WO2016104261A1 - 結合剤および水溶液 - Google Patents

結合剤および水溶液 Download PDF

Info

Publication number
WO2016104261A1
WO2016104261A1 PCT/JP2015/085129 JP2015085129W WO2016104261A1 WO 2016104261 A1 WO2016104261 A1 WO 2016104261A1 JP 2015085129 W JP2015085129 W JP 2015085129W WO 2016104261 A1 WO2016104261 A1 WO 2016104261A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
binder
polymer
group
salt
Prior art date
Application number
PCT/JP2015/085129
Other languages
English (en)
French (fr)
Inventor
郁雄 清水
隆史 山本
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to US15/528,805 priority Critical patent/US9976009B2/en
Priority to CN201580070592.7A priority patent/CN107109017B/zh
Priority to JP2016540087A priority patent/JP6027297B1/ja
Publication of WO2016104261A1 publication Critical patent/WO2016104261A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/1095Coating to obtain coated fabrics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/285Acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3054Ammonium sulfates

Definitions

  • the present invention relates to a binder containing a polymer having a hydroxyl group.
  • it is related with the binder containing the polymer which has a hydroxyl group useful as a binder of glass fiber or powder glass.
  • the present invention also relates to an aqueous solution containing a polymer having a hydroxyl group.
  • a heat-resistant molded body obtained by attaching a binder to glass fiber or the like and molding it into a mat shape is widely used as a heat insulating material for a residence, a warehouse, an apparatus, an apparatus, or the like.
  • a phenol-formaldehyde binder is widely used as the binder.
  • the phenol-formaldehyde binder has a problem that unreacted formaldehyde remains in the molded body and formaldehyde is released after construction of a house or the like. Therefore, binders that do not release formaldehyde have been studied.
  • Patent Document 1 discloses a binder for mineral fibers characterized by comprising a vinyl copolymer (A) having an organic acid (salt) group (a) and a hydroxyl group and having a weight average molecular weight of 500 to 100,000 kg. It is disclosed.
  • the mineral fiber binder (1) does not contain formaldehyde, and there is no release of formaldehyde from a heat insulating material formed by bonding mineral fibers with the binder to form a mat, (2 ) Excellent adhesion to mineral fibers compared to conventional phenolic resins and excellent resilience to compression of the heat insulating material.
  • the binders of the present invention those in the form of aqueous solutions or aqueous dispersions are environmentally compatible. It is disclosed that the present invention has an effect of exhibiting excellent physical properties such as adhesiveness even in a neutral region.
  • Patent Document 2 discloses a glass fiber binder comprising (1) a reaction product of a polymerizable carboxylic acid or anhydride, or a mixture thereof, and a hydroxy C 2 to C 8 alkyl acrylate or methacrylate, or a mixture thereof. And (2) a binder characterized in that it comprises an aqueous solution with an alkali metal salt of a phosphorus-containing acid. Patent Document 2 discloses that the binder has a low viscosity when uncured and has structural rigidity when cured.
  • Patent Document 3 includes at least two (co) polymer (A) having a carboxyl group or an acid anhydride group, a compound (B) having at least one hydroxyl group and at least one amino group, and water.
  • the neutralization rate of the carboxyl group derived from the carboxyl group or acid anhydride group in (A) is 36 to 70 equivalent%, and the neutralization is neutralized by the amino group in (B)
  • An aqueous binder for mineral fibers is disclosed.
  • the aqueous binder for mineral fibers includes (1) no formaldehyde, (2) excellent water resistance and hydrolysis resistance, (3) excellent adhesion of mineral fibers, (4) the binder. It is disclosed that the mineral fiber laminate formed by bonding is excellent in the resilience against compression and has the effect of.
  • Patent Document 4 includes an acrylic resin having an acid value of 350 mgKOH / g to 850 mgKOH / g, a crosslinking agent containing at least one dialkanolamine, a curing accelerator, and an ammonium salt of an inorganic acid.
  • the total number of moles of hydroxyl groups and imino groups in the crosslinking agent is 0.8 to 1.5 in terms of mole ratio of carboxyl groups in the acrylic resin, and depending on the volatile basic compound
  • An aqueous binder for inorganic fibers is disclosed, wherein the pH is adjusted to 6.0 to 8.0.
  • Patent Document 4 ammonium ions of the inorganic acid are volatilized as ammonia by heating in the binder curing step and remain in the binder as an acid, so that the alkali components eluted from the inorganic fibers are neutralized.
  • hydrolysis of the crosslinked portion in the binder can be suppressed, and various physical properties of the inorganic fiber heat-absorbing sound-absorbing material can be maintained for a long period of time.
  • Patent Document 5 discloses an inorganic fiber heat insulating sound absorbing material containing an acrylic resin having an acid value of 350 mgKOH / g to 850 mgKOH / g, a crosslinking agent containing at least one alkanolamine, and an ammonium salt of an inorganic acid.
  • An aqueous binder comprising 5.5 to 10 parts by mass of the inorganic acid ammonium salt based on a total of 100 parts by mass of the acrylic resin and the cross-linking agent, and the carboxyl in the acrylic resin
  • the total number of moles of hydroxyl group, amino group and imino group in the crosslinking agent is 0.8 to 1.5 with respect to the number of moles of the group, and the pH is 5.0 to 8 depending on the basic compound.
  • a water-based binder for an inorganic fiber heat-absorbing sound-absorbing material characterized by being adjusted to 0.0 is disclosed.
  • the above-mentioned aqueous binder for heat insulating material for inorganic fibers is a formaldehyde-free binder made of an acrylic resin, so that it cures without releasing formaldehyde and reduces the environmental load in exhaust gas and the like.
  • JP 2006-89906 A Japanese National Patent Publication No. 10-509485 JP 2012-136612 A JP 2007-146315 A International Publication No. 11/162277
  • the present invention has been made by paying attention to the above circumstances, has good storage stability, and exhibits excellent binding power of glass fiber and powdered glass (for glass fiber and powdered glass composites).
  • the object is to provide a binder capable of imparting good strength.
  • the binder contains a predetermined polymer and an ammonium salt of an inorganic acid, so that the binder has good storage stability, and glass fiber or powder.
  • the present inventors have found that the strength of the bonded body of glass can be improved, and have completed the present invention based on these findings.
  • the binder of the present invention comprises A binder comprising a polymer having a hydroxyl group and an ammonium salt of an inorganic acid
  • the polymer includes a structural unit derived from a monomer represented by the general formula (1) and a structural unit derived from a monomer containing a carboxylic acid (salt) group
  • the content of the structural unit derived from the monomer represented by the general formula (1) is 5 mol% to 40 mol% with respect to 100 mol% of the structural unit derived from all monomers
  • the content of the structural unit derived from the monomer containing the carboxylic acid (salt) group is 60 mol% to 95 mol% with respect to 100 mol% of the structural unit derived from all monomers, 2 mol% or more of the carboxylic acid (salt) group contained in the polymer is neutralized with a volatile base and / or a non-volatile base, 0 mol% to 35 mol% of carboxylic acid (salt) groups contained in the polymer are
  • the aqueous solution of the present invention comprises An aqueous solution containing a polymer having a hydroxyl group and an ammonium salt of an inorganic acid
  • the polymer includes a structural unit derived from a monomer represented by the general formula (1) and a structural unit derived from a monomer containing a carboxylic acid (salt) group
  • the content of the structural unit derived from the monomer represented by the general formula (1) is 5 mol% to 40 mol% with respect to 100 mol% of the structural unit derived from all monomers
  • the content of the structural unit derived from the monomer containing the carboxylic acid (salt) group is 60 mol% to 95 mol% with respect to 100 mol% of the structural unit derived from all monomers, 2 mol% or more of the carboxylic acid (salt) group contained in the polymer is neutralized with a volatile base and / or a non-volatile base, 0 mol% to 35 mol% of carboxylic acid (salt) groups
  • the bonded body of the present invention has a good storage stability, and the glass fiber and the powder glass can exhibit a good strength by being treated with the bonded body of the present invention. Therefore, the binder of the present invention can be usefully used as, for example, a binder for residential heat insulating materials.
  • the binder of the present invention includes a polymer having a hydroxyl group, and the polymer includes a structural unit derived from the monomer represented by the general formula (1).
  • the polymer which is an essential component of the binder of the present invention is also referred to as “polymer of the present invention”.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an organic group having 2 to 20 carbon atoms.
  • the upper limit of the number of carbon atoms contained in R 2 is preferably 12 or less, more preferably 8 or less, and particularly preferably 4 or less.
  • examples of R 2 include a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, and a substituted or unsubstituted ether group.
  • the above substituted alkylene group refers to a group in which part or all of the hydrogen atoms constituting the alkylene group are substituted with a substituent.
  • the substituent includes an aryl group, a hydroxyl group, an alkoxy group, an amino group, an ester group, an amide group, a carboxyl group, a sulfonic acid group, and the like.
  • the above-mentioned substituted aryl group refers to a group in which part or all of the hydrogen atoms constituting the aryl group are substituted with a substituent.
  • the substituent includes an alkyl group, a hydroxyl group, an alkoxy group, an amino group, an ester group, an amide group, a carboxyl group, a sulfonic acid group, and the like.
  • the above ether group includes a polyether group
  • the substituted ether group refers to a group in which part or all of the hydrogen atoms constituting the ether are substituted with a substituent.
  • the substituent includes an alkyl group, an aryl group, a hydroxyl group, an amino group, an ester group, an amide group, a carboxyl group, a sulfonic acid group, and the like.
  • R 2 in the general formula (1) include —CH 2 CH 2 — group, —CH (CH 3 ) CH 2 — group, —CH 2 CH (CH 3 ) — group, —C (CH 3 ) 2 — group, —CH 2 CH 2 CH 2 — group, —CH (C 2 H 5 ) CH 2 — group, —C (C 2 H 5 ) (CH 3 ) — group, —CH 2 CH 2 CH Alkylene group such as 2 CH 2 — group, —CH (C 4 H 9 ) CH 2 — group; arylene group such as phenylene group, naphthyl group; —CH 2 CH 2 OCH 2 CH 2 — group, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 — group, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 — group, —CH (CH 3 ) CH 2 OCH (CH 3 ) CH 2 — group, —CH (CH 3 ) CH 2 OCH (CH 3
  • the binder of the present invention When the binder of the present invention is used as a binder for glass fiber or powdered glass, the strength of the bonded body (referred to as glass fiber or powdered glass treated with the binder of the present invention) is improved, and moisture absorption deterioration since there is a tendency can be suppressed, the total number of carbon atoms contained in R 1 and R 2 is preferably 3 or more.
  • the “structural unit derived from the monomer represented by the general formula (1)” means a structural unit formed by polymerization of the monomer represented by the general formula (1). means. However, if the monomer represented by the general formula (1) has the same structure as the structural unit formed by polymerization, a method other than polymerizing the monomer represented by the general formula (1) Are also included in the “structural unit derived from the monomer represented by the general formula (1)”.
  • the structural unit derived from the monomer represented by the general formula (1) can be represented by the following general formula (2).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an organic group having 2 to 20 carbon atoms.
  • embodiments of R 1, R 2 in the general formula (2) preferred embodiment, aspects of the R 1, R 2 in the general formula (1), the same as the preferred embodiment.
  • the polymer of the present invention is a structural unit derived from all monomers (a monomer containing a structural unit derived from the monomer represented by the general formula (1) and a carboxylic acid (salt) group described later.
  • the structural unit derived from the monomer represented by the general formula (1) is 5 mol% or more and 40 mol% with respect to 100 mol% of the structural unit derived from the structural unit derived from the other monomer.
  • the content is preferably 10 mol% or more and 35 mol% or less, more preferably 15 mol% or more and 30 mol% or less.
  • the polymer of the present invention may contain one type of structural unit derived from the monomer represented by the general formula (1), or may contain two or more types.
  • the polymer of the present invention contains a structural unit derived from a monomer containing a carboxylic acid (salt) group.
  • the monomer containing a carboxylic acid (salt) group is a monomer containing a carboxyl group and / or a salt thereof and a polymerizable carbon-carbon double bond (however, represented by the general formula (1) above).
  • unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, ⁇ -hydroxyacrylic acid, ⁇ -hydroxymethylacrylic acid and derivatives thereof, and their Examples thereof include unsaturated dicarboxylic acids such as fumaric acid, maleic acid, methylene glutaric acid and itaconic acid, and salts thereof (which may be mono- or di-salts).
  • Examples of the salt include metal salts, ammonium salts, and organic amine salts.
  • Examples of the metal salt include salts of alkali metals such as sodium and potassium; alkaline earth metals such as calcium and magnesium; transition metals such as iron and aluminum;
  • Examples of the organic amine salt include salts of alkylamines such as methylamine and n-butylamine; alkanolamines such as monoethanolamine, diethanolamine, triethanolamine and dipropanolamine; polyamines such as ethylenediamine and diethylenetriamine;
  • a structural unit derived from a monomer containing a carboxylic acid (salt) group is a structural unit formed by polymerizing a monomer containing a carboxylic acid (salt) group, specifically, The carbon-carbon double bond of the monomer containing a carboxylic acid (salt) group is a single bond.
  • the monomer containing a carboxylic acid (salt) group is acrylic acid (CH 2 ⁇ CHCOOH)
  • the structural unit derived from the monomer containing a carboxylic acid (salt) group is “—CH 2 —CH ( COOH)-”.
  • the structural unit derived from a monomer containing a carboxylic acid (salt) group is 60 mol% or more and 95 mol% or less with respect to 100 mol% of the structural unit derived from all monomers. Preferably, it has 65 mol% or more and 90 mol% or less, more preferably 70 mol% or more and 85 mol% or less.
  • the polymer of this invention may contain 1 type of structural units derived from the monomer containing a carboxylic acid (salt) group, and may contain 2 or more types.
  • the strength of the bonded body when the binder of the present invention is used as a binder for glass fiber or powdered glass is increased. It tends to improve.
  • the polymer of the present invention contains a carboxylic acid (salt) group, but 2 mol% or more of the carboxylic acid (salt) group contained in the polymer molecule of the polymer of the present invention is a volatile base and / or Neutralized with a non-volatile base. That is, 2 mol% or more is a carboxylic acid base neutralized with a volatile base or a non-volatile base with respect to 100 mol% of the carboxylic acid (salt) group contained in the polymer of the present invention.
  • 2 mol% or more and 100 mol% or less of the carboxylic acid (salt) group contained in the polymer molecule is neutralized with a volatile base and / or a non-volatile base, more preferably 5 mol%.
  • the volatile base means a base having a boiling point of less than 100 ° C. at 1 atmosphere.
  • the nonvolatile base means a base having a boiling point of 100 ° C. or higher at 1 atm.
  • the volatile base include ammonia, monomethylamine, dimethylamine, trimethylamine, isopropylamine, n-butylamine, triethylamine and the like. Only one type of volatile base may be used, or two or more types may be used.
  • Non-volatile bases include, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide; alkali metal such as sodium bicarbonate and sodium carbonate.
  • Examples thereof include carbonates; alkanolamines such as monoethanolamine and diethanolamine; tributylamine; cyclohexylamine; Only one type of non-volatile base may be used, or two or more types may be used.
  • Examples of the carboxylate base neutralized with a volatile base include —COONH 4 , and particularly preferred examples of the carboxylate base neutralized with a nonvolatile base include —COONa, —COOK, and —COONH. 2 (CH 2 CH 2 OH) 2 , etc. are exemplified and particularly preferred.
  • the carboxylic acid base of the polymer of the present invention may be neutralized with one kind of base (volatile base or nonvolatile base), or two or more kinds of bases (volatile base and / or nonvolatile base). A neutral base).
  • the polymer of the present invention it is preferable that 0 mol% to 35 mol% of the carboxylic acid (salt) group contained in the polymer is neutralized with a nonvolatile base (that is, the polymer of the present invention has 0 mol% to 35 mol% is preferably neutralized with a non-volatile base with respect to 100 mol% of the carboxylic acid (salt) group contained), and 0 mol% to 30 mol% is a non-volatile base. More preferably, it is neutralized, and more preferably 0 to 20 mol% is neutralized with a non-volatile base.
  • 0 mol% to 100 mol% of the carboxylic acid (salt) groups contained in the polymer are preferably neutralized with a volatile base (that is, the polymer of the present invention has 0 mol% to 100 mol% is preferably neutralized with a volatile base with respect to 100 mol% of the carboxylic acid (salt) group contained), and 0 mol% to 99 mol% is a volatile base. More preferably, it is neutralized, more preferably 0 to 98 mol% is neutralized with a volatile base, and 0 to 93 mol% is neutralized with a volatile base. It is more preferable that 0 mol% to 88 mol% is neutralized with a volatile base.
  • the polymer of the present invention is a monomer other than the monomer represented by the general formula (1) and a monomer containing a carboxylic acid (salt) group (hereinafter also referred to as “other monomer”). It may have a structural unit derived from Other monomers are not particularly limited, and specific examples include 3-allyloxy-2-hydroxypropanesulfonic acid, (meth) allylsulfonic acid, isoprenesulfonic acid, vinylsulfonic acid, styrenesulfonic acid, and the like.
  • Sulfonic acid monomers such as salts of vinyl pyridine, vinyl imidazole, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethylaminopropyl acrylate, aminoethyl methacrylate, diallylamine, diallyldimethylamine, and quaternized products and salts thereof
  • Amino group-containing monomers such as N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, N-vinyl-N-methylformamide, N-vinyl-N-methylacetamide, N-vinyloxazolidone and the like
  • Amide monomers such as (meth) acrylamide, N, N-dimethylacrylamide, N-isopropylacrylamide; 3- (meth) allyloxy-1,2-dihydroxypropane, 3-allyloxy-1,2- Unsaturated alcohol monomers such as dihydroxypropane, (meth)
  • Examples of the salt include the same salts as those in the monomer containing the carboxylic acid (salt) group.
  • the structural unit derived from the other monomer is a structural unit formed by polymerization of the other monomer, specifically, the carbon-carbon double of the other monomer.
  • the structure is a single bond.
  • the other monomer is butyl acrylate (CH 2 ⁇ CHCOOC 4 H 9 )
  • the structural unit derived from the other monomer is “—CH 2 —CH (COOC 4 H 9 ) —”. Can be represented.
  • the polymer of the present invention preferably has 0 to 35 mol% of structural units derived from other monomers with respect to 100 mol% of structural units derived from all monomers. More preferably, it has more than mol% and 25 mol% or less, and more preferably has 0 mol% or more and 15 mol% or less.
  • the polymer of the present invention may contain one type of structural unit derived from another monomer, or may contain two or more types of structural units.
  • Each structural unit in the polymer of the present invention may be present randomly or may be present regularly such as in a block form.
  • the polymer of the present invention has a weight-average molecular weight because the strength of the bonded body when the binder of the present invention is used as a binder for glass fiber or powdered glass tends to be improved and moisture absorption deterioration can be suppressed. 500 or more and 100,000 or less, preferably 1500 or more and 15000 or less, and more preferably 2000 or more and 10,000 or less. In addition, the said weight average molecular weight can be measured with the measuring method mentioned later.
  • the polymer of the present invention includes a step of polymerizing the monomer represented by the general formula (1), a monomer containing a carboxylic acid (salt) group, and another monomer as necessary. It is preferable to manufacture by.
  • the monomer represented by the general formula (1), the monomer containing a carboxylic acid (salt) group, and other monomers (hereinafter also referred to as “all monomers”). .) Is preferably 5 mol% to 40 mol%, and preferably 10 mol% to 35 mol%, with respect to 100 mol% of the total amount used. More preferably, it is more preferably 15 mol% to 30 mol%.
  • the amount of the monomer containing a carboxylic acid (salt) group in the above step is preferably 60 mol% to 95 mol% with respect to 100 mol% of the total amount of all monomers, and 65 mol % To 90 mol% is more preferable, and 70 mol% to 85 mol% is still more preferable.
  • the amount of other monomers used in the above process is preferably 0 mol% to 35 mol%, preferably 0 mol% to 25 mol%, based on 100 mol% of the total amount of all monomers used. More preferred is 0 mol% to 15 mol%.
  • the polymerization in the polymerization step is performed by various conventionally known methods such as solution polymerization method, bulk polymerization, suspension polymerization method, reverse phase suspension polymerization method, cast polymerization method, thin film polymerization method, spray polymerization method, etc. Can be adopted. Although not particularly limited, solution polymerization is preferred.
  • the polymerization step can be carried out either batchwise or continuously.
  • a polymerization initiator is preferably used when performing polymerization.
  • the polymerization initiator include hydrogen peroxide; persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; dimethyl 2,2′-azobis (2-methylpropionate), 2,2′- Azobis (isobutyronitrile), 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] hydrate Azo compounds such as 2,2'-azobis [2- (2-imidazolin-2-yl) propane], 2,2'-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride
  • Organic peroxides such as benzoyl peroxide, lauroyl peroxide, peracetic acid, di-t-butyl peroxide and cumene hydroperoxide are preferred
  • the amount of the polymerization initiator used is preferably 0.1 g or more and 10 g or less, more preferably 0.1 g or more and 7 g or less with respect to 1 mol of the monomer (total monomer) used. More preferably, it is 0.1 g or more and 5 g or less.
  • a chain transfer agent may be used as necessary.
  • chain transfer agents include thiol chain transfer agents such as mercaptoethanol, thioglycolic acid, mercaptopropionic acid, and n-dodecyl mercaptan; halogens such as carbon tetrachloride, methylene chloride, bromoform, and bromotrichloroethane.
  • Secondary alcohols such as isopropanol and glycerin; hypophosphorous acid (salts) such as hypophosphorous acid and sodium hypophosphite (including hydrates thereof); phosphorous acid and sodium phosphite Phosphorous acid (salt) such as sodium sulfite, potassium sulfite and the like; bisulfite (salt) such as sodium hydrogen sulfite and potassium hydrogen sulfite; dithionic acid (salt) such as sodium dithionite; And pyrosulfurous acid (salt) such as potassium sulfite.
  • the said chain transfer agent may be used independently and may be used with the form of 2 or more types of mixtures.
  • the amount of the chain transfer agent used is preferably 0 g or more and 20 g or less, more preferably 1 g or more and 15 g or less, with respect to 1 mol of the monomer (total monomer) used. More preferably, it is 1 g or more and 10 g or less.
  • heavy metal ions may be used for the purpose of promoting the reaction.
  • the heavy metal ion means a metal ion having a specific gravity of 4 g / cm 3 or more.
  • the heavy metal ions are not particularly limited as long as they are included in the form of ions. However, it is preferable to use a method using a solution in which a heavy metal compound is dissolved because the handleability is excellent.
  • heavy metal compound examples include molle salt (Fe (NH 4 ) 2 (SO 4 ) 2 ⁇ 6H 2 O), ferrous sulfate / pentahydrate, ferrous chloride, ferric chloride, manganese chloride, and the like. Illustrated.
  • the amount of the heavy metal ion used is preferably 0 ppm or more and 100 ppm or less, more preferably 0 ppm or more and 50 ppm or less, based on the total amount of the polymerization reaction solution.
  • the solvent preferably contains water, more preferably contains 50% by mass or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less, based on the total amount of the solvent.
  • Solvents usable in the polymerization step include water; lower alcohols such as methanol, ethanol and isopropyl alcohol; lower ketones such as acetone, methyl ethyl ketone and diethyl ketone; ethers such as dimethyl ether and dioxane; amides such as dimethylformaldehyde.
  • These solvents may be used alone or in the form of a mixture of two or more.
  • the amount of the solvent used is preferably 40% by mass to 200% by mass with respect to 100% by mass of the monomer. More preferably, it is 45 mass% or more, More preferably, it is 50 mass% or more. Moreover, More preferably, it is 180 mass% or less, More preferably, it is 150 mass% or less. If the amount of the solvent used is less than 40% by mass, the molecular weight of the resulting polymer may be increased. If it exceeds 200% by mass, the concentration of the obtained polymer will be low, and the cost for storage and the like will be high. There is a risk.
  • the polymerization in the above polymerization step is usually preferably performed at 0 ° C. or higher, and is preferably performed at 150 ° C. or lower. More preferably, it is 40 degreeC or more, More preferably, it is 60 degreeC or more, Most preferably, it is 80 degreeC or more. Moreover, More preferably, it is 120 degrees C or less, More preferably, it is 110 degrees C or less.
  • the polymerization temperature does not necessarily need to be kept almost constant in the polymerization reaction.
  • the polymerization is started from room temperature, the temperature is raised to a set temperature with an appropriate temperature increase time or rate, and then the set temperature is increased. You may make it hold
  • the polymerization time in the polymerization step is not particularly limited, but is preferably 30 minutes to 420 minutes, more preferably 45 minutes to 390 minutes, still more preferably 60 minutes to 360 minutes, and most preferably 90 minutes to 300 minutes.
  • the term “polymerization time” refers to the time during which a monomer is added unless otherwise specified in the case of batch polymerization.
  • the acid group contained in the monomer during polymerization may not be neutralized, or part or all of it may be neutralized.
  • the carboxylic acid (salt) of the monomer containing the carboxylic acid (salt) group 0 mol% to 35 mol% of carboxylic acid base neutralized with a non-volatile base and 0 mol% of carboxylic acid base neutralized with a volatile base with respect to 100 mol% of the group It is preferably ⁇ 100 mol%.
  • the polymerization step may be performed with a low degree of neutralization (including a neutralization degree of 0 mol%), and may be adjusted to a desired degree of neutralization in the neutralization step.
  • the pressure in the reaction system in the polymerization step may be any of normal pressure (atmospheric pressure), reduced pressure, and increased pressure, but in terms of molecular weight of the resulting polymer, the reaction may be performed under normal pressure or reaction. It is preferable to carry out under pressure while the system is sealed. Moreover, it is preferable to carry out under a normal pressure (atmospheric pressure) at the point of equipment, such as a pressurization apparatus, a pressure reduction apparatus, a pressure-resistant reaction container, and piping.
  • the atmosphere in the reaction system may be an air atmosphere or an inert atmosphere. For example, the inside of the system may be replaced with an inert gas such as nitrogen before the start of polymerization.
  • the polymer of the present invention is optional, but may be produced including steps other than the above polymerization step.
  • steps other than the above polymerization step for example, an aging step, a neutralization step, a deactivation step of a polymerization initiator or a chain transfer agent, a dilution step, a drying step, a concentration step, a purification step, and the like can be mentioned.
  • the binder of the present invention essentially contains the polymer of the present invention and an ammonium salt of an inorganic acid.
  • the binder of the present invention preferably contains 1% by mass to 100% by mass of the polymer of the present invention and the ammonium salt of an inorganic acid, based on 100% by mass of the binder of the present invention. More preferably, it is contained in an amount of 97% by mass, more preferably 30% by mass to 95% by mass. By containing in the said range, it exists in the tendency which the intensity
  • ammonium salt of the inorganic acid examples include ammonium sulfate, ammonium phosphate, ammonium phosphite, ammonium hypophosphite, and ammonium nitrate.
  • the ammonium salt of the inorganic acid is preferably an ammonium salt of an acid stronger than acrylic acid.
  • the reason why the strength of the glass fiber or powder glass composite treated with the binder of the present invention is improved by including an ammonium salt of an inorganic acid is not clear, but is estimated as follows. Under the treatment with a binder (preferably under heating), (1) ammonia is volatilized from the ammonium salt of the inorganic acid to produce an inorganic acid. (2) The inorganic acid reacts with the carboxyl base of the polymer of the present invention to produce an inorganic acid salt, and the carboxylate base of the polymer of the present invention becomes an unneutralized carboxylic acid group. When the inorganic acid salt is an ammonium salt of an inorganic acid, the above (1) and (2) are further repeated.
  • the binder of the present invention preferably contains 0.1 mol% or more and 20 mol% or less of the inorganic acid ammonium salt with respect to 100 mol% of the carboxyl group contained in the polymer of the present invention. More preferably, it is contained in an amount of not less than 15 mol% and not more than 15 mol%, and more preferably not less than 1.0 mol% and not more than 12 mol%.
  • the binder of the present invention is preferably produced by mixing the polymer of the present invention, an ammonium salt of an inorganic acid, and other components as necessary.
  • the binder of the present invention can be produced by any method such as mixing an ammonium salt of an acid to produce the binder of the present invention simultaneously with the polymer of the present invention.
  • the binder of the present invention may contain only the polymer of the present invention and an inorganic acid ammonium salt, but it is to be bonded when the binder of the present invention is used as a binder for glass fibers or powdered glass. Since the mechanical strength of the body tends to be further improved, a phosphorus-containing compound may be included. The phosphorus-containing compound is considered to have an effect of promoting the crosslinking of the polymer of the present invention.
  • Phosphorus-containing compounds include acid groups such as hypophosphorous acid (salt), phosphorous acid (salt), phosphoric acid (salt), pyrophosphoric acid (salt), polyphosphoric acid (salt), and organic phosphoric acid (salt) Examples of the compound (including these hydrates); organophosphorus compounds such as trimethylphosphine, triphenylphosphine, triphenylphosphine oxide; When the binder of this invention contains a phosphorus containing compound, these may be included 1 type and may be included 2 or more types. Examples of the salt include those described above.
  • the content of the phosphorus-containing compound in the binder of the present invention is preferably 0% by mass to 20% by mass, more preferably 100% by mass of the polymer (the polymer of the present invention) contained in the binder of the present invention. May be 0.1 mass% to 10 mass%, more preferably 0.5 mass% to 7 mass%.
  • the binder of the present invention may contain a curing accelerator other than the phosphorus-containing compound.
  • curing accelerators other than phosphorus-containing compounds include proton acids (sulfuric acid, carboxylic acid, carbonic acid, etc.) and salts thereof (metal (alkali metal, alkaline earth metal, transition metal, 2B group, 4A group, 4B group, 4B group, 5B Group, etc.) salts, ammonium salts, etc.), metal (above) oxides, chlorides, hydroxides, alkoxides, etc., which may be used alone or in combination of two or more. May be.
  • the binder of the present invention may contain, for example, 0% by mass to 20% by mass of a curing accelerator other than the phosphorus-containing compound.
  • the binder of the present invention may contain a solvent.
  • the solvent may be an organic solvent, but preferably contains water, and 50% by mass or more is preferably water based on the total amount of the solvent.
  • the solvent is preferably contained in an amount of 0 to 99% by mass, more preferably 3 to 95% by mass, more preferably 5 to 5% by mass with respect to 100% by mass of the binder of the present invention. More preferably, the content is 90% by mass.
