WO2016089155A1 - 고분자 전해질막 - Google Patents

고분자 전해질막 Download PDF

Info

Publication number
WO2016089155A1
WO2016089155A1 PCT/KR2015/013209 KR2015013209W WO2016089155A1 WO 2016089155 A1 WO2016089155 A1 WO 2016089155A1 KR 2015013209 W KR2015013209 W KR 2015013209W WO 2016089155 A1 WO2016089155 A1 WO 2016089155A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
polymer electrolyte
polymer
formula
group
Prior art date
Application number
PCT/KR2015/013209
Other languages
English (en)
French (fr)
Inventor
김영제
한중진
유윤아
강에스더
장용진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580067159.8A priority Critical patent/CN107004880B/zh
Priority to US15/531,596 priority patent/US10483576B2/en
Priority to EP15866198.3A priority patent/EP3229302B1/en
Publication of WO2016089155A1 publication Critical patent/WO2016089155A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present specification relates to a polymer electrolyte membrane.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy.
  • a fuel cell is a power generation method that uses fuel gas and an oxidant and generates electric power by using electrons generated during the redox reaction.
  • the membrane electrode assembly (MEA) of a fuel cell is a portion in which an electrochemical reaction between hydrogen and oxygen occurs and is composed of a cathode, an anode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane.
  • a redox flow battery (redox flow battery) is an electrochemical storage device that directly stores the chemical energy of an active material as electrical energy by redoxing and charging and discharging the active material contained in the electrolyte.
  • the unit cell of the redox flow battery includes an electrode, an electrolyte, and an ion exchange membrane (electrolyte membrane).
  • Fuel cells and redox flow cells are being researched and developed as next generation energy sources due to their high energy efficiency and eco-friendly features with low emissions.
  • the key components of fuel cell and redox flow cell are polymer electrolyte membranes capable of cation exchange, including 1) excellent proton conductivity 2) prevention of crossover of electrolyte, 3) strong chemical resistance, 4) mechanical It is desirable to have properties of enhanced physical properties and / or 4) low swelling ratio.
  • the polymer electrolyte membrane is classified into fluorine-based, partially fluorine-based, hydrocarbon-based, and the like, and the partial fluorine-based polymer electrolyte membrane has a fluorine-based main chain, which has advantages of excellent physical and chemical stability and high thermal stability.
  • the partial fluorine-based polymer electrolyte membrane has a cation transfer functional group attached to the end of the fluorine-based chain, and thus has the advantages of a hydrocarbon-based polymer electrolyte membrane and a fluorine-based polymer electrolyte membrane.
  • the partial fluorine-based polymer electrolyte membrane has a problem that the cation conductivity is relatively low because the fine phase separation of the cation transport functional group and the control of the aggregation phenomenon are not effectively performed. Therefore, research has been conducted toward securing high cationic conductivity through the control of the distribution of sulfonic acid groups and microphase separation.
  • An object of the present specification is to provide a polymer electrolyte membrane that is easy in phase separation and excellent mechanical properties.
  • a polymer comprising a unit represented by the formula (1); And it provides a polymer electrolyte membrane comprising inorganic particles.
  • A is -SO 3 H, -SO 3 - M + , -COOH, -COO - M + , -PO 3 H 2 , -PO 3 H - M + , -PO 3 2- 2M + , -O (CF 2 ) m SO 3 H, -O (CF 2 ) m SO 3 - M + , -O (CF 2 ) m COOH, -O (CF 2 ) m COO - M + , -O (CF 2 ) m PO 3 H 2, -O (CF 2) m PO 3 H - m + , or -O (CF 2) m PO 3 2- 2M + , and
  • n 2 to 6
  • M is a group 1 element
  • R1 and R2 are the same as or different from each other, and each independently a halogen group
  • n is an integer from 2 to 10, and the structures in the 2 to 10 parentheses are the same or different from each other.
  • the present specification is an anode; Cathode; And it provides a membrane-electrode assembly comprising the above-described polymer electrolyte membrane provided between the anode and the cathode.
  • two or more of the membrane-electrode assembly A stack comprising a bipolar plate provided between the membrane-electrode assemblies; A fuel supply unit supplying fuel to the stack; And it provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • the present specification is a positive electrode cell comprising a positive electrode and a positive electrode electrolyte;
  • a cathode cell comprising a cathode and a cathode electrolyte; And it provides a redox flow battery comprising the above-described polymer electrolyte membrane provided between the cathode cell and the anode cell.
  • a polymer electrolyte membrane including a polymer according to one embodiment of the present specification easily forms a hydrophilic-hydrophobic phase separation structure.
  • the polymer electrolyte membrane effectively forms a hydrophilic channel in the polymer electrolyte membrane by controlling the phase separation structure.
  • the polymer electrolyte membrane according to one embodiment of the present specification has excellent proton conductivity.
  • the result is a high performance of fuel cells and / or redox flow cells comprising the same.
  • the polymer electrolyte membrane according to one embodiment of the present specification further includes inorganic particles, thereby preventing swelling by a solvent, and increasing mechanical properties and increasing chemical stability.
  • gas crossover may be prevented and ion conductivity may be improved even under low humidity conditions.
  • the redox flow battery including the polymer electrolyte membrane according to one embodiment of the present specification may prevent crossover of vanadium ions.
  • FIG. 1 is a schematic diagram illustrating a principle of electricity generation of a fuel cell.
  • FIG. 2 is a view schematically showing an embodiment of a redox flow battery.
  • FIG 3 is a view schematically showing an embodiment of a fuel cell.
  • Example 4 is a view of the surface of the film according to Example 2 measured by a scanning electron microscope (SEM).
  • 'unit' is a repeating structure in which the monomer is included in the polymer, and means a structure in which the monomer is bonded into the polymer by polymerization.
  • electrolyte membrane is a membrane capable of exchanging ions, such as membrane, ion exchange membrane, ion transfer membrane, ion conductive membrane, separator, ion exchange membrane, ion transfer membrane, ion conductive separator, ion exchange electrolyte membrane, ion And a transfer electrolyte membrane or an ion conductive electrolyte membrane.
  • a polymer electrolyte membrane including a polymer and an inorganic particle including a unit represented by Formula 1 above.
  • the polymer electrolyte membrane according to one embodiment of the present specification includes a polymer including a unit represented by Chemical Formula 1, has high mechanical strength and high ionic conductivity, and may facilitate phase separation of the electrolyte membrane.
  • the polymer electrolyte membrane according to one embodiment of the present specification may include inorganic particles, to prevent swelling caused by a solvent, and to increase mechanical properties and increase chemical stability.
  • the inorganic particles have a particle diameter of 5 nm to 50 ⁇ m. In one embodiment of the present specification, the particle diameter of the inorganic particles is more preferably 5 nm to 1000 nm.
  • the particle size of the inorganic particles is less than 5 nm, it is difficult to disperse the inorganic particles in the polymer electrolyte membrane, and when the particle size exceeds 50 ⁇ m, the inorganic particles are hardly dispersed evenly in the polymer electrolyte membrane, thereby improving performance of the polymer electrolyte membrane. Negatively affects.
  • the inorganic particles according to one embodiment of the present specification may be in the form of a sphere.
  • the "particle diameter” means a diameter of a particle and may mean an average value of diameters of the widest cross section of the particle.
  • the particle diameter of the inorganic particles was measured by dynamic light scattering.
  • the inorganic particles are inorganic; Heteropolyacids; And one or two or more selected from the group consisting of inorganic acids.
  • the inorganic material is BaTiO 3 , Pb (Zr x , Ti 1-x ) O 3 (PZT, 0 ⁇ x ⁇ 1), Pb 1- x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, 0 ⁇ x ⁇ 1), Hafnia (HfO 2 ) , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZnO 2 , ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2 , Tetraethyl orthosilicate: TEOS ), Montmorillonite (MMT) and (P 2 O 5 ) 4 (ZrO 2 ), TEOS
  • the inorganic acid is CsDSO 4 , CsHSO 4 and the like, but is not limited thereto.
  • the inorganic particles are BaTiO 3 , Pb (Zr x , Ti 1-x ) O 3 (PZT, 0 ⁇ x ⁇ 1), Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2/3 ) O 3 -xPbTiO 3 (PMN-PT, 0 ⁇ x ⁇ 1), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZnO 2 , ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2 , Tetraethyl orthosilicate (TEOS), Montmorillonite (MMT), (P 2 O 5 )
  • n and z may each have a range of 1 ⁇ n ⁇ 10 and 1 ⁇ z ⁇ 10.
  • the inorganic particle is SiO 2 .
  • the inorganic particles are provided in a form dispersed in the polymer electrolyte membrane.
  • the content of the inorganic particles is based on the total content of the polymer electrolyte membrane is 0.05% to 20% by weight, the content of the polymer is 80% to 99.95% by weight.
  • the content of the inorganic particles is 0.05 wt% to 20 wt% based on the total content of solids in the polymer electrolyte membrane. In another exemplary embodiment, the content of the inorganic particles is 0.05 wt% or more and less than 10 wt% based on the total content of solids of the polymer electrolyte membrane.
  • the solid content means a solute or solid except for the solvent in the total mass of the solution.
  • the content of the polymer is preferably 3 to 30% by weight, more preferably 5% to 15% by weight based on the total content of the polymer electrolyte membrane.
  • the total content of the polymer electrolyte membrane is an inorganic particle; A polymer comprising a unit of Formula 1; And a content including both solvent.
  • the introduced inorganic particles can increase the heat resistance of the polymer membrane and the moisture retention at high temperatures, and can prevent a decrease in mechanical properties during high temperature swelling.
  • the inorganic particles within the above range can contribute to the improvement of the hydrogen ion conductivity according to the decrease in the moisture content at high temperature.
  • the polymer included in the polymer electrolyte membrane includes a unit represented by Chemical Formula 1.
  • an S atom is used as a linker of the-[CR1R2] n- A structure and the benzene ring in the general formula (1).
  • S atoms due to the electron withdrawing character of-[CR1R2] n -A linked by S atoms, it is possible to provide a polymer that is easy to form and stable.
  • R1 and R2 are the same as or different from each other, and are each independently a halogen group. Specifically, R1 and R2 are each independently F; Cl; Br; And I can be selected from the group consisting of.
  • n is an integer of 2 to 10. In another embodiment of the present specification, n is an integer of 2 to 6.
  • a monomer including a unit of Formula 1 may control the number of n.
  • it may serve to facilitate the phase separation phenomenon of the polymer electrolyte membrane, it is possible to facilitate the movement of hydrogen ions in the polymer electrolyte membrane.
  • n is 2.
  • n 3.
  • n 4.
  • n is 5.
  • n is 6.
  • n 7.
  • n 8.
  • n 9.
  • n 10
  • A is -SO 3 H or -SO 3 - M + .
  • A is -SO 3 H.
  • any of formulas A 1 -SO 3 H or -SO 3 - M + may be the case, form a stable polymer chemically.
  • M is a Group 1 element.
  • the Group 1 element may be Li, Na, or K.
  • the unit represented by Chemical Formula 1 is represented by any one of the following Chemical Formulas 1-1 to 1-9.
  • the polymer includes 1 mol% to 100 mol% of the unit represented by Chemical Formula 1. Specifically, in one embodiment of the present specification, the polymer includes only the unit represented by Chemical Formula 1.
  • the polymer may further include another second unit in addition to the unit represented by Chemical Formula 1.
  • the content of the unit represented by Formula 1 is preferably 5 mol% to 65 mol%.
  • the unit represented by Formula 1 serves to control the ionic conductivity of the separator.
  • the second unit may be selected from units that improve the mechanical strength of the polymer, and the unit may be used as long as it can improve the mechanical strength.
  • the polymer included in the polymer electrolyte membrane is a random polymer.
  • a polymer having a high molecular weight can be obtained by a simple polymerization method.
  • the unit represented by Formula 1 and the second unit may constitute a random polymer.
  • the unit represented by Chemical Formula 1 has a partial fluorine-based functional group is extended in a pendant (pendant) form, the partial fluorine-based functional groups in the polymer are easily gathered together to facilitate phase separation. Therefore, ion channels can be easily formed to selectively exchange ions, thereby improving ion conductivity of the separator.
  • the polymer included in the polymer electrolyte membrane is a hydrophilic block; And it is a block polymer comprising a hydrophobic block, the hydrophilic block includes a unit represented by the formula (1).
  • the hydrophilic block and the hydrophobic block are included in the block polymer at a molar ratio of 1: 0.1 to 1:10. In one embodiment of the present specification, the hydrophilic block and the hydrophobic block are included in the block polymer in a molar ratio of 1: 0.1 to 1: 2. In another exemplary embodiment, the hydrophilic block and the hydrophobic block are included in the block polymer at a molar ratio of 1: 0.8 to 1: 1.2. In this case, the ion transport ability of the block polymer can be raised.
  • the unit represented by Chemical Formula 1 in the hydrophilic block is included from 0.01 mol% to 100 mol% based on the hydrophilic block.
  • the number average molecular weight of the hydrophilic block is 1,000 g / mol to 300,000 g / mol. In a specific embodiment, 2,000 g / mol to 100,000 g / mol. In another embodiment, it is from 2,500 g / mol to 50,000 g / mol.
  • the number average molecular weight of the hydrophobic block is 1,000 g / mol to 300,000 g / mol. In a specific embodiment, 2,000 g / mol to 100,000 g / mol. In another embodiment, it is from 2,500 g / mol to 50,000 g / mol.
  • the partition and division of the hydrophilic block and the hydrophobic block are clear, so that phase separation is easy, and ion transfer may be easy.
  • the hydrophilic block and the hydrophobic block are more clearly distinguished, and the ion transfer effect may be superior to that of the conventional polymer.
  • block polymer refers to a polymer in which one block and one or more blocks different from the block are connected to each other by a main chain of the polymer.
  • hydrophilic block herein is meant a block having an ion exchange group as a functional group.
  • the functional group may mean A in Chemical Formula 1 described above. That is, the ion exchange group is -SO 3 H, -SO 3 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H - M +, -PO 3 2- 2M +, -O (CF 2 ) m SO 3 H, -O (CF 2 ) m SO 3 - M + , -O (CF 2 ) m COOH, -O (CF 2 ) m COO - M + , -O (CF 2 ) m PO 3 H 2, -O (CF 2) m PO 3 H - M + , and -O (CF 2) m PO 3 2 - may be one or two selected from the group consisting of all 2M +.
  • M may be a metallic element. That is, the functional group may be hydrophilic.
  • block having an ion exchange group in the present specification means a block containing an average of 0.5 or more represented by the number of ion exchange groups per structural unit constituting the block, and an average of 1.0 or more ions per structural unit It is more preferable to have an exchanger.
  • hydrophobic block herein is meant the polymer block which is substantially free of ion exchange groups.
  • block having substantially no ion exchange group means a block having an average of less than 0.1 represented by the number of ion exchange groups per structural unit constituting the block, and more preferably 0.05 or less on average. It is more preferable if it is a block which does not have an ion exchange group at all.
  • the polymer is a brancher derived from a compound represented by the following formula (2); Or a brancher represented by the following formula (3).
  • X is S; O; CO; SO; SO 2 ; NR; Hydrocarbon-based or fluorine-based conjugates,
  • l is an integer from 0 to 10
  • Y1 and Y2 are the same as or different from each other, and each independently NRR; An aromatic ring substituted with one or two or more substituents selected from the group consisting of a hydroxy group and a halogen group; Or an aliphatic ring substituted with one or two or more substituents selected from the group consisting of a hydroxy group and a halogen group,
  • R is an aromatic ring substituted with a halogen group; Or an aliphatic ring substituted with a halogen group,
  • Z is a trivalent organic group.
  • brancher serves to link or crosslink the polymer chain.
  • the unit derived from the compound may mean a unit connected to the main chain of the polymer.
  • the unit may be included in the main chain in the polymer to constitute the polymer.
  • the brancher may directly constitute the main chain of the polymer, and may improve the mechanical density of the thin film.
  • the branched polymers of the present invention are post-treated sulfonated by polymerizing branched hydrophobic blocks that do not contain acid substituents and branched hydrophilic blocks that include acid substituents. Without the post-sulfonation or cross-linking of the sulfonated polymer, the brancher directly forms the main chain of the polymer and maintains the mechanical density of the thin film. Hydrophobic blocks and hydrophilic blocks that impart ion conductivity to the thin film are in turn led to chemical bonding.
  • a brancher derived from the compound of Formula 2 may include an aromatic ring substituted with a hydroxy group and / or a halogen group of each of Y1 and Y2; Or a hydroxyl group and / or a halogen group in the aliphatic ring substituted with a hydroxy group and / or a halogen group may act as a brancher while being separated from the aromatic ring or the aliphatic ring. Specifically, two or more hydroxyl groups and / or halogen groups may fall off and act as a brancher in the polymer.
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
  • the hydrocarbon-based means an organic compound consisting of only carbon and hydrogen, and includes a straight chain, branched chain, cyclic hydrocarbon, and the like, but is not limited thereto. In addition, it may include a single bond, a double bond or a triple bond, but is not limited thereto.
  • the fluorine-based conjugate means that some or all of the carbon-hydrogen bonds in the hydrocarbon system are substituted with fluorine.
  • the aromatic ring may be an aromatic hydrocarbon ring or an aromatic hetero ring, and may be monocyclic or polycyclic.
  • aromatic hydrocarbon ring monocyclic aromatic and naphthyl groups, binaphthyl groups, anthracenyl groups, phenanthrenyl groups, pyrenyl groups, peryllenyl groups, tetrasenyl groups, chrysenyl groups such as phenyl groups, biphenyl groups and terphenyl groups
  • polycyclic aromatics such as fluorenyl group, acenaphthasenyl group, triphenylene group, and fluoranthene group, and the like.
  • the aromatic heterocycle means a structure including one or more hetero atoms such as O, S, N, Se, or the like instead of a carbon atom in the aromatic hydrocarbon ring.
  • thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, acridil group, Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, Carbazole group, benzoxazole group, benzoimid
  • the aliphatic ring may be an aliphatic hydrocarbon ring or an aliphatic hetero ring, and may be monocyclic or polycyclic.
  • Examples of the aliphatic ring include a cyclopentyl group, a cyclohexyl group, and the like, but are not limited thereto.
  • an organic group an alkyl group, an alkenyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, an aralkyl group, etc. are mentioned.
  • This organic group may contain the bond and substituents other than hydrocarbon groups, such as a hetero atom, in the said organic group.
  • the organic group may be any of linear, branched and cyclic.
  • the trivalent organic group means a trivalent group having three bonding positions in an organic compound.
  • the organic group may form a cyclic structure, may form a cyclic structure, and may form a bond including a hetero atom so long as the effect of the invention is not impaired.
  • the bond containing hetero atoms such as an oxygen atom, a nitrogen atom, and a silicon atom
  • hetero atoms such as an oxygen atom, a nitrogen atom, and a silicon atom
  • the cyclic structure may include the aforementioned aromatic ring, aliphatic ring, and the like, and may be monocyclic or polycyclic.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 50. Specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl and heptyl groups.
  • the alkenyl group may be linear or branched chain, the carbon number is not particularly limited, but is preferably 2 to 40.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and especially cyclopentyl group, cyclohexyl group, and the like, but is not limited thereto.
  • l is 3 or more.
  • X is S.
  • X is a haloalkyl group.
  • X is CH 2 .
  • X is NR.
  • Y1 and Y2 are the same as or different from each other, and are each independently a halogen substituted aromatic ring.
  • Y1 and Y2 are the same as or different from each other, and are each independently a fluorine-substituted aromatic hydrocarbon ring.
  • Y1 and Y2 are the same as or different from each other, and are each independently NRR.
  • Y1 and Y2 are each a fluorine substituted phenyl group.
  • 2,4-phenyl, 2,6-phenyl, 2,3-phenyl, 3,4-phenyl and the like are not limited thereto.
  • the compound represented by Formula 2 may be represented by any one of the following structures.
  • Z in Chemical Formula 3 may be represented by any one of the following Chemical Formulas 3-1 to 3-4.
  • L1 To L7 are the same as or different from each other, and each independently a direct bond; -S-; -O-; -CO-; Or -SO 2- ,
  • R10 to R20 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Cyano group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • a, b, c, f, h, i and j are each an integer of 1 to 4,
  • d, e and g are each an integer of 1 to 3
  • k is an integer from 1 to 6
  • L1 is CO
  • L1 is SO 2 .
  • L1 is S.
  • L2 is CO
  • L2 is SO 2 .
  • L2 is S.
  • L3 is CO.
  • L3 is SO 2 .
  • L3 is S.
  • L4 is CO
  • L4 is SO 2 .
  • R10 to R20 are hydrogen.
  • R16 is a halogen group.
  • R16 is fluorine
  • brancher represented by Chemical Formula 3 may be represented by any one of the following structures.
  • the weight average molecular weight of the polymer is 500 g / mol to 5,000,000 g / mol. In another embodiment of the present specification, the weight average molecular weight of the polymer is 10,000 g / mol to 3,000,000 g / mol.
  • the weight average molecular weight of the polymer is in the above range, the mechanical properties of the electrolyte membrane including the polymer are not lowered, and the solubility of the polymer may be maintained to facilitate the preparation of the electrolyte membrane.
  • the polymer electrolyte membrane according to one embodiment of the present specification may be manufactured using materials and / or methods known in the art, except for including the polymer and the inorganic particles including the unit represented by Chemical Formula 1. For example, it can be carried out by applying a solution containing the polymer, drying and / or curing.
  • the coating may be a method such as a tape casting method, a dip coating method, a spray coating method, a spin coating method, or the like. .
  • the solvent used in the preparation of the polymer electrolyte membrane is N, N-dimethylacetamide (N, Ndimethylacetamide (DMAc)), dimethyl sulfoxide (DMSO), N, N-dimethylpyrrolidone (N, N-methylpyrollidone (NMP)), diphenylsulfone, diphenylsulfone, N, N-dimethylformamide (N, N-dimethylformamide (DMF)) and the like may be used, but are not limited thereto.
  • the curing may be performed by heating.
  • the heating means curing through heating.
  • the heating temperature may be 30 ° C or more and 200 ° C or less, specifically 50 ° C or more and 150 ° C or less. In one embodiment of the present specification, the heating time may be 1 hour or more and 46 hours or less, specifically 5 hours or more and 20 hours or less.
  • the method of manufacturing an electrolyte membrane may further include adding an acid solution to a solution containing the polymer.
  • a in Formula 1 when the acid solution is added to the solution containing the polymer, A in Formula 1 is -SO 3 , -M + , -COO - M + , -PO 3 H - M + , or -PO 3 2- 2M + which can be substituted by metal M instead of H (hydrogen) of the copolymer.
  • the heating may be preheated at 50 ° C. to 70 ° C. for 2 to 6 hours, dried at 100 ° C. for at least 12 hours, and finally dried at 100 ° C. vacuum oven for at least 12 hours.
  • the ion conductivity of the polymer electrolyte membrane has an ion conductivity of 0.01 S / cm to 0.5 S / cm. In another exemplary embodiment, the ion conductivity of the polymer electrolyte membrane is 0.01 S / cm or more and 0.3 S / cm or less.
  • the ionic conductivity of the polymer electrolyte membrane may be measured under humidification conditions.
  • the humidification condition may mean 10% to 100% relative humidity (RH).
  • the ion exchange capacity (IEC) value of the polymer electrolyte membrane is 0.01 mmol / g to 5 mmol / g.
  • IEC ion exchange capacity
  • the thickness of the polymer electrolyte membrane is 1 ⁇ m to 500 ⁇ m.
  • the polymer electrolyte membrane having the above range thickness lowers electric short and crossover of electrolyte material, and may exhibit excellent cation conductivity characteristics.
  • the polymer electrolyte membrane includes a polymer including a unit represented by Formula 1 below; And a pure membrane containing inorganic particles.
  • the polymer electrolyte membrane is a reinforcement membrane further comprising a substrate.
  • the substrate A polymer comprising a unit represented by Formula 1; And it provides a reinforcing film containing inorganic particles.
  • the 'reinforcement membrane' is an electrolyte membrane including a substrate that is a reinforcing material, and a membrane capable of exchanging ions, and includes a substrate, an ion exchange membrane, an ion transfer membrane, and an ion conductive membrane.
  • Separator ion exchange membrane, ion transfer membrane, ion conductive separator, ion exchange electrolyte membrane, ion transfer electrolyte membrane or ion conductive electrolyte membrane and the like.
  • the substrate may mean a support having a three-dimensional network structure
  • the reinforcing film including the substrate and the polymer may include one surface of the polymer, a surface facing the surface, and a pore region inside the substrate. It may mean that it is included in at least part of. That is, the reinforcing film of the present specification may be provided in a form in which the polymer is impregnated into the substrate.
  • the polymer and the inorganic particles are the same as described above.
  • the reinforcing membrane according to the exemplary embodiment of the present specification includes a polymer including the unit represented by Chemical Formula 1, has high mechanical strength and high ionic conductivity, and may facilitate phase separation of the reinforcing membrane.
  • the reinforcing film according to the exemplary embodiment of the present specification may include a substrate, thereby increasing chemical resistance and durability, and thus improving the life of the device.
  • the substrate is one or two species in the group consisting of polypropylene (PP), polytetrafluoroethylene (PTFE), polyethylene (PE) and polyvinylidene difluoride (PVDF) Is selected.
  • PP polypropylene
  • PTFE polytetrafluoroethylene
  • PE polyethylene
  • PVDF polyvinylidene difluoride
  • the content of the polymer and the inorganic particles is 100 parts by weight to 99 parts by weight based on 100 parts by weight of the reinforcing film.
  • the polymer and the inorganic particles may be included in an amount of about 10 parts by weight to about 99 parts by weight, and about 1 part by weight to about 90 parts by weight based on 100 parts by weight of the reinforcing film.
  • the crossover of vanadium ions may be reduced, and as the content of the polymer increases, the performance of the battery may be improved.
  • the substrate, the polymer, and the inorganic particles according to one embodiment of the present specification are within the above ranges, it is possible to reduce the crossover of vanadium ions while maintaining battery performance.
  • the ion conductivity of the reinforcing film is 0.001 S / cm or more and 0.5 S / cm or less. In another exemplary embodiment, the ion conductivity of the reinforcing film is 0.001 S / cm or more and 0.3 S / cm or less.
  • the ion conductivity may be measured under the same conditions as the aforementioned method.
  • the ion exchange capacity (IEC) value of the reinforcing membrane is 0.01 mmol / g to 5.0 mmol / g.
  • IEC ion exchange capacity
  • the thickness of the reinforcement film is 0.01 ⁇ m to 10,000 ⁇ m.
  • the thickness of the reinforcement film may reduce the electric short and the crossover of the electrolyte material, and may exhibit excellent cationic conductivity characteristics.
  • the present disclosure also provides a method for preparing a substrate; And impregnating the substrate into the mixed solution of the polymer and the inorganic particles.
  • Impregnation as used herein means the penetration of polymers and inorganic particles into the substrate.
  • the impregnation may be performed by dipping the substrate into a mixed solution of the polymer and the inorganic particles, using a slot dye coating, a bar casting, and the like.
  • immersion may be expressed in terms such as dip coating or dipping method.
  • the reinforcing film may have a directionality.
  • the substrate may be manufactured by uniaxial stretching or biaxial stretching, and the orientation of the substrate by the stretching may determine the orientation of the reinforcing film. Therefore, the reinforcing film according to the exemplary embodiment of the present specification may have a directionality of the machine direction (MD) and the vertical direction of the machine direction (MD), and the reinforcing film may be stressed and elongated according to the direction.
  • MD machine direction
  • MD vertical direction of the machine direction
  • the physical properties of can represent a difference.
  • the present disclosure also provides a method for preparing a substrate; And a polymer comprising the unit represented by Chemical Formula 1 above; And it provides a method for producing a strengthening film comprising the step of immersing in a mixed solution containing inorganic particles.
  • the substrate, the polymer, and the inorganic particles are as described above.
  • the present specification also relates to an anode; Cathode; And it provides a membrane-electrode assembly comprising the above-described polymer electrolyte membrane provided between the anode and the cathode.
  • Membrane-electrode assembly is an electrode (cathode and anode) in which the electrochemical catalysis of fuel and air occurs and a polymer membrane in which hydrogen ions are transferred.
  • the electrode (cathode and anode) and the electrolyte membrane are bonded together. It is a single unitary unit.
  • the membrane-electrode assembly of the present specification is a form in which the catalyst layer of the anode and the catalyst layer of the cathode are in contact with the electrolyte membrane, and may be prepared according to conventional methods known in the art.
  • the cathode; Anode; And it may be prepared by thermocompression bonding at 100 °C to 400 °C in a state in which the electrolyte membrane located between the cathode and the anode in close contact.
  • the anode electrode may include an anode catalyst layer and an anode gas diffusion layer.
  • the anode gas diffusion layer may again include an anode microporous layer and an anode electrode substrate.
  • the cathode electrode may include a cathode catalyst layer and a cathode gas diffusion layer.
  • the cathode gas diffusion layer may further include a cathode microporous layer and a cathode electrode substrate.
  • FIG. 1 schematically illustrates the principle of electricity generation of a fuel cell.
  • the most basic unit for generating electricity is a membrane electrode assembly (MEA), which is an electrolyte membrane 100 and the electrolyte membrane 100. It consists of an anode (200a) and a cathode (200b) electrode formed on both sides of the.
  • MEA membrane electrode assembly
  • an anode 200a generates an oxidation reaction of a fuel such as hydrogen or a hydrocarbon such as methanol and butane to generate hydrogen ions (H + ) and electrons (e ⁇ ).
  • the hydrogen ions move to the cathode 200b through the electrolyte membrane 100.
  • water is generated by reacting hydrogen ions transferred through the electrolyte membrane 100 with an oxidant such as oxygen and electrons. This reaction causes the movement of electrons in the external circuit.
  • the catalyst layer of the anode electrode is where the oxidation reaction of the fuel occurs, the catalyst is selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum-transition metal alloy. Can be used.
  • the catalyst layer of the cathode electrode is where the reduction reaction of the oxidant occurs, platinum or platinum-transition metal alloy may be preferably used as a catalyst.
  • the catalysts can be used on their own as well as supported on a carbon-based carrier.
  • the introduction of the catalyst layer may be carried out by conventional methods known in the art, for example, the catalyst ink may be directly coated on the electrolyte membrane or coated on the gas diffusion layer to form the catalyst layer.
  • the coating method of the catalyst ink is not particularly limited, but spray coating, tape casting, screen printing, blade coating, die coating or spin coating may be used.
  • Catalytic inks can typically consist of a catalyst, a polymer ionomer, and a solvent.
  • the gas diffusion layer serves as a passage for the reaction gas and water together with a role as a current conductor, and has a porous structure. Therefore, the gas diffusion layer may include a conductive substrate. As the conductive substrate, carbon paper, carbon cloth, or carbon felt may be preferably used.
  • the gas diffusion layer may further include a microporous layer between the catalyst layer and the conductive substrate. The microporous layer may be used to improve the performance of the fuel cell in low-humidity conditions, and serves to reduce the amount of water flowing out of the gas diffusion layer so that the electrolyte membrane is in a sufficient wet state.
  • One embodiment of the present specification includes two or more membrane-electrode assemblies; A stack comprising a bipolar plate provided between the membrane-electrode assemblies; A fuel supply unit supplying fuel to the stack; And it provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy.
  • a fuel cell is a power generation method that uses fuel gas and an oxidant and generates electric power by using electrons generated during the redox reaction.
  • the fuel cell can be manufactured according to conventional methods known in the art using the membrane-electrode assembly (MEA) described above.
  • MEA membrane-electrode assembly
  • it may be prepared by configuring a membrane electrode assembly (MEA) and a bipolar plate (bipolar plate) prepared above.
  • the fuel cell of the present specification includes a stack, a fuel supply unit and an oxidant supply unit.
  • FIG. 3 schematically illustrates the structure of a fuel cell, in which the fuel cell includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or two or more membrane electrode assemblies as described above, and includes two or more separators interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply unit 70 serves to supply the oxidant to the stack 60.
  • Oxygen is typically used as the oxidizing agent, and may be used by injecting oxygen or air into the pump 70.
  • the fuel supply unit 80 serves to supply fuel to the stack 60, and to the fuel tank 81 storing fuel and the pump 82 supplying fuel stored in the fuel tank 81 to the stack 60.
  • fuel hydrogen or hydrocarbon fuel in gas or liquid state may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • the fuel cell may be a polymer electrolyte fuel cell, a direct liquid fuel cell, a direct methanol fuel cell, a direct formic acid fuel cell, a direct ethanol fuel cell, or a direct dimethyl ether fuel cell.
  • the electrolyte membrane according to one embodiment of the present specification is used as an ion exchange membrane of a fuel cell, the above-described effects can be obtained.
  • an exemplary embodiment of the present specification includes a positive electrode cell including a positive electrode and a positive electrode electrolyte; A cathode cell comprising a cathode and a cathode electrolyte; And it provides a redox flow battery comprising a polymer electrolyte membrane according to one embodiment of the present specification provided between the cathode cell and the anode cell.
  • the redox flow battery (redox flow battery) is an electrochemical storage device that stores the chemical energy of the active material directly as electrical energy as a system in which the active material contained in the electrolyte is redoxed and charged and discharged.
  • the redox flow battery uses a principle that charges and discharges are exchanged when electrons containing active materials having different oxidation states meet with an ion exchange membrane interposed therebetween.
  • a redox flow battery is composed of a tank containing an electrolyte solution, a battery cell in which charging and discharging occurs, and a circulation pump for circulating the electrolyte solution between the tank and the battery cell, and the unit cell of the battery cell includes an electrode, an electrolyte, and an ion. Exchange membrane.
  • the electrolyte membrane according to one embodiment of the present specification is used as an ion exchange membrane of a redox flow battery, the above-described effects may be exhibited.
  • the redox flow battery of the present specification may be manufactured according to conventional methods known in the art, except for including the polymer electrolyte membrane according to one embodiment of the present specification.
  • the redox flow battery is divided into the positive electrode cell 32 and the negative electrode cell 33 by the electrolyte membrane 31.
  • the anode cell 32 and the cathode cell 33 include an anode and a cathode, respectively.
  • the anode cell 32 is connected to the anode tank 10 for supplying and discharging the anode electrolyte 41 through a pipe.
  • the cathode cell 33 is also connected to the cathode tank 20 for supplying and discharging the cathode electrolyte 42 through a pipe.
  • the electrolyte is circulated through the pumps 11 and 21, and an oxidation / reduction reaction (that is, a redox reaction) in which the oxidation number of ions changes occurs, thereby causing charge and discharge at the anode and the cathode.
  • an oxidation / reduction reaction that is, a redox reaction
  • Each monomer and potassium carbonate (K 2 CO 3 : molar ratio 4) were mixed in an NMP 20 wt% ratio and a benzene 20 wt% ratio, and polymerized at 140 ° C. for 4 hours and at 180 ° C. for 16 hours to prepare the polymer. .
  • the molecular weight of the polymer was measured and shown in Table 1 below.
  • Example 1 a polymer having a 2,4-difluoro partial fluorine monomer, which is a unit represented by Chemical Formula 1, was obtained.
  • GPC Gel Permeation Chromatography
  • N / A means not available, and it can be seen that the polymer is not formed.
  • the 2,4-difluoro halogenated compound according to an exemplary embodiment of the present specification has a characteristic in that the functional group of Formula 2, which is dependent on a pendant, exhibits the properties of electron drags as a whole.
  • the reactivity is greatly improved and it can be seen that there is an advantage in obtaining a high molecular weight polymer.
  • the separator was prepared using the polymer obtained in Preparation Example 1, the molecular weight was measured through GPC, and the cation conductivity and ion exchange capacity (IEC) of the pure membrane were described.
  • a solution of silica nanoparticles (size: ⁇ 10 nm) was added to an ion transfer resin solution containing a polymer (viscosity 500 cP, IEC 2.3) at a rate of 0.5 wt% (solvent NMP), followed by 4 at room temperature. Stirred for time.
  • a film was manufactured in the same manner as in Example 1, except for including the silica nanoparticle solution in 2 wt% ratio in Example 1.
  • a film was manufactured in the same manner as in Example 1, except for including the silica nanoparticle solution in 10 wt% ratio in Example 1.
  • Example 1 Except for including silica nanoparticles in Example 1, a film was prepared in the same manner as in Example 1.
  • IEC means ion exchange capacity, and after precipitation for 24 hours in saturated sodium chloride (NaCl) aqueous solution, the amount of released hydrogen ions (H + ) was measured by the method calculated by sodium hydroxide (NaOH) titration.
  • water uptake was calculated through the weight difference before and after dipping the film in ultrapure water for 24 hours.
  • the moisture content can be defined by Equation 1 below.
  • the swelling ratio was immersed in distilled water at room temperature for 24 hours, then measured the thickness of the film before and after immersion was calculated by the following formula (2).
  • the ion conductivity of the film was measured for humidity dependence using an alternating current impedance method using a four-electrode cell in which temperature and humidity were controlled. After maintaining for 2 hours or more in the humidity section, the ion conductivity was measured after reaching a sufficiently parallel state.
  • Ion conductivity 1 was measured by the method described above in a state of 100% relative humidity (RH) at 25 ° C, and ion conductivity 2 was measured by the method described above in a state of 50% relative humidity and 60 ° C.
  • a film prepared in a redox flow battery cell is fastened, and then a solution of 1 M magnesium sulfate (MgSO 4 ) dissolved in 2 M sulfuric acid (H 2 SO 4 ) is added to the negative electrode, and 1 M vanadium oxy sulfate (for the positive electrode) is used.
  • MgSO 4 magnesium sulfate
  • H 2 SO 4 2 M sulfuric acid
  • VOSO 4 vanadium oxy sulfate
  • the concentration of vanadium ions was converted by measuring the absorbance at a tetravalent ion wavelength of 767 nm using a UV spectrophotometer (Simadzu UV-1650PC).
  • V means the volume of sulfuric acid solution
  • C O means the initial concentration of vanadium ions in the magnesium sulfate tank
  • C t means the vanadium concentration of the magnesium sulfate tank at time t
  • A means the area of the film in contact with the sulfuric acid solution
  • L means the thickness of the film.
  • Example 1 2.2 190 120 0.12 0.04 10.3
  • Example 2 2.1 76 72 0.1 0.08 3.6
  • Example 3 1.3 21 23 0.05 0.04 0.1 Comparative Example 3 2.3 200 150 0.12 0.03 12.3
  • the polymer electrolyte membrane in the case of the polymer electrolyte membrane further comprising inorganic particles in addition to the polymer, the polymer electrolyte membrane has excellent moisture content while maintaining ion conductivity for application to a fuel cell or a redox flow battery, It can be confirmed that the ion conductivity is excellent.
  • the polymer electrolyte membrane according to one embodiment of the present specification can be confirmed that the water absorption amount, swelling ratio and vanadium ion permeability performance is superior to the case that does not contain inorganic particles.
  • Example 4 is a view of the surface of the film according to Example 2 measured by a scanning electron microscope (SEM).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 명세서는 중합체 및 무기 입자를 포함하는 고분자 전해질막에 관한 것이다.

Description

고분자 전해질막
본 명세서는 2014년 12월 4일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0173157호, 10-2014-0173178호, 10-2014-0173137호, 10-2014-0173142호 및 2015년 6월 23일에 한국특허청에 제출된 한국 특허 출원 제 10-2015-0088929호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 고분자 전해질막에 관한 것이다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다. 연료전지의 막 전극 접합체(MEA)는 수소와 산소의 전기화학적 반응이 일어나는 부분으로서 캐소드와 애노드 그리고 전해질막, 즉 이온 전도성 전해질막으로 구성되어 있다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)란 전해액에 포함되어 있는 활성물질이 산화환원되어 충전방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지의 단위셀은 전극, 전해질 및 이온교환막(전해질막)을 포함한다.
연료전지 및 레독스 플로우 전지는 높은 에너지 효율성과 오염물의 배출이 적은 친환경적인 특징으로 인하여 차세대 에너지원으로 연구 개발되고 있다.
연료전지 및 레독스 플로우 전지에서 가장 핵심이 되는 구성요소는 양이온 교환이 가능한 고분자 전해질막으로서, 1) 우수한 양성자 전도도 2) 전해질의 크로스오버(Cross Over) 방지, 3) 강한 내화학성, 4) 기계적 물성 강화 및/또는 4) 낮은 스웰링 비(Swelling Ratio)의 특성을 갖는 것이 좋다. 고분자 전해질막은 불소계, 부분불소계, 탄화수소계 등으로 구분이 되며, 부분불소계 고분자 전해질막의 경우, 불소계 주 사슬을 가지고 있어 물리적, 화학적 안정성이 우수하며, 열적 안정성 높다는 장점이 있다. 또한, 부분불소계 고분자 전해질막은 불소계 고분자 전해질막과 마찬가지로 양이온 전달 관능기가 불소계 사슬의 말단에 붙어있어, 탄화수소계 고분자 전해질막과 불소계 고분자 전해질막의 장점을 동시에 가지고 있다.
그러나, 부분불소계 고분자 전해질막은 양이온 전달 관능기의 미세 상 분리와 응집현상의 제어가 효과적으로 이루어지지 않아 양이온 전도도가 비교적 낮은 문제점이 있다. 따라서, 술폰산기의 분포 및 미세 상 분리의 제어를 통해 높은 양이온 전도도를 확보하는 방향으로 연구가 진행되어오고 있다.
[선행기술문헌]
[특허문헌]
한국 특허공개공보 제2003-0076057호
본 명세서의 목적은 상분리가 용이하고, 기계적 물성이 우수한 고분자 전해질막을 제공하는데 있다.
본 명세서는 하기 화학식 1로 표시되는 단위를 포함하는 중합체; 및 무기 입자를 포함하는 고분자 전해질막을 제공한다.
[화학식 1]
Figure PCTKR2015013209-appb-I000001
화학식 1에 있어서,
A는 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+, -PO3 2-2M+, -O(CF2)mSO3H, -O(CF2)mSO3 -M+, -O(CF2)mCOOH, -O(CF2)mCOO-M+, -O(CF2)mPO3H2, -O(CF2)mPO3H-M+ 또는 -O(CF2)mPO3 2-2M+이고,
m은 2 내지 6의 정수이며,
M은 1족 원소이고,
R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐기이며,
n은 2 내지 10의 정수이며, 2 내지 10 개의 괄호 내의 구조는 서로 동일하거나 상이하다.
또한, 본 명세서는 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 전술한 고분자 전해질막을 포함하는 막-전극 접합체를 제공한다.
본 명세서는 2 이상의 상기 막-전극 접합체; 상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택; 상기 스택으로 연료를 공급하는 연료공급부; 및 상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지를 제공한다.
마지막으로, 본 명세서는 양극 및 양극 전해액을 포함하는 양극 셀; 음극 및 음극 전해액을 포함하는 음극 셀; 및 상기 양극 셀과 상기 음극 셀 사이에 구비되는 전술한 고분자 전해질막을 포함하는 레독스 플로우 전지를 제공한다.
본 명세서의 일 실시상태에 따른 중합체를 포함하는 고분자 전해질막은 친수성-소수성 상분리 구조를 용이하게 형성한다.
또한, 상기 고분자 전해질막은 상분리 구조를 제어함으로써 친수성 채널을 효율적으로 고분자 전해질막 중에 형성한다.
본 명세서의 일 실시상태에 따른 상기 고분자 전해질막은 양성자 전도도가 우수하다. 결과적으로 이를 포함하는 연료전지 및/또는 레독스 플로우 전지의 고성능화를 가져온다.
본 명세서의 일 실시상태에 따른 고분자 전해질막은 무기 입자를 더 포함함으로써, 용매에 의한 팽윤(swelling)현상을 방지하고, 기계적 물성의 증가, 화학적 안정성의 증가를 기대할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 고분자 전해질형 연료전지의 경우에는 가스 크로스오버(gas crossover)를 방지할 수 있으며, 저가습 조건에서도 이온 전도도를 향상시킬 수 있다.
추가로, 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 레독스 플로우 전지는 바나듐 이온의 크로스오버(crossover)를 방지할 수 있다.
도 1은 연료전지의 전기 발생 원리를 나타내는 개략적인 도면이다.
도 2는 레독스 플로우 전지의 일 실시예를 개략적으로 나타낸 도면이다.
도 3은 연료전지의 일 실시예를 개략적으로 나타낸 도면이다.
도 4는 실시예 2에 따른 필름의 표면을 주사 전자 현미경(SEM)으로 측정한 도면이다.
[부호의 설명]
100: 전해질 막
200a: 애노드
200b: 캐소드
10, 20: 탱크
11, 21: 펌프
31: 전해질막
32: 양극 셀
33: 음극 셀
41: 양극 전해액
42: 음극 전해액
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서 '단위'란 단량체가 중합체에 포함되는 반복되는 구조로서, 단량체가 중합에 의하여 중합체 내에 결합된 구조를 의미한다.
본 명세서에 있어서 '단위를 포함'의 의미는 중합체 내의 주쇄에 포함된다는 의미이다.
본 명세서에서 "전해질막"은 이온을 교환할 수 있는 막으로서, 막, 이온교환막, 이온전달막, 이온 전도성 막, 분리막, 이온교환 분리막, 이온전달 분리막, 이온 전도성 분리막, 이온 교환 전해질막, 이온전달 전해질막 또는 이온 전도성 전해질막 등을 포함한다.
본 명세서에서 상기 화학식 1로 표시되는 단위를 포함하는 중합체 및 무기 입자를 포함하는 고분자 전해질막을 제공한다.
본 명세서의 일 실시상태에 따른 고분자 전해질막은 상기 화학식 1을 표시하는 단위를 포함하는 중합체를 포함하여, 높은 기계적 강도와 높은 이온 전도도를 갖으며, 전해질막의 상분리 현상을 용이하게 할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 고분자 전해질막은 무기입자를 포함하여, 용매에 의한 팽윤(swelling)현상을 방지하고, 기계적 물성의 증가, 화학적 안정성의 증가를 기대할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 무기 입자의 입경은 5 nm 내지 50 μm이다. 본 명세서의 일 실시상태에 있어서, 상기 무기 입자의 입경은 5 nm 내지 1000 nm 인 것이 더욱 바람직하다.
상기와 같이 무기 입자의 입경이 5 nm 미만인 경우에는 고분자 전해질막 내에서의 무기 입자의 분산이 어려우며, 50 μm를 초과하는 경우에는 고분자 전해질막 내에서 무기 입자가 고루 분산되기 힘들어 고분자 전해질막의 성능 향상에 부정적인 영향을 미친다.
본 명세서의 일 실시상태에 따른 상기 무기 입자는 구 형태일 수 있다.
본 명세서에서 상기 "입경"이란, 입자의 직경을 의미하며, 입자의 가장 넓은 단면의 지름의 평균값을 의미할 수 있다.
본 명세서에서 무기 입자의 입경은 동적 광산란법(dynamic light scattering)에 의하여 측정하였다.
본 명세서의 일 실시상태에 있어서, 상기 무기 입자는 무기물; 헤테로 폴리산; 및 무기산으로 이루어진 군에서 1종 또는 2종 이상이 선택된다.
본 명세서에서 상기 무기물은 BaTiO3, Pb(Zrx,Ti1-x)O3 (PZT, 0<x<1), Pb1 -xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 0<x<1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZnO2, ZrO2, SiO2, Y2O3, Al2O3, SiC, TiO2, 테트라에틸연(Tetraethyl orthosilicate:TEOS), 몬모릴로나이트(Montmorillonite:MMT) 및 (P2O5)4(ZrO2)3, P2O5-ZrO2-SiO2 등이 있으나 이에 한정되지 않는다.
또한, 상기 무기산은 CsDSO4, CsHSO4 등이 있으나 이에 한정되지 않는다.
또한, 상기 헤테로 폴리산은 α-Zn(O3PCH2OH)1 .27(O3PC6H4SO3H)0.73nH2O, γ-Zr(PO4)(H2PO4)0.54(HO3PC6H4SO3H)0.46nH2O, Zr(O3PCH2OH)1 . 27Y0 . 73nH2O, α-Zr(O3PC6H4SO3H)3.6H2O, α-Zr(O3POH)H2O, β-Cs3(HSO4)2(Hx(P,S)O4), α- Cs3(HSO4)2(H2PO4), 포스포텅스텐산(phosphotungstic acid), 규텅스텐산(silicotungstic acid) 및 몰리브도인산(molybdophosphoric acid: H3PO412MoO3zH2O)등이 있으나 이에 한정되지 않는다.
구체적으로 본 명세서의 일 실시상태에 있어서, 상기 무기 입자는 BaTiO3, Pb(Zrx,Ti1-x)O3 (PZT, 0<x<1), Pb1 - xLaxZr1 - yTiyO3(PLZT, 0<x<1, 0<y<1), (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(PMN-PT, 0<x<1), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZnO2, ZrO2, SiO2, Y2O3, Al2O3, SiC, TiO2, 테트라에틸연(Tetraethyl orthosilicate:TEOS), 몬모릴로나이트(Montmorillonite:MMT), (P2O5)4(ZrO2)3, P2O5-ZrO2-SiO2, CsDSO4, CsHSO4, α-Zn(O3PCH2OH)1.27(O3PC6H4SO3H)0.73nH2O, γ-Zr(PO4)(H2PO4)0 .54(HO3PC6H4SO3H)0.46nH2O, Zr(O3PCH2OH)1.27Y0.73nH2O, α-Zr(O3PC6H4SO3H)3.6H2O, α-Zr(O3POH)H2O, β-Cs3(HSO4)2(Hx(P,S)O4), α-Cs3(HSO4)2(H2PO4), 포스포텅스텐산(phosphotungstic acid), 규텅스텐산(silicotungstic acid) 및 몰리브도인산(molybdophosphoric acid: H3PO412MoO3zH2O)으로 이루어진 군으로부터 1 종 또는 2 종 이상이 선택될 수 있으나, 이에 한정되지 않는다.
본 명세서에서 상기 n 및 z는 각각 1<n<10, 1<z<10의 범위를 가질 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 무기 입자는 SiO2이다.
본 명세서의 일 실시상태에 있어서, 상기 무기 입자는 상기 고분자 전해질막에서 분산된 형태로 구비된다.
또 하나의 실시상태에 있어서, 상기 고분자 전해질막의 전체 함량을 기준으로 상기 무기 입자의 함량은 0.05 중량% 내지 20 중량%이고, 상기 중합체의 함량은 80 중량% 내지 99.95 중량%이다.
본 명세서의 일 실시상태에 있어서 상기 고분자 전해질막의 고형분의 전체 함량을 기준으로 상기 무기 입자의 함량은 0.05 중량% 내지 20 중량% 이다. 또 하나의 실시상태에 있어서, 상기 무기 입자의 함량은 상기 고분자 전해질막의 고형분의 전체 함량을 기준으로 0.05 중량% 이상 10 중량% 미만이다.
본 명세서에서 상기 고형분이란, 용액의 전체 질량에서 용매를 제외한 용질 또는 고형물을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 고분자 전해질막의 전체 함량을 기준으로 상기 중합체의 함량은 3 내지 30 중량%가 바람직하며, 5 중량% 내지 15 중량%가 더욱 바람직하다.
본 명세서에서 상기 고분자 전해질막의 전체 함량이란, 무기입자; 상기 화학식 1의 단위를 포함하는 중합체; 및 용매를 모두 포함한 함량을 의미할 수 있다.
상기 범위의 무기 입자를 포함하는 경우에, 도입된 무기 입자에 의하여 고분자 막의 내열성 및 고온에서의 수분 보유도를 증가시킬 수 있으며, 고온 팽윤시 기계적 특성의 감소를 방지할 수 있다. 또한, 상기 범위 내에서 무기 입자에 의해 고온에서의 함수율 감소에 따른 수소이온전도도의 개선에 기여할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 고분자 전해질막에 포함되는 중합체는 상기 화학식 1로 표시되는 단위를 포함한다.
본 명세서에서 상기 화학식 1 중 -[CR1R2]n-A 구조와 벤젠고리의 링커로서 S 원자를 사용한다. 이 경우, S 원자로 연결된 -[CR1R2]n-A의 전자끌개 성질(electron withdrawing character)로 인하여, 중합체의 형성에 용이하고, 안정한 중합체를 제공할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐기이다. 구체적으로 상기 R1 및 R2는 각각 독립적으로, F; Cl; Br; 및 I로 이루어진 군으로부터 선택될 수 있다.
