WO2016110907A1 - 鉛蓄電池用正極格子およびその製造方法ならびに鉛蓄電池 - Google Patents

鉛蓄電池用正極格子およびその製造方法ならびに鉛蓄電池 Download PDF

Info

Publication number
WO2016110907A1
WO2016110907A1 PCT/JP2015/006316 JP2015006316W WO2016110907A1 WO 2016110907 A1 WO2016110907 A1 WO 2016110907A1 JP 2015006316 W JP2015006316 W JP 2015006316W WO 2016110907 A1 WO2016110907 A1 WO 2016110907A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
positive electrode
alloy
mass
lead alloy
Prior art date
Application number
PCT/JP2015/006316
Other languages
English (en)
French (fr)
Inventor
徹行 村田
武澤 秀治
和成 安藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016568177A priority Critical patent/JP6597641B2/ja
Priority to US15/541,890 priority patent/US10276895B2/en
Priority to CN201580072863.2A priority patent/CN107112543B/zh
Publication of WO2016110907A1 publication Critical patent/WO2016110907A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead-acid battery, and more particularly to a positive electrode grid for a lead-acid battery containing a lead alloy containing calcium and tin and a method for manufacturing the same.
  • Lead storage batteries are used in various applications because they are inexpensive, have a relatively high battery voltage, and provide high power. Lead storage batteries are required to reduce self-discharge and reduction of moisture in the electrolyte as much as possible. Therefore, a lead-calcium alloy containing no antimony, which increases self-discharge and moisture reduction, is used for the lattice used for the positive electrode plate and the negative electrode plate. In addition, the corrosion resistance of the lattice can be improved by adding tin to the lead-calcium alloy.
  • a grid of a lead storage battery is manufactured by, for example, expanding a lead alloy sheet manufactured by a continuous casting method.
  • the continuous casting method is a method in which a molten lead alloy is poured into a roll mold to be solidified.
  • different alloy structures are formed on the side where the molten metal contacts the roll mold and the side where the molten metal contacts the air, and the lead alloy sheet has a double structure.
  • a positive grid manufactured from such a lead alloy sheet has insufficient corrosion resistance and fatigue strength.
  • Patent Document 1 a lead alloy is continuously extruded at a temperature 10 to 100 ° C. lower than the melting point, and thereafter, the alloy is rolled while being gradually cooled at a temperature 50 to 230 ° C. lower than the melting point to form a lead alloy sheet. Propose that.
  • one aspect of the present invention includes a lead alloy containing calcium and tin, the calcium content in the lead alloy is 0.10% by mass or less, and the tin content in the lead alloy However, it is 2.3 mass% or less, It is related with the positive electrode grating
  • Another aspect of the present invention is (i) a molten lead alloy containing calcium and tin, wherein the calcium content is 0.10% by mass or less, and the tin content is 2.3% by mass or less.
  • a step of obtaining a lead alloy slab by continuous slab casting (ii) a step of rolling the lead alloy slab by multi-stage rolling to obtain a lead alloy sheet, and (iii) a positive grid by expanding from the lead alloy sheet. And a process for obtaining a positive electrode grid for a lead storage battery.
  • Still another aspect of the present invention includes a positive electrode plate, a negative electrode plate, a separator interposed between the positive electrode plate and the negative electrode plate, and an electrolyte solution containing a sulfuric acid aqueous solution, and the positive electrode plate includes the positive electrode grid.
  • FIG. 1 It is the perspective view which notched some lead acid batteries concerning one embodiment of the present invention. It is a front view of the positive electrode plate in the lead acid battery of FIG. It is a front view of the negative electrode plate in the lead acid battery of FIG. It is explanatory drawing which shows the outline of the manufacturing process of a lead alloy sheet. It is a figure which shows the relationship between the tin content in a lead alloy, and a lattice constant.
  • the positive electrode grid for a lead storage battery according to an embodiment of the present invention is obtained by expanding a sheet of a lead alloy containing calcium and tin (hereinafter, Pb—Ca—Sn alloy).
  • Calcium (Ca) mainly improves the mechanical strength of the lead alloy
  • tin (Sn) mainly improves the corrosion resistance of the lead alloy.
  • the calcium content is 0.10% by mass or less
  • the tin content is 2.3% by mass or less.
  • the tin content in the Pb—Ca—Sn alloy affects the lattice constant of the Pb—Ca—Sn alloy.
  • the corrosion resistance of the Pb—Ca—Sn alloy tends to improve. This tendency becomes remarkable when the lattice constant of the Pb—Ca—Sn alloy is 4.9470% or less.
  • the lattice constant of the positive electrode grid In the conventional positive electrode grid manufacturing method in which the lead alloy as a raw material is extruded at a temperature lower than the melting point and gradually cooled during the rolling process, it is difficult to set the lattice constant of the positive electrode grid to 4.9470 mm or less.
  • the relationship between the lattice constant and the tin content of the positive electrode lattice obtained by such a method is a linear relationship such as the straight line L shown in FIG. As shown in FIG. 5, when the tin content of the Pb—Ca—Sn alloy is 2.3% by mass or less, the lattice constant usually exceeds 4.9470%.
  • the Vickers hardness (HV) tends to increase. Improvement of Vickers hardness suppresses deformation of the positive electrode lattice. That is, by reducing the lattice constant of the Pb—Ca—Sn alloy constituting the positive electrode lattice, corrosion and deformation of the positive electrode lattice accompanying the charge / discharge cycle of the lead storage battery are suppressed.
  • the Vickers hardness Hv of the Pb—Ca—Sn alloy is preferably 8 or more, and more preferably 10 or more. Thereby, the effect which suppresses the deformation
  • the tin content in the Pb—Ca—Sn alloy is preferably more than 1.6% by mass, more preferably 1.7% by mass or more, and more preferably 1.8% by mass or more.
  • the lattice constant of the Pb—Ca—Sn alloy can be further reduced to 4.9470% or less.
  • the tin content in the Pb—Ca—Sn alloy is 2.3% by mass or less, preferably 2.2% by mass or less, and more preferably 2.1% by mass or less.
  • the manufacturing cost of the Pb—Ca—Sn alloy can be further reduced while maintaining the corrosion resistance.
  • the upper limit and the lower limit of the tin content can be arbitrarily combined.
  • the calcium content in the Pb—Ca—Sn alloy is preferably 0.01% by mass or more, and more preferably 0.02% by mass or more. This makes it easy to ensure the mechanical strength of the Pb—Ca—Sn alloy.
  • the calcium content in the Pb—Ca—Sn alloy is 0.10% by mass or less, and preferably 0.07% by mass or less. This makes it easier to improve the corrosion resistance of the Pb—Ca—Sn alloy.
  • the upper limit and the lower limit of the calcium content can be arbitrarily combined.
  • the Pb—Ca—Sn alloy may contain a trace amount of a third element in addition to lead, calcium and tin.
  • the content of the third element is desirably 0.01% by mass or less, and more desirably 0.005% by mass or less.
  • the third element include bismuth, silver, barium, and aluminum. These may be contained alone in the Pb—Ca—Sn alloy, or may be contained in a combination of plural kinds. From the viewpoint of suppressing self-discharge, it is desirable that the Pb—Ca—Sn alloy does not substantially contain antimony (Sb), and the antimony content in the Pb—Ca—Sn alloy is 0.001% by mass or less. It is desirable that
  • the positive electrode grid may have a plurality of lead alloy layers having different compositions as necessary.
  • a lead alloy layer containing a small amount of Sb may be formed on the portion of the positive electrode lattice that holds the positive electrode active material from the viewpoint of suppressing the deterioration of the positive electrode active material.
  • 97.5% by mass or more of the positive electrode lattice is Pb—Ca having a calcium content of 0.10% by mass or less, a tin content of 2.3% by mass or less, and a lattice constant of 4.947% or less.
  • Sn alloy 97.5% by mass or more of the positive electrode lattice is Pb—Ca having a calcium content of 0.10% by mass or less, a tin content of 2.3% by mass or less, and a lattice constant of 4.947% or less.
  • FIG. 1 is a partially cutaway perspective view of a lead storage battery according to an embodiment of the present invention.
  • the lead storage battery 1 includes an electrode plate group 11 and an electrolyte solution (not shown), which are accommodated in a battery case 12.
  • the battery case 12 is divided into a plurality of cell chambers 14 by a partition wall 13, and each cell chamber 14 stores one electrode plate group 11 and also stores an electrolytic solution.
  • the electrode plate group 11 is configured by laminating a plurality of positive electrode plates 2 and negative electrode plates 3 with a separator 4 interposed therebetween.
  • FIG. 2 is a front view of the positive electrode plate 2.
  • the positive electrode plate 2 includes a positive electrode lattice 21 having ears 22 and a positive electrode active material layer (or positive electrode mixture layer) 24 held by the positive electrode lattice 21.
  • the positive electrode plate 2 is connected to the positive electrode connecting member 10 via the ear 22.
  • the positive electrode connection member 10 includes a positive electrode shelf 6 connected to the ears 22 of the positive electrode lattice 21, and a positive electrode connection body 8 or a positive electrode column provided on the positive electrode shelf 6.