  • the binder of the present invention is optional, but since the mechanical strength of the bonded body tends to be improved when the binder of the present invention is used as a binder for glass fiber or powdered glass, a crosslinking agent is used. May be included.
  • the molecular weight is preferably 1000 or less, more preferably 500 or less, and particularly preferably 300 or less. preferable.
  • the crosslinking agent include compounds having two or more hydroxyl groups and / or amino groups in one molecule.
  • Preferred crosslinking agents include, for example, divalent alcohols (alcohols having two hydroxyl groups in the molecule) such as ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, triethylene glycol, and polyalkylene glycol; glycerin, polyglycerin, and erythritol Trihydric or higher alcohols such as xylitol and sorbitol (alcohols having three or more hydroxyl groups in the molecule); alkanolamines such as monoethanolamine, diethanolamine and triethanolamine; polyamines such as ethylenediamine and diethylenetriamine; alkylene oxides on the polyamine And the like.
  • divalent alcohols alcohols having two hydroxyl groups in the molecule
  • glycerin, polyglycerin, and erythritol Trihydric or higher alcohols such as xylitol and sorbitol
  • alkanolamines such as monoethanolamine, di
  • the binder of the present invention contains 0 to 50 mol% of the above crosslinking agent with respect to 100 mol% of the acid groups contained in the polymer (polymer of the present invention) contained in the binder of the present invention. Preferably, it contains 0 mol% to 45 mol%, more preferably 0 mol% to 40 mol%.
  • the binder of the present invention includes inorganic fibers such as glass fibers, rock wool and carbon fibers; inorganic particles (inorganic powders) such as glass particles and mineral particles; organic fibers such as wool, cellulose, hemp, nylon and polyester; It can be used as a binder for organic particles such as nylon fine particles and polyester fine particles (organic powder); Preferably, it can be used as a binder for glass fibers or powdered glass.
  • the treatment with the binder of the present invention requires a step of bringing the binder of the present invention into contact with a target substance (bonded substance) such as glass fiber or powdered glass.
  • a target substance bonded substance
  • the binder of the present invention contains a solvent
  • the above step is carried out as it is or after adjusting the concentration or the like as desired, and (i) the binder of the present invention is impregnated, or (ii) )
  • the binder of the present invention may be heated and melted to be brought into contact with the substance to be bonded.
  • the above (i) or (ii) is preferable because it is easy to adjust the amount of the binder of the present invention to be added to the bound substance.
  • the amount of the binder of the present invention added to the bound substance is such that the solid content of the binder of the present invention is 100% by mass of the bound substance.
  • the content is preferably 1% by mass to 40% by mass, more preferably 1% by mass to 30% by mass, and still more preferably 1% by mass to 15% by mass.
  • step (i) the “addition amount of the binding agent of the present invention to the substance to be bonded in the step of contacting with the substance to be bonded” means that in step (i) above, the substance actually adheres to the substance to be bonded after impregnating the substance to be bonded. In the step (ii), the amount of the binder actually adhered to the bound substance after being sprayed on the bound substance in the step (ii).
  • the treatment with the binder of the present invention includes a step of heat-treating the bonded body obtained in the contacting step.
  • the crosslinking reaction is promoted and the strength of the bonded body tends to be improved.
  • the heat treatment step is preferably performed at 100 to 400 ° C, more preferably at 120 to 350 ° C, and further preferably at 150 to 300 ° C.
  • the treatment with the binder of the present invention may include a step of drying the bonded body obtained in the step of contacting.
  • the drying step may be performed under normal pressure or under reduced pressure.
  • drying is performed by heating, the conditions are the same as those in the heat treatment step.
  • the treatment with the binder of the present invention may include a step of curing the conjugate obtained in the step of contacting.
  • Glass fiber bonded body of the present invention and powdered glass bonded body of the present invention are bonded to the glass fiber and / or the glass powder of the present invention by, for example, the method described in the above-mentioned section “How to use the binder of the present invention”. It can manufacture by processing with an agent (it is also called the manufacturing method I).
  • the glass fiber bonded body of the present invention and the powdered glass bonded body of the present invention may contain the polymer of the present invention (ammonium salt of inorganic acid may or may not be included) in glass fiber and / or glass powder. Or an ammonium salt of an inorganic acid (step iii), and a step of bringing the composition obtained in step iii into contact with the remaining one (step iv). It may be included and manufactured (also referred to as manufacturing method II).
  • the ratio of the polymer of the present invention added in step iii and step iv to the ammonium salt of the inorganic acid is such that the molar ratio of the inorganic ammonium salt to the carboxyl group contained in the polymer of the present invention is 100 mol. : 0.1 mol to 100 mol: 20 mol is preferable, 100 mol: 0.5 mol to 100 mol: 15 mol is more preferable, 100 mol: 1.0 mol to 100 mol: 12 mol More preferably.
  • the production method II may include an arbitrary step such as a step of heat-treating, a step of drying, or a step of curing the coupled body obtained in step iv.
  • the conditions of the heat treatment step, the drying step, and the curing step are the same as those described in the above-mentioned section “How to Use the Binder of the Present Invention”.
  • the binder of the present invention Since the binder of the present invention has good storage stability, the binder of the present invention can be applied to uses other than the binder. For example, it can be applied to various aqueous applications.
  • the content of the structural unit derived from the monomer represented by the general formula (1) is 100 mol% of the structural unit derived from all the monomers.
  • the content of the structural unit derived from the monomer containing the carboxylic acid (salt) group is 60 mol% with respect to 100 mol% of the structural unit derived from all monomers.
  • the carboxylic acid (salt) group contained in the polymer is neutralized with a volatile base and / or a non-volatile base, and the carboxylic acid (salt) group contained in the polymer is 0 mol% to 35 mol% of the acid (salt) group is neutralized with a non-volatile base, 0 mol% to 100 mol% of carboxylic acid (salt) groups contained in the coalescence are neutralized with a volatile base, and the aqueous solution contains 20 mass% or more and 99.9 mass% or less of water.
  • the aqueous solution of the present invention is one of the preferred embodiments of the present invention.
  • the preferred form of the aqueous solution of the present invention is the same as the binder of the present invention unless otherwise specified.
  • the effective component of the binder was calculated from the added amount of the aqueous solution after the completion of polymerization and pure water, phosphorus-containing compound, ammonium salt of inorganic acid and base added to the aqueous polymer solution.
  • the active ingredient refers to the total amount of the polymer and the phosphorus-containing compound.
  • the base volatilized at the time of curing. Therefore, the active ingredient was calculated assuming that all the carboxyl group salts of the volatile base were carboxylic acid groups.
  • ⁇ Content analysis of phosphorus-containing compounds (ion chromatography analysis)> The content of the phosphorus-containing compound was analyzed by ion chromatography under the following conditions.
  • Device 762 Interface manufactured by Metrohm Detector: 732 IC Detector made by Metrohm Ion analysis method: suppressor method
  • Eluent NaHCO3 water (2 g diluted to 2000 g with water) Flow rate: 1.0 mL / min.
  • the cured binder test piece was prepared as follows. (I) Pure water was added to the binder to adjust the active ingredient to 35%. (Ii) Add the binder obtained in (i) above to glass beads having a particle size of 0.35 to 0.50 mm so that the active ingredient is 7.5% of the weight of the glass beads and mix well. did. (Iii) The mixture obtained in (ii) is pressed into a 140 mm ⁇ 20 mm ⁇ 5 mm mold that has been subjected to mold release treatment, molded, dried in an oven at 215 ° C. for 60 minutes, transferred to a desiccator and cooled for 30 minutes. I got a piece.
  • test piece of the cured binder obtained by the above method was allowed to stand for 150 minutes in a constant temperature and humidity chamber at 60 ° C. and 80% RH. Thereafter, it was taken out and dried at 23 ° C. and 50% RH for 1 hour. The mechanical strength of the test piece after drying was measured, and hydrolysis resistance was evaluated from the strength retention.
  • the dropping of each component was continuously performed at a constant dropping rate except for 45% SHP. After the completion of the 80% AA dropwise addition, the reaction solution was maintained at the boiling point reflux state (aged) for another 30 minutes to complete the polymerization.
  • the obtained polymer aqueous solution (2) had a solid content of 65.0%, a weight average molecular weight (Mw) of 3500, and a SHP content of 1.0% by mass with respect to 100% by mass of the polymer.
  • the dropping of each component was continuously performed at a constant dropping rate except for 45% SHP.
  • the reaction solution was maintained at the boiling point reflux state (aged) for another 30 minutes to complete the polymerization.
  • 200.8 g of an 80 mass% diethanolamine aqueous solution (hereinafter referred to as “80% DEA”) 203.3 g (33 mol% neutralized acrylic acid) and 45% SHP 35.3 g were added dropwise to the reaction solution with stirring.
  • the obtained polymer aqueous solution (3) had a solid content of 53.0%, a weight average molecular weight (Mw) of 8200, and an SHP content of 3.6% by mass with respect to 100% by mass of the polymer.
  • 80% AA that is, 4.59 mol
  • HEMA that is, 1.15 mol
  • the polymer aqueous solution (5) obtained by charging 38.51 g of 45% SHP was 56.0% in solid content, the weight average molecular weight (Mw) was 5600, and the content of SHP was polymer. It was 3.7% by mass with respect to 100% by mass.
  • Example 1 25.54 g of the polymer aqueous solution (1) obtained in Production Example 1; 0.98 g of 45% SHP; 0.86 g of 25% aqueous ammonia (10 mol% neutralized portion of acrylic acid); 2.12 g of pure water; 50 g (3 mol% relative to the carboxyl group) was well stirred to obtain a binder (1) having an active ingredient of 50%.
  • the binder (1) has a pH of 3.5, the polymer contained in the binder (1) has a weight average molecular weight (Mw) of 3500, and the SHP content is 4.0% by mass with respect to 100% by mass of the polymer. It was. It was 16.6 MPa when the mechanical strength of the test piece created by the above-mentioned method was evaluated.
  • the weight average molecular weight (Mw) after storing the binder (1) in a constant temperature layer at 50 ° C. for 30 days was 4100, and the increase rate of the weight average molecular weight (Mw) was 17%.
  • the results are shown in Table 1.
  • Example 2 25.54 g of polymer aqueous solution (1) obtained in Production Example 1; 0.98 g of 45% SHP; 1.72 g of 25% aqueous ammonia (20 mol% neutralized portion of acrylic acid); 1.25 g of pure water; 50 g (3 mol% relative to the carboxyl group) was well stirred to obtain a binder (2) having an active ingredient of 50%.
  • the pH of the binder (2) is 4.0, the weight average molecular weight (Mw) of the polymer contained in the binder (2) is 3500, and the SHP content is 4.0% by mass with respect to 100% by mass of the polymer. It was. It was 16.5 MPa when the mechanical strength of the test piece created by the above-mentioned method was evaluated.
  • the weight average molecular weight (Mw) after storing the binder (2) in a constant temperature layer at 50 ° C. for 30 days was 3800, and the increase rate of the weight average molecular weight (Mw) was 9%.
  • the results are shown in Table 1.
  • Example 3 Polymer aqueous solution (2) obtained in Production Example 2 22.41 g, 45% SHP 0.97 g, 25% ammonia aqueous solution 3.02 g (35 mol% neutralized content of acrylic acid), pure water 3.11 g, ammonium sulfate 0.1. 50 g (3 mol% relative to the carboxyl group) was sufficiently stirred to obtain a binder (3) having an active ingredient of 50%.
  • the pH of the binder (3) is 4.5, the weight average molecular weight (Mw) of the polymer contained in the binder (3) is 3500, and the SHP content is 4.0% by mass with respect to 100% by mass of the polymer. It was.
  • Example 4 25.54 g of polymer aqueous solution (1) obtained in Production Example 1; 0.98 g of 45% SHP; 0.43 g of 25% aqueous ammonia solution (5 mol% neutralized portion of acrylic acid); 2.55 g of pure water; 50 g (3 mol% relative to the carboxyl group) was thoroughly stirred to obtain a binder (4) having an active ingredient of 50%.
  • the pH of the binder (4) is 3.0
  • the weight average molecular weight (Mw) of the polymer contained in the binder (4) is 3500
  • the SHP content is 4.0% by mass with respect to 100% by mass of the polymer. It was.
  • Example 6 17.16 g of the polymer aqueous solution (2) obtained in Production Example 2; 0.77 g of 45% SHP; 5.94 g of 25% aqueous ammonia (90 mol% neutralized acrylic acid); 0.36 g of pure water; 77 g (6 mol% relative to the carboxyl group) was well stirred to obtain a binder (6) having an active ingredient content of 46%.
  • the binder (6) has a pH of 6.3, the polymer contained in the binder (6) has a weight average molecular weight (Mw) of 3500, and the SHP content is 4.0% by mass with respect to 100% by mass of the polymer. It was.
  • Example 7 16.79 g of the polymer aqueous solution (2) obtained in Production Example 2; 0.75 g of 45% SHP; 6.13 g of 25% aqueous ammonia (95 mol% neutralized portion of acrylic acid); 0.58 g of pure water; 75 g (6 mol% relative to the carboxyl group) was stirred well to obtain a binder (7) having an active ingredient of 45%.
  • the pH of the binder (7) is 7.0
  • the weight average molecular weight (Mw) of the polymer contained in the binder (7) is 3500
  • the SHP content is 4.0% by mass with respect to 100% by mass of the polymer. It was.
  • the weight average molecular weight (Mw) after storing the binder (C1) in a constant temperature layer at 50 ° C. for 30 days was 4750, and the increase rate of the weight average molecular weight (Mw) was 36%.
  • the results are shown in Table 1.
  • the weight average molecular weight (Mw) after storing the binder (C2) in a constant temperature layer at 50 ° C. for 30 days was 3500, and no increase in the weight average molecular weight (Mw) was observed.
  • the results are shown in Table 1.
  • the binder (C3) has a pH of 6.3, the polymer contained in the binder (C3) has a weight average molecular weight (Mw) of 8200, and the SHP content is 3.6% by mass with respect to 100% by mass of the polymer. It was.
  • Example 8 Polymer aqueous solution (4) obtained in Production Example 4 37.71 g, 45% SHP 0.03 g, 25% aqueous ammonia solution 1.18 g (10 mol% neutralized acrylic acid), 25% aqueous ammonium sulfate solution 0.91 g (acrylic) 1 mol% with respect to the acid) and 0.17 g of pure water were thoroughly stirred to obtain a binder (8) having an active ingredient of 50%.
  • the weight average molecular weight (Mw) of the polymer contained in the binder (8) was 5600, and the SHP content was 3.7% by mass with respect to 100% by mass of the polymer.
  • Mw weight average molecular weight
  • Example 9 35.71 g of the aqueous polymer solution (5) obtained in Production Example 5, 1.23 g of 25% aqueous ammonia solution (10 mol% neutralized portion of acrylic acid), 2.86 g of 25% aqueous ammonium sulfate solution (1 mol% based on acrylic acid) Min) and 0.20 g of pure water were thoroughly stirred to obtain a binder (9) having an active ingredient of 50%.
  • the weight average molecular weight (Mw) of the polymer contained in the binder (9) was 5600, and the SHP content was 3.6% by mass with respect to 100% by mass of the polymer. It was 11.0 MPa when the mechanical strength of the test piece created by the above-mentioned method was evaluated.
  • the binder of the present invention can be usefully used as, for example, a binder for a heat insulating material for a house.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 良好な保存安定性を有し、優れたガラス繊維や粉末ガラスの結合力を発現する(ガラス繊維や粉末ガラスの結合体に良好な強度を付与する)ことが可能な結合剤を提供することを目的とする。 本発明の結合剤は、水酸基を有する重合体と、無機酸のアンモニウム塩とを含む結合剤であって、該重合体は、特定の一般式(1)で表される単量体に由来する構造単位とカルボン酸(塩)基を含む単量体に由来する構造単位とを含み、該一般式(1)で表される単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し5モル%~40モル%であり、該カルボン酸(塩)基を含む単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し60モル%~95モル%であり、該重合体に含まれるカルボン酸(塩)基の2モル%以上が揮発性の塩基および/または不揮発性の塩基で中和されており、該重合体に含まれるカルボン酸(塩)基の0モル%~35モル%が不揮発性の塩基で中和されており、該重合体に含まれるカルボン酸(塩)基の0モル%~100モル%が揮発性の塩基で中和されている。

Description

結合剤および水溶液
 本発明は、水酸基を有する重合体を含む結合剤に関する。より詳しくは、ガラス繊維や粉末ガラスの結合剤として有用な、水酸基を有する重合体を含む結合剤に関する。また、本発明は、水酸基を有する重合体を含む水溶液に関する。
 ガラス繊維等に結合剤を付着させ、マット状に成形した耐熱性成形体が、住居や倉庫、装置や機器等の断熱材等として広く使用されている。上記結合剤としては、フェノール-ホルムアルデヒド結合剤が広く使用されている。しかし、上記フェノール-ホルムアルデヒド結合剤は、未反応のホルムアルデヒドが成形体に残留し、住居等の施工後にホルムアルデヒドが放出されるという問題がある。よって、ホルムアルデヒドを放出することがない結合剤が検討されている。
 例えば、特許文献1には、有機酸(塩)基(a)及び水酸基を有し、重量平均分子量が500~100000 のビニル共重合体(A)からなることを特徴とする鉱物繊維用バインダーが開示されている。特許文献1には、上記鉱物繊維用バインダーが(1)ホルムアルデヒドを含有せず、また該バインダーで鉱物繊維を接着してマット状に成形してなる断熱材からはホルムアルデヒドの放出がない、(2)従来のフェノール樹脂と比較して鉱物繊維に対する接着性、および上記断熱材の圧縮に対する復元性に優れる、(3)本発明のバインダーのうち、水溶液または水性分散体の形態のものは環境適応性に優れ、また回収使用も容易である、(4)中性領域においても接着性等良好な物性を示す、なる効果を奏する旨開示されている。
 特許文献2には、ガラス繊維結合剤であって、(1)重合性カルボン酸又は無水物、又はその混合物と、ヒドロキシC~Cアルキルアクリレート又はメタクリレート、又はその混合物との反応生成物から成るコポリマー、及び(2)リン含有酸のアルカリ金属塩との水溶液から成ることを特徴とする結合剤が開示されている。特許文献2には、上記結合剤は、未硬化の時に低粘度を有し、硬化した時に構造的な剛性を有することが開示されている。
 特許文献3には、少なくとも2個の、カルボキシル基もしくは酸無水物基を有する(共)重合体(A)、少なくとも1個の水酸基と少なくとも1個のアミノ基を有する化合物(B)および水を含有してなり、(A)中のカルボキシル基もしくは酸無水物基に由来するカルボキシル基の中和率が36当量%~70当量%で、該中和が(B)中のアミノ基による中和である鉱物繊維用水性バインダーが開示されている。特許文献3には、上記鉱物繊維用水性バインダーが(1)ホルムアルデヒドを含有しない、(2)耐水性、耐加水分解性に優れる、(3)鉱物繊維の接着性に優れる、(4)該バインダーで接着してなる鉱物繊維積層体は圧縮に対する復元性に優れる、なる効果を奏する旨開示されている。
 特許文献4には、酸価が350mgKOH/g~850mgKOH/gのアクリル系樹脂と、ジアルカノールアミンを少なくとも1種類以上含有する架橋剤と、硬化促進剤と、無機酸のアンモニウム塩とを含み、該アクリル系樹脂中のカルボキシル基のモル数に対し、該架橋剤中の水酸基とイミノ基との合計のモル数が、モル比で0.8~1.5であり、揮発性塩基性化合物によってpHが6.0~8.0に調整されていることを特徴とする無機繊維用水性バインダーが開示されている。特許文献4には、上記無機酸のアンモニウム塩がバインダー硬化工程での加熱によって、アンモニウムイオンが、アンモニアとして揮散して、酸としてバインダー中に残存するので、無機繊維から溶出するアルカリ成分を中和して、バインダー中の架橋部の加水分解を抑制でき、無機繊維断熱吸音材の諸物性を長期間維持できることが開示されている。
 特許文献5には、酸価が350mgKOH/g~850mgKOH/gのアクリル系樹脂と、アルカノールアミンを少なくとも1種類以上含有する架橋剤と、無機酸のアンモニウム塩とを含有する無機繊維断熱吸音材用水性バインダーであって、該アクリル系樹脂と該架橋剤との合計100質量部に対して、前記無機酸のアンモニウム塩を5.5質量部~10質量部含有し、該アクリル系樹脂中のカルボキシル基のモル数に対し、該架橋剤中の水酸基とアミノ基とイミノ基との合計のモル数がモル比で0.8~1.5であり、塩基性化合物によってpHが5.0~8.0に調整されることを特徴とする無機繊維断熱吸音材用水性バインダーが開示されている。特許文献5には、上記無機繊維断熱吸音材用水性バインダーは、アクリル系樹脂からなるホルムアルデヒド不含のバインダーであるので、ホルムアルデヒドを放出することなく硬化し、排出ガス等において、環境負荷を少なくすることができ、そして、硬化性に優れ、加熱硬化温度が低くても、速やかにバインダーの架橋反応が進行して、強固なバインダー硬化物が得られることが開示されている。
 上記のとおり、ホルムアルデヒドを含まないガラス繊維等の結合剤が種々提案されているものの、それらの結合剤で処理したガラス繊維等の強度が十分で無いという問題、あるいは結合剤の保存安定性が十分では無いという問題がある。
特開2006-89906号公報 特表平10-509485号公報 特開2012-136412号公報 特開2007-146315号公報 国際公開第11/162277号
 本発明は、上記の事情に着目してなされたものであって、良好な保存安定性を有し、優れたガラス繊維や粉末ガラスの結合力を発現する(ガラス繊維や粉末ガラスの結合体に良好な強度を付与する)ことが可能な結合剤を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、結合剤が所定の重合体と、無機酸のアンモニウム塩とを含むことにより、結合剤が良好な保存安定性を有し、かつガラス繊維や粉末ガラスの結合体の強度を良好とすることが可能となることを見出し、これらの知見に基づき本発明を完成した。
 本発明の結合剤は、
 水酸基を有する重合体と、無機酸のアンモニウム塩とを含む結合剤であって、
 該重合体は、一般式(1)で表される単量体に由来する構造単位とカルボン酸(塩)基を含む単量体に由来する構造単位とを含み、
 該一般式(1)で表される単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し5モル%~40モル%であり、
 該カルボン酸(塩)基を含む単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し60モル%~95モル%であり、
 該重合体に含まれるカルボン酸(塩)基の2モル%以上が揮発性の塩基および/または不揮発性の塩基で中和されており、
 該重合体に含まれるカルボン酸(塩)基の0モル%~35モル%が不揮発性の塩基で中和されており、
 該重合体に含まれるカルボン酸(塩)基の0モル%~100モル%が揮発性の塩基で中和されている。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)において、Rは水素原子又はメチル基を表し、Rは炭素数2~20の有機基を表す。)
 本発明の水溶液は、
 水酸基を有する重合体と、無機酸のアンモニウム塩とを含む水溶液であって、
 該重合体は、一般式(1)で表される単量体に由来する構造単位とカルボン酸(塩)基を含む単量体に由来する構造単位とを含み、
 該一般式(1)で表される単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し5モル%~40モル%であり、
 該カルボン酸(塩)基を含む単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し60モル%~95モル%であり、
 該重合体に含まれるカルボン酸(塩)基の2モル%以上が揮発性の塩基および/または不揮発性の塩基で中和されており、
 該重合体に含まれるカルボン酸(塩)基の0モル%~35モル%が不揮発性の塩基で中和されており、
 該重合体に含まれるカルボン酸(塩)基の0モル%~100モル%が揮発性の塩基で中和されており、
 該水溶液は、水を20質量%以上、99.9質量%以下含む。
Figure JPOXMLDOC01-appb-C000004
(上記一般式(1)において、Rは水素原子又はメチル基を表し、Rは炭素数2~20の有機基を表す。)
 本発明の結合体は良好な保存安定性を有し、本発明の結合体で処理することにより、ガラス繊維や粉末ガラスは良好な強度を発現することが可能となる。よって、本発明の結合剤は、例えば住宅用の断熱材用の結合剤として、有用に使用することができる。
 以下、本発明を詳細に説明する。なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
[水酸基を有する重合体]
 本発明の結合剤は、水酸基を有する重合体を含み、該重合体は、上記一般式(1)で表される単量体に由来する構造単位を含む。本発明の結合剤の必須成分である上記重合体を、以下、「本発明の重合体」ともいう。
 上記一般式(1)において、Rは水素原子又はメチル基を表し、Rは炭素数2~20の有機基を表す。
 上記一般式(1)における、Rに含まれる炭素原子数の上限としては、12以下であることが好ましく、8以下であることがさらに好ましく、4以下であることが特に好ましい。
 上記一般式(1)において、Rとしては、置換または無置換のアルキレン基、置換又は無置換のアリーレン基、置換又は無置換のエーテル基等が例示される。
 上記置換のアルキレン基とは、アルキレン基を構成する水素原子の一部又は全部が置換基により置換されている基をいう。ここで置換基とは、アリール基、水酸基、アルコキシ基、アミノ基、エステル基、アミド基、カルボキシル基、スルホン酸基等である。
 上記置換のアリール基とは、アリール基を構成する水素原子の一部又は全部が置換基により置換されている基をいう。ここで置換基とは、アルキル基、水酸基、アルコキシ基、アミノ基、エステル基、アミド基、カルボキシル基、スルホン酸基等である。
 上記エーテル基とはポリエーテル基を含み、置換のエーテル基とは、エーテルを構成する水素原子の一部又は全部が置換基により置換されている基をいう。ここで置換基とは、アルキル基、アリール基、水酸基、アミノ基、エステル基、アミド基、カルボキシル基、スルホン酸基等である。
 上記一般式(1)における、Rの具体例としては、-CHCH-基、-CH(CH)CH-基、-CHCH(CH)-基、-C(CH-基、-CHCHCH-基、-CH(C)CH-基、-C(C)(CH)-基、-CHCHCHCH-基、-CH(C)CH-基、等のアルキレン基;フェニレン基、ナフチル基等のアリーレン基;-CHCHOCHCH-基、-CHCHOCHCHOCHCH-基、-CHCHOCHCHOCHCHOCHCH-基、-CH(CH)CHOCH(CH)CH-基、-CH(CH)CHOCH(CH)CHOCH(CH)CH-基等のエーテル基;等が例示される。
 本発明の結合剤をガラス繊維や粉末ガラスの結合剤に使用した場合の被結合体(本発明の結合剤で処理されたガラス繊維や粉末ガラス等をいう)の強度が向上し、吸湿劣化が抑制できる傾向にあることから、RとRに含まれる炭素数の合計は、3以上であることが好ましい。
 本発明において、「上記一般式(1)で表される単量体に由来する構造単位」とは、上記一般式(1)で表される単量体が重合して形成される構造単位を意味する。ただし、上記一般式(1)で表される単量体が重合して形成される構造単位と同じ構造であれば、上記一般式(1)で表される単量体を重合する以外の方法で得られた構造単位も、「上記一般式(1)で表される単量体に由来する構造単位」に含まれる。
 上記一般式(1)で表される単量体に由来する構造単位は、下記一般式(2)で表すことができる。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(2)において、Rは水素原子又はメチル基を表し、Rは炭素数2~20の有機基を表す。なお、上記一般式(2)におけるR、Rの態様、好ましい態様は、上記一般式(1)におけるR、Rの態様、好ましい態様と同様である。
 本発明の重合体は、全単量体に由来する構造単位(上記一般式(1)で表される単量体に由来する構造単位と後述するカルボン酸(塩)基を含む単量体に由来する構造単位とその他の単量体に由来する構造単位)100モル%に対して、上記一般式(1)で表される単量体に由来する構造単位を5モル%以上、40モル%以下含むことが好ましく、10モル%以上、35モル%以下含むことがより好ましく、15モル%以上、30モル%以下含むことがさらに好ましい。上記範囲で含むことにより、本発明の結合剤をガラス繊維や粉末ガラスの結合剤に使用した場合の被結合体の強度が向上する傾向にある。
 本発明の重合体は、上記一般式(1)で表される単量体に由来する構造単位を、1種含んでいてもよいし、2種以上含んでいてもよい。
 本発明の重合体は、カルボン酸(塩)基を含む単量体に由来する構造単位を含む。カルボン酸(塩)基を含む単量体とは、カルボキシル基およびまたはその塩と、重合性の炭素-炭素二重結合とを含む単量体であり(ただし、上記一般式(1)で表される単量体を除く)、具体的には、アクリル酸、メタアクリル酸、クロトン酸、αーヒドロキシアクリル酸、α-ヒドロキシメチルアクリル酸及びその誘導体等の、不飽和モノカルボン酸及びこれらの塩等;フマル酸、マレイン酸、メチレングルタル酸、イタコン酸等の不飽和ジカルボン酸及びこれらの塩(一塩であっても二塩であってもよい)等;等が例示される。
 上記塩としては、金属塩、アンモニウム塩、有機アミン塩が例示される。金属塩としては、ナトリウム、カリウム等のアルカリ金属;カルシウム、マグネシウム等のアルカリ土類金属;鉄、アルミニウム等の遷移金属;等の塩が例示される。有機アミン塩としては、メチルアミン、n-ブチルアミン等のアルキルアミン;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジプロパノールアミン等のアルカノールアミン;エチレンジアミン、ジエチレントリアミン等のポリアミン;等の塩が例示される。
 本発明において、カルボン酸(塩)基を含む単量体に由来する構造単位とは、カルボン酸(塩)基を含む単量体が重合して形成される構造単位であり、具体的には、カルボン酸(塩)基を含む単量体の炭素-炭素二重結合が単結合になった構造である。例えば、カルボン酸(塩)基を含む単量体がアクリル酸(CH=CHCOOH)である場合、カルボン酸(塩)基を含む単量体に由来する構造単位は「-CH-CH(COOH)-」で表すことができる。
 本発明の重合体は、カルボン酸(塩)基を含む単量体に由来する構造単位を、全単量体に由来する構造単位100モル%に対して、60モル%以上、95モル%以下有することが好ましく、65モル%以上、90モル%以下有することがより好ましく、70モル%以上、85モル%以下有することがさらに好ましい。本発明の重合体は、カルボン酸(塩)基を含む単量体に由来する構造単位を、1種含んでいてもよいし、2種以上含んでいてもよい。カルボン酸(塩)基を含む単量体に由来する構造単位を、上記範囲で含むことによって、本発明の結合剤をガラス繊維や粉末ガラスの結合剤に使用した場合の被結合体の強度が向上する傾向にある。
 本発明の重合体はカルボン酸(塩)基を含むことになるが、本発明の重合体の重合体分子に含まれるカルボン酸(塩)基の2モル%以上が揮発性の塩基および/または不揮発性の塩基で中和されている。すなわち、本発明の重合体に含まれるカルボン酸(塩)基100モル%に対し、2モル%以上が揮発性の塩基または不揮発性の塩基で中和されたカルボン酸塩基である。重合体分子に含まれるカルボン酸(塩)基の2モル%以上、100モル%以下が、揮発性の塩基および/または不揮発性の塩基で中和されていることが好ましく、より好ましくは、5モル%以上、99モル%以下であり、さらに好ましくは8モル%以上、98モル%以下であり、よりさらに好ましくは10モル%以上、93モル%以下であり、特に好ましくは15モル%以上、88モル%以下である。上記範囲で中和されていることにより、本発明の結合体の保存安定性が良好となる傾向にあり、本発明の結合体で処理したガラス繊維や粉末ガラスの強度が良好となる傾向にある。
 本発明において、揮発性の塩基とは、1気圧における沸点が100℃未満の塩基を意味する。本発明において、不揮発性の塩基とは、1気圧における沸点が100℃以上の塩基を意味する。揮発性の塩基としては、例えば、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン、イソプロピルアミン、n-ブチルアミン、トリエチルアミン等が例示される。揮発性の塩基は、1種のみであってもよいし、2種以上であってもよい。不揮発性の塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム等のアルカリ土類金属の水酸化物;炭酸水素ナトリウム、炭酸ナトリウム等のアルカリ金属の炭酸塩;モノエタノールアミン、ジエタノールアミン等のアルカノールアミン;トリブチルアミン;シクロヘキシルアミン;等が例示される。不揮発性の塩基は、1種のみであってもよいし、2種以上であってもよい。揮発性の塩基で中和されたカルボン酸塩基としては、-COONH、が例示され、また特に好ましく、不揮発性の塩基で中和されたカルボン酸塩基としては、-COONa、-COOK、-COONH(CHCHOH)、等が例示され、また特に好ましい。本発明の重合体のカルボン酸塩基は、1種の塩基(揮発性の塩基または不揮発性の塩基)で中和されていてもよいし、2種以上の塩基(揮発性の塩基および/または不揮発性の塩基)で中和されていてもよい。
 本発明の重合体は、該重合体に含まれるカルボン酸(塩)基の0モル%~35モル%が不揮発性の塩基で中和されていることが好ましく(すなわち、本発明の重合体に含まれるカルボン酸(塩)基100モル%に対し、0モル%~35モル%が不揮発性の塩基で中和されていることが好ましく)、0モル%~30モル%が不揮発性の塩基で中和されていることがより好ましく、0モル%~20モル%が不揮発性の塩基で中和されていることがさらに好ましい。
 本発明の重合体は、該重合体に含まれるカルボン酸(塩)基の0モル%~100モル%が揮発性の塩基で中和されていることが好ましく(すなわち、本発明の重合体に含まれるカルボン酸(塩)基100モル%に対し、0モル%~100モル%が揮発性の塩基で中和されていることが好ましく)、0モル%~99モル%が揮発性の塩基で中和されていることがより好ましく、0モル%~98モル%が揮発性の塩基で中和されていることがさらに好ましく、0モル%~93モル%が揮発性の塩基で中和されていることがよりさらに好ましく、0モル%~88モル%が揮発性の塩基で中和されていることが特に好ましい。
 本発明の重合体は、上記一般式(1)で表される単量体とカルボン酸(塩)基を含む単量体以外の単量体(以下、「その他の単量体」とも言う)に由来する構造単位を有していてもよい。その他の単量体としては、特に制限はないが、具体的には、3-アリルオキシ-2-ヒドロキシプロパンスルホン酸、(メタ)アリルスルホン酸、イソプレンスルホン酸、ビニルスルホン酸、スチレンスルホン酸及びこれらの塩等のスルホン酸系単量体;ビニルピリジン、ビニルイミダゾール、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリレート、アミノエチルメタクリレート、ジアリルアミン、ジアリルジメチルアミン、およびこれらの4級化物や塩等のアミノ基含有単量体;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-N-メチルホルムアミド、N-ビニル-N-メチルアセトアミド、N-ビニルオキサゾリドン等のN-ビニル単量体;(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド等のアミド系単量体;3-(メタ)アリルオキシ-1,2-ジヒドロキシプロパン、3-アリルオキシ-1,2-ジヒドロキシプロパン、(メタ)アリルアルコール、イソプレノール等の不飽和アルコール系単量体;上記不飽和アルコール系単量体にアルキレンオキシドを付加した構造を有するポリアルキレングリコール系単量体;ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル系単量体;(メタ)アリルグリシジルエーテル、(メタ)アクリル酸グリシジル等の不飽和グリシジル化合物;1-アリロキシ-3-ブトキシプロパン-2-オール等の、不飽和グリシジル化合物にアルコールを付加させた構造を有する単量体;スチレン、インデン、ビニルアニリン等のビニルアリール単量体;イソブチレン、オクテン等のアルケン類;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニル類;が挙げられる。また、上記他の単量体を使用する場合は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 上記塩としては、上記カルボン酸(塩)基を含む単量体における塩と同様の塩が例示される。
 本発明において、その他の単量体に由来する構造単位とは、その他の単量体が重合して形成される構造単位であり、具体的には、その他の単量体の炭素-炭素二重結合が単結合になった構造である。例えば、その他の単量体がアクリル酸ブチル(CH=CHCOOC)である場合、その他の単量体に由来する構造単位は「-CH-CH(COOC)-」で表すことができる。
 本発明の重合体は、その他の単量体に由来する構造単位を、全単量体に由来する構造単位100モル%に対して、0モル%以上、35モル%以下有することが好ましく、0モル%以上、25モル%以下有することがより好ましく、0モル%以上、15モル%以下有することがさらに好ましい。本発明の重合体は、その他の単量体に由来する構造単位を、1種含んでいてもよいし、2種以上含んでいてもよい。
 本発明の重合体における各構成単位は、ランダムに存在していても、ブロック状等、規則的に存在していても構わない。
 本発明の重合体は、本発明の結合剤をガラス繊維や粉末ガラスの結合剤に使用した場合の被結合体の強度が向上し、吸湿劣化が抑制できる傾向にあることから、重量平均分子量が、500以上、100000以下であることが好ましく、1500以上、15000以下であることが好ましく、2000以上、10000以下であることがより好ましい。なお、上記重量平均分子量は後述する測定方法により測定することができる。
 本発明の重合体は、上記一般式(1)で表される単量体と、カルボン酸(塩)基を含む単量体と、必要に応じてその他の単量体を重合する工程を含んで製造することが好ましい。上記工程において、上記一般式(1)で表される単量体と、カルボン酸(塩)基を含む単量体と、その他の単量体(以下、これらを「全単量体」ともいう。)の合計の使用量100モル%に対して、上記一般式(1)で表される単量体を5モル%~40モル%とすることが好ましく、10モル%~35モル%とすることがより好ましく、15モル%~30モル%とすることがさらに好ましい。上記工程におけるカルボン酸(塩)基を含む単量体の使用量は、全単量体の合計の使用量100モル%に対して、60モル%~95モル%であることが好ましく、65モル%~90モル%であることがより好ましく、70モル%~85モル%であることがさらに好ましい。上記工程におけるその他の単量体の使用量は、全単量体の合計の使用量100モル%に対して、0モル%~35モル%であることが好ましく、0モル%~25モル%であることがより好ましく、0モル%~15モル%であることがさらに好ましい。
 上記重合する工程における重合は、従来公知の種々の方法、例えば、溶液重合法、バルク重合、懸濁重合法、逆相懸濁重合法、或いは注型重合法、薄膜重合法、噴霧重合法等を採用することができる。特に限定されるものではないが、溶液重合が好ましい。また、上記重合工程は、回分式でも連続式でも行うことができる。
 上記重合する工程において、重合を行なう際には、重合開始剤を用いることが好ましい。上記重合開始剤としては、例えば、過酸化水素;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]水和物、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)二塩酸塩等のアゾ系化合物;過酸化ベンゾイル、過酸化ラウロイル、過酢酸、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド等の有機過酸化物等が好適である。これらの重合開始剤のうち、過酸化水素、過硫酸塩が好ましく、過硫酸塩が最も好ましい。これらの重合開始剤は、単独で使用されてもよく、2種以上の混合物の形態で使用されてもよい。
 上記重合開始剤の使用量としては、単量体(全単量体)の使用量1モルに対して、0.1g以上、10g以下であることが好ましく、0.1g以上、7g以下であることがより好ましく、0.1g以上、5g以下であることがさらに好ましい。
 上記重合する工程においては、必要に応じて連鎖移動剤を用いてもよい。連鎖移動剤としては、具体的には、メルカプトエタノール、チオグリコール酸、メルカプトプロピオン酸、n-ドデシルメルカプタン等の、チオール系連鎖移動剤;四塩化炭素、塩化メチレン、ブロモホルム、ブロモトリクロロエタン等の、ハロゲン化物;イソプロパノール、グリセリン等の、第2級アルコール;次亜リン酸、次亜リン酸ナトリウム等の次亜リン酸(塩)(これらの水和物を含む);亜リン酸、亜リン酸ナトリウム等の亜リン酸(塩);亜硫酸ナトリウム、亜硫酸カリウム等の亜硫酸(塩);亜硫酸水素ナトリウム、亜硫酸水素カリウム等の重亜硫酸(塩);亜ジチオン酸ナトリウム等の亜ジチオン酸(塩);ピロ亜硫酸カリウム等のピロ亜硫酸(塩);などが挙げられる。上記連鎖移動剤は、単独で使用されてもよいし、2種以上の混合物の形態で使用されてもよい。
 連鎖移動剤の使用量としては、単量体(全単量体)の使用量1モルに対して、0g以上、20g以下であることが好ましく、1g以上、15g以下であることがより好ましく、1g以上、10g以下であることがさらに好ましい。
 上記重合工程は、反応促進等を目的として、重金属イオンを使用してもよい。本発明で重金属イオンとは、比重が4g/cm以上の金属のイオンを意味する。重金属イオンを使用することで、重合開始剤の使用量を低減することが可能となる。上記重金属イオンは、イオンの形態として含まれるものであれば特に限定されないが、重金属化合物を溶解してなる溶液を用いる方法を用いると、取り扱い性に優れるため好適である。上記重金属化合物としては、モール塩(Fe(NH(SO・6HO)、硫酸第一鉄・7水和物、塩化第一鉄、塩化第二鉄、塩化マンガン等が例示される。
 上記重金属イオンの使用量としては、重合反応液全量に対して、0ppm以上、100ppm以下であることが好ましく、0ppm以上、50ppm以下であることがより好ましい。
 上記重合工程は、溶媒を使用することが好ましい。溶媒としては、水を含むことが好ましく、溶媒全量に対して、水を50質量%以上、100質量%以下含むことがより好ましく、80質量%以上、100質量%以下含むことがさらに好ましい。上記重合工程で使用可能な溶媒としては、水;メタノール、エタノール、イソプロピルアルコール等の低級アルコール類;アセトン、メチルエチルケトン、ジエチルケトン等の低級ケトン類;ジメチルエーテル、ジオキサン等のエーテル類;ジメチルホルムアルデヒド等のアミド類が挙げられる。これらの溶媒は、単独で使用されてもよいし、2種以上の混合物の形態で使用されてもよい。
 溶媒の使用量としては、単量体100質量%に対して40質量%~200質量%が好ましい。より好ましくは、45質量%以上であり、更に好ましくは、50質量%以上である。また、より好ましくは、180質量%以下であり、更に好ましくは、150質量%以下である。溶媒の使用量が40質量%未満であると、得られる重合体の分子量が高くなるおそれがあり、200質量%を超えると、得られる重合体の濃度が低くなり、保管等のコストが高額になるおそれがある。
 上記重合工程における重合は、通常、0℃以上で行われることが好ましく、また、150℃以下で行われることが好ましい。より好ましくは、40℃以上であり、更に好ましくは、60℃以上であり、特に好ましくは、80℃以上である。また、より好ましくは、120℃以下であり、更に好ましくは、110℃以下である。
 上記重合温度は、重合反応において、常にほぼ一定に保持する必要はなく、例えば、室温から重合を開始し、適当な昇温時間又は昇温速度で設定温度まで昇温し、その後、設定温度を保持するようにしてもよいし、単量体成分や開始剤等の滴下方法に応じて、重合反応中に経時的に温度変動(昇温又は降温)させてもよい。
 上記重合工程における重合時間は特に制限されないが、好ましくは30分~420分であり、より好ましくは45分~390分であり、さらに好ましくは60分~360分であり、最も好ましくは90分~300分である。なお、本発明において、「重合時間」とは、回分式で重合する場合には、特に断らない限り、単量体を添加している時間を表す。
 上記重合工程において、重合中の単量体に含まれる酸基は、中和されていなくても、一部または全部が中和されていてもよい。しかし、結合剤に含まれる本発明の重合体のカルボン酸(塩)基の中和率を上記の範囲に調整しやすいことから、カルボン酸(塩)基を含む単量体のカルボン酸(塩)基100モル%に対して、不揮発性の塩基で中和されているカルボン酸塩基が0モル%~35モル%であり、揮発性の塩基で中和されているカルボン酸塩基が0モル%~100モル%であることが好ましい。低い中和度(中和度0モル%を含む)で重合工程を行い、中和工程で所望の中和度に調整してもよい。
 上記重合工程における反応系内の圧力としては、常圧(大気圧)下、減圧下、加圧下の何れであってもよいが、得られる重合体の分子量の点で、常圧下、又は、反応系内を密閉し、加圧下で行うのが好ましい。また、加圧装置や減圧装置、耐圧性の反応容器や配管等の設備の点で、常圧(大気圧)下で行うのが好ましい。反応系内の雰囲気としては、空気雰囲気でもよいが、不活性雰囲気であっても良く、例えば、重合開始前に系内を窒素等の不活性ガスで置換してもよい。
 本発明の重合体は、任意であるが、上記重合工程以外の工程を含んで製造しても構わない。例えば、熟成工程、中和工程、重合開始剤や連鎖移動剤の失活工程、希釈工程、乾燥工程、濃縮工程、精製工程等が挙げられる。
[本発明の結合剤]
 本発明の結合剤は、本発明の重合体と、無機酸のアンモニウム塩とを必須に含む。
 本発明の結合剤は、本発明の重合体と、無機酸のアンモニウム塩とを合計で、本発明の結合剤100質量%に対し、1質量%~100質量%含むことが好ましく、10質量%~97質量%含むことがより好ましく、30質量%~95質量%含むことがさらに好ましい。上記範囲で含有することにより、ガラス繊維や粉末ガラスの結合体の強度がより向上する傾向にある。
 上記無機酸のアンモニウム塩としては、硫酸アンモニウム、リン酸アンモニウム、亜リン酸アンモニウム、次亜リン酸アンモニウム、硝酸アンモニウム等が例示される。無機酸のアンモニウム塩としては、アクリル酸より強い酸のアンモニウム塩であることが好ましい。
 無機酸のアンモニウム塩を含むことにより、本発明の結合剤で処理したガラス繊維や粉末ガラスの結合体の強度が向上する理由は明確ではないが、以下のように推定される。結合剤による処理(好ましくは加熱条件下)で、(1)無機酸のアンモニウム塩からアンモニアが揮発し、無機酸が生成する。(2)無機酸が本発明の重合体のカルボキシル塩基と反応し、無機酸塩を生成し、本発明の重合体のカルボン酸塩基は、未中和のカルボン酸基となる。なお、上記無機酸塩が無機酸のアンモニウム塩である場合、さらに上記(1)、(2)が繰り返される。(3)上記本発明の重合体に含まれる未中和のカルボン酸基は、カルボン酸塩基と比較して本発明の重合体に含まれる水酸基若しくは架橋剤の水酸基等と容易に反応するため、架橋反応が促進され、結合体の強度が向上する。
 本発明の結合剤は、上記無機酸のアンモニウム塩を、本発明の重合体に含まれるカルボキシル基100モル%に対し、0.1モル%以上、20モル%以下含むことが好ましく、0.5モル%以上、15モル%以下含むことがより好ましく、1.0モル%以上、12モル%以下含むことがさらに好ましい。
 本発明の結合剤は、本発明の重合体と、無機酸のアンモニウム塩と、必要に応じてその他の成分とを混合することにより製造することが好ましいが、本発明の重合体原料にあらかじめ無機酸のアンモニウム塩を混合し、本発明の重合体と同時に本発明の結合剤を製造する等、本発明の結合剤は任意の方法で製造することができる。
 本発明の結合剤は、本発明の重合体と、無機酸のアンモニウム塩とのみを含んでいてもよいが、本発明の結合剤をガラス繊維や粉末ガラスの結合剤に使用した場合の被結合体の機械強度がより向上する傾向にあることからリン含有化合物を含んでもよい。リン含有化合物は本発明の重合体の架橋を促進する効果を有すると考えられる。
 リン含有化合物としては、次亜リン酸(塩)、亜リン酸(塩)、リン酸(塩)、ピロリン酸(塩)、ポリリン酸(塩)、有機リン酸(塩)等の酸基含有化合物(なお、これらの水和物も含まれる);トリメチルホスフィン、トリフェニルホスフィン、トリフェニルホスフィンオキシド等の有機リン化合物;等が例示される。本発明の結合剤がリン含有化合物を含む場合、これらを1種含んでいてもよいし、2種以上含んでいてもよい。塩としては、上記のものが例示される。本発明の結合剤における上記リン含有化合物の含有量は、本発明の結合剤に含まれる重合体(本発明の重合体)100質量%に対し、好ましくは0質量%~20質量%、より好ましくは0.1質量%~10質量%、さらに好ましくは0.5質量%~7質量%とすることができる。
 本発明の結合剤は、上記リン含有化合物以外の硬化促進剤を含んでもよい。リン含有化合物以外の硬化促進剤としては、プロトン酸(硫酸、カルボン酸、炭酸等)、およびその塩(金属(アルカリ金属、アルカリ土類金属、遷移金属、2B族、4A族、4B族、5B族等)塩、アンモニウム塩等)、金属(上記のもの)の、酸化物、塩化物、水酸化物およびアルコキシド等が挙げられ、これらは単独で使用してもよいし、2種類以上を併用してもよい。本発明の結合剤は、上記リン含有化合物以外の硬化促進剤を、例えば、0質量%~20質量%含んでいてもよい。
 本発明の結合剤は、溶剤を含んでいてもよい。溶剤としては、有機溶剤でも構わないが、水を含むことが好ましく、溶剤全量に対して、50質量%以上が水であることが好ましい。
 本発明の結合剤は、溶剤を、本発明の結合剤100質量%に対し、0質量%~99質量%含むことが好ましく、3質量%~95質量%含むことがより好ましく、5質量%~90質量%含むことがさらに好ましい。
 本発明の結合剤は、任意であるが、本発明の結合剤をガラス繊維や粉末ガラスの結合剤に使用した場合の被結合体の機械強度がより向上する傾向にあることから、架橋剤を含んでいてもよい。
 架橋剤は、ガラス繊維や粉末ガラスの結合体の強度がより向上する傾向にあることから、分子量が1000以下であることが好ましく、500以下であることがより好ましく、300以下であることが特に好ましい。架橋剤としては、一分子中に、水酸基および/またはアミノ基を2以上有する化合物等が例示される。好ましい架橋剤としては、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール等の二価のアルコール(分子内に水酸基を2つ有するアルコール);グリセリン、ポリグリセリン、エリトリトール、キシリトール、ソルビトール等の三価以上のアルコール(分子内に水酸基を3つ以上有するアルコール);モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン;エチレンジアミン、ジエチレントリアミン等のポリアミン;該ポリアミンにアルキレンオキシドが付加したポリオール;等が例示される。
 本発明の結合剤は、上記架橋剤を、本発明の結合剤に含まれる重合体(本発明の重合体)に含まれる酸基100モル%に対し、0モル%~50モル%含んでいることが好ましく、0モル%~45モル%含んでいることがより好ましく、0モル%~40モル%含んでいることが特に好ましい。
[本発明の結合剤の用途]
 本発明の結合剤は、ガラス繊維、ロックウール、カーボン繊維等の無機繊維;ガラス粒子、鉱物粒子等の無機粒子(無機粉体);羊毛、セルロース、麻、ナイロン、ポリエステル等の有機物の繊維;ナイロン微粒子、ポリエステル微粒子等の有機物の粒子(有機物の粉体);等の結合剤として、使用することができる。好ましくはガラス繊維や粉末ガラスの結合剤として使用することができる。
[本発明の結合剤の使用方法]
 本発明の結合剤による処理は、本発明の結合剤を、ガラス繊維や粉末ガラス等の対象物質(被結合物質)に接触させる工程を必須とする。上記工程は、本発明の結合剤が溶剤を含む場合には、そのままで、または所望により濃度等を調節して、(i)被結合物質を本発明の結合剤に含浸させるか、または(ii)被結合物質に本発明の結合剤を散布することにより、行うことが好ましい。本発明の結合剤が溶剤を含まない場合には、本発明の結合剤を加熱・溶融させて被結合物質に接触させても構わないが、処理物(被結合体)の強度にむらが生じやすくなる傾向にあるので、溶剤に溶解し、上記(i)または(ii)を行うことが好ましい。中でも、被結合物質に対する本発明の結合剤の添加量を調節しやすいことから、上記(ii)が好ましい。
 上記本発明の結合剤を、被結合物質に接触させる工程における、被結合物質に対する本発明の結合剤の添加量は、本発明の結合剤の固形分が、被結合物質100質量%に対し、1質量%~40質量%であることが好ましく、1質量%~30質量%であることがより好ましく、1質量%~15質量%であることがさらに好ましい。本発明の結合剤を上記範囲で使用すると、被結合体の機械強度が向上する傾向にある。なお、「被結合物質に接触させる工程における、被結合物質に対する本発明の結合剤の添加量」とは、上記(i)の工程においては被結合物質を含浸後、被結合物質に実際に付着した結合剤の量をいい、上記(ii)の工程においては、被結合物質に散布した後、被結合物質に実際に付着した結合剤の量をいう。
 本発明の結合剤による処理は、上記接触させる工程で得られた被結合体を、加熱処理する工程を含むことが好ましい。加熱処理を行なうことにより、架橋反応が促進され、被結合体の強度が向上する傾向にある。
 上記加熱処理工程は、100℃~400℃で行うことが好ましく、120℃~350℃で行うことがより好ましく、150℃~300℃で行うことがさらに好ましい。
 本発明の結合剤が溶剤を含む場合には、本発明の結合剤による処理は、上記接触させる工程で得られた被結合体を、乾燥する工程を含んでいてもよい。上記乾燥する工程は、常圧下で行ってもよいし、減圧下で行ってもよい。乾燥を加熱して行なう場合には、その条件は上記加熱処理する工程と同様である。
 本発明の結合剤が溶剤を含む場合には、本発明の結合剤による処理は、上記接触させる工程で得られた被結合体を、養生する工程を含んでいてもよい。
[本発明のガラス繊維結合体や本発明の粉末ガラス結合体]
 本発明のガラス繊維結合体や本発明の粉末ガラス結合体は、例えば上記「本発明の結合剤の使用方法」の箇所で記載した方法などにより、ガラス繊維および/またはガラス粉末を本発明の結合剤で処理することにより、製造することができる(製造方法Iともいう)。
 本発明のガラス繊維結合体や本発明の粉末ガラス結合体は、ガラス繊維および/またはガラス粉末に、本発明の重合体(無機酸のアンモニウム塩は含んでいてもよいし、含んでいなくてもよい)または無機酸のアンモニウム塩のいずれか一方を最初に接触させる工程(工程iii)と、工程iiiで得られた組成物に、上記の残りの一方を接触させる工程(工程iv)とを含み、製造しても構わない(製造方法IIともいう)。製造方法IIにおいて、工程iiiと工程ivで添加した本発明の重合体と無機酸のアンモニウム塩の比は、本発明の重合体に含まれるカルボキシル基に対する無機のアンモニウム塩のモル比が、100モル:0.1モル~100モル:20モルであることが好ましく、100モル:0.5モル~100モル:15モルであることがより好ましく、100モル:1.0モル~100モル:12モルであることがさらに好ましい。
 上記製造方法IIは、工程ivで得られた被結合体を、加熱処理する工程、乾燥する工程、養生する工程等任意の工程を含んでいてもよい。加熱処理する工程、乾燥する工程、養生する工程の条件は、上記「本発明の結合剤の使用方法」の箇所で記載した条件と同様である。
[本発明の水溶液]
 本発明の結合剤は、良好な保存安定性を有することから、本発明の結合剤は、結合剤以外の用途にも適用可能である。例えば、各種水系用途に適用可能である。
 水酸基を有する重合体と、無機酸のアンモニウム塩とを含む水溶液であって、該重合体は、下記一般式(1)で表される単量体に由来する構造単位とカルボン酸(塩)基を含む単量体に由来する構造単位とを含み、該一般式(1)で表される単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し5モル%~40モル%であり、該カルボン酸(塩)基を含む単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し60モル%~95モル%であり、該重合体に含まれるカルボン酸(塩)基の2モル%以上が揮発性の塩基および/または不揮発性の塩基で中和されており、該重合体に含まれるカルボン酸(塩)基の0モル%~35モル%が不揮発性の塩基で中和されており、該重合体に含まれるカルボン酸(塩)基の0モル%~100モル%が揮発性の塩基で中和されており、該水溶液は、水を20質量%以上、99.9質量%以下含む、水溶液(「本発明の水溶液」ともいう)、も本発明の好ましい形態の一つである。本発明の水溶液の好ましい形態は、特に言及する場合を除き、本発明の結合剤と同じである。
 以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
<重量平均分子量の測定条件>
 重量平均分子量は、下記条件にて測定した。
装置:東ソー製 HLC-8320GPC
検出器:RI
カラム:東ソー製 TSK-GEL G3000PWXL
カラム温度:35℃
流速:0.5ml/min
検量線:創和科学社製 POLY SODIUM ACRYLATE STANDARD
溶離液:リン酸二水素ナトリウム12水和物/リン酸水素二ナトリウム2水和物(34.5g/46.2g)の混合物を純水にて5000gに希釈した溶液。
<重合完結後の水溶液の固形分測定方法>
 150℃に加熱したオーブンで結合剤を60分間放置して乾燥処理した。乾燥前後の重量変化から、重合完結後の水溶液の固形分(%)を算出した。
<結合剤の有効成分>
 結合剤の有効成分は重合完結後の水溶液と、重合体水溶液に添加した純水、リン含有化合物、無機酸のアンモニウム塩、塩基の添加量から計算した。ここで有効成分とは、重合体とリン含有化合物の合計量のことを指す。ただし揮発性塩基で中和を行った場合、硬化時に塩基は揮発するため、揮発性の塩基のカルボキシル基の塩は全てカルボン酸基であるとして有効成分を算出した。
<リン含有化合物の含有量分析(イオンクロマト分析)>
 リン含有化合物の含有量は、下記条件にてイオンクロマト分析を行った。
装置:Metrohm社製 762 Interface
検出器:Metrohm社製 732 IC Detecter
イオン分析方式:サプレッサー法
カラム:Shodex IC SI-90 4E
ガードカラム:Shodex SI-90 G
カラム温度:40℃
溶離液:NaHCO3水(2gを水で2000gに希釈)
流速:1.0mL/min。
<バインダー硬化物試験片の作成>
 バインダー硬化物試験片は下記のようにして作成した。
(i)結合剤に純水を添加し、有効成分35%に調整した。
(ii)粒径0.35~0.50mmのガラスビーズに、上記(i)で得られた結合剤を、有効成分がガラスビーズ重量の7.5%となるように添加し、十分に混合した。
(iii)離型処理した140mm×20mm×5mmの型枠に(ii)で得られた混合物を押し入れて成型し、215℃のオーブンで60分間乾燥後、デシケータに移し30分冷却することで試験片を得た。
<試験片の機械強度>
 JISK7171に準じ、2mm/minの試験速度で曲げ強さを測定した。試験片3枚の曲げ強さを測定し、平均値を算出した。
<耐加水分解性の評価方法>
 上記方法で得られたバインダー硬化物試験片を60℃80%RHの恒温恒湿器内で150分間静置した。その後取り出し、23℃50%RHで1時間乾燥した。乾燥後の試験片について上記機械強度を測定し、強度の保持率から耐加水分解性を評価した。
<製造例1>
 還流冷却機、攪拌機(パドル翼)、温度計を備えた容量2.5リットルのSUS製セパラブルフラスコに、純水384.9gを仕込み(初期仕込)、攪拌下、沸点まで昇温した。次いで、攪拌下、沸点還流状態の重合反応系中に80質量%アクリル酸水溶液(以下「80%AA」と称する)669.3g(すなわち7.44mol)を180分間、ヒドロキシエチルメタクリレート(以下「HEMA」と称する)241.7g(すなわち1.86mol)を180分間、15質量%過硫酸ナトリウム水溶液(以下「15%NaPS」と称する)46.6gを195分間、45質量%次亜リン酸ナトリウム水溶液(以下「45%SHP」と称する)32.0gを18分間とさらに続いて125.5gを162分間と2段階の供給速度で、それぞれ別々の供給経路を通じて先端ノズルより滴下した。それぞれの成分の滴下は、45%SHP以外は一定の滴下速度で連続的に行った。80%AAの滴下終了後、さらに30分間に渡って反応溶液を沸点還流状態に保持(熟成)して重合を完結せしめた。得られた重合体水溶液(1)の固形分は57.0%、重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し1.0質量%だった。
<製造例2>
 還流冷却機、攪拌機(パドル翼)、温度計を備えた容量2.5リットルのSUS製セパラブルフラスコに、純水127.6gを仕込み(初期仕込)、攪拌下、沸点まで昇温した。次いで、攪拌下、沸点還流状態の重合反応系中に80%AA610.6g(すなわち6.78mol)を180分間、80質量%HEMA275.6g(すなわち1.70mol)を180分間、15%NaPS42.5gを195分間、45%SHP29.2gを18分間とさらに続いて114.5gを162分間と2段階の供給速度で、それぞれ別々の供給経路を通じて先端ノズルより滴下した。それぞれの成分の滴下は、45%SHP以外は一定の滴下速度で連続的に行った。80%AAの滴下終了後、さらに30分間に渡って反応溶液を沸点還流状態に保持(熟成)して重合を完結せしめた。得られた重合体水溶液(2)の固形分は65.0%、重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し1.0質量%だった。
<製造例3>
 還流冷却機、攪拌機(パドル翼)、温度計を備えた容量2.5リットルのSUS製セパラブルフラスコに、純水168.0gを仕込み(初期仕込)、攪拌下、沸点まで昇温した。次いで、攪拌下、沸点還流状態の重合反応系中に80%AA416.8g(すなわち4.63mol)を180分間、15%NaPS23.2gを195分間、45%SHP6.4gを18分間とさらに続いて30.3gを192分間と2段階の供給速度で、純水119.1gを重合開始92分後から88分間、それぞれ別々の供給経路を通じて先端ノズルより滴下した。それぞれの成分の滴下は、45%SHP以外は一定の滴下速度で連続的に行った。80%AAの滴下終了後、さらに30分間に渡って反応溶液を沸点還流状態に保持(熟成)して重合を完結せしめた。重合の完結後、反応溶液に80質量%ジエタノールアミン水溶液(以下「80%DEA」と称する)200.8g(アクリル酸の33mol%中和分)、45%SHP35.3gを攪拌下、滴下した。得られた重合体水溶液(3)の固形分は53.0%、重量平均分子量(Mw)は8200、SHPの含有量は重合体100質量%に対し3.6質量%だった。
<製造例4>
 還流冷却機、攪拌機(パドル翼)、温度計を備えた容量2.5リットルのSUS製セパラブルフラスコに、純水306.3gを仕込み(初期仕込)、攪拌下、沸点まで昇温した。次いで攪拌下、沸点還流状態の重合反応系中に80%AA412.8g(すなわち4.59mol)を180分間、100質量%HEMA149.1g(すなわち1.15mol)を180分間、15%NaPS28.7gを195分間、45%SHP14.0gを18分間と更に続いて55.9gを162分間と2段階の供給速度で、それぞれ別々の供給経路を通じて先端ノズルより滴下した。それぞれの成分の滴下は、45%SHP以外は一定の滴下速度で連続的に行った。80%AAの滴下終了後、さらに30分間に渡って反応溶液を沸点還流状態に保持(熟成)して重合を完結せしめた。重合の完結後、45%SHP33.2gを投入することにより得られた該重合体水溶液(4)の固形分は53.0%、重量平均分子量(Mw)は5600、SHPの含有量は重合体100質量%に対し、3.6質量%だった。
<製造例5>
 還流冷却機、攪拌機(パドル翼)、温度計を備えた容量2.5リットルのSUS製セパラブルフラスコに、純水144.1gを仕込み(初期仕込)、攪拌下、沸点まで昇温した。次いで攪拌下、沸点還流状態の重合反応系中に80%AA544.8g(すなわち6.05mol)を180分間、50質量%2-ヒドロキシエチルアクリレート(以下、「50%HEA」と称する)351.1g(すなわち1.51mol)を180分間、15%NaPS37.9gを195分間、45%SHP14.8gを18分間と更に続いて68.8gを192分間と2段階の供給速度で、それぞれ別々の供給経路を通じて先端ノズルより滴下した。それぞれの成分の滴下は、45%SHP以外は一定の滴下速度で連続的に行った。80%AAの滴下終了後、さらに30分間に渡って反応溶液を沸点還流状態に保持(熟成)して重合を完結せしめた。重合の完結後、45%SHP38.51gを投入することにより得られた該重合体水溶液(5)の固形分は56.0%、重量平均分子量(Mw)は5600、SHPの含有量は重合体100質量%に対し、3.7質量%だった。
<実施例1>
 製造例1で得られた重合体水溶液(1)25.54g、45%SHP0.98g、25%アンモニア水溶液0.86g(アクリル酸の10mol%中和分)、純水2.12g、硫酸アンモニウム0.50g(カルボキシル基に対して3mol%分)をよく攪拌し、有効成分50%の結合剤(1)を得た。結合剤(1)のpHは3.5、結合剤(1)に含まれる重合体の重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し4.0質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、16.6MPaであった。結合剤(1)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は4100であり、重量平均分子量(Mw)の増加率は17%だった。
 結果を表1に示した。
<実施例2>
 製造例1で得られた重合体水溶液(1)25.54g、45%SHP0.98g、25%アンモニア水溶液1.72g(アクリル酸の20mol%中和分)、純水1.25g、硫酸アンモニウム0.50g(カルボキシル基に対して3mol%分)をよく攪拌し、有効成分50%の結合剤(2)を得た。結合剤(2)のpHは4.0、結合剤(2)に含まれる重合体の重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し4.0質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、16.5MPaであった。結合剤(2)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は3800であり、重量平均分子量(Mw)の増加率は9%だった。
 結果を表1に示した。
<実施例3>
 製造例2で得られた重合体水溶液(2)22.41g、45%SHP0.97g、25%アンモニア水溶液3.02g(アクリル酸の35mol%中和分)、純水3.11g、硫酸アンモニウム0.50g(カルボキシル基に対して3mol%分)をよく攪拌し、有効成分50%の結合剤(3)を得た。結合剤(3)のpHは4.5、結合剤(3)に含まれる重合体の重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し4.0質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、16.1MPaであった。結合剤(3)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は3700であり、重量平均分子量(Mw)の増加率は6%だった。
 結果を表1に示した。
<実施例4>
 製造例1で得られた重合体水溶液(1)25.54g、45%SHP0.98g、25%アンモニア水溶液0.43g(アクリル酸の5mol%中和分)、純水2.55g、硫酸アンモニウム0.50g(カルボキシル基に対して3mol%分)をよく攪拌し、有効成分50%の結合剤(4)を得た。結合剤(4)のpHは3.0、結合剤(4)に含まれる重合体の重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し4.0質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、16.3MPaであった。結合剤(4)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は4400であり、重量平均分子量(Mw)の増加率は26%だった。
 結果を表1に示した。
<実施例5>
 製造例2で得られた重合体水溶液(2)20.13g、45%SHP0.92g、25%アンモニア水溶液7.74g(アクリル酸の100mol%中和分)、硫酸アンモニウム1.20g(カルボキシル基に対して8mol%分)をよく攪拌し、有効成分45%の結合剤(5)を得た。結合剤(5)のpHは8.7、結合剤(5)に含まれる重合体の重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し4.0質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、11.8MPaであった。結合剤(5)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は3500であり、重量平均分子量(Mw)の増加はみられなかった。
 結果を表1に示した。
<実施例6>
 製造例2で得られた重合体水溶液(2)17.16g、45%SHP0.77g、25%アンモニア水溶液5.94g(アクリル酸の90mol%中和分)、純水0.36g、硫酸アンモニウム0.77g(カルボキシル基に対して6mol%分)をよく攪拌し、有効成分46%の結合剤(6)を得た。結合剤(6)のpHは6.3、結合剤(6)に含まれる重合体の重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し4.0質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、14.4MPaであった。結合剤(6)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は3500であり、重量平均分子量(Mw)の増加はみられなかった。
 結果を表1に示した。
<実施例7>
 製造例2で得られた重合体水溶液(2)16.79g、45%SHP0.75g、25%アンモニア水溶液6.13g(アクリル酸の95mol%中和分)、純水0.58g、硫酸アンモニウム0.75g(カルボキシル基に対して6mol%分)をよく攪拌し、有効成分45%の結合剤(7)を得た。結合剤(7)のpHは7.0、結合剤(7)に含まれる重合体の重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し4.0質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、12.8MPaであった。結合剤(7)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は3500であり、重量平均分子量(Mw)の増加はみられなかった。
 結果を表1に示した。
<比較例1>
 製造例1で得られた重合体水溶液(1)25.54g、45%SHP0.98g、純水2.98g、硫酸アンモニウム0.50g(カルボキシル基に対して3mol%分)をよく攪拌し、有効成分50%の結合剤(C1)を得た。結合剤(C1)のpHは2.4、結合剤(C1)に含まれる重合体の重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し4.0質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、16.8MPaであった。結合剤(C1)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は4750であり、重量平均分子量(Mw)の増加率は36%だった。
 結果を表1に示した。
<比較例2>
 製造例2で得られた重合体水溶液(2)20.19g、45%SHP0.84g、25%アンモニア水溶液7.76g(アクリル酸の100mol%中和分)、純水1.21gをよく攪拌し、有効成分45%の結合剤(C2)を得た。結合剤(C2)のpHは8.7、結合剤(C2)に含まれる重合体の重量平均分子量(Mw)は3500、SHPの含有量は重合体100質量%に対し4.0質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、10.1MPaであった。結合剤(C2)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は3500であり、重量平均分子量(Mw)の増加はみられなかった。
 結果を表1に示した。
<比較例3>
 製造例3で得られた重合体水溶液(3)24.34g、25%アンモニア水溶液4.37g(アクリル酸の57mol%中和分)、純水0.84g、硫酸アンモニウム0.45g(カルボキシル基に対して3mol%分)をよく攪拌し、有効成分43%の結合剤(C3)を得た。結合剤(C3)のpHは6.3、結合剤(C3)に含まれる重合体の重量平均分子量(Mw)は8200、SHPの含有量は重合体100質量%に対し3.6質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、10.2MPaであった。結合剤(C3)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は8200であり、重量平均分子量(Mw)の増加はみられなかった。
 結果を表1に示した。
Figure JPOXMLDOC01-appb-T000006
 表1に示した結果から、本発明の結合剤は良好な保存安定性を有し、本発明の結合剤で処理したガラスビーズの硬化物は、良好な強度を有することが明らかとなった。
<実施例8>
 製造例4で得られた重合体水溶液(4)37.71g、45%SHP0.03g、25%アンモニア水溶液1.18g(アクリル酸の10mol%中和分)、25%硫酸アンモニウム水溶液0.91g(アクリル酸に対して1mol%分)、純水0.17gをよく攪拌し、有効成分50%の結合剤(8)を得た。結合剤(8)に含まれる重合体の重量平均分子量(Mw)は5600、SHPの含有量は重合体100質量%に対し3.7質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、12.5MPaであった。耐加水分解性の評価を実施したところ、機械強度は12.0MPaであり、強度の保持率は96.0%だった。結合剤(8)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は6600であり、重量平均分子量(Mw)の増加率は18%だった。
 結果を表2に示した。
<実施例9>
 製造例5で得られた重合体水溶液(5)35.71g、25%アンモニア水溶液1.23g(アクリル酸の10mol%中和分)、25%硫酸アンモニウム水溶液2.86g(アクリル酸に対して1mol%分)、純水0.20gをよく攪拌し、有効成分50%の結合剤(9)を得た。結合剤(9)に含まれる重合体の重量平均分子量(Mw)は5600、SHPの含有量は重合体100質量%に対し3.6質量%だった。上述の方法で作成した試験片の機械強度を評価したところ、11.0MPaであった。耐加水分解性の評価を実施したところ、機械強度は5.5MPaであり、強度の保持率は50.0%だった。結合剤(9)を50℃の恒温層内で30日間保存した後の重量平均分子量(Mw)は6700であり、重量平均分子量(Mw)の増加率は20%だった。
 結果を表2に示した。
Figure JPOXMLDOC01-appb-T000007
 本発明の結合剤は、例えば住宅用の断熱材用の結合剤として、有用に使用することができる。

 

Claims (2)

  1.  水酸基を有する重合体と、無機酸のアンモニウム塩とを含む結合剤であって、
     該重合体は、一般式(1)で表される単量体に由来する構造単位とカルボン酸(塩)基を含む単量体に由来する構造単位とを含み、
     該一般式(1)で表される単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し5モル%~40モル%であり、
     該カルボン酸(塩)基を含む単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し60モル%~95モル%であり、
     該重合体に含まれるカルボン酸(塩)基の2モル%以上が揮発性の塩基および/または不揮発性の塩基で中和されており、
     該重合体に含まれるカルボン酸(塩)基の0モル%~35モル%が不揮発性の塩基で中和されており、
     該重合体に含まれるカルボン酸(塩)基の0モル%~100モル%が揮発性の塩基で中和されている、
     結合剤。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)において、Rは水素原子又はメチル基を表し、Rは炭素数2~20の有機基を表す。)
  2.  水酸基を有する重合体と、無機酸のアンモニウム塩とを含む水溶液であって、
     該重合体は、一般式(1)で表される単量体に由来する構造単位とカルボン酸(塩)基を含む単量体に由来する構造単位とを含み、
     該一般式(1)で表される単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し5モル%~40モル%であり、
     該カルボン酸(塩)基を含む単量体に由来する構造単位の含有量は、全単量体に由来する構造単位100モル%に対し60モル%~95モル%であり、
     該重合体に含まれるカルボン酸(塩)基の2モル%以上が揮発性の塩基および/または不揮発性の塩基で中和されており、
     該重合体に含まれるカルボン酸(塩)基の0モル%~35モル%が不揮発性の塩基で中和されており、
     該重合体に含まれるカルボン酸(塩)基の0モル%~100モル%が揮発性の塩基で中和されており、
     該水溶液は、水を20質量%以上、99.9質量%以下含む、
     水溶液。
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(1)において、Rは水素原子又はメチル基を表し、Rは炭素数2~20の有機基を表す。)
     
     

     
PCT/JP2015/085129 2014-12-26 2015-12-16 結合剤および水溶液 WO2016104261A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/528,805 US9976009B2 (en) 2014-12-26 2015-12-16 Binder and aqueous solution
CN201580070592.7A CN107109017B (zh) 2014-12-26 2015-12-16 结合剂和水溶液
JP2016540087A JP6027297B1 (ja) 2014-12-26 2015-12-16 結合剤および水溶液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-263714 2014-12-26
JP2014263714 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104261A1 true WO2016104261A1 (ja) 2016-06-30

Family

ID=56150286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085129 WO2016104261A1 (ja) 2014-12-26 2015-12-16 結合剤および水溶液

Country Status (4)

Country Link
US (1) US9976009B2 (ja)
JP (1) JP6027297B1 (ja)
CN (1) CN107109017B (ja)
WO (1) WO2016104261A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104903A (ja) * 2017-12-12 2019-06-27 三洋化成工業株式会社 水性(共)重合体組成物
US20200190285A1 (en) * 2017-09-05 2020-06-18 Nippon Shokubai Co., Ltd. Binder Composition, Rigid Body, and Method for Manufacturing Rigid Body
WO2022079946A1 (ja) * 2020-10-16 2022-04-21 株式会社日本触媒 ポリカルボン酸系重合体溶液の保管方法及び使用方法
JP7509907B2 (ja) 2020-10-16 2024-07-02 株式会社日本触媒 ポリカルボン酸系重合体溶液の保管方法及び使用方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074495A1 (ja) * 2016-10-19 2018-04-26 旭化成株式会社 ポリアミド樹脂組成物
CN116529283A (zh) * 2020-11-17 2023-08-01 株式会社日本触媒 粘结剂、固化体和固化体的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184285A (ja) * 1992-08-06 1994-07-05 Rohm & Haas Co 硬化性の水性組成物およびその硬化方法
JP2000063181A (ja) * 1998-08-11 2000-02-29 Murata Mfg Co Ltd バインダー、セラミックスラリー、およびセラミックグリーンシート、ならびにセラミックスラリーの流動性調整方法
JP2005068399A (ja) * 2003-08-26 2005-03-17 Rohm & Haas Co 硬化性水性組成物およびその耐熱性不織布バインダーとしての使用
JP2007211161A (ja) * 2006-02-10 2007-08-23 Asahi Fiber Glass Co Ltd 無機繊維断熱吸音材用水性バインダー及び無機繊維断熱吸音材
WO2011162277A1 (ja) * 2010-06-23 2011-12-29 旭ファイバーグラス株式会社 無機繊維断熱吸音材用水性バインダー、無機繊維断熱吸音材及び無機繊維断熱吸音材の製造方法
JP2012238572A (ja) * 2011-04-25 2012-12-06 Nippon Shokubai Co Ltd 電極組成物の製造方法
JP2015143320A (ja) * 2013-12-24 2015-08-06 株式会社日本触媒 結合剤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015075A1 (en) 1994-11-14 1996-05-23 Owens Corning Fibrous glass binders
JP2006089906A (ja) 2004-08-25 2006-04-06 Sanyo Chem Ind Ltd 鉱物繊維用バインダー
EP1917319B1 (en) 2005-08-26 2011-03-16 Asahi Fiber Glass Company, Limited Aqueous binder for inorganic fiber and thermal and/or acoustical insulation material using the same
JP4759375B2 (ja) 2005-11-25 2011-08-31 旭ファイバーグラス株式会社 無機繊維用水性バインダー及び無機繊維断熱吸音材
JP5615166B2 (ja) 2010-12-28 2014-10-29 旭ファイバーグラス株式会社 鉱物繊維用水性バインダーおよび鉱物繊維積層体
EP2762502B1 (en) 2013-02-04 2020-07-29 Rohm and Haas Company Acrylic latex binder and method of preparation
CN106795247B (zh) 2014-09-19 2019-06-14 株式会社日本触媒 粘合剂和水溶液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184285A (ja) * 1992-08-06 1994-07-05 Rohm & Haas Co 硬化性の水性組成物およびその硬化方法
JP2000063181A (ja) * 1998-08-11 2000-02-29 Murata Mfg Co Ltd バインダー、セラミックスラリー、およびセラミックグリーンシート、ならびにセラミックスラリーの流動性調整方法
JP2005068399A (ja) * 2003-08-26 2005-03-17 Rohm & Haas Co 硬化性水性組成物およびその耐熱性不織布バインダーとしての使用
JP2007211161A (ja) * 2006-02-10 2007-08-23 Asahi Fiber Glass Co Ltd 無機繊維断熱吸音材用水性バインダー及び無機繊維断熱吸音材
WO2011162277A1 (ja) * 2010-06-23 2011-12-29 旭ファイバーグラス株式会社 無機繊維断熱吸音材用水性バインダー、無機繊維断熱吸音材及び無機繊維断熱吸音材の製造方法
JP2012238572A (ja) * 2011-04-25 2012-12-06 Nippon Shokubai Co Ltd 電極組成物の製造方法
JP2015143320A (ja) * 2013-12-24 2015-08-06 株式会社日本触媒 結合剤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200190285A1 (en) * 2017-09-05 2020-06-18 Nippon Shokubai Co., Ltd. Binder Composition, Rigid Body, and Method for Manufacturing Rigid Body
US12006418B2 (en) * 2017-09-05 2024-06-11 Nippon Shokubai Co., Ltd. Binder composition, rigid body, and method for manufacturing rigid body
JP2019104903A (ja) * 2017-12-12 2019-06-27 三洋化成工業株式会社 水性(共)重合体組成物
JP7181775B2 (ja) 2017-12-12 2022-12-01 三洋化成工業株式会社 水性(共)重合体組成物
WO2022079946A1 (ja) * 2020-10-16 2022-04-21 株式会社日本触媒 ポリカルボン酸系重合体溶液の保管方法及び使用方法
JP7509907B2 (ja) 2020-10-16 2024-07-02 株式会社日本触媒 ポリカルボン酸系重合体溶液の保管方法及び使用方法

Also Published As

Publication number Publication date
JP6027297B1 (ja) 2016-11-16
CN107109017A (zh) 2017-08-29
CN107109017B (zh) 2018-12-18
US20170321032A1 (en) 2017-11-09
US9976009B2 (en) 2018-05-22
JPWO2016104261A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6027297B1 (ja) 結合剤および水溶液
JP6029792B2 (ja) 結合剤および水溶液
JP7198322B2 (ja) 結合剤組成物、固着体及び固着体の製造方法
JP6418847B2 (ja) ノニオン性多価アルコール含有結合剤
JP6407674B2 (ja) ノニオン性多価アルコール含有結合剤
JP6348005B2 (ja) 結合剤
JP6602611B2 (ja) 結合剤
JP6345452B2 (ja) 結合剤
JP7457788B2 (ja) 結合剤及び固着体
JP6162562B2 (ja) 新規結合剤
JP2023157586A (ja) ポリカルボン酸系重合体及びその製造方法、並びに結合剤
JP6419908B2 (ja) 重合体組成物の製造方法
JP2003055628A (ja) リグノセルロース用接着剤
JP6181820B1 (ja) 重合体組成物の製造方法
JP2003055629A (ja) リグノセルロース用接着剤
CN108350140B (zh) 制备水性粘合剂的方法
JP2018203799A (ja) カルボキシル基含有共重合体
JP2018203981A (ja) カルボキシル基含有共重合体の製造方法
JP2015189814A (ja) (メタ)アクリル酸系重合体の製造方法
JP2008239828A (ja) 水系熱硬化性組成物
JP2015150530A (ja) 無機微粒子分散剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016540087

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15528805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872830

Country of ref document: EP

Kind code of ref document: A1