본 명세서의 상기 화학식 1로 표시되는 단위를 포함하는 중합체가 고분자 전해질막에 포함되는 경우, 화학식 1의 R1 및 R2가 할로겐기이면 전자를 잘 끌어 말단에 있는 A 작용기의 산도를 증가시켜 수소이온의 이동을 용이하게 할 수 있으며, 고분자 전해질막의 구조를 강하게 할 수 있는 장점이 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 R1 및 R2가 불소인 경우, 상기 장점이 극대화될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 n은 2 내지 10의 정수이다. 본 명세서의 다른 실시상태에 있어서, 상기 n은 2 내지 6의 정수이다.
본 명세서의 일 실시상태에 따른 화학식 1의 단위를 포함하는 단량체는 n의 개수를 조절할 수 있다. 이 경우, 상기 괄호내의 구조의 길이를 조절하여, 고분자 전해질막의 상분리 현상을 용이하게 할 수 있는 역할을 할 수 있으며, 고분자 전해질막의 수소 이온의 이동을 용이하게 할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 n은 2이다.
다른 실시상태에 있어서, 상기 n은 3이다.
또 다른 실시상태에 있어서, 상기 n은 4이다.
다른 실시상태에 있어서, 상기 n은 5이다.
또 하나의 실시상태에 있어서, 상기 n은 6이다.
다른 실시상태에 있어서, 상기 n은 7이다.
본 명세서의 일 실시상태에 있어서, 상기 n은 8이다.
다른 실시상태에 있어서, 상기 n은 9이다.
본 명세서의 일 실시상태에 있어서, 상기 n은 10이다.
본 명세서의 일 실시상태에 있어서, 상기 A는 -SO3H 또는 -SO3 -M+ 이다.
또 하나의 실시상태에 있어서, 상기 A는 -SO3H이다.
상기와 같이, 화학식 1 중 A가 -SO3H 또는 -SO3 -M+인 경우, 화학적으로 안정한 중합체를 형성할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 M은 1족 원소이다.
본 명세서에서 1족 원소는 Li, Na 또는 K일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 단위는 하기 화학식 1-1 내지 1-9 중 어느 하나로 표시된다.
[화학식 1-1]
Figure PCTKR2015013209-appb-I000002
[화학식 1-2]
Figure PCTKR2015013209-appb-I000003
[화학식 1-3]
Figure PCTKR2015013209-appb-I000004
[화학식 1-4]
Figure PCTKR2015013209-appb-I000005
[화학식 1-5]
Figure PCTKR2015013209-appb-I000006
[화학식 1-6]
Figure PCTKR2015013209-appb-I000007
[화학식 1-7]
Figure PCTKR2015013209-appb-I000008
[화학식 1-8]
Figure PCTKR2015013209-appb-I000009
[화학식 1-9]
Figure PCTKR2015013209-appb-I000010
.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 상기 화학식 1로 표시되는 단위를 1 몰% 내지 100 몰%를 포함한다. 구체적으로 본 명세서의 하나의 실시상태에 있어서, 중합체는 상기 화학식 1로 표시되는 단위만을 포함한다.
또 다른 실시상태에 있어서, 상기 중합체는 상기 화학식 1로 표시되는 단위 외에 다른 제2 단위를 더 포함할 수 있다. 본 명세서의 일 실시상태에 있어서, 상기 중합체가 제2 단위를 더 포함하는 경우에는 상기 화학식 1로 표시되는 단위의 함량은 5 몰% 내지 65 몰%인 것이 바람직하다.
본 명세서의 일 실시상태에 따른 화학식 1로 표시되는 단위는 분리막의 이온 전도도를 조절하는 역할을 한다.
또 다른 실시상태에 따른 상기 제2 단위는 중합체의 기계적 강도를 향상시키는 단위 중에서 선택될 수 있으며, 기계적 강도를 향상시킬 수 있는 단위라면 그의 종류를 한정하지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 고분자 전해질막에 포함되는 중합체는 랜덤 중합체이다. 이 경우, 간단한 중합 방법으로 높은 분자량을 갖는 중합체를 얻을 수 있다.
구체적으로 본 명세서의 하나의 실시상태에 있어서, 상기 화학식 1로 표시되는 단위와 상기 제2 단위는 랜덤 중합체를 구성할 수 있다.
본 명세서의 일 실시상태에 따라, 화학식 1로 표시되는 단위는 부분 불소계를 포함하는 작용기가 펜던트(pendant) 형태로 뻗어나와 있기 때문에 중합체 내의 부분 불소계 작용기들끼리 잘 모여 상분리가 용이하다. 따라서, 이온 채널을 쉽게 형성하여 이온이 선택적으로 교환되어 분리막의 이온전도도가 향상될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 고분자 전해질막에 포함되는 중합체는 친수성 블록; 및 소수성 블록을 포함하는 블록 중합체이고, 상기 친수성 블록은 상기 화학식 1로 표시되는 단위를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 블록 중합체 내에서 상기 친수성 블록과 소수성 블록은 1 : 0.1 내지 1 : 10의 몰비율로 포합된다. 본 명세서의 일 실시상태에 있어서, 상기 블록 중합체 내에서 상기 친수성 블록과 소수성 블록은 1 : 0.1 내지 1 : 2의 몰비율로 포함된다. 또 하나의 실시상태에 있어서, 상기 블록 중합체 내에서 상기 친수성 블록과 소수성 블록은 1 : 0.8 내지 1 : 1.2의 몰비율로 포함된다. 이 경우, 블록 중합체의 이온 전달 능력을 상승시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 친수성 블록 내에서 상기 화학식 1로 표시되는 단위는 상기 친수성 블록을 기준으로 0.01 몰% 내지 100몰% 포함된다.
본 명세서의 하나의 실시상태에 있어서, 상기 친수성 블록의 수평균 분자량은 1,000 g/mol 내지 300,000 g/mol 이다. 구체적인 실시상태에 있어서, 2,000 g/mol 내지 100,000 g/mol 이다. 또 다른 실시상태에 있어서, 2,500 g/mol 내지 50,000 g/mol 이다.
본 명세서의 하나의 실시상태에 있어서, 상기 소수성 블록의 수평균 분자량은 1,000 g/mol 내지 300,000 g/mol 이다. 구체적인 실시상태에 있어서, 2,000 g/mol 내지 100,000 g/mol 이다. 또 다른 실시상태에 있어서, 2,500 g/mol 내지 50,000 g/mol 이다.
본 명세서의 실시상태에 따라, 블록 중합체인 경우에는 친수성 블록과 소수성 블록의 구획, 구분이 명확하여 상분리(phase separation)가 용이하여, 이온 전달이 용이할 수 있다. 본 명세서의 일 실시상태에 따라서, 상기 화학식 1로 표시되는 단위를 포함하는 경우에는 친수성 블록과 소수성 블록의 구분이 더욱 명확하게 되어, 종래의 고분자보다 이온 전달 효과가 우수할 수 있다.
본 명세서에서 상기 "블록 중합체"란 하나의 블록과 상기 블록과 상이한 1 또는 2 이상의 블록이 서로 고분자의 주쇄로 연결되어 구성된 고분자를 의미한다.
본 명세서의 "친수성 블록"은 작용기로 이온 교환기를 갖는 블록을 의미한다. 여기서, 상기 작용기는 전술한 화학식 1 중 A를 의미할 수 있다. 즉, 상기 이온 교환기는 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+, -PO3 2-2M+, -O(CF2)mSO3H, -O(CF2)mSO3 -M+, -O(CF2)mCOOH, -O(CF2)mCOO-M+, -O(CF2)mPO3H2, -O(CF2)mPO3H-M+ 및 -O(CF2)mPO3 2 -2M+로 이루어진 군에서 선택된 1 종 또는 2 종일 수 있다. 여기서, M은 금속성 원소일 수 있다. 즉, 작용기는 친수성일 수 있다.
본 명세서의 상기 "이온 교환기를 갖는 블록"이란, 해당 블록을 구성하는 구조 단위 1개당 있는 이온 교환기수로 나타내어 평균 0.5개 이상 포함되어 있는 블록인 것을 의미하고, 구조 단위 1개당 평균 1.0개 이상의 이온 교환기를 갖고 있으면 더 바람직하다.
본 명세서의 "소수성 블록"은 이온 교환기를 실질적으로 갖지 않는 상기 고분자 블록을 의미한다.
본 명세서의 상기 "이온 교환기를 실질적으로 갖지 않는 블록"이란, 해당 블록을 구성하는 구조 단위 1개당 있는 이온 교환기수로 나타내어 평균 0.1개 미만인 블록인 것을 의미하고, 평균 0.05개 이하이면 보다 바람직하며, 이온 교환기를 전혀 갖지 않는 블록이면 더 바람직하다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 하기 화학식 2로 표시되는 화합물로부터 유래되는 브랜처; 또는 하기 화학식 3으로 표시되는 브랜처를 더 포함한다.
[화학식 2]
Figure PCTKR2015013209-appb-I000011
[화학식 3]
Figure PCTKR2015013209-appb-I000012
화학식 2 및 3에 있어서,
X는 S; O; CO; SO; SO2; NR; 탄화수소계 또는 불소계 결합체이고,
l은 0 내지 10의 정수이며,
l이 2 이상인 경우, 2 이상의 X는 서로 동일하거나 상이하고,
Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 NRR; 히드록시기 및 할로겐기로 이루어진 군에서 선택되는 치환기로 1 또는 2 이상 치환된 방향족고리; 또는 히드록시기 및 할로겐기로 이루어진 군에서 선택되는 치환기로 1 또는 2 이상 치환된 지방족 고리이며,
R은 할로겐기로 치환된 방향족고리; 또는 할로겐기로 치환된 지방족 고리이고,
Z는 3가의 유기기이다.
본 명세서에서 상기 "브랜처"란 중합체 사슬을 연결 또는 가교하는 역할을 한다.
본 명세서에서, 상기 "유래"란 화합물의 결합이 끊기거나, 치환기가 떨어져 나가면서 새로운 결합이 발생하는 것을 의미하며, 상기 화합물로부터 유래되는 단위는 중합체의 주쇄에 연결되는 단위를 의미할 수 있다. 상기 단위는 중합체 내 주쇄에 포함되어 중합체를 구성할 수 있다.
본 명세서에서 상기 브랜처를 더 포함하는 중합체의 경우에는 브랜처가 직접 중합체의 주쇄를 구성할 수 있으며, 박막의 기계적 집적도를 향상시킬 수 있다.
구체적으로 본 발명의 브랜치된 중합체는 산 치환체(acid substituents)를 포함하지 않는 브랜치된 소수 블록(branched hydrophobic block)과 산 치환체를 포함하는 브랜치된 친수 블록(branched hydrophilic block)을 중합함으로써 후처리 술폰화 반응(post-sulfonation)이나 술폰화된 중합체(sulfonated polymer)의 가교반응(cross-linking)을 실시하지 않고 브랜처(brancher)가 중합체의 주사슬을 직접 구성하며, 박막의 기계적 집적도를 유지시켜주는 소수 블록과 박막에 이온전도성을 부여하는 친수 블록이 교대로 화학적 결합으로 이어지게 된다.
본 명세서의 상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서,
Figure PCTKR2015013209-appb-I000013
는 인접한 치환기 또는 중합체의 주쇄와 결합함을 의미한다.
구체적으로 본 명세서에서 상기 화학식 2의 화합물로부터 유래되는 브랜처는 상기 Y1 및 Y2 각각의 히드록시기 및/또는 할로겐기로 치환된 방향족 고리; 또는 히드록시기 및/또는 할로겐기로 치환된 지방족 고리 중 히드록시기 및/또는 할로겐기가 방향족 고리 또는 지방족 고리에서 떨어져 나가면서, 브랜처로서 작용할 수 있다. 구체적으로 2 이상의 히드록시기 및/또는 할로겐기가 떨어져 나가면서 중합체 내에서 브랜처로 작용할 수 있다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 탄화수소계는 탄소와 수소로만 이루어진 유기 화합물을 의미하며, 직쇄, 분지쇄, 환형 탄화수소 등이 있으며, 이를 한정하지 않는다. 또한, 단일 결합, 이중결합 또는 삼중결합을 포함할 수 있으며 이를 한정하지 않는다.
본 명세서에서 불소계 결합체는 상기 탄화수소계에서 탄소-수소 결합이 일부 또는 전부가 불소로 치환된 것을 의미한다.
본 명세서에서 상기 방향족 고리는 방향족 탄화수소고리 또는 방향족 헤테로고리일 수 있으며, 단환 또는 다환일 수 있다.
구체적으로 방향족 탄화수소고리로는 페닐기, 비페닐기, 터페닐기 등의 단환식 방향족 및 나프틸기, 비나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타센닐기, 트리페닐렌기, 플루오란텐(fluoranthene)기 등의 다환식 방향족 등이 있으며, 이에 한정되지 않는다.
본 명세서에서 방향족 헤테로고리는 상기 방향족 탄화수소고리에서 탄소원자 대신에 헤테로 원자 예컨대, O, S, N, Se 등을 1 이상 포함하는 구조를 의미한다. 구체적으로 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에서 상기 지방족 고리는 지방족 탄화수소고리 또는 지방족 헤테로고리일 수 있으며, 단환 또는 다환일 수 있다. 상기 지방족 고리의 예시로는 시클로펜틸기, 시클로헥실기 등이 있으며 이를 한정하지 않는다.
본 명세서에서 유기기로는 알킬기, 알케닐기, 시클로알킬기, 시클로알케닐기, 아릴기, 아랄킬기 등을 들 수 있다. 이 유기기는 상기 유기기 중에 헤테로 원자 등의 탄화수소기 이외의 결합이나 치환기를 포함하고 있어도 된다. 또한, 상기 유기기는 직쇄상, 분기쇄상, 환상 중 어느 것이어도 된다.
본 명세서에서 3가의 유기기란 유기 화합물에 결합 위치가 3개 있는 3가기를 의미한다.
또한, 상기 유기기는 환상구조를 형성할 수도 있으며, 환상 구조를 형성할 수도 있으며, 발명의 효과가 손상되지 않는한 헤테로 원자를 포함하여 결합을 형성할 수 있다.
구체적으로 산소 원자, 질소 원자, 규소 원자 등의 헤테로 원자를 포함하는 결합을 들 수 있다. 구체예로는, 에테르 결합, 티오에테르 결합, 카르보닐 결합, 티오카르보닐 결합, 에스테르 결합, 아미드 결합, 우레탄 결합, 이미노 결합(-N=C(-A)-,-C(=NA)-: A은 수소 원자 또는 유기기를 나타낸다), 카보네이트 결합, 설포닐 결합, 설피닐 결합, 아조 결합 등을 들 수 있으며, 이를 한정하지 않는다.
상기 환상 구조로는 전술한 방향족 고리, 지방족고리 등이 있을 수 있으며, 단환 또는 다환일 수 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, t-부틸기, 펜틸기, 헥실기 및 헵틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 특히 시클로펜틸기, 시클로헥실기 등이 있으나, 이를 한정하지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 l은 3이상이다.
본 명세서의 일 실시상태에 있어서, 상기 X는 S이다.
또 하나의 실시상태에 있어서, 상기 X는 할로알킬기이다.
또 다른 실시상태에 있어서, 상기 X는 CH2이다.
본 명세서의 다른 실시상태에 있어서, 상기 X는 NR이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하며, 각각 독립적으로 할로겐 치환 방향족 고리이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 불소 치환된 방향족 탄화수소고리이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 NRR이다.
또 하나의 실시상태에 있어서, 상기 Y1 및 Y2는 각각 불소 치환된 페닐기이다. 구체적으로 2,4-페닐, 2,6-페닐, 2,3-페닐, 3,4-페닐 등이 있으며 이를 한정하지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 화합물은 하기 구조 중 어느 하나로 표시될 수 있다.
Figure PCTKR2015013209-appb-I000014
상기 구조에 있어서, X, l 및 R은 화학식 2에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 3에 Z는 하기 화학식 3-1 내지 3-4 중 어느 하나로 표시될 수 있다.
[화학식 3-1]
Figure PCTKR2015013209-appb-I000015
[화학식 3-2]
Figure PCTKR2015013209-appb-I000016
[화학식 3-3]
Figure PCTKR2015013209-appb-I000017
[화학식 3-4]
Figure PCTKR2015013209-appb-I000018
상기 화학식 3-1 내지 3-4에 있어서,
L1 내지 L7은 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; -S-; -O-; -CO-; 또는 -SO2-이고,
R10 내지 R20은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
a, b, c, f, h, i 및 j는 각각 1 내지 4의 정수이며,
d, e 및 g는 각각 1 내지 3의 정수이고,
k는 1 내지 6의 정수이며,
a, b, c, d, e, f, g, h, i, j 및 k가 각각 2 이상의 정수인 경우, 2 이상의 괄호내의 구조는 서로 동일하거나 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 L1은 CO이다.
또 하나의 실시상태에 있어서, 상기 L1은 SO2이다.
또 하나의 실시상태에 있어서, 상기 L1은 S이다.
또 다른 실시상태에 있어서, 상기 L2는 CO이다.
또 하나의 실시상태에 있어서, 상기 L2는 SO2이다.
또 다른 실시상태에 있어서, 상기 L2는 S이다.
본 명세서의 일 실시상태에 있어서, 상기 L3는 CO이다.
또 하나의 실시상태에 있어서, 상기 L3는 SO2이다.
또 다른 실시상태에 있어서, 상기 L3는 S이다.
본 명세서의 일 실시상태에 있어서, 상기 L4는 CO이다.
또 하나의 실시상태에 있어서, 상기 L4는 SO2이다.
본 명세서의 일 실시상태에 있어서, 상기 R10 내지 R20은 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 R16은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R16은 불소이다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 화학식 3으로 표시되는 브랜처는 하기 구조 중 어느 하나로 표시될 수 있다.
Figure PCTKR2015013209-appb-I000019
본 명세서의 일 실시상태에 있어서, 상기 중합체의 중량평균분자량은 500 g/mol 내지 5,000,000 g/mol 이다. 본 명세서의 또 하나의 실시상태에 있어서, 상기 중합체의 중량평균 분자량은 10,000 g/mol 내지 3,000,000 g/mol이다. 상기 중합체의 중량평균 분자량이 상기의 범위인 경우에는 상기 중합체를 포함하는 전해질막의 기계적인 물성이 저하되지 않으며, 적절한 고분자의 용해도를 유지하여, 전해질막의 제조가 용이할 수 있다.
본 명세서의 일 실시상태에 따른 고분자 전해질막은 상기 화학식 1로 표시되는 단위를 포함하는 중합체 및 무기 입자를 포함하는 것을 제외하고, 당 기술분야에 알려진 재료 및/또는 방법을 이용하여 제조될 수 있다. 예컨대, 상기 중합체를 포함하는 용액을 도포하고, 건조 및/또는 경화를 함으로써 수행될 수 있다.
본 명세서의 일 실시상태에서, 상기 도포는 테이프 캐스팅(Tape Casting)법, 딥코팅(Dip Coating)법, 스프레이 코팅(Spray Coating)법, 스핀 코팅(Spin Coating)법 등의 방법이 이용될 수 있다.
본 명세서의 일 실시상태에서 고분자 전해질막의 제조시 사용되는 용매는 N,N-디메틸아세트아마이드(N,Ndimethylacetamide(DMAc)), 디메틸술폭사이드(dimethylsulfoxide(DMSO)), N,N-디메틸피롤리돈(N,N-methylpyrollidone(NMP)), 디페닐술폰(diphenylsulfone), N,N-디메틸포름아미드(N,N-dimethylformamide(DMF)) 등이 사용될 수 있으나, 이들에 한정되지 않는다.
상기 경화는 히팅에 의하여 수행될 수 있다.
본 명세서의 일 실시상태에서, 상기 히팅은 가열을 통한 경화를 의미한다.
본 명세서의 일 실시상태에서, 상기 히팅온도는 30 ℃ 이상 200 ℃ 이하, 구체적으로 50 ℃ 이상 150 ℃ 이하일 수 있다. 본 명세서의 일 실시상태에서, 상기 히팅시간은 1시간 이상 46시간 이하, 구체적으로 5시간 이상 20시간 이하일 수 있다.
본 명세서의 일 실시상태에서, 상기 전해질막의 제조방법은 상기 중합체를 포함하는 용액에 산 용액을 가하는 단계를 더 포함할 수 있다.
본 명세서의 일 실시상태에서, 상기 중합체를 포함하는 용액에 산 용액을 가하면 상기 화학식 1의 A가 -SO3, -M+, -COO-M+, -PO3H-M+, 또는 -PO3 2-2M+인 공중합체의 금속 M 대신 H(수소)로 치환될 수 있다.
본 명세서의 일 실시상태에서, 상기 히팅은 50 ℃ 내지 70 ℃에서 2 내지 6시간 동안 예열하고, 100 ℃에서 12시간 이상 건조하며, 마지막으로 100 ℃ 진공 오븐(vacuum oven)에서 12시간 이상 건조할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 이온 전도도가 0.01 S/cm 내지 0.5 S/cm 이다. 또 하나의 실시상태에 있어서, 상기 고분자 전해질막의 이온 전도도는 0.01 S/cm 이상 0.3 S/cm 이하이다.
본 명세서의 일 실시상태에 있어서, 상기 고분자 전해질막의 이온 전도도는 가습 조건에서 측정될 수 있다. 본 명세서에서 가습 조건이란 상대 습도(RH) 10% 내지 100%를 의미할 수 있다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 고분자 전해질막의 이온교환용량(IEC) 값은 0.01 mmol/g 내지 5 mmol/g이다. 상기 이온교환용량값의 범위를 갖는 경우에는 상기 고분자 전해질막에서의 이온 채널이 형성되고, 중합체가 이온 전도도를 나타낼 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 고분자 전해질막의 두께는 1 ㎛ 내지 500 ㎛ 이다. 상기 범위 두께의 고분자 전해질막은 전기적 쇼트(Electric Short) 및 전해질 물질의 크로스오버(Crossover)를 저하시키고, 우수한 양이온 전도도 특성을 나타낼 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 고분자 전해질막은 하기 화학식 1로 표시되는 단위를 포함하는 중합체; 및 무기 입자를 포함하는 순수막이다.
또 다른 실시상태에 있어서, 상기 고분자 전해질막은 기재를 더 포함하는 강화막이다.
즉, 본 명세서의 일 실시상태에 있어서, 기재; 상기 화학식 1로 표시되는 단위를 포함하는 중합체; 및 무기입자를 포함하는 강화막을 제공한다.
본 명세서의 일 실시상태에 있어서, '강화막'은 강화 재료인 기재를 포함하는 전해질막으로서, 이온을 교환할 수 있는 막으로서, 기재를 포함하는 막, 이온교환막, 이온전달막, 이온 전도성 막, 분리막, 이온교환 분리막, 이온전달 분리막, 이온 전도성 분리막, 이온 교환 전해질막, 이온전달 전해질막 또는 이온 전도성 전해질막 등을 의미할 수 있다.
본 명세서에서 상기 기재는 3차원 망상 구조의 지지체를 의미할 수 있으며, 상기 기재 및 중합체를 포함하는 강화막은 상기 중합체가 상기 기재의 일 표면, 상기 일 표면에 대향하는 표면 및 상기 기재 내부의 기공 영역 중 적어도 일부에 포함되는 것을 의미할 수 있다. 즉 본 명세서의 강화막은 상기 중합체가 상기 기재에 함침된 형태로 구비될 수 있다.
상기 중합체 및 무기 입자는 전술한 내용과 동일하다.
탄화수소계 이온전달 분리막의 경우, 이온 전달 능력이 불소계 분리막에 비하여 떨어지고, 내화학성이 약한 문제가 있다. 따라서, 본 명세서의 일 실시상태에 따른 강화막은 상기 화학식 1을 표시되는 단위를 포함하는 중합체를 포함하여, 높은 기계적 강도와 높은 이온 전도도를 갖으며, 강화막의 상분리 현상을 용이하게 할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 강화막은 기재를 포함하여, 내화학성 및 내구성을 증대시켜, 소자의 수명을 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 기재는 폴리프로필렌(PP), 폴리테트라플루오로에틸렌(PTFE), 폴리에틸렌(PE) 및 폴리비닐리덴디플루오리드(PVDF)로 이루어진 군에서 1종 또는 2종이 선택된다.
본 명세서의 일 실시상태에 있어서, 상기 강화막 100 중량부에 대하여 상기 중합체와 무기입자의 함량은 10 중량부 내지 99 중량부이다.
또 하나의 실시상태에 있어서, 상기 강화막 100 중량부에 대하여, 상기 중합체와 무기입자의 함량은 10 중량부 내지 99 중량부이고, 상기 기재의 함량은 1 중량부 내지 90 중량부이다. 상기 기재의 함량이 증가할수록 바나듐 이온의 크로스 오버를 감소시킬 수 있으며, 상기 중합체의 함량이 증가할수록 전지의 성능이 향상될 수 있다.
따라서, 본 명세서의 일 실시상태에 따른 기재, 중합체 및 무기 입자가 상기 범위인 경우, 전지의 성능을 유지함과 동시에 바나듐 이온의 크로스 오버를 감소시킬 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 강화막의 이온 전도도는 0.001 S/cm 이상 0.5 S/cm 이하이다. 또 하나의 실시상태에 있어서, 상기 강화막의 이온 전도도는 0.001 S/cm 이상 0.3 S/cm 이하이다.
본 명세서에서 이온 전도도는 전술한 방법과 동일한 조건으로 측정될 수 있다.
또한, 본 명세서의 일 실시상태에 있어서, 상기 강화막의 이온교환용량(IEC) 값은 0.01 mmol/g 내지 5.0 mmol/g이다. 상기 이온교환용량값의 범위를 갖는 경우에는 상기 강화막에서의 이온 채널이 형성되고, 중합체가 이온 전도도를 나타낼 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 강화막의 두께는 0.01 ㎛ 내지 10,000㎛ 이다. 상기 범위 두께의 강화막은 전기적 쇼트(Electric Short) 및 전해질 물질의 크로스오버(Crossover)를 저하시키고, 우수한 양이온 전도도 특성을 나타낼 수 있다.
본 명세서는 또한, 기재를 준비하는 단계; 및 상기 기재를 상기 중합체와 무기입자의 혼합 용액에 함침하는 단계를 포함하는 강화막의 제조 방법을 제공한다.
본 명세서에서 함침(impregnation)이란, 기재 내에 중합체 및 무기 입자가 스며드는 것을 의미한다. 본 명세서에서는 상기 함침은 상기 기재를 상기 중합체 및 무기 입자의 혼합 용액에 침지(dipping), 슬롯 다이(slot dye) 코팅, 바 캐스팅(bar casting) 등을 이용하여 수행될 수 있다.
본 명세서에서 침지는 딥코팅(Dip Coating) 또는 디핑법(Dipping method) 등의 용어로 표현될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 강화막은 방향성을 가질 수 있다. 구체적으로, 본 명세서의 일 실시상태에 있어서, 상기 기재는 1축 연신 또는 2축 연신을 통하여 제조될 수 있으며, 상기 연신에 의한 기재의 방향성이 상기 강화막의 방향성을 결정할 수 있다. 그러므로, 본 명세서의 일 실시상태에 따른 강화막은 기계방향(MD: Machine Direction), 및 기계방향(MD: Machine Direction)의 수직방향의 방향성을 가질 수 있으며, 상기 강화막은 방향성에 따라 응력 및 신율 등의 물성이 차이를 나타낼 수 있다.
본 명세서는 또한, 기재를 준비하는 단계; 및 상기 기재를 상기 상기 화학식 1로 표시되는 단위를 포함하는 중합체; 및 무기입자를 포함하는 혼합 용액에 침지하는 단계를 포함하는 강화막의 제조 방법을 제공한다.
본 명세서에서 상기 기재, 중합체 및 무기 입자는 전술한 바와 같다.
본 명세서는 또한, 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 전술한 고분자 전해질막을 포함하는 막-전극 접합체를 제공한다.
막-전극 접합체(MEA)는 연료와 공기의 전기화학 촉매 반응이 일어나는 전극(캐소드와 애노드)과 수소 이온의 전달이 일어나는 고분자 막의 접합체를 의미하는 것으로서, 전극(캐소드와 애노드)과 전해질막이 접착된 단일의 일체형 유니트(unit)이다.
본 명세서의 상기 막-전극 접합체는 애노드의 촉매층과 캐소드의 촉매층이 전해질막에 접촉하도록 하는 형태로서, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 상기 캐소드; 애노드; 및 상기 캐소드와 애노드 사이에 위치하는 전해질막을 밀착시킨 상태에서 100 ℃ 내지 400 ℃로 열압착하여 제조될 수 있다.