  • the positive electrode lattice 21 is formed of a Pb—Ca—Sn alloy, and is connected to the expanded mesh 25 that holds the positive electrode active material layer 24, the frame bone 23 provided at the upper end of the expanded network 25, and the frame bone 23. This is an expanded lattice including the ears 22.
  • Lead oxide is used as the positive electrode active material.
  • a lead powder containing lead oxide as a positive electrode active material may be used.
  • the positive electrode mixture may contain a conductive agent (such as a conductive carbonaceous material such as carbon black) and / or a binder (such as a polymer) in addition to the positive electrode active material.
  • the positive electrode mixture may contain a known additive as required.
  • the positive electrode plate 2 is prepared by filling or applying a positive electrode paste (a paste containing a positive electrode active material or a positive electrode mixture paste) to a positive electrode grid and drying it to produce an unformed positive electrode plate 2 and further subjecting it to a chemical conversion treatment. Can be formed.
  • the positive electrode paste contains sulfuric acid and / or water as a dispersion medium in addition to the positive electrode active material or the positive electrode mixture.
  • the drying step can be performed under known conditions.
  • the chemical conversion treatment can be performed by charging the positive electrode plate 2 and the negative electrode plate 3 before conversion in an electrolytic solution containing a sulfuric acid aqueous solution in a lead-acid battery cell.
  • the chemical conversion treatment can be performed before assembling the battery or the electrode plate group, if necessary.
  • FIG. 3 is a front view of the negative electrode plate 3. Similar to the positive electrode plate 2, the negative electrode plate 3 includes a negative electrode lattice 31 having ears 32 and a negative electrode active material layer (or negative electrode mixture layer) 34 held by the negative electrode lattice 31. The negative electrode plate 3 is connected to the negative electrode connection member 9 via the ear 32.
  • the negative electrode connection member 9 includes a negative electrode shelf 5 connected to the ear 32 of the negative electrode lattice, and a negative electrode column 7 or a negative electrode connector provided on the negative electrode shelf 5.
  • the negative electrode lattice 31 is an expanded lattice including an expanded mesh 35 that holds the negative electrode active material layer 34, a frame bone 33 provided at the upper end portion of the expanded mesh 35, and an ear 32 connected to the frame bone 33.
  • the negative electrode active material lead is used.
  • lead powder can be used, and the lead powder may contain lead oxide.
  • the negative electrode mixture may contain a shrinkage-preventing agent (such as lignin and / or barium sulfate), a conductive agent (such as a conductive carbonaceous material such as carbon black), and / or a binder (such as a polymer).
  • the negative electrode mixture may contain other known additives as necessary.
  • the negative electrode plate 3 can be formed according to the case of the positive electrode plate 2.
  • the negative electrode grid can be obtained by expanding a lead alloy sheet.
  • the lattice constant of the lead alloy constituting the negative electrode lattice is not particularly limited.
  • the calcium content in the lead alloy constituting the negative electrode lattice is not particularly limited, but is, for example, 0.01 to 0.10% by mass, or 0.02 to 0.07% by mass.
  • the tin content in the lead alloy constituting the negative electrode lattice is not particularly limited, but is 0.2 to 0.6% by mass, for example.
  • the negative electrode lattice may have a plurality of lead alloy layers having different compositions as necessary.
  • a positive electrode connector 8 is connected to the positive electrode shelf 6 and a negative electrode column 7 is connected to the negative electrode shelf 5 at one end of the battery case 12.
  • a positive pole is connected to the positive electrode shelf 6, and a negative electrode connector is connected to the negative electrode shelf 5.
  • each cell chamber 14 the entire positive electrode shelf 6, the negative electrode shelf 5, and the electrode plate group 11 are immersed in an electrolytic solution.
  • a lid 15 provided with a positive terminal 16 and a negative terminal 17 is attached to the opening of the battery case 12.
  • the positive electrode connection body 8 is connected to a negative electrode connection body connected to the negative electrode shelf 5 of the electrode plate group 11 in the adjacent cell chamber 14 through a through hole provided in the partition wall 13.
  • the electrode plate group 11 is connected in series with the electrode plate group 11 in the adjacent cell chamber 14.
  • the negative pole 7 is connected to the negative terminal 17, and at the other end, the positive pole is connected to the positive terminal 16.
  • An exhaust plug 18 having an exhaust port for discharging gas generated inside the battery to the outside of the battery is attached to the liquid injection port provided in the lid 15.
  • the separator examples include a microporous membrane or a fiber sheet (or mat).
  • a polymer material which comprises a microporous film or a fiber sheet what has acid resistance is preferable, and polyolefin, such as polyethylene and a polypropylene, can be illustrated.
  • the fiber sheet may be formed of polymer fibers (fibers formed of the polymer material) and / or inorganic fibers such as glass fibers.
  • the separator may contain an additive such as a filler and / or carbon, if necessary.
  • the electrolytic solution includes a sulfuric acid aqueous solution.
  • the density of the electrolytic solution is, for example, 1.1 to 1.35 g / cm 3 , preferably 1.2 to 1.35 g / cm 3 , and preferably 1.25 to 1.3 g / cm 3. Is more preferable.
  • the density of the electrolytic solution is a density at 20 ° C., and the density of the electrolytic solution in a fully charged battery is preferably in the above range.
  • a lead-acid battery can be produced by housing an electrode plate group and an electrolyte in a battery case.
  • the electrode plate group can be produced by superposing a plurality of positive electrode plates and a plurality of negative electrode plates so that the positive electrode plates and the negative electrode plates are alternately arranged with a separator interposed therebetween.
  • the separator may be disposed so as to be interposed between the positive electrode plate and the negative electrode plate.
  • a bag-shaped separator is used, or a sheet-shaped separator is folded in two (U-shaped), and one electrode is sandwiched between them. It may overlap with the other electrode.
  • a plurality of electrode plate groups may be accommodated in the battery case.
  • FIG. 4 shows an outline of the production process of the lead alloy sheet used for the expanding process.
  • a lead alloy slab is formed by continuous slab casting from a molten lead alloy containing calcium and tin, having a calcium content of 0.10% by mass or less and a tin content of 2.3% by mass or less.
  • the composition of the lead alloy of the molten metal is determined according to the Pb—Ca—Sn alloy constituting the desired positive electrode lattice.
  • the lead alloy slab is continuously manufactured in a casting apparatus 50.
  • the casting apparatus 50 includes a hot water bath 52 containing a molten lead 51 of a lead alloy, a chute 53 for supplying the molten metal 51 from the hot water bath 52 to the wheel mold 54, and a steel that moves in the rotational direction of the mold 54 along the half circumferential surface of the mold 54.
  • the belt 55 and drive rollers 56a, 56b, and 56c for moving the steel belt 55 are provided.
  • the mold 54 rotates in the direction of arrow A in the figure.
  • the molten metal 51 interposed between the mold 54 and the steel belt 55 is cooled and solidified on the peripheral surface of the mold 54, and is continuously carried out from the casting apparatus 50 as a lead alloy slab 58.
  • the lead alloy slab 58 is further cooled by the cooling device 57 before and after unloading.
  • the cooling device 57 is a shower device that sprays cooling water, for example.
  • the temperature of the peripheral surface of the mold 54 is, for example, 95 to 115 ° C., and the rotation speed of the mold 54 is, for example, 50 to 75 seconds / rotation.
  • the temperature of the molten metal immediately before flowing into the mold 54 is, for example, 350 to 370 ° C.
  • the temperature of the lead alloy slab 58 released from the mold 54 and before being introduced into the cooling device 57 is, for example, 165 to 185 ° C.
  • the temperature of the lead alloy slab 58 cooled by the cooling device 57 is, for example, 30 to 70 ° C. That is, the lead alloy is rapidly cooled from a temperature greatly exceeding 300 ° C. to around room temperature in a time of about 1 minute.
  • the thickness of the lead alloy slab 58 is, for example, about 5 to 20 mm, and is desirably set to about 8 to 13 mm.
  • the crystallites of the lead alloy slab 58 are reduced and tin is efficiently taken into the lead crystal lattice.
  • the lattice constant of the lead alloy in the lead alloy sheet after rolling can be reduced to 4.9470% or less.
  • the cooling rate of the lead alloy is preferably 3 ° C./second or more, and more preferably 5 ° C./second or more.
  • the inside of the casting apparatus 50 may be decompressed, or an inert gas such as argon or nitrogen may be introduced into the casting apparatus 50.
  • Step (ii) the lead alloy slab 58 is rolled by multi-stage rolling and collected as a lead alloy sheet.
  • a plurality of pairs of rolling rollers 61 first rollers 61a 1 , 61b 1 , second rollers 61a 2 , 61b 2 ,... Nth rollers 61a n , 61b n )
  • the lead alloy sheet 63 having a predetermined thickness is collected by the winding device 70.
  • the lead alloy sheet 63 is cut into a predetermined width by the trimming cutter 62 before collection.
  • the thickness of the lead alloy sheet 63 is normally set to about 0.5 mm to 1.5 mm.
  • the rolling rate every time the pair of rollers 61a n and 61b n pass is 15 to 30%.
  • a rolling rate is calculated
  • Rolling rate (%) (Thickness T i before rolling ⁇ Thickness T i + 1 after rolling) / (Thickness T i before rolling) ⁇ 100
  • the total rolling rate after passing through all of the plural pairs of rolling rollers 61 is 60 to 95%.
  • the total rolling reduction is obtained by the following formula.
  • the total number (n) of rollers is preferably 6 to 10 pairs.
  • Total rolling rate (%) (Initial thickness T 0 of lead alloy slab ⁇ thickness T n after passing through the final roller) / (initial thickness T 0 ) ⁇ 100
  • Step (iii) Next, a positive electrode lattice (expanded lattice) is formed by expanding the lead alloy sheet.
  • a number of slits parallel to each other are formed in a staggered pattern in the lead alloy sheet, and then the cut is expanded. Thereby, a lead alloy sheet is processed into a mesh shape.
  • Example 1 Production of positive electrode plate A positive electrode plate 2 as shown in FIG. 2 was produced by the following procedure. A raw material powder (mixture of lead and lead oxide), water and dilute sulfuric acid (density 1.40 g / cm 3 ) were mixed at a mass ratio of 100: 15: 5 to obtain a positive electrode paste.
  • a raw material powder mixture of lead and lead oxide
  • water and dilute sulfuric acid density 1.40 g / cm 3
  • a Pb—Ca—Sn alloy positive electrode lattice was produced by the above-described continuous slab casting, multi-stage rolling, and expanding process under the following conditions.
  • the tin content of the Pb—Ca—Sn alloy was adjusted to 1.8 mass%, and the calcium content was adjusted to 0.05 mass%.
  • the expanded mesh 25 was filled with a positive electrode paste and aged and dried to obtain an unformed positive electrode plate (length: 115 mm, width: 137.5 mm). By forming this in a battery case described later, the positive electrode plate 2 in which the positive electrode active material layer 24 was held on the positive electrode lattice 21 was obtained.
  • the Vickers hardness of the Pb—Ca—Sn alloy was determined in accordance with JIS Z 2244.
  • NVK-E manufactured by Akashi Co., Ltd. was used as a measuring device.
  • a negative electrode plate 3 as shown in FIG. 3 was produced by the following procedure.
  • dilute sulfuric acid density 1.40 g / cm 3
  • lignin and barium sulfate as shrinkage preventive agents
  • carbon black as the conductive material in a mass ratio of 100: 12: 7.0: 1.0: 0.
  • a Pb—Ca—Sn alloy negative electrode lattice 31 having ears 32, frame bones 33, and expanded meshes 35 was produced in the same manner as described above.
  • the tin content of the Pb—Ca—Sn alloy was adjusted to 0.25 mass%, and the calcium content was adjusted to 0.07 mass%.
  • the expanded mesh of the negative electrode lattice 31 was filled with a negative electrode paste, and an unformed negative electrode plate (length: 115 mm, width 137.5 mm) was obtained by the same method as described above. By forming this in a battery case described later, the negative electrode plate 3 in which the negative electrode active material layer 34 was held on the negative electrode lattice 31 was obtained.
  • a lead acid battery 1 as shown in FIG. 1 was produced according to the following procedure. After accommodating the negative electrode plate 3 in the bag-like separator 4 made of a polyethylene microporous film, the positive electrode plate 2 and the negative electrode plate 3 were alternately laminated. Thereafter, the ears 22 of the positive electrode grid 21 and the positive electrode connection member 10 (the positive electrode shelf 6 and the positive electrode connection body 8 or the positive pole) are welded. Similarly, the ears 32 of the negative electrode lattice 31 and the negative electrode connection member 9 (the negative electrode shelf 5 and The negative electrode connector or the negative electrode column 7) was welded to form the electrode plate group 11.
  • the electrode plate group 11 was stored one by one in each of the six cell chambers 14 partitioned by the partition wall 13 of the battery case 12. Then, the positive electrode connection body 8 connected to the positive electrode shelf 6 and the negative electrode connection body connected to the negative electrode shelf 5 of the adjacent electrode plate group 11 are connected, and the adjacent electrode plate groups 11 are connected in series. did.
  • the connection between the electrode plate groups was made through a through hole (not shown) provided in the partition wall 13.
  • a lead alloy having an antimony content of 2.7% by mass and an arsenic content of 0.27% by mass was used for the positive electrode shelf 6, the positive and negative electrode connectors, and the positive and negative electrode columns.
  • a lead alloy having a tin content of 2.5% by mass was used for the negative electrode shelf 5.
  • the lid 15 was attached to the opening of the battery case 12, and the positive electrode terminal 16 and the negative electrode terminal 17 provided on the lid 15 were welded to the positive electrode column and the negative electrode column 7. Then, a predetermined amount of electrolytic solution was injected from the injection port provided in the lid 15, and chemical conversion was performed in the battery case. Thereafter, the density of the electrolytic solution was adjusted to obtain a finished density of 1.28 g / cm 3 .
  • an exhaust plug 18 having an exhaust port for discharging the gas generated inside the battery to the outside of the battery was attached to the liquid injection port, and a 55D23 (12V-48Ah) lead storage battery defined in JIS D5301 was produced.
  • the entire electrode plate group 11, the positive electrode shelf 6, and the negative electrode shelf 5 were immersed in the electrolytic solution.
  • the test battery was discharged at a discharge current of 25 A for 1 minute and then charged at a charge voltage of 14.8 V (maximum charge current of 25 A) for 10 minutes. Each time this process was repeated 480 cycles, the battery was discharged at a discharge current of 320 A for 30 seconds. The number of cycles at the time when the voltage at the 30th second of the 320 A discharge decreased to 7.2 V was defined as the number of lifetimes.
  • Example 2 A lead storage battery was prepared and evaluated in the same manner as in Example 1 except that the tin content of the Pb—Ca—Sn alloy was changed to 2.2 mass%.
  • Comparative Example 1 A lead alloy produced by slowly cooling the molten metal at the time of casting (cooling rate: less than 1 ° C./second) is extruded from a slit having a width of 12 mm at a temperature lower than the melting point, and then the lead alloy is subjected to multistage rolling to lead alloy sheet After that, it was expanded in the same manner as described above to produce a positive electrode lattice of Pb—Ca—Sn alloy. The tin content of the Pb—Ca—Sn alloy was adjusted to 1.4 mass%, and the calcium content was adjusted to 0.05 mass%. A lead-acid battery was prepared and evaluated in the same manner as in Example 1 except that the positive electrode grid thus obtained was used.
  • Comparative Example 2 A lead storage battery was prepared and evaluated in the same manner as in Comparative Example 1 except that the tin content of the Pb—Ca—Sn alloy was changed to 1.6 mass%.
  • Comparative Example 3 A lead storage battery was prepared and evaluated in the same manner as in Comparative Example 1 except that the tin content of the Pb—Ca—Sn alloy was changed to 1.8 mass%.
  • Comparative Example 4 A lead storage battery was prepared and evaluated in the same manner as in Example 1 except that the tin content of the Pb—Ca—Sn alloy was changed to 1.6 mass%. The results are shown in Table 1. The corrosion amount is shown as a relative value when the corrosion amount in Comparative Example 4 is 100.
  • Comparative Examples 1 to 3 using a lead alloy that has undergone extrusion molding all have a large lattice constant, and the corrosion resistance is greatly inferior to the Examples.
  • the relationship between the tin content of Comparative Examples 1 to 3 and the lattice constant is shown in FIG. 5 together with the cases of Examples 1 and 2 and Comparative Example 4. From FIG. 5, it can be understood that in the case of a lead alloy that has undergone extrusion molding, even if the tin content exceeds 2.3 mass%, it is difficult to make the lattice constant 4.9470% or less.
  • the positive electrode grid for a lead storage battery according to an embodiment of the present invention is excellent in corrosion resistance and is therefore suitable for applications requiring a high cycle life, and is suitable as a power source for vehicles, for example.
  • 1 lead storage battery 2 positive electrode plate, 3 negative electrode plate, 4 separator, 5 negative electrode shelf, 6 positive electrode shelf, 7 negative electrode column, 8 positive electrode connection body, 9 negative electrode connection member, 10 positive electrode connection member, 11 electrode plate group, 12 battery case , 13 partition, 14 cell chamber, 15 lid, 16 positive terminal, 17 negative terminal, 18 exhaust plug, 21 positive grid, 22 positive grid ear, 23 positive grid frame, 24 positive active material layer, 25 positive grid Expanded network, 31 negative grid, 32 negative grid ear, 33 negative grid frame, 34 negative active material layer, 35 negative expanded network, 50 casting apparatus, 51 molten metal, 52 hot water, 53 chute, 54 mold, 55 Steel belt, 56a, 56b, 56c, driving roller, 57 cooling device, 58 lead alloy slab, 60 multi-stage rolling device, 61 Extending rollers 63 lead alloy sheet, 70 take-up device, 62 trimming cutter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 鉛蓄電池用正極格子の耐食性を向上させる。 カルシウムおよび錫を含む鉛合金を含み、鉛合金におけるカルシウムの含有量が、0.10質量%以下であり、鉛合金における錫の含有量が、2.3質量%以下であり、鉛合金の格子定数が、4.9470Å以下である、鉛蓄電池用正極格子、およびこれを用いた鉛蓄電池。

Description

鉛蓄電池用正極格子およびその製造方法ならびに鉛蓄電池
 本発明は、鉛蓄電池に関し、特にカルシウムおよび錫を含む鉛合金を含む鉛蓄電池用正極格子およびその製造方法に関する。
 鉛蓄電池は、安価で、電池電圧が比較的高く、大電力が得られるため、様々な用途で使用されている。鉛蓄電池は、自己放電や電解液中の水分の減少を可能な限り低減することが求められる。そこで、正極板および負極板に用いられる格子体には、自己放電や水分減少を増大させるアンチモンを含有しない鉛-カルシウム合金が用いられている。また、鉛-カルシウム合金中に錫を添加することで、格子体の耐食性が高められる。
 従来、鉛蓄電池の格子体は、例えば連続鋳造法により製造された鉛合金シートをエキスパンド加工することにより製造されている。連続鋳造法は、鉛合金の溶湯をロール鋳型に注入接触させて凝固させる方法である。しかし、この方法では、溶湯がロール鋳型と接触する側と空気と接する側とで異なる合金組織が形成され、鉛合金シートが二重構造となることが知られている。このような鉛合金シートから製造された正極格子は、耐食性および疲労強度が不十分になる。
 そこで、特許文献1では、鉛合金を融点より10~100℃低い温度で連続して押し出し、その後、合金を融点より50~230℃低い温度で徐冷しながら圧延し、鉛合金シートを形成することを提案している。
特開2005-50673号公報
 しかし、特許文献1のように、鉛合金を押し出し成形する方法では、耐食性を十分に向上させることが困難である。その理由は定かではないが、押し出し成形で原料として用いられる鉛合金は、一般的な鋳造法により得られるスラブやリベットであり、鉛合金の組織は不均質である。このような鉛合金を融点より低温で押し出し、かつ圧延工程中に徐冷する方法では、錫が偏析する可能性があり、鉛合金の結晶格子に錫原子やカルシウム原子が十分に組み込まれないものと考えられる。
 上記に鑑み、本発明の一局面は、カルシウムおよび錫を含む鉛合金を含み、前記鉛合金における前記カルシウムの含有量が、0.10質量%以下であり、前記鉛合金における前記錫の含有量が、2.3質量%以下であり、前記鉛合金の格子定数が、4.9470Å以下である、鉛蓄電池用正極格子に関する。
 本発明の別の局面は、(i)カルシウムおよび錫を含み、前記カルシウムの含有量が0.10質量%以下であり、前記錫の含有量が2.3質量%以下である鉛合金の溶湯から、連続スラブ鋳造により鉛合金スラブを得る工程と、(ii)前記鉛合金スラブを多段圧延により圧延して鉛合金シートを得る工程と、(iii)前記鉛合金シートからエキスパンド加工により正極格子を得る工程と、を有する、鉛蓄電池用正極格子の製造方法に関する。
 本発明の更に別の局面は、正極板と、負極板と、前記正極板および前記負極板の間に介在するセパレータと、硫酸水溶液を含む電解液と、を含み、前記正極板は、上記正極格子を含む、鉛蓄電池に関する。
 本発明によれば、鉛蓄電池用正極格子の耐食性を向上させることができる。
本発明の一実施形態に係る鉛蓄電池の一部を切り欠いた斜視図である。 図1の鉛蓄電池における正極板の正面図である。 図1の鉛蓄電池における負極板の正面図である。 鉛合金シートの製造プロセスの概略を示す説明図である。 鉛合金における錫含有量と格子定数との関係を示す図である。
 本発明の実施形態に係る鉛蓄電池用正極格子は、カルシウムおよび錫を含む鉛合金(以下、Pb-Ca-Sn合金)のシートをエキスパンド加工することにより得られる。カルシウム(Ca)は、主に鉛合金の機械的強度を向上させ、錫(Sn)は、主に鉛合金の耐食性を向上させる。Pb-Ca-Sn合金におけるカルシウム含有量は0.10質量%以下であり、錫含有量は2.3質量%以下である。
 Pb-Ca-Sn合金における錫含有量は、Pb-Ca-Sn合金の格子定数に影響を与える。錫含有量が大きいほど、Pb-Ca-Sn合金の格子定数は小さくなる。Pb-Ca-Sn合金の格子定数が小さくなるのに伴い、Pb-Ca-Sn合金の耐食性は向上する傾向がある。この傾向は、Pb-Ca-Sn合金の格子定数が4.9470Å以下になることで顕著となる。
 原料の鉛合金を融点より低温で押し出し、かつ圧延工程中に徐冷する従来の正極格子の製造方法では、正極格子の格子定数を4.9470Å以下にすることは困難である。このような方法で得られる正極格子の格子定数と錫含有量との関係は、図5に示される直線Lのような一次直線の関係となる。図5に示されるように、Pb-Ca-Sn合金の錫含有量が2.3質量%以下の領域では、通常、格子定数が4.9470Åを超える。
 格子定数を小さくするためには、Pb-Ca-Sn合金における錫の含有量を多くする必要がある。通常、Pb-Ca-Sn合金の格子定数を4.9470Å以下とするためには、錫含有量を2.3質量%より大きくすることが必要である。すなわち鉛に対する固溶限(2.5質量%程度)に近い量、またはこれ以上の錫をPb-Ca-Sn合金に含ませることが必要である。しかし、錫は鉛に比べて非常に高価であるため、製造コストを低減する観点からは、Pb-Ca-Sn合金における錫含有量を可能な限り低減することが望ましい。
 錫含有量が2.3質量%以下であるPb-Ca-Sn合金の溶湯を用いる場合、連続スラブ鋳造により得られるPb-Ca-Sn合金のスラブを、多段圧延により圧延することにより、Pb-Ca-Sn合金の格子定数を4.9470Å以下にまで小さくすることが可能となる。
 Pb-Ca-Sn合金の格子定数が小さくなるのに伴い、ビッカース硬さ(HV)も大きくなる傾向がある。ビッカース硬さの向上は、正極格子の変形を抑制する。すなわち、正極格子を構成するPb-Ca-Sn合金の格子定数を小さくすることで、鉛蓄電池の充放電サイクルに伴う正極格子の腐食と変形が抑制される。Pb-Ca-Sn合金のビッカース硬さHvは、8以上であることが好ましく、10以上であることが更に好ましい。これにより、充放電サイクルに伴う正極格子の変形を抑制する効果が大きくなる。
 Pb-Ca-Sn合金における錫含有量は1.6質量%より多いことが好ましく、1.7質量%以上であることが更に好ましく、1.8質量%以上であることがより好ましい。これにより、Pb-Ca-Sn合金の格子定数を4.9470Å以下にすることが更に容易となる。一方、Pb-Ca-Sn合金における錫含有量は、2.3質量%以下であり、2.2質量%以下であることが好ましく、2.1質量%以下であることが更に好ましい。これにより、耐食性を維持しつつ、Pb-Ca-Sn合金の製造コストを、より安価にすることができる。なお、上記錫含有量の上限と下限は任意に組み合わせることができる。
 Pb-Ca-Sn合金におけるカルシウム含有量は0.01質量%以上であることが好ましく、0.02質量%以上であることが更に好ましい。これにより、Pb-Ca-Sn合金の機械的強度を確保することが容易となる。一方、Pb-Ca-Sn合金におけるカルシウム含有量は0.10質量%以下であり、0.07質量%以下であることが好ましい。これにより、Pb-Ca-Sn合金の耐食性を向上させ易くなる。なお、上記カルシウム含有量の上限と下限は任意に組み合わせることができる。
 Pb-Ca-Sn合金は、鉛、カルシウムおよび錫の他に、微量の第三元素を含んでもよい。ただし、第三元素の含有量は、0.01質量%以下であることが望ましく、0.005質量%以下であることが更に望ましい。第三元素としては、ビスマス、銀、バリウム、アルミニウムなどを挙げることができる。これらはPb-Ca-Sn合金に単独で含まれてもよく、複数種の組み合わせで含まれてもよい。なお、自己放電を抑制する観点から、Pb-Ca-Sn合金は実質的にアンチモン(Sb)を含まないことが望ましく、Pb-Ca-Sn合金中のアンチモン含有量は、0.001質量%以下であることが望ましい。
 正極格子は、必要に応じて、組成の異なる複数の鉛合金層を有してもよい。例えば、正極格子の正極活物質を保持する部分には、正極活物質の劣化を抑制する観点から、微量のSbを含む鉛合金層を形成してもよい。ただし、正極格子の97.5質量%以上は、カルシウム含有量が0.10質量%以下であり、錫含有量が2.3質量%以下であり、格子定数が4.947Å以下のPb-Ca-Sn合金であることが望ましい。
 以下に、図面を参照しながら、本発明の実施形態についてより詳細に説明する。
 図1は、本発明の一実施形態に係る鉛蓄電池の一部切り欠き斜視図である。鉛蓄電池1は、極板群11と、図示しない電解液とを含み、これらは電槽12に収容されている。電槽12は、隔壁13により複数のセル室14に仕切られており、各セル室14には極板群11が1つずつ収納され、電解液も収容されている。極板群11は、複数枚の正極板2および負極板3を、セパレータ4を介して積層することにより構成されている。
(正極板)
 図2は、正極板2の正面図である。正極板2は、耳22を有する正極格子21と、正極格子21に保持された正極活物質層(または正極合剤層)24とを含む。正極板2は、耳22を介して、正極接続部材10に接続されている。正極接続部材10は、正極格子21の耳22に接続された正極棚6、および正極棚6に設けられた正極接続体8または正極柱を含む。正極格子21は、Pb-Ca-Sn合金により形成されており、正極活物質層24を保持するエキスパンド網目25、エキスパンド網目25の上端部に設けられた枠骨23、および枠骨23に連接された耳22を具備するエキスパンド格子である。
 正極活物質としては、酸化鉛(PbO2)が使用される。正極板2を作製する際には、正極活物質としての酸化鉛を含む鉛粉末を用いてもよい。正極合剤は、正極活物質に加え、導電剤(カーボンブラックなどの導電性の炭素質材料など)および/または結着剤(ポリマーなど)を含んでもよい。正極合剤は、必要に応じて公知の添加剤を含んでもよい。
 正極板2は、正極格子に、正極ペースト(正極活物質を含むペーストまたは正極合剤ペースト)を充填または塗布し、乾燥することにより未化成の正極板2を作製し、さらに化成処理することにより形成できる。正極ペーストは、正極活物質または正極合剤に加え、分散媒としての硫酸および/または水などを含む。乾燥工程は、公知の条件下で行うことができる。
 化成処理は、鉛蓄電池の電槽内で、硫酸水溶液を含む電解液中に、いずれも化成前の正極板2および負極板3を浸漬させた状態で充電することにより行うことができる。化成処理は、必要に応じて、電池または極板群の組み立て前に行うこともできる。
(負極板)
 図3は、負極板3の正面図である。正極板2と同様に、負極板3は、耳32を有する負極格子31と、負極格子31に保持された負極活物質層(または負極合剤層)34とを含む。負極板3は、耳32を介して、負極接続部材9に接続されている。負極接続部材9は、負極格子の耳32に接続された負極棚5と、負極棚5に設けられた負極柱7または負極接続体とを含む。負極格子31は、負極活物質層34を保持するエキスパンド網目35、エキスパンド網目35の上端部に設けられた枠骨33、および枠骨33に連接された耳32を具備するエキスパンド格子である。
 負極活物質としては、鉛が使用される。負極板3を作製する際には、鉛粉末を用いることができ、鉛粉末は酸化鉛を含むものであってもよい。負極合剤は、防縮剤(リグニンおよび/または硫酸バリウムなど)、導電剤(カーボンブラックなどの導電性の炭素質材料など)、および/または結着剤(ポリマーなど)を含んでもよい。負極合剤は、必要に応じて、他の公知の添加剤を含んでもよい。負極板3は、正極板2の場合に準じて形成できる。
 負極格子は、鉛合金のシートをエキスパンド加工することにより得ることができる。ただし、負極格子を構成する鉛合金の格子定数は、特に限定されない。負極格子を構成する鉛合金におけるカルシウム含有量も特に限定されないが、例えば0.01~0.10質量%であり、もしくは0.02~0.07質量%である。負極格子を構成する鉛合金における錫含有量も特に限定されないが、例えば0.2~0.6質量%である。負極格子は、必要に応じて、組成の異なる複数の鉛合金層を有してもよい。
 図示例では、電槽12の一方の端部において、正極棚6に正極接続体8が接続されており、負極棚5には負極柱7が接続されている。電槽12の他方の端部では、正極棚6には正極柱が接続され、負極棚5には負極接続体が接続される。
 各セル室14内において、正極棚6、負極棚5、および極板群11の全体は、電解液に浸漬されている。電槽12の開口部には、正極端子16および負極端子17が設けられた蓋15が装着されている。正極接続体8は、隔壁13に設けられた透孔を介して隣接するセル室14内の極板群11の負極棚5に連設された負極接続体と接続されている。これにより、極板群11は隣接するセル室14内の極板群11と直列に接続されている。電槽12の一方の端部において、負極柱7は負極端子17に接続されており、他方の端部において、正極柱は正極端子16に接続されている。蓋15に設けられた注液口には、電池内部で発生したガスを電池外に排出するための排気口を有する排気栓18が装着されている。
(セパレータ)
 セパレータとしては、微多孔膜または繊維シート(またはマット)などが例示できる。微多孔膜または繊維シートを構成するポリマー材料としては、耐酸性を有するものが好ましく、ポリエチレン、ポリプロピレンなどのポリオレフィンなどが例示できる。繊維シートは、ポリマー繊維(上記ポリマー材料で形成された繊維)、および/またはガラス繊維などの無機繊維で形成してもよい。セパレータは、必要に応じて、フィラーおよび/またはカーボンなどの添加剤を含んでもよい。
(電解液)
 電解液は、硫酸水溶液を含む。電解液の密度は、例えば、1.1~1.35g/cm3であり、1.2~1.35g/cm3であることが好ましく、1.25~1.3g/cm3であることがさらに好ましい。なお、本明細書中、電解液の密度とは、20℃における密度であり、満充電状態の電池における電解液の密度が上記の範囲であることが望ましい。
 鉛蓄電池は、電槽内に、極板群および電解液を収容することにより作製できる。極板群は、複数の正極板と複数の負極板とを、これらの間にセパレータを介在させた状態で、正極板と負極板とが交互になるように重ね合わせることにより作製できる。セパレータは、正極板と負極板との間に介在するように配置すればよく、袋状のセパレータを用いたり、シート状のセパレータを2つ折り(U字状)にして、一方の電極を挟み、他方の電極と重ね合わせたりしてもよい。電槽内には、複数の極板群を収容してもよい。
 次に、図4を参照しながら、本発明の実施形態に係る鉛蓄電池用正極格子の製造方法について説明する。図4は、エキスパンド加工に供する鉛合金シートの製造プロセスの概略を示している。
工程(i)
 まず、カルシウムおよび錫を含み、カルシウム含有量が0.10質量%以下であり、錫含有量が2.3質量%以下である鉛合金の溶湯から、連続スラブ鋳造により鉛合金スラブを形成する。溶湯の鉛合金の組成は、所望の正極格子を構成するPb-Ca-Sn合金に応じて決定される。
 図4に示すように、鉛合金スラブは、鋳造装置50において連続的に製造される。鋳造装置50は、鉛合金の溶湯51を含む湯桶52と、湯桶52から溶湯51をホイール型鋳型54に供給するシュート53と、鋳型54の半周面に沿って鋳型54の回転方向に移動するスチールベルト55と、スチールベルト55を移動させる駆動ローラ56a、56b、56cとを具備する。鋳型54は、図中矢印Aの方向に回転する。鋳型54とスチールベルト55との間に介在する溶湯51は、鋳型54の周面で冷却され、凝固して、鉛合金スラブ58として鋳造装置50から連続的に搬出される。鉛合金スラブ58は、搬出の前後において、冷却装置57により更に冷却される。冷却装置57は、例えば冷却水を散布するシャワー装置である。鋳型54の周面の温度は、例えば95~115℃であり、鋳型54の回転速度は、例えば50~75秒/回転である。
 鋳型54に流される直前の溶湯の温度は、例えば350~370℃である。鋳型54から放たれ、冷却装置57に導入される前の鉛合金スラブ58の温度は、例えば165~185℃である。その後、冷却装置57により冷却された鉛合金スラブ58の温度は、例えば30~70℃である。すなわち、鉛合金は、300℃を大きく上回る温度から、1分前後の時間で室温付近にまで急激に冷却される。鉛合金スラブ58の厚みは、例えば5~20mm程度であり、8~13mmほどに設定することが望ましい。
 上記のように鉛合金を高温の溶湯から室温付近にまで急激に冷却することにより、鉛合金スラブ58の結晶子が小さくなり、鉛の結晶格子に錫が効率的に取り込まれるものと考えられる。これにより、圧延後の鉛合金シートにおける鉛合金の格子定数を、4.9470Å以下にまで小さくすることができる。また、鉛合金が急冷されることで、高温の鉛合金と空気との接触時間が短くなるため、合金組織が均質になりやすい。このとき、鉛合金の冷却速度は、3℃/秒以上であることが好ましく、5℃/秒以上であることが更に好ましい。なお、合金組織の均質性を高める観点から、鋳造装置50内を減圧したり、鋳造装置50内にアルゴン、窒素などの不活性ガスを導入したりしてもよい。
工程(ii)
 次に、鉛合金スラブ58は、多段圧延により圧延され、鉛合金シートとして回収される。具体的には、図4に示すように、複数対の圧延ローラ61(第一ローラ61a1,61b1、第二ローラ61a2,61b2、・・・第nローラ61an,61bn)を具備する多段圧延装置60を通過した後、所定厚みの鉛合金シート63として巻き取り装置70により回収される。鉛合金シート63は、回収前にトリミングカッタ62で所定幅に切断される。鉛合金シート63の厚みは、通常、0.5mm~1.5mm程度に設定される。
 一対のローラ61an, 61bnを通過する毎の圧延率は、15~30%であることが好ましい。ここで、圧延率は、下記式により求められる。
 圧延率(%)
 =(圧延前の厚みTi-圧延後の厚みTi+1)/(圧延前の厚みTi)×100
 また、複数対の圧延ローラ61の全てを通過した後の総圧延率は、60~95%であることが好ましい。ここで、総圧延率は、下記式により求められる。なお、ローラの総数(n)は6~10対とすることが望ましい。
 総圧延率(%)
 =(鉛合金スラブの初期厚みT0-最終ローラ通過後の厚みTn)/(初期厚みT0)×100
工程(iii)
 次に、鉛合金シートをエキスパンド加工することで、正極格子(エキスパンド格子)が形成される。エキスパンド加工では、鉛合金シートに互いに平行な多数のスリットが千鳥状に入れられ、その後、切れ目が拡張される。これにより、鉛合金シートがメッシュ状に加工される。
 以下、本発明を実施例および比較例に基づいて具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
《実施例1》
(1)正極板の作製
 図2に示すような正極板2を以下の手順で作製した。
 原料粉(鉛と鉛酸化物との混合物)と水と希硫酸(密度1.40g/cm3)とを質量比100:15:5で混合することにより、正極ペーストを得た。
 下記条件で、上記の連続スラブ鋳造、多段圧延およびエキスパンド加工により、Pb-Ca-Sn合金の正極格子を作製した。Pb-Ca-Sn合金の錫含有量は1.8質量%、カルシウム含有量は0.05質量%に調整した。
<連続スラブ工程>
 鋳型54の周面の温度:約100℃
 鋳型54の回転速度:55秒/回転
 鋳型54に放流される直前の溶湯温度:360℃
 冷却装置57に導入される前の鉛合金スラブ58の温度:170℃
 冷却装置57による冷却後の鉛合金スラブ58の温度:50℃
 鉛合金の冷却速度:5℃/秒以上
 圧延前の鉛合金スラブ58の厚み:約12mm
<多段圧延工程>
 圧延ローラ61の数(n):8対
 多段圧延後の鉛合金シート63の厚み:約1mm
 一対のローラ61an, 61bnを通過する毎の平均的な圧延率:約25%
 総圧延率:約90%
<エキスパンド工程>
 鉛合金シート63の所定の箇所に、複数の平行なスリットを千鳥状に形成した後、スリットを展開してエキスパンド網目25を形成し、正極格子21を得た。なお、鉛合金シート63の一部にはエキスパンド加工を施さず、正極格子21の耳22および枠骨23を形成した。
 エキスパンド網目25に正極ペーストを充填し、熟成乾燥させ、未化成の正極板(縦:115mm、横:137.5mm)を得た。これを後述する電槽内で化成することにより、正極格子21に正極活物質層24が保持された正極板2を得た。
[評価1]
(格子定数の測定)
 多段圧延後のPb-Ca-Sn合金のシートを測定対象として、鉛合金の格子定数をX線回折(XRD)により求めた。ここでは、XRD装置測定装置として(株)リガク製のRINT-TTRIIを用い、X線源には、波長0.154056nmのCuKα線を用いた。平行ビーム法によりPb-Ca-Sn合金の2θ=20~90°の範囲のXRDを測定し、NIST標準物質(NIST660b、LaB)を外部標準試料として角度補正を行い、鉛合金(立方晶系、空間群Fm-3m)の(111)面、(200)面、(220)面、(311)面、(222)面、(400)面、(331)面、(420)面に帰属されるピークから最小二乗法により格子定数を求めた。
(ビッカース硬さの測定)
 多段圧延後のPb-Ca-Sn合金のシートを測定対象として、JIS Z 2244に準拠して、Pb-Ca-Sn合金のビッカース硬さを求めた。ここでは、測定装置として(株)アカシ製のNVK-Eを用いた。
<腐食量>
 後述する評価2の寿命試験後、電池を分解し、正極板を水洗して硫酸分を除去した後、正極活物質を除去して正極格子のみとした。この正極格子を約12時間マンニトールのアルカリ溶液に浸して、正極格子の表面に存在する腐食層を除去した。寿命試験前後での重量変化から腐食量を算出した。
(2)負極板の作製
 図3に示すような負極板3を以下の手順で作製した。
 原料鉛粉、水、希硫酸(密度1.40g/cm3)、および防縮剤としてリグニンおよび硫酸バリウムを、導電材としてカーボンブラックを質量比100:12:7.0:1.0:0.1の割合で混合することにより、負極ペーストを得た。
 上記と同様の方法で、耳32、枠骨33およびエキスパンド網目35を有するPb-Ca-Sn合金の負極格子31を作製した。Pb-Ca-Sn合金の錫含有量は0.25質量%、カルシウム含有量は0.07質量%に調整した。
 負極格子31のエキスパンド網目に負極ペーストを充填し、上記と同様の方法により未化成の負極板(縦:115mm、横137.5mm)を得た。これを後述する電槽内で化成することにより、負極格子31に負極活物質層34が保持された負極板3を得た。
(3)鉛蓄電池の作製
 図1に示すような鉛蓄電池1を下記の手順で作製した。
 ポリエチレン製の微多孔膜からなる袋状セパレータ4に負極板3を収容した後、正極板2と負極板3とを交互に積層した。その後、正極格子21の耳22と正極接続部材10(正極棚6と正極接続体8もしくは正極柱)とを溶接し、同様に、負極格子31の耳32と負極接続部材9(負極棚5と負極接続体もしくは負極柱7)とを溶接して、極板群11を形成した。
 次に、極板群11を、電槽12の隔壁13によって区画された6つのセル室14にそれぞれ1つずつ収納した。そして、正極棚6に連設された正極接続体8と、隣接する極板群11の負極棚5に連設された負極接続体とを接続し、隣接する極板群11同士を直列に接続した。なお、本実施例では、極板群間の接続は、隔壁13に設けられた透孔(図示せず)を介して行った。正極棚6、正負極接続体および正負極柱には、アンチモン含有量2.7質量%、砒素含有量0.27質量%の鉛合金を用いた。負極棚5には、錫含有量2.5質量%の鉛合金を用いた。
 次に、電槽12の開口部に蓋15を装着するとともに、蓋15に設けられた正極端子16および負極端子17と、正極柱および負極柱7とを溶接した。そして、蓋15に設けられた注液口より、電解液を所定量注液し、電槽内で化成を行った。その後、電解液の密度を調整して、出来上がり密度を1.28g/cm3とした。
 化成後、電池内部で発生したガスを電池外に排出するための排気口を有する排気栓18を注液口に装着し、JIS D5301に規定する55D23(12V-48Ah)の鉛蓄電池を作製した。なお、出来上がり電池において、極板群11、正極棚6および負極棚5の全体が、電解液に浸漬された状態であった。
[評価2]
 上記電池について、JIS D5301に規定する軽負荷寿命試験を行った。ただし、便宜上、試験の雰囲気温度を40℃液相から75℃気相に変更し、充放電サイクルにおける25A放電の時間を4分から1分に変更した。
 すなわち、75℃環境下において、試験電池を放電電流25Aで1分間放電し、その後、充電電圧14.8V(最大充電電流25A)で10分間充電する工程を繰り返した。この工程を480サイクル繰り返す毎に、放電電流320Aで30秒間放電した。そして、320A放電の30秒目電圧が7.2Vにまで低下した時点のサイクル数を寿命回数とした。
《実施例2》
 Pb-Ca-Sn合金の錫含有量を2.2質量%に変更したこと以外、実施例1と同様に鉛蓄電池を作製し、評価した。
《比較例1》
 鋳造の際に溶湯を徐冷(冷却速度:1℃/秒未満)して作製した鉛合金を、融点より低い温度で幅12mmのスリットから押し出し、その後、鉛合金を多段圧延して鉛合金シートを形成し、その後、上記と同様にエキスパンド加工して、Pb-Ca-Sn合金の正極格子を作製した。Pb-Ca-Sn合金の錫含有量は1.4質量%、カルシウム含有量は0.05質量%に調整した。こうして得られた正極格子を用いたこと以外、実施例1と同様に鉛蓄電池を作製し、評価した。
《比較例2》
 Pb-Ca-Sn合金の錫含有量を1.6質量%に変更したこと以外、比較例1と同様に鉛蓄電池を作製し、評価した。
《比較例3》
 Pb-Ca-Sn合金の錫含有量を1.8質量%に変更したこと以外、比較例1と同様に鉛蓄電池を作製し、評価した。
《比較例4》
 Pb-Ca-Sn合金の錫含有量を1.6質量%に変更したこと以外、実施例1と同様に鉛蓄電池を作製し、評価した。
 結果を表1に示す。腐食量は、比較例4における腐食量を100とした場合の相対値として示した。
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1、2より、錫含有量が2.3質量%以下の鉛合金であっても、格子定数を4.9470Å以下とすることができ、耐腐食性が飛躍的に向上することが理解できる。一方、格子定数が4.9470Åを超える場合(比較例4)には、実施例1、2と同様の条件で連続スラブ鋳造と多段圧延工程を経た鉛合金であっても、耐食性が十分に向上しないことが理解できる。また、格子定数を4.9470Å以下とすることにより、ビッカース硬さHVも顕著に向上することが理解できる。
 押し出し成形を経た鉛合金を用いた比較例1~3では、いずれも格子定数が大きく、耐腐食性が実施例に比べて大きく劣っている。ここで、比較例1~3の錫含有量と格子定数との関係を、実施例1、2および比較例4の場合とともに図5に示す。図5より、押し出し成形を経た鉛合金の場合、仮に錫含有量が2.3質量%を上回ったとしても、格子定数を4.9470Å以下とすることが困難であることが理解できる。
 また、連続スラブ鋳造と多段圧延工程を経た鉛合金の場合、錫含有量が1.6質量%を超える範囲で、格子定数の減少率が小さくなる傾向が見られる。以上より、1.6質量%より多く、かつ2.3質量%以下が、固溶限未満の錫の使用量で格子定数を小さくする最も効率的な範囲であるといえる。
 本発明の実施形態に係る鉛蓄電池用正極格子は、耐腐食性に優れることから、高度なサイクル寿命が要求される用途に適しており、例えば車両用電源として好適である。
 1 鉛蓄電池、2 正極板、3 負極板、4 セパレータ、5 負極棚、6 正極棚、7 負極柱、8 正極接続体、9 負極接続部材、10 正極接続部材、11 極板群、12 電槽、 13 隔壁、14 セル室、15 蓋、16 正極端子、17 負極端子、18 排気栓、21 正極格子、22 正極格子の耳、23 正極格子の枠骨、24 正極活物質層、25 正極格子のエキスパンド網目、31 負極格子、32 負極格子の耳、33 負極格子の枠骨、34 負極活物質層、35 負極格子のエキスパンド網目、50 鋳造装置、51 溶湯、52 湯桶、53 シュート、54 鋳型、55 スチールベルト、56a,56b,56c 駆動ローラ、57 冷却装置、58 鉛合金スラブ、60 多段圧延装置、61 圧延ローラ、63 鉛合金シート、70 巻き取り装置、62 トリミングカッタ

Claims (4)

  1.  カルシウムおよび錫を含む鉛合金を含み、
     前記鉛合金における前記カルシウムの含有量が、0.10質量%以下であり、
     前記鉛合金における前記錫の含有量が、2.3質量%以下であり、
     前記鉛合金の格子定数が、4.9470Å以下である、鉛蓄電池用正極格子。
  2.  前記鉛合金における前記錫の含有量が、1.6質量%を超える、請求項1に記載の鉛蓄電池用正極格子。
  3.  前記鉛合金のビッカース硬さが、8以上である、請求項1に記載の鉛蓄電池用正極格子。
  4.  正極板と、負極板と、前記正極板および前記負極板の間に介在するセパレータと、硫酸水溶液を含む電解液と、を含み、前記正極板は、請求項1に記載の正極格子を含む、鉛蓄電池。
PCT/JP2015/006316 2015-01-08 2015-12-18 鉛蓄電池用正極格子およびその製造方法ならびに鉛蓄電池 WO2016110907A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016568177A JP6597641B2 (ja) 2015-01-08 2015-12-18 鉛蓄電池用正極格子および鉛蓄電池
US15/541,890 US10276895B2 (en) 2015-01-08 2015-12-18 Positive electrode grid for lead acid batteries and method for producing the same, and lead acid battery
CN201580072863.2A CN107112543B (zh) 2015-01-08 2015-12-18 铅蓄电池用正极格栅及其制造方法以及铅蓄电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-002308 2015-01-08
JP2015002308 2015-01-08

Publications (1)

Publication Number Publication Date
WO2016110907A1 true WO2016110907A1 (ja) 2016-07-14

Family

ID=56355637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006316 WO2016110907A1 (ja) 2015-01-08 2015-12-18 鉛蓄電池用正極格子およびその製造方法ならびに鉛蓄電池

Country Status (4)

Country Link
US (1) US10276895B2 (ja)
JP (1) JP6597641B2 (ja)
CN (1) CN107112543B (ja)
WO (1) WO2016110907A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216211A1 (ja) * 2018-05-09 2019-11-14 日立化成株式会社 鉛蓄電池
WO2022030416A1 (ja) * 2020-08-05 2022-02-10 古河電気工業株式会社 鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム
JPWO2022030415A1 (ja) * 2020-08-05 2022-02-10
JP7045505B1 (ja) 2021-03-26 2022-03-31 古河電池株式会社 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池
US11894560B2 (en) 2019-09-27 2024-02-06 Gs Yuasa International Ltd. Lead-acid battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786898B (zh) * 2021-02-22 2022-03-01 天能电池集团股份有限公司 一种正极板的制备方法、铅蓄电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110426A (ja) * 1999-10-06 2001-04-20 Matsushita Electric Ind Co Ltd 鉛蓄電池格子体用圧延鉛合金シートの製造法とその圧延鉛合金シートを用いた鉛蓄電池の製造法
JP2002222662A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2013122838A (ja) * 2011-12-09 2013-06-20 Furukawa Battery Co Ltd:The 鉛蓄電池用の正極格子体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579514B2 (ja) 2003-07-28 2010-11-10 古河電池株式会社 鉛蓄電池用格子基板の製造方法
US20140377628A1 (en) * 2013-06-24 2014-12-25 Johns Manville Mat made of combination of coarse glass fibers and micro glass fibers used as a separator in a lead-acid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110426A (ja) * 1999-10-06 2001-04-20 Matsushita Electric Ind Co Ltd 鉛蓄電池格子体用圧延鉛合金シートの製造法とその圧延鉛合金シートを用いた鉛蓄電池の製造法
JP2002222662A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2013122838A (ja) * 2011-12-09 2013-06-20 Furukawa Battery Co Ltd:The 鉛蓄電池用の正極格子体

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216211A1 (ja) * 2018-05-09 2019-11-14 日立化成株式会社 鉛蓄電池
JPWO2019216211A1 (ja) * 2018-05-09 2020-08-27 日立化成株式会社 鉛蓄電池
US11894560B2 (en) 2019-09-27 2024-02-06 Gs Yuasa International Ltd. Lead-acid battery
WO2022030416A1 (ja) * 2020-08-05 2022-02-10 古河電気工業株式会社 鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム
JPWO2022030416A1 (ja) * 2020-08-05 2022-02-10
JPWO2022030415A1 (ja) * 2020-08-05 2022-02-10
WO2022030415A1 (ja) * 2020-08-05 2022-02-10 古河電気工業株式会社 鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム
CN116034175A (zh) * 2020-08-05 2023-04-28 古河电气工业株式会社 铅合金、铅蓄电池用正极、铅蓄电池、以及蓄电系统
JP7296016B2 (ja) 2020-08-05 2023-06-21 古河電気工業株式会社 鉛合金箔、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム
CN116034175B (zh) * 2020-08-05 2024-04-12 古河电气工业株式会社 铅合金、铅蓄电池用正极、铅蓄电池、以及蓄电系统
JP7045505B1 (ja) 2021-03-26 2022-03-31 古河電池株式会社 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池
JP2022150943A (ja) * 2021-03-26 2022-10-07 古河電池株式会社 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池

Also Published As

Publication number Publication date
CN107112543A (zh) 2017-08-29
JPWO2016110907A1 (ja) 2017-11-24
CN107112543B (zh) 2020-05-19
JP6597641B2 (ja) 2019-10-30
US20180006334A1 (en) 2018-01-04
US10276895B2 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
JP6597641B2 (ja) 鉛蓄電池用正極格子および鉛蓄電池
KR100289221B1 (ko) 배터리 그리드 및 플레이트 및 이러한 그리드와 플레이트를 이용하여 만들어진 납-산 배터리
DE112011105872B4 (de) Verfahren für die Herstellung einer Sekundärbatterie mit nichtwässrigem Elektrolyt
EP3059791B1 (en) Valve-regulated lead-acid battery
DE102018216045B4 (de) Positivelektrodenmaterial und dieses verwendende Lithiumsekundärbatterie
JPH08170126A (ja) 金属多孔体、その製造方法及びそれを用いた電池用極板
DE102016111020A1 (de) Sekundärbatterie und -Batteriesatz mit nichtwässrigem Elektrolyt
EP1801902A2 (en) Lead acid battery
KR102045000B1 (ko) 전극 집전체용 알루미늄 합금호일 및 그 제조 방법
WO2012130447A1 (de) Elektrochemische zelle zum speichern elektrischer energie
JP5087950B2 (ja) 鉛蓄電池
AU2003292555A1 (en) Lead-based alloy for lead-acid battery grid
DE112016006973T5 (de) Lithiumionenbatterie und Verfahren zu ihrer Herstellung
DE102021108020A1 (de) Formulierung und herstellung von dicken kathoden
JP5137371B2 (ja) エキスパンド正極格子用圧延鉛合金シートおよび鉛蓄電池
WO2019088040A1 (ja) 鉛蓄電池用セパレータおよび鉛蓄電池
DE112011106071B4 (de) Lithiumionensekundärbatterie, Separator davon, und Verfahren zum Herstellen derselben
WO2017110585A1 (ja) 鉛蓄電池
DE102022109356A1 (de) Lithiumionen-ausgetauschte zeolithteilchen für elektrochemische zellen und verfahren zu deren herstellung
DE102022108412A1 (de) Passiver ionenaustausch für die herstellung eines geschichteten anodenmaterials
JP6551012B2 (ja) 鉛蓄電池用負極および鉛蓄電池
JP7344487B2 (ja) 電気化学デバイス用電極材およびその製造方法
JP4774297B2 (ja) 鉛蓄電池用格子体の製造方法および鉛蓄電池
JP2017069123A (ja) 鉛蓄電池用打ち抜き格子、鉛蓄電池用正極、及びそれを用いた鉛蓄電池
WO2020218002A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568177

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15541890

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876787

Country of ref document: EP

Kind code of ref document: A1