ばれる少なくとも1種とを含む包接化合物
    Figure JPOXMLDOC01-appb-C000006
    [式中、Rは、水素原子、C1~C10のアルキル基、アリール基、アラルキル基又はシアノエチル基を表し、R~Rは、水素原子、ニトロ基、ハロゲン原子、C1~C20のアルキル基、ヒドロキシ基で置換されたC1~C20のアルキル基、アリール基、アラルキル基又はC1~C20のアシル基を表す。]
  3.  前記混合溶媒が、水及びメタノールからなる群から選ばれる少なくとも1種である第一の溶媒と、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、脂肪族炭化水素系溶媒、及び芳香族炭化水素系溶媒からなる群から選ばれる少なくとも1種であり、かつ前記第一の溶媒とは異なる種類の溶媒である第二の溶媒と、を含む請求項1又は2に記載の製造方法。
  4.  前記式(I)で表されるイミダゾール化合物が、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール又は2-エチル-4-メチルイミダゾールである、請求項1又は2に記載の製造方法。
PCT/JP2016/000128 2015-01-19 2016-01-13 包接化合物の製造方法 WO2016117295A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680004145.6A CN107001282A (zh) 2015-01-19 2016-01-13 包合化合物的制造方法
JP2016570534A JP6301504B2 (ja) 2015-01-19 2016-01-13 包接化合物の製造方法
US15/540,135 US10508068B2 (en) 2015-01-19 2016-01-13 Production method for inclusion compound
KR1020177016030A KR102049646B1 (ko) 2015-01-19 2016-01-13 포접 화합물의 제조 방법
EP16739906.2A EP3248965A4 (en) 2015-01-19 2016-01-13 Production method for inclusion compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-007987 2015-01-19
JP2015007987 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016117295A1 true WO2016117295A1 (ja) 2016-07-28

Family

ID=56416850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000128 WO2016117295A1 (ja) 2015-01-19 2016-01-13 包接化合物の製造方法

Country Status (7)

Country Link
US (1) US10508068B2 (ja)
EP (1) EP3248965A4 (ja)
JP (1) JP6301504B2 (ja)
KR (1) KR102049646B1 (ja)
CN (1) CN107001282A (ja)
TW (1) TWI589739B (ja)
WO (1) WO2016117295A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020225884A1 (ja) * 2019-05-08 2020-11-12

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10266642B2 (en) 2014-09-08 2019-04-23 Nippon Soda Co., Ltd. Crystal polymorphism of inclusion compound and method for producing same, and curable resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039449A (ja) * 2005-07-06 2007-02-15 Nippon Soda Co Ltd 包接化合物、硬化触媒、硬化樹脂形成用組成物及び硬化樹脂
JP2007191450A (ja) * 2006-01-20 2007-08-02 Nippon Soda Co Ltd スラリー法による包接化合物の製造法
WO2010103809A1 (ja) * 2009-03-11 2010-09-16 日本曹達株式会社 エポキシ樹脂組成物、硬化剤及び硬化促進剤
JP2013213168A (ja) * 2012-04-04 2013-10-17 Nippon Soda Co Ltd プリプレグ用エポキシ樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232994A (ja) 2005-07-06 2012-11-29 Nippon Soda Co Ltd 包接化合物、硬化触媒、硬化樹脂形成用組成物及び硬化樹脂
US8735529B2 (en) 2006-12-21 2014-05-27 Nippon Soda Co., Ltd. Clathrate compound, curing catalyst, composition for forming cured resin, and cured resin
US20100022744A1 (en) 2006-12-21 2010-01-28 Nippon Soda Co., Ltd. Clathrate compound, curing catalyst, composition for forming cured resin, and cured resin
JP5243441B2 (ja) 2007-09-21 2013-07-24 日本曹達株式会社 包接錯体を含有する半導体封止用エポキシ樹脂組成物
JP2010180337A (ja) 2009-02-06 2010-08-19 Nippon Soda Co Ltd 半導体封止用エポキシ樹脂組成物
CN103936676A (zh) 2009-03-17 2014-07-23 日本曹达株式会社 包合配合物、固化剂、固化促进剂、环氧树脂组合物及半导体封装用环氧树脂组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039449A (ja) * 2005-07-06 2007-02-15 Nippon Soda Co Ltd 包接化合物、硬化触媒、硬化樹脂形成用組成物及び硬化樹脂
JP2007191450A (ja) * 2006-01-20 2007-08-02 Nippon Soda Co Ltd スラリー法による包接化合物の製造法
WO2010103809A1 (ja) * 2009-03-11 2010-09-16 日本曹達株式会社 エポキシ樹脂組成物、硬化剤及び硬化促進剤
JP2013213168A (ja) * 2012-04-04 2013-10-17 Nippon Soda Co Ltd プリプレグ用エポキシ樹脂組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3248965A4 *
TAKENORI TAKEDA ET AL.: "3 B4-13 1,1,2,2- Tetrakis (4-Hydroxyphenyl) Ethane to Imidazole Yudotai Hosetsu Kessho no Kozo Hikaku to Guest Datsuri Kyodo", THE 89TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU, vol. 89, no. 2, 2009, pages 789, XP009504883, ISSN: 0285-7626 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020225884A1 (ja) * 2019-05-08 2020-11-12
WO2020225884A1 (ja) * 2019-05-08 2020-11-12 昭和電工マテリアルズ株式会社 樹脂粒子混合物
JP7294412B2 (ja) 2019-05-08 2023-06-20 株式会社レゾナック 樹脂粒子混合物