애노드 전극은 애노드 촉매층과 애노드 기체확산층을 포함할 수 있다. 애노드 기체확산층은 다시 애노드 미세 기공층과 애노드 전극 기재를 포함할 수 있다.
캐소드 전극은 캐소드 촉매층과 캐소드 기체확산층을 포함할 수 있다. 캐소드 기체확산층은 다시 캐소드 미세 기공층과 캐소드 전극 기재를 포함할 수 있다.
도 1은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 전해질막(100)과 이 전해질막(100)의 양면에 형성되는 애노드(200a) 및 캐소드(200b) 전극으로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1을 참조하면, 애노드(200a)에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 전해질막(100)을 통해 캐소드(200b)로 이동한다. 캐소드(200b)에서는 전해질막(100)을 통해 전달된 수소 이온과, 산소와 같은 산화제 및 전자가 반응하여 물이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
상기 애노드 전극의 촉매층은 연료의 산화 반응이 일어나는 곳으로, 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 및 백금-전이금속 합금으로 이루어진 군에서 선택되는 촉매가 바람직하게 사용될 수 있다. 상기 캐소드 전극의 촉매층은 산화제의 환원 반응이 일어나는 곳으로, 백금 또는 백금-전이금속 합금이 촉매로 바람직하게 사용될 수 있다. 상기 촉매들은 그 자체로 사용될 수 있을 뿐만 아니라 탄소계 담체에 담지되어 사용될 수 있다.
촉매층을 도입하는 과정은 당해 기술 분야에 알려져 있는 통상적인 방법으로 수행할 수 있는데, 예를 들면 촉매 잉크를 전해질막에 직접적으로 코팅하거나 기체확산층에 코팅하여 촉매층을 형성할 수 있다. 이때 촉매 잉크의 코팅 방법은 특별하게 제한되는 것은 아니지만, 스프레이 코팅, 테이프 캐스팅, 스크린 프린팅, 블레이드 코팅, 다이 코팅 또는 스핀 코팅 방법 등을 사용할 수 있다. 촉매 잉크는 대표적으로 촉매, 폴리머 이오노머(polymer ionomer) 및 용매로 이루어질 수 있다.
상기 기체확산층은 전류전도체로서의 역할과 함께 반응 가스와 물의 이동 통로가 되는 것으로, 다공성의 구조를 가진다. 따라서, 상기 기체확산층은 도전성 기재를 포함하여 이루어질 수 있다. 도전성 기재로는 탄소 페이퍼(Carbon paper), 탄소 천(Carbon cloth) 또는 탄소 펠트(Carbon felt)가 바람직하게 사용될 수 있다. 상기 기체확산층은 촉매층 및 도전성 기재 사이에 미세기공층을 더 포함하여 이루어질 수 있다. 상기 미세기공층은 저가습 조건에서의 연료전지의 성능을 향상시키기 위하여 사용될 수 있으며, 기체확산층 밖으로 빠져나가는 물의 양을 적게 하여 전해질막이 충분한 습윤 상태에 있도록 하는 역할을 한다.
본 명세서의 일 실시상태는 2 이상의 막-전극 접합체; 상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택; 상기 스택으로 연료를 공급하는 연료공급부; 및 상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지를 제공한다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다.
연료전지는 전술한 막-전극 접합체(MEA)를 사용하여 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 예를 들면, 상기에서 제조된 막전극 접합체(MEA)와 바이폴라 플레이트(bipolar plate)로 구성하여 제조될 수 있다.
본 명세서의 연료전지는 스택, 연료공급부 및 산화제공급부를 포함하여 이루어진다.
도 3은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 상술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 펌프(70)로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 연료전지는 고분자 전해질 연료전지, 직접 액체 연료전지, 직접 메탄올 연료전지, 직접 개미산 연료전지, 직접 에탄올 연료전지, 또는 직접 디메틸에테르 연료전지 등이 가능하다.
본 명세서의 일 실시상태에 따른 전해질막을 연료전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
또한, 본 명세서의 일 실시상태는 양극 및 양극 전해액을 포함하는 양극 셀; 음극 및 음극 전해액을 포함하는 음극 셀; 및 상기 양극 셀과 상기 음극 셀 사이에 구비되는 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 레독스 플로우 전지를 제공한다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)는 전해액에 포함되어 있는 활성물질이 산화환원되어 충전방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지는 산화상태가 다른 활성물질을 포함하는 전해액이 이온교환막을 사이에 두고 만날 때 전자를 주고받아 충전과 방전이 되는 원리를 이용한다. 일반적으로 레독스 플로우 전지는 전해액이 담겨있는 탱크와 충전과 방전이 일어나는 전지 셀, 그리고 전해액을 탱크와 전지 셀 사이에 순환시키기 위한 순환펌프로 구성되고, 전지 셀의 단위셀은 전극, 전해질 및 이온교환막을 포함한다.
본 명세서의 일 실시상태에 따른 전해질막을 레독스 플로우 전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
본 명세서의 레독스 플로우 전지는 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 것을 제외하고는, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다.
도 2에 도시한 바와 같이, 레독스 플로우 전지는 전해질막(31)에 의해 양극 셀(32)과 음극 셀(33)로 나뉘어진다. 양극 셀(32)과 음극 셀(33)은 각각 양극과 음극을 포함한다. 양극 셀(32)은 파이프를 통해 양극 전해액(41)을 공급 및 방출하기 위한 양극 탱크(10)에 연결되어 있다. 음극 셀(33) 또한, 파이프를 통해 음극 전해액(42)을 공급 및 방출하기 위한 음극 탱크(20)에 연결되어 있다. 전해액은 펌프(11, 21)를 통해 순환되고, 이온의 산화수가 변화되는 산화/환원 반응(즉, 레독스 반응)이 일어남으로써 양극과 음극에서 충전 및 방전이 일어난다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
Figure PCTKR2015013209-appb-I000020
각각의 모노머 및 탄산칼륨 (K2CO3: 몰 비 4)를 NMP 20 wt % 비율과 벤젠 20 wt % 비율로 혼합하여, 140 ℃에서 4시간, 180 ℃에서 16시간 중합하여 상기 중합체를 제조하였다. 상기 중합체의 분자량을 측정하여 하기 표 1에 나타내었다.
<비교예 1>
실시예 1에서 화학식 1로 표시되는 단위인 2,4-다이플루오로(2,4-difluoro) 부분 불소계 모노머를 가지고 중합체를 얻는 실험을 수행한 결과 고분자량의 중합체를 얻는데 성공하였다. 그러나, 일반적으로 사용하는 2,5-다이플루오로(2,5-difluoro) 부분 불소계 모노머를 이용하여 중합체를 제조하고자 시도하였으나, 같은 조건에서 고분자량의 중합체를 얻는데 실패하였다. 중합체의 분자량을 젤투과크로마토그래피(GPC: Gel Permeation Chromatography)를 통해 분자량 측정하여 하기 표 1에 나타내었다.
<비교예 2>
비교예 1과 동일한 방법으로 화학식 1에서 -[CR1R2]n-A 구조와 벤젠고리의 링커로서 S 원자 대신에 SO2인 단량체를 이용하여 중합체를 제조하고자 시도하였으나, 같은 조건에서 고분자량의 중합체를 얻는 데 실패하였다. 중합체의 분자량을 젤투과크로마토그래피(GPC: Gel Permeation Chromatography)를 통해 분자량 측정하여 하기 표 1에 나타내었다.
부분 불소계막 Mn (g/mol) Mw (g/mol) Mw/Mn
제조예 1 84,000 622,000 7.40
비교예 1 N/A N/A N/A
비교예 2 N/A N/A N/A
상기 표 1 중 N/A는 측정불가능 (not available)을 의미하며, 중합체가 형성되지 않았음을 확인할 수 있다.
제조예 1과 비교예 2의 결과로 보아, 기존에 일반적으로 사용되는 2,5 위치에 작용기가 치환된 단량체는 다른 위치에 치환된 작용기의 성질에 따라, 중합 반응 시 반응성이 많이 차이가 남에도 불구하고, 반응성의 고려없이 상용적으로 사용되어 왔다.
본 명세서의 일 실시상태에 따른 2,4-다이플루오로(2,4-difluoro) 할로겐화 화합물은 펜던트(pendent)로 달려있는 화학식 2의 작용기가 전체적으로 전자 끌개의 성질을 나타냄으로 인하여, 중합 반응시 반응성이 크게 향상되어 고분자량의 중합체를 얻는데 이점이 있음을 확인할 수 있다.
상기 제조예 1과 비교예 3의 결과로 보아, 본 명세서의 일 실시상태에 따른 화학식 1로 표시되는 단위를 포함하는 화합물은 화학적으로 안정하여 중합체의 형성이 용이함을 확인할 수 있다.
이하의 실시예 및 비교예에서는 제조예 1에서 얻어진 중합체를 이용하여 분리막을 제조하고 GPC를 통해 분자량을 측정하고 순수막의 양이온 전도도 및 이온교환용량 (IEC)를 측정한 결과를 기재하였다.
< 실시예 1>
제조예 1의 방법으로 중합체를 포함하는 이온 전달 수지 용액(점도 500 cP, IEC 2.3 )에 실리카 나노입자(size: ~10 nm)용액을 0.5 wt% 비율(용매 NMP)로 투입한 후 상온에서 4 시간 교반하였다.
유리 기판 위에 코팅 및 건조 후 약 40 μm 크기의 필름을 제작하였다.
< 실시예 2>
상기 실시예 1에서 실리카 나노 입자 용액을 2 wt% 비율로 포함한 것을 제외하고, 실시예 1과 동일한 방법으로 필름을 제작하였다.
< 실시예 3>
상기 실시예 1에서 실리카 나노입자 용액을 10 wt% 비율로 포함한 것을 제외하고, 실시예 1과 동일한 방법으로 필름을 제작하였다.
< 비교예 3>
상기 실시예 1에서 실리카 나노입자를 포함한 것을 제외하고, 실시예 1과 동일한 방법으로 필름을 제작하였다.
상기 실시예 1 내지 3 및 비교예 3에서 제조된 필름의 특성을 하기의 방법을 측정하였고, 그 결과를 표 2에 기재하였다.
IEC 는 이온교환용량을 의미하고, 포화 염화나트륨(NaCl) 수용액에 24 시간 침전시킨 후, 방출된 수소 이온(H+)의 양을 수산화나트륨(NaOH) 적정을 통하여 계산한 방법으로 측정하였다.
또한, 수분흡수량(water uptake)는 필름을 24시간 초순수에 담근 후, 침지 전 후의 중량 차이를 통하여 계산하였다. 함수율은 하기 식 1로 정의될 수 있다.
[식 1]
침지 전의 필름의 중량 / (침지 후의 필름의 중량-침지 전의 필름의 중량) × 100
팽윤비(Swelling ratio)는 건조시킨 필름을 상온에서 증류수에 24시간 침지시킨 후, 침지 전후 필름의 두께를 측정하여 하기 식 2로 계산하였다.
[식 2]
침지 후 필름의 팽윤된 길이/침지 전 필름의 길이 × 100
필름의 이온전도도는 온도 및 습도가 조절되는 4 전극 셀을 이용하여 교류임피던스법을 사용하여 습도 의존성을 측정하였다. 습도 구간에서 2시간 이상 유지한 후, 충분히 평행 상태에 도달한 이후 이온전도도를 측정하였다.
이온 전도도 1은 상대 습도(RH) 100%, 25 ℃인 상태에서 전술한 방법으로 측정하였으며, 이온 전도도 2는 상대습도 50%, 60 ℃인 상태에서 전술한 방법으로 측정하였다.
바나듐 이온 투과도는 레독스 플로우 전지 셀에 제조된 필름을 넣고 체결한 다음 음극에는 1M의 황산 마그네슘(MgSO4)를 2M 황산(H2SO4)에 용해시킨 용액을 양극에는 1M의 옥시황산바나듐(VOSO4)을 2M 황산(H2SO4)에 용해시킨 용액을 순환시키면서 음극에서 바나듐 이온의 농도를 시간에 따라 측정하여 투과도를 하기 식 3에 의하여 계산하였다.
바나듐 이온의 농도는 UV 분광광도계(Simadzu UV-1650PC)를 이용하여, 4가 이온 파장 767 nm 에서 흡광도를 측정하여 환산하였다.
[식 3]
Figure PCTKR2015013209-appb-I000021
식 3에 있어서,
V는 황산 용액의 체적을 의미하고,
CO는 황산 마그네슘 탱크의 바나듐 이온의 초기농도를 의미하며,
Ct는 t 시간에 황산 마그네슘 탱크의 바나듐 농도를 의미하고,
A는 황산 용액에 접한 필름의 면적을 의미하며,
P는 바나듐 이온의 투과도를 의미하고,
L은 필름의 두께를 의미한다.
IEC (meq/g) 수분흡수량(%) 팽윤비 (%) 이온전도도 1 (S/cm) 이온전도도 2 (S/cm) 바나듐 이온 투과도( 10-5cm2/min)
실시예 1 2.2 190 120 0.12 0.04 10.3
실시예 2 2.1 76 72 0.1 0.08 3.6
실시예 3 1.3 21 23 0.05 0.04 0.1
비교예 3 2.3 200 150 0.12 0.03 12.3
상기 표 2의 결과로, 무기 입자를 포함하지 않는 비교예의 경우에는 연료전지나 레독스플로우 전지의 적용면에서 우수한 이온 전도도를 갖지만, 수분 흡수량, 팽윤비 및 바나듐 이온 투과도가 높아 막-전극 접합체나, 레독스플로우 전지의 적용에 불리하게 작용할 수 있다.
본 명세서의 일 실시상태에 따라, 상기 중합체 외에 무기 입자를 더 포함하는 고분자 전해질막의 경우에는 연료전지나 레독스 플로우 전지에 적용하기 위한 이온전도도를 유지하면서 수분 함유 능력이 우수하여, 저가습 조건에서의 이온전도도가 우수함을 확인할 수 있다.
상기 결과로 보아, 도입된 무기입자 의해 고분자 막의 내열성 및 고온에서의 수분 보유도는 증가함을 확인할 수 있었다. 다만, 무기 입자의 함량이 10 중량% 이상인 경우, 이온 전도도가 감소하는 것을 보아, 고른 분산의 문제가 성능의 주요 인자로 작용할 수 있는 것을 확인할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 고분자 전해질막은 무기입자를 포함하지 않는 경우에 비하여, 수분 흡수량, 팽윤비 및 바나듐 이온 투과도 성능이 우수한 것을 확인할 수 있다.
도 4는 실시예 2에 따른 필름의 표면을 주사 전자 현미경(SEM)으로 측정한 도면이다.

Claims (18)

  1. 하기 화학식 1로 표시되는 단위를 포함하는 중합체; 및
    무기 입자를 포함하는 고분자 전해질막:
    [화학식 1]
    Figure PCTKR2015013209-appb-I000022
    화학식 1에 있어서,
    A는 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+, -PO3 2-2M+, -O(CF2)mSO3H, -O(CF2)mSO3 -M+, -O(CF2)mCOOH, -O(CF2)mCOO-M+, -O(CF2)mPO3H2, -O(CF2)mPO3H-M+ 또는 -O(CF2)mPO3 2-2M+이고,
    m은 2 내지 6의 정수이며,
    M은 1족 원소이고,
    R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐기이며,
    n은 2 내지 10의 정수이며, 2 내지 10 개의 괄호 내의 구조는 서로 동일하거나 상이하다.
  2. 청구항 1에 있어서,
    상기 무기 입자의 입경은 5 nm 내지 50 μm 인 것인 고분자 전해질막.
  3. 청구항 1에 있어서
    상기 무기 입자는 무기물; 헤테로 폴리산; 및 무기산으로 이루어진 군으로부터 1 종 또는 2 종 이상이 선택되는 것인 고분자 전해질막.
  4. 청구항 1에 있어서
    상기 무기 입자는 상기 고분자 전해질 막에서 분산된 형태로 구비되는 것인 고분자 전해질막.
  5. 청구항 1에 있어서
    상기 고분자 전해질막의 고형분의 전체 함량을 기준으로
    상기 무기 입자의 함량은 0.05 중량% 내지 20 중량%이고,
    상기 중합체의 함량은 80 중량% 내지 99.95 중량%인 것인 고분자 전해질막.
  6. 청구항 1에 있어서
    상기 화학식 1로 표시되는 제1 단위는 하기 화학식 1-1 내지 1-9 중 어느 하나로 표시되는 것인 고분자 전해질막:
    [화학식 1-1]
    Figure PCTKR2015013209-appb-I000023
    [화학식 1-2]
    Figure PCTKR2015013209-appb-I000024
    [화학식 1-3]
    Figure PCTKR2015013209-appb-I000025
    [화학식 1-4]
    Figure PCTKR2015013209-appb-I000026
    [화학식 1-5]
    Figure PCTKR2015013209-appb-I000027
    [화학식 1-6]
    Figure PCTKR2015013209-appb-I000028
    [화학식 1-7]
    Figure PCTKR2015013209-appb-I000029
    [화학식 1-8]
    Figure PCTKR2015013209-appb-I000030
    [화학식 1-9]
    Figure PCTKR2015013209-appb-I000031
    .
  7. 청구항 1에 있어서,
    상기 중합체는 상기 화학식 1로 표시되는 단위를 1 몰% 내지 100 몰%를 포함하는 것인 고분자 전해질막.
  8. 청구항 1에 있어서,
    상기 중합체는 랜덤 중합체인 것인 고분자 전해질막.
  9. 청구항 1에 있어서,
    상기 중합체는 친수성 블록; 및 소수성 블록을 포함하는 블록 중합체이고,
    상기 친수성 블록은 상기 화학식 1로 표시되는 단위를 포함하는 것인 고분자 전해질막.
  10. 청구항 9에 있어서,
    상기 중합체 내에 상기 친수성 블록과 소수성 블록은 1:0.1 내지 1:10의 몰비로 포함되는 것인 고분자 전해질막.
  11. 청구항 1에 있어서,
    상기 중합체는 하기 화학식 2로 표시되는 화합물로부터 유래되는 브랜처; 또는
    하기 화학식 3으로 표시되는 브랜처를 더 포함하는 것인 고분자 전해질막:
    [화학식 2]
    Figure PCTKR2015013209-appb-I000032
    [화학식 3]
    Figure PCTKR2015013209-appb-I000033
    화학식 2 및 3에 있어서,
    X는 S; O; CO; SO; SO2; NR; 탄화수소계 또는 불소계 결합체이고,
    l은 0 내지 10의 정수이며,
    l이 2 이상인 경우, 2 이상의 X는 서로 동일하거나 상이하고,
    Y1 및 Y2는 서로 동일하거나 상이하고, 각각 독립적으로 NRR; 히드록시기 및 할로겐기로 이루어진 군에서 선택되는 치환기로 1 또는 2 이상 치환된 방향족고리; 또는 히드록시기 및 할로겐기로 이루어진 군에서 선택되는 치환기로 1 또는 2 이상 치환된 지방족 고리이며,
    R은 할로겐기로 치환된 방향족고리; 또는 할로겐기로 치환된 지방족 고리이고,
    Z는 3가의 유기기이다.
  12. 청구항 1에 있어서,
    상기 고분자 전해질막의 이온 전도도는 0.01 S/cm 이상 0.5 S/cm 이하인 것인 고분자 전해질막.
  13. 청구항 1에 있어서,
    상기 고분자 전해질막의 이온교환용량(IEC) 값은 0.01 mmol/g 내지 5 mmol/g 인 것인 고분자 전해질막.
  14. 청구항 1에 있어서,
    상기 고분자 전해질막의 두께는 1 ㎛ 내지 500 ㎛ 인 것인 고분자 전해질막.
  15. 청구항 1에 있어서,
    상기 고분자 전해질막은 기재를 더 포함하는 강화막인 것인 고분자 전해질막.
  16. 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 청구항 1 내지 15 중 어느 한 항의 고분자 전해질막을 포함하는 막-전극 접합체.
  17. 2 이상의 청구항 16에 따른 막-전극 접합체;
    상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택;
    상기 스택으로 연료를 공급하는 연료공급부; 및
    상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지.
  18. 양극 및 양극 전해액을 포함하는 양극 셀;
    음극 및 음극 전해액을 포함하는 음극 셀; 및
    상기 양극 셀과 상기 음극 셀 사이에 구비되는 청구항 1 내지 15 중 어느 한 항의 고분자 전해질막을 포함하는 레독스 플로우 전지.
PCT/KR2015/013209 2014-12-04 2015-12-04 고분자 전해질막 WO2016089155A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580067159.8A CN107004880B (zh) 2014-12-04 2015-12-04 聚合物电解质膜
US15/531,596 US10483576B2 (en) 2014-12-04 2015-12-04 Polymer electrolyte membrane
EP15866198.3A EP3229302B1 (en) 2014-12-04 2015-12-04 Polymer electrolyte membrane

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2014-0173178 2014-12-04
KR20140173137 2014-12-04
KR20140173178 2014-12-04
KR20140173157 2014-12-04
KR10-2014-0173142 2014-12-04
KR10-2014-0173137 2014-12-04
KR10-2014-0173157 2014-12-04
KR20140173142 2014-12-04
KR10-2015-0088929 2015-06-23
KR20150088929 2015-06-23

Publications (1)

Publication Number Publication Date
WO2016089155A1 true WO2016089155A1 (ko) 2016-06-09

Family

ID=56092021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013209 WO2016089155A1 (ko) 2014-12-04 2015-12-04 고분자 전해질막

Country Status (5)

Country Link
US (1) US10483576B2 (ko)
EP (1) EP3229302B1 (ko)
KR (1) KR101977853B1 (ko)
CN (1) CN107004880B (ko)
WO (1) WO2016089155A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160093853A (ko) * 2015-01-30 2016-08-09 주식회사 엘지화학 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
KR102091904B1 (ko) * 2016-09-05 2020-03-20 주식회사 엘지화학 무기 입자를 포함하는 고분자 분리막
CN111164132B (zh) * 2017-11-17 2022-12-16 株式会社Lg化学 聚合物和包含聚合物的聚合物隔膜
CN108123143B (zh) * 2017-12-19 2020-05-19 大连理工大学 一种直接抗坏血酸燃料电池单电池性能提升的方法
CN112151842A (zh) * 2019-06-27 2020-12-29 华南理工大学 一种多酸基电解质导体材料及其制备方法和应用
CN116207313B (zh) * 2023-05-06 2023-07-11 苏州擎动动力科技有限公司 自增湿膜电极及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060071690A (ko) * 2004-12-22 2006-06-27 주식회사 엘지화학 브랜치된 술폰화 멀티 블록 공중합체 및 이를 이용한전해질막
JP2006228628A (ja) * 2005-02-18 2006-08-31 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
KR20060100148A (ko) * 2005-03-16 2006-09-20 주식회사 엘지화학 수소이온 전해질막
US20080114149A1 (en) * 2006-11-14 2008-05-15 General Electric Company Polymers comprising superacidic groups, and uses thereof
KR20100084237A (ko) * 2009-01-16 2010-07-26 한국화학연구원 나노 복합체 전해질 막의 제조방법, 그로부터 제조된 나노 복합체 전해질 막 및 그를 구비한 막-전극 어셈블리

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919881A1 (de) 1999-04-30 2000-11-02 Univ Stuttgart Organisch-Anorganische Komposites und Kompositmembranen aus Ionomeren oder Ionomerblends und aus Schicht- oder Gerätsilicaten
US7582373B2 (en) 2001-11-15 2009-09-01 Jgc Catalysts And Chemicals Ltd. Electrolyte film and fuel cell
JP2003234014A (ja) 2002-02-12 2003-08-22 Sumitomo Electric Ind Ltd 高分子電解質膜及び固体高分子型燃料電池
KR100446662B1 (ko) 2002-03-22 2004-09-04 주식회사 엘지화학 연료 전지용 복합 폴리머 전해질 막 및 그의 제조방법
US20050053818A1 (en) * 2002-03-28 2005-03-10 Marc St-Arnaud Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix
US6630265B1 (en) 2002-08-13 2003-10-07 Hoku Scientific, Inc. Composite electrolyte for fuel cells
JP3978493B2 (ja) 2003-05-06 2007-09-19 国立大学法人長岡技術科学大学 固体高分子電解質及びその製造方法
JP4934822B2 (ja) * 2005-06-07 2012-05-23 国立大学法人山梨大学 ポリイミド樹脂及び電解質膜
US20070128425A1 (en) 2005-12-07 2007-06-07 3M Innovative Properties Company Reinforced ion-conductive membranes
US20080114183A1 (en) 2006-11-14 2008-05-15 General Electric Company Monomers comprising superacidic groups, and polymers therefrom
US20090163692A1 (en) * 2007-12-21 2009-06-25 General Electric Company Aromatic polyethers
EP2245691A1 (en) * 2007-12-28 2010-11-03 E. I. du Pont de Nemours and Company Production of catalyst coated membranes
JP2009256654A (ja) 2008-03-27 2009-11-05 Sumitomo Chemical Co Ltd 高分子電解質組成物
US20100167100A1 (en) 2008-12-26 2010-07-01 David Roger Moore Composite membrane and method for making
WO2010147867A1 (en) * 2009-06-15 2010-12-23 Arkema Inc. Organic/inorganic composite blend membrane compositions of polyelectrolye blends with nanoparticles
KR101233384B1 (ko) * 2009-09-10 2013-02-14 제일모직주식회사 연료전지용 고분자 막 조성물, 이로부터 제조되는 고분자 막, 및 이를 포함하는 막-전극 접합체 및 연료전지
KR101566789B1 (ko) 2009-12-04 2015-11-09 현대자동차 주식회사 술폰산기를 갖는 폴리(아릴렌에테르) 공중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막
KR20120011598A (ko) 2010-07-29 2012-02-08 삼성에스디아이 주식회사 연료 전지 시스템 및 그 구동 방법
US8808888B2 (en) 2010-08-25 2014-08-19 Applied Materials, Inc. Flow battery systems
KR101403723B1 (ko) 2011-12-02 2014-06-12 주식회사 엘지화학 술포네이트계 화합물 및 이의 제조방법
JP2013218868A (ja) * 2012-04-09 2013-10-24 Toyobo Co Ltd イオン交換膜およびその製造方法、レドックスフロー電池、燃料電池
US8691413B2 (en) * 2012-07-27 2014-04-08 Sun Catalytix Corporation Aqueous redox flow batteries featuring improved cell design characteristics
US9233345B2 (en) 2013-02-14 2016-01-12 The Board Of Trustees Of The Leland Stanford Junior University Anion transport membrane
KR101802285B1 (ko) 2013-10-28 2017-11-29 현대일렉트릭앤에너지시스템(주) 이온 교환막 및 그 제조방법
KR101758237B1 (ko) * 2013-11-25 2017-07-17 현대일렉트릭앤에너지시스템(주) 이온 교환막 및 그 제조방법
KR20160067720A (ko) 2014-12-04 2016-06-14 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060071690A (ko) * 2004-12-22 2006-06-27 주식회사 엘지화학 브랜치된 술폰화 멀티 블록 공중합체 및 이를 이용한전해질막
JP2006228628A (ja) * 2005-02-18 2006-08-31 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
KR20060100148A (ko) * 2005-03-16 2006-09-20 주식회사 엘지화학 수소이온 전해질막
US20080114149A1 (en) * 2006-11-14 2008-05-15 General Electric Company Polymers comprising superacidic groups, and uses thereof
KR20100084237A (ko) * 2009-01-16 2010-07-26 한국화학연구원 나노 복합체 전해질 막의 제조방법, 그로부터 제조된 나노 복합체 전해질 막 및 그를 구비한 막-전극 어셈블리

Also Published As

Publication number Publication date
EP3229302A1 (en) 2017-10-11
EP3229302A4 (en) 2018-04-25
CN107004880B (zh) 2020-07-28
KR20160067797A (ko) 2016-06-14
US10483576B2 (en) 2019-11-19
CN107004880A (zh) 2017-08-01
EP3229302B1 (en) 2019-10-09
US20170331136A1 (en) 2017-11-16
KR101977853B1 (ko) 2019-05-13

Similar Documents

Publication Publication Date Title
WO2016089155A1 (ko) 고분자 전해질막
WO2016089158A1 (ko) 중합체 및 이를 포함하는 고분자 전해질막
WO2014200286A2 (ko) 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
WO2014073934A1 (ko) 부분 가지형 블록 공중합체를 포함하는 이온전도성 고분자 및 이의 용도
WO2018199458A1 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2014081235A1 (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도
WO2013081437A1 (ko) 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지
WO2015047008A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2021112420A1 (ko) 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
WO2015147550A1 (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지
WO2016175502A1 (ko) 과불소계 이오노머 나노입자 분산액 및 이의 제조방법
WO2017171285A2 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2015130066A1 (ko) 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막
WO2017171290A1 (ko) 블록 중합체 및 이를 포함하는 고분자 전해질막
WO2012134254A2 (ko) 고분자 전해질 및 이의 제조 방법
WO2013137691A1 (ko) 고분자 전해질 조성물, 전해질 막, 막-전극 접합체 및 연료전지
WO2019108032A1 (ko) 겔 폴리머 전해질 조성물 및 이를 포함하는 리튬 이차전지
WO2016068606A1 (ko) 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막
WO2016089156A2 (ko) 중합체 및 이를 포함하는 고분자 전해질막
WO2016068605A1 (ko) 브랜처용 불소계 화합물, 이를 이용한 고분자 및 이를 이용한 고분자 전해질막
WO2016122195A1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2016089152A1 (ko) 할로겐화 화합물, 이를 포함하는 중합체 및 이를 포함하는 고분자 전해질막
WO2016089123A1 (ko) 고분자, 이의 제조방법 및 이를 포함하는 전해질막
WO2016089154A1 (ko) 중합체 및 이를 포함하는 고분자 전해질막
WO2022225357A1 (ko) 신규 지방족 사슬 함유 폴리(알킬-아릴 피페리디늄) 중합체 이오노머, 음이온교환막, 복합막 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866198

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015866198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15531596

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE