WO2014081235A1 - 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도 - Google Patents

2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도 Download PDF

Info

Publication number
WO2014081235A1
WO2014081235A1 PCT/KR2013/010663 KR2013010663W WO2014081235A1 WO 2014081235 A1 WO2014081235 A1 WO 2014081235A1 KR 2013010663 W KR2013010663 W KR 2013010663W WO 2014081235 A1 WO2014081235 A1 WO 2014081235A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
membrane
formula
substituted
Prior art date
Application number
PCT/KR2013/010663
Other languages
English (en)
French (fr)
Inventor
홍영택
이장용
김태호
유덕만
조은애
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2014081235A1 publication Critical patent/WO2014081235A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/136Comb-like structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention provides a polymer comprising a phenyl pendant substituted with two or more sulfonated aromatic groups; A method for producing the polymer; An ion conductor comprising the polymer; A molded body formed from the resin composition containing the polymer; An electrolyte membrane molded from a resin composition comprising the polymer; A membrane-electrode assembly having the electrolyte membrane and a battery having the same; And a redox flow battery separator including the ion conductive polymer and a redox flow battery having the same.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy, and has been researched and developed as a next-generation energy source due to its high energy efficiency and eco-friendly features with low pollutant emission.
  • Proton exchange membrane fuel cell aka polymer electrolyte membrane fuel cell (PEMFC) containing a polymer electrolyte membrane is a portable, vehicle and household power source with the advantages of low operating temperature, elimination of leakage problems due to the use of solid electrolyte, and fast operation. It is attracting attention as a device.
  • PEMFC polymer electrolyte membrane fuel cell
  • a polymer electrolyte fuel cell is a type of direct current generator that directly converts chemical energy of a fuel into electrical energy by an electrochemical reaction. It is a membrane-electrode assembly (MEA), such as the heart of a fuel cell, and generated electricity. It consists of a continuous complex of bipolar plates that collect and fuel fuel.
  • MEA membrane-electrode assembly
  • the membrane-electrode assembly refers to a conjugate of an electrode in which an electrochemical catalysis of fuel (aqueous methanol solution or hydrogen) and air occurs and a polymer membrane in which hydrogen ions are transferred.
  • electrochemical reactions consist of two separate reactions: oxidation reactions at the anode and reduction reactions at the cathode, and the anode and cathode are separated through the electrolyte.
  • methanol fuel cell is supplied with methanol and water instead of hydrogen as a fuel electrode, and hydrogen ions generated during the oxidation of methanol move to the cathode along the polymer electrolyte and react with oxygen supplied to the cathode to generate electricity. do.
  • the reaction that takes place is as follows.
  • An ion exchange membrane (Ion Exchange Membrane), which is used as a solid electrolyte in a fuel cell, exists between two electrodes and transfers hydrogen ions generated from an anode to a cathode.
  • an electrolyte membrane used in a polymer electrolyte fuel cell may be classified into a perfluorinated polymer electrolyte and a hydrocarbon polymer electrolyte.
  • the fluorinated polymer electrolyte is chemically stable due to its strong bonding force between carbon and fluorine (CF) and a shielding effect which is characteristic of fluorine atoms, and has excellent mechanical properties.
  • the fluorinated polymer electrolyte has excellent conductivity as a hydrogen ion exchange membrane. It is commercialized as a polymer membrane of an electrolyte fuel cell.
  • Nefion perfluoro sulfonic acid polymer
  • Du Pont USA
  • the fluorinated polymer electrolyte membrane has a low price due to its high performance, but has low industrial utility due to its high price, high methanol crossover through methanol, and reduced efficiency of the polymer membrane at 80 ° C. or higher.
  • hydrocarbon ion exchange membranes that can compete in terms of price is being actively conducted.
  • the polymer electrolyte membrane used for the fuel cell must be stable under the conditions required for driving the fuel cell, the polymer that can be used is very limited to aromatic polyether (APE) and the like. Hydrolysis, oxidation, reduction, etc. during fuel cell driving cause degradation of the polymer membrane, thereby degrading the performance of the fuel cell. Therefore, polyetherketone, polyethersulfone-based polyaryleneether polymers have been studied for their application to fuel cells due to their excellent chemical stability and mechanical properties.
  • APE aromatic polyether
  • US Pat. No. 4,625,000 discloses a post-sulfonation process of polyethersufone with a polymer electrolyte membrane.
  • the post-treatment sulfonation method disclosed in this document uses a strong acid such as sulfuric acid (sulfuric acid) as a sulfonating agent, and the sulfonic acid group (-sulfonic acid group, -SO 3 H) is randomly introduced into the polymer skeleton, so that the distribution of sulfonic acid groups, It is difficult to control the position and number.
  • EP 1,113,517 A2 discloses a block copolymer polymer electrolyte membrane composed of a block having a sulfonic acid group and a block having no sulfonic acid group. Since the block copolymer composed of aliphatic blocks and aromatic blocks is post-treated sulfonated using strong sulfuric acid, there is a problem that the chemical bonds of aliphatic polymers are decomposed during sulfonation, and aromatic blocks The sulfonic acid groups were randomly introduced into the ring constituting the compound, making it difficult to control the position, number, and the like of the sulfonic acid groups in the polymer skeleton.
  • Japanese Laid-Open Patent Publication No. 2003-147074 discloses a method in which a copolymer containing a fluorene compound is introduced into a polymer fluorene using chlorosulfonic acid (HSO 3 Cl) or sulfuric acid. It is disclosed. In this method, a sulfone group is randomly introduced into the ring constituting the fluorene compound.
  • Rechargeable batteries provide a simple and efficient method of storing electricity, and thus, efforts have been made to utilize them as power sources for intermittent auxiliary power, small appliances such as laptops, tablet PCs, and mobile phones by miniaturizing them to increase mobility.
  • Redox flow battery is a secondary battery that can store energy for a long time by repeating charging and discharging by electrochemical reversible reaction of electrolyte.
  • the stack and electrolyte tank are independent of each other, which determines the capacity and output characteristics of the battery, freeing cell design and reducing installation space.
  • redox flow batteries have load leveling functions that can be installed in power plants, power systems, and buildings to cope with a sudden increase in power demand, and can compensate or suppress power failures or low voltages. It is an energy storage technology and is suitable for large scale energy storage.
  • This redox flow cell consists of two separate electrolytes. One stores the electroactive material in the negative electrode reaction and the other is used for the positive electrode reaction. In the actual redox flow battery, the electrolyte reaction is different from each other in the positive electrode and the negative electrode, and there is a pressure difference between the positive electrode side and the negative electrode side because there exists an electrolyte flow phenomenon.
  • the reaction of the positive electrode and the negative electrode electrolyte in the all-vanadium redox flow battery which is a typical redox flow battery is as follows.
  • an insulating film having improved physical and chemical durability is required.
  • the thickness of the separator is increased to improve physical durability, there is a disadvantage in that the resistance thereof is increased.
  • the present inventors researched and developed the ion conductive polymer containing the phenyl pendant substituted by 2 or more sulfonated aromatic groups, focusing on the several important property which differs when a polymer contains the phenyl pendant substituted by 2 or more sulfonated aromatic groups.
  • the result is the same or similar ion exchange capacity (IEC), water absorption and / or dimensional change compared to ion-conducting polymers containing less number of sulfonated aromatic groups or commercially available perfluor-based polymers.
  • IEC ion exchange capacity
  • polymer membranes having better physical properties in improved conductivity and elongation strength and elongation rate have been prepared.
  • the polymer membrane may be used as a fuel cell by preparing a membrane-electrode assembly, or as a separator for a redox flow battery, and used as a redox flow battery, and the battery exhibits excellent cell performance and excellent medium / long term durability. It was confirmed that the present invention was completed.
  • a first aspect of the present invention provides a polymer having a skeleton comprising a phenylene repeat unit represented by Formula 1 and at least one phenylene repeat unit represented by Formula 2 below:
  • B is —O—, —S—, — (SO 2 ) —, — (C ⁇ O) —, —NH— or —NR 15 —, where R 15 is a C1 to C6 alkyl group;
  • R 1 to R 5 are a phenyl group, a sulfinated pyridinyl or a sulfonated naphthalenyl substituted with a sulfonic acid group or an alkali metal salt thereof, and R 1 not substituted with these To R 5 are each independently a hydrogen atom (-H), a halogen atom (-X), a sulfonic acid group (-SO 3 H), a phosphoric acid group (-PO 3 H 2 ), an acetic acid group (-CO 2 H), a nitro group (-NO 2 ), perfluoroalkyl group, perfluoroalkylaryl group optionally containing one or more oxygen, nitrogen or sulfur atoms in its chain, perfluoroaryl group and -O-perfluoroaryl group, or one It is an aryl group (aryl) substituted with the above halogen, sulfonic acid group, phosphoric acid group, acetic acid
  • R 6 to R 10 are each independently all hydrogen atoms or at least one fluorine atom (F) (except for all fluorine), aryl groups, perfluoroalkyl groups, optionally one or more oxygen, nitrogen in the chain And / or a perfluoroalkylaryl group, a perfluoroaryl group and a -O-perfluoroaryl group containing a sulfur atom;
  • R 11 to R 14 may each independently include a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a sulfonic acid group, a phosphoric acid group, an acetic acid group and a nitro group, wherein the sulfonic acid group, the phosphoric acid group and the acetic acid group may be in the form of an alkali metal salt.
  • a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a sulfonic acid group, a phosphoric acid group, an acetic acid group and a nitro group, wherein the sulfonic acid group, the phosphoric acid group and the acetic acid group may be in the form of an alkali metal salt.
  • a, b, c and d are each independently an integer of 0 to 10, inclusive.
  • a method for preparing the polymer, the dihalobenzene containing an aryl group substituted with a reactive halogen element connected to the side chain represented by Scheme 1 and the reactive chain connected to the side chain From the mixture of dihalobenzene containing an aryl group which is not substituted with a halogen element, to prepare a polymer of the skeleton consisting of benzene having a side chain substituted aryl group and unsubstituted by a reactive halogen element by a colon coupling reaction (Colon coupling reaction) First step; A second step of replacing a halogen element substituted with an aryl group bonded to the side chain of the benzene skeleton by a nucleophilic substitution reaction represented by Scheme 2 with a multiphenyl pendant; And a third step of post-treatment modifying the polymer substituted with the multiphenyl pendant represented by Scheme 3 by sulfonating agent, nitrifying agent
  • R 1 to R 5 and R 11 to R 14 are the same as in the general formula (1),
  • R 28 to R 32 correspond to R 1 to R 5 , respectively.
  • n is an integer of 1 to 5
  • R n is a sulfonated substituent
  • R n + 27 is a corresponding unsulfonated substituent
  • R n + 27 is the same substituent as R n ,
  • a, b, c and d are each independently an integer of 0 to 10, inclusive.
  • a third aspect of the invention provides an ion conductor comprising a polymer according to the first aspect of the invention.
  • a fourth aspect of the present invention provides a molded article formed from a resin composition comprising a polymer according to the first aspect of the present invention.
  • a fifth aspect of the present invention provides an electrolyte membrane prepared from a resin composition comprising a polymer according to the first aspect of the present invention.
  • a sixth aspect of the present invention provides a membrane-electrode assembly for an electrolyte membrane according to the fifth aspect of the present invention.
  • a seventh aspect of the present invention provides a battery having a membrane-electrode assembly according to the sixth aspect of the present invention.
  • An eighth aspect of the present invention provides a separator for a redox flow battery prepared from a resin composition comprising a polymer according to the first aspect of the present invention.
  • a ninth aspect of the present invention provides a redox flow battery having a positive electrode, a positive electrode electrolyte, a separator according to the eighth aspect of the present invention, a negative electrode electrolyte and a negative electrode.
  • the present invention is a polymer having a skeleton comprising two or more phenylene repeating units, wherein one of the phenylene repeating units includes a multiphenyl pendant substituted with two or more sulfonated aromatic groups at the terminal. .
  • a "multiphenyl pendant” may be a substituent comprising a plurality of phenyl groups.
  • it may be a bulky substituent in which one phenyl ring is further substituted with a phenyl ring containing one or more substituted or unsubstituted phenyl, naphthalene or hetero atoms.
  • Sulfuric acid groups (-SO 3 H) are introduced to impart hydrogen ion (proton, H + ) conductivity to the polymer electrolyte membrane.
  • Alkali metal salts of sulfonic acids can be used for the same purpose.
  • the "alkali metal salt” may be a cation of an alkali metal such as Na, K, or Li in place of a proton of sulfonic acid.
  • the aromatic ring formed in the side chain is more sulfonated than the aromatic ring forming the main chain skeleton. Therefore, since the phenyl group at the side chain terminal of the phenylene repeating unit has five substitution positions, at most five sulfonic acid groups or alkali metal salts thereof can be introduced. At this time, rather than introducing a sulfonic acid group or an alkali metal salt thereof directly into the phenyl group at the side chain terminal, a phenyl group, a pyridinyl group or a naphthalenyl group at a desired position among the five substitution positions of the phenyl group at the side chain terminal.
  • a sulfonic acid group or an alkali metal salt thereof By substituting two or more (naphthalenyl) and introducing a sulfonic acid group or an alkali metal salt thereof to a phenyl group, a pyridinyl group or a naphthalenyl group, the distribution, position, number, etc. of the sulfonic acid group or alkali metal salt thereof can be easily controlled.
  • phenyl, pyridinyl, or naphthalenyl is further introduced at the desired position (s) of the five substitution positions of the phenyl group at the side chain end, the steric hindrance is reduced during sulfonation reaction. It is because control of the introduction position and number of group or its alkali metal salt becomes easy.
  • the present invention may introduce a multi-phenyl pendant, which is a large substituent, and post-process sulfonate to substitute a sulfonic acid group or an alkali metal salt thereof at the terminal so that a plurality of sulfonic acid groups are densely packed.
  • the polymer of the present invention can induce effective phase separation of the hydrophilic domain and the hydrophobic domain by forming a sulfonated structure in which a sulfonic acid group is densely and locally substituted at one terminal of a phenylene repeat unit.
  • phenyl group sulfonated phenyl
  • pyridinyl group sulfonated pyridinyl
  • naphthalenyl group sulfonated naphthalenyl substituted with a sulfonic acid group or an alkali metal salt thereof
  • M hydrogen atom or alkali metal (Li, Na, K, Rb, Cs or Fr)) and the like.
  • the sulfonic acid group and its alkali metal salt are hydrophilic, when the sulfonic acid group is introduced a lot, the water resistance of the polymer electrolyte membrane is deteriorated and the polymer required for driving the fuel cell due to the decrease in mechanical strength and integration of the polymer electrolyte membrane due to swelling due to an increase in water content. It may be difficult to meet the physical properties of the electrolyte membrane. Therefore, since the polymer of the present invention includes the hydrophobic monomer represented by Chemical Formula 2 in the skeleton, it can provide increased mechanical strength and effectively control the ion exchange rate.
  • a 1 , A 2 , B, R 1 to R 14 , a, b, c, and d are the same as defined for Formula 1 and 2, and m, n, and p are each independently an integer of 1 or more. to be.
  • the backbone of the polymer comprises at least one repeating unit represented by formula (1) and at least one repeating unit represented by formula (2) contributes to reducing the pKa of the polymer according to the present invention as compared to the standard polymer according to the prior art.
  • This decrease in pKa is due to an increase in acidity by substituted sulfonic acid groups, and such modified polymers can be used as membranes in battery devices operating at high temperatures.
  • a position substituted with a phenyl group (sulfonated phenyl), a pyridinyl group (sulfonated pyridinyl) or a naphthalenyl group (sulfonated naphthalenyl) substituted with a sulfonic acid group or an alkali metal salt thereof may be symmetrical among R 1 to R 5 . have.
  • Halogen is an atom selected from fluorine (F), chlorine (Cl), bromine (Br) and iodine (I).
  • Alkyl is a saturated linear or branched structure of 1 to 20 carbon atoms, or a saturated cyclic structure consisting of 3 to 20 carbon atoms. Examples include methyl, ethyl, n-propyl, i-propyl (isopropyl), n-butyl, i-butyl, t-butyl, n-dodecyl, cyclopropyl or cyclohexyl groups. do. It may also comprise one or more hetero atoms selected from oxygen, sulfur and / or nitrogen in the cyclic structure.
  • Aryl means a functional group or substituent derived from an aromatic cyclic compound.
  • the cyclic compound may be composed of only carbon atoms, and may include one or more hetero atoms selected from oxygen, sulfur, and / or nitrogen.
  • aryl groups composed of only carbon include phenyl, naphthyl and anthracenyl, and aryl groups including heteroatoms include thienyl, indolyl, Pyridinyl and the like.
  • Aryl containing the hetero atom is also called hetero aryl, but in the present invention, aryl includes it.
  • Perfluoroalkyl means alkyl, aryl and -O-aryl, all substituted with fluorine atoms (F).
  • the phenylene groups of the polymer skeleton according to the present invention may be ortho-type (1,2-phenylene), meta-type (1,3-phenylene) or para-type (1,4-phenylene) with respect to each other. Preferably para-type.
  • X and Y connected to each other via a benzene ring may be located in ortho, meta or para relative to each other.
  • the molecular weight of the polymer according to the invention may have a molecular weight of Mn (number-average molecular weight) of 10,000 to 1,000,000 or Mw (weight-average molecular weight) of 10,000 to 10,000,000. . More preferably it may have a Mn of 10,000 to 300,000 or Mw of 10,000 to 2,000,000.
  • Mn number-average molecular weight
  • Mw weight-average molecular weight
  • the molecular weight is low, for example, 10,000 or less, film formation is difficult, the water content is increased and can be easily decomposed to attack of radicals, thereby reducing the conductivity and durability.
  • the molecular weight is high, for example, 1,000,000 or more, the preparation of the polymer solution and the molding into the film may be difficult due to the rapidly increased viscosity, which may render the film manufacturing process impossible.
  • the polymer according to the present invention may be a polymer characterized in that the repeating unit is located in a random (random), alternating (alternating) or sequential (sequential), may be a block copolymer. When fully defined, the molar ratio of each repeating unit may vary.
  • the polymer according to the present invention may be a polymer formed by using the polymer represented by the formula (3) in which the repeating unit is bonded in a constant ratio.
  • the ratio of m and n in Chemical Formula 3 may be 1: 2 to 1:30, more preferably 1: 5 to 1:15, but is not limited thereto.
  • the polymer of the present invention comprises a polymer in which the hydrophobic repeating unit represented by the formula (2) is bonded in a ratio of 1 to 30, preferably 5 to 15, to one hydrophilic repeating unit including the multiphenyl pendant represented by the formula (1). It may be a polymer formed as a repeating unit.
  • R 1 to R 5 may be a phenyl group (sulfonated phenyl), pyridinyl group (sulfonated pyridinyl) or naphthalenyl group (sulfonated naphthalenyl) substituted with a sulfonic acid group.
  • a, b, c and d may each be 1.
  • Table 1 shows the phenylene repeat units of Formula 1 according to embodiments of the present invention.
  • polymer of the present invention may be a polymer having a skeleton of Formula 10 further comprising one or more phenylene repeat units represented by Formula 8 or 9.
  • T is a unit represented by Formula 8 or 9
  • a 1 , A 2 , B and R 1 to R 15 are the same as in Formulas 1 and 2,
  • R 16 to R 27 may be each independently a hydrogen atom, a fluorine atom, a cyanide (CN), a perfluoroalkyl group (C n F 2n + 1 ), or a phenyl group,
  • n and l are each independently an integer of 1 or more.
  • the polymer of the present invention may be a compound represented by the following formula (11).
  • the ratio of n + l to m in Formula 11 may be 1: 2 to 1:30, more preferably 1: 5 to 1:15, and the ratio of n: l is 10: 1 to 1: 10, but is not limited thereto.
  • R 1 to R 5 and R 11 to R 14 are the same as in the general formula (1),
  • R 28 to R 32 correspond to R 1 to R 5 , respectively.
  • n is an integer of 1 to 5
  • R n is a sulfonated substituent
  • R n + 27 is a corresponding unsulfonated substituent
  • R n + 27 is the same substituent as R n ,
  • a, b, c and d are each independently an integer of 0 to 10, inclusive.
  • the first step represented by Scheme 1 is a "colon coupling reaction" and dihalobenzene including a aryl group substituted with a reactive halogen element connected by electron drawing to the side chain and a single bond to the side chain or Reacting a dihalobenzene including an aryl group which is not substituted with a reactive halogen element connected by an electron withdrawal under a catalyst to produce a polyphenylene polymer linked by a carbon-carbon single bond which becomes a skeleton of the polymer of the present invention to be.
  • the reduced metal zinc (Zn), magnesium (Mg), manganese (Mn), aluminum (Al) or calcium (Ca) may be used, and as a catalyst, 2,2'-bipyridine (2,2 ').
  • triphenylphosphine PPh 3 , triphenylphosphine; TPP
  • It can be used with 2 O, I 2 .6H 2 O or other halide salts (F ⁇ Cl ⁇ Br ⁇ I).
  • the reaction can be used to form polymers based on carbon-carbon single bonds. This can impart higher mechanical strength and chemical stability than conventional polyphenylene-based polymers that form a skeleton via esters and / or ketones.
  • the benzene group in which the halogen atom is substituted or unsubstituted in the side chain prepared in the first step is bonded to each other by a single bond or an electron withdrawing group, and carbon-carbon is repeated.
  • a single-linked polymer is reacted with a nucleophilic molecule including a multiphenyl pendant to introduce a multiphenyl pendant in place of a halogen located in the side chain of the benzene backbone.
  • This step is carried out by nucleophilic substitution.
  • ROH, RSH, RSO 3 H or RCO 2 H may be used as the nucleophilic molecule.
  • the catalyst may be sulfuric acid, hydrochloric acid, p-toluenesulfonic acid, or SOCl 2 ; And pyridine can be used.
  • the R group of the nucleophilic molecule may comprise a bulky multiphenyl pendant which is a feature of the invention.
  • the third step represented by Scheme 3 is a step of post-treating the polymer having the bulky multiphenyl pendant obtained in the second step in the side chain to introduce a plurality of substituents into the phenyl group of the side chain.
  • the third step is performed to add hydrophilicity to the polymer of the present invention and is performed by sulfonation, nitration, phosphorylation or halogenation.
  • Sulfonation may be carried out using the product of the second step using SO 3 and H 2 SO 4 , chlorosulfonic acid (HSO 3 Cl) or trimethylsilylchlorosulfonic acid [(CH 3 ) 3 SiSO 3 Cl]. .
  • a sulfonic acid group (-SO 3 H) may be introduced into the phenyl group substituted in the side chain.
  • Nitration is the reaction of the product of the second step with HNO 3 under H 2 SO 4 , Ac 2 O or H 2 O conditions, Reaction with NO 2 + BF 4 ⁇ under NO 2 + or NO 2 + CF 3 SO 3 ⁇ under CH 2 Cl 2 .
  • a nitro group (—NO 2 ) may be introduced into the phenyl group substituted in the side chain.
  • Phosphorylation may be carried out by reacting the product of the third step with H 3 PO 4 by adding pyridine and benzene. As a result of the phosphorylation it is possible to introduce a phosphoric acid group (-PO 3 H) to the phenyl group substituted in the side chain.
  • a halogen group (-X) can be introduced into the phenyl group substituted in the side chain.
  • a hydrophilic repeating unit in which the sulfonated group is densely formed forms an ion conducting channel, and thus an electrolyte membrane comprising the polymer of the present invention.
  • hydrophobic repeating unit represented by Formula 2 connected by the hydrophilic repeating unit of Formula 1 and the carbon-carbon bond may provide mechanical strength.
  • the polymer of the present invention has a hydrogen ion conductivity provided by a hydrophilic repeat unit and a mechanical strength provided by a hydrophobic repeat unit connected by a carbon-carbon bond, thereby providing an electrolyte membrane that satisfies the physical properties required for driving a battery. have.
  • GS and GPS which are commercially available perfluoro-based conductive polymers, Nafion 212, an ionically conductive polymer including a similar skeleton structure and a hydrophilic moiety substituted with a phenyl group including one sulfonic acid group in a hydrophobic moiety.
  • IEC ion exchange capacity
  • / or water absorption shows significantly improved ion conductivity even at high temperatures (Table 2).
  • Each of the first to third steps is a process performed sequentially using the product of the previous step as a reactant.
  • the reaction mixture in each step can be used as reactant in the next step without further purification.
  • precipitation, filtration and / or washing may be additionally performed between the steps, but is not limited thereto.
  • the polymer according to the present invention can be used as an ion conductor by a sulfonic acid group or an alkali metal salt thereof.
  • a molded article can be formed from the resin composition containing the ion conductive polymer according to the present invention.
  • the molded body include an electrolyte membrane, a separation membrane or a water treatment membrane.
  • the resin composition of the present invention may further include various additives such as antioxidants, heat stabilizers, lubricants, tackifiers, plasticizers, crosslinking agents, antifoaming agents, dispersants, if necessary.
  • additives such as antioxidants, heat stabilizers, lubricants, tackifiers, plasticizers, crosslinking agents, antifoaming agents, dispersants, if necessary.
  • the resin composition comprising the polymer according to the present invention can be produced into a molded article in the form of a fiber or a film by extrusion and any method such as spinning, rolling or casting.
  • an electrolyte membrane can be prepared by molding a resin composition containing the polymer of the present invention. Specifically, the polymer is dissolved in a solvent such as N-methylpyrrolidone, dimethylformamide, dimethyl sulfoxide or dimethylacetamide, and the solution is poured into a plate such as a glass plate to dry the attached polymer to several to several hundred ⁇ m. , Preferably from 10 to 120 ⁇ m, more preferably from 50 to 100 ⁇ m thick, and then detachable from the plate.
  • the solvent presented above is merely an example, and the scope of the present invention is not limited thereto, and any organic solvent may be used as long as it dissolves the polymer and can be evaporated under dry conditions. Specifically, the same organic solvent used in the preparation of the polymer may be used.
  • the prepared polymer is dissolved in DMSO and poured into a silicon mold of a predetermined size and dried at 60 to 100 ° C, preferably 70 to 90 ° C for 12 to 36 hours, preferably 18 to 30 hours.
  • the membrane can be obtained.
  • the obtained membrane can be converted to a proton type polymer membrane by treatment with sulfuric acid solution and washed sequentially with distilled water.
  • electrolyte membrane of the present invention is a semipermeable membrane called a proton exchange membrane or a polymer electrolyte membrane (PEM). It carries only protons, ie protons, and is impermeable to gases such as oxygen or hydrogen. It is mainly introduced into a membrane-electrode assembly (MEA) of a proton exchange membrane fuel cell or a proton exchange membrane electrolyzer and plays a major role in the separation of reactants and proton transfer.
  • MEA membrane-electrode assembly
  • the properties which such an electrolyte membrane should have preferentially are ionic conductivity, methanol permeability and thermal stability. Specifically, when used as a membrane-electrode assembly in a fuel cell, the polymer membrane is saturated with water to transmit protons but does not transmit electrons.
  • the electrolyte membrane must exhibit high ionic conductivity in order to be used in a fuel cell, and can be driven even at a high temperature of 100 ° C. or higher, and has high thermal stability so that its performance does not change even when manufacturing a membrane-electrode assembly by high temperature-compression. It should have high chemical stability to prevent decomposition even under extreme conditions such as strong acid and at the same time, it should show prominent barrier performance against fuel to deliver protons and prevent penetration of raw materials such as methanol and ethanol.
  • R 1 to R 5 are all sulfonated phenyl, sulfinated pyridinyl or sulfonated naphthalenyl substituted with sulfonic acid groups or alkali metal salts thereof;
  • a, b, c and d may each independently be an electrolyte membrane having an integer of 1 or more and 10 or less.
  • a 1 and A 2 are — (C ⁇ O) —; B is -O-; R 1 to R 5 are both a sulfonic acid group or a phenyl group substituted with an alkali metal salt thereof (sulfonated phenyl); And R 6 to R 10 are all hydrogen atoms; R 11 to R 14 each independently represent a hydrogen atom or a sulfonic acid group and include one or more sulfonic acid groups; a, b, c and d may be all 1 electrolyte membranes. It is preferable to prepare using the ion conductive polymer represented by the formula (3).
  • the membrane-electrode assembly may be manufactured using a method known to those skilled in the art, and various non-limiting examples of the manufacturing method may be used, such as the decal method, the spray method, or the CCG method. In a specific embodiment of the present invention, the membrane-electrode assembly was manufactured using the decal method, but the method of manufacturing the membrane-electrode assembly is not limited thereto.
  • the non-limiting manufacturing method of the membrane-electrode assembly includes applying a catalyst slurry mixed with a catalyst, a hydrogen ion conductive polymer and a dispersion medium on a release film and then drying to form a catalyst layer; Stacking the catalyst layer formed on the release film such that the catalyst layer faces the electrolyte membrane on both sides of an electrolyte membrane to which a hydrophilic solvent is applied; And laminating the laminate so that the catalyst layer is in contact with each other, and then hot pressing the catalyst layer to transfer the catalyst layer to the electrolyte membrane and removing the release film to form a membrane-electrode assembly.
  • the present invention can produce a membrane-electrode assembly (MEA), for example, by pressurizing at a high temperature through an electrolyte membrane according to the present invention between the cathode and the anode.
  • MEA membrane-electrode assembly
  • the pressure during thermal compression is 0.5 to 2 tons (ton)
  • the temperature is preferably 40 to 250 °C. Therefore, the electrolyte membrane used for the membrane-electrode assembly preferably has high thermal stability and durability.
  • the catalyst that can be used in the membrane-electrode assembly may be an alloy catalyst such as Pt, Pt-Ru, Pt-Sn, Pt-Pd, or Pt / C coated with fine carbon particles, Pt-Ru / C, or the like.
  • a metal material such as Ru, Bi, Sn Mo may be deposited on Pt, but any material suitable for oxidation of hydrogen and reduction of oxygen may be used without limitation. You can also use commercially available products from Johnson Matthey, E-Tek, and others. Since the catalyst for the electrode adhered to both sides of the electrolyte membrane acts as a cathode and an anode, respectively, it may be used in different amounts depending on the reaction rate at both electrodes, and different kinds of catalysts may be used.
  • the membrane-electrode assembly according to the present invention can be used in a fuel cell.
  • Fuel cells are devices that convert chemical energy from fuel into electrical energy through chemical reactions with oxygen or other oxidants.
  • the fuel cell includes a fuel electrode (anode) that produces hydrogen ions and electrons by oxidation of a fuel material, and an air electrode (cathode) and a fuel electrode where reduction of oxygen or another oxidizing agent occurs by reaction with hydrogen ions and electrons. It includes an electrolyte layer capable of efficiently transferring hydrogen ions to the cathode.
  • hydrogen ions and electrons respectively move from the anode to the cathode through an external circuit electrically connected to the electrolyte layer.
  • the fuel cell may use hydrogen, hydrocarbons, alcohols (methanol, ethanol, etc.) as a fuel, and oxygen, air, chlorine, chlorine dioxide, and the like may be used as oxidants.
  • Fuel cells include Polymer Electrolyte Membrane Fuel Cells (PEMFC), Direct Methanol Fuel Cells (DMFC) and Direct Ethanol Fuel Cells (DEFC), Alkaline Alkaline Fuel Cell (AFC), Phosphoric Acid Fuel Cell (PAFC), Molten Carbonate Fuel Cell (MCFC) and Solid Oxide Fuel Cell (SOFC) Can be.
  • Dual polymer electrolyte fuel cells, direct methanol fuel cells, and direct ethanol fuel cells are capable of operating at relatively lower temperatures than other fuel cells, and are capable of generating power at levels of 1 to 10 kW.
  • the output can be improved by stacking and easy to carry, so that it can be usefully used for a notebook or as an auxiliary power supply.
  • an electrolyte membrane prepared by using an ion conductive polymer is sandwiched between the fuel electrode and the air electrode in the form of a sandwich and pressed to prepare a membrane-electrode assembly in which the fuel electrode-electrolyte membrane-air electrode forms a junction.
  • the battery can be constructed.
  • the electrolyte membrane that can be used for the membrane-electrode assembly has a high hydrogen ion transfer capacity while low permeability of the fuel material, as well as high thermal stability, thus stably exhibiting ion conductivity even in a battery driving condition of about 100 ° C. And it is excellent in chemical durability and must be stable without decomposing even under conditions such as prolonged use and acidity.
  • non-limiting examples of a fuel cell having a membrane-electrode assembly according to the present invention include a polymer electrolyte fuel cell, a direct methanol fuel cell, and a direct ethanol fuel cell.
  • a fuel cell having a membrane-electrode assembly manufactured using an electrolyte membrane prepared from an ion conductive polymer containing a phenyl pendant substituted with two or more sulfonated aromatic groups is commercially available. It was confirmed that the fuel cell having the membrane-electrode assembly including 212 may exhibit superior or similar levels of performance (FIG. 6).
  • redox flow battery refers to the recharging of an electrolyte comprising electroactive species through an electrochemical cell that reversibly converts chemical energy directly into electricity.
  • a type of flow cell that is a rechargeable fuel cell, a reversible fuel cell in which all electroactive components are dissolved in an electrolyte.
  • Gravity feed systems are also used, but mainly additional electrolyte is stored externally, usually in a separate tank, and pumped through the cells of the reactor.
  • the flow cell can be quickly recharged by replacing the electrolyte solution (in a manner similar to replenishing the fuel tank of the internal combustion engine) while at the same time recovering the spent material for re-energization.
  • the energy of the cell is determined by the electrolyte volume, for example the tank size, and the power is determined by the electrode area, for example the reactor size, so that the energy is completely decoupled from the power as with other fuel cells.
  • such a redox flow battery has electroactive species present as ions in an aqueous solution rather than a solid state, and has a mechanism for storing energy by oxidation / reduction reactions of respective ions at the anode and the cathode.
  • the battery is discharged by connecting an electrical load to an external circuit including an electric load to flow a current, and conversely, charging is performed by connecting an external power source to the battery to allow a current to flow therein.
  • a catholyte is charged when a redox couple is oxidized to the higher of the two electrons, and discharged when reduced to the lower. The opposite phenomenon occurs in the catholyte solution.
  • redox flow cells consist of two separate electrolytes. One stores the electroactive material in the negative electrode reaction and the other is used for the positive electrode reaction. At this time, in order to prevent confusion, a negative electrode is defined as an anode and a positive electrode is defined as a cathode during discharge. The reverse will apply when charging. Fresh or used electrolyte can be circulated and stored in a single storage tank. Alternatively, the concentration of the electroactive material can be adjusted individually. Ion-exchange membranes are used as separators to prevent the mixing of electroactive species that can cause chemical breakdown.
  • isolation membrane refers to an ion exchange membrane introduced to prevent mixing of electroactive species in the redox flow battery, and common counter ion carriers common to both electrodes separated by the separator. ) Only passes through the separator. For example, in a bromine-polysulfide system in which Na 2 S 2 is converted to Na 2 S 4 at the anode and Br 2 is converted to 2Br at the cathode, an excess of Na + ions at the anode is applied to maintain the electroneutral condition. Is delivered to.
  • hydronium ions H 3 O +
  • the separator preferably has excellent physical strength so as not to be destroyed by such a pressure difference.
  • All of R 1 to R 5 are a sulfonic acid group or a phenyl group substituted with an alkali metal salt thereof, a pyridinyl group, or a sulfonated naphthalenyl group;
  • a, b, c and d may each independently be an electrolyte membrane having an integer of 1 or more and 10 or less.
  • a 1 and A 2 are — (C ⁇ O) —; B is -O-; R 1 to R 5 are both a sulfonic acid group or a phenyl group substituted with an alkali metal salt thereof (sulfonated phenyl); And R 6 to R 10 are all hydrogen atoms; R 11 to R 14 each independently represent a hydrogen atom or a sulfonic acid group and include one or more sulfonic acid groups; a, b, c and d may be all 1 electrolyte membranes. It is preferable to prepare using the ion conductive polymer represented by the formula (3).
  • the separator of the present invention can prepare an ion conductive polymer comprising a phenyl pendant substituted with two or more sulfonated aromatic groups according to the present invention using any known molding method.
  • the polymer is dissolved in a solvent such as dimethyl sulfoxide, N-methylpyrrolidone, dimethylformamide or dimethylacetamide, and the solution is poured into a plate such as a glass plate to dry the attached polymer to several hundreds to several hundreds. It can be prepared by obtaining a film of ⁇ m, preferably 10 to 120 ⁇ m, more preferably 50 to 100 ⁇ m thick and then detaching from the plate.
  • the solvent presented above is merely an example, and the scope of the present invention is not limited thereto, and any organic solvent may be used as long as it dissolves the polymer and can be evaporated under dry conditions. Specifically, the same organic solvent used in the preparation of the polymer may be used.
  • the ion conductive polymer may be impregnated in the nanoweb support to improve the medium / long term durability by reducing the rate of dimensional change, thereby preparing a reinforced composite membrane.
  • the "nanoweb support” consists of an aggregate of three-dimensionally irregular and discontinuously connected nanofibers, and thus includes a plurality of uniformly distributed pores. Thus, it includes a plurality of pores uniformly distributed.
  • the nanoweb support may be selected from a material having no electrochemical activity.
  • materials constituting the nanoweb support include polyimide, polymethylpentene, polyester, polyacrylonitrile, polyvinylamide, polyethylene, polypropylene, polyvinylfluoride, polyvinyldifluoride, nylon, Polybenzoxazole, polyethylene terephthalate, polytetrafluoroethylene, polyarylene ether sulfone, polyether ether ketone or a combination thereof. That is, the nanoweb support itself has no electrochemical activity, but exhibits the characteristics of the ion exchange membrane through the ion conductive polymer impregnated therein. In this way, by using the reinforced composite membrane, heat resistance, chemical resistance, and mechanical properties can be improved as compared with the separator manufactured only with the ion conductive polymer.
  • the process of filling the nanoweb support with an ion conductive polymer may use a supporting or impregnation process, but is not limited thereto, and may use various methods known in the art, such as a laminating process, a spray process, a screen printing process, and a doctor blade process. Can be.
  • the prepared polymer is dissolved in DMSO and poured into a silicon mold of a predetermined size and dried at 60 to 100 ° C, preferably 70 to 90 ° C for 12 to 36 hours, preferably 18 to 30 hours.
  • the membrane can be obtained.
  • the obtained membrane can be washed sequentially with sulfuric acid solution and distilled water to convert the membrane prepared in the form of sodium salt into a polymer membrane in the form of a proton.
  • the separator preferably has a thickness of 10 ⁇ m to 1000 ⁇ m.
  • the thickness of the separator is less than 10 ⁇ m, the mechanical strength and shape stability may be reduced, and when the thickness of the separator exceeds 1000 ⁇ m, the resistance loss may increase.
  • the redox flow battery according to the present invention is a redox flow battery having a positive electrode, a positive electrode electrolyte, a separator according to the present invention, a negative electrode electrolyte and a negative electrode.
  • the battery includes a cell housing 251 having a predetermined size, an ion exchange membrane 211 installed across the center of the cell housing, and the ions inside the cell housing.
  • Positive and negative electrode 221 and negative electrode 222 electrodes positioned on both left and right sides separated by an exchange membrane, and formed at the upper and lower ends of the cell housing on the side where the anode electrode is located, inflow and outflow of the electrolyte solution used for the anode electrode.
  • the redox flow battery according to the present invention is an all-vanadium system using V (IV) / V (V) redox couple as the cathode electrolyte and V (II) / V (III) redox couple as the cathode electrolyte.
  • Redox cells Vanadium-based redox cells using a halogen redox couple as a positive electrode and a V (II) / V (III) redox couple as a negative electrolyte; Polysulfidebromine redox cells using a halogen redox couple as the positive electrolyte and a sulfide redox couple as the negative electrolyte; Or a zinc-bromine (Zn-Br) redox battery using a halogen redox couple as a cathode electrolyte and a zinc (Zn) redox couple as a cathode electrolyte, but is not limited thereto.
  • Electrolyte membranes prepared from ionically conductive polymers comprising a phenyl pendant substituted with two or more sulfonated aromatic groups in accordance with the present invention can provide excellent ion conductivity, mechanical strength and chemical stability. Due to such excellent physical properties, the polymer membrane can be utilized in a membrane-electrode assembly for fuel cells, and the redox flow battery having the separator as a separator shows excellent cell performance even after repeated charging / discharging for several tens of times and has a high discharge charge retention rate. I can keep it.
  • FIG. 1 is a diagram showing 1 H NMR spectra of an ion conductive polymer PBPSPP-107 including a phenyl pendant substituted with two or more sulfonated aromatic groups according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing 1 H NMR spectra of an ion conductive polymer PBPSPP-108 including a phenyl pendant substituted with two or more sulfonated aromatic groups according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing 1 H NMR spectra of an ion conductive polymer PBPSPP-110 including a phenyl pendant substituted with two or more sulfonated aromatic groups according to one embodiment of the present invention.
  • FIG. 4 is a view schematically showing a method of manufacturing a membrane-electrode assembly according to an embodiment of the present invention.
  • FIG. 5 is a view showing the ion conductivity at 80 °C according to the relative humidity of the ion conductive polymer membrane according to an embodiment of the present invention.
  • FIG. 6 is a view showing a current voltage curve IV-curve comparing and evaluating the performance of a fuel cell including a membrane-electrode assembly manufactured using an ion conductive polymer membrane according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the configuration of a redox flow battery including a separator prepared by using an ion conductive polymer membrane according to an embodiment of the present invention.
  • FIG. 8 is a view showing the performance of a single cell with a PBPSPP-107 polymer ion exchange membrane according to an embodiment of the present invention. The charge amount according to the film thickness and the number of charge / discharge repetitions is shown.
  • FIG. 9 is a view showing the performance of a single cell having a PBPSPP-107 polymer ion exchange membrane according to an embodiment of the present invention. The discharge charge amount according to the film thickness and the number of charge / discharge repetitions is shown.
  • FIG. 10 is a view showing changes in energy efficiency, coulomb efficiency, and voltage efficiency according to the thickness and charge / discharge repetition frequency of a single cell having a PBPSPP-107 polymer ion exchange membrane according to an embodiment of the present invention.
  • FIG. 11 is a view showing an image of a reinforced composite membrane separated after repeatedly charging / discharging a single cell having a reinforced composite membrane containing PBPSPP-107 polymer according to an embodiment of the present invention as a separator 20 times or more.
  • 0.5 g of the polymer prepared according to the above example was dissolved in 10 ml of DMSO, and then the unmelted polymer was removed using a 5 ⁇ m syringe filter.
  • the filtered polymer solution was poured into an 8 cm ⁇ 8 cm silicone mold provided on a glass plate and dried at 80 ° C. for 24 hours.
  • the dried polymer film was further dried for 24 hours in a 160 ° C. vacuum oven to completely remove the unremoved solvent therein.
  • the acid was treated with 1.5 M aqueous sulfuric acid solution for 24 hours, and immersed in distilled water for 24 hours to remove residual acid.
  • the proton conductivity was measured under 100% relative humidity at 25 ° C. and 80 ° C. using an AC impedance analyzer (Solatron 1280, Impedance / gain phase analyzer).
  • Four prove conductivity cells were used to measure in the same in-phase direction in the range of 0.1 to 20 kHz. The temperature was maintained for 30 minutes in a constant temperature and humidity chamber before the measurement, and the conductivity was calculated by the following equation.
  • I is the distance between electrodes
  • R is the impedance of the film
  • S is the surface area over which protons move.
  • the dimensional change degree was measured.
  • the prepared membrane was immersed in distilled water for 24 hours, and the volume of the wet membrane (V wet ) was measured, and the wet membrane was vacuum-dried again at 120 ° C. for 24 hours to measure the volume (V dry ).
  • the measured values were calculated by substituting these measured values into the following equation.
  • Molecular weight was converted and measured by intrinsic viscosity.
  • the prepared polymer was dissolved in NMP, and the viscosity of the solution prepared at a concentration of 0.5 g / dl was measured using a Uberod viscometer in a 25 ° C thermostat.
  • Example 3 Fabrication of a fuel cell membrane-electrode assembly and a fuel cell using the block copolymer comprising a phenyl pendant substituted with two or more sulfonated aromatic groups and a polymer membrane made of Nafion
  • a method of manufacturing a fuel cell membrane-electrode assembly using the polymer membranes (PBP-107, PBP-108 and PBP-110) prepared in Example 1 is schematically shown in FIG.
  • Each electrolyte membrane prepared according to Example 1 having a size of 6 cm ⁇ 6 cm and a catalyst slurry for preparing an electrode was prepared.
  • a commercially available Nafion 212 polymer membrane was used.
  • the catalyst slurry was prepared by the following method. 170 mg of 40 wt% Pt / C catalyst and 5 wt% Nafion dispersion (DuPont Inc., USA) commercially available from E-tek, USA, 870 mg of water, isopropyl alcohol ) And 460 mg were mixed by ultrasonic stirring for 30 minutes to uniformly mix the catalyst and Nafion.
  • the catalyst slurry obtained by the above method was coated onto a polyimide film using a Doctor Blade. At this time, the thickness of the catalyst layer was prepared to be 200 ⁇ m in the wet state after coating.
  • the catalyst slurry was dried at 120 ° C. for 10 hours using an oven in a nitrogen gas environment.
  • the catalyst layer coated on the polyimide film was cut to a size of 25 cm 2 and laminated on an electrolyte membrane (about 60 ⁇ m) prepared in advance in Example 1.
  • the electrolyte membrane was synthesized, molded into a film, and prepared by applying a 1,2-propanediol (boiling point 188 ° C.) solution by brushing.
  • the amount of hydrophilic solvent applied was 200 mg solvent / cm 3 electrolyte membrane.
  • the polyimide film coated with the catalyst layer on one side is aligned so that the catalyst layer faces the electrolyte membrane, and then the polyimide film is further attached to the polymer electrolyte.
  • the laminate was constructed by protecting the membrane.
  • membrane-electrode assembly (membrane-electrode assembly; MEA) was prepared.
  • the polyimide film was removed from the prepared membrane-electrode assembly and the transfer rate was calculated from the weight of the catalyst layer remaining thereon. The calculated transfer rate was 100%.
  • Example 4 Performance of a fuel cell comprising a membrane-electrode assembly for a fuel cell using a polymer membrane prepared from an ion conductive polymer comprising a phenyl pendant substituted with two or more sulfonated aromatic groups
  • the membrane-electrode assembly was prepared between a gasket, a bipolar plate, and a current collector. The sandwich was fabricated, and the cell was measured by FCT-TS300 (Fuel Cell Technologies Inc., USA).
  • the activation of the fuel cell took 48 hours at 0.6 V and the humidification amount was 100 RH%.
  • the flow rate ratio of hydrogen as an anode fuel and air as a cathode fuel was adjusted to 1.2: 2.
  • the current voltage curve was measured for 25 seconds in 50 mV steps from 0.5 V to 1.0 V.
  • the current voltage curve shows the current density on the X-axis and the voltage on the Y-axis, and is a representative fuel cell performance evaluation method that shows the change of the current density according to the change of the voltage applied by the measuring device.
  • FIG. 6 a fuel incorporating an electrolyte membrane prepared using ion conductive polymers (PBP-107, PBP-108, and PBP-110) containing a phenyl pendant substituted with two or more sulfonated aromatic groups of the present invention. It was confirmed that the battery showed better or similar cell performance than the fuel cell using Nafion 212, which is commercially available. From this, the ion-conducting polymer comprising a phenyl pendant substituted with two or more sulfonated aromatic groups is an expensive perfluor-based polymer that is commercialized when it is molded into an electrolyte membrane and introduced into a fuel cell membrane-electrode assembly. It has been found that it can provide similar or superior performance than (Nafion).
  • ion conductive polymers PBP-107, PBP-108, and PBP-110) containing a phenyl pendant substituted with two or more sulfonated aromatic groups of the present invention. It was confirmed that the battery showed better
  • Example 5 Construction and Performance Evaluation of a Redox Flow Battery with a Polymer Membrane Prepared from an Ionic Conductive Polymer Containing a Phenyl Pendant Substituted by Two or More Sulfonated Aromatic Groups
  • a 30 ⁇ m and 80 ⁇ m thick ion exchange membrane was prepared, comprising the PBPSPP-107 polymer prepared according to Preparation Example 5, and cut into 70 mm ⁇ 50 mm sizes, respectively, in a single cell prepared as shown in FIG. 7.
  • the charge and discharge test and efficiency of the cell were measured by mounting 211 and the results are shown in FIGS. 8 to 10.
  • the single cell used 5 mm thick carbon felt treated with heat and acid as the anode and cathode materials, respectively.
  • acrylic was used, and as end plate material, hexion bakelite was used.
  • V (IV) / V (V) redox couple was used as the positive electrolyte and V (II) / V (III) redox couple was used as the negative electrolyte.
  • Table 3 summarizes the performance of each single cell by numerical comparison.
  • the driving test for the performance evaluation of the single cell was performed at room temperature, that is, 25 °C.
  • the flow rate of the electrolyte was fixed at 40 ml / min. Charging proceeded to 1.6 V at a current density of 50 mA / cm 2 , and discharge to 1.0 V at the same current density. All single cells were repeatedly charged / discharged 20 times to test durability.
  • a single cell having a PBPSPP-107 ion exchange membrane shows excellent cell performance even after repeated charging / discharging for several tens of times, and has a high level of energy efficiency (EE) and electric capacity efficiency ( In addition to maintaining coulombic efficiency (CE) and voltage efficiency (VE), the retention rate of discharge charge was also high.
  • EE energy efficiency
  • CE electric capacity efficiency
  • VE voltage efficiency
  • FIG. 11 shows an image of a PBPSPP-107 ion exchange membrane separated from a cell in which charge / discharge was repeated 20 times or more. From this, the ion exchange membrane was confirmed to remain intact without being damaged even after repeated charge / discharge about 20 times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 고분자; 상기 고분자의 제조방법; 상기 고분자를 포함하는 이온전도체; 상기 고분자를 포함하는 수지 조성물로부터 형성된 성형체; 상기 고분자를 포함하는 수지 조성물로부터 성형된 전해질 막; 상기 전해질 막을 구비한 막-전극 접합체 및 이를 구비한 전지; 및 상기 이온전도성 고분자를 포함하는 레독스 플로우 전지용 격리막 및 이를 구비한 레독스 플로우 전지에 관한 것이다. 본 발명에 따른 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자로부터 제조된 전해질 막은 우수한 이온전도도, 기계적 강도 및 화학적 안정성을 제공할 수 있다. 이러한 우수한 물리적 특성으로 인하여 상기 고분자 막은 연료전지용 막-전극 접합체에 활용될 수 있으며, 이를 격리막으로 구비한 레독스 플로우 전지는 수십회 충/방전을 반복하여도 우수한 셀성능을 나타내며 높은 방전전하량 보존율을 유지할 수 있다.

Description

2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도
본 발명은 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 고분자; 상기 고분자의 제조방법; 상기 고분자를 포함하는 이온전도체; 상기 고분자를 포함하는 수지 조성물로부터 형성된 성형체; 상기 고분자를 포함하는 수지 조성물로부터 성형된 전해질 막; 상기 전해질 막을 구비한 막-전극 접합체 및 이를 구비한 전지; 및 상기 이온전도성 고분자를 포함하는 레독스 플로우 전지용 격리막 및 이를 구비한 레독스 플로우 전지에 관한 것이다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 전환 장치로써 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 차세대 에너지원으로 연구 개발되어져 왔다. 고분자 전해질막을 포함하는 양성자 교환막 연료전지(proton exchange membrane fuel cell a.k.a. polymer electrolyte membrane fuel cell; PEMFC)는 낮은 작동온도, 고체 전해질 사용으로 인한 누수문제 배제, 빠른 구동 등의 장점으로 휴대용, 차량용 및 가정용 전원장치로 각광받고 있다.
고분자 전해질 연료전지는 전기화학반응에 의해 연료가 가지고 있는 화학에너지를 직접 전기에너지로 변환시키는 일종의 직류발전 장치로서, 연료전지의 심장과 같은 막-전극 접합체(MEA, membrane electrode assembly)와 발생된 전기를 집전하고 연료를 공급하는 bipolar plate의 연속적인 복합체로 구성된다. 여기서, 막-전극 접합체는 연료(메탄올 수용액 또는 수소)와 공기의 전기화학 촉매반응이 일어나는 전극과 수소이온의 전달이 일어나는 고분자막의 접합체를 의미한다.
한편, 모든 전기화학 반응은 두 개의 개별적인 반응으로 이루어지는데, 연료극에서 일어나는 산화반응과 공기극에서 일어나는 환원반응이 그것이며, 연료극과 공기극은 전해질을 통해 분리되어 있다. 이중에서 직접 메탄올 연료전지는 연료극으로 수소대신에 메탄올과 물이 공급되며, 메탄올의 산화과정에서 생긴 수소이온이 고분자전해질을 따라 공기극으로 이동하며, 공기극으로 공급된 산소와 환원 반응을 하여 전기를 일으키게 된다. 이 때 일어나는 반응은 아래와 같다.
연료극 : CH3OH + H2O → CO2 + 6H+ + 6e-
공기극 : 3/2O2 + 6H+ + 6e- → 3H2O
전체반응 : CH3OH + 3/2O2 → CO2 + 2H2O
연료전지에서 고체 전해질로 사용되는 이온 교환막(Ion Exchange Membrane)은 두 전극 사이에 존재하며, 산화전극(anode)에서 생성된 수소이온을 환원전극(cathode)으로 이동시킨다.
일반적으로 고분자 전해질 연료전지에서 사용되는 전해질막은 불소화된(perfluorinated) 고분자 전해질과 탄화수소계(hydrocarbon) 고분자 전해질로 나눌 수 있다. 상기 불소화된 고분자 전해질은 탄소-불소(C-F)간의 강한 결합력과 불소원자의 특징인 가림(shielding) 효과로 화학적으로 안정하며, 기계적인 물성도 우수하고, 특히 수소이온 교환막으로 전도성이 우수하여 현재 고분자 전해질형 연료전지의 고분자막으로 상용화되고 있다. 미국 듀퐁(Du Pont)사의 상품인 네피온(Nafion, 퍼플루오르화 술폰산 중합체)은 상용화된 수소이온 교환막의 대표적인 예로서 이온전도도, 화학적 안정성, 이온 선택성 등이 우수하여 현재 가장 많이 상용화되고 있다. 그러나, 불소화된 고분자 전해질막은 우수한 성능에 반하여 높은 가격으로 인해 산업용으로서의 이용도가 낮으며, 메탄올이 고분자막을 통과하는 메탄올 투과성(methanol crossover)이 높고, 80℃ 이상에서의 고분자막의 효율이 감소되는 단점이 있어 가격면에서 경쟁이 가능한 탄화수소 이온 교환막에 대한 연구가 활발히 진행되고 있다.
연료전지에 사용되는 고분자 전해질막은 연료전지 구동시 요구되는 조건에서 안정해야 하므로 사용가능한 고분자가 방향족 폴리에테르(aromatic polyether; APE) 등으로 매우 제한된다. 연료전지 구동 시 가수분해, 산화, 환원반응 등이 고분자막의 분해를 야기하여 연료전지의 성능을 저하시킨다. 따라서, 폴리에테르케톤(polyetherketone), 폴리에테르술폰(polyethersulfone) 계열의 폴리아릴렌에테르(polyaryleneether) 고분자는 우수한 화학적 안정성과 기계적 물성으로 인해 이를 연료전지에 적용하기 위해 연구되어 왔다.
이온전도성을 향상시키기 위한 방법으로 친수성 작용기를 도입한 고분자를 제조하는 방법이 이용되고 있다. 미국특허 제4,625,000호는 고분자 전해질막으로 폴리에테르술폰(polyethersufone)의 후처리 술폰화(post-sulfonation) 공정에 대하여 개시하고 있다. 상기 문헌에 개시된 후처리 술폰화 방법은 황산(sulfuric acid)과 같은 강산을 술폰화제로 사용하고, 술폰산기(sulfonic acid group, -SO3H)가 고분자 골격에 무작위로 도입되므로 술폰산기의 분포, 위치, 수 등의 제어가 어렵다.
또한, 유럽특허 제1,113,517 A2호는 술폰산기를 가진 블록, 술폰산기를 가지지 않는 블록으로 구성된 블록 공중합체 고분자 전해질막에 대하여 개시하고 있다. 지방족(aliphatic) 블록과 방향족(aromatic) 블록으로 구성되어진 블록 공중합체를 강산인 황산을 사용하여 후처리 술폰화하므로, 술폰화 과정에서 지방족 고분자의 화학결합이 분해되는 등의 문제점이 있고, 방향족 블록을 구성하는 환에 술폰산기가 무작위로 도입되어 고분자 골격 내 술폰산기의 위치, 수 등의 제어가 어려웠다.
한편, 일본공개특허공보 제2003-147074호는 플루오렌(fluorene) 화합물이 포함되어 있는 공중합체를 클로로황산(chlorosulfonic acid, HSO3Cl), 또는 황산을 사용하여 술폰산기를 고분자의 플루오렌에 도입하는 방법에 대하여 개시하고 있다. 상기 방법에서는 플루오렌(fluorene) 화합물을 구성하는 환에 술폰기가 무작위로 도입된다.
전술한 종래기술에서 제시한 고분자 술폰화 방법들은, 상용화된 나피온(Nafion, Dupont)과 유사한 수소이온 전도도를 구현하고자 술폰산기 함량(술폰화도; DS, Degree of sulfonation)을 증가시킬 경우, 전해질막의 물 함량 및 메탄올 함량이 지나치게 증가해 전해질막이 메탄올에 용해되는 등 전해질막의 기계적 집적도를 현저히 떨어뜨려 연료전지 구동시 요구되는 전해질막의 물성을 충족시키지 못했다.
한편, 화석연료의 고갈과 환경오염에 대한 문제를 해결하기 위하여 사용효율을 향상시킴으로써 화석연료를 절약하거나 재생가능한 에너지를 보다 많은 분야에 적용하고자 하는 노력이 이루어지고 있다. 태양열 및 풍력과 같은 재생가능한 에너지원은 이전보다 더 많이 효율적으로 사용되고 있으나, 이들 에너지원은 간헐적이며 예측 불가능하다. 이러한 특성으로 인해 이들 에너지원에 대한 의존도가 제한되며, 현재 일차전력원 중 재생에너지원이 차지하는 비율은 매우 낮다.
재충전 가능한 전지(rechargeable battery)는 단순하고 효율적인 전기 저장 방법을 제공하므로 이를 소형화하여 이동성을 높여 간헐적 보조 전원이나 랩탑, 태블릿 PC, 휴대전화 등의 소형가전의 전원으로 활용하고자하는 노력이 지속되고 있다.
레독스 플로우 전지(RFB; Redox Flow Battery)는 전해질의 전기화학적인 가역반응에 의한 충전과 방전을 반복하여 에너지를 장기간 저장하여 사용할 수 있는 2차전지이다. 전지의 용량과 출력 특성을 각각 좌우하는 스택과 전해질 탱크가 서로 독립적으로 구성되어 있어 전지 설계가 자유로우며 설치 공간 제약도 적다. 또 레독스 플로우 전지는 발전소나 전력계통, 건물에 설치해 급격한 전력수요 증가에 대응할 수 있는 부하 평준화 기능, 정전이나 순간저전압을 보상하거나 억제하는 기능 등을 가지고 있으며 필요에 따라 자유롭게 조합할 수 있는 매우 유력한 에너지저장 기술이며 대규모 에너지저장에 적합한 시스템이다.
이러한 레독스 플로우 전지는 두 개의 분리된 전해질로 구성된다. 하나는 음성 전극반응에서 전기활성 물질을 저장하며 다른 하나는 양성 전극반응에 사용된다. 실제 레독스 플로우 전지에서 전해질 반응은 양극과 음극에서 서로 상이하며 전해질액 흐름현상이 존재하므로 양극쪽과 음극쪽에서 압력차가 발생한다. 대표적인 레독스 플로우 전지인 전바나듐계 레독스 플로우 전지에서 양극 및 음극 전해질의 반응은 하기와 같다.
Figure PCTKR2013010663-appb-I000001
따라서, 양 전극에서의 압력차를 극복하고 충전과 방전을 반복하여도 우수한 전지성능을 나타내기 위해서는 물리적 화학적 내구성이 향상된 격리막을 필요로 한다. 그러나, 물리적 내구성을 향상시키기 위하여 격리막의 두께를 증가시키는 경우 이로 인한 저항이 증가하게 되는 단점이 있다.
본 발명자들은 고분자에 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 경우 여러 가지 중요한 성질이 달라지는 것에 착안하여 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자를 연구 개발한 결과, 보다 적은 수의 술폰화 방향족기를 포함하는 이온 전도성 고분자 또는 상용화되고 있는 퍼플루오르계 고분자와 비교하여 동일 또는 유사한 이온교환능(ion exchange capacity, IEC), 물 흡수율 및/또는 치수변화도를 가지면서도, 향상된 전도도 및 신장강도, 신장률 등에 있어서 보다 우수한 물리적 특성을 갖는 고분자 막을 제조하게 되었다. 따라서, 상기 고분자 막은 막-전극 접합체로 제조하여 연료전지에 이용하거나, 레독스 플로우 전지용 격리막으로 제조하여 레독스 플로우 전지에 이용할 수 있으며, 상기 전지가 우수한 셀 성능을 나타내면서도 우수한 중/장기 내구성을 가짐을 확인하고 본 발명을 완성하였다.
본 발명의 제1양태는 하기 화학식 1로 표시되는 페닐렌 반복단위 및 하나 이상의 하기 화학식 2로 표시되는 페닐렌 반복단위를 포함하는 골격을 갖는 고분자를 제공한다:
[화학식 1]
Figure PCTKR2013010663-appb-I000002
[화학식 2]
Figure PCTKR2013010663-appb-I000003
상기 화학식에서,
A1 및 A2는 각각 독립적으로 단일결합, -(C=O)-, -(P=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)-이고;
B는 -O-, -S-, -(SO2)-, -(C=O)-, -NH- 또는 -NR15-이며, 이때 R15는 C1 내지 C6 알킬기이고;
R1 내지 R5 중 둘 이상 또는 모두는 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)이고, 이들로 치환되지 아니한 R1 내지 R5는 각각 독립적으로 수소원자(-H), 할로겐원자(-X), 술폰산기(-SO3H), 인산기(-PO3H2), 아세트산기(-CO2H), 니트로기(-NO2), 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소 또는 황원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O-퍼플루오로아릴기, 또는 하나 이상의 할로겐, 술폰산기, 인산기, 아세트산기 또는 니트로기로 치환된 아릴기(aryl)이며, 상기 퍼플루오로기는 술폰산, 인산, 아세트산 및 니트로로 구성된 군으로부터 선택되는 치환기를 포함할 수 있고, 상기 술폰산기, 인산기 및 아세트산기는 알칼리 금속염의 형태일 수 있으며;
R6 내지 R10은 각각 독립적으로 모두 수소원자이거나, 적어도 하나의 플루오린원자(F)(모두 플루오린인 경우는 제외), 아릴기, 퍼플루오르알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소 및/또는 황원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O-퍼플루오로아릴기이며;
R11 내지 R14는 각각 독립적으로 수소원자, 할로겐원자, 술폰산기, 인산기, 아세트산기, 니트로기로 구성된 군으로부터 선택되는 치환기를 포함할 수 있고, 상기 술폰산기, 인산기 및 아세트산기는 알칼리 금속염의 형태일 수 있으며;
a, b, c 및 d는 각각 독립적으로 0 이상 10 이하의 정수임.
본 발명의 제2양태는 상기 고분자의 제조방법으로서, 하기 반응식 1로 표시되는 측쇄에 전자끌게기로 연결된 반응성 할로겐원소로 치환된 아릴기를 포함하는 디할로벤젠(dihalobenzene)과 측쇄에 전자끌게기로 연결된 반응성 할로겐원소로 치환되지 않은 아릴기를 포함하는 디할로벤젠의 혼합물로부터 콜론 커플링 반응(Colon coupling reaction)에 의해 반응성 할로겐원소로 치환 및 비치환된 아릴기를 측쇄에 가지는 벤젠으로 구성된 골격의 중합체를 제조하는 제1단계; 하기 반응식 2로 표시되는 친핵성 치환 반응(Nucleophilic substitution reaction)에 의해 상기 벤젠 골격의 측쇄에 결합된 아릴기에 치환된 할로겐원소를 다중페닐 펜던트로 치환하는 제2단계; 및 하기 반응식 3으로 표시되는 상기 다중페닐 펜던트로 치환된 중합체를 술폰화제, 질산화제, 인산화제 또는 할로겐화제로 처리하여 후처리 수식하는 제3단계를 포함하는 고분자의 제조방법을 제공한다:
[반응식 1]
Figure PCTKR2013010663-appb-I000004
[반응식 2]
Figure PCTKR2013010663-appb-I000005
[반응식 3]
Figure PCTKR2013010663-appb-I000006
상기 R1 내지 R5 및 R11 내지 R14는 화학식 1에서와 동일하고,
상기 R28 내지 R32는 각각 R1 내지 R5에 상응하는 것으로,
n을 1 내지 5의 정수라고 할 때,
Rn이 술폰화된 치환기인 경우, Rn+27은 이에 상응하는 술폰화되지 않은 치환기이고,
Rn이 비술폰화된 치환기인 경우, Rn+27은 Rn과 동일한 치환기이며,
a, b, c 및 d는 각각 독립적으로 0 이상 10 이하의 정수임.
본 발명의 제3양태는 본 발명의 제1양태에 따른 고분자를 포함하는 이온전도체를 제공한다.
본 발명의 제4양태는 본 발명의 제1양태에 따른 고분자를 포함하는 수지 조성물로부터 형성된 성형체를 제공한다.
본 발명의 제5양태는 본 발명의 제1양태에 따른 고분자를 포함하는 수지 조성물로부터 제조된 전해질막을 제공한다.
본 발명의 제6양태는 본 발명의 제5양태에 따른 전해질 막을 막-전극 접합체를 제공한다.
본 발명의 제7양태는 본 발명의 제6양태에 따른 막-전극 접합체를 구비한 전지를 제공한다.
본 발명의 제8양태는 본 발명의 제1양태에 따른 고분자를 포함하는 수지 조성물로부터 제조된 레독스 플로우 전지용 격리막을 제공한다.
본 발명의 제9양태는 양극, 양극 전해질, 본 발명의 제8양태에 따른 격리막, 음극 전해질 및 음극을 구비한 레독스 플로우 전지를 제공한다.
이하, 본 발명을 자세히 설명한다.
본 발명은 2종 또는 그 이상의 페닐렌 반복단위를 포함하는 골격을 갖는 고분자로서, 이중 1종의 페닐렌 반복단위가 말단에 술폰화 방향족기 2이상으로 치환된 다중페닐 펜던트를 포함하는 것이 특징이다.
본 발명에 따르면, "다중페닐 펜던트(multiphenyl pendant)"는 복수개의 페닐그룹을 포함하는 치환기일 수 있다. 예컨대, 하나의 페닐고리에 하나 이상의 치환 또는 비치환 페닐, 나프탈렌 또는 헤테로 원자를 포함하는 페닐고리가 추가로 치환된 벌키한 치환기일 수 있다.
술폰산기(sulfuric acid group; -SO3H)는 고분자 전해질막에 수소이온(proton, H+) 전도성을 부여하기 위해 도입된다. 동일한 목적으로 술폰산의 알칼리 금속염을 사용할 수 있다. 상기 "알칼리 금속염"은 Na, K, 또는 Li 등의 알칼리족 금속의 양이온이 술폰산의 양성자를 대신하는 것일 수 있다.
한편, 측쇄에 형성된 방향족 고리는 주쇄골격을 형성하는 방향족 고리보다 술폰화 반응성이 높다. 따라서, 페닐렌 반복단위 중 측쇄 말단에 있는 페닐기는 5개의 치환위치를 갖고 있으므로, 최대 5개의 술폰산기 또는 이의 알칼리 금속염을 도입시킬 수 있다. 이때, 측쇄 말단에 있는 페닐기에 직접 술폰산기 또는 이의 알칼리 금속염을 도입하는 것 보다는, 측쇄 말단에 있는 페닐기의 5개의 치환위치 중 원하는 위치에 페닐기(phenyl), 피리디닐기(pyridinyl) 또는 나프탈레닐기(naphthalenyl)를 2이상 치환시키고, 페닐기, 피리디닐기 또는 나프탈레닐기에 술폰산기 또는 이의 알칼리 금속염을 도입시킴으로써, 술폰산기 또는 이의 알칼리 금속염의 분포, 위치, 수 등 제어가 용이해진다. 측쇄 말단에 있는 페닐기의 5개의 치환위치 중 원하는 위치(들)에 페닐기(phenyl), 피리디닐기(pyridinyl) 또는 나프탈레닐기(naphthalenyl)를 추가로 도입시키면, 술폰화 반응 시 입체 장애가 감소되어 술폰산기 또는 이의 알칼리 금속염의 도입 위치 및 수의 제어가 용이해지기 때문이다.
예컨대, 본 발명은 크기가 큰 치환체인 다중페닐 펜던트를 도입하고 후처리 술폰화하여 그 말단에 술폰산기 또는 이의 알칼리 금속염을 치환하여 복수개의 술폰산기가 조밀하게 밀집되도록 할 수 있다. 따라서, 본 발명의 고분자는 하나의 페닐렌 반복단위 말단에 술폰산기가 조밀하고 국부적(densely and locally)으로 치환된 술폰화 구조를 형성시킴으로써 친수성 도메인과 소수성 도메인의 효과적인 상분리를 유발할 수 있다.
또한, 친핵성 치환 반응에 의해 술폰산기가 밀집된 친수성 반복단위를 형성하기 위하여 측쇄에 술폰화 가능한 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)가 복수개 치환된 페닐 작용기를 도입함으로 주쇄골격을 손상시키지 않으면서 측쇄에 복수개의 술폰산기를 갖는 친수성 반복단위를 형성할 수 있다.
이와 같이, 측쇄 말단에 위치한 페닐기에 직접 술폰산기를 도입하는 것이 아니라 치환체로서 다중페닐 펜던트를 도입하고 술폰화함으로써 술폰산기로 이루어진 친수성 부분의 유동성을 증대시켜 보다 효과적으로 친수성 채널을 형성할 수 있으며, 보다 효과적인 나노 상분리를 유발할 수 있다. 또한, 도입되는 다중페닐 펜던트 수를 조절하여 술폰화 정도를 조절할 수도 있다. 한편, 고분자 주쇄골격으로부터 멀리 떨어진 곳에 술폰산기가 위치하게 되므로 이로 인해 유도될 수 있는 고분자 주쇄골격의 분해 가능성을 감소시킬 수 있다.
본 발명에서, 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)의 바람직한 예로는
Figure PCTKR2013010663-appb-I000007
,
Figure PCTKR2013010663-appb-I000008
,
Figure PCTKR2013010663-appb-I000009
(이때, M=수소원자 또는 알칼리금속(Li, Na, K, Rb, Cs or Fr))등이 있다.
한편, 상기 술폰산기 및 이의 알칼리 금속염은 친수성이므로 술폰산기를 많이 도입하는 경우 고분자 전해질막의 내수성이 악화되고 물 함량 증가에 따른 팽윤에 의해 고분자 전해질막의 기계적 강도, 집적도 저하 등에 의하여 연료전지 구동시 요구되는 고분자 전해질막의 물성을 충족시키기 힘들 수 있다. 따라서, 본 발명의 고분자는 상기 화학식 2로 표시되는 소수성 단량체를 골격에 포함하므로 증가된 기계적 강도를 제공할 수 있으며, 효과적으로 이온교환율을 조절할 수 있다.
또한, 하기 화학식 3에 표시된 바와 같이, 고분자의 골격(back bone)을 약한 에테르 결합(-O-)없이 탄소-탄소결합으로 구성시킴으로써 다양한 라디칼에 대한 화학적 안정성을 높일 수 있는 고분자를 제공할 수 있다. 이러한 고분자를 사용하면, 높은 이온 전도도를 나타내면서 동시에 화학적 안정성이 우수한 연료전지용 전해질막을 제공할 수 있다.
[화학식 3]
Figure PCTKR2013010663-appb-I000010
상기 화학식 3에서 A1, A2, B, R1 내지 R14, a, b, c 및 d는 화학식 1 및 2에 대해 정의된 바와 동일하며, m, n 및 p는 각각 독립적으로 1 이상의 정수이다.
고분자의 골격이 하나 이상의 화학식 1로 표시되는 반복단위와 하나 이상의 화학식 2로 표시되는 반복단위를 포함한다는 사실은 종래 기술에 따른 표준 고분자에 비해 본 발명에 따른 고분자의 pKa를 감소시키는데 기여한다. 이러한 pKa의 감소는 치환된 술폰산기에 의한 산성 증가에 기인하는 것으로, 이와 같이 개질된 고분자는 고온에서 작동하는 전지 소자에서 막으로 사용될 수 있다.
본 발명의 고분자는 R1 내지 R5 중 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)로 치환된 위치는 대칭적인 것일 수 있다. 예컨대, (R1 및 R5), (R2 및 R4), (R1, R3 및 R5) 및 (R1, R2, R4 및 R5) 로 구성된 군에서 선택된 조합의 위치가 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)로 치환될 수 있다.
"할로겐원자(halogen)"는 불소(F), 염소(Cl), 브롬(Br) 및 요오드(I)로부터 선택되는 원자이다.
"알킬기(alkyl)"는 1 내지 20개의 탄소원자의 포화(saturated) 직쇄(linear) 또는 분지(branched) 구조, 또는 3 내지 20개 탄소원자로 구성되는 포화 고리형 구조이다. 예를 들어, 메틸, 에틸, n-프로필, i-프로필(이소프로필), n-부틸, i-부틸, t-부틸, n-도데실(dodecyl), 시클로 프로필 또는 시클로 헥실기 등이 이에 해당한다. 또한 고리형 구조에 있어서 산소, 황 및/또는 질소로부터 선택되는 하나 또는 그 이상의 헤테로 원자를 포함할 수 있다.
"아릴기(aryl)"는 방향족 고리화합물로부터 유도된 작용기 또는 치환기를 의미한다. 상기 고리화합물은 탄소원자만으로 구성될 수도 있고, 산소, 황 및/또는 질소로부터 선택되는 하나 또는 그 이상의 헤테로 원자를 포함하여 구성될 수 있다. 예를 들어, 탄소만으로 구성된 아릴기로는 페닐(phenyl), 나프틸(naphthyl), 안트라세닐(anthracenyl) 등이 있으며, 헤테로 원자를 포함하는 아릴기로는 티에닐(thienyl), 인돌일(indolyl), 피리디닐(pyridinyl) 등이 있다. 상기 헤테로 원자를 포함하는 아릴은 헤테로 아릴이라고도 하나 본 발명에서는 아릴이 이를 포함한다.
"퍼플루오로알킬기(perfluoroalkyl)", "퍼플루오로아릴기(perfluoroaryl)", "-O-퍼플루오로아릴기(-O-perfluoroaryl)", 및 퍼플루오로알킬아릴기(perfluoroalkylaryl)"는 각각 이의 수소원자가 모두 플루오린원자(F)로 치환된 알킬, 아릴 및 -O-아릴을 의미한다.
또한 본 발명에 따른 고분자 골격의 페닐렌기는 서로에 대해 오르소형(1,2-페닐렌), 메타형(1,3-페닐렌) 또는 파라형(1,4-페닐렌)일 수 있다. 바람직하게는 파라형일 수 있다.
한편, 벤젠고리를 매개로 하여 서로 연결된 X 및 Y는 서로에 대해 오르소, 메타 또는 파라에 위치할 수 있다.
바람직하게 본 발명에 따른 고분자의 분자량은 10,000 내지 1,000,000의 Mn(수평균 분자량; number-average molecular weight) 또는 10,000 내지 10,000,000의 Mw(중량평균 분자량; weight-average molecular weight)의 분자량을 갖는 것일 수 있다. 보다 바람직하게는 10,000 내지 300,000의 Mn 또는 10,000 내지 2,000,000의 Mw를 갖는 것일 수 있다. 분자량이 낮은 경우 예컨대, 10,000 이하인 경우, 필름 형성이 어려우며, 수분 함유량이 증대되고 라디칼의 공격에 쉽게 분해되어 전도도 및 내구성이 감소할 수 있다. 반면, 분자량이 높은 경우 예컨대, 1,000,000 이상인 경우, 급격히 증대된 점도로 인해 고분자 용액의 제조 및 필름으로의 성형이 어려워져 막 제조 공정이 불가능해질 수 있다.
본 발명에 따른 고분자는 상기 반복단위는 랜덤(random), 교차(alternating) 또는 순차적(sequential)으로 위치하는 것을 특징으로 하는 고분자일 수 있으며, 블록 공중합체일 수 있다. 충분히 한정되었을 때, 각각의 반복단위의 몰비율은 다양하게 변화될 수 있다.
본 발명에 따른 고분자는 상기 반복단위가 일정한 비율로 결합된 화학식 3으로 표시되는 중합체를 반복단위로 하여 형성되는 고분자일 수 있다.
[화학식 3]
Figure PCTKR2013010663-appb-I000011
바람직하게 상기 화학식 3에서 m과 n의 비는 1:2 내지 1:30, 보다 바람직하게는 1:5 내지 1:15일 수 있으나, 이에 제한되지 않는다. 예컨대, 본 발명의 고분자는 화학식 1로 표시되는 다중페닐 펜던트를 포함하는 친수성 반복단위 하나에 화학식 2로 표시되는 소수성 반복단위가 1 내지 30개, 바람직하게는 5 내지 15개의 비율로 결합된 중합체를 반복단위로 하여 형성되는 고분자일 수 있다.
바람직하게 본 발명에 따른 고분자는 A1은 -(C=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)-; B는 -O-, -S-, -(SO2)- 또는 -(C=O)-; A2는 -(C=O)-; 및 R1 내지 R5 모두는 술폰산기로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)일 수 있다. 이때, a, b, c 및 d는 각각 1일 수 있다.
본 발명의 구체예에 따른 화학식 1의 페닐렌 반복단위를 표 1에 나타내었다.
표 1
Figure PCTKR2013010663-appb-T000001
Figure PCTKR2013010663-appb-I000012
Figure PCTKR2013010663-appb-I000013
Figure PCTKR2013010663-appb-I000014
또한 본 발명의 고분자는 하나 이상의 하기 화학식 8 또는 9로 표시되는 페닐렌 반복단위를 추가로 포함하는 화학식 10의 골격을 갖는 고분자일 수 있다.
[화학식 8]
Figure PCTKR2013010663-appb-I000015
[화학식 9]
Figure PCTKR2013010663-appb-I000016
[화학식 10]
Figure PCTKR2013010663-appb-I000017
상기 화학식 10에서 T는 상기 화학식 8 또는 9로 표시되는 단위이며,
상기 A1, A2, B 및 R1 내지 R15는 화학식 1 및 2에서와 동일하고,
J는 단일결합이거나 전자끌게기로서 -(C=O)-, -(P=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)- 이거나 전자주게기로서 -O-, -S-, -NH- 또는 -NR34-이며, 이때 R34는 C1 내지 C6 알킬기이며,
R16 내지 R27은 각각 독립적으로 수소원자, 플루오린원자, 시아나이드(CN), 퍼플루오로알킬기(CnF2n+1) 또는 페닐기일 수 있으며,
m, n 및 l은 각각 독립적으로 1 이상의 정수이다..
구체적으로, 본 발명의 고분자는 하기 화학식 11로 표시되는 화합물일 수 있다.
[화학식 11]
Figure PCTKR2013010663-appb-I000018
바람직하게 상기 화학식 11에서 m에 대한 n+l의 비는 1:2 내지 1:30, 보다 바람직하게는 1:5 내지 1:15일 수 있으며, n:l의 비는 10:1 내지 1:10일 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 고분자의 제조방법은, 하기 반응식 1로 표시되는 측쇄에 전자끌게기로 연결된 반응성 할로겐원소로 치환된 아릴기를 포함하는 디할로벤젠(dihalobenzene)과 측쇄에 전자끌게기로 연결된 반응성 할로겐원소로 치환되지 않은 아릴기를 포함하는 디할로벤젠의 혼합물로부터 콜론 커플링 반응(Colon coupling reaction)에 의해 반응성 할로겐원소로 치환 및 비치환된 아릴기를 측쇄에 가지는 벤젠으로 구성된 골격의 중합체를 제조하는 제1단계; 하기 반응식 2로 표시되는 친핵성 치환 반응(Nucleophilic substitution reaction)에 의해 상기 벤젠 골격의 측쇄에 결합된 아릴기에 치환된 할로겐원소를 다중페닐 펜던트로 치환하는 제2단계; 및 하기 반응식 3으로 표시되는 상기 다중페닐 펜던트로 치환된 중합체를 술폰화제, 질산화제, 인산화제 또는 할로겐화제로 처리하여 후처리 수식하는 제3단계를 포함할 수 있다.
[반응식 1]
Figure PCTKR2013010663-appb-I000019
[반응식 2]
Figure PCTKR2013010663-appb-I000020
[반응식 3]
Figure PCTKR2013010663-appb-I000021
상기 A1 및 A2는 각각 독립적으로 전자끌게기로서 -(C=O)-, -(SO2)-, -CF2- 또는 -C(CF3)2-이며,
상기 R1 내지 R5 및 R11 내지 R14는 화학식 1에서와 동일하고,
상기 R28 내지 R32는 각각 R1 내지 R5에 상응하는 것으로,
n을 1 내지 5의 정수라고 할 때,
Rn이 술폰화된 치환기인 경우, Rn+27은 이에 상응하는 술폰화되지 않은 치환기이고,
Rn이 비술폰화된 치환기인 경우, Rn+27은 Rn과 동일한 치환기이며,
a, b, c 및 d는 각각 독립적으로 0 이상 10 이하의 정수임.
상기 반응식 1로 표시되는 제1단계는 "콜론 커플링 반응(Colon coupling reaction)"으로 측쇄에 전자끌게기로 연결된 반응성 할로겐원소로 치환된 아릴기를 포함하는 디할로벤젠(dihalobenzene)과 측쇄에 단일결합 또는 전자끌게기로 연결된 반응성 할로겐원소로 치환되지 않은 아릴기를 포함하는 디할로벤젠을 환원되는 금속과 촉매하에 반응시켜 본 발명의 고분자의 골격이 되는 탄소-탄소 단일결합으로 연결된 폴리페닐렌 중합체를 제조하는 단계이다. 상기 환원되는 금속으로는 아연(Zn), 마그네슘(Mg), 망간(Mn), 알루미늄(Al) 또는 칼슘(Ca)을 사용할 수 있으며, 촉매로는 2,2'-바이피리딘(2,2'-bipyridine) 또는 트리페닐포스핀(PPh3, triphenylphosphine; TPP)을 NiBr2, NiCl2, Ni(PPh3)2Cl2, Br2, (acac)2·H2O, (OOCCH3)·4H2O, I2·6H2O 또는 이외의 할라이드 염(F<Cl<Br<I)과 함께 사용할 수 있다. 상기 반응을 이용하여 탄소-탄소 단일결합을 기초로 하는 중합체를 형성할 수 있다. 이는 에스테르 및/또는 케톤을 매개로하여 골격을 형성하는 기존의 폴리페닐렌계 고분자에 비해 높은 기계적 강도 및 화학적 안정성을 부여할 수 있다.
상기 반응식 2로 표시되는 제2단계는 상기 제1단계에서 제조된 측쇄에 할로겐원소가 치환된 또는 치환되지 않은 아릴기가 단일결합 또는 전자끌게기를 매개로 결합된 벤젠을 반복단위로 하여 서로 탄소-탄소 단일결합으로 연결된 중합체를 다중페닐 펜던트를 포함하는 친핵성 분자와 반응시켜 벤젠 골격의 측쇄에 위치한 할로겐의 자리에 다중페닐 펜던트를 도입하는 단계이다. 본 단계는 친핵성 치환반응에 의해 수행된다. 친핵성 분자로는 ROH, RSH, RSO3H 또는 RCO2H 등을 이용할 수 있으며, 각각의 반응에 대해, 촉매로는 황산, 염산, p-톨루엔술폰산, 또는 SOCl2; 및 피리딘을 이용할 수 있다. 상기 친핵성 분자의 R 그룹은 본 발명의 특징인 벌키한 다중페닐 펜던트를 포함할 수 있다. 상기 반응의 결과로서, 탄소-탄소 단일결합으로 연결된 골격의 측쇄의 일부에 -O-, -S-, -(SO2)- 또는 -(C=O)- 결합으로 연결된 벌키한 다중페닐 펜던트가 도입된 고분자를 얻을 수 있다.
상기 반응식 3으로 표시되는 제3단계는 상기 제2단계에서 수득한 벌키한 다중페닐 펜던트를 측쇄에 갖는 고분자를 후처리하여 측쇄의 페닐기에 복수의 치환기를 도입하는 단계이다. 상기 제3단계는 본 발명의 고분자에 친수성을 부가하기 위하여 수행되는 단계로 술폰화, 니트로화, 인산화 또는 할로겐화에 의해 수행된다.
술폰화(sulfonation)는 상기 제2단계의 생성물을 SO3와 H2SO4, 클로로술폰산(HSO3Cl) 또는 트리메틸실리클로로술폰산[(CH3)3SiSO3Cl]을 사용하여 수행할 수 있다. 상기 술폰화의 결과로 측쇄에 치환된 페닐기에 술폰산기(-SO3H)를 도입할 수 있다.
니트로화(nitration)는 상기 제2단계의 생성물을 H2SO4, Ac2O 또는 H2O 조건에서 HNO3와 반응시키거나,
Figure PCTKR2013010663-appb-I000022
하에 NO2 +BF4-와 반응시키거나, CH2Cl2 하에 NO2 +CF3SO3 -와 반응시켜 수행할 수 있다. 상기 니트로화의 결과로 측쇄에 치환된 페닐기에 니트로기(-NO2)를 도입할 수 있다.
인산화(phosphorylation)는 상기 제3단계의 생성물을 피리딘 및 벤젠을 첨가하여 H3PO4와 반응시켜 수행할 수 있다. 상기 인산화의 결과로 측쇄에 치환된 페닐기에 인산기(-PO3H)를 도입할 수 있다.
할로겐화(halogenation)는 상기 제3단계의 생성물을 CCl4, Fe, H2O 또는 HOAc를 첨가하여 할로겐분자(X2, X=F, Cl, Br 또는 I)와 반응시켜 수행할 수 있다. 상기 할로겐화의 결과로 측쇄에 치환된 페닐기에 할로겐기(-X)를 도입할 수 있다.
상기 술폰화제를 사용하여 측쇄에 치환된 다중페닐 펜던트 말단을 선택적으로 후처리 술폰화함으로써, 상기 술폰화기가 조밀하게 밀집된 친수성 반복단위가 이온전도채널을 형성하여, 본 발명의 고분자를 포함하는 전해질막에 수소이온 전도도를 제공할 수 있다.
이때, 상기 화학식 1의 친수성 반복단위와 탄소-탄소 결합에 의해 연결되는 상기 화학식 2로 표시되는 소수성 반복단위는 기계적 강도를 제공할 수 있다.
따라서, 본 발명의 고분자는 친수성 반복단위에 의해 제공되는 수소이온 전도도 및 탄소-탄소 결합으로 연결된 소수성 반복단위에 의해 제공되는 기계적 강도를 가지므로 전지 구동시 요구되는 물성을 충족시키는 전해질막을 제공할 수 있다.
본 발명의 구체예에 의하면, 상용화되는 퍼플루오르계 이온전도성 고분자인 나피온 212, 유사한 골격구조 및 소수성 부분에 하나의 술폰산기를 포함하는 페닐기가 치환된 친수성 부분을 포함하는 이온전도성 고분자인 GS 및 GPS와 비교하였을 때, 동일하거나 더 높은 IEC(이온 교환능; ion exchange capacity) 및/또는 물 흡수율을 가지며 고온에서도 현저히 향상된 이온전도도를 나타내었다(표 2).
상기 제1단계 내지 제3단계는 각각 이전 단계의 생성물을 반응물로 이용하여 순차적으로 수행되는 과정이다. 따라서, 각 단계의 반응 혼합물을 추가적인 정제없이 이후 단계의 반응물로 사용할 수 있다. 또한 각 단계의 사이에 침전, 여과 및/또는 세척과정을 추가적으로 수행할 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 고분자는 술폰산기 또는 이의 알칼리 금속염에 의해 이온전도체로서 사용될 수 있다.
또한, 본 발명에 따른 이온전도성 고분자를 포함하는 수지 조성물로부터 성형체를 형성할 수 있다. 성형체의 비제한적인 예로는, 전해질막, 분리막 또는 수처리막이 있다.
상기 본 발명의 수지 조성물은 필요에 따라 산화방지제, 열안정제, 윤활제, 점착부여제, 가소제, 가교제, 소포제, 분산제 등 각종 첨가제를 추가로 포함할 수 있다.
본 발명에 따른 고분자를 포함하는 수지 조성물은 이를 압출하고 방사, 압연 또는 캐스트 등의 임의의 방법으로 섬유 또는 필름 등의 형태로 성형체로 제조할 수 있다.
예를 들어, 본 발명의 고분자를 포함하는 수지 조성물을 성형하여 전해질막을 제조할 수 있다. 구체적으로, 상기 고분자를 N-메틸피롤리돈, 디메틸포름아미드, 디메틸 술폭사이드 또는 디메틸아세트아미드 등과 같은 용매에 용해시키고, 상기 용액을 유리판 등의 플레이트에 부어 부착된 고분자를 건조시켜 수 내지 수백 μm, 바람직하게 10 내지 120 μm, 보다 바람직하게 50 내지 100 μm 두께의 필름을 얻은 다음 플레이트로부터 탈착하여 제조할 수 있다. 상기 제시한 용매는 예시일 뿐 본 발명의 범위가 이에 제한되지 않으며, 고분자를 용해시키고 건조조건에서 증발될 수 있는 것이면 통상의 유기용매를 사용할 수 있다. 구체적으로 상기 고분자 제조시 사용된 유기용매와 동일한 것을 사용할 수 있다.
본 발명의 구체적인 실시예에 의하면, 상기 제조된 고분자를 DMSO에 녹여 일정한 크기의 실리콘 주형에 부어 주고 60 내지 100℃, 바람직하게 70 내지 90℃에서 12 내지 36시간, 바람직하게 18 내지 30시간 동안 건조하여 막을 얻을 수 있다. 수득한 막은 황산용액으로 처리하고, 증류수로 차례로 세척하여 프로톤 형태의 고분자 막으로 전환시킬 수 있다.
본 발명의 용어 "전해질 막"은 양성자 교환 막(proton exchange membrane) 또는 고분자 전해질 막(polymer electrolyte membrane; PEM)이라고 하는 반투과성 막(semipermeable membrane)이다. 양성자 즉, 프로톤 만을 전달하며 산소 또는 수소 등의 기체에 대해서는 불투과성이다. 주로 양성자 교환막 연료 전지(proton exchange membrane fuel cell) 또는 양성자 교환막 전해조(proton exchange membrane electrolyzer)의 막-전극 접합체(membrane-electrode assembly; MEA)로 도입되어 반응물의 분리 및 양성자 전달에 주요한 기능을 한다. 이러한 전해질 막이 우선적으로 갖추어야할 특성은 이온 전도도, 메탄올 침투성 및 열적 안정성이다. 구체적으로 연료 전지에서 막-전극 접합체로 사용되었을 때, 상기 고분자 막은 물로 포화되어 양성자를 투과시키지만 전자는 전달하지 않는다.
따라서, 상기 전해질 막이 연료 전지에 사용되기 위해서 높은 이온 전도도를 나타내야 함은 물론이고, 100℃ 이상의 고온에서도 구동 가능하고 고온-압착에 의한 막-전극 접합체 제조시에도 성능이 변화되지 않도록 높은 열안정성을 가져야 하며, 강산 등의 극한의 조건에서도 분해되지 않도록 높은 화학적 안정성을 가지는 동시에 양성자는 전달시키되 메탄올, 에탄올 등의 원료물질이 침투하지 못하도록 하는 연료에 대한 우수한 장벽성능을 나타내야 한다.
전해질 막 제조를 위한 고분자의 일 구체예로, A1은 -(C=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)-; A2는 -(C=O)-; B는 -O-, -S-, -(SO2)- 또는 -(C=O)-; R1 내지 R5 모두는 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)이며; a, b, c 및 d는 각각 독립적으로 1 이상 10 이하의 정수인 것인 전해질 막일 수 있다. 보다 바람직하게 A1 및 A2는 -(C=O)-; B는 -O-; R1 내지 R5 모두는 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl); 및 R6 내지 R10 모두는 수소원자; R11 내지 R14는 각각 독립적으로 수소원자 또는 술폰산기이되 하나 이상의 술폰산기를 포함하며; a, b, c 및 d는 모두 1인 전해질 막일 수 있다. 화학식 3으로 표시되는 이온전도성 고분자를 이용하여 제조하는 것이 바람직하다.
막-전극 접합체는 당업자에 공지된 방법을 사용하여 제조할 수 있으며, 제조방법의 비제한적인 예로는 데칼법, 스프레이법, CCG법 등의 다양한 방법이 사용될 수 있다. 본 발명의 구체적인 실시예에서는 데칼법을 이용하여 막-전극 접합체를 제조하였으나, 막-전극 접합체의 제조방법은 이에 제한되지 않는다.
구체적으로, 상기 막-전극 접합체의 비제한적인 제조방법은 촉매, 수소이온 전도성 고분자 및 분산매가 혼합된 촉매 슬러리를 이형필름 위에 도포한 다음 건조하여 촉매층을 형성하는 단계; 상기 이형필름 위에 형성된 촉매층을 친수성 용매가 도포된 전해질 막의 양면에 상기 촉매층이 전해질 막을 향하도록 배향하여 적층하는 단계; 및 상기 적층체를 촉매층이 접하도록 적층한 후 고온가압하여(hot pressing) 촉매층을 전해질 막에 전사하고 이형필름을 제거하여 막-전극 접합체를 형성하는 단계를 포함하는 방법일 수 있다.
본 발명은 예컨대 고온가압하여 상기 환원극과 산화극 사이에 본 발명에 따른 전해질 막을 개재하여 막-전극 접합체(MEA)를 제조할 수 있다. 이때 열 압착시 압력은 0.5 내지 2 톤(ton), 온도는 40 내지 250℃인 것이 바람직하다. 따라서, 상기 막-전극 접합체에 사용되는 전해질 막은 높은 열안정성 및 내구성을 갖는 것이 바람직하다.
상기 막-전극 접합체에 사용될 수 있는 촉매는 Pt, Pt-Ru, Pt-Sn, Pt-Pd 등의 합금촉매 또는 미세한 탄소입자를 입힌 Pt/C, Pt-Ru/C 등을 사용하거나, Pb, Ru, Bi, Sn Mo 등의 금속물질을 Pt 상에 증착시켜 사용할 수 있으나, 수소의 산화 및 산소의 환원반응에 적합한 물질이면 제한없이 사용할 수 있다. 또한 Johnson Matthey, E-Tek 등에서 상업적으로 판매하는 것을 사용할 수도 있다. 전해질 막의 양면에 접착되는 전극용 촉매는 각각 캐소드와 애노드로 작용하는 것이므로 양 전극에서의 반응 속도에 따라 다른 양으로 사용될 수 있으며, 다른 종류의 촉매를 사용할 수도 있다.
상기 본 발명에 따른 막-전극 접합체는 연료전지에 사용될 수 있다. 연료전지는 산소와의 또는 다른 산화제와의 화학적 반응을 통해 연료로부터의 화학적 에너지를 전기적 에너지로 전환하는 장치이다. 상기 연료전지는 연료물질의 산화에 의해 수소이온 및 전자를 생산하는 연료극(양극), 수소이온 및 전자와의 반응에 의한 산소 또는 다른 산화제(oxidizing agent)의 환원이 일어나는 공기극(음극) 및 연료극으로부터 공기극으로 수소이온을 효율적으로 전달할 수 있는 전해질 층을 포함한다. 상기 연료전지에서 수소이온과 전자는 각각 전해질 층과 전기적으로 연결된 외부 회로를 통해 연료극으로부터 공기극으로 이동한다. 상기 연료전지는 연료로서 수소, 탄화수소, 알코올(메탄올, 에탄올 등) 등을 이용할 수 있으며, 산화제로는 산소, 공기, 염소, 이산화염소 등을 이용할 수 있다.
연료전지는 고분자 전해질 연료전지(PEMFC, Polymer Electrolyte Membrane Fuel Cell), 알코올을 연료로 사용하는 직접 메탄올 연료전지(DMFC, Direct Methanol Fuel Cell) 및 직접 에탄올 연료전지(DEFC; Direct Ethanol Fuel Cell), 알칼라인 연료전지(AFC; Alkaline Fuel Cell), 인산 연료전지(PAFC; Phosphoric Acid Fuel Cell), 용융탄산염 연료전지(MCFC; Molten Carbonate Fuel Cell) 및 고체산화물 연료전지(SOFC; Solid Oxide Fuel Cell)로 구분될 수 있다. 이중 고분자 전해질 연료전지, 직접 메탄올 연료전지 및 직접 에탄올 연료전지는 다른 연료전지에 비해 상대적으로 낮은 온도에서 작동가능하며, 1 내지 10 kW 수준의 용량으로 발전이 가능하다. 또한 소형화할 수 있으므로 적층하여 출력을 향상시킬 수 있고, 휴대하기 용이하므로 노트북용으로 또는 보조전원장치로서 유용하게 사용될 수 있다. 이에 따라 단위전지의 부피를 줄이기 위하여 상기 연료극과 공기극 사이에 이온전도성 고분자를 이용하여 제조한 전해질 막을 샌드위치 형태로 위치시키고 압착하여 연료극-전해질 막-공기극이 접합체를 이루는 막-전극 접합체의 형태로 제조하여 전지를 구성할 수 있다. 상기 막-전극 접합체에 사용될 수 있는 전해질 막은 수소이온 전달능이 높은 반면 연료물질의 투과성은 낮아야 함은 물론, 높은 열적 안정성을 나타내어 100℃ 정도의 전지구동 조건에서도 안정적으로 이온 전도도를 나타내어야 하며, 물리적 및 화학적 내구성이 우수하여 장시간의 사용 및 산성 등의 조건에서도 분해되지 않고 안정하여야 한다.
바람직하게 상기 본 발명에 따른 막-전극 접합체를 구비한 연료전지의 비제한적인 예로는 고분자 전해질 연료전지, 직접 메탄올 연료전지 및 직접 에탄올 연료전지 등이 있다.
본 발명의 구체적인 실시예에 의하면, 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자로부터 제조된 전해질 막을 이용하여 제조한 막-전극 접합체를 구비한 연료전지는 상용화되고 있는 나피온212를 포함하는 막-전극 접합체를 구비한 연료전지보다 우수하거나 유사한 수준의 성능을 나타낼 수 있음을 확인하였다(도 6).
본 발명의 용어 "레독스 플로우 전지(redox flow battery)"는 전기활성종을 포함하는 전해질(electrolyte)이, 가역적으로 화학적 에너지를 직접 전기로 전환하는 전기화학적 전지(electrochemical cell)를 통해 흐르는, 재충전 가능한 연료전지(rechargeable fuel cell)인 플로우 전지의 일종으로, 모든 전기활성 성분이 전해질에 용해되어 있는 가역적인 연료전지이다. 중력 공급 시스템(gravity feed system)이 사용되기도 하나, 주로 추가적인 전해질은 외부에, 일반적으로 별도의 탱크에, 저장되며 반응기의 전지를 통해 펌프된다. 플로우 전지는 전해질액을 교체(내연기관의 연료 탱크를 보충하는 것과 유사한 방식으로)하는 동시에 재활성화(re-energization)를 위해 소모된 물질을 회복함으로써 빠르게 재충전될 수 있다. 이러한 레독스 플로우 전지에 있어서, 전지의 에너지는 전해질 부피 예컨대, 탱크 크기에 의해, 전력은 전극면적 예컨데, 반응기 크기에 의해 결정되므로 다른 연료전지와 마찬가지로 에너지가 전력으로부터 완전히 분리(decoupled)된다.
이러한 레독스 플로우 전지는 다른 전지와는 달리 전기활성종이 고체가 아닌 수용액 상태의 이온으로 존재하며, 양극 및 음극에서 각각의 이온들의 산화/환원 반응에 의해 에너지를 저장하는 메커니즘을 갖는다. 상기 전지는 전기부하를 포함하는 외부 회로에 전기적 부하를 연결하여 전류를 흐르게 함으로써 방전되며, 반대로 전지에 외부 전원을 연결하여 전류를 유입되게 함으로써 충전이 진행된다. 일반적으로 양극 전해질 용액(catholyte)은 레독스 커플이 두 가지 전자가 상태 중 높은 쪽으로 산화될 때 충전되며, 낮은 쪽으로 환원될 때 방전된다. 음극 전해질 용액에서는 반대 현상이 나타난다.
대부분의 레독스 플로우 전지는 두 개의 분리된 전해질로 구성된다. 하나는 음성 전극반응에서 전기활성 물질을 저장하며 다른 하나는 양성 전극반응에 사용된다. 이때 혼란을 방지하기 위하여 방전시 음성전극을 애노드로 양성전극을 캐소드로 정의한다. 충전시에는 역으로 적용될 것이다. 신선한 또는 사용된 전해질은 순환하고 단일 저장 탱크에 저장될 수 있다. 또는 전기활성 물질의 농도를 개별적으로 조절할 수 있다. 화학적 단전을 야기할 수 있는 전기활성종의 혼합을 방지하기 위하여 이온교환막을 격리막으로 사용한다.
본 발명의 용어 "격리막"은 상기 레독스 플로우 전지에서 전기활성종의 혼합을 방지하기 위하여 도입하는 이온교환막을 지칭하는 것으로, 상기 격리막으로 분리된 양 전극에서 공통의 상대 이온 전달체(common counter ion carrier) 만이 상기 격리막을 통과한다. 예컨대, 애노드에서 Na2S2가 Na2S4로 전환되고 캐소드에서 Br2가 2Br로 전환되는 브로민-폴리설파이드 시스템에 있어서, 전기중성조건을 유지하기 위하여 애노드에서 과량의 Na+ 이온은 캐소드로 전달된다. 유사하게, 애노드에서 V2+가 V3+로 산화되고 캐소드에서 V5+가 V4+로 환원되는 바나듐 시스템에서, 하이드로늄 이온(hydronium ion; H3O+)은 양성자 전도성 막을 통해 애노드에서 캐소드로 이동한다.
실제 레독스 플로우 전지에서 전해질 반응은 양극과 음극에서 서로 상이하며 전해질액 흐름현상이 존재하므로 양극쪽과 음극쪽에서 압력차가 발생한다. 따라서, 상기 격리막은 이러한 압력차에 의해 파괴되지 않도록 우수한 물리적 강도를 갖는 것이 바람직하다.
레독스 플로우 전지용 격리막 제조를 위한 고분자의 일구체예로, A1은 -(C=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)-; A2는 -(C=O)-; B는 -O-, -S-, -(SO2)- 또는 -(C=O)-; R1 내지 R5 모두는 술폰산기 또는 이의 알칼리금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)이며; a, b, c 및 d는 각각 독립적으로 1 이상 10 이하의 정수인 것인 전해질 막일 수 있다. 보다 바람직하게 A1 및 A2는 -(C=O)-; B는 -O-; R1 내지 R5 모두는 술폰산기 또는 이의 알칼리금속염으로 치환된 페닐기(sulfonated phenyl); 및 R6 내지 R10 모두는 수소원자; R11 내지 R14는 각각 독립적으로 수소원자 또는 술폰산기이되 하나 이상의 술폰산기를 포함하며; a, b, c 및 d는 모두 1인 전해질 막일 수 있다. 화학식 3으로 표시되는 이온전도성 고분자를 이용하여 제조하는 것이 바람직하다.
본 발명의 격리막은 본 발명에 따른 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자를 공지된 임의의 성형 방법을 이용하여 제조할 수 있다.
예를 들어, 상기 고분자를 디메틸술폭사이드, N-메틸피롤리돈, 디메틸포름아미드 또는 디메틸아세트아미드 등과 같은 용매에 용해시키고, 상기 용액을 유리판 등의 플레이트에 부어 부착된 고분자를 건조시켜 수 내지 수백 μm, 바람직하게 10 내지 120 μm, 보다 바람직하게 50 내지 100 μm 두께의 필름을 얻은 다음 플레이트로부터 탈착하여 제조할 수 있다. 상기 제시한 용매는 예시일 뿐 본 발명의 범위가 이에 제한되지 않으며, 고분자를 용해시키고 건조조건에서 증발될 수 있는 것이면 통상의 유기용매를 사용할 수 있다. 구체적으로 상기 고분자 제조시 사용된 유기용매와 동일한 것을 사용할 수 있다.
또는 치수 변화율을 감소시킴으로써 중/장기 내구성을 향상시키기 위하여 상기 이온전도성 고분자를 나노웹 지지체에 함침시켜 강화복합막으로 제조할 수 있다. 상기 "나노웹 지지체"는 3차원적으로 불규칙하고 불연속적으로 연결된 나노섬유의 집합체로 이루어지며, 따라서 균일하게 분포된 다수의 기공을 포함한다. 이와 같이 균일하게 분포된 다수의 기공을 포함한다.
바람직하게 상기 나노웹 지지체는 전기화학적인 활성이 없는 재질을 선택할 수 있다. 나노웹 지지체를 구성하는 소재의 비제한적인 예는 폴리이미드, 폴리메틸펜텐, 폴리에스터, 폴리아크릴로니트릴, 폴리비닐아미드, 폴리에틸렌, 폴리프로필렌, 폴리비닐플루오라이드, 폴리비닐디플루오라이드, 나일론, 폴리벤즈옥사졸, 폴리에틸렌테레프탈레이트, 폴리테트라플루오로에틸렌, 폴리아릴렌에테르술폰, 폴리에테르에테르케톤 또는 이의 조합이다. 즉, 나노웹 지지체 자체는 전기화학적 활성이 없으나, 이에 함침된 이온전도성 고분자를 통해 이온교환막의 특성을 나타낸다. 이와 같이 강화복합막으로 제조함으로써 이온전도성 고분자만으로 제조된 격리막에 비해 내열성, 내화학성 및 기계적 물성을 향상시킬 수 있다.
나노웹 지지체에 이온전도성 고분자를 충진하는 공정은 담지 또는 함침 공정을 이용할 수 있으나, 이에 한정되는 것은 아니며, 라미네이팅 공정, 스프레이 공정, 스크린 프린팅 공정, 닥터 블레이드 공정 등 당업계에 공지된 다양한 방법을 이용할 수 있다.
본 발명의 구체적인 실시예에 의하면, 상기 제조된 고분자를 DMSO에 녹여 일정한 크기의 실리콘 주형에 부어 주고 60 내지 100℃, 바람직하게 70 내지 90℃에서 12 내지 36시간, 바람직하게 18 내지 30시간 동안 건조하여 막을 얻을 수 있다. 수득한 막은 황산용액과 증류수로 차례로 세척하여 나트륨 염 형태로 제조된 막을 프로톤 형태의 고분자 막으로 전환시킬 수 있다.
상기 격리막은 10 μm 내지 1000 μm의 두께를 갖는 것이 바람직하다. 상기 격리막의 두께가 10 μm 미만일 경우 기계적 강도 및 형태 안정성이 떨어질 수 있고, 1000 μm를 초과할 경우 저항 손실이 증가할 수 있다.
본 발명에 따른 레독스 플로우 전지는 양극, 양극 전해질, 본 발명에 따른 격리막, 음극 전해질 및 음극을 구비한 레독스 플로우 전지이다.
일례로 도 7을 참조하여 레독스 플로우 전지를 설명하면, 상기 전지는 소정의 크기를 갖는 셀하우징(251), 상기 셀하우징의 중심을 가로지르며 설치된 이온교환막(211), 셀하우징 내부의 상기 이온교환막에 의해 분리된 좌/우 양쪽에 각각 위치하는 양극(221) 및 음극(222) 전극, 상기 양극전극이 위치한 쪽의 셀하우징의 상/하단에 형성되어 양극전극에 사용되는 전해액의 유입 및 유출을 수행하는 양극 전해질 유입구(231) 및 양극 전해질 유출구(232), 상기 음극전극이 위치한 쪽의 셀하우징의 상/하단에 형성되어 음극전극에 사용되는 전해액의 유입 및 유출을 수행하는 음극 전해질 유입구(241) 및 음극 전해질 유출구(242)를 구비한다.
바람직하게, 본 발명에 따른 레독스 플로우 전지는 양극 전해질로 V(IV)/V(V) 레독스 커플을, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용하는 전바나듐계 레독스 전지; 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용하는 바나듐계 레독스 전지; 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 설파이드 레독스 커플을 사용하는 폴리설파이드브로민 레독스 전지; 또는 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 아연(Zn) 레독스 커플을 사용하는 아연-브로민(Zn-Br) 레독스 전지일 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자로부터 제조된 전해질 막은 우수한 이온전도도, 기계적 강도 및 화학적 안정성을 제공할 수 있다. 이러한 우수한 물리적 특성으로 인하여 상기 고분자 막은 연료전지용 막-전극 접합체에 활용될 수 있으며, 이를 격리막으로 구비한 레독스 플로우 전지는 수십회 충/방전을 반복하여도 우수한 셀성능을 나타내며 높은 방전전하량 보존율을 유지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 PBPSPP-107에 대한 1H NMR 스펙트럼을 나타낸 도이다.
도 2는 본 발명의 일 실시예에 따른 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 PBPSPP-108에 대한 1H NMR 스펙트럼을 나타낸 도이다.
도 3은 본 발명의 일 실시예에 따른 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 PBPSPP-110에 대한 1H NMR 스펙트럼을 나타낸 도이다.
도 4는 본 발명의 일 실시예에 따른 막-전극 접합체의 제조방법을 개략적으로 나타낸 도이다.
도 5는 본 발명의 일 실시예에 따른 이온전도성 고분자 막의 상대습도에 따른 80℃에서의 이온전도도를 나타낸 도이다.
도 6은 본 발명의 일 실시예에 따른 이온전도성 고분자 막을 이용하여 제조한 막-전극 접합체를 포함하는 연료전지의 성능을 비교평가한 전류전압곡선(IV-curve)을 나타낸 도이다.
도 7은 본 발명의 일 실시예에 따른 이온전도성 고분자 막을 이용하여 제조한 격리막을 포함하는 레독스 플로우 전지의 구성을 나타내는 개략도이다.
도 8은 본 발명의 일 실시예에 따른 PBPSPP-107 고분자 이온교환막을 구비한 싱글셀의 성능을 나타낸 도이다. 막 두께 및 충/방전 반복횟수에 따른 충전 전하량을 도시하였다.
도 9는 본 발명의 일 실시예에 따른 PBPSPP-107 고분자 이온교환막을 구비한 싱글셀의 성능을 나타낸 도이다. 막 두께 및 충/방전 반복횟수에 따른 방전 전하량을 도시하였다.
도 10은 본 발명의 일 실시예에 따른 PBPSPP-107 고분자 이온교환막을 구비한 싱글셀의 막 두께 및 충/방전 반복횟수에 따른 에너지 효율, 쿨롬 효율 및 전압 효율 변화를 나타낸 도이다.
도 11은 격리막으로써 본 발명의 일 실시예에 따른 PBPSPP-107 고분자를 함유하는 강화복합막을 구비한 싱글셀을 20회 이상 반복하여 충/방전시킨 후 분리한 강화복합막의 이미지를 나타낸 도이다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
제조예 1: PBPSPP-115(m=1, n=15)의 제조
Figure PCTKR2013010663-appb-I000023
1.1. 프리델-크래프트 아실화 반응(Friedel-Craft acylation)
<4'-플루오로-2,5-디클로로벤조페논(M1) 제조>
둥근바닥 플라스크에 니트로메탄(nitromethane) 20 ml에 플루오로벤젠(fluorobenzene) 13.4 g(139 mmol) 및 무수 염화 알루미늄(anhydrous aluminum chloride) 9.3 g(69.7 mmol)을 혼합하고 0℃로 냉각하였다. 2,5-디클로로벤조일 클로라이드(2,5-dichlorobenzoyl chloride) 14.6 g(69.7 mmol)을 천천히 가한 후, 상온으로 온도를 올리고, 온도를 유지하면서 24시간 동안 교반하였다. 반응물을 묽은 염산 수용액과 혼합하고 여과하여 침전물을 수거하였다. 활성탄으로 색을 제거하고, n-헥산/에틸 아세테이트(4:1) 용액으로 재결정하였다. 수율 72.5%.
<2,5-디클로로벤조페논(M2) 제조>
둥근바닥 플라스크에 니트로메탄(nitromethan) 30 ml에 2,5-디클로로벤조일 클로라이드 25 g(119.3 mmol) 및 벤젠 18.1 g(238.6 mmol)을 혼합하고 0℃로 냉각하였다. 상기 혼합액에 무수 염화 알루미늄(anhydrous aluminum chloride) 15.9 g(119.3 mmol)을 첨가한 후 상온으로 온도를 올리고 24시간 동안 교반하였다. 상기 반응물을 묽은 염산 수용액과 혼합하고 여과하여 침전물을 수거하였다. 활성탄으로 색을 제거하고, n-헥산/에틸 아세테이트(8:1) 용액으로 재결정하였다. 수율 71.3%.
1.2. 콜론 커플링 반응(Colon coupling reaction)에 의한 술폰화 반응 전 단위 공중합체 P1(m=1, n=15)의 제조
반응기에 브롬화 니켈(II) 0.324 g(1.484 mmol, 단량체의 7 mol%), 트리페닐포스핀 2.725 g(10.388 mmol, 단량체의 50 mol%), 아연 5.822 g(89.04 mmol, 단량체의 4.2 eq)을 넣고, 13 ml의 DMAc(dimethylacetamide)를 가한 후 80℃로 가열하였다. 약 30분간 더 교반하고, 40 ml의 DMAc에 녹인 M1(0.36 g, 1.3 mmol) 및 M2(5 g, 19.9 mmol)를 첨가하였다. 8시간 동안 온도를 유지하면서 교반하였고, 이후 온도를 상온으로 낮춘 후 10% 염산/메탄올 용액과 혼합하여 아연을 제거하였다. 여과한 후 메탄올에 끓여 얻은 고체는 진공건조하여 수득하였다. 수율 91.4%.
1.3. 친핵성 치환 반응(Nucleophilic substitution reaction)에 의한 다중페닐 펜던트(multiphenyl pendant)의 도입-P2(m=1, n=15) 제조
4 g의 P1(m=1, n=15)을 DMAc 100 ml과 톨루엔 30 ml 혼합용매에 녹이고, K2CO3 0.2 g(1.5 mmol) 및 헥사페닐벤젠알콜 0.83 g(1.5 mmol)을 가하여 145℃에서 3시간 동안 교반하였다. 온도를 175℃로 더 올리고 딘스탁트랩(Dean-Stark trap)을 이용하여 톨루엔을 제거한 후, 24시간 동안 더 교반하였다. 온도를 상온으로 내린 후 여과하여 K2CO3와 염을 제거한 후 메탄올을 가하여 침전을 얻었다. 침전은 메탄올로 끊여준 후 여과하여 진공건조시켰다. 수율 86.4%.
1.4. 후 술폰화 반응에 의한 PBPSPP-115(m=1, n=15)의 제조
150 ml의 디클로로메탄에 클로로술폰산 4.54 g(39 mmol)을 녹인 용액에 디클로로메탄에 완전히 녹인 3 g의 P2를 상온에서 천천히 가하였다. 24시간 동안 더 교반하였고 생성된 침전물을 여과하여 얻은 후 증류수 및 뜨거운 증류수로 수차례 세척하였다. 0.3 wt% K2CO3 수용액으로 2시간 동안 세척한 후 증류수로 다시 세척하여 진공건조시켰다. 수율 86.4%.
제조예 2: PBPSPP-112(m=1, n=12)의 제조
2.1. 콜론 커플링 반응(Colon coupling reaction)에 의한 술폰화 반응 전 단위 공중합체 P1(m=1, n=12)의 제조
상기 제조예 1의 1.1에 기재된 방법으로 단량체 M1 및 M2를 제조하였다. 0.46 g의 M1(1.7 mmol) 및 5.0 g의 M2(19.9 mmol)를 상기 제조예 1.2.에 기재된 방법으로 반응시켜 P1(m=1, n=12)을 수득하였다. 수율 90.7%.
2.2. 친핵성 치환 반응(Nucleophilic substitution reaction)에 의한 다중페닐 펜던트(multiphenyl pendant)의 도입-P2(m=1, n=12) 제조
상기 제조예 2.1.에서 수득한 P1(m=1, n=12) 4 g을 1.10 g의 헥사페닐벤젠알콜(2.0 mmol)을 이용하여 상기 제조예 1.3.에 기재된 방법으로 반응시켜 P2(m=1, n=12)를 수득하였다. 수율 88.4%.
2.3. 후 술폰화 반응에 의한 PBPSPP-112(m=1, n=12)의 제조
상기 제조예 2.2.에서 수득한 P2(m=1, n=12) 3 g과 클로로술폰산 4.92 g(42 mmol)을 이용하여 상기 제조예 1.4.에 기재된 방법으로 반응시켜 PBPSPP-112(m=1, n=12)를 수득하였다. 수율 85.8%.
제조예 3: PBPSPP-110(m=1, n=10)의 제조
3.1. 콜론 커플링 반응(Colon coupling reaction)에 의한 술폰화 반응 전 단위 공중합체 P1(m=1, n=10)의 제조
상기 제조예 1의 1.1에 기재된 방법으로 단량체 M1 및 M2를 제조하였다. 0.54 g의 M1(1.99 mmol) 및 5.0 g의 M2(19.9 mmol)를 상기 제조예 1.2.에 기재된 방법으로 반응시켜 P1(m=1, n=10)을 수득하였다. 수율 90.7%.
3.2. 친핵성 치환 반응(Nucleophilic substitution reaction)에 의한 다중페닐 펜던트(multiphenyl pendant)의 도입-P2(m=1, n=10) 제조
상기 제조예 3.1.에서 수득한 P1(m=1, n=10) 4 g을 1.32 g의 헥사페닐벤젠알콜(2.34 mmol)을 이용하여 상기 제조예 1.3.에 기재된 방법으로 반응시켜 P2(m=1, n=10)를 수득하였다. 수율 88.9%.
3.3. 후 술폰화 반응에 의한 PBPSPP-110(m=1, n=10)의 제조
상기 제조예 3.2.에서 수득한 P2(m=1, n=10) 3 g과 클로로술폰산 5.38 g(42 mmol)을 이용하여 상기 제조예 1.4.에 기재된 방법으로 반응시켜 PBPSPP-110(m=1, n=10)을 수득하였다. 수율 82.7%.
제조예 4: PBPSPP-108(m=1, n=8)의 제조
4.1. 콜론 커플링 반응(Colon coupling reaction)에 의한 술폰화 반응 전 단위 공중합체 P1(m=1, n=8)의 제조
상기 제조예 1의 1.1에 기재된 방법으로 단량체 M1 및 M2를 제조하였다. 0.67 g의 M1(2.49 mmol) 및 5.0 g의 M2(19.9 mmol)를 상기 제조예 1.2.에 기재된 방법으로 반응시켜 P1(m=1, n=8)을 수득하였다. 수율 88.4%.
4.2. 친핵성 치환 반응(Nucleophilic substitution reaction)에 의한 다중페닐 펜던트(multiphenyl pendant)의 도입-P2(m=1, n=8) 제조
상기 제조예 4.1.에서 수득한 P1(m=1, n=8) 4 g을 1.65 g의 헥사페닐벤젠알콜(2.99 mmol)을 이용하여 상기 제조예 1.3.에 기재된 방법으로 반응시켜 P2(m=1, n=8)를 수득하였다. 수율 86.7%.
4.3. 후 술폰화 반응에 의한 PBPSPP-108(m=1, n=8)의 제조
상기 제조예 4.2.에서 수득한 P2(m=1, n=8) 3 g과 클로로술폰산 5.92 g(52 mmol)을 이용하여 상기 제조예 1.4.에 기재된 방법으로 반응시켜 PBPSPP-108(m=1, n=8)을 수득하였다. 수율 80.2%.
제조예 5: PBPSPP-107(m=1, n=7)의 제조
5.1. 콜론 커플링 반응(Colon coupling reaction)에 의한 술폰화 반응 전 단위 공중합체 P1(m=1, n=7)의 제조
상기 제조예 1의 1.1에 기재된 방법으로 단량체 M1 및 M2를 제조하였다. 0.77 g의 M1(2.84 mmol) 및 5.0 g의 M2(19.9 mmol)를 상기 제조예 1.2.에 기재된 방법으로 반응시켜 P1(m=1, n=7)을 수득하였다. 수율 87.4%.
5.2. 친핵성 치환 반응(Nucleophilic substitution reaction)에 의한 다중페닐 펜던트(multiphenyl pendant)의 도입-P2(m=1, n=7) 제조
상기 제조예 5.1.에서 수득한 P1(m=1, n=7) 4 g을 1.88 g의 헥사페닐벤젠알콜(3.41 mmol)을 이용하여 상기 제조예 1.3.에 기재된 방법으로 반응시켜 P2(m=1, n=7)를 수득하였다. 수율 88.7%.
5.3. 후 술폰화 반응에 의한 PBPSPP-107(m=1, n=7)의 제조
상기 제조예 5.2.에서 수득한 P2(m=1, n=7) 3 g과 클로로술폰산 6.37 g(56 mmol)을 이용하여 상기 제조예 1.4.에 기재된 방법으로 반응시켜 PBPSPP-107(m=1, n=7)을 수득하였다. 수율 82.7%.
제조예 6: PBPDPP-108(m=1, n=8)의 제조
Figure PCTKR2013010663-appb-I000024
6.1. 프리델-크래프트 아실화 반응(Friedel-Craft acylation)
상기 제조예 1의 1.1에 기재된 방법으로 4'-플루오로-2,5-디클로로벤조페논(M1) 및 2,5-디클로로벤조페논(M2)을 제조하였다.
6.2. 콜론 커플링 반응(Colon coupling reaction)에 의한 술폰화 반응 전 단위 공중합체(P1'; m=1, n=8)의 제조
반응기에 브롬화 니켈(II) 0.351 g(1.572 mmol), 트리페닐포스핀 2.912 g(10.587 mmol), 아연 5.968 g(90.14 mmol)을 넣고, 15 ml의 DMAc(dimethylacetamide)를 가한 후 80℃로 가열하였다. 약 30분간 더 교반하고, 40 ml의 DMAc에 녹인 M1(0.69 g, 2.5 mmol) 및 M2(5 g, 19.9 mmol)를 첨가하였다. 8시간 동안 온도를 유지하면서 교반하였고, 이후 온도를 상온으로 낮춘 후 10% 염산/메탄올 용액과 혼합하여 아연을 제거하였다. 여과한 후 메탄올에 끓여 얻은 고체는 진공건조하여 수득하였다. 수율 92.8%.
6.3. 친핵성 치환 반응(Nucleophilic substitution reaction)에 의한 다중페닐 펜던트(multiphenyl pendant)의 도입-P2'(m=1, n=8) 제조
4 g의 P1'을 DMAc 100 ml과 톨루엔 30 ml 혼합용매에 녹이고, K2CO3 0.2 g(1.5 mmol) 및 2,6-디페닐페놀 0.63 g(2.5 mmol)을 가하여 145℃에서 3시간 동안 교반하였다. 온도를 175℃로 더 올리고 딘스탁트랩(Dean-Stark trap)을 이용하여 톨루엔을 제거한 후, 24시간 동안 더 교반하였다. 온도를 상온으로 내린 후 여과하여 K2CO3와 염을 제거한 후 메탄올을 가하여 침전을 얻었다. 침전은 메탄올로 끊여준 후 여과하여 진공건조시켰다. 수율 88.7%.
6.4. 후 술폰화 반응에 의한 PBPDPP-108(m=1, n=8)의 제조
150 ml의 디클로로메탄에 클로로술폰산 2.28 g(20 mmol)을 녹인 용액에 디클로로메탄에 완전히 녹인 3 g의 P2'을 상온에서 천천히 가하였다. 24시간 동안 더 교반하였고 생성된 침전물을 여과하여 얻은 후 증류수 및 뜨거운 증류수로 수차례 세척하였다. 0.3 wt% K2CO3 수용액으로 2시간 동안 세척한 후 증류수로 다시 세척하여 진공건조시켰다. 수율 87.7%.
실시예 1: 전해질막의 제조
상기 제조예를 통해 제조된 고분자 0.5 g을 DMSO 10 ml에 녹인 후 5 μm 실린지 필터(syringe filter)를 이용하여 녹지 않은 고분자를 제거하였다. 상기 여과한 고분자 용액을 유리판 위에 구비된 8 cm × 8 cm 실리콘 주형에 부어주고 80℃에서 24시간 동안 건조시켰다. 내부의 제거되지 않은 용매를 완전히 제거하기 위하여 건조된 고분자 필름을 160℃ 진공 오븐에서 24시간 동안 추가로 건조시켰다. 건조 후 1.5 M 황산 수용액으로 24시간 동안 산처리하고, 증류수에 24시간 이상 담구어 잔존 산을 제거하였다.
실시예 2: 전해질막의 물성 확인
상기 제조예의 반응을 이용하여 반응물질의 양을 조절함으로써 m 및 n 값을 변화시켜 다양한 조성의 전해질막을 제조하여 물성을 측정하였다. 화학식 4의 일반식으로 표기되는 PBPSPP-mn, 예컨대 PBPSPP-107(m=1, n=7), PBPSPP-108(m=1, n=8), PBPSPP-110(m=1, n=10), PBPSPP-112(m=1, n=12), PBPSPP-115(m=1, n=15) 및 화학식 5의 일반식으로 표기되는 PDPSPP-mn, 예컨대 PDPSPP-108(m=1, n=8)을 실험군으로, 하기의 화학식을 갖는 GS(화학식 6), GPS(화학식 7) 및 나피온 212(화학식 8)를 비교실험군으로 사용하여 전도도, 치수변화도 및 물 흡수율 등을 측정하였다.
[화학식 4]
Figure PCTKR2013010663-appb-I000025
[화학식 5]
Figure PCTKR2013010663-appb-I000026
[화학식 6]
Figure PCTKR2013010663-appb-I000027
[화학식 7]
Figure PCTKR2013010663-appb-I000028
[화학식 8]
Figure PCTKR2013010663-appb-I000029
먼저, AC 임피던스 분석기(Solatron 1280, Impedance/gain phase analyzer)를 이용하여 25℃ 및 80℃ 온도의 100% 상대습도 하에서 양성자(proton) 전도도를 측정하였다. Four prove conductivity cell을 이용하여 0.1 내지 20 kHz 범위에서 동일한 위상(in-phase) 방향으로 측정하였다. 측정 전 항온항습 챔버에서 30분간 온도를 유지시켰으며 하기의 식으로 전도도를 계산하였다.
Figure PCTKR2013010663-appb-I000030
이때, I는 전극사이의 거리, R은 막의 임피던스, S는 양성자가 이동하는 표면적을 나타낸다.
다음으로 치수 변화도를 측정하였다. 치수 변화도를 측정하기 위하여 제조된 막을 24시간 동안 증류수에 담근 후 젖은 막의 부피(Vwet)를 측정하고 상기 젖은 막을 120℃에서 24시간 동안 다시 진공건조시켜 부피(Vdry)를 측정하였다. 이들 측정된 수치를 하기 식에 대입하여 치수 변화도를 계산하였다.
Figure PCTKR2013010663-appb-I000031
마지막으로 물 흡수율(water uptake; WU)을 측정하였다. 상기 물 흡수율은 상기 젖은 상태의 막의 질량(Wwet) 및 건조된 막의 질량(Wdry)을 측정하여 하기의 식을 이용하여 계산하였다.
Figure PCTKR2013010663-appb-I000032
분자량은 고유점도를 측정하여 환산하였다. 고유점도를 측정하기 위하여 상기 제조된 고분자를 NMP에 녹여 0.5 g/dl의 농도로 제조한 용액의 점도를 25℃ 항온조 안에서 우베로드 점도계를 이용하여 측정하였다.
이와 같이 얻은 결과를 종합하여 하기 표 2에 나타내었다.
표 2
Figure PCTKR2013010663-appb-T000002
또한 온도를 80℃로 고정하고 상대습도를 변화시키면서 이온전도도를 측정하고 그 결과를 도 5에 나타내었다.
실시예 3: 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 블록 공중합체 및 나피온으로 제조된 고분자 막을 이용한 연료전지용 막-전극 접합체 및 이를 구비한 연료전지의 제조
상기 실시예 1에서 제조한 고분자 막(PBP-107, PBP-108 및 PBP-110)을 이용하여 연료전지용 막-전극 접합체를 제조하는 방법을 도 4에 개략적으로 나타내었다.
6 cm × 6 cm 크기의 실시예 1에 따라 제조된 각 전해질 막과, 전극 제조를 위한 촉매 슬러리를 준비하였다. 비교예로는 상용화되는 나피온212 고분자막을 사용하였다. 이때, 촉매 슬러리는 하기의 방법으로 제조하였다. 이-테크(E-tek, USA)에서 시판하는 40 중량% Pt/C 촉매 170 mg과 5 중량% 나피온 분산 용액(DuPont Inc., USA) 600 mg과 물 870 mg, 이소프로필 알콜(isopropyl alcohol) 460 mg을 혼합하여 초음파로 30분 동안 교반하여 촉매와 나피온이 균일하게 혼합되도록 하였다. 상기한 방법으로 획득한 촉매 슬러리는 닥터 블레이드(Doctor Blade)를 사용하여 폴리이미드 필름 상에 코팅하였다. 이때, 코팅 후 젖어있는 상태에서 촉매층의 두께가 200 μm가 되도록 제조하였다. 상기 촉매 슬러리를 질소가스 환경의 오븐을 이용하여 120℃에서 10시간 동안 건조하였다.
이후, 상기 폴리이미드 필름 상에 코팅된 촉매층을 25 cm2 크기로 재단하고 실시예 1에서 미리 합성하여 준비한 전해질 막(약 60 μm) 상에 적층하였다. 상기 전해질 막은 합성하여 필름으로 성형한 후 1,2-프로판디올(끓는 점 188℃) 용액을 브러싱(brushing) 방법으로 도포하여 제조하였다. 상기 도포된 친수성 용매의 양은 200 mg 용매/cm3 전해질 막 이었다. 1,2-프로판디올을 포함하는 전해질 막의 양쪽 면에, 한 면에 촉매층이 코팅된 폴리이미드 필름을 각각 촉매 층이 전해질 막을 향하도록 정렬시킨 뒤에 그 외부에 폴리이미드 필름을 추가로 부착하여 고분자 전해질 막을 보호하도록 하여 적층체를 구성하였다.
마지막으로, 상기 적층체를 실리콘 고무 사이에 넣고 다시 스테인레스스틸 판 사이에 삽입한 후, 평판프레스(Carver Inc., USA)를 사용하여 120℃에서 3분간 2 MPa의 압력으로 압착하여 막-전극 접합체(membrane-electrode assembly; MEA)를 제조하였다. 제조된 막-전극 접합체로부터 폴리이미드 필름을 제거하여 그 위에 남아있는 촉매 층의 무게로부터 전사율을 계산하였으며, 계산된 전사율은 100%였다.
실시예 4: 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자로부터 제조된 고분자 막을 이용한 연료전지용 막-전극 접합체를 포함하는 연료전지의 성능
본 발명에 따른 이온전도성 고분자인 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 블록 공중합체(PBP-107, PBP-108 및 PBP-110)의 연료전지용 막-전극 접합체로서의 활용도를 검증하기 위하여 상기 고분자를 이용하여 제조한 막-전극 접합체를 도입한 연료전지의 성능을 측정하기 위하여 제조한 막-전극 접합체를 가스켓(gasket), 분리판(bipolar plate), 집전체(current collector) 사이에 샌드위치시켜 셀을 제작하였고, 단위전지측정장치인 FCT-TS300(Fuel Cell Technologies Inc., USA)으로 전류전압곡선을 측정하여 확인하였다.
구체적으로, 연료전지의 활성화를 위하여 0.6 V에서 48시간 소요되었으며 가습량은 100 RH%였다. 단위셀 구동 시 애노드(anode) 연료인 수소와 캐소드(cathode) 연료인 공기의 유량 비율은 1.2:2로 조절하였다. 전류전압곡선은 0.5 V부터 1.0 V까지 50 mV 단계로 25초씩 측정하였다. 상기 전류전압곡선은 X축에 전류밀도, Y축에 전압을 나타낸 것으로, 측정장치에서 가하는 전압의 변화에 따른 전류밀도의 변화를 보여주는 대표적인 연료전지 성능평가방법이다.
그 결과는 도 6에 나타내었다. 도 6에 나타난 바와 같이, 본 발명의 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자(PBP-107, PBP-108 및 PBP-110)를 이용하여 제조한 전해질 막을 도입한 연료전지는 상용화되고 있는 나피온212(Nafion212)를 이용하는 연료전지보다 우수하거나 유사한 수준의 셀성능을 나타내는 것을 확인하였다. 이로부터, 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자는, 성형하여 전해질 막으로 제조하여 연료전지에 막-전극 접합체로 도입하였을 때, 상용화되고 있는 고가의 퍼플루오르계 고분자(나피온)보다 유사하거나 뛰어난 성능을 제공할 수 있음을 확인하였다.
실시예 5: 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자로부터 제조된 고분자 막을 구비한 레독스 플로우 전지의 구성 및 성능평가
상기 제조예 5에 따라 제조된 PBPSPP-107 고분자를 포함하는 30 μm 및 80 μm 두께의 이온교환막을 제작하고 각각을 70 mm×50 mm 크기로 잘라 도 7과 같이 제작된 싱글셀(single cell)에 장착(211)하여 셀의 충/방전 시험 및 효율을 측정하여 그 결과를 도 8 내지 10에 나타내었다.
구체적으로 상기 싱글셀은 양극과 음극 물질로 각각 열 및 산으로 처리한 5 mm 두께의 탄소펠트(carbon felt)를 사용하였다. 전극프레임(electrode frame) 물질은 아크릴을 사용하였으며, 종판(end plate) 물질로는 헥시온 사의 bakelite를 사용하였다. 양극 전해질로는 V(IV)/V(V) 산화환원쌍(redox couple)을, 음극 전해질로는 V(II)/V(III) 산화환원쌍을 사용하였다.
비교예로는 상용화되고 있는 나피온 212를 이용하여 동일한 방법으로 제조한 이온교환막을 이용하였다.
하기 표 3에는 각 싱글셀의 성능을 수치로 비교하여 정리하였다.
표 3
Figure PCTKR2013010663-appb-T000003
상기 싱글셀의 성능 평가를 위한 구동시험은 상온 즉, 25℃에서 수행하였다. 전해질의 흐름속도는 40 ml/min으로 고정하였다. 충전은 50 mA/cm2의 전류밀도로 1.6 V까지 진행하였고, 방전은 동일한 전류밀도로 1.0 V까지 진행하였다. 모든 싱글셀은 내구성을 테스트하기 위하여 충/방전을 20회 반복하여 수행하였다.
도 8 내지 10에 나타난 바와 같이, PBPSPP-107 이온교환막을 구비한 싱글셀은 수십회 충/방전을 반복하여도 우수한 셀성능을 나타내며, 높은 수준의 에너지 효율(energy efficiency; EE), 전기량 효율(coulombic efficiency; CE) 및 전압 효율(voltage efficiency; VE)을 유지할 뿐만 아니라 방전전하량 보존율도 높아 18회 이상 반복하여 사용하여도 87% 이상의 보존율을 나타내었다.
도 11에는 20회 이상 충/방전을 반복한 셀로부터 분리한 PBPSPP-107 이온교환막 이미지를 도시하였다. 이로부터 해당 이온교환막은 20회 가량 충/방전을 반복하여도 손상되지 않고 원형을 유지하는 것을 확인하였다.
[부호의 설명]
101: 이형필름
102: 촉매층
103: 이온전도성 고분자 막(전해질 막)
211: 격리막(이온교환막)
221: 양극
222: 음극
231: 양극 전해질 유입구
232: 양극 전해질 유출구
241: 음극 전해질 유입구
242: 음극 전해질 유출구
251: 셀 하우징

Claims (31)

  1. 하나 이상의 하기 화학식 1로 표시되는 페닐렌 반복단위 및 하나 이상의 하기 화학식 2로 표시되는 페닐렌 반복단위를 포함하는 골격을 갖는 고분자:
    [화학식 1]
    Figure PCTKR2013010663-appb-I000033
    [화학식 2]
    Figure PCTKR2013010663-appb-I000034
    상기 화학식에서,
    A1 및 A2는 각각 독립적으로 단일결합, -(C=O)-, -(P=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)-이고;
    B는 -O-, -S-, -(SO2)-, -(C=O)-, -NH- 또는 -NR15-이며, 이때 R15는 C1 내지 C6 알킬기이고;
    R1 내지 R5 중 둘 이상 또는 모두는 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)이고, 이들로 치환되지 아니한 R1 내지 R5는 각각 독립적으로 수소원자(-H), 할로겐원자(-X), 술폰산기(-SO3H), 인산기(-PO3H2), 아세트산기(-CO2H), 니트로기(-NO2), 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소 또는 황원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O-퍼플루오로아릴기, 또는 하나 이상의 할로겐, 술폰산기, 인산기, 아세트산기 또는 니트로기로 치환된 아릴기(aryl)이며, 상기 퍼플루오로기는 술폰산, 인산, 아세트산 및 니트로로 구성된 군으로부터 선택되는 치환기를 포함할 수 있고, 상기 술폰산기, 인산기 및 아세트산기는 알칼리 금속염의 형태일 수 있으며;
    R6 내지 R10은 각각 독립적으로 모두 수소원자이거나, 적어도 하나의 플루오린원자(F)(모두 플루오린인 경우는 제외), 아릴기, 퍼플루오르알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소 및/또는 황원자를 포함하는 퍼플루오로알킬아릴기, 퍼플루오로아릴기 및 -O-퍼플루오로아릴기이며;
    R11 내지 R14는 각각 독립적으로 수소원자, 할로겐원자, 술폰산기, 인산기, 아세트산기, 니트로기로 구성된 군으로부터 선택되는 치환기를 포함할 수 있고, 상기 술폰산기, 인산기 및 아세트산기는 알칼리 금속염의 형태일 수 있으며;
    a, b, c 및 d는 각각 독립적으로 0 이상 10 이하의 정수임.
  2. 제1항에 있어서,
    R1 내지 R5 중 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)로 치환된 위치는 대칭적인 것을 특징으로 하는 고분자.
  3. 제2항에 있어서,
    (R1 및 R5), (R2 및 R4), (R1, R3 및 R5) 및 (R1, R2, R4 및 R5) 로 구성된 군에서 선택된 조합의 위치가 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)로 치환된 것을 특징으로 하는 고분자.
  4. 제1항에 있어서,
    상기 고분자는 10,000 내지 1,000,000의 Mn(수평균 분자량; number-average molecular weight) 또는 10,000 내지 10,000,000의 Mw(중량평균 분자량; weight-average molecular weight)의 분자량을 갖는 것인 고분자.
  5. 제1항에 있어서,
    상기 골격의 페닐렌기는 서로 파라 위치에 연결된 것을 특징으로 하는 고분자.
  6. 제1항에 있어서,
    랜덤(random), 교차(alternating), 블록(block) 또는 순차적(sequential) 고분자인 것을 특징으로 하는 고분자.
  7. 제1항에 있어서,
    하기 화학식 3으로 표시되는 반복단위를 포함하는 골격을 갖는 고분자:
    [화학식 3]
    Figure PCTKR2013010663-appb-I000035
    상기 화학식 3에서,
    A1, A2, B, R1 내지 R5, R6 내지 R10, a, b, c 및 d는 각각 제1항에서 정의된 바와 같으며, m, n 및 p는 각각 독립적으로 1 이상의 정수임.
  8. 제7항에 있어서,
    상기 화학식 3에서 m과 n의 비는 1:1 내지 1:30인 것을 특징으로 하는 고분자.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    A1는 -(C=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)-;
    B는 -O-, -S-, -(SO2)- 또는 -(C=O)-;
    A2는 -(C=O)-; 및
    R1 내지 R5 모두는 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)인 것을 특징으로 하는 고분자.
  10. 제1항 내지 제8항 중 어느 한 항에 있어서,
    하나 이상의 하기 화학식 8 또는 9로 표시되는 페닐렌 반복단위를 추가로 포함하는 화학식 10의 골격을 갖는 고분자:
    [화학식 8]
    Figure PCTKR2013010663-appb-I000036
    [화학식 9]
    Figure PCTKR2013010663-appb-I000037
    [화학식 10]
    Figure PCTKR2013010663-appb-I000038
    상기 화학식 10에서 T는 상기 화학식 8 또는 9로 표시되는 단위이며,
    상기 A1, A2, B 및 R1 내지 R10은 화학식 1 및 2에서와 동일하고,
    J는 단일결합이거나 전자끌게기로서 -(C=O)-, -(P=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)- 이거나 전자주게기로서 -O-, -S-, -NH- 또는 -NR34-이며, 이때 R34는 C1 내지 C6 알킬기이며,
    R16 내지 R27은 각각 독립적으로 수소원자, 플루오린원자, 시아나이드(CN), 퍼플루오로알킬기(CnF2n+1) 또는 페닐기이며,
    m, n 및 l은 각각 독립적으로 1 이상인 정수임.
  11. 제10항에 있어서,
    하기 화학식 11로 표시되는 화합물인 것인 고분자:
    [화학식 11]
    Figure PCTKR2013010663-appb-I000039
    상기 m, n 및 l은 각각 독립적으로 1 이상인 정수임.
  12. 제11항에 있어서,
    상기 화학식 11에서 m에 대한 n+l의 비는 1:2 내지 1:30인 것을 특징으로 하는 고분자.
  13. 제1항 내지 제8항 중 어느 한 항에 기재된 고분자의 제조방법으로서,
    하기 반응식 1로 표시되는 측쇄에 전자끌게기로 연결된 반응성 할로겐원소로 치환된 아릴기를 포함하는 디할로벤젠(dihalobenzene)과 측쇄에 전자끌게기로 연결된 반응성 할로겐원소로 치환되지 않은 아릴기를 포함하는 디할로벤젠의 혼합물로부터 콜론 커플링 반응(Colon coupling reaction)에 의해 반응성 할로겐원소로 치환 및 비치환된 아릴기를 측쇄에 가지는 벤젠으로 구성된 골격의 중합체를 제조하는 제1단계;
    하기 반응식 2로 표시되는 친핵성 치환 반응(Nucleophilic substitution reaction)에 의해 상기 벤젠 골격의 측쇄에 결합된 아릴기에 치환된 할로겐원소를 다중페닐 펜던트로 치환하는 제2단계; 및
    하기 반응식 3으로 표시되는 상기 다중페닐 펜던트로 치환된 중합체를 술폰화제, 질산화제, 인산화제 또는 할로겐화제로 처리하여 후처리 수식하는 제3단계를 포함하는 고분자의 제조방법:
    [반응식 1]
    Figure PCTKR2013010663-appb-I000040
    [반응식 2]
    Figure PCTKR2013010663-appb-I000041
    [반응식 3]
    Figure PCTKR2013010663-appb-I000042
    상기 R1 내지 R5 및 R11 내지 R14는 화학식 1에서와 동일하고,
    상기 R28 내지 R32는 각각 R1 내지 R5에 상응하는 것으로,
    n을 1 내지 5의 정수라고 할 때,
    Rn이 술폰화된 치환기인 경우, Rn+27은 이에 상응하는 술폰화되지 않은 치환기이고,
    Rn이 비술폰화된 치환기인 경우, Rn+27은 Rn과 동일한 치환기이며,
    a, b, c 및 d는 각각 독립적으로 0 이상 10 이하의 정수임.
  14. 제13항에 있어서,
    상기 술폰화제는 클로로술폰산(HSO3Cl) 또는 트리메틸실리클로로술폰산[(CH3)3SiSO3Cl]인 것을 특징으로 하는 고분자의 제조방법.
  15. 제1항 내지 제8항 중 어느 한 항에 기재된 고분자를 포함하는 이온전도체.
  16. 제1항 내지 제8항 중 어느 한 항에 기재된 고분자를 포함하는 수지 조성물로부터 형성된 성형체.
  17. 제16항에 있어서,
    상기 성형체는 전해질막, 분리막 또는 수처리막인 것인 성형체.
  18. 제1항 내지 제12항 중 어느 한 항에 기재된, 하나 이상의 하기 화학식 1로 표시되는 페닐렌 반복단위 및 하나 이상의 하기 화학식 2로 표시되는 페닐렌 반복단위를 포함하는 골격을 갖는 고분자를 포함하는 수지조성물로부터 제조된 전해질 막:
    [화학식 1]
    Figure PCTKR2013010663-appb-I000043
    [화학식 2]
    Figure PCTKR2013010663-appb-I000044
    상기 화학식에서,
    A1, A2, B, R1 내지 R1 내지 R14, a, b, c 및 d는 각각 제1항에서 정의된 바와 같음.
  19. 제18항에 있어서,
    A1은 -(C=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)-;
    A2는 -(C=O)-; B는 -O-, -S-, -(SO2)- 또는 -(C=O)-;
    R1 내지 R5 모두는 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)이며;
    a, b, c 및 d는 각각 독립적으로 1 이상 10 이하의 정수인 전해질 막.
  20. 제18항에 기재된 전해질 막을 구비한 막-전극 접합체(MEA).
  21. 제20항에 기재된 막-전극 접합체를 구비한 전지.
  22. 제21항에 있어서,
    양성자 교환막 연료전지(proton exchange membrane fuel cell a.k.a. polymer electrolyte membrane fuel cell; PEMFC), 직접 메탄올 연료전지(direct methanol fuel cell; DMFC) 또는 산화환원 흐름 전지(redox flow battery)인 것인 전지.
  23. 제1항 내지 제12항 중 어느 한 항에 기재된 하나 이상의 하기 화학식 1로 표시되는 페닐렌 반복단위 및 하나 이상의 하기 화학식 2로 표시되는 페닐렌 반복단위를 포함하는 골격을 갖는 이온전도성 고분자를 포함하는 수지조성물로부터 제조된 레독스 플로우 전지용 격리막.
  24. 제23항에 있어서,
    A1은 -(C=O)-, -(SO2)-, -CF2- 또는 -(C(CF3)2)-;
    A2는 -(C=O)-; B는 -O-, -S-, -(SO2)- 또는 -(C=O)-;
    R1 내지 R5 모두는 술폰산기 또는 이의 알칼리 금속염으로 치환된 페닐기(sulfonated phenyl), 피리디닐기(sulfonated pyridinyl) 또는 나프탈레닐기(sulfonated naphthalenyl)이며;
    a, b, c 및 d는 각각 독립적으로 1 이상 10 이하의 정수인 격리막.
  25. 제23항에 있어서,
    상기 격리막은 이온전도성 고분자 자체를 성형한 고분자막 또는 이온전도성 고분자를 나노웹 지지체에 함침시켜 제조한 복합막인 것인 격리막.
  26. 제25항에 있어서,
    상기 나노웹 지지체는 폴리이미드, 폴리메틸펜텐, 폴리에스터, 폴리아크릴로니트릴, 폴리비닐아미드, 폴리에틸렌, 폴리프로필렌, 폴리비닐플루오라이드, 폴리비닐디플루오라이드, 나일론, 폴리벤즈옥사졸, 폴리에틸렌테레프탈레이트, 폴리테트라플루오로에틸렌, 폴리아릴렌에테르술폰, 폴리에테르에테르케톤 및 이들의 조합으로 구성된 군으로부터 선택되는 재질의 지지체인 것인 격리막.
  27. 양극, 양극 전해질, 제23항에 기재된 격리막, 음극 전해질 및 음극을 구비한 레독스 플로우 전지.
  28. 제27항에 있어서,
    상기 양극 전해질로 V(IV)/V(V) 레독스 커플을, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용하는 전바나듐계 레독스 전지인 것을 특징으로 하는 레독스 플로우 전지.
  29. 제27에 있어서,
    상기 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 V(II)/V(III) 레독스 커플을 사용하는 바나듐계 레독스 전지인 것을 특징으로 하는 레독스 플로우 전지.
  30. 제27항에 있어서,
    상기 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 설파이드 레독스 커플을 사용하는 폴리설파이드브로민 레독스 전지인 것을 특징으로 하는 레독스 플로우 전지.
  31. 제27항에 있어서,
    상기 양극 전해질로 할로겐 레독스 커플을, 음극 전해질로 아연(Zn) 레독스 커플을 사용하는 아연-브로민(Zn-Br) 레독스 전지인 것을 특징으로 하는 레독스 플로우 전지.
PCT/KR2013/010663 2012-11-23 2013-11-22 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도 WO2014081235A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0134076 2012-11-23
KR1020120134076A KR101532306B1 (ko) 2012-11-23 2012-11-23 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 고분자 이온전도체

Publications (1)

Publication Number Publication Date
WO2014081235A1 true WO2014081235A1 (ko) 2014-05-30

Family

ID=50776338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010663 WO2014081235A1 (ko) 2012-11-23 2013-11-22 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도

Country Status (2)

Country Link
KR (1) KR101532306B1 (ko)
WO (1) WO2014081235A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146344A1 (en) * 2017-02-13 2018-08-16 Cmblu Projekt Ag Process for the production of sulphonated low molecular weight derivatives from lignin
WO2018146343A1 (en) * 2017-02-13 2018-08-16 Cmblu Projekt Ag Process for the production of lignin derived low molecular products
US11008284B2 (en) 2016-04-07 2021-05-18 Cmblu Projekt Ag Sulfonated aromatic compounds
US11788228B2 (en) 2017-02-13 2023-10-17 Cmblu Energy Ag Methods for processing lignocellulosic material
US11831017B2 (en) 2018-02-13 2023-11-28 Cmblu Energy Ag Redox flow battery electrolytes
US11891349B2 (en) 2018-02-13 2024-02-06 Cmblu Energy Ag Aminated lignin-derived compounds and uses thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102063048B1 (ko) * 2016-05-24 2020-01-07 주식회사 엘지화학 연료 전지 또는 레독스 플로우 전지의 분리막용 고분자 및 이의 제조방법
KR101952920B1 (ko) * 2017-04-28 2019-05-17 한국화학연구원 폴리페닐렌계 음이온 전도체, 이의 제조방법 및 용도
KR102608992B1 (ko) * 2021-05-13 2023-11-30 한국화학연구원 측쇄형 관능기를 갖는 강직한 주쇄형 음이온 전도성 고분자 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147074A (ja) * 2001-11-16 2003-05-21 Toyobo Co Ltd スルホン酸基含有芳香族ポリアリーレンエーテル化合物および高分子電解質膜
KR20090088646A (ko) * 2008-02-15 2009-08-20 제일모직주식회사 양이온 전도성 폴리술폰계 가교 고분자막, 막-전극 접합체및 연료전지
KR20110117994A (ko) * 2010-04-22 2011-10-28 주식회사 동진쎄미켐 다중 페닐기를 포함하는 디히드록시 단량체, 상기 단량체를 이용하여 제조된 양성자 전도성 고분자, 상기 고분자를 포함하는 고분자 전해질막, 및 이를 포함하는 연료전지
KR20120009789A (ko) * 2010-07-21 2012-02-02 주식회사 동진쎄미켐 양성자 전도성 중합체, 이를 포함하는 고분자 전해질막, 양이온 교환 수지, 양이온 교환막, 및 상기 중합체의 제조방법
KR20120108611A (ko) * 2011-03-25 2012-10-05 한국화학연구원 술폰산기가 도입된 디페닐플루오렌기를 포함하는 수소이온 전도성 공중합체, 그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를 이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막 연료전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147074A (ja) * 2001-11-16 2003-05-21 Toyobo Co Ltd スルホン酸基含有芳香族ポリアリーレンエーテル化合物および高分子電解質膜
KR20090088646A (ko) * 2008-02-15 2009-08-20 제일모직주식회사 양이온 전도성 폴리술폰계 가교 고분자막, 막-전극 접합체및 연료전지
KR20110117994A (ko) * 2010-04-22 2011-10-28 주식회사 동진쎄미켐 다중 페닐기를 포함하는 디히드록시 단량체, 상기 단량체를 이용하여 제조된 양성자 전도성 고분자, 상기 고분자를 포함하는 고분자 전해질막, 및 이를 포함하는 연료전지
KR20120009789A (ko) * 2010-07-21 2012-02-02 주식회사 동진쎄미켐 양성자 전도성 중합체, 이를 포함하는 고분자 전해질막, 양이온 교환 수지, 양이온 교환막, 및 상기 중합체의 제조방법
KR20120108611A (ko) * 2011-03-25 2012-10-05 한국화학연구원 술폰산기가 도입된 디페닐플루오렌기를 포함하는 수소이온 전도성 공중합체, 그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를 이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막 연료전지

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008284B2 (en) 2016-04-07 2021-05-18 Cmblu Projekt Ag Sulfonated aromatic compounds
US11225756B2 (en) 2016-04-07 2022-01-18 Cmblu Projekt Ag Method for producing low molecular weight aromatic lignin-derived compounds
US11773537B2 (en) 2016-04-07 2023-10-03 Cmblu Energy Ag Sulfonated lignin-derived compounds and uses thereof
WO2018146344A1 (en) * 2017-02-13 2018-08-16 Cmblu Projekt Ag Process for the production of sulphonated low molecular weight derivatives from lignin
WO2018146343A1 (en) * 2017-02-13 2018-08-16 Cmblu Projekt Ag Process for the production of lignin derived low molecular products
US11450854B2 (en) 2017-02-13 2022-09-20 Cmblu Energy Ag Redox flow battery electrolytes
US11788228B2 (en) 2017-02-13 2023-10-17 Cmblu Energy Ag Methods for processing lignocellulosic material
US11831017B2 (en) 2018-02-13 2023-11-28 Cmblu Energy Ag Redox flow battery electrolytes
US11891349B2 (en) 2018-02-13 2024-02-06 Cmblu Energy Ag Aminated lignin-derived compounds and uses thereof

Also Published As

Publication number Publication date
KR20140066932A (ko) 2014-06-03
KR101532306B1 (ko) 2015-06-30

Similar Documents

Publication Publication Date Title
WO2014081235A1 (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도
WO2014073934A1 (ko) 부분 가지형 블록 공중합체를 포함하는 이온전도성 고분자 및 이의 용도
WO2016089153A1 (ko) 고분자 전해질막
US11108071B2 (en) Method for producing polymer electrolyte molded article, polymer electrolyte material, polymer electrolyte membrane, and polymer electrolyte fuel cell
WO2014200286A2 (ko) 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
WO2018199458A1 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2013081437A1 (ko) 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지
WO2016089155A1 (ko) 고분자 전해질막
EP1314751B1 (en) Poly(arylene ether sulfone) having sulfoalkoxy group, process of producing the same, and polymer electrolyte membrane comprising the same
KR20070117706A (ko) 가교 고분자 전해질 및 그 제조 방법
WO2021112420A1 (ko) 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
WO2017171290A1 (ko) 블록 중합체 및 이를 포함하는 고분자 전해질막
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
WO2012134095A2 (ko) 술폰산기가 도입된 디페닐플루오렌기를 포함하는 수소이온 전도성 공중합체, 그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를 이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막 연료전지
JP6813835B2 (ja) 高分子電解質及びその利用
WO2016068605A1 (ko) 브랜처용 불소계 화합물, 이를 이용한 고분자 및 이를 이용한 고분자 전해질막
KR100907476B1 (ko) 부분적으로 불소가 도입된 이온 전도성 공중합체를 함유한고분자 전해질 막, 그의 제조방법 및 고분자 전해질 막을채용한 고분자 전해질형 연료전지
WO2010076911A1 (ko) 퍼플루오로싸이클로부탄기를 포함하는 후술폰화된 공중합체, 이의 제조방법 및 이의 용도
WO2016122195A1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2022210641A1 (ja) スルホン酸基を有するフッ素含有化合物及び固体高分子形燃料電池
WO2016089156A2 (ko) 중합체 및 이를 포함하는 고분자 전해질막
WO2019168321A1 (ko) 이온 교환막 및 이를 포함하는 에너지 저장 장치
WO2019098771A1 (ko) 중합체 및 이를 포함하는 고분자 분리막
WO2016089152A1 (ko) 할로겐화 화합물, 이를 포함하는 중합체 및 이를 포함하는 고분자 전해질막
KR20150133338A (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자로부터 제조된 전해질 막 및 이를 구비한 연료전지용 막전극 접합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857186

Country of ref document: EP

Kind code of ref document: A1