WO2016068606A1 - 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막 - Google Patents

고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막 Download PDF

Info

Publication number
WO2016068606A1
WO2016068606A1 PCT/KR2015/011463 KR2015011463W WO2016068606A1 WO 2016068606 A1 WO2016068606 A1 WO 2016068606A1 KR 2015011463 W KR2015011463 W KR 2015011463W WO 2016068606 A1 WO2016068606 A1 WO 2016068606A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
electrolyte membrane
membrane
present specification
Prior art date
Application number
PCT/KR2015/011463
Other languages
English (en)
French (fr)
Inventor
정세희
한중진
류현욱
장용진
김영제
강에스더
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP15854568.1A priority Critical patent/EP3214110B1/en
Priority to JP2017515926A priority patent/JP6478175B2/ja
Priority to CN201580057129.9A priority patent/CN107075109B/zh
Priority to US15/516,756 priority patent/US10407545B2/en
Publication of WO2016068606A1 publication Critical patent/WO2016068606A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/30Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type branched
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present specification relates to a polymer polymerization composition, a polymer using the same, a polymer electrolyte membrane using the same, a fuel cell including the same, and a redox flow battery including the same.
  • a polymer is a compound having a large molecular weight, and refers to a compound formed by polymerizing several low molecules called monomers. Polymers can be classified into linear polymers, branched polymers, cross-linked polymers, etc. according to the structure and shape of the chain, and show significant differences in physical and chemical properties.
  • the polymer has been mainly used as a structural material having excellent mechanical strength and good workability compared to a relatively light weight, but recently, it has been used as a functional material due to its excellent physical and chemical properties.
  • a representative example is the use as a polymer membrane.
  • the polymer membrane is not a simple thin membrane such as a film, but means a polymer membrane having a function of separating substances. Specifically, it is used as an electrolyte membrane capable of cation exchange such as fuel cells and redox flow batteries.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy.
  • a fuel cell is a power generation method that uses fuel gas and an oxidant and generates electric power by using electrons generated during the redox reaction.
  • the membrane electrode assembly (MEA) of a fuel cell is a portion in which an electrochemical reaction between hydrogen and oxygen occurs and is composed of a cathode, an anode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane.
  • a redox flow battery (redox flow battery) is an electrochemical storage device that stores the chemical energy of an active material directly as electrical energy by charging and discharging the active material contained in the electrolyte. to be.
  • the unit cell of the redox flow battery includes an electrode, an electrolyte, and an ion exchange membrane (electrolyte membrane).
  • Fuel cells and redox flow cells are being researched and developed as next generation energy sources due to their high energy efficiency and eco-friendly features with low emissions.
  • One of the key components of fuel cells and redox flow cells is a polymer electrolyte membrane capable of cation exchange, and monomers used in synthesizing polymers to produce polymer membranes for fuel cells and / or redox flow cells having high durability and resistance. Research on the composition for polymer polymerization and the like has been made.
  • the present specification is to provide a composition for polymer polymerization, a polymer using the same, a polymer electrolyte membrane using the same, a fuel cell including the same, and a redox flow battery including the same.
  • composition for polymer polymerization comprising a compound for a brancher represented by Formula 1 below:
  • R1 to R3 are the same as or different from each other, and are each a halogen group or a hydroxyl group.
  • an exemplary embodiment of the present specification provides a polymer comprising a monomer derived from a compound for branching represented by the formula (1) as a brancher.
  • One embodiment of the present specification also includes an anode; cathode; And an electrolyte membrane provided between the anode and the cathode, wherein the electrolyte membrane is the polymer electrolyte membrane.
  • an exemplary embodiment of the present specification includes a stack including a bipolar plate provided between two or more of the membrane-electrode assembly and the membrane-electrode assembly; A fuel supply unit supplying fuel to the stack; And it provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • One embodiment of the present specification also includes a positive electrode cell including a positive electrode and a positive electrode electrolyte; A cathode cell comprising a cathode and a cathode electrolyte; And it provides a redox flow battery comprising the polymer electrolyte membrane provided between the cathode cell and the anode cell.
  • the polymer synthesized using the polymer polymerization composition according to the exemplary embodiment of the present specification has excellent durability and acid resistance.
  • the polymer according to one embodiment of the present specification is excellent in durability and acid resistance. Therefore, the polymer electrolyte membrane including the same has an effect of excellent physical and chemical stability.
  • the polymer electrolyte membrane according to one embodiment of the present specification has excellent proton conductivity.
  • the polymer electrolyte membrane according to one embodiment has excellent mechanical strength.
  • the fuel cell and / or the redox flow battery according to the exemplary embodiment of the present specification including the polymer electrolyte membrane has excellent performance.
  • FIG. 1 is a schematic diagram illustrating a principle of electricity generation of a fuel cell.
  • FIG. 2 is a view schematically showing an embodiment of a redox flow battery.
  • FIG 3 is a view schematically showing an embodiment of a fuel cell.
  • monomer means a structure in which the compound is included in the form of two or more in the polymer by the polymerization reaction.
  • brancher is a compound having three or more reactive substituents, and when included as a monomer of a polymer, a branched polymer, that is, a main chain, a branch point and a branch It refers to a compound to form a polymer structure including a side chain (side chain) connected to the main chain at the point.
  • the halogen group is fluorine or chlorine.
  • the halogen group is fluorine.
  • the R1 to R3 are the same as each other.
  • the R1 to R3 is a halogen group.
  • the R1 to R3 are fluorine.
  • the compound for brancher represented by Formula 1 may be any one selected from the following structures:
  • the compound for brancher represented by the formula (1) is included as a brancher in the synthesis of the polymer.
  • the composition for polymer polymerization may further include a comonomer, a solvent, and / or a catalyst in addition to the compound for brancher represented by Chemical Formula 1.
  • Examples of the comonomer include perfluorosulfonic acid polymer, hydrocarbon-based polymer, polyimide, polyvinylidene fluoride, polyethersulfone, polyphenylene sulfide, polyphenylene oxide, polyphosphazine, polyethylene naphthalate, polyester, doping Polybenzimidazoles, polyetherketones, polysulfones, monomers thereof, or bases thereof.
  • the content of the additional comonomer in the polymer polymerization composition may be greater than 0 wt% and less than 95 wt%.
  • the solvent is not particularly limited as long as it can dissolve the polymer well, and a solvent having a different boiling point may be selected depending on the polymerization temperature.
  • examples of the solvent may include dimethylsulfoxide (DMSO), dimethyl acetamide, N-methyl-2-pyrrolidone, and the like. It is not limited by this.
  • the content of the solvent in the polymer polymerization composition is more than 0 wt% and 50 wt% or less.
  • Examples of the catalyst may include, but are not limited to, potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide, and the like.
  • the monomer derived from the compound for branching represented by Chemical Formula 1 may have a structure as follows.
  • the monomer is a brancher (brancher) monomer.
  • Branchers serve to connect or crosslink polymer chains. Branches may be formed in chains according to the number of repeating units of monomers derived from the compound for branchers represented by Formula 1 used as a brancher, or the chains may be crosslinked with each other to form a net-like structure.
  • the conventional membranes for fuel cells and / or redox flow batteries have a problem of being attacked by radicals during polymerization or breaking bonds by sulfuric acid electrolyte during the membrane test.
  • a representative brancher that has been used in the past has a problem in that a ketone group located in the main chain of the brancher is broken by a radical that may occur during a polymerization reaction. There was this. In other words, the thermal and chemical stability was poor.
  • the polymer according to an exemplary embodiment of the present specification and the polymer electrolyte membrane including the same have excellent physical and chemical stability. Specifically, it is as follows.
  • the compound for brancher represented by Chemical Formula 1 included in the polymer polymerization composition of the present specification includes a tertiary amine.
  • a tertiary amine By introducing the tertiary amine, there is an advantage that the breakage phenomenon due to radical attack during polymer polymerization can be minimized. That is, the polymer containing the composition is excellent in durability.
  • the compound for the brancher represented by the formula (1) included in the polymer polymerization composition of the present specification has a three-dimensional (3-dimensional) structure, the advantage that the polymerization space is wider than the flat (flat) structure during the polymerization reaction have. As a result, the polymer synthesized using the polymer polymerization composition has a high molecular weight.
  • the monomer derived from the compound for brancher represented by the formula (1) contained in the polymer is a monomer for brancher.
  • the monomer when used as a brancher, the above-described effects can be obtained.
  • branchers serve to link or crosslink the polymer chains.
  • Branches may be formed in chains according to the number of repeating units of monomers derived from the compound for branchers represented by Formula 1 used as a brancher, or the chains may be crosslinked with each other to form a net-like structure.
  • the length, distribution, position, number, etc. of the brancher can be controlled in the polymer skeleton, and in this case, the physical and chemical properties of the polymer electrolyte membrane There is no deterioration of the physical properties there is an advantage that can be effectively produced a thin film.
  • the polymer membrane including the polymer prepared using the polymer polymerization composition according to the exemplary embodiment of the present specification may exhibit the above-described effect.
  • the polymer membrane may mean a membrane capable of exchanging ions, and may be used in a fuel cell, a redox flow battery, and the like.
  • the content of the monomer derived from the compound for brancher represented by Chemical Formula 1 may be included in an amount of 0.001% by weight or more and 10% by weight or less based on the total weight of the polymer, preferably 0.001 It may be greater than 10% by weight.
  • the content of the monomer derived from the compound for brancher represented by the formula (1) satisfies the numerical range, the function as the polymer electrolyte membrane can be efficiently exhibited.
  • the degree of crosslinking of the polymer may be sufficiently increased to obtain the effect of changing the physical properties of the final polymer as described above. Due to the stable tertiary amine has the advantage that can be prevented from breaking by the radical attack.
  • the compound for brancher represented by the formula (1) is included in less than 10% by weight relative to the total weight of the polymer, the residual brancher that does not participate in the reaction is less likely to occur in the polymer, the end group during the hydrophobic partial polymerization of the hydroxyl group (- OH) can be designed to finally polymerize the desired block copolymer.
  • the compound for brancher represented by Chemical Formula 1 may be prepared based on the preparation examples described below. According to one embodiment, it may be prepared in the same manner as in Scheme 1 below.
  • X is a halogen group or a hydroxyl group.
  • the polymer may include additional comonomers.
  • additional comonomers those known in the art can be used. In this case, one or two or more kinds of comonomers may be used.
  • Examples of the comonomer include perfluorosulfonic acid polymer, hydrocarbon-based polymer, polyimide, polyvinylidene fluoride, polyethersulfone, polyphenylene sulfide, polyphenylene oxide, polyphosphazine, polyethylene naphthalate, polyester, doping Polybenzimidazoles, polyetherketones, polysulfones, monomers thereof, or bases thereof.
  • the content of the additional comonomer in the polymer may be greater than 0 wt% and less than 95 wt%.
  • the monomer derived from the compound for brancher represented by Chemical Formula 1 in the polymer may be included in an amount of 0.001% by weight or more and 10% by weight or less based on the total weight of the polymer.
  • the brancher can sufficiently increase the crosslinking degree of the polymer to obtain the effect of changing the physical properties of the final polymer, and to 10% by weight or less.
  • the end group can be designed as a hydroxyl group (-OH) during hydrophobic partial polymerization, thereby finally polymerizing a desired block copolymer.
  • the polymer containing the monomer derived from the compound for branchers represented by the said Formula (1) is a block copolymer.
  • the polymer may be synthesized, for example, by a condensation polymerization method in which a halogen group or a hydroxyl group of a monomer reacts and bonds while exiting to HF, HCl, or H 2 O.
  • the polymer is a block copolymer including a hydrophilic block and a hydrophobic block.
  • the monomer derived from the compound for brancher represented by Formula 1 may be located between the hydrophilic block, between the hydrophobic block or between the hydrophilic block and the hydrophobic block.
  • hydrophilic block herein is meant a block having an ion exchange group as a functional group.
  • the functional groups are -SO 3 H, -SO 3 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H - M + , and -PO 3 2- 2M + the group consisting of It may be at least one selected from.
  • M may be a metallic element. That is, the functional group may be hydrophilic.
  • block having an ion exchange group in the present specification means a block containing an average of 0.5 or more represented by the number of ion exchange groups per structural unit constituting the block, and an average of 1.0 or more ions per structural unit It is more preferable to have an exchanger.
  • hydrophobic block herein is meant the polymer block which is substantially free of ion exchange groups.
  • block having substantially no ion exchange group means a block having an average of less than 0.1 represented by the number of ion exchange groups per structural unit constituting the block, and more preferably 0.05 or less on average. It is more preferable if it is a block which does not have an ion exchange group at all.
  • a "block type copolymer” means that one block forms a main chain structure and the other block has a side chain structure.
  • the concept also includes the copolymer of the copolymerization mode of the graft superposition
  • the polymer used in the present specification is not limited to the above-described block copolymer, a polymer containing a fluorine-based element may also be used. In this case, the polymer including the fluorine-based element may also include a functional group, the functional group may be hydrophilic.
  • the functional group is -SO 3 H, -SO 3 - M a +, and -PO 3 2- 2M + - M + , -COOH, -COO - M +, -PO 3 H 2, -PO 3 H At least one selected from the group consisting of.
  • M may be a metallic element.
  • the block copolymer is a copolymer including a repeating unit of Formula A, a repeating unit of Formula B, and a monomer according to one embodiment of the present specification as a brancher:
  • Y 1 to Y 4 are the same as or different from each other, and are each independently —O—, —S—, or —SO 2 —,
  • U 1 and U 2 are the same as or different from each other, and each independently represented by one of the following Chemical Formulas 2 to 4,
  • L 1 is a direct connection, -C (Z 1 ) (Z 2 )-, -CO-, -O-, -S-, -SO 2- , -Si (Z 1 ) (Z 2 )-and substituted or unsubstituted Any one of a fluorenyl group,
  • Z 1 and Z 2 are the same as or different from each other, and each independently one of hydrogen, an alkyl group, a trifluoromethyl group (-CF 3 ), and a phenyl group,
  • S 1 to S 5 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Cyano group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or unsubstituted amine group; Substituted or unsubstituted alkylamine group; A substituted or unsubstituted aralkylamine group; Substituted or unsubstituted arylamine group; Substituted or unsubstituted heteroarylamine group; Substituted or unsubstituted aryl group;
  • a, b and c are the same as or different from each other, and each independently an integer of 0 or more and 4 or less,
  • i and k are the same as or different from each other, and each independently an integer of 0 or more and 3 or less,
  • a ' is an integer greater than or equal to 1 and less than or equal to 1000
  • W 1 is represented by any one of the following Chemical Formulas 5 to 7,
