WO2019098771A1 - 중합체 및 이를 포함하는 고분자 분리막 - Google Patents

중합체 및 이를 포함하는 고분자 분리막 Download PDF

Info

Publication number
WO2019098771A1
WO2019098771A1 PCT/KR2018/014137 KR2018014137W WO2019098771A1 WO 2019098771 A1 WO2019098771 A1 WO 2019098771A1 KR 2018014137 W KR2018014137 W KR 2018014137W WO 2019098771 A1 WO2019098771 A1 WO 2019098771A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
polymer
same
Prior art date
Application number
PCT/KR2018/014137
Other languages
English (en)
French (fr)
Inventor
이진희
김병국
최형삼
유윤아
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18879548.8A priority Critical patent/EP3683254A4/en
Priority to US16/754,630 priority patent/US11618804B2/en
Priority to JP2020519239A priority patent/JP6943530B2/ja
Priority to CN201880064710.7A priority patent/CN111164132B/zh
Publication of WO2019098771A1 publication Critical patent/WO2019098771A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0245Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4006(I) or (II) containing elements other than carbon, oxygen, hydrogen or halogen as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4018(I) or (II) containing halogens other than as leaving group (X)
    • C08G65/4025(I) or (II) containing fluorine other than as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0236Polyarylenethioethers containing atoms other than carbon or sulfur in a linkage between arylene groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer, a polymer membrane including the same, a membrane electrode assembly including the same, a fuel cell, and a redox flow cell.
  • the fuel cell separator material has high ionic conductivity and simultaneously prevents cross-over of electrolytic material, 2) strong chemical resistance when operating the cell, 3) mechanical property enhancement, 4) ) And a low swelling ratio.
  • most membrane materials of fuel cells use Nafion.
  • Nafion has high ionic conductivity and good thermal and mechanical properties.
  • Nafion has a disadvantage in that the membrane resistance increases when the thickness is increased in order to ensure high cost, methanol crossover, and mechanical properties. Therefore, it is required to develop a material having high ionic conductivity and mechanical properties of hydrocarbon at the same time.
  • the present invention provides a polymer, a polymer membrane including the same, a membrane electrode assembly including the same, a fuel cell, and a redox flow battery.
  • L1 is a direct bond; -S-; -O-; -NRa-; -SO 2 -; Or a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms,
  • A is -SO 3 H, -SO 3 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H - M +, -PO 3 2- 2M +, -O (CF 2) m SO 3 H, -O (CF 2) m SO 3 - M +, -O (CF 2) m COOH, -O (CF 2) m COO - M +, -O (CF 2 ) m PO 3 H 2 , -O (CF 2 ) m PO 3 H - M + , or -O (CF 2 ) m PO 3 2- 2M +
  • n is an integer of 2 to 6
  • M is a Group 1 element
  • R1 to R5 are the same or different from each other, and each independently hydrogen; A halogen group; Or a hydroxy group, at least two of R 1 to R 5 are a halogen group; Or a hydroxy group,
  • R6 and R7 are the same or different and are each independently a halogen group
  • Ra is hydrogen; Or a substituted or unsubstituted alkyl group,
  • n is an integer of 2 to 10, and when n is an integer of 2 or more, the structures in parentheses are the same or different from each other.
  • one embodiment of the present invention provides a polymer separator comprising the above-mentioned polymer.
  • one embodiment of the present disclosure relates to an anode; Cathode; And the above-described polymer separator provided between the anode and the cathode.
  • another embodiment of the present invention is a membrane electrode assembly comprising at least two membrane electrode assemblies described above; A stack including a bipolar plate provided between the membrane electrode assemblies; A fuel supply unit for supplying fuel to the stack; And an oxidant supply unit for supplying an oxidant to the stack.
  • a positive electrode comprising a positive electrode and a positive electrode electrolyte
  • a negative electrode cell comprising a negative electrode and a negative electrode electrolyte
  • a polymer separator disposed between the anode cell and the cathode cell and in one embodiment of the present invention.
  • the polymer separator according to one embodiment of the present invention can achieve a high ionic conductivity due to a hydrophilic block including perfluorosulfonic acid, and a large amount of fluorine functional groups contained in the hydrophobic block can absorb moisture the water uptake can be lowered and the mechanical stability of the membrane can be improved under humidification conditions.
  • the polymer separator according to one embodiment of the present disclosure has a low swelling ratio and can maintain excellent ionic conductivity under low humidification conditions.
  • 1 is a schematic view showing an electricity generation principle of a fuel cell.
  • FIG. 2 is a schematic view showing an embodiment of a redox flow battery.
  • FIG 3 is a schematic view showing one embodiment of a fuel cell.
  • FIG. 5 is a graph showing the 1 H-NMR spectrum of the hydrophilic polymer A prepared according to Production Example 1.
  • FIG. 6 is a diagram showing a molecular weight distribution measured using a GPC trace of the hydrophilic polymer A prepared according to Production Example 1.
  • FIG. 6 is a diagram showing a molecular weight distribution measured using a GPC trace of the hydrophilic polymer A prepared according to Production Example 1.
  • FIG. 7 shows a 1 H-NMR spectrum of the hydrophilic polymer B prepared according to Preparation Example 2.
  • FIG. 8 is a diagram showing the molecular weight distribution measured using the GPC trace of the hydrophilic polymer B prepared according to Preparation Example 2.
  • FIG. 9 is a graph showing the 1 H-NMR spectrum of the block polymer I synthesized according to Example 1.
  • FIG. 10 is a diagram showing the molecular weight distribution measured using the GPC trace of the block polymer I synthesized according to Example 1.
  • FIG. 10 is a diagram showing the molecular weight distribution measured using the GPC trace of the block polymer I synthesized according to Example 1.
  • FIG. 11 is a view showing the 1 H-NMR spectrum of the block polymer II synthesized according to Example 2.
  • FIG. 12 is a diagram showing a molecular weight distribution measured using a GPC trace of the block polymer II synthesized according to Example 2.
  • FIG. 12 is a diagram showing a molecular weight distribution measured using a GPC trace of the block polymer II synthesized according to Example 2.
  • FIG. 13 is a graph showing the 1 H-NMR spectrum of the block polymer III synthesized according to Example 3. Fig.
  • FIG. 14 is a graph showing the 1 H-NMR spectrum of the block polymer IV synthesized according to Example 4.
  • a hydrophilic block comprising a hydrophilic block and a hydrophobic block, wherein the hydrophilic block comprises a unit derived from a compound represented by the following formula (1), wherein the hydrophobic block comprises a unit derived from a fluorine- ≪ / RTI >
  • L1 is a direct bond; -S-; -O-; -NRa-; -SO 2 -; Or a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms,
  • A is -SO 3 H, -SO 3 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H - M +, -PO 3 2- 2M +, -O (CF 2) m SO 3 H, -O (CF 2) m SO 3 - M +, -O (CF 2) m COOH, -O (CF 2) m COO - M +, -O (CF 2 ) m PO 3 H 2 , -O (CF 2 ) m PO 3 H - M + , or -O (CF 2 ) m PO 3 2- 2M +
  • n is an integer of 2 to 6
  • M is a Group 1 element
  • R1 to R5 are the same or different from each other, and each independently hydrogen; A halogen group; Or a hydroxy group, at least two of R 1 to R 5 are a halogen group; Or a hydroxy group,
  • R6 and R7 are the same or different and are each independently a halogen group
  • Ra is hydrogen; Or a substituted or unsubstituted alkyl group,
  • n is an integer of 2 to 10, and when n is an integer of 2 or more, the structures in parentheses are the same or different from each other.
  • Nafion which was previously used as a separator material, has a high ionic conductivity and good thermal and mechanical properties.
  • Nafion has increased membrane resistance .
  • Hydrocarbon-based membrane materials developed to replace these materials have the advantage of being able to produce thin films with high mechanical strength and thermal stability, but in order to have a high ionic conductivity, a large number of acidic functional groups must be introduced, There is a disadvantage that the stability of the membrane is deteriorated under the condition.
  • the polymer according to one embodiment of the present invention introduces the concept of a block copolymer to enhance ionic conductivity and maintain mechanical properties, to transfer ions through a hydrophilic block, and to secure mechanical properties through a hydrophobic block
  • high ionic conductivity can be given by introducing perfluorosulfonic acid (ex, -CF 2 CF 2 SO 3 H) which is a super acid instead of sulfuric acid (-SO 3 H) which is generally introduced into a hydrocarbon-based polymer.
  • the polymer synthesized according to one embodiment of the present invention showed good solubility in a polar aprotic polar solvent and was dissolved in dimethylsulfoxide (DMSO) to cast a brown transparent separator.
  • DMSO dimethylsulfoxide
  • the prepared membranes showed a low swelling ratio and showed close to Nafion at low humidification conditions.
  • the polymer according to one embodiment of the present invention can be polymerized at a low temperature ranging from 40 ⁇ to 90 ⁇ to inhibit side reactions such as ether-ether interchange reaction.
  • a low temperature ranging from 40 ⁇ to 90 ⁇ to inhibit side reactions such as ether-ether interchange reaction.
  • side reactions such as ether-ether interchange reaction.
  • the unit derived from the compound represented by the formula (1) according to one embodiment of the present invention has high reactivity in the polymerization process, and thus the process efficiency can be enhanced.
  • the polymer membrane prepared using the unit derived from the compound can easily form a hydrophilic-hydrophobic phase separation structure.
  • the polymer separator comprising units derived from the compound according to one embodiment of the present invention can efficiently form a hydrophilic channel in the polymer separator by controlling the phase separation structure.
  • the polymer separator containing a unit derived from the above compound is excellent in ionic conductivity.
  • the units derived from the compounds are thermally and chemically stable.
  • the polymer separator containing a unit derived from a compound according to one embodiment of the present invention can have equivalent ion conductivity at a low ion exchange capacity (IEC) as compared with a polymer separator comprising a hydrocarbon compound, So that excellent ion conductivity can be maintained.
  • IEC ion exchange capacity
  • PEMFC polymer electrolyte fuel cell
  • gas crossover can be prevented, and ion conductivity can be improved even under low humidification conditions have.
  • the redox flow battery including the polymer separator according to one embodiment of the present invention can prevent crossover of vanadium ions.
  • the fuel cell including the polymer separator according to one embodiment of the present invention is excellent in durability and efficiency.
  • the term "derived" means that the bond of the compound is broken or a new bond is formed as the substituent is released, and the unit derived from the compound may mean a unit connected to the main chain of the polymer. The unit may be included in the main chain in the polymer to constitute the polymer.
  • unit means a structure in which a monomer is repeatedly contained in a polymer, and the monomer is bonded to the polymer by polymerization.
  • separator is a membrane capable of exchanging ions and includes a membrane, an ion exchange membrane, an ion transport membrane, an ion conductive membrane, an ion exchange membrane, an ion exchange membrane, an ion conductive membrane, An electrolyte membrane, or an ion conductive electrolyte membrane.
  • substituted or unsubstituted A halogen group; Cyano; A nitro group; A hydroxy group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted aryloxy group; A substituted or unsubstituted alkenyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted amine group; A substituted or unsubstituted aryl group; And a substituted or unsubstituted heteroaryl group, or that at least two of the substituents exemplified above are substituted with a substituent to which they are linked, or have no substituent.
  • the "substituent group to which at least two substituents are connected” means an alkyl group substituted with a halogen group, an aryl group substituted with an alkyl group, an aryl group substituted with an aryl group, an aryl group substituted with a heteroaryl group, an aryl group substituted with a silyl group, A silyl group, a heteroaryl group substituted with an alkyl group, a heteroaryl group substituted with an aryl group, a heteroaryl group substituted with a heteroaryl group, and the like, but are not limited thereto.
  • substituted means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited as long as the substituent is a substitutable position, When the substituent is more than two, the two or more substituents may be the same as or different from each other.
  • hydrocarbon-based means an organic compound consisting solely of carbon and hydrogen, and includes, but is not limited to, linear, branched or cyclic hydrocarbons. It may also include, but is not limited to, a single bond, a double bond, or a triple bond.
  • fluorine-based conjugate means that part or all of the carbon-hydrogen bond in the hydrocarbon system is substituted with fluorine.
  • hydrophilic block refers to a block having an ion-exchange group as a functional group.
  • the functional groups are -SO 3 H, -SO 3 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H - M +, -PO 3 2- 2M +, -O (CF 2) w SO 3 H, -O (CF 2) w SO 3 - M +, -O (CF 2) w COOH, -O (CF 2) w COO - M +, -O (CF 2 M + may be, and -O (CF 2) w PO 3, at least one selected from the group consisting of 2- 2M + -) w PO 3 H 2, -O (CF 2) w PO 3 H.
  • M is a metallic element
  • w may have a range of 1 ⁇ w ⁇ 10. That is, the functional group may be hydrophilic.
  • block having an ion exchanger means an average of 0.5 or more ion exchange groups per structural monomer constituting the block, and an average of 1.0 or more It is more preferable to have an ion exchanger.
  • hydrophobic block means the polymer block having substantially no ion exchanger.
  • block having substantially no ion exchanger means a block represented by the number of ion-exchange groups per one structural monomer constituting the block, the average being less than 0.1, more preferably 0.05 or less , And it is more preferable that it is a block having no ion exchanger at all.
  • the halogen group may be F, Cl, Br, I, or the like.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 50. According to one embodiment, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a n-propyl group, an isopropyl group, a butyl group, a n-butyl group, an isobutyl group, N-pentyl, 3-dimethylbutyl, 2-ethylbutyl, heptyl, n-hexyl, Cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethyl Heptyl, 1-ethylpropyl, 1,1-dimethylpropyl, isohexyl, 4-methylhexyl, 5-methylhexyl and the like.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 50 carbon atoms. According to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • cyclopropyl cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
  • the aryl group is not particularly limited, but may have from 6 to 50 carbon atoms, and the aryl group may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms. Examples of the monocyclic aryl group include, but are not limited to, a phenyl group, a biphenyl group, a terphenyl group, and the like.
  • polycyclic aryl group examples include naphthyl, anthracenyl, phenanthrenyl, pyrenyl, perylenyl, fluoranthenyl, triphenylenyl, phenalenyl, A naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, A naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naphthyl group, a naph
  • the heteroaryl group includes one or more atoms other than carbon, that is, a heteroatom.
  • the heteroatom includes an atom selected from the group consisting of N, P, O, S, Se, 1 or more.
  • the number of carbon atoms is not particularly limited, but is preferably 2 to 50 carbon atoms.
  • the heteroaryl group has 2 to 30 carbon atoms.
  • the heteroaryl group has 2 to 20 carbon atoms.
  • the heteroaryl group may be monocyclic or polycyclic.
  • heteroaryl group examples include a thiophene group, a furanyl group, a pyrrolyl group, an imidazolyl group, a thiazolyl group, an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, a pyridyl group, a bipyridyl group, A thiazolyl group, an acridyl group, a pyridazinyl group, a pyrazinyl group, a quinolinyl group, a quinazolinyl group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidyl group, A benzoimidazolyl group, a benzothiazolyl group, a benzothiazolyl group, a benzothiophene group, a dibenzothiophene group, a benzoimidazolyl group, a
  • the alkoxy group may be linear, branched or cyclic.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably 1 to 50 carbon atoms. Specific examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, isopentyloxy, n But are not limited to, hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy and the like.
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 50.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, Butenyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl and styrenyl groups. no.
  • the silyl group is specifically exemplified by trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, vinyldimethylsilyl, propyldimethylsilyl, triphenylsilyl, diphenylsilyl,
  • the present invention is not limited thereto.
  • the amine group is -NH 2 ; An alkylamine group; N-alkylarylamine groups; An arylamine group; An N-arylheteroarylamine group; An N-alkylheteroarylamine group, and a heteroarylamine group.
  • the number of carbon atoms is not particularly limited, but is preferably 1 to 50.
  • amine group examples include methylamine, dimethylamine, ethylamine, diethylamine, phenylamine, naphthylamine, biphenylamine, anthracenylamine, 9- A diphenylamine group, an N-phenylnaphthylamine group, a ditolylamine group, an N-phenyltolylamine group, a triphenylamine group, an N-phenylbiphenylamine group, an N-phenylnaphthylamine group, A naphthylamine group, a naphthylamine group, an N-naphthylfluorenylamine group, an N-phenylphenanthrenylamine group, an N-biphenylphenanthrenylamine group, an N-phenylfluorenylamine group, , An N-phenanthrenyl fluorenylamine group, and an N-biphenylfluorenylamine group
  • the hydrophilic block in the polymer contained in the polymer separation membrane includes a unit derived from the compound represented by the formula (1).
  • R1 to R5 are the same or different from each other, and each independently hydrogen or a halogen group.
  • At least two of R1 to R5 are halogen groups.
  • R1 to R5 are the same or different from each other and each independently hydrogen or F.
  • At least two of R1 to R5 are F.
  • At least two of R1 to R5 are F and the remainder are hydrogen.
  • R2 and R4 are F, and R1, R3, and R5 are hydrogen.
  • R1 and R3 are F and R2, R4 and R5 are hydrogen.
  • R2 and R5 are F, and R1, R3, and R4 are hydrogen.
  • L1 is a direct bond; -S-; -O-; -NRa-; -SO 2 -; Or an alkylene group having 1 to 10 carbon atoms which is substituted or unsubstituted with a halogen group.
  • L1 is a direct bond; -S-; -O-; -NRa-; -SO 2 -; Or an alkylene group having 1 to 6 carbon atoms which is substituted or unsubstituted with a halogen group.
  • L1 is a direct bond.
  • L1 is -S-.
  • L1 is -O-.
  • L1 is -NR < a > -.
  • the L1 is -SO 2 - is a.
  • L1 is the -CF 2 CF 2 - a.
  • A is -SO 3 H, -SO 3 - a M + - M +, -O ( CF 2) m SO 3 H, or -O (CF 2) m SO 3 .
  • A is -SO 3 H, or -SO 3 - M a +.
  • A is -O (CF 2 ) m SO 3 H, or -O (CF 2 ) m SO 3 - M + .
  • a polymer containing a unit derived from a compound represented by the formula (1) can be chemically stably formed.
  • M is a Group 1 element.
  • the Group 1 element is Li, Na or K.
  • R6 and R7 are F.
  • the formula (1) may be represented by one of the following formulas (1-1) to (1-6).
  • n, m and M are as defined in formula (1).
  • n is two.
  • m is 2.
  • the hydrophilic block in the polymer contained in the polymer separator may further include a unit derived from a compound represented by the following formula (2).
  • X1 is a direct bond; -C (Z1) (Z2) -; -O-; -S-; -SO 2 -; -CO-; Or -Si (Z1) (Z2) -,
  • Z1 and Z2 are the same or different from each other, and each independently hydrogen; heavy hydrogen; A halogen group; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • T1 and T2 are the same or different from each other, and each independently hydrogen; heavy hydrogen; A halogen group; A nitrile group; A nitro group; A hydroxy group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted alkenyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted amine group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, t1 and t2 are an integer of 0 to 4, and when t1 and t2 are an integer of 2 or more, the substituents in the parentheses are the same or different from each other.
  • X1 is a direct bond.
  • X1 is -C (Z1) (Z2) -.
  • X1 is -O-.
  • X1 is -S-.
  • X1 is -CO-.
  • X1 is -Si (Z1) (Z2) -.
  • Z1 and Z2 are the same or different from each other, and each independently hydrogen; heavy hydrogen; A halogen group; A substituted or unsubstituted alkyl group having 1 to 10 carbon atoms; Or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms.
  • Z1 and Z2 are the same or different from each other, and each independently represents a halogen group; Or an alkyl group having 1 to 10 carbon atoms which is substituted or unsubstituted with a halogen group.
  • Z 1 and Z 2 are the same or different and each independently represent an alkyl group having 1 to 10 carbon atoms which is substituted or unsubstituted with a halogen group.
  • Z 1 and Z 2 are the same or different and are each independently a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms.
  • Z1 and Z2 are methyl groups substituted with F.
  • the Z1 and Z2 is -CF 3.
  • T1 and T2 are the same or different from each other, and each independently hydrogen; Or a halogen group.
  • T1 and T2 are the same or different from each other and each independently hydrogen.
  • the hydrophilic block may include a repeating unit represented by the following formula (4).
  • x1, a and a ' are the number of repeats in the parentheses, and are integers of 1 to 1,000, a: a' is 1,000: 1 to 1: 1,000,
  • L11 is a direct bond; -S-; -O-; -NRb-; -SO 2 -; Or a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms,
  • n is an integer of 2 to 6
  • M is a Group 1 element
  • R16 and R17 are the same or different and are each independently a halogen group
  • Rb is hydrogen; Or a substituted or unsubstituted alkyl group,
  • n ' is an integer of 2 to 10
  • n' is an integer of 2 or more
  • the structures in parentheses are the same or different from each other
  • X11 is a direct bond; -C (Z11) (Z12) -; -O-; -S-; -SO 2 -; -CO-; Or -Si (Z11) (Z12) -,
  • Z11 and Z12 are the same or different from each other, and each independently hydrogen; heavy hydrogen; A halogen group; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • T11 and T12 are the same or different and each independently hydrogen; heavy hydrogen; A halogen group; A nitrile group; A nitro group; A hydroxy group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted alkenyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted amine group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, t11 and t12 are an integer of 0 to 4, and when t11 and t12 are an integer of 2 or more, the substituents in the parentheses are the same or different from each other.
  • the formula (4) may be represented by one of the following formulas (4-1) to (4-3).
  • the hydrophobic block in the polymer contained in the polymer separator includes a unit derived from a fluorine-containing compound.
  • the fluorine-containing compound may be decafluorobiphenyl.
  • the fluorine-containing compound may be a compound represented by the following formula (3).
  • X2 is a direct bond; -C (Z3) (Z4) -; -O-; -S-; -SO 2 -; -CO-; Or -Si (Z3) (Z4) -,
  • Z3 and Z4 are the same or different from each other, and each independently hydrogen; heavy hydrogen; A halogen group; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • T3 and T4 are the same or different from each other, and each independently hydrogen; heavy hydrogen; A halogen group; A nitrile group; A nitro group; A hydroxy group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted alkenyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted amine group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, t3 and t4 are an integer of 0 to 4, and when t3 and t4 are an integer of 2 or more, the substituents in the parentheses are the same or different,
  • X2 is -C (Z3) (Z4) -; Or -Si (Z3) (Z4) -, Z3 and Z4 are the same or different and are each independently an alkyl group substituted with a halogen group,
  • X2 is a direct bond; -C (Z3) (Z4) -; -O-; -S-; -SO 2 -; -CO-; Or -Si (Z3) (Z4) -, and when Z3 and Z4 are not an alkyl group substituted with a halogen group, T3 and T4 are the same or different and each independently represents a halogen group; An alkyl group substituted with a halogen group; Or an aryl group substituted with a halogen group, and t3 and t4 are an integer of 1 to 4.
  • X2 is a direct bond.
  • X2 is -C (Z3) (Z4) -.
  • X2 is -O-.
  • X2 is -S-.
  • X2 is -CO-.
  • X2 is -Si (Z3) (Z4) -.
  • X2 is -C (Z3) (Z4) -; Or -Si (Z3) (Z4) -, Z3 and Z4 are the same or different and are each independently an F substituted alkyl group, or X2 is a direct bond; -C (Z3) (Z4) -; -O-; -S-; -SO 2 -; -CO-; Or -Si (Z3) (Z4) -, and when Z3 and Z4 are not an alkyl group substituted by F, T3 and T4 are the same or different and each independently F; An alkyl group substituted with F; Or F, and t3 and t4 are an integer of 1 to 4.
  • X2 is -C (Z3) (Z4) -; Or -Si (Z3) (Z4) -, and, Z3 and Z4 are combined, or -CF 3, wherein X2 is direct; -C (Z3) (Z4) -; -O-; -S-; -SO 2 -; -CO-; Or -Si (Z3) (Z4) -, and, Z3 and Z4 is not a case -CF 3, T3 and T4 are independently F same as or different from each other and, respectively; An alkyl group substituted with F; Or F, and t3 and t4 are an integer of 1 to 4.
  • the hydrophobic block may include a repeating unit represented by the following formula (5).
  • x2, b, and b ' are the number of repeats in the parentheses, and are integers from 1 to 1,000, b: b' is from 1,000: 1 to 1:
  • X12 is a direct bond; -C (Z13) (Z14) -; -O-; -S-; -SO 2 -; -CO-; Or -Si (Z13) (Z14) -,
  • Z13 and Z14 are the same or different from each other, and each independently hydrogen; heavy hydrogen; A halogen group; A substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • T13 and T14 are the same or different from each other, and each independently hydrogen; heavy hydrogen; A halogen group; A nitrile group; A nitro group; A hydroxy group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted alkenyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted amine group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, t13 and t14 are an integer of 0 to 4, and when t13 and t14 are an integer of 2 or more, the substituents in parentheses are the same or different from each other,
  • X12 is -C (Z13) (Z14) -; Or -Si (Z13) (Z14) -, Z13 and Z14 are the same or different and are each independently an alkyl group substituted with a halogen group,
  • X12 is a direct bond; -C (Z13) (Z14) -; -O-; -S-; -SO 2 -; -CO-; Or -Si (Z13) (Z14) -, and when Z13 and Z14 are not an alkyl group substituted with a halogen group, T13 and T14 are the same or different and each independently represents a halogen group; An alkyl group substituted with a halogen group; Or an aryl group substituted with a halogen group, and t13 and t14 are an integer of 1 to 4;
  • the formula (5) may be represented by the following formula (5-1).
  • Quot is meant to be capable of bonding to adjacent substituents or to the backbone of the polymer.
  • the polymer may be a block polymer comprising a hydrophilic block and a hydrophobic block.
  • the polymer may further comprise a branche.
  • brancher has the function of connecting or crosslinking a polymer chain.
  • the branche may serve to connect or bridge the polymer chains.
  • the branche in the case of a polymer further comprising the brancer, the branche can constitute the main chain of the direct polymer and improve the mechanical integrity of the thin film.
  • a branched polymer according to one embodiment of the present disclosure may be prepared by polymerizing a branched hydrophilic block comprising an acid substituent and a branched hydrophobic block that does not include acid substituents, The brancher directly configures the main chain of the polymer without post-sulfonation or cross-linking of the sulfonated polymer, Hydrophobic blocks that maintain the degree of integration and hydrophilic blocks that impart ionic conductivity to the thin film can lead to alternating chemical bonds.
  • the polymer may further comprise a branche derived from a compound of the following formula (6) or a branche represented by the following formula (7).
  • X is S; O; CO; SO; SO 2 ; NR; A hydrocarbon-based or fluorine-
  • l is an integer of 0 to 100, and when l is 2 or more, 2 or more X's are the same or different from each other,
  • Q1 and Q2 are the same or different from each other and each independently represents an aromatic ring substituted by one or more substituents selected from the group consisting of a hydroxyl group and a halogen group; An aliphatic ring substituted by one or more substituents selected from the group consisting of a hydroxyl group and a halogen group; Or an NR ' R "
  • R, R 'and R are an aromatic ring substituted with a halogen group or an aliphatic ring substituted with a halogen group
  • Z is a trivalent organic group.
  • examples of the "organic group” include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group.
  • the organic group may contain a bond or a substituent other than a hydrocarbon group such as a hetero atom.
  • the organic group may be linear, branched or cyclic.
  • trivalent organic group means a trivalent group having three bonding positions to an organic compound.
  • the organic group may form a cyclic structure and may form a bond including a heteroatom unless the effect of the invention is impaired.
  • a bond containing a hetero atom such as an oxygen atom, a nitrogen atom, or a silicon atom.
  • ether bond examples thereof include an ether bond, a thioether bond, a carbonyl bond, a thiocarbonyl bond, an ester bond, an amide bond, a urethane bond, an imino bond (-N ⁇ C (-W) -, -C ( ⁇ NW) -; W represents a hydrogen atom or an organic group), a carbonate bond, a sulfonyl bond, a sulfinyl bond, an azo bond, and the like, but is not limited thereto.
  • the cyclic structure may include the above-mentioned aromatic ring, aliphatic ring, and the like, and may be monocyclic or polycyclic.
  • the aromatic ring may be a substituted or unsubstituted aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may be monocyclic or polycyclic.
  • examples of the aromatic hydrocarbon ring include monocyclic aromatic rings such as phenyl, biphenyl, terphenyl and the like, and aromatic rings such as naphthyl, binaphthyl, anthracenyl, phenanthrenyl, pyrenyl, perylenyl, , A chrycenyl group, a fluorenyl group, an acenaphthacenyl group, a triphenylene group, a fluoranthene group, and the like, but are not limited thereto.
  • the description of the aryl group for the aromatic hydrocarbon ring can be applied.
  • the aromatic heterocycle includes a structure containing at least one atom selected from the group consisting of heteroatoms such as N, P, O, S, Se, Ge and Si in place of carbon atoms in the aromatic hydrocarbon ring And the description of the heteroaryl group can be applied.
  • a thiophene group a furane group, a furyl group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, A pyridazinyl group, an isoquinoline group, an indole group, a pyrazinyl group, a pyrazinyl group, a pyrazinyl group, a quinolinyl group, a quinazolinyl group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, A benzothiazole group, a benzothiophene group, a benzothiophene group, a benzothiophene group, a benzofuranyl group, a phenanthroline group
  • the aliphatic ring may be a substituted or unsubstituted aliphatic hydrocarbon ring or an aliphatic heterocyclic ring, and may be monocyclic or polycyclic.
  • the aliphatic heterocycle includes a structure containing at least one atom selected from the group consisting of heteroatoms such as N, P, O, S, Se, Ge and Si in place of carbon atoms in the aliphatic hydrocarbon ring it means.
  • the description of the aromatic heterocyclic group and the aliphatic heterocyclic ring can be applied to the heterocyclic group.
  • Z is a trivalent substituted or unsubstituted alkyl group.
  • Z is a trivalent alkyl group.
  • the branche derived from the compound of Formula 6 is an aromatic ring substituted with a halogen group of each of Q1 and Q2; An aliphatic ring substituted with a halogen group; Or NR ' R " may act as a branching agent, with the halogen group falling off from the aromatic ring or aliphatic ring.
  • l is an integer greater than or equal to three.
  • X is S.
  • X is a haloalkylene group.
  • X is NR.
  • Q1 and Q2 are the same or different and are each an aromatic ring substituted independently with a halogen group.
  • Q1 and Q2 are the same or different from each other and are each independently F substituted aromatic hydrocarbon ring.
  • Q1 and Q2 are the same or different and each independently an amine group represented by NR'R ".
  • each of Q1 and Q2 is a phenyl group substituted with fluorine.
  • Specific examples include 2,4-difluorophenyl, 2,6-difluorophenyl, 2,3-difluorophenyl, 3,4-difluorophenyl and the like, but are not limited thereto.
  • the compound of Formula 6 may be represented by any one of the following structures.
  • Z in the formula (7) may be represented by one of the following formulas (7-1) to (7-4).
  • L21 to L27 are the same as or different from each other, and are each independently a direct bond; -S-; -O-; -CO-; Or -SO 2 - and,
  • W11 to W21 are the same or different from each other, and each independently hydrogen; heavy hydrogen; A halogen group; A nitrile group; A hydroxy group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted aryloxy group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • each of w1, w2, w3, w6, w8, w9 and w10 is an integer of 1 to 4
  • w4, w5 and w7 are each an integer of 1 to 3
  • w11 is an integer of 1 to 6
  • the structures in parentheses of two or more are the same or different.
  • L21 is CO.
  • the L21 is SO 2.
  • L21 is S.
  • L22 is CO.
  • the L22 is SO 2.
  • L22 is S.
  • L23 is CO.
  • the L23 is SO 2.
  • L23 is S.
  • L24 is CO.
  • the L24 is SO 2.
  • L25 is a direct bond.
  • L26 is a direct bond.
  • L27 is a direct bond.
  • W11 to W21 are hydrogen.
  • W11 to W16 and W18 to W21 are each hydrogen.
  • W17 is a halogen group.
  • W17 is fluorine (F).
  • W17 is hydrogen (H).
  • the branching agent represented by the formula (7) may be represented by one of the following structures.
  • the weight average molecular weight of the polymer is from 1,000 g / mol to 1,200,000 g / mol. According to a specific embodiment, it is from 10,000 g / mol to 1,000,000 g / mol, more preferably from 10,000 g / mol to 800,000 g / mol.
  • the weight average molecular weight of the polymer is within the above range, the mechanical properties of the polymer separation membrane containing the polymer are not lowered, the solubility of the polymer is maintained, and the separation membrane can be easily produced.
  • the polymer may be a block polymer, wherein the hydrophilic block in the block polymer comprises a unit derived from the compound represented by the formula (1), and the hydrophobic block in the block polymer is a fluorine- Containing < / RTI > compounds.
  • the polymer may be a block polymer, and the hydrophilic block in the block polymer includes the repeating unit represented by the formula (4), and the hydrophobic block in the block polymer may be represented by the formula Repeating units.
  • the hydrophilic block and the hydrophobic block are contained in a molar ratio of 1: 0.1 to 1:10. According to one embodiment of the present disclosure, in the block polymer, the hydrophilic block and the hydrophobic block are contained in a molar ratio of 1: 0.1 to 1: 2. According to another embodiment of the present disclosure, in the block polymer, the hydrophilic block and the hydrophobic block are contained in a molar ratio of 1: 0.8 to 1: 1.2. In this case, the ion transfer ability of the block polymer can be increased.
  • the hydrophilic block according to one embodiment of the present invention may include perfluorosulfonic acid to achieve high ion conductivity of the polymer membrane.
  • the hydrophobic block according to one embodiment of the present invention includes a large amount of fluorine functional groups, it can lower the water uptake of the polymer separator and enhance the mechanical stability of the membrane under humidifying conditions .
  • the polymer according to one embodiment of the present invention can control the ion exchange capacity (IEC) in a membrane electrode assembly, a fuel cell, or a redox flow cell by controlling the ratio of the hydrophilic block and the hydrophobic block .
  • IEC ion exchange capacity
  • the unit derived from the compound represented by the formula (1) in the hydrophilic block is contained in an amount of 0.01 mol% to 100 mol% based on the hydrophilic block.
  • the weight average molecular weight of the hydrophilic block is from 1,000 g / mol to 600,000 g / mol. According to a specific embodiment, it is from 2,000 g / mol to 400,000 g / mol. According to another embodiment, it is from 5,000 g / mol to 400,000 g / mol.
  • the weight average molecular weight of the hydrophobic block is from 1,000 g / mol to 600,000 g / mol. According to a specific embodiment, it is from 2,000 g / mol to 400,000 g / mol. According to another embodiment, it is from 5,000 g / mol to 400,000 g / mol.
  • the distinction between the hydrophilic block and the hydrophobic block becomes more clear, and the ion transporting effect can be superior to that of the conventional polymer .
  • the block polymer means a polymer composed of one block and one or more blocks different from the block connected to each other through the main chain of the polymer.
  • the present specification provides a polymer separator comprising the above-mentioned polymer.
  • the polymer separator comprises a polymer in which a unit derived from the compound represented by the formula (1) is contained in a hydrophilic block and a unit derived from the fluorine-containing compound is contained in a hydrophobic block
  • a polymer in which a unit derived from the compound represented by the formula (1) is contained in a hydrophilic block and a unit derived from the fluorine-containing compound is contained in a hydrophobic block
  • the application may be performed by a method such as a tape casting method, a dip coating method, a spray coating method, and a spin coating method have.
  • the solvent used in the preparation of the polymer membrane is selected from the group consisting of N, N-dimethylacetamide (DMAc), dimethylsulfoxide (DMSO) N, N-dimethylformamide (DMF), or the like can be used as the organic solvent, for example, N, N-dimethylpyrollidone (NMP), diphenylsulfone or N, N- no.
  • DMAc N-dimethylacetamide
  • DMSO dimethylsulfoxide
  • DMF N-dimethylformamide
  • NMP N-dimethylpyrollidone
  • NMP N-dimethylpyrollidone
  • diphenylsulfone diphenylsulfone
  • the drying can be performed by heating.
  • the heating means drying through heating.
  • the heating temperature may be 30 ° C or more and 200 ° C or less, specifically 50 ° C or more and 150 ° C or less.
  • the heating time may be 1 hour or more and 46 hours or less, specifically, 5 hours or more and 20 hours or less.
  • the method for producing a polymer membrane may further include the step of adding an acid solution to a solution containing the polymer.
  • the acid solution may be hydrochloric acid (HCl).
  • the metal M of A in Formula 1 when an acid solution is added to a solution containing the polymer, the metal M of A in Formula 1 may be substituted with H (hydrogen).
  • the heating is preheated at 50 ° C to 70 ° C for 2 to 6 hours, at 80 ° C for at least 12 hours, and finally at 80 ° C in a vacuum oven for at least 12 hours can do.
  • the ionic conductivity of the polymer membrane is 0.005 S / cm to 0.8 S / cm. Preferably 0.005 S / cm to 0.5 S / cm.
  • the cation conductivity of the polymer separator is 0.005 S / cm to 0.8 S / cm. Preferably 0.005 S / cm to 0.5 S / cm.
  • the ion conductivity (cation conductivity) of the polymer separator may be measured by different humidifying conditions.
  • a humidifying condition may mean a relative humidity (RH) of 10% to 100%.
  • the ionic conductivity can be measured as follows. Dip the polymer membrane into DI water for 24 hours before measurement. Membrane specimens were cut into 1 ⁇ 5 cm 2 and the membrane resistance was measured using the following cell. Impedance was measured using a Potentioglavano station (SP-240) in water at 10 MHz to 7 Hz.
  • SP-240 Potentioglavano station
  • the ion conductivity of the polymer membrane can be calculated using the resistance of the measured membrane.
  • R is the membrane resistance measured through SP-240
  • d is the thickness of the ion exchange membrane (cm). The unit of ionic conductivity is obtained in S / cm.
  • ionic conductivity may mean cationic conductivity
  • the ion exchange capacity (IEC) value of the polymer separator is 0.01 mmol / g to 5.0 mmol / g.
  • the ion exchange capacity value is in the range, the ion channel in the polymer separator is formed, and the polymer can exhibit excellent ion conductivity.
  • the thickness of the polymer separator is 1 to 500 mu m.
  • the polymer membrane having the above-described range of thickness can reduce electric short and cross-over of electrolyte material and exhibit excellent cation conductivity.
  • the disclosure also includes an anode; Cathode; And the above-described polymer separator provided between the anode and the cathode.
  • membrane electrode assembly means a junction body of an electrode (cathode and anode) where an electrochemical catalytic reaction of fuel and air takes place and a polymer separator where transfer of hydrogen ions occurs, An anode) and a separator are adhered to each other.
  • the membrane electrode assembly may be manufactured by a conventional method known in the art, such that the catalyst layer of the anode and the catalyst layer of the cathode are in contact with the polymer separator.
  • the anode electrode may include an anode catalyst layer and an anode gas diffusion layer.
  • the anode gas diffusion layer may again include an anode microporous layer and an anode electrode substrate.
  • the cathode electrode may include a cathode catalyst layer and a cathode gas diffusion layer.
  • the cathode gas diffusion layer may again include a cathode microporous layer and a cathode electrode substrate.
  • FIG. 1 schematically shows the principle of electricity generation of a fuel cell.
  • a basic unit for generating electricity is a membrane electrode assembly (MEA), which includes a separation membrane 100, And an anode 200a and a cathode 200b electrode formed on the substrate 200a.
  • MEA membrane electrode assembly
  • FIG. 1 showing the principle of electricity generation of a fuel cell
  • oxidation reaction of a fuel such as hydrogen or hydrocarbons such as methanol or butane occurs to generate hydrogen ions (H + ) and electrons (e - )
  • the hydrogen ions move to the cathode 200b through the separation membrane 100.
  • an oxidizing agent such as oxygen
  • electrons react to produce water. This reaction causes electrons to migrate to the external circuit.
  • the catalyst layer of the anode electrode is preferably a catalyst selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum- Lt; / RTI >
  • the catalyst layer of the cathode electrode is a place where a reduction reaction of an oxidizing agent occurs, and a platinum or platinum-transition metal alloy can be preferably used as a catalyst.
  • the catalysts can be used not only by themselves but also by being supported on a carbon-based carrier.
  • the process of introducing the catalyst layer can be performed by a conventional method known in the art.
  • the catalyst ink may be directly coated on the separation membrane or coated on the gas diffusion layer to form the catalyst layer.
  • the method of coating the catalyst ink is not particularly limited, but spray coating, tape casting, screen printing, blade coating, die coating or spin coating may be used.
  • the catalyst ink may typically consist of a catalyst, a polymer ionomer and a solvent.
  • the gas diffusion layer serves as a current conductor and serves as a passage for reacting gas and water, and has a porous structure. Therefore, the gas diffusion layer may include a conductive base material.
  • the conductive substrate carbon paper, carbon cloth or carbon felt can be preferably used.
  • the gas diffusion layer may further include a microporous layer between the catalyst layer and the conductive base.
  • the microporous layer can be used to improve the performance of the fuel cell under low humidification conditions and serves to reduce the amount of water flowing out of the gas diffusion layer to make the polymer membrane sufficiently wet.
  • One embodiment of the present disclosure includes two or more of the above-described membrane electrode assemblies; A stack including a bipolar plate provided between the membrane electrode assemblies; A fuel supply unit for supplying fuel to the stack; And an oxidant supply unit for supplying an oxidant to the stack.
  • Fuel cells are energy conversion devices that convert the chemical energy of a fuel directly into electrical energy. That is, a fuel cell uses a fuel gas and an oxidizing agent, and generates electricity using electrons generated during the oxidation-reduction reaction.
  • the fuel cell can be manufactured according to a conventional method known in the art using the membrane electrode assembly (MEA) described above.
  • the membrane electrode assembly (MEA) and the bipolar plate may be fabricated.
  • a fuel cell comprises a stack, a fuel supply, and an oxidant supply.
  • FIG. 3 schematically shows the structure of a fuel cell, which includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or more of the membrane electrode assemblies described above and includes a separator interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer the fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply part 70 serves to supply the oxidant to the stack 60.
  • oxygen is typically used, and oxygen or air can be injected by pumping.
  • the fuel supply unit 80 serves to supply the fuel to the stack 60 and includes a fuel tank 81 for storing the fuel and a pump 82 for supplying the fuel stored in the fuel tank 81 to the stack 60 Lt; / RTI >
  • a fuel tank 81 for storing the fuel
  • a pump 82 for supplying the fuel stored in the fuel tank 81 to the stack 60 Lt; / RTI >
  • gas or liquid hydrogen or hydrocarbon fuel may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • the fuel cell may be a polymer electrolyte fuel cell, a direct liquid fuel cell, a direct methanol fuel cell, a direct formic acid fuel cell, a direct ethanol fuel cell, or a direct dimethyl ether fuel cell.
  • the polymer separator when used as an ion exchange membrane of a fuel cell, the above-described effect can be obtained.
  • a battery comprising: a positive electrode cell including a positive electrode and a positive electrode electrolyte; A negative electrode cell comprising a negative electrode and a negative electrode electrolyte; And a polymer separator disposed between the anode cell and the cathode cell.
  • Redox Flow Battery is a system in which an active substance contained in an electrolyte is oxidized and reduced to be charged and discharged.
  • An electrochemical storage device that stores chemical energy of an active substance directly as electric energy to be.
  • the redox flow battery utilizes the principle of charging and discharging electrons by receiving electrons when an electrolyte containing an active material having a different oxidation state meets the ion exchange membrane.
  • a redox flow battery is composed of a tank containing an electrolyte solution, a battery cell in which charging and discharging occur, and a circulation pump for circulating the electrolyte between the tank and the battery cell, and the unit cell of the battery cell includes an electrode, Exchange membrane.
  • the polymer separator when used as an ion exchange membrane of a redox flow cell, the above-described effects can be obtained.
  • a redox flow cell can be manufactured according to a conventional method known in the art, except that the polymer separator is included.
  • the redox flow battery is divided into a positive electrode cell 32 and a negative electrode cell 33 by a separation membrane 31.
  • the anode cell 32 and the cathode cell 33 each include an anode and a cathode.
  • the anode cell (32) is connected to the anode tank (10) for supplying and discharging the anode electrolyte (41) through a pipe.
  • the cathode cell 33 is also connected to a cathode tank 20 for supplying and discharging the cathode electrolyte 42 through a pipe.
  • the electrolytic solution is circulated through the pumps 11 and 21, and an oxidation / reduction reaction (that is, a redox reaction) occurs in which the oxidation number of ions is changed, so that charging and discharging occur in the anode and the cathode.
  • an oxidation / reduction reaction that is, a redox reaction
  • the reaction mixture was stirred in an oil bath at a temperature of 140 ° C for 2 hours, and water and toluene were removed by reflux distillation. Thereafter, the temperature was raised to 185 ° C and the reaction was carried out for 6 hours.
  • hydrophilic polymer A After the reaction, the temperature was lowered to room temperature, and the resulting hydrophilic polymer solution was slowly dropped in 2,000 mL of isopropyl alcohol (IPA) to obtain a precipitate. Only the precipitate was obtained through a glass filter and washed with 200 mL IPA. The obtained hydrophilic polymer was dried in a vacuum oven at 60 ° C. for 12 hours to prepare a hydrophilic polymer A.
  • IPA isopropyl alcohol
  • FIG. 5 is a graph showing the 1 H-NMR spectrum of the hydrophilic polymer A.
  • FIG. 6 is a diagram showing a molecular weight distribution measured using the GPC trace of the hydrophilic polymer A.
  • Weight average molecular weight (Mw) of hydrophilic polymer A 69,900
  • FIG. 7 is a graph showing the 1 H-NMR spectrum of the hydrophilic polymer B.
  • FIG. 8 is a diagram showing the molecular weight distribution measured using the GPC trace of the hydrophilic polymer B.
  • Weight average molecular weight (Mw) of hydrophilic polymer B 80,200
  • FIG. 9 is a graph showing the 1 H-NMR spectrum of the block polymer I.
  • FIG. 10 is a diagram showing the molecular weight distribution measured using the GPC trace of the block polymer I.
  • Weight average molecular weight (Mw) of block polymer I 604,000
  • 11 is a view showing a 1 H-NMR spectrum of the block polymer II.
  • FIG. 12 is a diagram showing the molecular weight distribution measured using the GPC trace of the block polymer II.
  • Weight average molecular weight (Mw) of block polymer II 650,000
  • 13 is a diagram showing the 1 H-NMR spectrum of the block polymer III.
  • Weight average molecular weight (Mw) of block polymer III 454,000
  • Weight average molecular weight (Mw) of block polymer IV 300,000
  • the block polymer prepared in Example 1 was dissolved in dimethylsulfoxide (DMSO) at 20 wt / v%, and then filtered through a 0.45 ⁇ m syringe filter. The filtered solution was cast on a glass plate to prepare a polymer membrane. The polymer membrane was dried in an oven at 80 ° C for 12 hours and then dried in a vacuum oven at 80 ° C for 12 hours.
  • DMSO dimethylsulfoxide
  • the prepared polymer membrane was separated by distilled water and kept in a 1 M hydrochloric acid (HCl) solution at room temperature for 24 hours, washed repeatedly with distilled water, and kept in distilled water for 24 hours.
  • HCl hydrochloric acid
  • the polymer membrane was taken out from the distilled water and dried in a vacuum oven at 80 ⁇ for 12 hours to prepare a polymer membrane.
  • the prepared polymer membrane was in the form of a brown transparent film.
  • film-type polymer membranes were prepared from the block polymers prepared in Examples 3 and 4 in the same manner.
  • IEC Ion exchange capacity
  • the cation conductivity 1 is the relative humidity (RH) of 30% at 70 ° C
  • the cation conductivity 2 is the relative humidity (RH) of 50% at 70 ° C, , 70 ° C
  • the cation conductivity 4 was measured in the above-described manner at a relative humidity (RH) of 100% and 70 ° C.
  • the polymer membrane according to the present invention can achieve a high ion conductivity of the polymer membrane due to the hydrophilic block including perfluorosulfonic acid, and the hydrophobic block including a large amount of fluorine functional groups Due to the block, the water uptake of the polymer separator is lowered and the mechanical stability of the membrane is enhanced in the humidifying condition.
  • Polymer membranes in the form of films were prepared from the polymers of Examples 1, 3 and 4 in the same manner as in Experimental Example 1 above.

Abstract

본 명세서는 친수성 블록 및 소수성 블록을 포함하고, 상기 친수성 블록은 화학식 1로 표시되는 화합물로부터 유래되는 단위를 포함하고, 상기 소수성 블록은 플루오르 함유 화합물로부터 유래되는 단위를 포함하는 것인 중합체, 이를 포함하는 고분자 분리막, 이를 포함하는 막 전극 접합체, 연료전지 및 레독스 플로우 전지에 관한 것이다.

Description

중합체 및 이를 포함하는 고분자 분리막
본 명세서는 2017년 11월 17일에 한국특허청에 제출된 한국 특허 출원 제 10-2017-0154253 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 중합체, 이를 포함하는 고분자 분리막, 이를 포함하는 막 전극 접합체, 연료전지 및 레독스 플로우 전지에 관한 것이다.
연료전지용 분리막 소재는 높은 이온전도도를 가지며, 동시에 구동 시 전지 효율저하의 방지를 위해 1) 전해질 물질의 크로스오버(cross over) 방지, 2) 셀 operating 시 강한 내화학성, 3) 기계적 특성 강화, 4) 낮은 스웰링 비(Low swelling ratio) 등의 특성을 가져야 한다. 현재 연료전지의 분리막 소재는 대부분 나피온(Nafion)을 이용하고 있다. 나피온은 높은 이온전도도를 가지고 열적·기계적 특성이 좋지만, 높은 가격과 메탄올 크로스오버, 기계적 물성의 확보를 위해 두께 증가 시 막 저항이 증가하는 단점이 있다. 따라서 나피온의 높은 이온전도도와 탄화수소의 기계적 물성을 동시에 갖는 소재의 개발이 요구된다.
본 명세서는 중합체, 이를 포함하는 고분자 분리막, 이를 포함하는 막 전극 접합체, 연료전지 및 레독스 플로우 전지를 제공한다.
본 명세서의 일 실시상태는 친수성 블록 및 소수성 블록을 포함하고, 상기 친수성 블록은 하기 화학식 1로 표시되는 화합물로부터 유래되는 단위를 포함하고, 상기 소수성 블록은 플루오르 함유 화합물로부터 유래되는 단위를 포함하는 것인 중합체를 제공한다:
[화학식 1]
Figure PCTKR2018014137-appb-I000001
상기 화학식 1에 있어서,
L1은 직접결합; -S-; -O-; -NRa-; -SO2-; 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고,
A는 ―SO3H, ―SO3 -M+, ―COOH, ―COO-M+, ―PO3H2, ―PO3H-M+, ―PO3 2-2M+, ―O(CF2)mSO3H, ―O(CF2)mSO3 -M+, ―O(CF2)mCOOH, ―O(CF2)mCOO-M+, ―O(CF2)mPO3H2, ―O(CF2)mPO3H-M+, 또는 ―O(CF2)mPO3 2-2M+이고,
m은 2 내지 6의 정수이고, M은 1족 원소이고,
R1 내지 R5는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 또는 히드록시기이고, R1 내지 R5 중 적어도 두 개는 할로겐기; 또는 히드록시기이고,
R6 및 R7은 서로 같거나 상이하고, 각각 독립적으로 할로겐기이고,
Ra는 수소; 또는 치환 또는 비치환된 알킬기이고,
n은 2 내지 10의 정수이고, n이 2 이상의 정수인 경우 괄호 내의 구조는 서로 같거나 상이하다.
또한, 본 명세서의 일 실시상태는 전술한 중합체를 포함하는 고분자 분리막을 제공한다.
또한, 본 명세서의 일 실시상태는 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 전술한 고분자 분리막을 포함하는 막 전극 접합체를 제공한다.
또한, 본 명세서의 다른 실시상태는 2 이상의 전술한 막 전극 접합체; 상기 막 전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택; 상기 스택으로 연료를 공급하는 연료공급부; 및 상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지를 제공한다.
마지막으로, 본 명세서의 또 하나의 실시상태는 양극 및 양극 전해액을 포함하는 양극 셀; 음극 및 음극 전해액을 포함하는 음극 셀; 및 상기 양극 셀과 상기 음극 셀 사이에 구비되는 전술한 일 실시상태의 고분자 분리막을 포함하는 레독스 플로우 전지를 제공한다.
본 명세서의 일 실시상태에 따른 고분자 분리막은 퍼플루오르설폰산 (Perfluorosulfonic acid)을 포함하는 친수성 블록으로 인하여 높은 이온 전도도를 달성할 수 있으며, 소수성 블록에 포함되는 다량의 플루오르 (fluorine) 작용기는 수분흡수(water uptake)를 낮추어, 가습조건에서 분리막의 기계적 안정성을 높일 수 있다.
또한, 본 명세서의 일 실시상태에 따른 고분자 분리막은 낮은 스웰링 비(swelling ratio)를 가지고, 저가습 조건에서도 우수한 이온 전도도를 유지할 수 있다.
도 1은 연료전지의 전기 발생 원리를 나타내는 개략적인 도면이다.
도 2는 레독스 플로우 전지의 일 실시예를 개략적으로 나타낸 도면이다.
도 3은 연료전지의 일 실시예를 개략적으로 나타낸 도면이다.
도 4는 실시예 1, 3, 4 및 비교예에 따른 양이온 전도도의 값을 그래프로 도시한 것이다.
도 5는 제조예 1에 따라 제조된 친수성 고분자 A의 1H-NMR spectrum을 나타낸 도시이다.
도 6은 제조예 1에 따라 제조된 친수성 고분자 A의 GPC trace를 이용하여 측정한 분자량 분포(Molecular Weight Distribution)를 나타낸 도시이다.
도 7은 제조예 2에 따라 제조된 친수성 고분자 B의 1H-NMR spectrum을 나타낸 도시이다.
도 8은 제조예 2에 따라 제조된 친수성 고분자 B의 GPC trace를 이용하여 측정한 분자량 분포(Molecular Weight Distribution)를 나타낸 도시이다.
도 9는 실시예 1에 따라 합성된 블록 중합체 I의 1H-NMR spectrum을 나타낸 도시이다.
도 10은 실시예 1에 따라 합성된 블록 중합체 I의 GPC trace를 이용하여 측정한 분자량 분포(Molecular Weight Distribution)를 나타낸 도시이다.
도 11은 실시예 2에 따라 합성된 블록 중합체 II의 1H-NMR spectrum을 나타낸 도시이다.
도 12는 실시예 2에 따라 합성된 블록 중합체 II의 GPC trace를 이용하여 측정한 분자량 분포(Molecular Weight Distribution)를 나타낸 도시이다.
도 13은 실시예 3에 따라 합성된 블록 중합체 III의 1H-NMR spectrum을 나타낸 도시이다.
도 14는 실시예 4에 따라 합성된 블록 중합체 IV의 1H-NMR spectrum을 나타낸 도시이다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서의 일 실시상태에 따르면, 친수성 블록 및 소수성 블록을 포함하고, 상기 친수성 블록은 하기 화학식 1로 표시되는 화합물로부터 유래되는 단위를 포함하고, 상기 소수성 블록은 플루오르 함유 화합물로부터 유래되는 단위를 포함하는 것인 중합체를 제공한다.
[화학식 1]
Figure PCTKR2018014137-appb-I000002
상기 화학식 1에 있어서,
L1은 직접결합; -S-; -O-; -NRa-; -SO2-; 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고,
A는 ―SO3H, ―SO3 -M+, ―COOH, ―COO-M+, ―PO3H2, ―PO3H-M+, ―PO3 2-2M+, ―O(CF2)mSO3H, ―O(CF2)mSO3 -M+, ―O(CF2)mCOOH, ―O(CF2)mCOO-M+, ―O(CF2)mPO3H2, ―O(CF2)mPO3H-M+, 또는 ―O(CF2)mPO3 2-2M+이고,
m은 2 내지 6의 정수이고, M은 1족 원소이고,
R1 내지 R5는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 또는 히드록시기이고, R1 내지 R5 중 적어도 두 개는 할로겐기; 또는 히드록시기이고,
R6 및 R7은 서로 같거나 상이하고, 각각 독립적으로 할로겐기이고,
Ra는 수소; 또는 치환 또는 비치환된 알킬기이고,
n은 2 내지 10의 정수이고, n이 2 이상의 정수인 경우 괄호 내의 구조는 서로 같거나 상이하다.
기존에 분리막의 소재로 사용되던 나피온(Nafion)은 높은 이온 전도도를 가지고 열적·기계적 특성이 좋지만, 높은 가격과 메탄올 크로스오버(cross over), 기계적 물성의 확보를 위해 두께 증가 시 막 저항이 증가하는 단점이 있다. 이를 대체하기 위해 개발된 탄화수소계 분리막 소재는 높은 기계적 강도와 열적 안정성을 가져 얇은 두께로 막을 제조할 수 있다는 장점을 가지고 있으나, 높은 이온 전도도를 가지기 위해선 다수의 산성(acid) 작용기를 도입해야 하므로 가습조건에서 막의 안정성이 떨어지는 단점이 있다.
이에 따라, 본 명세서의 일 실시상태에 따른 중합체는 이온 전도도를 높이고 기계적 물성의 유지를 위해 블록 공중합체의 개념을 도입하여, 친수성 블록을 통해 이온을 전달하고, 소수성 블록을 통해 기계적 물성을 확보하는 한편, 탄화수소계 고분자에 일반적으로 도입되는 Sulfuric acid (-SO3H) 대신 super acid인 Perfluorosulfonic acid (ex, -CF2CF2SO3H)의 도입을 통하여 높은 이온 전도도를 부여할 수 있다.
또한, 본 명세서의 일 실시상태에 따라 합성된 중합체는 극성 비양성자성 용매(Aprotic polar solvent)에 좋은 용해도를 보였으며, DMSO(dimethylsulfoxide)에 녹여 캐스팅(casting)하여 갈색의 투명한 분리막을 확보하였다. 제조한 분리막은 낮은 스웰링 비(swelling ratio)를 보였으며, 저가습 조건에서 나피온에 근접한 결과를 보여주었다.
또한, 본 명세서의 일 실시상태에 따른 중합체는 40℃ 내지 90℃ 범위의 저온에서 중합시킬 수 있어, 에테르-에테르 교환 반응(ether-ether interchange reaction)과 같은 부반응을 억제할 수 있다. 그 결과 소수성 블록에 포함되는 단위가 되는 플루오르 함유 화합물의 높은 반응성으로 인한 겔화(gelation)을 방지할 수 있고, 친수성 블록과 소수성 블록 구조가 엄밀히 조절된 멀티 블록 중합체를 얻을 수 있다.
본 명세서의 일 실시상태에 따른 상기 화학식 1로 표시되는 화합물로부터 유래되는 단위는 중합과정에서 반응성이 높아, 공정 효율을 높일 수 있다. 또한, 상기 화합물로부터 유래되는 단위를 이용하여 제조된 고분자 분리막은 친수성-소수성 상분리 구조를 용이하게 형성할 수 있다. 또한, 본 명세서의 일 실시상태에 따른 상기 화합물로부터 유래되는 단위를 포함하는 고분자 분리막은 상분리 구조를 제어함으로써 친수성 채널을 효율적으로 고분자 분리막 중에 형성할 수 있다. 또한, 상기 화합물로부터 유래되는 단위를 포함하는 고분자 분리막은 이온 전도도가 우수하다. 또한, 상기 화합물로부터 유래되는 단위는 열적 및 화학적으로 안정하다.
본 명세서의 일 실시상태에 따른 화합물로부터 유래되는 단위를 포함하는 고분자 분리막은 탄화수소계 화합물을 포함하는 고분자 분리막에 비해 낮은 이온교환용량(IEC)에서 동등한 이온 전도도를 가질 수 있어, 적은 수분흡수율을 가지면서 우수한 이온 전도도를 유지할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 상기 고분자 분리막을 포함하는 고분자 전해질형 연료전지(PEMFC)의 경우에는 가스 크로스오버(Gas crossover)를 방지할 수 있으며, 저가습 조건에서도 이온 전도도를 향상시킬 수 있다.
또한, 본 명세서의 일 실시상태에 따른 상기 고분자 분리막을 포함하는 레독스 플로우 전지는 바나듐 이온의 크로스오버(Cross over)를 방지할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 상기 고분자 분리막을 포함하는 연료전지는 내구성 및 효율이 우수하다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, "유래"란 화합물의 결합이 끊기거나, 치환기가 떨어져 나가면서 새로운 결합이 발생하는 것을 의미하며, 상기 화합물로부터 유래되는 단위는 중합체의 주쇄에 연결되는 단위를 의미할 수 있다. 상기 단위는 중합체 내 주쇄에 포함되어 중합체를 구성할 수 있다.
본 명세서에 있어서, "단위"란 단량체가 중합체에 포함되어 반복되는 구조로서, 단량체가 중합에 의하여 중합체 내에 결합된 구조를 의미한다.
본 명세서에 있어서, "단위를 포함"의 의미는 중합체 내의 주쇄에 포함된다는 의미이다.
본 명세서에 있어서, "분리막"은 이온을 교환할 수 있는 막으로서, 막, 이온교환막, 이온전달막, 이온전도성막, 이온교환 분리막, 이온전달 분리막, 이온전도성 분리막, 이온교환 전해질막, 이온전달 전해질막, 또는 이온전도성 전해질막 등을 포함한다.
본 명세서에 있어서, "치환 또는 비치환된"이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로아릴기로 이루어진 군에서 선택된 1 이상의 치환기로 치환되었거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 할로겐기로 치환된 알킬기, 알킬기로 치환된 아릴기, 아릴기로 치환된 아릴기, 헤테로아릴기로 치환된 아릴기, 실릴기로 치환된 아릴기, 알킬기로 치환된 실릴기, 알킬기로 치환된 헤테로아릴기, 아릴기로 치환된 헤테로아릴기, 헤테로아릴기로 치환된 헤테로아릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, "탄화수소계"는 탄소와 수소로만 이루어진 유기 화합물을 의미하며, 직쇄형, 분지쇄형, 환형 탄화수소 등이 있으며, 이를 한정하지 않는다. 또한, 단일결합, 이중결합 또는 삼중결합을 포함할 수 있으며 이에 한정되는 것은 아니다.
본 명세서에 있어서, "불소계 결합체"는 상기 탄화수소계에서 탄소-수소 결합의 일부 또는 전부가 불소로 치환된 것을 의미한다.
본 명세서에 있어서, "친수성 블록"은 작용기로 이온 교환기를 갖는 블록을 의미한다. 여기서, 상기 작용기는 ―SO3H, ―SO3 -M+, ―COOH, ―COO-M+, ―PO3H2, ―PO3H-M+, ―PO3 2-2M+, ―O(CF2)wSO3H, ―O(CF2)wSO3 -M+, ―O(CF2)wCOOH, ―O(CF2)wCOO-M+, ―O(CF2)wPO3H2, ―O(CF2)wPO3H-M+ 및 ―O(CF2)wPO3 2-2M+로 이루어지는 그룹에서 선택된 적어도 어느 하나일 수 있다. 여기서, M은 금속성 원소이고, 상기 w는 1<w<10의 범위를 가질 수 있다. 즉, 작용기는 친수성일 수 있다.
본 명세서에 있어서, "이온 교환기를 갖는 블록"이란, 해당 블록을 구성하는 구조 단량체 1개당 있는 이온 교환기수로 나타내어 평균 0.5개 이상 포함되어 있는 블록인 것을 의미하고, 구조 단량체 1개당 평균 1.0개 이상의 이온 교환기를 갖고 있으면 더 바람직하다.
본 명세서에 있어서, "소수성 블록"은 이온 교환기를 실질적으로 갖지 않는 상기 고분자 블록을 의미한다.
본 명세서에 있어서, "이온 교환기를 실질적으로 갖지 않는 블록"이란, 해당 블록을 구성하는 구조 단량체 1개당 있는 이온 교환기수로 나타내어 평균 0.1개 미만인 블록인 것을 의미하고, 평균 0.05개 이하이면 보다 바람직하며, 이온 교환기를 전혀 갖지 않는 블록이면 더 바람직하다.
본 명세서에 있어서, 할로겐기는 F, Cl, Br, I 등일 수 있다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸부틸, 1-에틸부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸프로필, 1,1-디메틸프로필, 이소헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 50인 것이 바람직하며, 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 50일 수 있고, 상기 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 단환식 아릴기로는 페닐기, 바이페닐기, 및 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 플루오란테닐기, 트라이페닐레닐기, 페날레닐기, 크라이세닐기, 플루오레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 트리페닐렌기, 및 스피로벤조안트라센플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 탄소가 아닌 원자, 즉 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 N, P, O, S, Se, Ge 및 Si 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 50인 것이 바람직하며, 일 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 2 내지 30이다. 또 하나의 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 2 내지 20이다. 상기 헤테로아릴기는 단환식 또는 다환식일 수 있다. 헤테로아릴기의 예로는 티오펜기, 퓨라닐기, 피롤기, 이미다졸릴기, 티아졸릴기, 옥사졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 피리딜기, 비피리딜기, 피리미딜기, 트리아지닐기, 트리아졸릴기, 아크리딜기, 피리다지닐기, 피라지닐기, 퀴놀리닐기, 퀴나졸리닐기, 퀴녹살리닐기, 프탈라지닐기, 피리도피리미딜기, 피리도피라지닐기, 피라지노피라지닐기, 이소퀴놀리닐기, 인돌릴기, 카바졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티아졸릴기, 벤조카바졸릴기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 디벤조퓨라닐기, 나프토벤조퓨라닐기, 페난쓰롤리닐기(phenanthroline), 티아디아졸릴기, 페노티아지닐기, 아세나프토퀴녹살릴기, 인데노퀴나졸릴기, 인데노이소퀴놀릴기, 인데노퀴놀릴기, 프테리디닐기, 페녹사지닐기, 벤조퀴나졸릴기, 인다졸릴기, 벤조페리미디놀릴기, 벤조페리미디닐기 및 스피로아크리딘플루오레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 50인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 50인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기(stilbenyl), 스티레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, tert-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 50인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 9-메틸안트라세닐아민기, 디페닐아민기, N-페닐나프틸아민기, 디톨릴아민기, N-페닐톨릴아민기, 트리페닐아민기, N-페닐바이페닐아민기, N-페닐나프틸아민기, N-바이페닐나프틸아민기, N-나프틸플루오레닐아민기, N-페닐페난트레닐아민기, N-바이페닐페난트레닐아민기, N-페닐플루오레닐아민기, N-페닐터페닐아민기, N-페난트레닐플루오레닐아민기, N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막에 포함되는 중합체 중 친수성 블록은, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단위를 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R5는 서로 같거나 상이하고, 각각 독립적으로 수소 또는 할로겐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R5 중 적어도 두 개는 할로겐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R5는 서로 같거나 상이하고, 각각 독립적으로 수소 또는 F이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R5 중 적어도 두 개는 F이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R5 중 적어도 두 개는 F이고, 나머지는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 R2 및 R4는 F이고, 상기 R1, R3, 및 R5는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 및 R3은 F이고, 상기 R2, R4, 및 R5는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 R2 및 R5는 F이고, 상기 R1, R3, 및 R4는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 직접결합; -S-; -O-; -NRa-; -SO2-; 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 직접결합; -S-; -O-; -NRa-; -SO2-; 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 6의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -S- 이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -O- 이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -NRa- 이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -SO2- 이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -CF2CF2- 이다.
본 명세서의 일 실시상태에 따르면, 상기 A는 ―SO3H, ―SO3 -M+, ―O(CF2)mSO3H, 또는 ―O(CF2)mSO3 -M+이다.
본 명세서의 일 실시상태에 따르면, 상기 A는 ―SO3H, 또는 ―SO3 -M+이다.
본 명세서의 일 실시상태에 따르면, 상기 A는 ―O(CF2)mSO3H, 또는 ―O(CF2)mSO3 -M+이다.
본 명세서의 일 실시상태에 따르면, 상기 A가 ―SO3H, ―SO3 -M+, ―O(CF2)mSO3H, 또는 ―O(CF2)mSO3 -M+인 경우, 화학식 1로 표시되는 화합물로부터 유래되는 단위를 포함하는 중합체가 화학적으로 안정하게 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 M은 1족 원소이다.
본 명세서의 일 실시상태에 따르면, 상기 1족 원소는 Li, Na 또는 K이다.
본 명세서의 일 실시상태에 따르면, 상기 R6 및 R7은 F이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 1-1 내지 1-6 중 선택되는 하나로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2018014137-appb-I000003
[화학식 1-2]
Figure PCTKR2018014137-appb-I000004
[화학식 1-3]
Figure PCTKR2018014137-appb-I000005
[화학식 1-4]
Figure PCTKR2018014137-appb-I000006
[화학식 1-5]
Figure PCTKR2018014137-appb-I000007
[화학식 1-6]
Figure PCTKR2018014137-appb-I000008
상기 화학식 1-1 내지 1-6에 있어서, n, m, 및 M은 화학식 1에서 정의한 바와 같다.
본 명세서의 일 실시상태에 따르면, 상기 n은 2 이다.
본 명세서의 일 실시상태에 따르면, 상기 m은 2 이다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막에 포함되는 중합체 중 친수성 블록은, 하기 화학식 2로 표시되는 화합물로부터 유래되는 단위를 더 포함할 수 있다.
[화학식 2]
Figure PCTKR2018014137-appb-I000009
상기 화학식 2에 있어서,
X1은 직접결합; ―C(Z1)(Z2)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z1)(Z2)―이고,
Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
T1 및 T2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, t1 및 t2는 0 내지 4의 정수이고, t1 및 t2가 2 이상의 정수인 경우 괄호 내의 치환기는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 X1은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 X1은 ―C(Z1)(Z2)―이다.
본 명세서의 일 실시상태에 따르면, 상기 X1은 ―O―이다.
본 명세서의 일 실시상태에 따르면, 상기 X1은 ―S―이다.
본 명세서의 일 실시상태에 따르면, 상기 X1은 ―SO2―이다.
본 명세서의 일 실시상태에 따르면, 상기 X1은 ―CO―이다.
본 명세서의 일 실시상태에 따르면, 상기 X1은 ―Si(Z1)(Z2)―이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 10의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기; 또는 할로겐기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 F로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 F로 치환된 메틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 -CF3이다.
본 명세서의 일 실시상태에 따르면, 상기 T1 및 T2는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 할로겐기이다.
본 명세서의 일 실시상태에 따르면, 상기 T1 및 T2는 서로 같거나 상이하고, 각각 독립적으로 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 친수성 블록은 하기 화학식 4로 표시되는 반복 단위를 포함할 수 있다.
[화학식 4]
Figure PCTKR2018014137-appb-I000010
상기 화학식 4에 있어서,
x1, a 및 a'는 괄호 내 단위의 반복수로서, 1 내지 1,000의 정수이고, a : a'는 1,000 : 1 내지 1 : 1,000이고,
L11은 직접결합; -S-; -O-; -NRb-; -SO2-; 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고,
A'는 ―SO3H, ―SO3 -M+, ―COOH, ―COO-M+, ―PO3H2, ―PO3H-M+, ―PO3 2-2M+, ―O(CF2)mSO3H, ―O(CF2)mSO3 -M+, ―O(CF2)mCOOH, ―O(CF2)mCOO-M+, ―O(CF2)mPO3H2, ―O(CF2)mPO3H-M+, 또는 ―O(CF2)mPO3 2-2M+이고,
m은 2 내지 6의 정수이고, M은 1족 원소이고,
R16 및 R17은 서로 같거나 상이하고, 각각 독립적으로 할로겐기이고,
Rb는 수소; 또는 치환 또는 비치환된 알킬기이고,
n'은 2 내지 10의 정수이고, n'이 2 이상의 정수인 경우 괄호 내의 구조는 서로 같거나 상이하고,
X11은 직접결합; ―C(Z11)(Z12)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z11)(Z12)―이고,
Z11 및 Z12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
T11 및 T12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, t11 및 t12는 0 내지 4의 정수이고, t11 및 t12가 2 이상의 정수인 경우 괄호 내의 치환기는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 4는 하기 화학식 4-1 내지 4-3 중 선택되는 하나로 표시될 수 있다.
[화학식 4-1]
Figure PCTKR2018014137-appb-I000011
[화학식 4-2]
Figure PCTKR2018014137-appb-I000012
[화학식 4-3]
Figure PCTKR2018014137-appb-I000013
상기 화학식 4-1 내지 4-3에 있어서, 치환기들의 정의는 화학식 4에서 정의한 바와 같다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막에 포함되는 중합체 중 소수성 블록은, 플루오르 함유 화합물로부터 유래되는 단위를 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 플루오르 함유 화합물은 데카플루오로바이페닐(decafluorobiphenyl)일 수 있다.
[decafluorobiphenyl]
Figure PCTKR2018014137-appb-I000014
본 명세서의 일 실시상태에 따르면, 상기 플루오르 함유 화합물은 하기 화학식 3으로 표시되는 화합물일 수 있다.
[화학식 3]
Figure PCTKR2018014137-appb-I000015
상기 화학식 3에 있어서,
X2는 직접결합; ―C(Z3)(Z4)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z3)(Z4)―이고,
Z3 및 Z4는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
T3 및 T4는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, t3 및 t4는 0 내지 4의 정수이고, t3 및 t4가 2 이상의 정수인 경우 괄호 내의 치환기는 서로 같거나 상이하고,
단, X2는 ―C(Z3)(Z4)―; 또는 ―Si(Z3)(Z4)―이고, Z3 및 Z4가 서로 같거나 상이하고 각각 독립적으로 할로겐기로 치환된 알킬기거나,
X2가 직접결합; ―C(Z3)(Z4)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z3)(Z4)―이고, Z3 및 Z4가 할로겐기로 치환된 알킬기가 아닌 경우, T3 및 T4는 서로 같거나 상이하고 각각 독립적으로 할로겐기; 할로겐기로 치환된 알킬기; 또는 할로겐기로 치환된 아릴기이고, t3 및 t4는 1 내지 4의 정수이다.
본 명세서의 일 실시상태에 따르면, 상기 X2는 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 X2는 ―C(Z3)(Z4)―이다.
본 명세서의 일 실시상태에 따르면, 상기 X2는 ―O―이다.
본 명세서의 일 실시상태에 따르면, 상기 X2는 ―S―이다.
본 명세서의 일 실시상태에 따르면, 상기 X2는 ―SO2―이다.
본 명세서의 일 실시상태에 따르면, 상기 X2는 ―CO―이다.
본 명세서의 일 실시상태에 따르면, 상기 X2는 ―Si(Z3)(Z4)―이다.
본 명세서의 일 실시상태에 따르면, 상기 X2는 ―C(Z3)(Z4)―; 또는 ―Si(Z3)(Z4)―이고, Z3 및 Z4가 서로 같거나 상이하고 각각 독립적으로 F로 치환된 알킬기거나, 상기 X2가 직접결합; ―C(Z3)(Z4)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z3)(Z4)―이고, Z3 및 Z4가 F로 치환된 알킬기가 아닌 경우, T3 및 T4는 서로 같거나 상이하고 각각 독립적으로 F; F로 치환된 알킬기; 또는 F로 치환된 아릴기이고, t3 및 t4는 1 내지 4의 정수이다.
본 명세서의 일 실시상태에 따르면, 상기 X2는 ―C(Z3)(Z4)―; 또는 ―Si(Z3)(Z4)―이고, Z3 및 Z4가 -CF3거나, 상기 X2가 직접결합; ―C(Z3)(Z4)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z3)(Z4)―이고, Z3 및 Z4가 -CF3가 아닌 경우, T3 및 T4는 서로 같거나 상이하고 각각 독립적으로 F; F로 치환된 알킬기; 또는 F로 치환된 아릴기이고, t3 및 t4는 1 내지 4의 정수이다.
본 명세서의 일 실시상태에 따르면, 상기 소수성 블록은 하기 화학식 5로 표시되는 반복 단위를 포함할 수 있다.
[화학식 5]
Figure PCTKR2018014137-appb-I000016
상기 화학식 5에 있어서,
x2, b 및 b'는 괄호 내 단위의 반복수로서, 1 내지 1,000의 정수이고, b : b'는 1,000 : 1 내지 1 : 1,000이고,
X12는 직접결합; ―C(Z13)(Z14)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z13)(Z14)―이고,
Z13 및 Z14는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
T13 및 T14는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, t13 및 t14는 0 내지 4의 정수이고, t13 및 t14가 2 이상의 정수인 경우 괄호 내의 치환기는 서로 같거나 상이하고,
단, X12는 ―C(Z13)(Z14)―; 또는 ―Si(Z13)(Z14)―이고, Z13 및 Z14가 서로 같거나 상이하고 각각 독립적으로 할로겐기로 치환된 알킬기거나,
X12가 직접결합; ―C(Z13)(Z14)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z13)(Z14)―이고, Z13 및 Z14가 할로겐기로 치환된 알킬기가 아닌 경우, T13 및 T14는 서로 같거나 상이하고 각각 독립적으로 할로겐기; 할로겐기로 치환된 알킬기; 또는 할로겐기로 치환된 아릴기이고, t13 및 t14는 1 내지 4의 정수이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 5는 하기 화학식 5-1로 표시될 수 있다.
[화학식 5-1]
Figure PCTKR2018014137-appb-I000017
상기 화학식 5-1에 있어서, 치환기들의 정의는 화학식 5에서 정의한 바와 같다.
본 명세서의 일 실시상태에 따르면,
Figure PCTKR2018014137-appb-I000018
는 인접한 치환기 또는 중합체의 주쇄와 결합할 수 있는 것을 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 친수성 블록과 소수성 블록을 포함하는 블록 중합체일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 브랜처를 더 포함할 수 있다.
본 명세서에 있어서, "브랜처(Brancher)"란 중합체 사슬을 연결 또는 가교하는 역할을 한다.
본 명세서의 일 실시상태에 따르면, 상기 브랜처는 중합체 사슬을 연결 또는 가교하는 역할을 할 수 있다.
본 명세서의 일 실시상태 에 따르면, 상기 브랜처를 더 포함하는 중합체의 경우에는 브랜처가 직접 중합체의 주쇄를 구성할 수 있으며, 박막의 기계적 집적도를 향상시킬 수 있다. 예컨대, 본 명세서의 일 실시상태에 따른 브랜치된 중합체는 산 치환체(acid substituents)를 포함하지 않는 브랜치된 소수성 블록(branched hydrophobic block)과 산 치환체를 포함하는 브랜치된 친수성 블록(branched hydrophilic block)을 중합함으로써 후처리 술폰화 반응(post-sulfonation)이나 술폰화된 중합체(sulfonated polymer)의 가교반응(cross-linking)을 실시하지 않고 브랜처(brancher)가 중합체의 주 사슬을 직접 구성하며, 박막의 기계적 집적도를 유지시켜주는 소수성 블록과 박막에 이온전도성을 부여하는 친수성 블록이 교대로 화학적 결합으로 이어질 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 하기 화학식 6의 화합물로부터 유래되는 브랜처 또는 하기 화학식 7로 표시되는 브랜처를 더 포함할 수 있다.
[화학식 6]
Figure PCTKR2018014137-appb-I000019
[화학식 7]
Figure PCTKR2018014137-appb-I000020
상기 화학식 6 및 7에 있어서,
X는 S; O; CO; SO; SO2; NR; 탄화수소계 또는 불소계 결합체이고,
l은 0 내지 100의 정수이고, l이 2 이상인 경우, 2 이상의 X는 서로 같거나 상이하고,
Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 히드록시기 및 할로겐기로 이루어진 군에서 선택되는 치환기로 1 또는 2 이상 치환된 방향족 고리; 히드록시기 및 할로겐기로 이루어진 군에서 선택되는 치환기로 1 또는 2 이상 치환된 지방족 고리; 또는 NR'R"로 표시되는 아민기이고,
R, R' 및 R"는 할로겐기로 치환된 방향족 고리; 또는 할로겐기로 치환된 지방족 고리이고,
Z는 3가의 유기기이다.
본 명세서에 있어서, "유기기"로는 알킬기, 시클로알킬기, 아릴기, 헤테로아릴기 등을 들 수 있다. 상기 유기기 중에 헤테로원자 등의 탄화수소기 이외의 결합이나 치환기를 포함하고 있어도 된다. 또한, 상기 유기기는 직쇄상, 분지쇄상, 환상 중 어느 것이어도 된다.
본 명세서에 있어서, "3가의 유기기"란 유기 화합물에 결합 위치가 3개 있는 3가기를 의미한다.
또한, 본 명세서의 일 실시상태에 따르면, 상기 유기기는 환상 구조를 형성할 수도 있으며, 발명의 효과가 손상되지 않는 한 헤테로원자를 포함하여 결합을 형성할 수 있다. 구체적으로 산소 원자, 질소 원자, 규소 원자 등의 헤테로원자를 포함하는 결합을 들 수 있다. 구체예로는, 에테르 결합, 티오에테르 결합, 카보닐 결합, 티오카보닐 결합, 에스테르 결합, 아미드 결합, 우레탄 결합, 이미노 결합(-N=C(-W)-, -C(=NW)-; W는 수소 원자 또는 유기기를 나타낸다), 카보네이트 결합, 설포닐 결합, 설피닐 결합, 아조 결합 등을 들 수 있으며, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 환상 구조로는 전술한 방향족 고리, 지방족 고리 등이 있을 수 있으며, 단환 또는 다환일 수 있다.
본 명세서에 있어서, 방향족 고리는 치환 또는 비치환된 방향족 탄화수소 고리 또는 방향족 헤테로 고리일 수 있으며, 단환 또는 다환일 수 있다.
본 명세서에 있어서, 방향족 탄화수소 고리로는 페닐기, 비페닐기, 터페닐기 등의 단환식 방향족 고리 및 나프틸기, 비나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타세닐기, 트리페닐렌기, 플루오란텐(fluoranthene)기 등의 다환식 방향족 고리 등이 있으며, 이에 한정되지 않는다. 본 명세서에 있어서, 방향족 탄화수소 고리는 상기 아릴기에 대한 설명이 적용될 수 있다.
본 명세서에 있어서, 방향족 헤테로 고리는 상기 방향족 탄화수소 고리에서 탄소원자 대신에 헤테로원자 예컨대, N, P, O, S, Se, Ge 및 Si 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함하는 구조를 의미하며, 상기 헤테로아릴기에 대한 설명이 적용될 수 있다. 구체적으로 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 지방족 고리는 치환 또는 비치환된 지방족 탄화수소 고리 또는 지방족 헤테로 고리일 수 있으며, 단환 또는 다환일 수 있다.
본 명세서에 있어서, 지방족 탄화수소 고리는 상기 시클로알킬기에 대한 설명이 적용될 수 있다.
본 명세서에 있어서, 지방족 헤테로 고리는 상기 지방족 탄화수소 고리에서 탄소원자 대신에 헤테로원자 예컨대, N, P, O, S, Se, Ge 및 Si 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함하는 구조를 의미한다.
본 명세서에 있어서, 헤테로고리기는 상기 방향족 헤테로 고리 및 지방족 헤테로 고리에 대한 설명이 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 Z는 3가의 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z는 3가의 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 6의 화합물로부터 유래되는 브랜처는 상기 Q1 및 Q2 각각의 할로겐기로 치환된 방향족 고리; 할로겐기로 치환된 지방족 고리; 또는 NR'R"로 표시되는 아민기 중 할로겐기가 방향족 고리 또는 지방족 고리에서 떨어져 나가면서, 브랜처로서 작용할 수 있다.
본 명세서의 일 실시상태에 따르면, l은 3 이상의 정수이다.
본 명세서의 일 실시상태에 따르면, X는 S이다.
본 명세서의 또 하나의 실시상태에 따르면, X는 할로알킬렌기이다.
본 명세서의 또 다른 실시상태에 따르면, X는 NR이다.
본 명세서의 일 실시상태에 따르면, 상기 Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐기로 치환된 방향족 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 F로 치환된 방향족 탄화수소 고리이다.
본 명세서의 일 실시상태에 따르면, 상기 Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 NR'R"로 표시되는 아민기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 Q1 및 Q2는 각각 불소로 치환된 페닐기이다. 구체적으로 2,4-다이플루오로페닐, 2,6-다이플루오로페닐, 2,3-다이플루오로페닐, 3,4-다이플루오로페닐 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 6의 화합물은 하기 구조들 중 선택되는 어느 하나로 표시될 수 있다.
Figure PCTKR2018014137-appb-I000021
상기 구조들에 있어서, X, l, R' 및 R"의 정의는 화학식 6에서 정의한 바와 같다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 7의 Z는 하기 화학식 7-1 내지 7-4 중 선택되는 하나로 표시될 수 있다.
[화학식 7-1]
[화학식 7-2]
Figure PCTKR2018014137-appb-I000023
[화학식 7-3]
Figure PCTKR2018014137-appb-I000024
[화학식 7-4]
Figure PCTKR2018014137-appb-I000025
상기 화학식 7-1 내지 7-4에 있어서,
L21 내지 L27은 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; -S-; -O-; -CO-; 또는 -SO2-이고,
W11 내지 W21은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
w1, w2, w3, w6, w8, w9 및 w10은 각각 1 내지 4의 정수이며, w4, w5 및 w7은 각각 1 내지 3의 정수이고, w11은 1 내지 6의 정수이고, w1 내지 w11이 각각 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 L21은 CO이다.
본 명세서의 일 실시상태에 따르면, 상기 L21은 SO2이다.
본 명세서의 일 실시상태에 따르면, 상기 L21은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 L22는 CO이다.
본 명세서의 일 실시상태에 따르면, 상기 L22는 SO2이다.
본 명세서의 일 실시상태에 따르면, 상기 L22는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 L23은 CO이다.
본 명세서의 일 실시상태에 따르면, 상기 L23은 SO2이다.
본 명세서의 일 실시상태에 따르면, 상기 L23은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 L24는 CO이다.
본 명세서의 일 실시상태에 따르면, 상기 L24는 SO2이다.
본 명세서의 일 실시상태에 따르면, 상기 L25는 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 L26은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 L27은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 W11 내지 W21은 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 W11 내지 W16, 및 W18 내지 W21은 각각 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 W17은 할로겐기이다.
본 명세서의 일 실시상태에 따르면, 상기 W17은 불소(F)이다.
본 명세서의 일 실시상태에 따르면, 상기 W17은 수소(H)이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 7로 표시되는 브랜처는 하기 구조들 중 선택되는 하나로 표시될 수 있다.
Figure PCTKR2018014137-appb-I000026
본 명세서의 일 실시상태에 따르면, 상기 중합체의 중량평균분자량은 1,000 g/mol 내지 1,200,000 g/mol 이다. 구체적인 실시상태에 따르면, 10,000 g/mol 내지 1,000,000 g/mol 이고, 더 바람직하게는 10,000 g/mol 내지 800,000 g/mol 이다. 상기 중합체의 중량평균분자량이 상기 범위인 경우에 상기 중합체를 포함하는 고분자 분리막의 기계적인 물성이 저하되지 않으며, 적절한 고분자의 용해도를 유지하여, 분리막의 제조가 용이할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 블록 중합체일 수 있고, 상기 블록 중합체 중 친수성 블록은 상기 화학식 1로 표시되는 화합물로부터 유래되는 단위를 포함하고, 상기 블록 중합체 중 소수성 블록은 전술한 플루오르 함유 화합물로부터 유래되는 단위를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 블록 중합체일 수 있고, 상기 블록 중합체 중 친수성 블록은 상기 화학식 4로 표시되는 반복 단위를 포함하고, 상기 블록 중합체 중 소수성 블록은 상기 화학식 5로 표시되는 반복 단위를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 블록 중합체 내에서 상기 친수성 블록과 소수성 블록은 1:0.1 내지 1:10의 몰비율로 포함된다. 본 명세서의 일 실시상태에 따르면, 상기 블록 중합체 내에서 상기 친수성 블록과 소수성 블록은 1:0.1 내지 1:2의 몰비율로 포함된다. 본 명세서의 또 하나의 실시상태에 따르면, 상기 블록 중합체 내에서 상기 친수성 블록과 소수성 블록은 1:0.8 내지 1:1.2의 몰비율로 포함된다. 이 경우, 블록 중합체의 이온 전달 능력을 상승시킬 수 있다.
본 명세서의 일 실시상태에 따른 친수성 블록은 퍼플루오로설폰산(perfluorosulfonic acid)을 포함하여 고분자 분리막의 높은 이온 전도도를 달성할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 소수성 블록은 다량의 플루오린(fluorine) 작용기를 포함하고 있어서, 고분자 분리막의 수분 흡수(water uptake)를 낮출 수 있고, 가습조건에서 막의 기계적 안정성을 높여주는 역할을 한다.
이에 따라, 본 명세서의 일 실시상태에 따른 중합체는, 친수성 블록 및 소수성 블록의 비율을 조절하여, 막 전극 접합체, 연료전지, 또는 레독스 플로우 전지에서 이온교환용량(Ion Exchange Capacity, IEC)을 조절할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 친수성 블록 내에서 상기 화학식 1로 표시되는 화합물로부터 유래되는 단위는 상기 친수성 블록을 기준으로 0.01 몰% 내지 100 몰% 포함된다.
본 명세서의 일 실시상태에 따르면, 상기 친수성 블록의 중량평균분자량은 1,000 g/mol 내지 600,000 g/mol 이다. 구체적인 실시상태에 따르면, 2,000 g/mol 내지 400,000 g/mol 이다. 또 다른 실시상태에 따르면, 5,000 g/mol 내지 400,000 g/mol 이다.
본 명세서의 일 실시상태에 따르면, 상기 소수성 블록의 중량평균분자량은 1,000 g/mol 내지 600,000 g/mol 이다. 구체적인 실시상태에 따르면, 2,000 g/mol 내지 400,000 g/mol 이다. 또 다른 실시상태에 따르면, 5,000 g/mol 내지 400,000 g/mol 이다.
본 명세서의 일 실시상태에 따르면, 블록 중합체인 경우에는 친수성 블록과 소수성 블록의 구획, 구분이 명확하여 상분리(phase separation)가 용이하여, 이온 전달이 용이할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단위를 포함하는 경우에는 친수성 블록과 소수성 블록의 구분이 더욱 명확하게 되어, 종래의 고분자보다 이온 전달 효과가 우수할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 블록 중합체란 하나의 블록과 상기 블록과 상이한 1 또는 2 이상의 블록이 서로 고분자의 주쇄로 연결되어 구성된 고분자를 의미한다.
본 명세서는 전술한 중합체를 포함하는 고분자 분리막을 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막은 중합체에, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단위를 친수성 블록에 포함하고, 상기 플루오르 함유 화합물로부터 유래되는 단위를 소수성 블록에 포함하는 것을 제외하고, 당 기술분야에 알려진 재료 및/또는 방법을 이용하여 제조될 수 있다. 예컨대, 상기 중합체를 포함하는 용액을 도포하고, 건조 및/또는 경화를 함으로써 수행될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 도포는 테이프 캐스팅(Tape Casting)법, 딥코팅(Dip Coating)법, 스프레이 코팅(Spray Coating)법, 스핀 코팅(Spin Coating)법 등의 방법이 이용될 수 있다.
본 명세서의 일 실시상태에 따르면, 고분자 분리막의 제조시 사용되는 용매는 N,N-디메틸아세트아마이드(N,N-dimethylacetamide(DMAc)), 디메틸술폭사이드(dimethylsulfoxide(DMSO)), N,N-디메틸피롤리돈(N,N-dimethylpyrollidone(NMP)), 디페닐술폰(diphenylsulfone), N,N-디메틸포름아마이드(N,N-dimethylformamide(DMF)) 등이 사용될 수 있으나, 이들에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 건조는 히팅에 의하여 수행될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 히팅은 가열을 통한 건조를 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 히팅 온도는 30℃ 이상 200℃ 이하, 구체적으로 50℃ 이상 150℃ 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 히팅 시간은 1시간 이상 46시간 이하, 구체적으로 5시간 이상 20시간 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막의 제조방법은 상기 중합체를 포함하는 용액에 산 용액을 가하는 단계를 더 포함할 수 있다. 상기 산 용액은 염산(HCl)일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체를 포함하는 용액에 산 용액을 가하면 상기 화학식 1의 A의 금속 M이 H(수소)로 치환될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 히팅은 50℃ 내지 70℃에서 2 내지 6시간 동안 예열하고, 80℃에서 12시간 이상 건조하며, 마지막으로 80℃ 진공 오븐(vacuum oven)에서 12시간 이상 건조할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막의 이온 전도도는 0.005 S/cm 내지 0.8 S/cm 이다. 바람직하게는 0.005 S/cm 내지 0.5 S/cm 이다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막의 양이온 전도도는 0.005 S/cm 내지 0.8 S/cm 이다. 바람직하게는 0.005 S/cm 내지 0.5 S/cm 이다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막의 이온 전도도(양이온 전도도)는 가습 조건을 달리하여 측정될 수 있다. 본 명세서에 있어서, 가습 조건이란 상대 습도(RH) 10% 내지 100%를 의미할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 이온 전도도는 다음과 같이 측정될 수 있다. 측정 전, 24시간 동안 고분자 분리막을 DI water에 충분히 담궜다. 분리막 시편을 1 × 5cm2로 자른 다음 아래와 같은 cell을 사용하여 막의 저항을 측정하였다. Impedance는 10MHz 에서 7Hz의 범위 내, 물에 담긴 상태에서 Potentioglavano station (SP-240)를 이용하여 측정하였다.
고분자 분리막의 이온 전도도는 측정된 막의 저항을 이용하여 계산할 수 있는데 그 계산식은 아래 식과 같다.
이온전도도(∂) = l/(R x d)
여기서 l은 두 전극(electrode) 간의 거리 (1cm)이며 R은 SP-240을 통해 측정된 막 저항, 그리고 d는 이온교환막의 두께 (cm)이다. 이온전도도의 단위는 S/cm로 얻어진다.
본 명세서에 있어서, 이온 전도도는 양이온 전도도를 의미할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막의 이온교환용량(IEC) 값은 0.01 mmol/g 내지 5.0 mmol/g이다. 상기 이온교환용량값의 범위를 갖는 경우에는 상기 고분자 분리막에서의 이온 채널이 형성되고, 중합체가 우수한 이온 전도도를 나타낼 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막의 두께는 1 ㎛ 내지 500 ㎛이다. 상기 범위 두께의 고분자 분리막은 전기적 쇼트(Electric Short) 및 전해질 물질의 크로스오버(Cross Over)를 저하시키고, 우수한 양이온 전도도 특성을 나타낼 수 있다.
본 명세서는 또한, 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 전술한 고분자 분리막을 포함하는 막 전극 접합체를 제공한다.
본 명세서에 있어서, "막 전극 접합체(MEA)"는 연료와 공기의 전기화학 촉매 반응이 일어나는 전극(캐소드와 애노드)과 수소 이온의 전달이 일어나는 고분자 분리막의 접합체를 의미하는 것으로서, 전극(캐소드와 애노드)과 분리막이 접착된 단일의 일체형 유니트(unit)이다.
본 명세서의 일 실시상태에 따르면, 상기 막 전극 접합체는 애노드의 촉매층과 캐소드의 촉매층이 고분자 분리막에 접촉하도록 하는 형태로서, 당 기술분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 상기 캐소드; 애노드; 및 상기 캐소드와 애노드 사이에 위치하는 고분자 분리막을 밀착시킨 상태에서 100℃내지 400℃로 열압착하여 제조될 수 있다.
본 명세서의 일 실시상태에 따르면, 애노드 전극은 애노드 촉매층과 애노드 기체확산층을 포함할 수 있다. 애노드 기체확산층은 다시 애노드 미세 기공층과 애노드 전극 기재를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 캐소드 전극은 캐소드 촉매층과 캐소드 기체확산층을 포함할 수 있다. 캐소드 기체확산층은 다시 캐소드 미세 기공층과 캐소드 전극 기재를 포함할 수 있다.
도 1은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 분리막(100)과 이 분리막(100)의 양면에 형성되는 애노드(200a) 및 캐소드(200b) 전극으로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1을 참조하면, 애노드(200a)에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 분리막(100)을 통해 캐소드(200b)로 이동한다. 캐소드(200b)에서는 분리막(100)을 통해 전달된 수소 이온과, 산소와 같은 산화제 및 전자가 반응하여 물이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
상기 애노드 전극의 촉매층은 연료의 산화 반응이 일어나는 곳으로, 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 및 백금-전이금속 합금으로 이루어진 군에서 선택되는 촉매가 바람직하게 사용될 수 있다.
상기 캐소드 전극의 촉매층은 산화제의 환원 반응이 일어나는 곳으로, 백금 또는 백금-전이금속 합금이 촉매로 바람직하게 사용될 수 있다. 상기 촉매들은 그 자체로 사용될 수 있을 뿐만 아니라 탄소계 담체에 담지되어 사용될 수 있다.
촉매층을 도입하는 과정은 당 기술분야에 알려져 있는 통상적인 방법으로 수행할 수 있는데, 예를 들면 촉매 잉크를 분리막에 직접적으로 코팅하거나 기체확산층에 코팅하여 촉매층을 형성할 수 있다. 이때 촉매 잉크의 코팅 방법은 특별하게 제한되는 것은 아니지만, 스프레이 코팅, 테이프 캐스팅, 스크린 프린팅, 블레이드 코팅, 다이 코팅 또는 스핀 코팅 방법 등을 사용할 수 있다. 촉매 잉크는 대표적으로 촉매, 폴리머 이오노머(polymer ionomer) 및 용매로 이루어질 수 있다.
상기 기체확산층은 전류전도체로서의 역할과 함께 반응 가스와 물의 이동 통로가 되는 것으로, 다공성의 구조를 가진다. 따라서, 상기 기체확산층은 도전성 기재를 포함하여 이루어질 수 있다. 도전성 기재로는 탄소 페이퍼(Carbon paper), 탄소 천(Carbon cloth) 또는 탄소 펠트(Carbon felt)가 바람직하게 사용될 수 있다.
상기 기체확산층은 촉매층 및 도전성 기재 사이에 미세기공층을 더 포함하여 이루어질 수 있다. 상기 미세기공층은 저가습 조건에서의 연료전지의 성능을 향상시키기 위하여 사용될 수 있으며, 기체확산층 밖으로 빠져나가는 물의 양을 적게 하여 고분자 분리막이 충분한 습윤 상태에 있도록 하는 역할을 한다.
본 명세서의 일 실시상태는 2 이상의 전술한 막 전극 접합체; 상기 막 전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택; 상기 스택으로 연료를 공급하는 연료 공급부; 및 상기 스택으로 산화제를 공급하는 산화제 공급부를 포함하는 고분자 전해질형 연료전지를 제공한다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다.
연료전지는 전술한 막 전극 접합체(MEA)를 사용하여 당 기술분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 예를 들면, 상기에서 제조된 막 전극 접합체(MEA)와 바이폴라 플레이트(bipolar plate)로 구성하여 제조될 수 있다.
본 명세서에 있어서, 연료전지는 스택, 연료 공급부 및 산화제 공급부를 포함하여 이루어진다.
도 3은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 상술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 펌프로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료 탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 연료전지는 고분자 전해질 연료전지, 직접 액체 연료전지, 직접 메탄올 연료전지, 직접 개미산 연료전지, 직접 에탄올 연료전지, 또는 직접 디메틸에테르 연료전지 등이 가능하다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막을 연료전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
또한, 본 명세서의 일 실시상태에 따르면, 양극 및 양극 전해액을 포함하는 양극 셀; 음극 및 음극 전해액을 포함하는 음극 셀; 및 상기 양극 셀과 상기 음극 셀 사이에 구비되는 전술한 고분자 분리막을 포함하는 레독스 플로우 전지를 제공한다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)는 전해액에 포함되어 있는 활성물질이 산화·환원되어 충전·방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지는 산화상태가 다른 활성물질을 포함하는 전해액이 이온교환막을 사이에 두고 만날 때 전자를 주고받아 충전과 방전이 되는 원리를 이용한다. 일반적으로 레독스 플로우 전지는 전해액이 담겨있는 탱크, 충전과 방전이 일어나는 전지 셀, 그리고 전해액을 탱크와 전지 셀 사이에 순환시키기 위한 순환펌프로 구성되고, 전지 셀의 단위셀은 전극, 전해질 및 이온교환막을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 분리막을 레독스 플로우 전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
본 명세서의 일 실시상태에 따르면, 레독스 플로우 전지는 상기 고분자 분리막을 포함하는 것을 제외하고는, 당 기술분야에 알려진 통상적인 방법에 따라 제조될 수 있다.
도 2에 도시한 바와 같이, 레독스 플로우 전지는 분리막(31)에 의해 양극 셀(32)과 음극 셀(33)로 나뉘어진다. 양극 셀(32)과 음극 셀(33)은 각각 양극과 음극을 포함한다. 양극 셀(32)은 파이프를 통해 양극 전해액(41)을 공급 및 방출하기 위한 양극 탱크(10)에 연결되어 있다. 음극 셀(33) 또한, 파이프를 통해 음극 전해액(42)을 공급 및 방출하기 위한 음극 탱크(20)에 연결되어 있다. 전해액은 펌프(11, 21)를 통해 순환되고, 이온의 산화수가 변화되는 산화·환원 반응(즉, 레독스 반응)이 일어남으로써 양극과 음극에서 충전 및 방전이 일어난다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당 기술분야에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
<제조예 1> 친수성 고분자 A의 제조
Figure PCTKR2018014137-appb-I000027
(z1= 1 내지 1,000)
딘스탁 트랩(dean-stark trap)과 질소 주입구(nitrogen inlet) 및 기계적 교반기(mechanical stirrer)가 장착된 500 mL의 3구 둥근 바닥 플라스크(three-necked round bottomed flask)에 퍼플루오리네이티드 3,5-다이플루오로벤젠 (Perfluorinated 3,5-Difluorobenzene) 단량체 30 g (62.46 mmol), 4,4'-다이하이드록시다이페닐 이써 (4,4’-Dihydroxydiphenyl ether) 13.892 g (68.70 mmol)을 넣고 N-메틸-2-피롤리돈 (N-Methyl-2-pyrrolidone, NMP) 110 mL 와 톨루엔 50 mL 를 이용하여 질소분위기에서 포타슘 카보네이트 37.979 g (274.80 mmol)을 촉매로 사용하여 반응하였다.
상기 반응 혼합물을 140℃의 온도로 오일 바스(oil bath)에서 2시간 동안 교반하며 환류 증류로 물과 톨루엔을 제거하였다. 이후 온도를 185℃로 승온하여 6시간 반응을 진행하였다.
반응 후에 상온으로 온도를 낮추고, 합성된 친수성 고분자 용액을 2,000mL 이소프로필 알코올 (isopropyl alcohol, IPA)에 천천히 떨어뜨려 침전물을 얻었다. 유리여과기(glass filter)를 통해 침전물만 획득하고 200 mL IPA로 세척해 주었다. 획득한 친수성 고분자는 진공오븐에서 60℃로 12시간 건조하여, 친수성 고분자 A를 제조하였다.
도 5는 상기 친수성 고분자 A의 1H-NMR spectrum을 나타낸 도시이다.
도 6은 상기 친수성 고분자 A의 GPC trace를 이용하여 측정한 분자량 분포(Molecular Weight Distribution)를 나타낸 도시이다.
친수성 고분자 A의 중량평균분자량(Mw): 69,900
<제조예 2> 친수성 고분자 B의 제조
Figure PCTKR2018014137-appb-I000028
(z2= 1 내지 1,000)
상기 제조예 1에서, 4,4'-다이하이드록시다이페닐 이써 (4,4’-Dihydroxydiphenyl ether) 대신 4,4'-(퍼플루오로프로판-2,2-다이일)다이페놀 (4,4'-(perfluoropropane-2,2-diyl)diphenol) 23.099 g (68.70 mmol)을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 친수성 고분자 B를 제조하였다.
도 7은 상기 친수성 고분자 B의 1H-NMR spectrum을 나타낸 도시이다.
도 8은 상기 친수성 고분자 B의 GPC trace를 이용하여 측정한 분자량 분포(Molecular Weight Distribution)를 나타낸 도시이다.
친수성 고분자 B의 중량평균분자량(Mw): 80,200
<실시예 1> 블록 중합체 I의 제조
Figure PCTKR2018014137-appb-I000029
(z1:y1 = 0.6:0.4)
딘스탁 트랩(dean-stark trap)과 질소 주입구(nitrogen inlet) 및 기계적 교반기(mechanical stirrer)가 장착된 500 mL의 3구 둥근 바닥 플라스크(three-necked round bottomed flask)에 실시예 1에서 제조한 친수성 고분자 A 16 g, 데카플루오로바이페닐 (decafluorobiphenyl) 6.048 g (18.10 mmol), 6-플루오로 비스페놀 A (6-fluoro bisphenol A) 5.205 g (15.48 mmol), 4,4',4"-트리하이드록시트리페닐 메탄 (4,4’,4"-Trihydroxytriphenyl methane) 0.226 g (0.774 mmol)을 넣고 NMP 110 mL 를 이용하여 질소분위기에서 포타슘 카보네이트 9.199 g (66.56 mmol)를 촉매로 사용하여 반응하였다. 상기 반응 혼합물을 40℃의 온도로 오일 바스에서 7일간 동안 교반하며 반응을 진행하였다.
반응 후에 1 M HCl 수용액에 떨어뜨리고 24시간 교반해 주고, 유리여과기를 통해 침전물만 획득하고 여과액이 중성을 보일 때까지 증류수로 씻어주었다. 획득한 멀티 블록 공중합체는 진공오븐에서 50℃로 2일간 건조하여, 블록 중합체 I을 제조하였다.
도 9는 상기 블록 중합체 I의 1H-NMR spectrum을 나타낸 도시이다.
도 10은 상기 블록 중합체 I의 GPC trace를 이용하여 측정한 분자량 분포(Molecular Weight Distribution)를 나타낸 도시이다.
블록 중합체 I의 중량평균분자량(Mw): 604,000
<실시예 2> 블록 중합체 II의 제조
Figure PCTKR2018014137-appb-I000030
(z2:y2 = 0.6:0.4)
딘스탁 트랩(dean-stark trap)과 질소 주입구(nitrogen inlet) 및 기계적 교반기(mechanical stirrer)가 장착된 500 mL의 3구 둥근 바닥 플라스크(three-necked round bottomed flask)에 제조예 2에서 제조한 친수성 고분자 B 15 g, 데카플루오로바이페닐 (decafluorobiphenyl) 5.530 g (16.55 mmol), 6-플루오로 비스페놀 A (6-fluoro bisphenol A) 4.665 g (13.87 mmol), 4,4',4"-트리하이드록시트리페닐 메탄 (4,4’,4"-Trihydroxytriphenyl methane) 0.285 g (0.975 mmol)을 넣고 NMP 105 mL 를 이용하여 질소분위기에서 포타슘 카보네이트 8.476 g (61.33 mmol)를 촉매로 사용하여 반응하였다. 상기 반응 혼합물을 40℃의 온도로 오일 바스에서 7일간 동안 교반하며 반응을 진행하였다.
반응 후에 1 M HCl 수용액에 떨어뜨리고 24시간 교반해 주고, 유리여과기를 통해 침전물만 획득하고 여과액이 중성을 보일 때까지 증류수로 씻어주었다. 획득한 멀티 블록 공중합체는 진공오븐에서 50℃로 2일간 건조하여, 블록 중합체 II를 제조하였다.
도 11은 상기 블록 중합체 II의 1H-NMR spectrum을 나타낸 도시이다.
도 12는 상기 블록 중합체 II의 GPC trace를 이용하여 측정한 분자량 분포(Molecular Weight Distribution)를 나타낸 도시이다.
블록 중합체 II의 중량평균분자량(Mw): 650,000
<실시예 3> 블록 중합체 III의 제조
Figure PCTKR2018014137-appb-I000031
(z1:y1 = 0.7:0.3)
딘스탁 트랩(dean-stark trap)과 질소 주입구(nitrogen inlet) 및 기계적 교반기(mechanical stirrer)가 장착된 500 mL의 3구 둥근 바닥 플라스크(three-necked round bottomed flask)에 실시예 1에서 제조한 친수성 고분자 A 10 g, 데카플루오로바이페닐 (decafluorobiphenyl) 2.300 g (6.88 mmol), 6-플루오로 비스페놀 A (6-fluoro bisphenol A) 1.927 g (5.73 mmol), 4,4',4"-트리하이드록시트리페닐 메탄 (4,4',4"-Trihydroxytriphenyl methane) 0.167 g (0.57 mmol)을 넣고 NMP 30 mL 를 이용하여 질소분위기에서 포타슘 카보네이트 3.960 g (28.65 mmol)를 촉매로 사용하여 반응하였다. 상기 반응 혼합물을 50℃의 온도로 오일 바스에서 28시간 동안 교반하며 반응을 진행하였다.
반응 후에 1 M HCl 수용액에 떨어뜨리고 24시간 교반해 주고, 유리여과기를 통해 침전물만 획득하고 여과액이 중성을 보일 때까지 증류수로 씻어주었다. 획득한 멀티 블록 공중합체는 진공오븐에서 50℃로 2일간 건조하여, 블록 중합체 III을 제조하였다.
도 13은 상기 블록 중합체 III의 1H-NMR spectrum을 나타낸 도시이다.
블록 중합체 III의 중량평균분자량(Mw): 454,000
<실시예 4> 블록 중합체 IV의 제조
Figure PCTKR2018014137-appb-I000032
(z1:y1 = 0.8:0.2)
딘스탁 트랩(dean-stark trap)과 질소 주입구(nitrogen inlet) 및 기계적 교반기(mechanical stirrer)가 장착된 500 mL의 3구 둥근 바닥 플라스크(three-necked round bottomed flask)에 실시예 1에서 제조한 친수성 고분자 A 10 g, 데카플루오로바이페닐 (decafluorobiphenyl) 1.550 g (4.64 mmol), 6-플루오로 비스페놀 A (6-fluoro bisphenol A) 1.200 g (3.57 mmol), 4,4',4"-트리하이드록시트리페닐 메탄 (4,4',4"-Trihydroxytriphenyl methane) 0.105 g (0.36 mmol)을 넣고 NMP 20 mL 를 이용하여 질소분위기에서 포타슘 카보네이트 2.270 g (17.85 mmol)를 촉매로 사용하여 반응하였다. 상기 반응 혼합물을 60℃의 온도로 오일 바스에서 4일 동안 교반하며 반응을 진행하였다.
반응 후에 1 M HCl 수용액에 떨어뜨리고 24시간 교반해 주고, 유리여과기를 통해 침전물만 획득하고 여과액이 중성을 보일 때까지 증류수로 씻어주었다. 획득한 멀티 블록 공중합체는 진공오븐에서 50℃로 2일간 건조하여, 블록 중합체 IV를 제조하였다.
도 14는 상기 블록 중합체 IV의 1H-NMR spectrum을 나타낸 도시이다.
블록 중합체 IV의 중량평균분자량(Mw): 300,000
<실험예 1>
상기 실시예 1에서 제조한 블록 중합체를 DMSO(dimethylsulfoxide)에 20wt/v%로 녹인 후, 0.45㎛ 실린지 필터로 여과해 주었다. 여과한 용액을 유리판에 캐스팅(casting)하여 고분자 분리막을 제조하였으며, 80℃ 오븐에서 12시간 건조 후, 진공오븐에서 80℃로 12시간 건조해 주었다.
제조된 고분자 분리막을 증류수에 넣어 분리시킨 후, 1M 염산(HCl) 용액에 상온에서 24시간 담긴 상태로 유지하고, 증류수로 반복하여 씻은 후, 증류수에 담긴 상태에서 24시간 유지시켰다.
이어서, 증류수에서 고분자 분리막을 꺼내고, 80℃ 진공오븐에서 12시간 건조하여 고분자 분리막을 제조하였다. 제조된 고분자 분리막은 갈색의 투명한 필름형태였다.
또한, 상기 실시예 3 및 4에서 제조한 블록 중합체로부터 동일한 방법으로 필름 형태의 고분자 분리막을 제조하였다.
제조된 필름의 이온교환능력(IEC)은 1H-NMR spectroscopy를 이용한 면적비를 통해 얻었으며 가습조건을 달리하여 양이온 전도도를 측정하였다. 그 결과를 하기 표 1에 기재하였다.
<비교예>
나피온(Nafion) 211 (DuPont社)을 사용하여, 상기 실험예 1과 같이 양이온 전도도 및 이온교환능력(IEC)을 측정하였고, 그 결과를 하기 표 1에 기재하였다.
하기 표 1에서, 양이온 전도도 1은 상대 습도(RH) 30%, 70℃인 상태, 양이온 전도도 2는 상대 습도(RH) 50%, 70℃인 상태, 양이온 전도도 3은 상대 습도(RH) 80%, 70℃인 상태, 양이온 전도도 4는 상대 습도(RH) 100%, 70℃인 상태에서 전술한 방법으로 측정하였다.
중합체 IEC(meq/g) 양이온 전도도 1(mS/cm)@ RH30%, 70℃ 양이온 전도도 2(mS/cm)@ RH50%, 70℃ 양이온 전도도 3(mS/cm)@ RH80%, 70℃ 양이온 전도도 4(mS/cm)@ RH100%, 70℃
실시예 1 1.09 2.41 9.97 42.66 189.27
실시예 3 1.18 4.35 14.29 53.20 175.04
실시예 4 1.33 8.99 10.35 39.84 181.44
비교예 0.92 12.20 27.97 83.82 162.28
도 4는 실시예 1, 3, 4 및 비교예에 따른 양이온 전도도의 값을 그래프로 도시한 것이다.
상기 표 1의 결과로, 기존의 분리막 소재로 사용된 나피온을 사용한 경우와 대비하여, 실험예 1에 따라 친수성 블록과 소수성 블록을 포함하는 블록 중합체를 사용하는 경우, 고가습 조건(상대습도 약 100% 이상)에서 양이온 전도도가 우수함을 확인할 수 있었다.
구체적으로 상기 실험예에 따른 고분자 분리막은 퍼플루오로설폰산(perfluorosulfonic acid)을 포함하는 친수성 블록으로 인하여 고분자 분리막의 높은 이온 전도도를 달성할 수 있고, 다량의 플루오린(fluorine) 작용기를 포함하는 소수성 블록으로 인하여, 고분자 분리막의 수분 흡수(water uptake)를 낮추고, 가습조건에서 막의 기계적 안정성을 높여주는 역할을 한다.
<실험예 2>
실시예 1, 3 및 4의 중합체로부터 상기 실험예 1과 동일한 방법으로 필름 형태의 고분자 분리막을 제조하였다.
제조된 필름을 증류수에 담긴 상태에서 24시간 유지시킨 이 후, 상기 필름의 무게 변화로부터 Water uptake를 측정하고, 상기 필름의 가로(x), 세로(y) 및 두께(z)의 변화로부터 Swelling ratio를 측정하였다. 그 결과를 하기 표 2에 기재하였다.
중합체 무게 (g) 가로(x) 길이 (cm) 세로(y) 길이 (cm) 두께(z)(㎛) Water uptake(%) Swelling ratio(%)
Dry Wet Dry Wet Dry Dry Dry Wet
실시예 1(z1:y1=0.6:0.4) 0.1109 0.1233 2.9 3.1 2.9 3.1 84 88 11.18 Lx 6.9
Ly 6.9
Lz 4.8
실시예 3(z1:y1=0.7:0.3) 0.1299 0.1416 2.9 3.0 2.9 3.0 102 108 9.00 Lx 3.4
Ly 3.4
Lz 5.9
실시예 4(z1:y1=0.8:0.2) 0.0780 0.0913 2.9 3.1 2.85 3.1 60 63 17.05 Lx 6.9
Ly 8.8
Lz 5
비교예 0.0650 0.0788 3.0 3.29 3.0 3.31 3.0 3.30 21.20 Lx 9.6
Ly 10.4
Lz 10.1
상기 표 2의 결과로, 실시예 1, 3 및 4에 따라 친수성 블록과 소수성 블록을 포함하는 블록 중합체를 사용하는 경우, 친수성 블록의 함량이 늘어남에도 불구하고 낮은 정도의 Water Uptake와 Swelling ratio를 유지하는 것을 확인할 수 있었다. 이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.
[부호의 설명]
100: 분리막
200a: 애노드
200b: 캐소드
10: 양극 탱크
20: 음극 탱크
11, 21: 펌프
31: 분리막
32: 양극 셀
33: 음극 셀
41: 양극 전해액
42: 음극 전해액
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프

Claims (17)

  1. 친수성 블록 및 소수성 블록을 포함하고,
    상기 친수성 블록은 하기 화학식 1로 표시되는 화합물로부터 유래되는 단위를 포함하고,
    상기 소수성 블록은 플루오르 함유 화합물로부터 유래되는 단위를 포함하는 것인 중합체:
    [화학식 1]
    Figure PCTKR2018014137-appb-I000033
    상기 화학식 1에 있어서,
    L1은 직접결합; -S-; -O-; -NRa-; -SO2-; 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고,
    A는 ―SO3H, ―SO3 -M+, ―COOH, ―COO-M+, ―PO3H2, ―PO3H-M+, ―PO3 2-2M+, ―O(CF2)mSO3H, ―O(CF2)mSO3 -M+, ―O(CF2)mCOOH, ―O(CF2)mCOO-M+, ―O(CF2)mPO3H2, ―O(CF2)mPO3H-M+, 또는 ―O(CF2)mPO3 2-2M+이고,
    m은 2 내지 6의 정수이고, M은 1족 원소이고,
    R1 내지 R5는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 또는 히드록시기이고, R1 내지 R5 중 적어도 두 개는 할로겐기; 또는 히드록시기이고,
    R6 및 R7은 서로 같거나 상이하고, 각각 독립적으로 할로겐기이고,
    Ra는 수소; 또는 치환 또는 비치환된 알킬기이고,
    n은 2 내지 10의 정수이고, n이 2 이상의 정수인 경우 괄호 내의 구조는 서로 같거나 상이하다.
  2. 청구항 1에 있어서, 상기 R2 및 R4는 F이고, 상기 R1, R3, 및 R5는 수소인 것인 중합체.
  3. 청구항 1에 있어서, 상기 L1은 -S-인 것인 중합체.
  4. 청구항 1에 있어서, 상기 A는 ―O(CF2)mSO3H, 또는 ―O(CF2)mSO3 -M+이고, m은 2 내지 6의 정수이고, M은 1족 원소인 것인 중합체.
  5. 청구항 1 에 있어서, 상기 R6 및 R7은 F인 것인 중합체.
  6. 청구항 1에 있어서, 상기 친수성 블록은 하기 화학식 2로 표시되는 화합물로부터 유래되는 단위를 더 포함하는 것인 중합체:
    [화학식 2]
    Figure PCTKR2018014137-appb-I000034
    상기 화학식 2에 있어서,
    X1은 직접결합; ―C(Z1)(Z2)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z1)(Z2)―이고,
    Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    T1 및 T2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, t1 및 t2는 0 내지 4의 정수이고, t1 및 t2가 2 이상의 정수인 경우 괄호 내의 치환기는 서로 같거나 상이하다.
  7. 청구항 1에 있어서, 상기 플루오르 함유 화합물은 데카플루오로바이페닐(decafluorobiphenyl) 또는 하기 화학식 3으로 표시되는 화합물인 것인 중합체:
    [화학식 3]
    Figure PCTKR2018014137-appb-I000035
    상기 화학식 3에 있어서,
    X2는 직접결합; ―C(Z3)(Z4)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z3)(Z4)―이고,
    Z3 및 Z4는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    T3 및 T4는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, t3 및 t4는 0 내지 4의 정수이고, t3 및 t4가 2 이상의 정수인 경우 괄호 내의 치환기는 서로 같거나 상이하고,
    단, X2는 ―C(Z3)(Z4)―; 또는 ―Si(Z3)(Z4)―이고, Z3 및 Z4가 서로 같거나 상이하고 각각 독립적으로 할로겐기로 치환된 알킬기거나,
    X2가 직접결합; ―C(Z3)(Z4)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z3)(Z4)―이고, Z3 및 Z4가 할로겐기로 치환된 알킬기가 아닌 경우, T3 및 T4는 서로 같거나 상이하고 각각 독립적으로 할로겐기; 할로겐기로 치환된 알킬기; 또는 할로겐기로 치환된 아릴기이고, t3 및 t4는 1 내지 4의 정수이다.
  8. 청구항 1에 있어서, 상기 친수성 블록은 하기 화학식 4로 표시되는 반복 단위를 포함하는 것인 중합체:
    [화학식 4]
    Figure PCTKR2018014137-appb-I000036
    상기 화학식 4에 있어서,
    x1, a 및 a'는 괄호 내 단위의 반복수로서, 1 내지 1,000의 정수이고, a : a'는 1,000 : 1 내지 1 : 1,000이고,
    L11은 직접결합; -S-; -O-; -NRb-; -SO2-; 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌기이고,
    A'는 ―SO3H, ―SO3 -M+, ―COOH, ―COO-M+, ―PO3H2, ―PO3H-M+, ―PO3 2-2M+, ―O(CF2)mSO3H, ―O(CF2)mSO3 -M+, ―O(CF2)mCOOH, ―O(CF2)mCOO-M+, ―O(CF2)mPO3H2, ―O(CF2)mPO3H-M+, 또는 ―O(CF2)mPO3 2-2M+이고,
    m은 2 내지 6의 정수이고, M은 1족 원소이고,
    R16 및 R17은 서로 같거나 상이하고, 각각 독립적으로 할로겐기이고,
    Rb는 수소; 또는 치환 또는 비치환된 알킬기이고,
    n'은 2 내지 10의 정수이고, n'이 2 이상의 정수인 경우 괄호 내의 구조는 서로 같거나 상이하고,
    X11은 직접결합; ―C(Z11)(Z12)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z11)(Z12)―이고,
    Z11 및 Z12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    T11 및 T12는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, t11 및 t12는 0 내지 4의 정수이고, t11 및 t12가 2 이상의 정수인 경우 괄호 내의 치환기는 서로 같거나 상이하다.
  9. 청구항 1에 있어서, 상기 소수성 블록은 하기 화학식 5로 표시되는 반복 단위를 포함하는 것인 중합체:
    [화학식 5]
    Figure PCTKR2018014137-appb-I000037
    상기 화학식 5에 있어서,
    x2, b 및 b'는 괄호 내 단위의 반복수로서, 1 내지 1,000의 정수이고, b : b'는 1,000 : 1 내지 1 : 1,000이고,
    X12는 직접결합; ―C(Z13)(Z14)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z13)(Z14)―이고,
    Z13 및 Z14는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    T13 및 T14는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고, t13 및 t14는 0 내지 4의 정수이고, t13 및 t14가 2 이상의 정수인 경우 괄호 내의 치환기는 서로 같거나 상이하고,
    단, X12는 ―C(Z13)(Z14)―; 또는 ―Si(Z13)(Z14)―이고, Z13 및 Z14가 서로 같거나 상이하고 각각 독립적으로 할로겐기로 치환된 알킬기거나,
    X12가 직접결합; ―C(Z13)(Z14)―; ―O―; ―S―; ―SO2―; ―CO―; 또는 ―Si(Z13)(Z14)―이고, Z13 및 Z14가 할로겐기로 치환된 알킬기가 아닌 경우, T13 및 T14는 서로 같거나 상이하고 각각 독립적으로 할로겐기; 할로겐기로 치환된 알킬기; 또는 할로겐기로 치환된 아릴기이고, t13 및 t14는 1 내지 4의 정수이다.
  10. 청구항 1에 있어서, 상기 중합체는 블록 중합체인 것인 중합체.
  11. 청구항 1에 있어서, 상기 중합체는 하기 화학식 6의 화합물로부터 유래되는 브랜처 또는 하기 화학식 7로 표시되는 브랜처를 더 포함하는 것인 중합체:
    [화학식 6]
    Figure PCTKR2018014137-appb-I000038
    [화학식 7]
    Figure PCTKR2018014137-appb-I000039
    상기 화학식 6 및 7에 있어서,
    X는 S; O; CO; SO; SO2; NR; 탄화수소계 또는 불소계 결합체이고,
    l은 0 내지 100의 정수이고, l이 2 이상인 경우, 2 이상의 X는 서로 같거나 상이하고,
    Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 히드록시기 및 할로겐기로 이루어진 군에서 선택되는 치환기로 1 또는 2 이상 치환된 방향족 고리; 히드록시기 및 할로겐기로 이루어진 군에서 선택되는 치환기로 1 또는 2 이상 치환된 지방족 고리; 또는 NR'R"로 표시되는 아민기이고,
    R, R' 및 R"는 할로겐기로 치환된 방향족 고리; 또는 할로겐기로 치환된 지방족 고리이고,
    Z는 3가의 유기기이다.
  12. 청구항 1 내지 11 중 어느 한 항에 따른 중합체를 포함하는 고분자 분리막.
  13. 청구항 12에 있어서, 상기 고분자 분리막의 이온 전도도는 0.005 S/㎝ 내지 0.8 S/㎝인 것인 고분자 분리막.
  14. 청구항 12에 있어서, 상기 고분자 분리막의 이온교환용량(IEC)은 0.01 mmol/g 내지 5 mmol/g인 것인 고분자 분리막.
  15. 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 청구항 12에 따른 고분자 분리막을 포함하는 막 전극 접합체.
  16. 2 이상의 청구항 15에 따른 막 전극 접합체;
    상기 막 전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택;
    상기 스택으로 연료를 공급하는 연료공급부; 및
    상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지.
  17. 양극 및 양극 전해액을 포함하는 양극 셀;
    음극 및 음극 전해액을 포함하는 음극 셀; 및
    상기 양극 셀과 상기 음극 셀 사이에 구비되는 청구항 12에 따른 고분자 분리막을 포함하는 레독스 플로우 전지.
PCT/KR2018/014137 2017-11-17 2018-11-16 중합체 및 이를 포함하는 고분자 분리막 WO2019098771A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18879548.8A EP3683254A4 (en) 2017-11-17 2018-11-16 POLYMER AND POLYMER SEPARATOR CONTAINING THIS
US16/754,630 US11618804B2 (en) 2017-11-17 2018-11-16 Polymer and polymer separator comprising same
JP2020519239A JP6943530B2 (ja) 2017-11-17 2018-11-16 重合体及びこれを含む高分子分離膜
CN201880064710.7A CN111164132B (zh) 2017-11-17 2018-11-16 聚合物和包含聚合物的聚合物隔膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0154253 2017-11-17
KR20170154253 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019098771A1 true WO2019098771A1 (ko) 2019-05-23

Family

ID=66539714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014137 WO2019098771A1 (ko) 2017-11-17 2018-11-16 중합체 및 이를 포함하는 고분자 분리막

Country Status (6)

Country Link
US (1) US11618804B2 (ko)
EP (1) EP3683254A4 (ko)
JP (1) JP6943530B2 (ko)
KR (1) KR20190057000A (ko)
CN (1) CN111164132B (ko)
WO (1) WO2019098771A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608482B (zh) * 2020-12-15 2022-09-09 温州大学 一种铵根离子修饰的含氟嵌段共聚物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060115886A (ko) * 2003-11-20 2006-11-10 버지니아 테크 인터렉추얼 프라퍼티스, 인크. 양자 교환 멤브레인용의 친수성-소수성 부분을 함유하는다중블록 공중합체
JP2013189515A (ja) * 2012-03-13 2013-09-26 Toyobo Co Ltd 芳香族炭化水素系ポリマーとそれを用いてなる電解質膜、膜電極接合体、及び燃料電池
KR20140145997A (ko) * 2013-06-14 2014-12-24 주식회사 엘지화학 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
KR20160091571A (ko) * 2015-01-26 2016-08-03 주식회사 엘지화학 할로겐화 화합물, 중합체 및 이를 포함하는 고분자 전해질막
FR3039321A1 (fr) * 2015-07-22 2017-01-27 Centre Nat Rech Scient Ionomeres aromatiques

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696460B1 (ko) 2003-06-05 2007-03-19 삼성에스디아이 주식회사 수소이온 전도성 폴리머
JP2007519942A (ja) 2003-12-02 2007-07-19 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド レジスト、barc、およびギャップフィル材料を剥離する化学物質ならびに方法
CN1938359B (zh) 2004-04-06 2012-05-02 住友化学株式会社 聚芳烯类高分子及其用途
KR100853713B1 (ko) 2007-03-29 2008-08-25 한국과학기술원 연료전지용 고분자 복합막 및 이를 포함하는 연료전지
JP2010232159A (ja) 2009-03-06 2010-10-14 Harison Toshiba Lighting Corp 放電ランプおよびその製造方法
KR101566789B1 (ko) 2009-12-04 2015-11-09 현대자동차 주식회사 술폰산기를 갖는 폴리(아릴렌에테르) 공중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막
JP6049212B2 (ja) * 2014-03-17 2016-12-21 国立大学法人山梨大学 陰イオン交換樹脂、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
KR20160067720A (ko) * 2014-12-04 2016-06-14 주식회사 엘지화학 중합체 및 이를 포함하는 고분자 전해질막
KR101977853B1 (ko) * 2014-12-04 2019-05-13 주식회사 엘지화학 고분자 전해질막
CN107001623B (zh) * 2014-12-04 2019-03-05 株式会社Lg化学 聚合物和包含该聚合物的聚合物电解质膜
US10947338B2 (en) * 2016-03-29 2021-03-16 Lg Chem, Ltd. Block polymer and polymer electrolyte membrane comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060115886A (ko) * 2003-11-20 2006-11-10 버지니아 테크 인터렉추얼 프라퍼티스, 인크. 양자 교환 멤브레인용의 친수성-소수성 부분을 함유하는다중블록 공중합체
JP2013189515A (ja) * 2012-03-13 2013-09-26 Toyobo Co Ltd 芳香族炭化水素系ポリマーとそれを用いてなる電解質膜、膜電極接合体、及び燃料電池
KR20140145997A (ko) * 2013-06-14 2014-12-24 주식회사 엘지화학 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
KR20160091571A (ko) * 2015-01-26 2016-08-03 주식회사 엘지화학 할로겐화 화합물, 중합체 및 이를 포함하는 고분자 전해질막
FR3039321A1 (fr) * 2015-07-22 2017-01-27 Centre Nat Rech Scient Ionomeres aromatiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683254A4

Also Published As

Publication number Publication date
JP6943530B2 (ja) 2021-10-06
JP2020536989A (ja) 2020-12-17
EP3683254A4 (en) 2020-09-09
CN111164132B (zh) 2022-12-16
CN111164132A (zh) 2020-05-15
US11618804B2 (en) 2023-04-04
US20200354523A1 (en) 2020-11-12
EP3683254A1 (en) 2020-07-22
KR20190057000A (ko) 2019-05-27

Similar Documents

Publication Publication Date Title
WO2016089153A1 (ko) 고분자 전해질막
WO2014200286A2 (ko) 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
WO2014073934A1 (ko) 부분 가지형 블록 공중합체를 포함하는 이온전도성 고분자 및 이의 용도
WO2010021524A2 (ko) 유기 전자 소자 재료 및 이를 이용한 유기 전자 소자
WO2014171755A1 (ko) 플러렌 유도체, 이를 이용한 유기 태양 전지 및 이의 제조 방법
WO2016099218A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2018236100A1 (ko) 유기 태양 전지
WO2014081235A1 (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도
WO2017183806A1 (ko) 카바졸 유도체 및 이를 이용한 유기 발광 소자
WO2015064937A2 (ko) 단분자 및 이를 포함하는 유기 태양 전지
WO2017171290A1 (ko) 블록 중합체 및 이를 포함하는 고분자 전해질막
WO2016089155A1 (ko) 고분자 전해질막
WO2018199458A1 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2019066305A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2019004781A1 (ko) 페로브스카이트 태양전지
WO2014181986A1 (ko) 플러렌 유도체를 포함하는 유기 전자 소자
WO2019098771A1 (ko) 중합체 및 이를 포함하는 고분자 분리막
WO2019083235A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2021040328A1 (ko) 유기 발광 소자
WO2017213379A1 (ko) 유기트랜지스터 및 가스센서
WO2016175573A2 (ko) 화합물 및 이를 포함하는 유기 태양 전지
WO2016144097A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2017095141A1 (ko) 카바졸 유도체 및 이를 이용한 유기 발광 소자
WO2019172571A1 (ko) 유기 태양 전지의 제조방법 및 이를 이용하여 제조된 유기 태양 전지
WO2017052226A1 (ko) 블록 중합체 및 이를 포함하는 고분자 전해질막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519239

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018879548

Country of ref document: EP

Effective date: 20200414

NENP Non-entry into the national phase

Ref country code: DE