Also Published As

Publication number Publication date
TWI589739B (zh) 2017-07-01
US20180022675A1 (en) 2018-01-25
CN107001282A (zh) 2017-08-01
KR20170084228A (ko) 2017-07-19
JPWO2016117295A1 (ja) 2017-09-14
EP3248965A1 (en) 2017-11-29
EP3248965A4 (en) 2018-08-15
KR102049646B1 (ko) 2019-11-28
US10508068B2 (en) 2019-12-17
TW201629279A (zh) 2016-08-16
JP6301504B2 (ja) 2018-03-28

Similar Documents

Publication Publication Date Title
EP2103600B1 (en) Clathrate compound, curing catalyst, composition for forming cured resin, and cured resin
JP5068045B2 (ja) 包接化合物、硬化触媒、硬化樹脂形成用組成物及び硬化樹脂
KR101222214B1 (ko) 신규한 술포늄 보레이트 착체
EP1905756A1 (en) Silver beta-ketocarboxylate, material comprising the same for forming silver metal, and use thereof
JP6301504B2 (ja) 包接化合物の製造方法
US8735529B2 (en) Clathrate compound, curing catalyst, composition for forming cured resin, and cured resin
JPH0581584B2 (ja)
JP6251557B2 (ja) 化合物、熱硬化性樹脂組成物、及び熱硬化性シート
JP2021143138A (ja) 包接化合物の製造方法
JP2007191450A (ja) スラリー法による包接化合物の製造法
DE3244448C2 (ja)
JP2009041009A5 (ja)
WO2016117298A1 (ja) 包接化合物の結晶多形、それを含有する硬化性組成物、及び硬化物
JP2012232994A (ja) 包接化合物、硬化触媒、硬化樹脂形成用組成物及び硬化樹脂
JP6381436B2 (ja) ヨウ化アルカリ金属またはヨウ化アルカリ土類金属の製造方法
JPH0124403B2 (ja)
JP2020040887A (ja) 包接化合物の製造方法
BR112019012482B1 (pt) Composição curável, processo para a preparação de um artigo curado, e, uso da composição
KR20180100870A (ko) 바인더, 이를 포함하는 분리막 및 이차전지
US10501578B1 (en) Bis-Schiff base compositions and formulations
JP4565489B2 (ja) エポキシ樹脂用の硬化剤、エポキシ樹脂組成物、及びその硬化物
KR102118628B1 (ko) 프탈로니트릴 수지
Amanokura et al. Curing behavior of epoxy resin initiated by amine-containing inclusion complexes
JPS61183316A (ja) 一液性エポキシ樹脂用潜在性硬化剤
KR20230052507A (ko) 2-시아노에틸기를 포함하는 유기화합물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570534

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177016030

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15540135

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016739906

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE