WO2022030415A1 - 鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム - Google Patents

鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム Download PDF

Info

Publication number
WO2022030415A1
WO2022030415A1 PCT/JP2021/028489 JP2021028489W WO2022030415A1 WO 2022030415 A1 WO2022030415 A1 WO 2022030415A1 JP 2021028489 W JP2021028489 W JP 2021028489W WO 2022030415 A1 WO2022030415 A1 WO 2022030415A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
positive electrode
mass
less
alloy
Prior art date
Application number
PCT/JP2021/028489
Other languages
English (en)
French (fr)
Inventor
洋 金子
吉章 荻原
美保 山内
彰 田中
秀人 中村
雅進 新垣
淳 古川
徹 萬ヶ原
惠造 山田
彩乃 小出
篤志 佐藤
Original Assignee
古河電気工業株式会社
古河電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河電池株式会社 filed Critical 古河電気工業株式会社
Priority to AU2021322415A priority Critical patent/AU2021322415A1/en
Priority to JP2022541515A priority patent/JP7296016B2/ja
Priority to BR112023001414A priority patent/BR112023001414A2/pt
Priority to CN202180057881.9A priority patent/CN116157545A/zh
Priority to EP21852353.8A priority patent/EP4194573A4/en
Publication of WO2022030415A1 publication Critical patent/WO2022030415A1/ja
Priority to US18/162,449 priority patent/US20230178712A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/12Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of lead or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead alloy, a positive electrode for a lead storage battery, a lead storage battery, and a power storage system.
  • the positive electrode of the lead storage battery includes a lead layer for a positive electrode formed of a lead alloy and an active material arranged on the surface of the lead layer for a positive electrode.
  • Conventional positive electrodes for lead-acid batteries are made of well-known lead or lead alloys.
  • the present invention is made up of a lead alloy capable of preventing the growth of the lead layer for the positive electrode from occurring even if the thickness is suppressed, a positive electrode for a lead storage battery formed of the lead alloy, and a positive electrode for the lead storage battery.
  • An object of the present invention is to provide a lead-acid battery and a power storage system having a battery capacity and preventing deterioration of battery performance.
  • the lead alloy according to one aspect of the present invention contains tin of 0.4% by mass or more and 2% by mass or less and bismuth of 0.004% by mass or less, and the balance is composed of lead and unavoidable impurities.
  • the diffraction intensity of the Cube orientation ⁇ 001 ⁇ ⁇ 100> in the polar diagram created by analyzing the surface is four times the diffraction intensity of the random orientation in the polar diagram created by analyzing the pure lead powder by the X-ray diffraction method.
  • the gist is as follows.
  • the lead alloy according to another aspect of the present invention contains tin of 0.4% by mass or more and 2% by mass or less and bismuth of 0.004% by mass or less, and calcium of 0.1% by mass or less and 0. .
  • the gist is that the diffraction intensity is 4 times or less of the diffraction intensity in the random direction in the polar diagram prepared by analyzing the pure lead powder by the X-ray diffraction method.
  • the positive electrode for a lead storage battery according to still another aspect of the present invention is arranged on the surface of the lead layer for a positive electrode formed of the lead alloy according to the above aspect or another aspect and the lead layer for a positive electrode.
  • the gist is that the lead layer for the positive electrode is provided with an active material and the thickness of the lead layer for the positive electrode is 0.5 mm or less.
  • the lead storage battery according to still another aspect of the present invention includes a positive electrode for a lead storage battery according to still another aspect.
  • the power storage system according to still another aspect of the present invention includes the lead storage battery according to still another aspect and is a power storage system for storing electricity in the lead storage battery.
  • a lead alloy capable of preventing the growth of the lead layer for a positive electrode from occurring even if the thickness is suppressed, a positive electrode for a lead storage battery formed of the lead alloy, and a high positive for a lead storage battery. It is possible to provide a lead storage battery and a power storage system having a battery capacity and preventing deterioration of battery performance.
  • the lead-acid battery 1 shown in FIG. 1 is a bipolar lead-acid battery, in which a first plate unit in which a negative electrode 110 is fixed to a flat plate-shaped first plate 11 and an electrolytic layer 105 are fixed to a frame plate-shaped second plate 12.
  • the negative electrode terminal 107 is fixed to the first plate 11 in a state of being electrically connected to the negative electrode 110 fixed to the first plate 11.
  • the positive electrode terminal 108 is fixed to the fourth plate 14 in a state of being electrically connected to the positive electrode 120 fixed to the fourth plate 14.
  • the second plate unit and the third plate unit may be provided with an arbitrary number of stages alternately according to a desired storage capacity.
  • the first to fourth plates 11, 12, 13, 14 and the substrate 111 are made of, for example, a well-known molding resin.
  • the electrolytic layer 105 is made of, for example, a glass fiber mat impregnated with an electrolytic solution such as sulfuric acid.
  • the negative electrode 110 is composed of, for example, a lead layer 102 for a negative electrode made of a well-known lead foil and an active material layer 104 for a negative electrode.
  • the positive electrode 120 is composed of a lead layer 101 for a positive electrode and an active material layer 103 for a positive electrode, which are made of the lead alloy foil of the present embodiment described later.
  • the positive electrode 120 and the negative electrode 110 are fixed to the front surface and the back surface of the substrate 111, respectively, and are electrically connected by an appropriate method.
  • the positive electrode 120 and the negative electrode 110 may be fixed to one surface of the two substrates 111, respectively, and the other surfaces may be electrically connected and fixed to each other.
  • the plates 11 to 14 are fixed to each other so that the inside is sealed by an appropriate method so that the electrolytic solution does not flow out.
  • the substrate 111, the lead layer 101 for the positive electrode, the active material layer 103 for the positive electrode, the lead layer 102 for the negative electrode, and the active material layer 104 for the negative electrode are used for the lead-acid battery.
  • a bipolar electrode 130, which is an electrode, is configured.
  • the bipolar electrode is an electrode having both positive and negative functions with one electrode.
  • a plurality of cells having an electrolytic layer 105 interposed between the positive electrode 120 having the positive electrode active material layer 103 and the negative electrode 110 having the negative electrode active material layer 104 are alternately laminated. By assembling them together, the battery configuration is such that the cells are connected in series.
  • a bipolar lead storage battery provided with a bipolar electrode having both positive and negative electrode functions with one electrode is shown as an example of the lead storage battery, but the lead storage battery of the present embodiment has the function of a positive electrode.
  • a lead storage battery may be a lead storage battery in which an electrode having a positive electrode and an electrode having a function of a negative electrode are provided, respectively, and both positive electrode and negative electrode, which are separate electrodes, are alternately arranged.
  • a power storage system can be configured by using the lead storage battery 1 of the present embodiment shown in FIG.
  • An example of the power storage system is shown in FIG.
  • the power storage system of FIG. 2 is composed of a plurality of (four in the example of FIG. 2) lead storage batteries 1, 1, ... Connected in series, and AC / DC conversion (AC) during charging and discharging of the assembled batteries.
  • An AC / DC converter 6 that performs exchange between electric power and DC electric power, and a current sensor 3 that is installed between the assembled battery and the AC / DC converter 6 and measures the charge / discharge current during charging and discharging of the assembled battery.
  • a voltage sensor 4 that measures the voltage of the battery, and a storage status monitoring device that receives measurement data transmitted from the current sensor 3 and the voltage sensor 4 and performs status determination and alarm determination of the assembled battery based on the received measurement data.
  • Energy that receives the storage status information transmitted by the storage status monitoring device 2 based on the results of the executed status determination and alarm determination, and determines whether to charge or discharge the assembled battery based on the received storage status information. It is equipped with a management system 5.
  • the energy management system 5 determines whether to charge or discharge the assembled battery based on the storage status information received from the storage status monitoring device 2, and transmits a signal instructing the execution of charging or discharging to the AC / DC conversion device 6.
  • the AC / DC converter 6 Upon receiving the signal instructing the execution of discharge, the AC / DC converter 6 converts the DC power discharged from the assembled battery into AC power and outputs it to the commercial power system 7.
  • the AC / DC conversion device 6 converts the AC power input from the commercial power system 7 into DC power to charge the assembled battery.
  • the number of lead-acid batteries 1 in series is determined by the input voltage range of the AC / DC converter 6.
  • the thickness of the lead layer 101 for the positive electrode is set to 0.5 mm or less.
  • the lead layer 101 for the positive electrode is formed of a lead alloy that satisfies the following two conditions A and B so that the problem of growth is unlikely to occur even with such a thickness.
  • the lead layer 101 for the positive electrode is formed of the above lead alloy, the battery capacity is high and the growth of the electrodes is unlikely to occur. Further, since the lead layer 101 for the positive electrode uses the electrode formed of the lead alloy described above, the effect that the battery capacity of the lead storage battery 1 and the power storage system is high and the growth of the electrode is unlikely to occur is achieved. These effects will be described in detail below.
  • the tin content is more preferably 0.7% by mass or more, further preferably 1.0% by mass or more, particularly preferably 1.3% by mass or more, and 1.6% by mass. The above is the most preferable. When the tin content is in such a range, the amount of the Cube orientation ⁇ 001 ⁇ ⁇ 100> in the crystal structure of the lead alloy tends to be small.
  • the calcium content is more preferably 0.07% by mass or less, further preferably 0.04% by mass or less, and 0.02% by mass in order to improve the corrosion resistance of the lead alloy.
  • the following is particularly preferable.
  • the silver content is more preferably 0.03% by mass or less in order to suppress the separation of the silver phase and improve the corrosion resistance of the lead alloy.
  • Calcium and silver may be positively added to the lead alloy, but even if they are not positively added, they may be contained as unavoidable impurities due to contamination from the bare metal. The maximum amount that can be contained as an unavoidable impurity is 0.012% by mass for both calcium and silver.
  • the lead alloy contains bismuth, the formability due to rolling of the lead alloy tends to decrease. That is, bismuth is one of the impurities preferably not contained in the lead alloy of the present embodiment as much as possible. Therefore, the content of bismuth in the lead alloy needs to be 0.004% by mass or less, and most preferably 0% by mass. However, considering the cost of the lead alloy, the content of bismuth is preferably 0.0004% by mass or more.
  • lead alloys may contain elements other than lead, tin, calcium, silver and bismuth.
  • This element is an impurity inevitably contained in the lead alloy, and the total content of elements other than lead, tin, calcium, silver and bismuth in the lead alloy is preferably 0.01% by mass or less. , 0% by mass is most preferable.
  • the lead alloy of the present embodiment that forms the lead layer for the positive electrode contains tin of 0.4% by mass or more and 2% by mass or less and bismuth of 0.004% by mass or less, and the balance is unavoidable with lead. It is a lead alloy composed of target impurities, or contains 0.4% by mass or more and 2% by mass or less of tin and 0.004% by mass or less of bismuth, and 0.1% by mass or less of calcium and 0.1. It is a lead alloy containing at least one of silver by mass% or less, and the balance is lead and unavoidable impurities.
  • the lead alloy of the present embodiment preferably does not contain bismuth as an impurity, but if it does, the content of the lead alloy must be 0.004% by mass or less.
  • the lead alloy of the present embodiment contains elements other than lead, tin, calcium, silver and bismuth as unavoidable impurities, the total content thereof is preferably 0.01% by mass or less. ..
  • the lead alloy of the present embodiment has a small amount of Cube orientation ⁇ 001 ⁇ ⁇ 100> in the crystal structure, the resistance to elastic deformation becomes large (that is, the Young's modulus becomes high), and elastic deformation is less likely to occur. Further, since it is difficult to be plastically deformed (that is, the amount of crystal slip deformation is large) and it is easy to work harden, the deformation resistance increases if work hardening is performed.
  • the lead layer for the positive electrode formed of the lead alloy of the present embodiment which has a small amount of the Cube orientation ⁇ 001 ⁇ ⁇ 100>, is reduced to 0.5 mm or less, the lead layer for the positive electrode is corroded.
  • the growth of the positive electrode due to the volume expansion of the generated lead oxide is unlikely to occur.
  • a positive electrode for a lead storage battery provided with a lead layer for the positive electrode it is possible to manufacture a lead storage battery having a high battery capacity and less likely to cause growth of electrodes.
  • the lead layer 101 for the positive electrode is formed of the lead alloy of the present embodiment, the thickness thereof can be reduced, so that the battery capacity can be increased by that amount.
  • a positive electrode having a thickness of 1 mm is conventionally applied to a lead layer for a positive electrode having a thickness of 1 mm to form a positive electrode
  • a lead layer for a positive electrode having a thickness of 0.2 mm is coated with an active material having a thickness of 1.8 mm. If the positive electrode is formed by applying the above, the amount of the active material is increased by 1.8 times, so that the battery capacity can be increased by about 1.8 times as compared with the conventional case.
  • the lead-acid battery is a bipolar lead-acid battery
  • the bipolar lead-acid battery has a low internal resistance and can be used at a higher C rate than a conventional lead-acid battery having a high internal resistance. Therefore, the size of the lead storage battery can be reduced.
  • the size of a lead-acid battery is small, the size of a container or the like can be reduced when applied to an industrial battery. Therefore, the merit is particularly large when the lead storage battery is buried in the ground. Further, when it is used for mobility of an automobile or the like, the weight of the automobile or the like can be reduced, which leads to improvement of fuel efficiency and can reduce the space for mounting a lead storage battery in the automobile or the like. Further, since the lead layer for the positive electrode can be made thin, the lead storage battery can be made lighter. Therefore, it is possible to facilitate the laying work of the lead storage battery. If the thickness of the lead layer 101 for the positive electrode is 0.37 mm or less, more preferably 0.25 mm or less, the effect of the present invention that the deterioration of the battery performance is prevented while having a high battery capacity is further enhanced. Easy to play.
  • the lead-acid battery electrode 130 and the lead-acid battery 1 of the present embodiment even if the lead layer for the positive electrode is made thin by controlling the crystal structure of the lead alloy, the lead layer 101 for the positive electrode is corroded. By suppressing the growth, the problem of growth is also solved, so that deterioration of battery performance can be prevented. By thinning the lead layer for the positive electrode, the internal volume of the battery can be effectively used by that amount, so that the battery capacity can be increased.
  • the amount of the Cube orientation ⁇ 001 ⁇ ⁇ 100> in the crystal structure of the lead alloy is evaluated by the diffraction intensity of the Cube orientation ⁇ 001 ⁇ ⁇ 100> in the polar diagram prepared by analyzing the surface of the lead alloy by the X-ray diffraction method. .. Then, the amount of random orientation in the pure lead powder is evaluated by the diffraction intensity of the random orientation in the polar diagram created by analyzing the surface of the pure lead powder by the X-ray diffraction method, and the Cube orientation ⁇ 001 ⁇ of the lead alloy is evaluated. The ratio of the diffraction intensity of ⁇ 100> to the diffraction intensity of pure lead in the random direction is calculated.
  • the diffraction intensity of the Cube direction ⁇ 001 ⁇ ⁇ 100> in the polar diagram created by analyzing the surface of the lead alloy by the X-ray diffraction method is obtained by analyzing the pure lead powder by the X-ray diffraction method. It needs to be 4 times or less of the diffraction intensity of the random direction in the prepared polar diagram, preferably 1.7 times or less, and more preferably 1.4 times or less.
  • the formation of the Cube orientation ⁇ 001 ⁇ ⁇ 100> is suppressed, and the Cube orientation ⁇ 001 ⁇ ⁇ in the pole diagram created by analyzing the surface of the lead alloy by the X-ray diffraction method.
  • rolling is performed under the following rolling conditions. Was found to be effective.
  • the rolling speed during rolling is preferably 10 m / min or more and 100 m / min or less, and more preferably 30 m / min or more and 80 m / min or less.
  • a surface coat may be provided on the rolling roll in order to suppress adhesion between the rolling roll and the lead alloy.
  • the surface coat include a fluorine coat and a diamond-like carbon coat.
  • a lubricant may be used in order to suppress adhesion between the rolling roll and the lead alloy. If a lubricant is placed between the rolling roll and the lead alloy to perform rolling, adhesion between the rolling roll and the lead alloy can be suppressed.
  • the lubricant include a low-viscosity mineral oil to which dibutyl ether is added and a low-viscosity mineral oil to which propionic acid is added.
  • An alloy plate having a thickness of 10 mm made of a lead alloy having the alloy composition shown in Table 1 was produced by melt casting. This alloy plate was rolled to produce a rolled foil having a thickness of 0.15 mm or 0.45 mm.
  • the rolling conditions are as follows. In Examples 1 to 9, rolling was performed with a rolling reduction of 20% and a rolling speed of 40 m / min. Further, in Comparative Examples 1 to 5, rolling was performed with the rolling reduction rate of 1 pass set to 5% and the rolling speed set to 5 m / min as in the conventional case. In Comparative Example 4 and Comparative Example 5, a rolled foil could not be produced because a defect called edge cracking occurred at the end of the plate during rolling.
  • a bipolar electrode for a bipolar lead-acid battery was produced by using each of the rolled foils of Examples 1 to 9 and Comparative Examples 1 to 3 as a lead layer for a positive electrode. Then, a bipolar lead-acid battery was manufactured using the electrode.
  • the structure of the electrode and the bipolar lead-acid battery is almost the same as that shown in FIG.
  • the active material forming the positive electrode active material layer is lead dioxide, and the thickness of the positive electrode active material layer is 1.4 mm.
  • the active material forming the negative electrode active material layer is lead, and the thickness of the negative electrode active material layer is 1.4 mm.
  • a charge / discharge cycle test was conducted on the manufactured bipolar lead-acid battery by repeating charging / discharging.
  • the C rate of charge / discharge was 0.2 C, and the number of charge / discharge cycles was 1000 cycles.
  • the battery capacity measured after the completion of the charge / discharge cycle test is 90% or more of the initial battery capacity measured before the charge / discharge cycle test, it is determined that the lead-acid battery is less likely to cause electrode growth.
  • "OK" was displayed, and when it was less than 90%, it was determined that the lead-acid battery was prone to electrode growth, and in Table 1, it was displayed as "NG".
  • the lead-acid batteries of Examples 1 to 9 have a diffraction intensity ratio of 3 or less, so that the decrease in battery capacity is small and the electrode growth is unlikely to occur.
  • the lead-acid batteries of Comparative Examples 1 to 3 are lead-acid batteries in which the diffraction intensity ratio exceeds 3, so that the battery capacity is greatly reduced and the electrode is likely to grow.
  • Electrolytic layer 111 ... substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

グロースが生じにくい鉛蓄電池用正極を製造可能な鉛合金を提供する。鉛合金は、0.4質量%以上2質量%以下の錫と0.004質量%以下のビスマスを含有し、残部が鉛と不可避的不純物からなる。そして、X線回折法によって上記鉛合金の表面を分析して作成した極点図におけるCube方位{001}<100>の回折強度は、X線回折法によって純鉛の粉末を分析して作成した極点図におけるランダム方位の回折強度の4倍以下である。

Description

鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム
 本発明は、鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システムに関する。
 鉛蓄電池の正極は、鉛合金で形成された正極用鉛層と、該正極用鉛層の表面に配された活物質と、を備えている。従来の鉛蓄電池用正極(例えば特許文献1を参照)は、周知の鉛や鉛合金で形成されていた。
国際公開第2013/073420号
 しかしながら、電池の内部容積を効率よく使用するため正極用鉛層の厚さを抑えようとした場合、正極用鉛層の強度不足により、腐食によって生成した酸化鉛の体積膨張に伴って正極用鉛層の伸び(グロース)が生じやすくなるため、正極と負極の電気接合部に断線が生じたり、活物質が正極用鉛層から剥離して電池性能が低下したりするおそれがあった。
 そこで、本発明は、厚さを抑えても正極用鉛層のグロースが生じにくくできる鉛合金、該鉛合金によって形成された鉛蓄電池用正極、該鉛蓄電池用正極を使って構成された、高い電池容量を有しつつ電池性能の低下が防止された鉛蓄電池及び蓄電システムを提供することを課題とする。
 本発明の一態様に係る鉛合金は、0.4質量%以上2質量%以下の錫と0.004質量%以下のビスマスを含有し、残部が鉛と不可避的不純物からなり、X線回折法によって表面を分析して作成した極点図におけるCube方位{001}<100>の回折強度が、X線回折法によって純鉛の粉末を分析して作成した極点図におけるランダム方位の回折強度の4倍以下であることを要旨とする。
 また、本発明の別の態様に係る鉛合金は、0.4質量%以上2質量%以下の錫と0.004質量%以下のビスマスを含有するとともに、0.1質量%以下のカルシウムと0.1質量%以下の銀のうち少なくとも一方をさらに含有し、残部が鉛と不可避的不純物からなり、X線回折法によって表面を分析して作成した極点図におけるCube方位{001}<100>の回折強度が、X線回折法によって純鉛の粉末を分析して作成した極点図におけるランダム方位の回折強度の4倍以下であることを要旨とする。
 さらに、本発明のさらに別の態様に係る鉛蓄電池用正極は、上記一態様又は上記別の態様に係る鉛合金で形成された正極用鉛層と、該正極用鉛層の表面に配された活物質と、を備え、正極用鉛層の厚さが0.5mm以下であることを要旨とする。
 さらに、本発明のさらに別の態様に係る鉛蓄電池は、上記さらに別の態様に係る鉛蓄電池用正極を備えることを要旨とする。
 さらに、本発明のさらに別の態様に係る蓄電システムは、上記さらに別の態様に係る鉛蓄電池を備え、該鉛蓄電池に蓄電するための蓄電システムであることを要旨とする。
 本発明によれば、厚さを抑えても正極用鉛層のグロースが生じにくくできる鉛合金、該鉛合金によって形成された鉛蓄電池用正極、該鉛蓄電池用正極を使って構成された、高い電池容量を有しつつ電池性能の低下が防止された鉛蓄電池及び蓄電システムを提供することができる。
本発明に係る鉛蓄電池の一実施形態であるバイポーラ型鉛蓄電池の構造を説明する断面図である。 本発明に係る蓄電システムの一実施形態を説明する図である。
 本発明の一実施形態について説明する。なお、以下に説明する実施形態は、本発明の一例を示したものである。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本発明の一実施形態に係る鉛蓄電池1の構造を、図1を参照しながら説明する。図1に示す鉛蓄電池1は、バイポーラ型鉛蓄電池であって、負極110を平板状の第一プレート11に固定した第一プレートユニットと、電解層105を枠板状の第二プレート12に固定した第二プレートユニットと、正極120と基板111と負極110を順に枠板状の第三プレート13に固定した第三プレートユニットと、正極120を平板状の第四プレート14に固定した第四プレートユニットと、を有し、互いに組み合わせることによって略矩形を呈する構造である。
 第一プレート11には負極端子107が、該第一プレート11に固定された負極110と電気的に接続された状態で固定されている。
 第四プレート14には正極端子108が、該第四プレート14に固定された正極120と電気的に接続された状態で固定されている。
 第二プレートユニットと第三プレートユニットは、所望の蓄電容量に応じて、任意の段数を交互に設けることができる。
 第一~第四プレート11、12、13、14及び基板111は、例えば周知の成形樹脂によって構成される。
 電解層105は、例えば硫酸などの電解液が含浸されたガラス繊維マット等によって構成される。
 負極110は、例えば周知の鉛箔からなる負極用鉛層102と負極用活物質層104によって構成される。
 正極120は、後述する本実施形態の鉛合金の箔からなる正極用鉛層101と正極用活物質層103によって構成される。
 正極120と負極110は、基板111の表面及び裏面にそれぞれ固定され、適宜の方法で電気的に接続されている。あるいは、正極120と負極110を2枚の基板111の一方の面にそれぞれ固定し、他方の面同士を電気的に接続して固定されていても良い。
 各プレート11~14は、電解液の流出が無いように、適宜の方法で内部が密閉状態となるよう互いに固定されている。
 このような構成を有する本実施形態の鉛蓄電池1においては、基板111、正極用鉛層101、正極用活物質層103、負極用鉛層102、及び負極用活物質層104で、鉛蓄電池用電極であるバイポーラ電極130が構成されている。バイポーラ電極とは、1枚の電極で正極、負極両方の機能を有する電極である。
 そして、本実施形態の鉛蓄電池1は、正極用活物質層103を有する正極120と負極用活物質層104を有する負極110との間に電解層105を介在させてなるセルを交互に複数積層して組み付けることにより、セル同士を直列に接続した電池構成となっている。
 なお、本実施形態においては、1枚の電極で正極、負極両方の機能を有するバイポーラ電極を備えるバイポーラ型鉛蓄電池を鉛蓄電池の例として示したが、本実施形態の鉛蓄電池は、正極の機能を有する電極と負極の機能を有する電極とをそれぞれ備え、別体である正極及び負極の両電極が交互に配された鉛蓄電池であってもよい。
 図1に示す本実施形態の鉛蓄電池1を用いて、蓄電システムを構成することができる。蓄電システムの一例を図2に示す。図2の蓄電システムは、直列に接続された複数(図2の例では4個)の鉛蓄電池1、1、・・・からなる組電池と、組電池の充電時及び放電時に交直変換(交流電力と直流電力の間の交換)を行う交直変換装置6と、組電池と交直変換装置6との間に設置され組電池の充電時及び放電時に充放電電流を測定する電流センサ3と、組電池の電圧を測定する電圧センサ4と、電流センサ3及び電圧センサ4から送信される測定データを受信し、受信した測定データに基づいて組電池の状態判定や警報判定を実施する蓄電状態監視装置2と、実施した状態判定や警報判定の結果に基づいて蓄電状態監視装置2が送信した蓄電状態情報を受信し、受信した蓄電状態情報に基づいて組電池の充電又は放電の実施を判断するエネルギーマネジメントシステム5と、を備えている。
 エネルギーマネジメントシステム5は、蓄電状態監視装置2から受信した蓄電状態情報に基づいて組電池の充電又は放電の実施を判断し、充電又は放電の実施を指令する信号を交直変換装置6に送信する。放電の実施を指令する信号を受信した場合は、交直変換装置6は、組電池から放電された直流電力を交流電力に変換して、商用電力系統7に出力する。一方、充電の実施を指令する信号を受信した場合は、交直変換装置6は、商用電力系統7から入力した交流電力を直流電力に変換して、組電池を充電する。なお、鉛蓄電池1の直列数は、交直変換装置6の入力電圧範囲によって決定される。
<正極用鉛層101を構成する鉛合金について>
 ここで、本実施形態では、正極用鉛層101の厚さは、0.5mm以下とされている。そのような厚さでもグロースの問題が生じにくいように、正極用鉛層101は、下記の2つの条件A及び条件Bを満たす鉛合金で形成されている。
(条件A)0.4質量%以上2質量%以下の錫(Sn)と0.004質量%以下のビスマス(Bi)を含有し、残部が鉛(Pb)と不可避的不純物からなる鉛合金であるか、又は、0.4質量%以上2質量%以下の錫と0.004質量%以下のビスマスを含有するとともに、0.1質量%以下のカルシウムと0.1質量%以下の銀のうち少なくとも一方をさらに含有し、残部が鉛と不可避的不純物からなる鉛合金である。
(条件B)X線回折法によって上記鉛合金の表面を分析して作成した極点図におけるCube方位{001}<100>の回折強度が、X線回折法によって純鉛(Pb)の粉末の表面を分析して作成した極点図におけるランダム方位の回折強度の4倍以下である。
 本実施形態の鉛蓄電池1及び蓄電システムは、正極用鉛層101が上記の鉛合金で形成されているため、電池容量が高く且つ電極のグロースが生じにくい。また、正極用鉛層101が上記の鉛合金で形成された電極が使用されているため、鉛蓄電池1及び蓄電システムの電池容量が高く且つ電極のグロースが生じにくいという効果が奏される。これらの効果について、以下に詳細に説明する。
〔条件Aについて〕
 鉛合金に錫を含有させると、鉛合金で形成される正極用鉛層101と正極用活物質層103との密着性が良好となる。また、鉛合金にカルシウムを含有させると、鉛合金の結晶粒が微細となる。さらに、鉛合金に銀を含有させると、鉛合金の結晶粒が微細となる。よって、錫と、カルシウム及び銀のうち少なくとも一方とを鉛合金が含有すれば、鉛合金の強度が高まり変形し難くなるという効果が奏される。
 錫の含有量は、0.7質量%以上であることがより好ましく、1.0質量%以上であることがさらに好ましく、1.3質量%以上であることが特に好ましく、1.6質量%以上であることが最も好ましい。錫の含有量がこのような範囲であれば、鉛合金の結晶組織におけるCube方位{001}<100>の量が少なくなりやすい。
 カルシウムの含有量は、鉛合金の耐食性をより良好とするためには、0.07質量%以下であることがより好ましく、0.04質量%以下であることがさらに好ましく、0.02質量%以下であることが特に好ましい。
 銀の含有量は、銀相の分離を抑制して鉛合金の耐食性をより良好とするためには、0.03質量%以下であることがより好ましい。
 なお、カルシウム及び銀は、鉛合金に積極的に添加してもよいが、積極的に添加しなくても、地金からの混入などによる不可避不純物として含有される場合もある。不可避不純物として含有され得る最大量は、カルシウム、銀いずれも0.012質量%である。
 一方、鉛合金にビスマスが含有されていると、鉛合金の圧延等による成形性が低下する傾向がある。すなわち、ビスマスは、本実施形態の鉛合金に可能な限り含有されていないことが好ましい不純物の1つである。よって、鉛合金におけるビスマスの含有量は0.004質量%以下である必要があり、0質量%であることが最も好ましい。ただし、鉛合金のコストを考慮すると、ビスマスの含有量は0.0004質量%以上であることが好ましい。
 他方、鉛合金には、鉛、錫、カルシウム、銀、ビスマス以外の元素が含有されている場合がある。この元素は、鉛合金に不可避的に含有される不純物であり、鉛合金における鉛、錫、カルシウム、銀、ビスマス以外の元素の合計の含有量は、0.01質量%以下であることが好ましく、0質量%であることが最も好ましい。
 以上のように、正極用鉛層を形成する本実施形態の鉛合金は、0.4質量%以上2質量%以下の錫と0.004質量%以下のビスマスを含有し、残部が鉛と不可避的不純物からなる鉛合金であるか、又は、0.4質量%以上2質量%以下の錫と0.004質量%以下のビスマスを含有するとともに、0.1質量%以下のカルシウムと0.1質量%以下の銀のうち少なくとも一方をさらに含有し、残部が鉛と不可避的不純物からなる鉛合金である。本実施形態の鉛合金は、不純物としてビスマスを含有しないことが好ましいが、含有する場合は、その含有量は0.004質量%以下である必要がある。また、本実施形態の鉛合金に鉛、錫、カルシウム、銀、ビスマス以外の元素が不可避的不純物として含有されている場合は、その合計の含有量は0.01質量%以下であることが好ましい。
〔条件Bについて〕
 鉛合金の結晶組織においてCube方位{001}<100>の量が多いと、弾性変形に対する抵抗性が小さくなり、弾性変形が生じやすくなるとともに、塑性変形しにくく(すなわち、結晶すべり変形の量が少なく)加工硬化しにくくなる。よって、Cube方位{001}<100>の量が多い鉛合金で形成された正極用鉛層は、表面に配する活物質の量を多くするために厚さを薄くすると、正極用鉛層の腐食によって生成した酸化鉛の体積膨張に伴って電極のグロースが生じやすくなる。
 本実施形態の鉛合金は、結晶組織においてCube方位{001}<100>の量が少ないので、弾性変形に対する抵抗性が大きくなり(すなわち、ヤング率が高くなり)、弾性変形が生じにくくなる。また、塑性変形し難く(すなわち、結晶すべり変形の量が多く)加工硬化しやすいので、加工硬化を行えば変形抵抗が増加する。
 よって、Cube方位{001}<100>の量が少ない本実施形態の鉛合金で形成された正極用鉛層は、厚さを0.5mm以下に薄くしても、正極用鉛層の腐食によって生成した酸化鉛の体積膨張に伴う正極のグロースが生じにくい。その結果、正極と負極の電気接合部に断線が生じたり、活物質が正極用鉛層から剥離して電池性能が低下したりすることが起こりにくいので、本実施形態の鉛合金で形成された正極用鉛層を備える鉛蓄電池用正極を用いれば、電池容量が高く且つ電極のグロースが生じにくい鉛蓄電池を製造することが可能である。
 また、本実施形態の鉛合金で正極用鉛層101を形成すれば、その厚さを薄くすることができるので、その分だけ電池容量を増加させることができる。例えば、従来は厚さ1mmの正極用鉛層に厚さ1mmの活物質を塗布して正極を構成していたとすると、厚さ0.2mmの正極用鉛層に厚さ1.8mmの活物質を塗布して正極を構成すれば、活物質の量が1.8倍増加するので、従来よりも電池容量を約1.8倍増やすことができる。
 また、鉛蓄電池をバイポーラ型鉛蓄電池とすれば、バイポーラ型鉛蓄電池は内部抵抗が低いので、内部抵抗が高い従来の鉛蓄電池よりも、高いCレートで使用することができる。そのため、鉛蓄電池のサイズを小さくすることができる。
 鉛蓄電池のサイズが小さいと、産業用電池に適用する場合は、コンテナなどのサイズを小さくできる。よって、鉛蓄電池を地中に埋める場合などは特にメリットが大きくなる。また、自動車などのモビリティに用いる場合は、自動車等を軽量化することができ、燃費の改善に繋がるとともに、自動車等における鉛蓄電池を搭載する空間を小さくできる。
 さらに、正極用鉛層を薄くすることができるので、鉛蓄電池を軽量化することができる。そのため、鉛蓄電池の敷設工事を行いやすくすることができる。
 なお、正極用鉛層101の厚さを0.37mm以下、より好ましくは0.25mm以下とすれば、高い電池容量を有しつつ電池性能の低下が防止されるという本発明の効果が、より奏されやすい。
 以上のように、本実施形態の鉛蓄電池用電極130及び鉛蓄電池1によれば、鉛合金の結晶組織の制御によって、正極用鉛層を薄く構成しても、正極用鉛層101の腐食が抑制されることによってグロースの課題も解決されるため、電池性能の劣化を防止することができる。正極用鉛層を薄くすることで、その分だけ電池内部の容積を有効利用できるので、電池容量を大きくすることができる。
 鉛合金の結晶組織におけるCube方位{001}<100>の量は、X線回折法によって鉛合金の表面を分析して作成した極点図におけるCube方位{001}<100>の回折強度によって評価する。そして、純鉛の粉末におけるランダム方位の量を、X線回折法によって純鉛の粉末の表面を分析して作成した極点図におけるランダム方位の回折強度によって評価し、鉛合金のCube方位{001}<100>の回折強度と純鉛のランダム方位の回折強度の比を算出する。
 本実施形態においては、X線回折法によって鉛合金の表面を分析して作成した極点図におけるCube方位{001}<100>の回折強度が、X線回折法によって純鉛の粉末を分析して作成した極点図におけるランダム方位の回折強度の4倍以下である必要があり、1.7倍以下であることが好ましく、1.4倍以下であることがより好ましい。
〔鉛合金の結晶組織の制御方法について〕
 以下に、本実施形態の鉛合金における結晶組織の制御方法(Cube方位{001}<100>の量の低減方法)の一例として、圧延による結晶組織の制御方法について説明する。
 従来、鉛合金を圧延して正極用鉛層を製造する場合には、圧延ロールと鉛合金との間の凝着が比較的起こりやすかった。そのため、1パスの圧下率を小さくして複数回の圧下により圧延を行うか、又は、加工発熱を低減するために圧延速度を低速にして圧延を行うことが多かった。しかしながら、本発明者らの検討の結果、これらの条件で圧延を行うと、Cube方位{001}<100>が形成しやすいことが見出された。
 そこで、本発明者らが検討した結果、Cube方位{001}<100>の形成を抑制して、X線回折法によって鉛合金の表面を分析して作成した極点図におけるCube方位{001}<100>の回折強度が、X線回折法によって純鉛の粉末を分析して作成した極点図におけるランダム方位の回折強度の4倍以下となるためには、以下のような圧延条件で圧延を行うことが有効であることが見出された。
 すなわち、圧延時の1パスの圧下率を10%以上30%以下として1回の圧下により圧延を行うことが好ましく、圧延時の1パスの圧下率を15%以上25%以下として1回の圧下により圧延を行うことがより好ましい。また、圧延時の圧延速度は10m/min以上100m/min以下とすることが好ましく、30m/min以上80m/min以下とすることがより好ましい。
 なお、圧延時には、圧延ロールと鉛合金との間の凝着を抑制するために、圧延ロールに表面コートを設けてもよい。表面コートの例としては、フッ素コート、ダイヤモンドライクカーボンコートが挙げられる。また、圧延時には、圧延ロールと鉛合金との間の凝着を抑制するために、潤滑剤を用いてもよい。圧延ロールと鉛合金との間に潤滑剤を配して圧延を行えば、圧延ロールと鉛合金との間の凝着を抑制することができる。潤滑剤の例としては、低粘度鉱物油にジブチルエーテルを添加したもの、低粘度鉱物油にプロピオン酸を添加したものが挙げられる。
〔実施例〕
 以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
 表1に示す合金組成を有する鉛合金からなる厚さ10mmの合金板を、溶解鋳造によって製造した。この合金板を圧延して厚さ0.15mm又は0.45mmの圧延箔を作製した。なお、圧延条件は、以下のとおりである。実施例1~9については、1パスの圧下率を20%とし、圧延速度を40m/minとして、圧延を行った。また、比較例1~5については、1パスの圧下率を従来通り5%とし、圧延速度を5m/minとして、圧延を行った。比較例4及び比較例5については、圧延中にコバ割れと呼ばれる欠陥が板の端部に生じたため、圧延箔を作製することができなかった。
Figure JPOXMLDOC01-appb-T000001
 
 次に、作製した実施例1~9及び比較例1~3の各圧延箔についてX線回折法によって表面(圧延面)を分析し、その結果から(111)X線極点図を作成した。そして、極点図におけるCube方位{001}<100>の回折強度を求めた。さらに、ランダム方位状態である純鉛の粉末についてX線回折法によって表面を分析し、その結果から極点図を作成した。そして、極点図におけるランダム方位の回折強度を求めた。求めたCube方位{001}<100>の回折強度をランダム方位の回折強度で除して、回折強度比を算出した。結果を表1に示す。
 次に、実施例1~9及び比較例1~3の各圧延箔を正極用鉛層として、バイポーラ型鉛蓄電池用のバイポーラ電極を作製した。そして、その電極を用いてバイポーラ型鉛蓄電池を製造した。電極及びバイポーラ型鉛蓄電池の構造は、図1に示したものとほぼ同様である。なお、正極用活物質層を形成する活物質は二酸化鉛であり、正極用活物質層の厚さは1.4mmである。また、負極用活物質層を形成する活物質は鉛であり、負極用活物質層の厚さは1.4mmである。
 製造したバイポーラ型鉛蓄電池に対して、充放電を繰り返す充放電サイクル試験を実施した。充放電のCレートは0.2Cとし、充放電サイクルのサイクル回数は1000サイクルとした。そして、充放電サイクル試験終了後に測定した電池容量が、充放電サイクル試験の実施前に測定した初期の電池容量の90%以上であった場合は、電極のグロースが生じにくい鉛蓄電池であると判定し、表1においては「OK」と表示し、90%未満であった場合は、電極のグロースが生じやすい鉛蓄電池であると判定し、表1においては「NG」と表示した。
 表1に示す結果から、実施例1~9の鉛蓄電池は、回折強度比が3以下であるため、電池容量の低下が小さく、電極のグロースが生じにくい鉛蓄電池であることが分かる。これに対して、比較例1~3の鉛蓄電池は、回折強度比が3を超過するため、電池容量の低下が大きく、電極のグロースが生じやすい鉛蓄電池であることが分かる。
    1・・・鉛蓄電池
  101・・・正極用鉛層
  102・・・負極用鉛層
  103・・・正極用活物質層
  104・・・負極用活物質層
  105・・・電解層
  111・・・基板

Claims (7)

  1.  0.4質量%以上2質量%以下の錫と0.004質量%以下のビスマスを含有し、残部が鉛と不可避的不純物からなり、
     X線回折法によって表面を分析して作成した極点図におけるCube方位{001}<100>の回折強度が、X線回折法によって純鉛の粉末を分析して作成した極点図におけるランダム方位の回折強度の4倍以下である鉛合金。
  2.  0.4質量%以上2質量%以下の錫と0.004質量%以下のビスマスを含有するとともに、0.1質量%以下のカルシウムと0.1質量%以下の銀のうち少なくとも一方をさらに含有し、残部が鉛と不可避的不純物からなり、
     X線回折法によって表面を分析して作成した極点図におけるCube方位{001}<100>の回折強度が、X線回折法によって純鉛の粉末を分析して作成した極点図におけるランダム方位の回折強度の4倍以下である鉛合金。
  3.  ビスマスの含有量が0.0004質量%以上0.004質量%以下である請求項1又は請求項2に記載の鉛合金。
  4.  請求項1~3のいずれか一項に記載の鉛合金で形成された正極用鉛層と、該正極用鉛層の表面に配された活物質と、を備え、前記正極用鉛層の厚さが0.5mm以下である鉛蓄電池用正極。
  5.  バイポーラ型鉛蓄電池用である請求項4に記載の鉛蓄電池用正極。
  6.  請求項4又は請求項5に記載の鉛蓄電池用正極を備える鉛蓄電池。
  7.  請求項6に記載の鉛蓄電池を備え、該鉛蓄電池に蓄電するための蓄電システム。
PCT/JP2021/028489 2020-08-05 2021-07-30 鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム WO2022030415A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2021322415A AU2021322415A1 (en) 2020-08-05 2021-07-30 Lead alloy, positive electrode for lead storage battery, lead storage battery, and electricity storage system
JP2022541515A JP7296016B2 (ja) 2020-08-05 2021-07-30 鉛合金箔、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム
BR112023001414A BR112023001414A2 (pt) 2020-08-05 2021-07-30 Liga de chumbo, eletrodo positivo para bateria de armazenamento de chumbo, bateria de armazenamento de chumbo e sistema de armazenamento de energia
CN202180057881.9A CN116157545A (zh) 2020-08-05 2021-07-30 铅合金、铅蓄电池用正极、铅蓄电池以及蓄电系统
EP21852353.8A EP4194573A4 (en) 2020-08-05 2021-07-30 LEAD ALLOY, POSITIVE ELECTRODE FOR LEAD ACCUMULATOR, LEAD ACCUMULATOR AND ELECTRICITY STORAGE SYSTEM
US18/162,449 US20230178712A1 (en) 2020-08-05 2023-01-31 Lead Alloy, Positive Electrode for Lead Storage Battery, Lead Storage Battery, and Power Storage System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-133405 2020-08-05
JP2020133405 2020-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/162,449 Continuation US20230178712A1 (en) 2020-08-05 2023-01-31 Lead Alloy, Positive Electrode for Lead Storage Battery, Lead Storage Battery, and Power Storage System

Publications (1)

Publication Number Publication Date
WO2022030415A1 true WO2022030415A1 (ja) 2022-02-10

Family

ID=80118058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028489 WO2022030415A1 (ja) 2020-08-05 2021-07-30 鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム

Country Status (7)

Country Link
US (1) US20230178712A1 (ja)
EP (1) EP4194573A4 (ja)
JP (1) JP7296016B2 (ja)
CN (1) CN116157545A (ja)
AU (1) AU2021322415A1 (ja)
BR (1) BR112023001414A2 (ja)
WO (1) WO2022030415A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149303A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法
WO2023149304A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169596A (ja) * 2004-12-17 2006-06-29 Mitsubishi Materials Corp 蓄電池用Pb−Sn−Ca−Al系鉛合金シートの製造方法
JP2008210698A (ja) * 2007-02-27 2008-09-11 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2014507774A (ja) * 2011-05-11 2014-03-27 グリッドテンシャル エナジー インコーポレイテッド 改良されたバッテリーおよび組立方法
WO2016110907A1 (ja) * 2015-01-08 2016-07-14 パナソニックIpマネジメント株式会社 鉛蓄電池用正極格子およびその製造方法ならびに鉛蓄電池
JP2019067522A (ja) * 2017-09-28 2019-04-25 古河電池株式会社 鉛蓄電池用正極格子体の製造方法、蓄電池用正極格子体、及び鉛蓄電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4026257B2 (ja) * 1998-12-21 2007-12-26 松下電器産業株式会社 鉛蓄電池
CN1775962A (zh) * 2005-10-11 2006-05-24 成都理工大学 提高铅酸蓄电池板栅腐蚀抗力的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169596A (ja) * 2004-12-17 2006-06-29 Mitsubishi Materials Corp 蓄電池用Pb−Sn−Ca−Al系鉛合金シートの製造方法
JP2008210698A (ja) * 2007-02-27 2008-09-11 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2014507774A (ja) * 2011-05-11 2014-03-27 グリッドテンシャル エナジー インコーポレイテッド 改良されたバッテリーおよび組立方法
WO2016110907A1 (ja) * 2015-01-08 2016-07-14 パナソニックIpマネジメント株式会社 鉛蓄電池用正極格子およびその製造方法ならびに鉛蓄電池
JP2019067522A (ja) * 2017-09-28 2019-04-25 古河電池株式会社 鉛蓄電池用正極格子体の製造方法、蓄電池用正極格子体、及び鉛蓄電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4194573A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149303A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法
WO2023149304A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法

Also Published As

Publication number Publication date
JPWO2022030415A1 (ja) 2022-02-10
CN116157545A (zh) 2023-05-23
JP7296016B2 (ja) 2023-06-21
BR112023001414A2 (pt) 2023-02-14
EP4194573A1 (en) 2023-06-14
US20230178712A1 (en) 2023-06-08
AU2021322415A1 (en) 2023-03-23
EP4194573A4 (en) 2024-09-11

Similar Documents

Publication Publication Date Title
KR102158241B1 (ko) 전해 동박, 그것을 포함하는 집전체, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법
JP5850611B2 (ja) リチウムイオン二次電池負極集電体用の銅箔、リチウムイオン二次電池負極材及びリチウムイオン二次電池負極集電体選定方法。
JP5477288B2 (ja) 鉛蓄電池及びその製造方法
WO2022030415A1 (ja) 鉛合金、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム
US10290855B2 (en) Negative electrode for electrical device, and electrical device using the same
JP6648088B2 (ja) 二次電池負極集電体用圧延銅箔、それを用いた二次電池負極及び二次電池並びに二次電池負極集電体用圧延銅箔の製造方法
US20150303464A1 (en) Negative electrode for electrical device, and electrical device using the same
JP2004158433A (ja) 鉛蓄電池用基板およびそれを用いた鉛蓄電池
JP2023162291A (ja) 鉛合金箔及びその製造方法、鉛蓄電池用正極、鉛蓄電池、並びに蓄電システム
JP2010192162A (ja) 鉛蓄電池
JP5143923B2 (ja) 圧延銅箔及びそれを用いた二次電池
JP5145644B2 (ja) 鉛蓄電池
WO2009113166A1 (ja) 鉛蓄電池
JP4894211B2 (ja) 鉛蓄電池
JP3099328B2 (ja) 鉛蓄電池
US11469408B2 (en) Electrode and secondary battery
JP4364054B2 (ja) 鉛蓄電池
EP3690989A2 (en) Flexible battery
WO2004084331A1 (ja) 鉛蓄電池用格子体の製造方法および鉛蓄電池
JP2001202988A (ja) シール形鉛蓄電池
EP4253580A1 (en) Lead alloy, lead storage battery electrode, lead storage battery, and power storage system
JP5072511B2 (ja) 鉛蓄電池用格子
JP5600940B2 (ja) 鉛電池
JP2004139870A (ja) 鉛蓄電池用格子基板およびそれを用いた鉛蓄電池
US20190319311A1 (en) Lead acid battery with titanium core grids having titanium suboxide coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541515

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202327004437

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023001414

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023001414

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230125

WWE Wipo information: entry into national phase

Ref document number: 2021852353

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021322415

Country of ref document: AU

Date of ref document: 20210730

Kind code of ref document: A