  • L 2 is directly connected or selected from -CZ 3 Z 4- , -CO-, -O-, -S-, -SO 2- , -SiZ 3 Z 4 -and a substituted or unsubstituted fluorenyl group.
  • Z 3 and Z 4 are the same as or different from each other, and are each independently hydrogen, an alkyl group, a trifluoromethyl group (-CF 3 ), or a phenyl group,
  • d, e, and h are the same as or different from each other, and each independently an integer of 0 or more and 4 or less,
  • f and g are the same as or different from each other, and each independently an integer of 0 or more and 3 or less,
  • b ' is an integer from 1 to 1000
  • T 1 to T 5 are the same or different from each other, at least one each independently is -SO 3 H, -SO 3 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H - M + or -PO 3 2- 2M +, and, wherein M is a group 1 element, and the remainder are the same or different, and each independently hydrogen; heavy hydrogen; Halogen group; Cyano group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or unsubstituted amine group; Substituted or unsubsti
  • U 3 is represented by any one of Formula 2 to 7,
  • n the number of repeating units
  • the number of repeating units of the monomer according to the exemplary embodiment of the present specification included as a brancher is 1 or more and 300 or less.
  • the number of repeating units of the monomer according to the exemplary embodiment of the present specification included as a brancher may be 10 or more and 300 or less.
  • the number of repeating units is 10 or more, the ion transport resin is physically stable and the ion transport channel is well formed, and thus the conductivity is finally increased.
  • the number of repeating units is less than 10, the degree of crosslinking between the hydrophilic and hydrophobic portions in the polymer is lowered, thereby reducing the molecular weight of the final polymer, reducing the impact strength and poorly forming ion transfer channels, which may result in deterioration of the properties of the ion transfer resin. .
  • the monomer derived from the compound for brancher represented by Chemical Formula 1 is included in an amount of 0.001% by weight or more and 10% by weight or less based on the total weight of the polymer.
  • the degree of crosslinking of the polymer may be sufficiently increased to bring about the effect of changing the physical properties of the final polymer, and 10 wt% or less.
  • the incidence of residual monomers that do not participate in the reaction is low, and the end group during the hydrophobic partial polymerization can be designed as a hydroxyl group, there is an advantage that can finally polymerize the desired block-type copolymer.
  • U 1 , U 2 and U 3 are the same as or different from each other, and each independently one selected from the following structural formulas.
  • R and R ' are each independently -NO 2 or -CF 3 .
  • W 1 is any one selected from the following structural formulas.
  • Q and Q ' are each independently -SO 3 H, -SO 3 - M + , -COOH, -COO - M + , -PO 3 H 2 , -PO 3 H - M + or -PO 3 2- 2M + , and M is a Group 1 metal.
  • W 1 is any one selected from the following structural formula.
  • R and R ' are each independently -NO 2 or -CF 3 ,
  • Q and Q ' are each independently a -SO 3 H, -SO 3 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H - M + or -PO 3 2- 2M + And M is a Group 1 metal.
  • U 1 , U 2 and U 3 are the same as or different from each other, and each independently one selected from the following structural formulas.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 50. Specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl and heptyl groups.
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 50. Specific examples include, but are not limited to, alkenyl groups in which aryl groups such as stylbenyl and styrenyl groups are substituted.
  • the alkoxy group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 50.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and particularly preferably a cyclopentyl group and a cyclohexyl group.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the amine group is preferably 1 to 50.
  • Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group. , Diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group and the like, but are not limited thereto.
  • the carbon number of the arylamine group is not particularly limited, but is preferably 6 to 50.
  • Examples of the arylamine group mean a substituted or unsubstituted monocyclic diarylamine group, a substituted or unsubstituted polycyclic diarylamine group, or a substituted or unsubstituted monocyclic and polycyclic diarylamine group.
  • the aryl group may be monocyclic or polycyclic, and the carbon number is not particularly limited, but is preferably 6 to 60.
  • Specific examples of the aryl group include monocyclic aromatic aryl groups such as phenyl group, biphenyl group, triphenyl group, terphenyl group, stilbene group, naphthyl group, vinaphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perrylenyl group, Polycyclic aromatic aryl groups, such as a tetrasenyl group, a chrysenyl group, a fluorenyl group, an acenaphthacenyl group, a triphenylenyl group, and a fluoranthene group, etc. are mentioned, but it is not limited to this.
  • the heteroaryl group includes S, O or N as a hetero atom, and the carbon number is not particularly limited, but is preferably 2 to 60.
  • Specific examples of the heteroaryl group include pyridyl, pyrrolyl, pyrimidyl, pyridazinyl, furanyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, Isothiazolyl group, triazolyl group, furazanyl group, oxadiazolyl group, thiadiazolyl group, dithiazolyl group, tetrazolyl group, pyranyl group, thiopyranyl group, diazinyl group, oxazinyl group, thia Genyl group, dioxyyl group, triazinyl group, tetrazinyl group, quinolyl group, isoquinolyl group, quinazolinyl
  • the fluorenyl group may be substituted by other substituents, the substituents may be bonded to each other to form a ring.
  • substituents may be bonded to each other to form a ring.
  • substituted or unsubstituted is deuterium; Halogen group; An alkyl group; Alkenyl groups; An alkoxy group; Cycloalkyl group; Silyl groups; Aryl alkenyl group; Aryl group; Boron group; Alkylamine group; Aralkyl amine groups; Arylamine group; Carbazole groups; Arylamine group; Aryl group; Nitrile group; Nitro group; It means that it is substituted with one or more substituents selected from the group consisting of a hydroxy group and a cyano group or has no substituent.
  • the group 1 element may be Li, Na or K.
  • the weight average molecular weight of the polymer may be 500 or more and 5,000,000 or less (g / mol), specifically 10,000 or more and 2,000,000 or less (g / mol), and more specifically 50,000 or more and 1,000,000 Or less (g / mol).
  • the weight average molecular weight of the copolymer is 500 or more and 3,000,000 or less (g / mol)
  • the mechanical properties of the electrolyte membrane are not lowered, and the solubility of the polymer can be maintained to facilitate the preparation of the electrolyte membrane.
  • the distribution degree (PDI) of the polymer may be 1 or more and 6 or less (Mw / Mn), and specifically, 1.5 or more and 4 or less (Mw / Mn).
  • An exemplary embodiment of the present specification provides a polymer electrolyte membrane including the polymer.
  • the polymer electrolyte membrane may exhibit the above effects.
  • electrolyte membrane is a membrane capable of exchanging ions, such as membrane, ion exchange membrane, ion transfer membrane, ion conductive membrane, separator, ion exchange membrane, ion transfer membrane, ion conductive separator, ion exchange electrolyte membrane, ion And a transfer electrolyte membrane or an ion conductive electrolyte membrane.
  • the polymer electrolyte membrane according to the present specification may be prepared by materials and / or methods known in the art, except for including monomers derived from the compound for brancher represented by Chemical Formula 1.
  • the ionic conductivity of the polymer electrolyte membrane may be 0.01 S / cm or more and 0.5 S / cm or less, specifically, 0.01 S / cm or more and 0.3 S / cm or less.
  • the ionic conductivity of the polymer electrolyte membrane may be measured under humidification conditions.
  • the humidification condition may mean 10% to 100% relative humidity (RH).
  • the thickness of the electrolyte membrane may be 1 ⁇ m to 200 ⁇ m, and specifically 10 ⁇ m to 100 ⁇ m.
  • the thickness of the electrolyte membrane is 1 ⁇ m to 200 ⁇ m, electric short and cross over of the electrolyte material may be reduced, and excellent cation conductivity may be exhibited.
  • One embodiment of the present specification is an anode; cathode; And an electrolyte membrane provided between the anode and the cathode, wherein the electrolyte membrane is a polymer electrolyte membrane according to one embodiment of the present specification.
  • Membrane-electrode assembly is an electrode (anode and cathode) where an electrochemical catalysis of fuel and air occurs and a polymer membrane where hydrogen ions are transferred. It is a single unitary unit.
  • the membrane-electrode assembly may be prepared according to a conventional method known in the art as a form in which the catalyst layer of the anode and the catalyst layer of the cathode contact the electrolyte membrane.
  • the anode; cathode; And it may be prepared by thermal compression to 100 to 400 in a state in which the electrolyte membrane located between the positive electrode and the negative electrode in close contact.
  • the anode may include an anode catalyst layer and an anode gas diffusion layer.
  • the anode gas diffusion layer may further include an anode microporous layer and an anode electrode substrate.
  • the negative electrode may include a negative electrode catalyst layer and a negative electrode gas diffusion layer.
  • the cathode gas diffusion layer may further include a cathode microporous layer and a cathode electrode substrate.
  • an exemplary embodiment of the present disclosure provides a fuel cell including the membrane-electrode assembly.
  • the stack including a bipolar plate provided between the two or more membrane-electrode assembly and the membrane-electrode assembly; A fuel supply unit supplying fuel to the stack; And it provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • the anode catalyst layer is where the oxidation reaction of the fuel occurs, and a catalyst selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum-transition metal alloy is preferably used.
  • a catalyst selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum-transition metal alloy is preferably used.
  • a catalyst selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum-transition metal alloy is preferably used.
  • platinum platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum-transition metal alloy is preferably used.
  • the cathode catalyst layer is a place where a reduction reaction of an oxidant occurs, and a platinum or a platinum-transition metal alloy may be preferably used as a catalyst.
  • the catalysts can be used on their own as well as supported on a carbon-based carrier.
  • the introduction of the catalyst layer may be carried out by conventional methods known in the art, for example, the catalyst ink may be directly coated on the electrolyte membrane or coated on the gas diffusion layer to form the catalyst layer.
  • the coating method of the catalyst ink is not particularly limited, but spray coating, tape casting, screen printing, blade coating, die coating or spin coating may be used.
  • Catalytic inks can typically consist of a catalyst, a polymer ionomer, and a solvent.
  • the gas diffusion layer serves as a passage for the reaction gas and water together with a role as a current conductor, and has a porous structure. Therefore, the gas diffusion layer may include a conductive substrate.
  • the conductive substrate carbon paper, carbon cloth, or carbon felt may be preferably used.
  • the gas diffusion layer may further comprise a microporous layer between the catalyst layer and the conductive substrate.
  • the microporous layer may be used to improve the performance of the fuel cell in low-humidity conditions, and serves to reduce the amount of water flowing out of the gas diffusion layer so that the electrolyte membrane is in a sufficient wet state.
  • One embodiment of the present specification includes two or more membrane-electrode assemblies; A stack comprising a bipolar plate provided between the membrane-electrode assemblies; A fuel supply unit supplying fuel to the stack; And it provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • the fuel cell may be manufactured according to conventional methods known in the art using the membrane-electrode assembly according to one embodiment of the present specification.
  • the membrane-electrode assembly and the bipolar plate may be prepared.
  • FIG. 1 schematically illustrates the principle of electricity generation of a fuel cell.
  • the most basic unit for generating electricity is a membrane electrode assembly (MEA), which is an electrolyte membrane 100 and the electrolyte membrane 100. It consists of an anode (200a) and a cathode (200b) electrode formed on both sides of the.
  • MEA membrane electrode assembly
  • FIG. 1 which illustrates the electricity generation principle of a fuel cell
  • an oxidation reaction of a fuel such as hydrogen or a hydrocarbon such as methanol and butane occurs in the anode 200a to generate hydrogen ions (H + ) and electrons (e ⁇ ).
  • the hydrogen ions move to the cathode 200b through the electrolyte membrane 100.
  • water is generated by reacting hydrogen ions transferred through the electrolyte membrane 100 with an oxidant such as oxygen and electrons. This reaction causes the movement of electrons in the external circuit.
  • the fuel cell of the present specification includes a stack, a fuel supply unit and an oxidant supply unit.
  • FIG. 3 schematically illustrates the structure of a fuel cell, in which the fuel cell includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or two or more membrane electrode assemblies as described above, and a separator interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply unit 70 serves to supply the oxidant to the stack 60.
  • Oxygen is typically used as the oxidizing agent, and may be used by injecting oxygen or air into the pump 70.
  • the fuel supply unit 80 serves to supply fuel to the stack 60, and to the fuel tank 81 storing fuel and the pump 82 supplying fuel stored in the fuel tank 81 to the stack 60.
  • fuel hydrogen or hydrocarbon fuel in gas or liquid state may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • the fuel cell may be a polymer electrolyte fuel cell, a direct liquid fuel cell, a direct methanol fuel cell, a direct formic acid fuel cell, a direct ethanol fuel cell, or a direct dimethyl ether fuel cell.
  • An exemplary embodiment of the present specification also provides a redox flow battery including the polymer electrolyte membrane. Specifically, a cell containing a positive electrode and a positive electrode electrolyte; A cathode cell comprising a cathode and a cathode electrolyte; And it provides a redox flow battery comprising a polymer electrolyte membrane according to one embodiment of the present specification provided between the cathode cell and the anode cell.
  • the electrolyte membrane according to one embodiment of the present specification is used as an ion exchange membrane of a redox flow battery, the above-described effects may be exhibited.
  • the redox flow battery may be manufactured according to conventional methods known in the art, except for including the polymer electrolyte membrane according to one embodiment of the present specification.
  • the redox flow battery is divided into the positive electrode cell 32 and the negative electrode cell 33 by the electrolyte membrane 31.
  • the anode cell 32 and the cathode cell 33 include an anode and a cathode, respectively.
  • the anode cell 32 is connected to the anode tank 10 for supplying and discharging the anode electrolyte 41 through a pipe.
  • the cathode cell 33 is also connected to the cathode tank 20 for supplying and discharging the cathode electrolyte 42 through a pipe.
  • the electrolyte is circulated through the pumps 11 and 21, and an oxidation / reduction reaction (that is, a redox reaction) in which the oxidation number of ions changes occurs, thereby causing charge and discharge at the anode and the cathode.
  • an oxidation / reduction reaction that is, a redox reaction
  • polymer 1 was precipitated in 3 L of isopropyl alcohol to form a precipitate, and then the solvent of the precipitate was removed and washed with deionized water at room temperature for 48 hours. After removing the residual K 2 CO 3 and dried for 48 hours in a 90 °C vacuum oven to obtain a polymer (polymer 1) to introduce a partial fluorine-based brancher containing the polymer 1-A.
  • the weight average molecular weight of the polymer polymerized in Synthesis Example 1 of the polymer is 458,000 g / mol, and the polymer using the monomer derived from the compound of Formula 1 is higher than the polymer polymerized without using a brancher (weight average molecular weight 77,000 g / mol). It showed an improved weight average molecular weight.
  • the weight average molecular weight of the polymer using the compound Z as a brancher is 367,000 g / mol, it is lower than the polymer using a monomer derived from the compound of the formula (1).
  • the weight of the film-formed polymer electrolyte membrane was measured.
  • a 3% H 2 O 2 solution containing a small amount of Fe 2 + ions into a polymer electrolyte membrane formed by using the polymer (polymer 1) synthesized in Synthesis Synthesis Example 1 was stirred at 80 °C for 20 hours. After the test was carried out, the weight of the polymer electrolyte membrane completely drained was measured to obtain a decomposition rate (%).
  • the polymer electrolyte membrane formed by using the polymer of the present invention had a larger ion exchange capacity and a lower decomposition rate with respect to the Fenton reagent than the polymer electrolyte membrane of the comparative experimental example using a conventional brancher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Polyethers (AREA)

Abstract

본 명세서는 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막, 이를 포함하는 연료전지 및 이를 포함하는 레독스 플로우 전지에 관한 것이다.

Description

고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막
본 출원은 2014년 10월 28일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0147782호 및 제 10-2014-0147784호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막, 이를 포함하는 연료전지 및 이를 포함하는 레독스 플로우 전지에 관한 것이다.
고분자(polymer)는 분자량이 큰 화합물로, 단량체(monomer)라는 저분자가 여러 개 중합되어 이루어진 화합물을 일컫는다. 고분자는 사슬의 구조 및 형태에 따라 선형 고분자, 가지 고분자, 가교 고분자 등으로 분류할 수 있으며, 구조에 따라 물리적화학적 특성에서 큰 차이점을 보인다.
고분자는 비교적 가벼운 무게에 비해 기계적 강도가 우수하며 가공성이 좋아 구조를 이루는 재료로 주로 사용되어 왔으나, 최근에는 우수한 물리적화학적 특성으로 인하여 기능성 재료로서의 사용이 부각되고 있다.
대표적인 예로 고분자 분리막으로의 활용이 있다. 고분자 분리막이란, 필름 같은 단순한 엷은 막이 아니라 물질을 분리하는 기능을 갖는 고분자막을 의미한다. 구체적으로, 연료전지, 레독스 플로우 전지 등의 양이온 교환이 가능한 전해질막으로 사용되고 있다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다. 연료전지의 막 전극 접합체(MEA)는 수소와 산소의 전기화학적 반응이 일어나는 부분으로서 캐소드와 애노드 그리고 전해질막, 즉 이온 전도성 전해질막으로 구성되어 있다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)란 전해액에 포함되어 있는 활성물질이 산화·환원되어 충전·방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지의 단위셀은 전극, 전해질 및 이온교환막(전해질막)을 포함한다.
연료전지 및 레독스 플로우 전지는 높은 에너지 효율성과 오염물의 배출이 적은 친환경적인 특징으로 인하여 차세대 에너지원으로 연구 개발되고 있다.
연료전지 및 레독스 플로우 전지의 핵심 구성요소 중 하나는 양이온 교환이 가능한 고분자 전해질막이며, 내구성 및 내산성이 높은 연료전지 및/또는 레독스 플로우 전지용 고분자 막을 제조하기 위해 고분자 합성시 사용되는 단량체와 이를 포함하는 고분자 중합용 조성물 등에 대한 연구가 이루어지고 있다.
[특허문헌] 대한민국 공개공보 제2003-0076057호
본 명세서는 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막, 이를 포함하는 연료전지 및 이를 포함하는 레독스 플로우 전지를 제공하고자 한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 브랜처용 화합물을 포함하는 고분자 중합용 조성물을 제공한다:
[화학식 1]
Figure PCTKR2015011463-appb-I000001
상기 화학식 1에서,
R1 내지 R3는 서로 동일하거나 상이하고, 각각 할로겐기 또는 히드록시기이다.
또한, 본 명세서의 일 실시상태는 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체를 브랜처로서 포함하는 고분자를 제공한다.
본 명세서의 일 실시상태는 또한, 양극; 음극; 및 상기 양극과 상기 음극 사이에 구비된 전해질막을 포함하고, 상기 전해질막이 상기 고분자 전해질막인 것인 막-전극 접합체를 제공한다.
또한, 본 명세서의 일 실시상태는 2 이상의 상기 막-전극 접합체와 상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택; 연료를 상기 스택으로 공급하는 연료공급부; 및 산화제를 상기 스택으로 공급하는 산화제공급부를 포함하는 것을 특징으로 하는 고분자 전해질형 연료전지를 제공한다.
본 명세서의 일 실시상태는 또한, 양극 및 양극 전해액을 포함하는 양극 셀; 음극 및 음극 전해액을 포함하는 음극 셀; 및 상기 양극 셀과 상기 음극 셀 사이에 구비되는 상기 고분자 전해질막을 포함하는 레독스 플로우 전지를 제공한다.
본 명세서의 일 실시상태에 따른 고분자 중합용 조성물을 이용하여 합성한 고분자는 내구성 및 내산성이 우수하다.
또한, 본 명세서의 일 실시상태에 따른 고분자는 내구성 및 내산성이 우수하다. 따라서, 이를 포함하는 고분자 전해질막은 물리적·화학적 안정성이 우수하다는 효과가 있다.
본 명세서의 일 실시상태에 따른 상기 고분자 전해질막은 양성자 전도도가 우수하다. 일 실시상태에 따른 상기 고분자 전해질막은 우수한 기계적 강도를 가진다.
상기 고분자 전해질 막을 포함하는 본 명세서의 일 실시상태에 따른 연료전지 및/또는 레독스 플로우 전지는 우수한 성능을 가진다.
도 1은 연료전지의 전기 발생 원리를 나타내는 개략적인 도면이다.
도 2는 레독스 플로우 전지의 일 실시예를 개략적으로 나타낸 도면이다.
도 3은 연료전지의 일 실시예를 개략적으로 나타낸 도면이다.
이하 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, "단량체"는 화합물이 중합반응에 의해서 중합체 내에서 2가기 이상의 형태로 포함되는 구조를 의미한다.
본 명세서에서 "브랜처(brancher)"는 3 이상의 반응성 치환기를 가지는 화합물로서, 고분자의 단량체로서 포함되는 경우에 가지 고분자(branched polymer), 즉 주쇄(main chain), 가지점(branch point) 및 가지점에서 주쇄와 연결되는 곁사슬(side chain)을 포함하는 고분자 구조를 형성하도록 하는 화합물을 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 할로겐기는 불소 또는 염소이다.
본 명세서의 일 실시상태에 따르면, 상기 할로겐기는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R3는 서로 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R3는 할로겐기이다.
또 하나의 실시상태에 따르면, 상기 R1 내지 R3는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 브랜처용 화합물은 하기의 구조들 중에서 선택되는 어느 하나일 수 있다:
Figure PCTKR2015011463-appb-I000002
Figure PCTKR2015011463-appb-I000003
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 브랜처용 화합물은 고분자 합성시 브랜처로 포함된다.
본 명세서의 일 실시상태에 따르면, 고분자 중합용 조성물은 상기 화학식 1로 표시되는 브랜처용 화합물 이외에 공단량체, 용매 및/또는 촉매를 추가로 더 포함할 수 있다.
상기 공단량체의 예로는 퍼플루오르술폰산 폴리머, 탄화수소계 폴리머, 폴리이미드, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리페닐렌설파이드, 폴리페닐렌옥사이드, 폴리포스파진, 폴리에틸렌나프탈레이트, 폴리에스테르, 도핑된 폴리벤즈이미다졸, 폴리에테르케톤, 폴리술폰, 이들의 산 또는 이들의 염기를 구성하는 단량체가 사용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 중합용 조성물 중 상기 추가의 공단량체의 함량은 0 중량% 초과 95 중량% 이하일 수 있다.
상기 용매의 경우 고분자를 잘 용해할 수 있는 것이라면 특별히 한정되지 않으며, 중합 온도에 따라 끓는 점(boiling point)이 다른 용매를 선택할 수 있다. 구체적으로, 상기 용매의 예로는 디메틸설폭사이드(dimethylsulfoxide, DMSO), 디메틸아세트아미드(dimethyl acetamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone) 등이 사용될 수 있으나, 이에 의하여 한정되지는 않는다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 중합용 조성물 중 상기 용매의 함량은 0 중량% 초과 50 중량% 이하이다.
상기 촉매의 예로는 포타슘 카보네이트(potassium carbonate), 소듐 카보네이트(sodium carbonate), 포타슘 히드록사이드(potassium hydroxide), 소듐 히드록사이드(sodium hydroxide) 등이 사용될 수 있으나, 이에 의하여 한정되지는 않는다.
본 발명의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체는 하기와 같은 구조를 가질 수 있다.
Figure PCTKR2015011463-appb-I000004
본 명세서의 일 실시상태에 따르면, 상기 단량체는 브랜처(brancher)용 단량체이다. 브랜처(brancher)는 고분자 사슬을 연결 또는 가교하는 역할을 한다. 브랜처로 사용되는 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체의 반복단위 수에 따라 사슬에 가지를 형성하거나, 사슬이 서로 가교되어 그물형의 구조를 형성할 수 있다.
기존에 사용되어 오던 연료전지 및/또는 레독스 플로우 전지용 분리막은 중합시 라디칼(radical)의 공격을 받거나, 분리막 테스트 중 황산 전해질에 의하여 결합이 깨지는(breakage) 문제점이 있었다. 하나의 예로서, 기존에 사용되어 오던 대표적인 브랜처는 브랜처의 주쇄(main chain)에 위치한 케톤기(ketone group)가 중합 반응시 발생할 수 있는 라디칼(radical)에 의해 결합이 깨지는(breakage) 문제점이 있었다. 즉, 열적화학적 안정성이 떨어지는 문제점을 가지고 있었다.
본 명세서의 일 실시상태에 따른 고분자 및 이를 포함하는 고분자 전해질막은 물리적화학적 안정성이 우수하다. 구체적으로 설명하자면 하기와 같다.
본 명세서의 고분자 중합용 조성물에 포함되는 상기 화학식 1로 표시되는 브랜처용 화합물은 3차 아민(tertiary amine)을 포함한다. 3차 아민을 도입함으로써, 고분자 중합시 라디칼 공격에 의한 깨짐(breakage) 현상을 최소화할 수 있다는 장점이 있다. 즉, 상기 조성물을 포함하는 고분자는 내구성이 우수하다.
또한, 본 명세서의 고분자 중합용 조성물에 포함되는 상기 화학식 1로 표시되는 브랜처용 화합물은 3차원(3-dimensional) 구조를 가져, 중합 반응시 평면(flat) 구조에 비하여 중합 공간이 넓다는 장점이 있다. 결과적으로, 상기 고분자 중합용 조성물을 이용하여 합성한 고분자는 높은 분자량을 가진다.
본 명세서의 일 실시상태에 따르면, 상기 고분자에 포함되는 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체는 브랜처용 단량체이다. 상기 단량체가 특히 브랜처로 사용되는 경우, 전술한 효과를 보일 수 있다.
전술한 바와 같이, 브랜처(brancher)는 고분자 사슬을 연결 또는 가교하는 역할을 한다. 브랜처로 사용되는 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체의 반복단위 수에 따라 사슬에 가지를 형성하거나, 사슬이 서로 가교되어 그물형의 구조를 형성할 수 있다.
또한, 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체를 브랜처로 사용할 경우, 고분자 골격 내에서 브랜처의 길이, 분포, 위치, 수 등을 제어할 수 있고, 이 경우 고분자 전해질 막의 물리적·화학적 물성의 저하가 없어 효과적으로 박막을 제조할 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 따른 상기 고분자 중합용 조성물을 이용하여 고분자를 합성할 경우, 전술한 효과를 나타낼 수 있다.
본 명세서의 일 실시상태에 따른 상기 고분자 중합용 조성물을 이용하여 제조한 고분자를 포함하는 고분자 막은 전술한 효과를 나타낼 수 있다. 상기 고분자 막은 이온을 교환할 수 있는 막을 의미할 수 있으며, 연료전지, 레독스 플로우 전지 등에 활용될 수 있다.
상기 고분자 중합용 조성물을 이용하여 제조된 고분자 중 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체의 함량은 고분자 전체 중량에 대하여 0.001 중량% 이상 10 중량% 이하로 포함될 수 있고, 바람직하게는 0.001 중량% 초과 10 중량% 이하일 수 있다. 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체의 함량이 상기 수치범위를 만족하는 경우, 고분자 전해질막으로서의 기능을 효율적으로 발휘할 수 있다.
보다 구체적으로, 상기 화학식 1로 표시되는 브랜처용 화합물이 브랜처로 이용될 경우, 고분자의 가교도를 충분히 올려주어 전술한 바와 같이 최종 고분자의 물성 변화 효과를 얻을 수 있으며, 고분자 전해질막으로 만들 경우 화학적으로 안정한 3차 아민으로 인해 라디칼 공격에 의한 깨짐 현상을 막을 수 있다는 장점이 있다. 또한, 상기 화학식 1로 표시되는 브랜처용 화합물이 고분자 전체 중량에 대하여 10 중량% 이하로 포함될 경우, 반응에 참여하지 못한 잔류 브랜처가 고분자 내에 생길 가능성이 줄어들어, 소수성 부분 중합시 말단기를 히드록시기(-OH)로 설계할 수 있어 최종적으로 원하는 블록형 공중합체를 중합할 수 있다는 장점이 있다.
상기 화학식 1로 표시되는 브랜처용 화합물은 후술하는 제조예를 기초로 제조될 수 있다. 일 실시상태에 따르면, 하기 반응식 1과 같은 방식으로 제조될 수 있다.
[반응식 1]
Figure PCTKR2015011463-appb-I000005
상기 반응식 1에서 X는 할로겐기 또는 히드록시기이다.
본 명세서의 일 실시상태에 따르면, 상기 고분자는 추가의 공단량체를 포함할 수도 있다. 추가의 공단량체로는 당기술분야에 알려져 있는 것들이 사용될 수 있다. 이 때, 공단량체는 1종류 또는 2종류 이상이 사용될 수 있다.
상기 공단량체의 예로는 퍼플루오르술폰산 폴리머, 탄화수소계 폴리머, 폴리이미드, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리페닐렌설파이드, 폴리페닐렌옥사이드, 폴리포스파진, 폴리에틸렌나프탈레이트, 폴리에스테르, 도핑된 폴리벤즈이미다졸, 폴리에테르케톤, 폴리술폰, 이들의 산 또는 이들의 염기를 구성하는 단량체가 사용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 중 상기 추가의 공단량체의 함량은 0 중량% 초과 95 중량% 이하일 수 있다.
또 하나의 실시상태에 따르면, 상기 고분자 중 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체는 고분자 전체 중량에 대하여 0.001 중량% 이상 10 중량% 이하로 포함될 수 있다. 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체가 브랜처로써 0.001 중량% 이상으로 포함될 경우, 브랜처가 고분자의 가교도를 충분히 올려주어 최종 고분자의 물성 변화 효과를 얻을 수 있으며, 10 중량% 이하로 포함될 경우, 반응에 참여하지 못한 잔류 브랜처가 고분자 내에 생길 가능성이 줄어들어, 소수성 부분 중합시 말단기를 히드록시기(-OH)로 설계할 수 있어 최종적으로 원하는 블록형 공중합체를 중합할 수 있다는 장점이 있다.
상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체를 포함하는 고분자는 블록형 공중합체인 것이 바람직하다. 상기 고분자는 예컨대 단량체의 할로겐기 또는 히드록시기가 반응하여 HF, HCl 또는 H20 등으로 빠져나오면서 결합하게 되는 축중합 방법으로 합성될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자는 친수성 블록 및 소수성 블록을 포함하는 블록형 공중합체이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체는 상기 친수성 블록 사이, 상기 소수성 블록 사이 또는 상기 친수성 블록과 상기 소수성 블록 사이에 위치할 수 있다.
본 명세서의 "친수성 블록"은 작용기로 이온 교환기를 갖는 블록을 의미한다. 여기서, 상기 작용기는 ―SO3H, ―SO3 -M+, ―COOH, ―COO-M+, ―PO3H2, ―PO3H-M+ 및 ―PO3 2-2M+로 이루어지는 그룹에서 선택된 적어도 어느 하나일 수 있다. 여기서, M은 금속성 원소일 수 있다. 즉, 작용기는 친수성일 수 있다.
본 명세서의 상기 "이온 교환기를 갖는 블록"이란, 해당 블록을 구성하는 구조 단위 1개당 있는 이온 교환기수로 나타내어 평균 0.5개 이상 포함되어 있는 블록인 것을 의미하고, 구조 단위 1개당 평균 1.0개 이상의 이온 교환기를 갖고 있으면 더 바람직하다.
본 명세서의 "소수성 블록"은 이온 교환기를 실질적으로 갖지 않는 상기 고분자 블록을 의미한다.
본 명세서의 상기 "이온 교환기를 실질적으로 갖지 않는 블록"이란, 해당 블록을 구성하는 구조 단위 1개당 있는 이온 교환기수로 나타내어 평균 0.1개 미만인 블록인 것을 의미하고, 평균 0.05개 이하이면 보다 바람직하며, 이온 교환기를 전혀 갖지 않는 블록이면 더 바람직하다.
한편, 본 명세서에 있어서, "블록형 공중합체"란, 친수성 블록과 소수성 블록이 주쇄 구조를 형성하고 있는 공중합 양식의 것에 더하여, 한쪽의 블록이 주쇄 구조를 형성하고 다른 쪽의 블록이 측쇄 구조를 형성하고 있는 그래프트 중합의 공중합 양식의 공중합체도 포함하는 개념이다. 한편, 본 명세서에서 사용되는 고분자는 상술한 블록형 공중합체에 한정되는 것은 아니고, 불소계 원소를 포함하는 고분자도 사용될 수 있다. 이때, 불소계 원소를 포함하는 고분자도 작용기를 포함할 수 있는데, 상기 작용기는 친수성일 수 있다. 예를 들어, 상기 작용기는 ―SO3H, ―SO3 -M+, ―COOH, ―COO-M+, ―PO3H2, ―PO3H-M+ 및 ―PO3 2-2M+로 이루어지는 그룹에서 선택된 적어도 어느 하나일 수 있다. 여기서, M은 금속성 원소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 블록형 공중합체는 하기 화학식 A의 반복단위, 하기 화학식 B의 반복단위 및 본 명세서의 일 실시상태에 따른 단량체를 브랜처로 포함하는 공중합체이다:
[화학식 A]
Figure PCTKR2015011463-appb-I000006
[화학식 B]
Figure PCTKR2015011463-appb-I000007
상기 화학식 A 및 화학식 B에서,
Y1 내지 Y4는 서로 동일하거나 상이하고, 각각 독립적으로 -O-, -S- 또는 -SO2-이고,
U1 및 U2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2 내지 화학식 4 중 어느 하나로 표시되고,
[화학식 2]
Figure PCTKR2015011463-appb-I000008
[화학식 3]
Figure PCTKR2015011463-appb-I000009
[화학식 4]
Figure PCTKR2015011463-appb-I000010
상기 화학식 2 내지 화학식 4에서,
L1은 직접연결, -C(Z1)(Z2)-, -CO-, -O-, -S-, -SO2-, -Si(Z1)(Z2)- 및 치환 또는 비치환된 플루오레닐기 중 어느 하나이고,
Z1 및 Z2는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 알킬기, 트리플루오로메틸기(-CF3) 및 페닐기 중 어느 하나이고,
S1 내지 S5는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
a, b 및 c는 서로 동일하거나 상이하며, 각각 독립적으로 0 이상 4 이하인 정수이고,
i 및 k는 서로 동일하거나 상이하며, 각각 독립적으로 0 이상 3 이하인 정수이고,
a'는 1 이상이고 1000이하인 정수이며,
상기 화학식 B에서, W1은 하기 화학식 5 내지 화학식 7 중 어느 하나로 표시되고,
[화학식 5]
Figure PCTKR2015011463-appb-I000011
[화학식 6]
Figure PCTKR2015011463-appb-I000012
[화학식 7]
Figure PCTKR2015011463-appb-I000013
상기 화학식 5 내지 7에서,
L2는 직접연결이거나, -CZ3Z4-, -CO-, -O-, -S-, -SO2-, -SiZ3Z4- 및 치환 또는 비치환된 플루오레닐기 중에서 선택되는 어느 하나이고,
Z3 및 Z4 는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 알킬기, 트리플루오로메틸기(-CF3) 및 페닐기 중 어느 하나이고,
d, e, 및 h는 서로 동일하거나 상이하며, 각각 독립적으로 0 이상 4 이하인 정수이고,
f 및 g는 서로 동일하거나 상이하며, 각각 독립적으로 0 이상 3 이하인 정수이고,
b'는 1 이상 1000이하인 정수이며,
T1 내지 T5는 서로 동일하거나 상이하고, 각각 독립적으로 적어도 하나는 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+ 또는 -PO3 2-2M+ 이며, 상기 M은 1족 원소이고, 나머지는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
상기 화학식 B에서, U3은 상기 화학식 2 내지 7 중 어느 하나로 표시되고,
m 및 n는 반복단위 수를 의미하며,
1 ≤ m ≤ 500이고, 1 ≤ n ≤ 500이고,
브랜처로 포함되는 상기 본 명세서의 일 실시상태에 따른 단량체의 반복단위의 수는 1 이상 300 이하이다.
본 명세서의 일 실시상태에 따르면, 브랜처로 포함되는 상기 본 명세서의 일 실시상태에 따른 단량체의 반복단위 수는 10 이상 300 이하일 수 있다. 반복단위의 수가 10 이상일 경우, 이온전달 수지가 물리적으로 안정하며 이온전달 채널이 잘 형성되어 최종적으로 전도도가 증가되는 장점이 있다. 상기 반복단위의 수가 10 미만일 경우, 고분자 내의 친수성 부분과 소수성 부분간의 가교도가 낮아져 최종 고분자의 분자량이 줄어들고 충격 강도 감소와 이온전달 채널이 잘 형성되지 않아 이온전달 수지의 물성이 떨어질 수 있는 가능성이 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체는 고분자 전체 중량에 대하여 0.001 중량% 이상 10 중량% 이하로 포함된다. 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체가 고분자 전체 중량에 대하여 0.001 중량% 이상으로 포함될 경우, 고분자의 가교도를 충분히 올려주어, 최종 고분자의 물성 변화 효과를 가져올 수 있으며, 10 중량% 이하로 포함될 경우, 반응에 참여하지 못하는 잔류 단량체의 발생률이 낮으며, 소수성 부분 중합시 말단기를 히드록시기로 설계할 수 있어, 최종적으로 원하는 블록형 공중합체를 중합할 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 U1, U2 및 U3은 서로 같거나 상이하고, 각각 독립적으로 하기 구조식 중에서 선택되는 어느 하나이다.
Figure PCTKR2015011463-appb-I000014
Figure PCTKR2015011463-appb-I000015
상기 구조식에서 R 및 R'은 각각 독립적으로 -NO2 또는 -CF3이다.
또 하나의 실시상태에 따르면, 상기 W1은 하기 구조식 중에서 선택되는 어느 하나이다.
Figure PCTKR2015011463-appb-I000016
Figure PCTKR2015011463-appb-I000017
상기 구조식에서, Q 및 Q'은 각각 독립적으로 -SO3H, -SO3 -M+, -COOH, -COO-M +, -PO3H2, -PO3H-M+ 또는 -PO3 2- 2M+이고, M은 1족 금속이다.
본 명세서의 일 실시상태에 따르면, 상기 W1은 하기 구조식 중에서 선택되는 어느 하나이다.
Figure PCTKR2015011463-appb-I000018
Figure PCTKR2015011463-appb-I000019
상기 구조식에서, R 및 R'은 각각 독립적으로 -NO2 또는 -CF3이고,
Q 및 Q'은 각각 독립적으로 -SO3H, -SO3 -M+, -COOH, -COO-M +, -PO3H2, -PO3H-M+ 또는 -PO3 2- 2M+이고, M은 1족 금속이다.
본 명세서의 일 실시상태에 따르면, 상기 U1, U2 및 U3은 서로 같거나 상이하고, 각각 독립적으로 하기 구조식 중에서 선택되는 어느 하나이다.
Figure PCTKR2015011463-appb-I000020
본 명세서에 있어서
Figure PCTKR2015011463-appb-I000021
는 인접한 치환기와 결합함을 의미한다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, t-부틸기, 펜틸기, 헥실기 및 헵틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 50인 것이 바람직하다. 구체적인 예로는 스틸베닐기(stylbenyl), 스티레닐기(styrenyl)기 등의 아릴기가 치환된 알케닐기가 바람직하나 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다.
본 명세서에 있어서, 상기 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 특히 시클로펜틸기, 시클로헥실기가 바람직하다.
본 명세서에 있어서, 상기 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 아민기는 탄소수는 특별히 한정되지 않으나, 1 내지 50인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 아릴아민기의 탄소수는 특별히 한정되지 않으나, 6 내지 50인 것이 바람직하다. 아릴아민기의 예로는 치환 또는 비치환된 단환식의 디아릴아민기, 치환 또는 비치환된 다환식의 디아릴아민기 또는 치환 또는 비치환된 단환식 및 다환식의 디아릴아민기를 의미한다.
본 명세서에 있어서, 상기 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 특별히 한정되지 않으나, 6 내지 60인 것이 바람직하다. 아릴기의 구체적인 예로는 페닐기, 비페닐기, 트라이페닐기, 터페닐기, 스틸벤기 등의 단환식 방향족 아릴기 및 나프틸기, 비나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타세닐기, 트리페닐레닐기, 플루오란텐(fluoranthene)기 등의 다환식 방향족 아릴기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 헤테로아릴기는 헤테로원자로서 S, O 또는 N을 포함하고, 탄소수는 특별히 한정되지 않으나, 2 내지 60인 것이 바람직하다. 헤테로아릴기의 구체적인 예로는 피리딜기, 피롤릴기, 피리미딜기, 피리다지닐기, 퓨라닐기, 티에닐기, 이미다졸릴기, 피라졸릴기, 옥사졸릴기, 이소옥사졸릴기, 티아졸릴기, 이소티아졸릴기, 트리아졸릴기, 퓨라자닐기, 옥사디아졸릴기, 티아디아졸릴기, 디티아졸릴기, 테트라졸릴기, 파이라닐기, 티오파이라닐기, 디아지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀릴기, 이소퀴놀릴기, 퀴나졸리닐기, 이소퀴나졸리닐기, 아크리디닐기, 페난트리디닐기, 이미다조피리디닐기, 디아자나프탈레닐기, 트리아자인덴기, 인돌릴기, 벤조티아졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티오펜기, 벤조퓨란기, 디벤조티오펜기, 디벤조퓨란기, 카바졸릴기, 벤조카바졸릴기, 페나지닐기 등이나 이들의 축합고리가 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 다른 치환기에 의하여 치환될 수 있으며, 치환기가 서로 결합하여 고리를 형성할 수 있다. 예로는
Figure PCTKR2015011463-appb-I000022
등이 있다.
또한, 상기 화학식 2 내지 7에 있어서, "치환 또는 비치환" 이라는 용어는 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 실릴기; 아릴알케닐기; 아릴기; 붕소기; 알킬아민기; 아랄킬아민기; 아릴아민기; 카바졸기; 아릴아민기; 아릴기; 니트릴기; 니트로기; 히드록시기 및 시아노기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환되었거나 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 1족 원소는 Li, Na 또는 K일 수 있다.
또 하나의 일 실시상태에 따르면, 상기 고분자의 중량평균분자량은 500 이상 5,000,000 이하(g/mol)일 수 있고, 구체적으로 10,000 이상 2,000,000 이하(g/mol)일 수 있으며, 더욱 구체적으로 50,000 이상 1,000,000 이하(g/mol)일 수 있다.
상기 공중합체의 중량평균분자량이 500 이상 3,000,000 이하(g/mol)일 때, 전해질막의 기계적 물성이 저하되지 않고, 적절한 고분자의 용해도를 유지하여 전해질막의 제작을 용이하게 할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 고분자의 분포도(PDI)는 1 이상 6 이하(Mw/Mn)일 수 있고, 구체적으로 1.5 이상 4 이하(Mw/Mn)일 수 있다.
본 명세서의 일 실시상태는 상기 고분자를 포함하는 고분자 전해질막을 제공한다. 상기 고분자 전해질막은 전술한 효과를 나타낼 수 있다.
본 명세서에서 "전해질막"은 이온을 교환할 수 있는 막으로서, 막, 이온교환막, 이온전달막, 이온 전도성 막, 분리막, 이온교환 분리막, 이온전달 분리막, 이온 전도성 분리막, 이온 교환 전해질막, 이온전달 전해질막 또는 이온 전도성 전해질막 등을 포함한다.
본 명세서에 따른 고분자 전해질막은 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체를 포함하는 것을 제외하고는 당 기술분야에 알려진 재료 및/또는 방법으로 제조될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 0.01 S/cm 이상 0.5 S/cm 이하일 수 있고, 구체적으로는 0.01 S/cm 이상 0.3 S/cm 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 고분자 전해질막의 이온 전도도는 가습 조건에서 측정될 수 있다. 본 명세서에서 가습 조건이란 상대 습도(RH) 10% 내지 100%를 의미할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전해질막의 두께는 1 ㎛ 내지 200 ㎛일 수 있고, 구체적으로 10 ㎛ 내지 100 ㎛일 수 있다. 전해질막의 두께가 1 ㎛ 내지 200 ㎛일 때, 전기적 쇼트(Electric Short) 및 전해질 물질의 크로스오버(Cross Over)를 저하시키고, 우수한 양이온 전도도 특성을 나타낼 수 있다.
본 명세서의 일 실시상태는 양극; 음극; 및 상기 양극과 상기 음극 사이에 구비된 전해질막을 포함하고, 상기 전해질막이 본 명세서의 일 실시상태에 따른 고분자 전해질막인 것인 막-전극 접합체를 제공한다.
막-전극 접합체(MEA)는 연료와 공기의 전기화학 촉매 반응이 일어나는 전극(양극과 음극)과 수소 이온의 전달이 일어나는 고분자 막의 접합체를 의히마는 것으로서, 전극(양극과 음극)과 전해질막이 접착된 단일의 일체형 유닛(unit)이다.
본 명세서의 일 실시상태에 따르면, 상기 막-전극 접합체는 양극의 촉매층과 음극의 촉매층이 전해질막에 접촉하도록 하는 형태로서, 당 기술분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 상기 양극; 음극; 및 상기 양극과 상기 음극 사이에 위치하는 전해질막을 밀착시킨 상태에서 100 내지 400로 열압착하여 제조될 수 있다.
양극은 양극 촉매층과 양극 기체확산층을 포함할 수 있다. 양극 기체확산층은 다시 양극 미세 기공층과 양극 전극 기재를 포함할 수 있다.
음극은 음극 촉매층과 음극 기체확산층을 포함할 수 있다. 음극 기체확산층은 다시 음극 미세 기공층과 음극 전극 기재를 포함할 수 있다.
또한, 본 명세서의 일 실시상태는 상기 막-전극 접합체를 포함하는 연료전지를 제공한다. 구체적으로, 2 이상의 상기 막-전극 접합체와 상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택; 연료를 상기 스택으로 공급하는 연료공급부; 및 산화제를 상기 스택으로 공급하는 산화제공급부를 포함하는 것을 특징으로 하는 고분자 전해질형 연료전지를 제공한다.
상기 양극 촉매층은 연료의 산화 반응이 일어나는 곳으로, 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 및 백금-전이금속 합금으로 이루어진 군에서 선택되는 촉매가 바람직하게 사용될 수 있다.
상기 음극 촉매층은 산화제의 환원 반응이 일어나는 곳으로, 백금 또는 백금-전이금속 합금이 촉매로 바람직하게 사용될 수 있다. 상기 촉매들은 그 자체로 사용될 수 있을 뿐만 아니라 탄소계 담체에 담지되어 사용될 수 있다.
촉매층을 도입하는 과정은 당해 기술 분야에 알려져 있는 통상적인 방법으로 수행할 수 있는데, 예를 들면 촉매 잉크를 전해질막에 직접적으로 코팅하거나 기체확산층에 코팅하여 촉매층을 형성할 수 있다. 이때 촉매 잉크의 코팅 방법은 특별하게 제한되는 것은 아니지만, 스프레이 코팅, 테이프 캐스팅, 스크린 프린팅, 블레이드 코팅, 다이 코팅 또는 스핀 코팅 방법 등을 사용할 수 있다. 촉매 잉크는 대표적으로 촉매, 폴리머 이오노머(polymer ionomer) 및 용매로 이루어질 수 있다.
상기 기체확산층은 전류전도체로서의 역할과 함께 반응 가스와 물의 이동 통로가 되는 것으로, 다공성의 구조를 가진다. 따라서, 상기 기체확산층은 도전성 기재를 포함하여 이루어질 수 있다. 도전성 기재로는 탄소 페이퍼(Carbon paper), 탄소 천(Carbon cloth) 또는 탄소 펠트(Carbon felt)가 바람직하게 사용될 수 있다.
또한, 상기 기체확산층은 촉매층 및 도전성 기재 사이에 미세기공층을 더 포함하여 이루어질 수 있다. 상기 미세기공층은 저가습 조건에서의 연료전지의 성능을 향상시키기 위하여 사용될 수 있으며, 기체확산층 밖으로 빠져나가는 물의 양을 적게 하여 전해질막이 충분한 습윤 상태에 있도록 하는 역할을 한다.
본 명세서의 일 실시상태에 따른 전해질막을 연료전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다. 본 명세서의 일 실시상태는 2 이상의 막-전극 접합체; 상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택; 상기 스택으로 연료를 공급하는 연료공급부; 및 상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지를 제공한다.
연료전지는 본 명세서의 일 실시상태에 따른 막-전극 접합체를 사용하여 당 기술분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 예를 들면, 상기에서 제조된 막-전극 접합체와 바이폴라 플레이트(bipolar plate)로 구성하여 제조될 수 있다.
도 1은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 전해질막(100)과 이 전해질막(100)의 양면에 형성되는 양극(200a) 및 음극(200b) 전극으로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1을 참조하면, 양극(200a)에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 전해질막(100)을 통해 음극(200b)으로 이동한다. 음극(200b)에서는 전해질막(100)을 통해 전달된 수소 이온과, 산소와 같은 산화제 및 전자가 반응하여 물이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
본 명세서의 연료전지는 스택, 연료공급부 및 산화제공급부를 포함한다.
도 3은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 전술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 펌프(70)로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장 하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 연료전지는 고분자 전해질 연료전지, 직접 액체 연료전지, 직접 메탄올 연료전지, 직접 개미산 연료전지, 직접 에탄올 연료전지, 또는 직접 디메틸에테르 연료전지 등이 가능하다.
본 명세서의 일 실시상태는 또한, 상기 고분자 전해질막을 포함하는 레독스 플로우 전지를 제공한다. 구체적으로, 양극 및 양극 전해액을 포함하는 셀; 음극 및 음극 전해액을 포함하는 음극 셀; 및 상기 양극 셀과 상기 음극 셀 사이에 구비되는 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 레독스 플로우 전지를 제공한다.
본 명세서의 일 실시상태에 따른 전해질막을 레독스 플로우 전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
레독스 플로우 전지는 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 것을 제외하고는, 당 기술분야에 알려진 통상적인 방법에 따라 제조될 수 있다.
도 2에 도시한 바와 같이, 레독스 플로우 전지는 전해질막(31)에 의해 양극 셀(32)과 음극 셀(33)로 나뉘어진다. 양극 셀(32)과 음극 셀(33)은 각각 양극과 음극을 포함한다. 양극 셀(32)은 파이프를 통해 양극 전해액(41)을 공급 및 방출하기 위한 양극 탱크(10)에 연결되어 있다. 음극 셀(33) 또한, 파이프를 통해 음극 전해액(42)을 공급 및 방출하기 위한 음극 탱크(20)에 연결되어 있다. 전해액은 펌프(11, 21)를 통해 순환되고, 이온의 산화수가 변화되는 산화/환원 반응(즉, 레독스 반응)이 일어남으로써 양극과 음극에서 충전 및 방전이 일어난다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것이며, 이에 의하여 본 명세서의 범위가 한정되는 것은 아니다.
고분자 합성예 1
1) 중합체 1-A의 합성
Figure PCTKR2015011463-appb-I000023
7
[중합체 1-A]
500mL 이중자켓에 비스(4-플루오로페닐)메탄온(bis(4-fluorophenyl)methanone) 11.35g (0.1040ml), 포타슘 2,5-디히드록시벤젠설포네이트(potassium 2,5-dihydroxybenzenesulfonate) 12.5g (0.1095mol), K2C03 13.6g (0.1971g), 1,3,5-트리스(4-플루오로페닐)-1,3,5-트리아지넨(1,3,5-tris(4-fluorophenyl)-1,3,5-triazinane 0.9328g, 디메틸설폭사이드(DMSO, dimethyl sulfoxide) 119.25g을 넣어 혼합물(mixture)를 제조한 후, 140℃ 질소 분위기에서 5시간 가열(heating)한 후, 가압 질소로 벤젠이 역류하면서 딘스탁 장치의 분자체(molecular sieves)에 흡착된 공비 혼합물(azeotrope)을 완전히 제거한 후, 180℃에서 20시간 동안 중합을 진행하여 중합체 1-A를 얻었다.
2)중합체 1의 합성
Figure PCTKR2015011463-appb-I000024
Figure PCTKR2015011463-appb-I000025
중합체 1-A가 포함되어 있는 상기 혼합물(mixture)을 실온으로 감온한 후, 비스(4-플루오로페닐)메탄온(bis(4-fluorophenyl)methanone) 1.691g (0.1877mol), 1,3,5-트리스(4-플루오로페닐)-1,3,5-트리아지넨(1,3,5-tris(4-fluorophenyl)-1,3,5-triazinane) 0.9328g (0.0069ml) K2C03 19.4g (0.2816mol), 디메틸설폭사이드(DMSO, dimethyl sulfoxide) 34.53g, 벤젠 34.53g을 넣어 혼합물(mixture)를 제조한 후, 140℃ 질소 분위기에서 5시간 가열(heating)하였고, 가압 질소로 벤젠이 역류하면서 딘스탁 장치의 분자체(molecular sieves)에 흡착된 공비 혼합물(azeotrope)을 완전히 제거한 후, 딘스탁의 벤젠을 환류(reflux) 후 배출하여, 180℃ 디메틸설폭사이드(DMSO, dimethyl sulfoxide)에서 20시간 동안 중합을 진행하였다.
이어서, 실온으로 감온 후 중합된 고분자를 3L의 이소프로필 알코올(isopropyl alcohol)에 침강하여 침전물을 형성한 후, 상기 침전물의 용매를 제거하고 실온에서 탈 이온수(deionized water)를 이용하여 48시간 동안 세척하여 잔류 K2CO3를 제거한 후, 90℃ 진공 오븐에서 48시간 동안 건조하여 중합체 1-A 가 포함되어 있는 부분 불소계 브랜처를 도입한 고분자(상기 중합체 1)를 수득하였다.
비교 합성예 1
상기 고분자 합성예 1에서 1,3,5-트리스(4-플루오로페닐)-1,3,5-트리아지넨(1,3,5-tris(4-fluorophenyl)1,3,5-triazinane) 대신 하기의 화합물 Z를 브랜처로 사용한 것을 제외하고는 동일하게 진행하였다.
[화합물 Z]
Figure PCTKR2015011463-appb-I000026
고분자 합성예 1에서 중합한 고분자의 중량평균분자량은 458,000 g/mol으로 상기 화학식 1의 화합물로부터 유래되는 단량체를 이용한 고분자는 브랜쳐를 사용하지 않고 중합한 고분자(중량평균분자량 77,000 g/mol)보다 향상된 중량평균분자량을 보였다.
또한, 하기 화합물 Z를 브랜쳐로 사용한 고분자의 중량평균분자량은 367,000 g/mol으로, 상기 화학식 1의 화합물로부터 유래되는 단량체를 이용한 고분자보다 중량평균분자량이 낮다.
실험예(Fenton's Test)
먼저, 제막한 고분자 전해질막의 무게를 측정하였다. 소량의 Fe2 + 이온을 포함한 3% H2O2 용액에 상기 고분자 합성예 1에서 합성한 고분자(중합체 1)을 이용하여 제막한 고분자 전해질막을 넣어 80℃에서 20시간 동안 교반하였다. 테스트 진행 후 물기를 완전히 제거한 고분자 전해질막의 무게를 측정하여 테스트 전 후 무게의 차이 값을 구해 분해율(%)를 구하였다.
비교 실험예
상기 실험예에서, 중합체 1 대신 상기 화합물 Z를 브랜처로 사용한 고분자 전해질막을 이용한 것을 제외하고는 동일하게 실험하였다.
전해질막의 종류 Fenton 시약의 조성 온도(℃) 중량평균분자량(g/mol) 이온교환용량(meq/g) 분해율(%)
실험예 3% H2O2/4ppm Fe2+ 용액 80 458,000 1.84 3%
비교 실험예 367,000 1.82 10%
본원 발명의 중합체를 이용하여 제막한 고분자 전해질막은 종래의 브랜처를 이용한 비교 실험예의 고분자 전해질막에 비하여 이온교환용량값이 크고, Fenton 시약에 대한 분해율도 낮았다.
[부호의 설명]
100: 전해질 막
200a: 애노드
200b: 캐소드
10, 20: 탱크
11, 21: 펌프
31: 전해질막
32: 양극 셀
33: 음극 셀
41: 양극 전해액
42: 음극 전해액
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프

Claims (15)

  1. 하기 화학식 1로 표시되는 브랜처용 화합물을 포함하는 고분자 중합용 조성물:
    [화학식 1]
    Figure PCTKR2015011463-appb-I000027
    상기 화학식 1에서,
    R1 내지 R3는 서로 동일하거나 상이하고, 각각 할로겐기 또는 히드록시기이다.
  2. 청구항 1에 있어서, 상기 R1 내지 R3가 서로 동일한 것을 특징으로 하는 고분자 중합용 조성물.
  3. 청구항 1에 있어서, 상기 화학식 1로 표시되는 브랜처용 화합물은 하기의 구조들 중에서 선택되는 어느 하나인 것을 특징으로 하는 고분자 중합용 조성물:
    Figure PCTKR2015011463-appb-I000028
    Figure PCTKR2015011463-appb-I000029
    .
  4. 청구항 1 내지 3 중 어느 한 항에 있어서, 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체를 브랜처로서 포함하는 고분자.
  5. 청구항 4에 있어서, 상기 할로겐기가 불소 또는 염소인 것을 특징으로 하는 고분자.
  6. 청구항 4에 있어서, 상기 고분자는 친수성 블록 및 소수성 블록을 포함하는 블록형 공중합체인 것을 특징으로 하는 고분자.
  7. 청구항 6에 있어서, 상기 화학식 1로 표시되는 브랜처용 화합물로부터 유래되는 단량체가 상기 친수성 블록 사이, 상기 소수성 블록 사이 또는 상기 친수성 블록과 상기 소수성 블록 사이에 위치하는 것을 특징으로 하는 고분자.
  8. 청구항 4에 있어서, 상기 고분자의 중량평균분자량이 500 이상 5,000,000 이하 (g/mol)인 것을 특징으로 하는 고분자.
  9. 청구항 4에 있어서, 상기 단량체가 고분자 전체 중량에 대하여 0.001 중량% 이상 10 중량% 이하로 포함되는 것을 특징으로 하는 고분자.
  10. 청구항 4에 있어서, 상기 고분자의 분포도(PDI)가 1 이상 6 이하 (Mw/Mn)인 것을 특징으로 하는 고분자.
  11. 청구항 4의 고분자를 포함하는 고분자 전해질막.
  12. 청구항 11에 있어서, 상기 고분자 전해질막의 이온 전도도는 0.01 S/cm 이상 0.5 S/cm 이하인 것을 특징으로 하는 고분자 전해질막.
  13. 양극; 음극; 및 상기 양극과 상기 음극 사이에 구비된 전해질막을 포함하고,
    상기 전해질막이 청구항 11의 고분자 전해질막인 것인 막-전극 접합체.
  14. 청구항 13에 따른 2 이상의 막-전극 접합체와 상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택;
    연료를 상기 스택으로 공급하는 연료공급부; 및
    산화제를 상기 스택으로 공급하는 산화제공급부를 포함하는 것을 특징으로 하는 고분자 전해질형 연료전지.
  15. 양극 및 양극 전해액을 포함하는 양극 셀;
    음극 및 음극 전해액을 포함하는 음극 셀; 및
    상기 양극 셀과 상기 음극 셀 사이에 구비되는 청구항 11의 고분자 전해질막을 포함하는 레독스 플로우 전지.
PCT/KR2015/011463 2014-10-28 2015-10-28 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막 WO2016068606A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15854568.1A EP3214110B1 (en) 2014-10-28 2015-10-28 Polymer and polymer electrolyte membrane using polymer
JP2017515926A JP6478175B2 (ja) 2014-10-28 2015-10-28 高分子重合用組成物、これを用いた高分子、これを用いた高分子電解質膜
CN201580057129.9A CN107075109B (zh) 2014-10-28 2015-10-28 聚合组合物、使用聚合组合物的聚合物以及使用聚合物的聚合物电解质膜
US15/516,756 US10407545B2 (en) 2014-10-28 2015-10-28 Polymerization composition, polymer using polymerization composition, and polymer electrolyte membrane using polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0147784 2014-10-28
KR10-2014-0147782 2014-10-28
KR20140147782 2014-10-28
KR20140147784 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016068606A1 true WO2016068606A1 (ko) 2016-05-06

Family

ID=55857839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011463 WO2016068606A1 (ko) 2014-10-28 2015-10-28 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막

Country Status (6)

Country Link
US (1) US10407545B2 (ko)
EP (1) EP3214110B1 (ko)
JP (1) JP6478175B2 (ko)
KR (1) KR101778382B1 (ko)
CN (1) CN107075109B (ko)
WO (1) WO2016068606A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102083053B1 (ko) * 2016-08-09 2020-02-28 주식회사 엘지화학 폴리에스테르 및 이의 제조방법
US10991966B1 (en) * 2018-06-13 2021-04-27 Triad National Security, Llc Doped polymer electrolytes and methods of making and using the same
KR102629899B1 (ko) * 2018-12-10 2024-01-26 주식회사 엘지화학 화합물, 이로부터 유래되는 단위를 포함하는 중합체, 이를 포함하는 고분자 분리막, 이를 포함하는 막 전극 집합체, 연료전지 및 레독스 플로우 전지
TWI830315B (zh) * 2022-07-29 2024-01-21 國立臺灣科技大學 一種腈官能化氧代氮代苯並環己烷衍生物之電解質和其應用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357877A (ja) * 2000-06-16 2001-12-26 Mitsubishi Chemicals Corp 非水電解液及び非水電解液二次電池
KR20100050423A (ko) * 2008-11-04 2010-05-13 주식회사 엘지화학 고분자 전해질막
JP4656060B2 (ja) * 2004-07-06 2011-03-23 東亞合成株式会社 電解質膜および当該電解質膜を用いた燃料電池
JP2011184552A (ja) * 2010-03-08 2011-09-22 Sekisui Chem Co Ltd 熱硬化性樹脂溶液
KR101417748B1 (ko) * 2013-04-23 2014-07-16 한국에너지기술연구원 알칼리 연료전지용 고전도성 음이온교환 고분자 전해질 복합막 및 그의 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498960A (en) * 1967-09-28 1970-03-03 Phillips Petroleum Co Production of random copolymers in organolithium polymerization systems
KR100521299B1 (ko) 1996-09-16 2005-10-14 코비온 오르가닉 세미컨덕터즈 게엠베하 트리아진 중합체, 이의 사용 방법, 및 이를 함유하는 전자발광 장치
KR100446662B1 (ko) 2002-03-22 2004-09-04 주식회사 엘지화학 연료 전지용 복합 폴리머 전해질 막 및 그의 제조방법
US8939294B2 (en) * 2010-03-31 2015-01-27 General Electric Company Block copolymer membranes and associated methods for making the same
KR101223708B1 (ko) * 2010-09-14 2013-01-18 주식회사 엘지화학 트리 블록 공중합체, 및 그로부터 제조되는 전해질 막
KR101890747B1 (ko) * 2011-11-03 2018-10-01 삼성전자주식회사 이온 교환막 충전용 조성물, 이온 교환막의 제조방법, 이온 교환막 및 레독스 플로우 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357877A (ja) * 2000-06-16 2001-12-26 Mitsubishi Chemicals Corp 非水電解液及び非水電解液二次電池
JP4656060B2 (ja) * 2004-07-06 2011-03-23 東亞合成株式会社 電解質膜および当該電解質膜を用いた燃料電池
KR20100050423A (ko) * 2008-11-04 2010-05-13 주식회사 엘지화학 고분자 전해질막
JP2011184552A (ja) * 2010-03-08 2011-09-22 Sekisui Chem Co Ltd 熱硬化性樹脂溶液
KR101417748B1 (ko) * 2013-04-23 2014-07-16 한국에너지기술연구원 알칼리 연료전지용 고전도성 음이온교환 고분자 전해질 복합막 및 그의 제조방법

Also Published As

Publication number Publication date
CN107075109A (zh) 2017-08-18
KR101778382B1 (ko) 2017-09-14
EP3214110A1 (en) 2017-09-06
JP2017538792A (ja) 2017-12-28
EP3214110A4 (en) 2018-03-21
US20170298179A1 (en) 2017-10-19
CN107075109B (zh) 2019-08-09
KR20160050004A (ko) 2016-05-10
EP3214110B1 (en) 2019-10-23
JP6478175B2 (ja) 2019-03-06
US10407545B2 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2014200286A2 (ko) 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
WO2013081437A1 (ko) 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지
WO2016089158A1 (ko) 중합체 및 이를 포함하는 고분자 전해질막
WO2016068606A1 (ko) 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막
WO2012134254A2 (ko) 고분자 전해질 및 이의 제조 방법
WO2013137691A1 (ko) 고분자 전해질 조성물, 전해질 막, 막-전극 접합체 및 연료전지
WO2014081235A1 (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도
WO2017142344A1 (ko) 코어-쉘 입자, 이를 포함하는 고분자 전해질막, 상기 고분자 전해질막을 포함하는 연료 전지 또는 전기화학 전지 및 코어-쉘 입자의 제조방법
WO2021112420A1 (ko) 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
WO2016089155A1 (ko) 고분자 전해질막
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
WO2015047008A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2015147550A1 (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지
WO2015190897A1 (ko) 리튬 전극 및 이를 포함하는 리튬 전지
WO2017191945A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2016175502A1 (ko) 과불소계 이오노머 나노입자 분산액 및 이의 제조방법
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
WO2016068605A1 (ko) 브랜처용 불소계 화합물, 이를 이용한 고분자 및 이를 이용한 고분자 전해질막
WO2012134095A2 (ko) 술폰산기가 도입된 디페닐플루오렌기를 포함하는 수소이온 전도성 공중합체, 그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를 이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막 연료전지
WO2016122195A1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2010076911A1 (ko) 퍼플루오로싸이클로부탄기를 포함하는 후술폰화된 공중합체, 이의 제조방법 및 이의 용도
WO2016089123A1 (ko) 고분자, 이의 제조방법 및 이를 포함하는 전해질막
WO2016089156A2 (ko) 중합체 및 이를 포함하는 고분자 전해질막
WO2012008753A2 (ko) 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막
WO2022131665A1 (ko) 신규 폴리플루오렌계 가교 공중합체 및 그 제조방법, 이를 이용한 알칼리 연료전지용 음이온교환막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515926

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15516756

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015854568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015854568

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE