WO2016144097A2 - 중합체 및 이를 포함하는 유기 태양 전지 - Google Patents

중합체 및 이를 포함하는 유기 태양 전지 Download PDF

Info

Publication number
WO2016144097A2
WO2016144097A2 PCT/KR2016/002356 KR2016002356W WO2016144097A2 WO 2016144097 A2 WO2016144097 A2 WO 2016144097A2 KR 2016002356 W KR2016002356 W KR 2016002356W WO 2016144097 A2 WO2016144097 A2 WO 2016144097A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polymer
group
substituted
organic solar
Prior art date
Application number
PCT/KR2016/002356
Other languages
English (en)
French (fr)
Other versions
WO2016144097A3 (ko
Inventor
이지영
최두환
이행근
임보규
이재철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680011065.3A priority Critical patent/CN107428919B/zh
Priority to EP16761984.0A priority patent/EP3269753B1/en
Priority to US15/546,488 priority patent/US20180026192A1/en
Publication of WO2016144097A2 publication Critical patent/WO2016144097A2/ko
Publication of WO2016144097A3 publication Critical patent/WO2016144097A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present specification relates to a polymer and an organic solar cell including the same.
  • Organic solar cells are devices that can directly convert solar energy into electrical energy by applying the photovoltaic effect.
  • Solar cells can be divided into inorganic solar cells and organic solar cells according to the material constituting the thin film.
  • Typical solar cells are made of p-n junctions by doping crystalline silicon (Si), an inorganic semiconductor. Electrons and holes generated by absorbing light diffuse to the p-n junction and are accelerated by the electric field to move to the electrode.
  • the power conversion efficiency of this process is defined as the ratio of the power given to the external circuit and the solar power entered into the solar cell, and is currently achieved by 24% when measured under standardized virtual solar irradiation conditions.
  • organic semiconductor solar cell which is easy to process, cheap and has various functions, has been spotlighted as a long-term alternative energy source.
  • An object of the present specification is to provide a polymer and an organic solar cell including the same.
  • X, X ', X "and X"' are the same as or different from each other, and each independently S or Se,
  • A1 and A2 are the same as or different from each other, and each independently hydrogen; Or fluorine,
  • A3 and A4 are the same as or different from each other, and each independently hydrogen; Fluorine; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • R1 to R8 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Hydroxyl group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • a1 to a4 are each an integer of 0 or 1;
  • the present specification is a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode and including a photoactive layer, wherein at least one of the organic material layers includes the polymer described above.
  • the polymer according to the exemplary embodiment of the present specification may provide a high efficiency device having a high short circuit current (J sc ) with an energy level of 700 nm or more.
  • the polymer according to one embodiment of the present specification has excellent solubility and is economical in time and cost in manufacturing a device.
  • FIG. 1 illustrates an organic solar cell according to an exemplary embodiment of the present specification.
  • FIG. 4 is a diagram showing current density by voltage of an organic solar cell according to Experimental Example 1.
  • 5 is a view showing the current density according to the voltage of the organic solar cells according to Experimental Examples 3 to 5.
  • FIG. 6 is a diagram showing current density by voltage of an organic solar cell according to Experimental Examples 6 to 8.
  • FIG. 6 is a diagram showing current density by voltage of an organic solar cell according to Experimental Examples 6 to 8.
  • FIG. 7 is a diagram illustrating current densities according to voltages of organic solar cells according to Experimental Examples 9 to 11.
  • FIG. 7 is a diagram illustrating current densities according to voltages of organic solar cells according to Experimental Examples 9 to 11.
  • FIG. 8 shows the UV-vis absorption spectrum of Polymer 3.
  • FIG. 9 shows the UV-vis absorption spectrum of Polymer 4.
  • FIG. 10 shows the UV-vis absorption spectrum of Polymer 5.
  • FIG. 11 is a diagram showing the UV-vis absorption spectrum of Polymer 6.
  • FIG. 13 is a diagram showing UV-vis absorption spectrum of Polymer 8.
  • FIG. 16 shows the UV-vis absorption spectrum of Polymer 11.
  • FIG. 17 is a diagram showing the UV-vis absorption spectrum of Polymer 12.
  • 19 is a diagram showing the UV-vis absorption spectrum of Polymer 14.
  • FIG. 21 is a diagram showing the UV-vis absorption spectrum of Polymer 16.
  • FIG. 23 is a diagram showing the UV-vis absorption spectrum of Polymer 18.
  • 25 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 16-1 and 16-2.
  • FIG. 26 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 17-1 and 17-2.
  • FIG. 26 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 17-1 and 17-2.
  • FIG. 27 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 18-1 and 18-2.
  • 29 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 20-1 and 20-2.
  • FIG. 31 is a diagram showing current densities according to voltages of organic solar cells according to Experimental Examples 22-1 and 22-2.
  • 35 is a diagram showing current densities according to voltages of organic solar cells according to Experimental Examples 26-1 and 26-2.
  • 36 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 27-1 and 27-2.
  • 'unit' is a repeating structure in which the monomer is included in the polymer, and means a structure in which the monomer is bonded into the polymer by polymerization.
  • the polymer includes a first unit represented by Chemical Formula 1 and a second unit represented by Chemical Formula 2.
  • the polymer includes a first unit represented by Formula 1 or 2 or more, and a second unit represented by Formula 1 or 2 or more by the formula (2).
  • the two or more first units and / or the second unit included in the polymer when the first unit and / or the second unit included in the polymer is two or more, the two or more first units and / or the second unit may be the same or different from each other.
  • the solubility of the polymer required for the manufacture of the device and / or the life of the device, efficiency characteristics and the like can be adjusted.
  • the first unit represented by Formula 1 includes fluorine
  • the second unit represented by Formula 2 includes an alkoxy group or a thioether group. Therefore, when the first unit represented by Chemical Formula 1 and the second unit represented by Chemical Formula 2 are simultaneously included, the solubility of the polymer is excellent. In this case, there is an economical advantage in terms of time and / or cost in the manufacture of the device.
  • the polymer according to the exemplary embodiment of the present specification may provide a device having high efficiency with a high short circuit current (J sc ) with an energy level of 700 nm or more.
  • the polymer according to one embodiment of the present specification has excellent solubility and is economical in time and cost in manufacturing a device.
  • the second unit including -O-A3 and -O-A4 increases the value of the HOMO energy level
  • the first unit including A1 and A2 is the value of the HOMO energy level Lowers. Therefore, by adjusting the ratio of the first unit and the second unit, by adjusting the appropriate HOMO energy level, it is possible to implement a high organic solar cell.
  • the energy level means the magnitude of energy. Therefore, even when the energy level is displayed in the negative (-) direction from the vacuum level, the energy level is interpreted to mean the absolute value of the corresponding energy value.
  • the HOMO energy level means the distance from the vacuum level to the highest occupied molecular orbital.
  • the LUMO energy level means the distance from the vacuum level to the lowest unoccupied molecular orbital.
  • lowering the value of the HOMO energy level means that the absolute value of the energy level is increased
  • increasing the value of the HOMO energy level means that the absolute value of the energy level is decreased
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
  • substituted or unsubstituted is deuterium; Halogen group; Nitrile group; Nitro group; Imide group; Amide group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted aryl group; And it is substituted with one or more substituents selected from the group consist
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group and can be interpreted as a substituent to which two phenyl groups are linked.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C30. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the amide group may be substituted with one or two of the nitrogen of the amide group is hydrogen, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 50.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-o
  • the cycloalkyl group is not particularly limited, but preferably 3 to 60 carbon atoms, specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto. Do not.
  • the alkoxy group may be linear, branched or cyclic. Although carbon number of an alkoxy group is not specifically limited, It is preferable that it is C1-C20. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, i-propyloxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, Isopentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy and the like It may be, but is not limited thereto.
  • the alkenyl group may be linear or branched chain, the carbon number is not particularly limited, but is preferably 2 to 40.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but are not limited thereto.
  • the aryl group is a monocyclic aryl group
  • carbon number is not particularly limited, but preferably 6 to 25 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc., but is not limited thereto.
  • the aryl group is a polycyclic aryl group
  • carbon number is not particularly limited. It is preferable that it is C10-24.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and adjacent substituents may be bonded to each other to form a ring.
  • the heterocyclic group includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Si, Se, and S, and the like. have.
  • carbon number of a heterocyclic group is not specifically limited, It is preferable that it is C2-C60.
  • heterocyclic group examples include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group , Indole group, carbazole group, benzoxazole group, benzimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phen
  • the amine group is not particularly limited, but is preferably 1 to 30.
  • the amine group may be substituted with an N atom, such as an aryl group, an alkyl group, an arylalkyl group, and a heterocyclic group.
  • Specific examples of the amine group include methylamine group, dimethylamine group, ethylamine group, diethylamine group and phenylamine.
  • the aryl group in the aryloxy group, arylthioxy group, and aryl sulfoxy group is the same as the examples of the aryl group described above.
  • the aryloxy group phenoxy, p-tolyloxy, m-tolyloxy, 3,5-dimethyl-phenoxy, 2,4,6-trimethylphenoxy, p-tert-butylphenoxy, 3-biphenyl Oxy, 4-biphenyloxy, 1-naphthyloxy, 2-naphthyloxy, 4-methyl-1-naphthyloxy, 5-methyl-2-naphthyloxy, 1-anthryloxy, 2-anthryl Oxy, 9-anthryloxy, 1-phenanthryloxy, 3-phenanthryloxy, 9-phenanthryloxy, and the like.
  • arylthioxy group examples include a phenylthioxy group, 2-methylphenylthioxy group, and 4-tert-butylphenyl.
  • Thioxy groups and the like, and aryl sulfoxy groups include, but are not limited to, benzene sulfoxy groups and p-toluene sulfoxy groups.
  • the alkyl group in the alkyl thioxy group and the alkyl sulfoxy group is the same as the example of the alkyl group mentioned above.
  • the alkyl thioxy group includes a methyl thioxy group, an ethyl thioxy group, a tert-butyl thioxy group, a hexyl thioxy group, an octyl thioxy group
  • the alkyl sulfoxy group includes mesyl, ethyl sulfoxy, propyl sulfoxy and butyl sulfoxy Etc., but is not limited thereto.
  • the a1 is 1.
  • a2 is one.
  • R2 is hydrogen
  • R3 is hydrogen
  • the first unit represented by Formula 1 is included one or two or more.
  • the second unit represented by Formula 2 is included one kind or two or more kinds.
  • the first unit represented by Chemical Formula 1 is represented by the following Chemical Formula 1-1.
  • X, X ', A1, A2, R1 and R4 are the same as defined in the formula (1).
  • X is S.
  • X ' is S.
  • X is Se
  • X 'is Se In one embodiment of the present specification, X 'is Se.
  • A1 is hydrogen
  • A1 is a halogen group.
  • A1 is fluorine
  • A2 is hydrogen
  • A2 is a halogen group.
  • A2 is fluorine
  • the first unit represented by Chemical Formula 1-1 is represented by any one of the following Chemical Formulas 1-1-1 to 1-1-3.
  • X, X ', R1 and R4 are the same as described above.
  • -L1-A3 and -L2-A4 are -O-A3 and -O-A4, respectively.
  • A3 is fluorine
  • A4 is fluorine
  • the a3 is zero.
  • a3 is 1.
  • a4 is zero.
  • a4 is one.
  • the second unit represented by Formula 2 is represented by the following Formula 2-1 or 2-2.
  • X ", X '", R5 to R8, A3 and A4 are the same as defined in the formula (2).
  • a1 to a4 are 0 or 1.
  • X ′′ is S.
  • X ′′ is Se.
  • X ′′ ' is S.
  • the polymer further includes a third unit represented by any one of Formula 3 below.
  • X3 to X6 are the same as or different from each other, and each independently CR10, NR10, O, SiR10R11, PR10, S, GeR10R11, Se, or Te,
  • Y5 and Y6 are the same as or different from each other, and are each independently CR12, N, SiR12, P or GeR12,
  • b is an integer of 1 to 3
  • R10 to R14 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Hydroxyl group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted thioether group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group.
  • X3 is S.
  • Y5 is CR12.
  • Y6 is CR12.
  • R12 is hydrogen
  • R12 is a halogen group.
  • R12 is fluorine
  • X3 is Se.
  • X3 is Ge
  • X4 is S.
  • X4 is Se.
  • X4 is Ge
  • X4 is NR10.
  • X4 is SiR10R11.
  • X4 is CR10R11.
  • X4 is GeR10R11.
  • X4 is CR10R11.
  • X5 is S.
  • X5 is O.
  • X6 is S.
  • Y5 is CR12.
  • Y6 is CR12.
  • the polymer further includes a third unit represented by any one of the following Formulas 3-1.
  • R10, R11, and R12 are the same as described above,
  • R12 ' is the same as defined in R12,
  • Chemical Formula 3-1 is each independently deuterium; Halogen group; Hydroxyl group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted thioether group; Substituted or unsubstituted aryl group; And it may be further substituted or unsubstituted with a substituent selected from the group consisting of a substituted or unsubstituted heterocyclic group.
  • the polymer including the first unit and the second unit is an alternating polymer.
  • the polymer including the first unit and the second unit is a random polymer.
  • the polymer includes a unit represented by any one of the following Formulas 4 to 6.
  • a and A ' are the same as or different from each other, and each independently a first unit represented by Formula 1,
  • B is a second unit represented by Formula 2,
  • X3 to X6 are the same as or different from each other, and each independently CR10, NR10, O, SiR10R11, PR10, S, GeR10R11, Se, or Te,
  • Y5 and Y6 are the same as or different from each other, and are each independently CR12, N, SiR12, P or GeR12,
  • b is an integer of 1 to 3
  • R10 to R14 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Hydroxyl group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted thioether group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • n 0 ⁇ m ⁇ 1
  • o is the mole fraction, 0 ⁇ o ⁇ 1,
  • p is the mole fraction 0 ⁇ p ⁇ 1
  • q is a mole fraction, 0 ⁇ q ⁇ 1,
  • n is a repetition number of units and is an integer of 1 to 10,000.
  • the polymer including the unit represented by Formula 4 may include an alternating polymer by including a unit composed of only the first unit and the second unit.
  • the polymer including the unit represented by Chemical Formula 5 may include a unit composed of only the first unit and the second unit, and may constitute a random polymer. The content of 2 units can be adjusted.
  • the polymer including the unit represented by Chemical Formula 6 may further include additional units in addition to the first unit and the second unit to constitute a random polymer.
  • the polymer including the unit represented by Chemical Formula 7 may further include additional units in addition to the two first units and the second unit, which are the same as or different from each other, to constitute a random polymer.
  • the unit represented by Chemical Formula 4 is represented by the following Chemical Formula 4-1.
  • the unit represented by Chemical Formula 5 is represented by the following Chemical Formula 5-1.
  • the unit represented by Chemical Formula 6 is represented by the following Chemical Formula 6-1.
  • the unit represented by Chemical Formula 7 is represented by the following Chemical Formula 7-1.
  • the polymer includes a unit represented by any one of Formulas 4-1, 5-1, 6-1, and 7-1.
  • R1 and R4 to R8 are the same as defined in Chemical Formulas 1 and 2,
  • A'1, A'2, R'1 and R'4 are the same as the definitions of A1, A2, R1 and R4 of Formula 1,
  • R10 to R13, R'12 and R'13 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Hydroxyl group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • n 0 ⁇ m ⁇ 1
  • o is the mole fraction, 0 ⁇ o ⁇ 1,
  • p is the mole fraction 0 ⁇ p ⁇ 1
  • q is a mole fraction, 0 ⁇ q ⁇ 1,
  • n is a repetition number of units and is an integer of 1 to 10,000.
  • A3 and A4 are the same as or different from each other, and are each independently a substituted or unsubstituted alkyl group.
  • A3 and A4 are the same as or different from each other, and are each independently a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms.
  • A3 and A4 are substituted or unsubstituted dodecyl groups.
  • A3 and A4 are substituted or unsubstituted octyl groups.
  • A3 and A4 are a substituted or unsubstituted hexyl group.
  • A3 and A4 are a substituted or unsubstituted butyl group.
  • A3 is a dodecyl group.
  • A4 is a dodecyl group.
  • A3 is an n-dodecyl group.
  • A4 is an n-dodecyl group.
  • A3 is an octyl group.
  • A4 is an octyl group.
  • A3 is an n-octyl group.
  • A4 is an n-octyl group.
  • A3 is a hexyl group.
  • A4 is a hexyl group.
  • A3 is an n-hexyl group.
  • A4 is an n-hexyl group.
  • A3 is a butyl group.
  • A4 is a butyl group.
  • A3 is an n-butyl group.
  • A4 is an n-butyl group.
  • R1 and R4 are the same as or different from each other, and are each independently a substituted or unsubstituted alkyl group.
  • R1 and R4 are the same as or different from each other, and each independently a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms.
  • R1 and R4 are the same as or different from each other, and each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 30 carbon atoms.
  • R1 and R4 are the same as or different from each other, and are each independently a substituted or unsubstituted 2-ethylhexyl group.
  • R1 and R4 are the same as or different from each other, and are each independently a substituted or unsubstituted 2-octyldodecyl group.
  • R1 and R4 are the same as or different from each other, and are each independently a substituted or unsubstituted 2-ethyldecyl group.
  • R1 and R4 are the same as or different from each other, and are each independently a substituted or unsubstituted 2-butyloctyl group.
  • R1 is a 2-ethylhexyl group.
  • R4 is a 2-ethylhexyl group.
  • R1 is a 2-octyldodecyl group.
  • R4 is a 2-octyldodecyl group.
  • R1 is a 2-ethyldecyl group.
  • R4 is a 2-ethyldecyl group.
  • R1 is a 2-butyloctyl group.
  • R4 is a 2-butyloctyl group.
  • R5 is hydrogen
  • R5 is a halogen group.
  • R5 is fluorine
  • R6 is hydrogen
  • R6 is a halogen group.
  • R6 is fluorine
  • R7 is hydrogen
  • R7 is a halogen group.
  • R7 is fluorine
  • R8 is hydrogen
  • R8 is a halogen group.
  • R8 is fluorine
  • R10 is hydrogen
  • R10 is a halogen group.
  • R10 is fluorine
  • R11 is hydrogen
  • R11 is a halogen group.
  • R11 is fluorine
  • R12 is hydrogen
  • R12 is a halogen group.
  • R12 is fluorine
  • R13 is hydrogen
  • R13 is a halogen group.
  • R13 is fluorine
  • A'1 is hydrogen
  • A'1 is a halogen group.
  • A'1 is fluorine
  • A'2 is hydrogen
  • A'2 is a halogen group.
  • A'2 is fluorine
  • R'1 and R'4 are the same as or different from each other, and are each independently a substituted or unsubstituted alkyl group.
  • R'1 and R'4 are the same as or different from each other, and are each independently a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms.
  • R'1 and R'4 are the same as or different from each other, and each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 30 carbon atoms.
  • R'1 and R'4 are the same as or different from each other, and are each independently a substituted or unsubstituted 2-ethylhexyl group.
  • R'1 and R'4 are the same as or different from each other, and are each independently a substituted or unsubstituted 2-octyldodecyl group.
  • R'1 and R'4 are the same as or different from each other, and are each independently a substituted or unsubstituted 2-ethyldecyl group.
  • R'1 and R'4 are the same as or different from each other, and are each independently a substituted or unsubstituted 2-butyloctyl group.
  • R'1 is a 2-ethylhexyl group.
  • R'4 is a 2-ethylhexyl group.
  • R'1 is a 2-octyldodecyl group.
  • R'4 is a 2-octyldodecyl group.
  • R'1 is a 2-ethyldecyl group.
  • R'4 is a 2-ethyldecyl group.
  • R'1 is a 2-butyloctyl group.
  • R'4 is a 2-butyloctyl group.
  • R'12 is hydrogen
  • R'12 is a halogen group.
  • R'12 is fluorine
  • R'13 is hydrogen
  • R'13 is a halogen group.
  • R'13 is fluorine
  • the polymer is the following formula 4-1-1 to formula 4-1-10, formula 5-1-1 to formula 5-1-3, formula 6-1-1 to formula 6 It includes a unit represented by -1-14 and any one of formulas 7-1-1 to 7-1-5.
  • Formula 4-1-1 to Formula 4-1-10 Formula 5-1-1 to Formula 5-1-3, Formula 6-1-1 to Formula 6-1-14, and Formula 7-1-1 to In 7-1-5,
  • n 0 ⁇ m ⁇ 1
  • o is the mole fraction, 0 ⁇ o ⁇ 1,
  • p is the mole fraction 0 ⁇ p ⁇ 1
  • q is a mole fraction, 0 ⁇ q ⁇ 1,
  • n is a repetition number of units and is an integer of 1 to 10,000.
  • l is 0.5.
  • l is 0.6.
  • m is 0.5.
  • m is 0.4.
  • o is 0.5.
  • p is 0.4.
  • p 0.35.
  • p is 0.3.
  • p 0.25.
  • p is 0.2.
  • p 0.15.
  • q is 0.1.
  • q is 0.15.
  • q is 0.2.
  • q is 0.25.
  • q is 0.3.
  • q is 0.35.
  • the HOMO energy level is 5 eV to 5.9 eV.
  • the HOMO energy level was measured by cyclic voltammetry, which is an electrochemical method, and the HOMO energy level was measured, and the LUMO energy level was the difference in energy band gap from the UV edge in HOMO energy. was measured.
  • cyclic voltammetry consists of a working electrode, which is a carbon electrode, a reference electrode, and a counter electrode, which is a platinum plate.
  • a method of measuring the current flowing through it is as follows.
  • the polymer has a solubility in chlorobenzene of 0.1 wt% to 20 wt%.
  • the solubility measurement may refer to a value measured at room temperature.
  • the end group of the polymer uses trifluoro-benzene and / or 4-Bromodiphenyl ether, but generally known end groups are required according to the needs of those skilled in the art. It can be changed and used, but this is not limiting.
  • the number average molecular weight of the polymer is preferably 5,000 g / mol to 1,000,000 g / mol.
  • the polymer may have a molecular weight distribution of 1 to 10.
  • the polymer has a molecular weight distribution of 1-3.
  • the number average molecular weight is preferably 100,000 or less in order to have a certain solubility or higher so that the solution coating method is advantageous.
  • Polymers according to the present disclosure can be prepared by multistage chemical reactions. Monomers are prepared through alkylation reactions, Grignard reactions, Suzuki coupling reactions, and Still coupling reactions, followed by carbon-carbon coupling reactions such as steel coupling reactions. Can be prepared. When the substituent to be introduced is a boronic acid or boronic ester compound, it may be prepared through Suzuki coupling, and the substituent to be introduced is tributyltin or trimethyltin. ) Compound may be prepared through a steel coupling reaction, but is not limited thereto.
  • the first electrode A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode and including a photoactive layer, wherein at least one of the organic material layers includes the polymer.
  • the organic solar cell according to the exemplary embodiment of the present specification includes a first electrode, a photoactive layer, and a second electrode.
  • the organic solar cell may further include a substrate, a hole transport layer, and / or an electron transport layer.
  • the organic solar cell when the organic solar cell receives photons from an external light source, electrons and holes are generated between the electron donor and the electron acceptor. The generated holes are transported to the anode through the electron donor layer.
  • the organic material layer includes a hole transporting layer, a hole injection layer, or a layer for simultaneously transporting holes and hole injection, and the hole transporting layer, the hole injection layer, or a layer for simultaneously transporting holes and hole injection, It includes the polymer.
  • the organic material layer includes an electron injection layer, an electron transporting layer, or a layer for simultaneously injecting and transporting electrons
  • the electron injection layer, an electron transporting layer, or a layer for simultaneously injecting and transporting electrons is It includes the polymer.
  • FIG. 1 is a view showing an organic solar cell according to an exemplary embodiment of the present specification.
  • the organic solar cell when the organic solar cell receives photons from an external light source, electrons and holes are generated between the electron donor and the electron acceptor. The generated holes are transported to the anode through the electron donor layer.
  • the organic solar cell may further include an additional organic material layer.
  • the organic solar cell may reduce the number of organic material layers by using an organic material having several functions at the same time.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode.
  • the organic solar cell may be arranged in the order of cathode, photoactive layer and anode, and may be arranged in the order of anode, photoactive layer and cathode, but is not limited thereto.
  • the organic solar cell may be arranged in order of an anode, a hole transport layer, a photoactive layer, an electron transport layer, and a cathode, or may be arranged in the order of a cathode, an electron transport layer, a photoactive layer, a hole transport layer, and an anode. It is not limited to this.
  • the organic solar cell has a normal structure.
  • the normal structure may mean that an anode is formed on a substrate.
  • the first electrode formed on the substrate may be an anode.
  • the organic solar cell has an inverted structure.
  • the inverted structure may mean that a cathode is formed on a substrate.
  • the first electrode formed on the substrate may be a cathode.
  • the organic solar cell has a tandem structure.
  • the organic solar cell may include two or more photoactive layers.
  • the photoactive layer may be one layer or two or more layers.
  • a buffer layer may be provided between the photoactive layer and the hole transport layer or between the photoactive layer and the electron transport layer.
  • a hole injection layer may be further provided between the anode and the hole transport layer.
  • an electron injection layer may be further provided between the cathode and the electron transport layer.
  • the photoactive layer includes one or two or more selected from the group consisting of an electron donor and an acceptor, and the electron donor includes the polymer.
  • the electron acceptor material may be selected from the group consisting of fullerenes, fullerene derivatives, vasocuprones, semiconducting elements, semiconducting compounds, and combinations thereof.
  • fullerene, fullerene derivative PCBM ((6,6) -phenyl-C61-butyric acid-methylester) or PCBCR ((6,6) -phenyl-C61-butyric acid-cholesteryl ester
  • perylene perylene
  • PBI polybenzimidazole
  • PTCBI 3,4,9,10-perylene-tetracarboxylic bis-benzimidazole
  • the electron donor and the electron acceptor constitute a bulk hetero junction (BHJ).
  • BHJ bulk hetero junction
  • Bulk heterojunction means that the electron donor material and the electron acceptor material are mixed with each other in the photoactive layer.
  • the photoactive layer further includes an additive.
  • the molecular weight of the additive is 50 g / mol to 1000 g / mol.
  • the boiling point of the additive is an organic material of 30 °C to 300 °C.
  • the organic material means a material containing at least one carbon atom.
  • the additive is 1,8-dioodooctane (DIO: 1,8-diiodooctane), 1-chloronaphthalene (1-CN: 1-chloronaphthalene), diphenyl ether (DPE: diphenylether), Octane dithiol (octane dithiol) and tetrabromothiophene (tetrabromothiophene) may further include one or two kinds of additives selected from the group consisting of.
  • DIO 1,8-diiodooctane
  • 1-chloronaphthalene (1-CN: 1-chloronaphthalene
  • DPE diphenylether
  • Octane dithiol octane dithiol
  • tetrabromothiophene tetrabromothiophene
  • the interface between electron donors and acceptors is maximized to the maximum, and the continuous passage of electron donors and acceptors is secured through proper phase separation to induce improvement of morphology. Is required.
  • an effective phase separation induced by selective solubility of the additives of the polymer and the fullerene derivative and the boiling point difference between the solvent and the additive may be induced.
  • the morphology can be fixed by crosslinking the electron acceptor or electron donor to prevent phase separation, and the morphology can be controlled by changing the molecular structure of the electron donor.
  • morphology can be improved through post-treatment such as heat treatment at high temperature as well as morphology improvement through stereoregularity control of the electron donor material. This may induce orientation and crystallization of the polymer according to one embodiment of the present specification, and increase the roughness of the photoactive layer, thereby facilitating contact with the electrode, thereby inducing effective transfer of charge.
  • the photoactive layer has a bilayer bilayer structure including an n-type organic compound layer and a p-type organic compound layer, and the p-type organic compound layer includes the polymer.
  • the substrate may be a glass substrate or a transparent plastic substrate having excellent transparency, surface smoothness, ease of handling, and waterproofness, but is not limited thereto, and the substrate may be any substrate that is commonly used in organic solar cells. Specifically, there are glass or polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polyimide (PI), and triacetyl cellulose (TAC). It is not limited to this.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP polypropylene
  • PI polyimide
  • TAC triacetyl cellulose
  • the anode electrode may be a transparent and excellent conductive material, but is not limited thereto.
  • Metals such as vanadium, chromium, copper, zinc and gold or alloys thereof;
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO);
  • ZnO Al or SnO 2 : Combination of metals and oxides such as Sb;
  • Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the method of forming the anode electrode is not particularly limited, but is applied to one surface of the substrate or coated in a film form using, for example, sputtering, E-beam, thermal deposition, spin coating, screen printing, inkjet printing, doctor blade or gravure printing. It can be formed by.
  • the anode electrode When the anode electrode is formed on the substrate, it may be subjected to cleaning, water removal, and hydrophilic modification.
  • the patterned ITO substrate is sequentially cleaned with a detergent, acetone, and isopropyl alcohol (IPA), and then dried for 1 to 30 minutes at 100 ° C. to 150 ° C., preferably at 120 ° C. for 10 minutes, on a heating plate to remove moisture.
  • IPA isopropyl alcohol
  • the bonding surface potential can be maintained at a level suitable for the surface potential of the photoactive layer.
  • Pretreatment techniques for the anode electrode include a) surface oxidation using parallel plate discharge, b) oxidation of the surface through ozone generated using UV ultraviolet light in a vacuum state, and c) oxygen radicals generated by plasma. And oxidation using the same method.
  • One of the above methods can be selected depending on the state of the anode electrode or the substrate. In any case, however, it is desirable to prevent oxygen escape from the surface of the anode electrode or the substrate and to minimize the residual of moisture and organic matter in common. At this time, the substantial effect of the pretreatment can be maximized.
  • a method of oxidizing a surface through ozone generated using UV may be used.
  • the patterned ITO substrate is baked on a hot plate and dried well, then put into a chamber, and a UV lamp is activated to cause oxygen gas to react with UV light.
  • the patterned ITO substrate can be cleaned.
  • the surface modification method of the patterned ITO substrate in this specification does not need to be specifically limited, Any method may be used as long as it is a method of oxidizing a substrate.
  • the cathode electrode may be a metal having a small work function, but is not limited thereto.
  • metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; LiF / Al, LiO 2 / Al, LiF / Fe, Al: Li, Al: BaF 2 , Al: BaF 2
  • It may be a material of a multi-layer structure such as, but is not limited thereto.
  • the cathode electrode is 5x10 - may be formed is deposited on the internal heat evaporator showing a degree of vacuum of less than 7 torr, not limited to this method.
  • the hole transport layer and / or electron transport layer material plays a role of efficiently transferring electrons and holes separated in the photoactive layer to the electrode, and the material is not particularly limited.
  • the hole transport layer material is PEDOT: PSS (Poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)), molybdenum oxide (MoO x ); Vanadium oxide (V 2 O 5 ); Nickel oxide (NiO); Tungsten oxide (WO x ), and the like, but is not limited thereto.
  • PSS Poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)
  • MoO x molybdenum oxide
  • V 2 O 5 Vanadium oxide
  • NiO Nickel oxide
  • WO x Tungsten oxide
  • the electron transport layer material may be electron-extracting metal oxides, specifically, a metal complex of 8-hydroxyquinoline; Complexes including Alq 3 ; Metal complexes including Liq; LiF; Ca; Titanium oxide (TiO x ); Zinc oxide (ZnO); And cesium carbonate (Cs 2 CO 3 ), polyethylene imine (PEI), and the like, but is not limited thereto.
  • metal oxides specifically, a metal complex of 8-hydroxyquinoline
  • Complexes including Alq 3 Metal complexes including Liq; LiF; Ca; Titanium oxide (TiO x ); Zinc oxide (ZnO); And cesium carbonate (Cs 2 CO 3 ), polyethylene imine (PEI), and the like, but is not limited thereto.
  • the photoactive layer may be formed by dissolving a photoactive material, such as an electron donor and / or an electron acceptor, in an organic solvent and then spin coating, dip coating, screen printing, spray coating, doctor blade, brush painting, or the like. It is not limited to the method.
  • a photoactive material such as an electron donor and / or an electron acceptor
  • the compound of Monomer 1 was synthesized based on JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2011, 49, 4387-4397 4389.
  • the monomers of each of the first and second units of the polymer were prepared by adding Pd 2 (dba) 3 , P (o-tolyl) 3 , using chlorobenzene as a solvent, and polymerizing with a microwave reactor.
  • the GPC measurement of the polymer 1 showed that the number average molecular weight was 18,700, the weight average molecular weight was 26,200, the HOMO was 5.28 eV, the LUMO was 3.62 eV, and the band gap was 1.63.
  • the UV absorption spectrum of FIG. 3 is 1) an absorption spectrum of a film sample obtained by dissolving polymer 1 dissolved in chloroform in a slurry and chlorobenzene 2) a film sample prepared by dissolving polymer 1 dissolved in chlorobenzene in chlorobenzene 3) Absorption spectrum of the sample measured after 1) 120 ° C heat treatment, 4) Absorption spectrum of the sample measured after 120 ° C heat treatment 2) UV-Vis absorption spectrum (UV-Vis absorption spectrometer) It was analyzed using.
  • the UV absorption spectrum of Figure 3 is 1) the absorption spectrum of the sample of the polymer 2 in the film state, 2) the absorption spectrum of the sample measured after heat treatment of the polymer 2 in the film state at 120 °C, 3) the polymer 2 to chlorobenzene Absorption Spectrum of the Dissolved Sample, 4) Polymer 2 was dissolved in chloroform, and then analyzed by using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the number average molecular weight was 30,740, the weight average molecular weight was 49,500, HOMO was 5.31 eV, LUMO was 3.62 eV, and the band gap was 1.69.
  • FIG. 8 shows the UV-vis absorption spectrum of Polymer 3.
  • the UV absorption spectrum of FIG. 8 is an absorption spectrum of a sample of polymer 3 in a film state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the number average molecular weight was 38,540, the weight average molecular weight was 54,000, HOMO was 5.32 eV, LUMO was 3.63 eV, and the band gap was 1.69.
  • FIG. 9 shows the UV-vis absorption spectrum of Polymer 4.
  • the UV absorption spectrum of FIG. 9 is an absorption spectrum of a sample of Polymer 4 in a film state, and was analyzed using a UV-Vis absorption spectrometer.
  • the GPC measurement of the polymer 5 showed a number average molecular weight of 33,742, a weight average molecular weight of 47,700, a HOMO of 5.32 eV, a LUMO of 3.63 eV, and a band gap of 1.69.
  • FIG. 10 shows the UV-vis absorption spectrum of Polymer 5.
  • the UV absorption spectrum of FIG. 10 is an absorption spectrum of a sample of Polymer 5 in a film state, and was analyzed using a UV-Vis absorption spectrometer.
  • GPC measurement of the polymer 6 was 31,650, weight average molecular weight was 43,920, HOMO was 5.31eV, LUMO was 3.63eV and the band gap was 1.68.
  • FIG. 11 is a diagram showing the UV-vis absorption spectrum of Polymer 6.
  • the UV absorption spectrum of FIG. 11 is an absorption spectrum of a sample of polymer 6 in a film state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the GPC measurement of the polymer 7 showed a number average molecular weight of 36,866, a weight average molecular weight of 50,477, a HOMO of 5.33 eV, a LUMO of 3.67 eV, a band gap of 1.66, a lambda edge of 743 nm, and a PDI of 1.37.
  • the UV absorption spectrum of FIG. 12 is an absorption spectrum of a sample of polymer 7 in a film state and a solution state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the GPC measurement of the polymer 8 showed that the number average molecular weight was 30,000, the weight average molecular weight was 47,100, the HOMO was 5.4 eV, the LUMO was 3.7 eV, the band gap was 1.7, the ⁇ edge was 732 nm, and the PDI was 1.57.
  • FIG. 13 is a diagram showing UV-vis absorption spectrum of Polymer 8.
  • the UV absorption spectrum of FIG. 13 is an absorption spectrum of a sample of polymer 8 in a film state and a solution state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • GPC measurement of the polymer 9 was 27,300, weight average molecular weight was 45,400, HOMO was 5.32 eV, LUMO was 3.63 eV, band gap was 1.69, ⁇ edge was 732 nm, and PDI was 1.66.
  • the UV absorption spectrum of FIG. 14 is an absorption spectrum of a sample of polymer 9 in a film state and a solution state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the number average molecular weight was 31,300, the weight average molecular weight was 48,700, the HOMO was 5.3eV, the LUMO was 3.63eV, the band gap was 1.67, the ⁇ edge was 743.8 nm, and the PDI was 1.56.
  • the UV absorption spectrum of FIG. 15 is an absorption spectrum of a sample of polymer 10 in a film state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the GPC measured a number average molecular weight of 36,200, a weight average molecular weight of 51,800, a HOMO of 5.29 eV, a LUMO of 3.61 eV, a band gap of 1.68, a lambda edge of 740 nm, and a PDI of 1.43.
  • 16 is a diagram showing the UV-vis absorption spectrum of Polymer 11.
  • the UV absorption spectrum of FIG. 16 is an absorption spectrum of a sample of polymer 11 in a film state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • GPC measurement of the polymer 12 was 34,800, the weight average molecular weight was 51,900, HOMO was 5.30eV, LUMO was 3.62eV, band gap was 1.68, ⁇ edge was 739nm, PDI was 1.49.
  • FIG. 17 is a diagram showing the UV-vis absorption spectrum of Polymer 12.
  • the UV absorption spectrum of FIG. 17 is an absorption spectrum of a sample of polymer 12 in a film state and a solution state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the GPC measurement of the polymer 13 showed that the number average molecular weight was 31,800, the weight average molecular weight was 50,360, the HOMO was 5.31 eV, the LUMO was 3.62 eV, the band gap was 1.69, the ⁇ edge was 734 nm, and the PDI was 1.58.
  • FIG. 18 is a diagram showing the UV-vis absorption spectrum of Polymer 13.
  • the UV absorption spectrum of FIG. 18 is an absorption spectrum of a sample of polymer 13 in a film state and a solution state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the GPC measurement of the polymer 14 showed that the number average molecular weight was 38,300, the weight average molecular weight was 52,000, the HOMO was 5.3eV, the LUMO was 3.65eV, the band gap was 1.65, the ⁇ edge was 741nm, and the PDI was 1.36.
  • 19 is a diagram showing the UV-vis absorption spectrum of Polymer 14.
  • the UV absorption spectrum of FIG. 19 is an absorption spectrum of a sample of polymer 14 in a film state and a solution state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the GPC measurement of the polymer 15 showed that the number average molecular weight was 38,500, the weight average molecular weight was 52,700, the HOMO was 5.29 eV, the LUMO was 3.62 eV, the band gap was 1.67, the ⁇ edge was 742 nm, and the PDI was 1.37.
  • the UV absorption spectrum of FIG. 20 is an absorption spectrum of a sample of polymer 15 in a film state and a solution state, and analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the GPC measurement of the polymer 16 showed that the number average molecular weight was 28,900, the weight average molecular weight was 43,500, the HOMO was 5.27 eV, the LUMO was 3.61 eV, the band gap was 1.66, the ⁇ edge was 745 nm, and the PDI was 1.5.
  • FIG. 21 is a diagram showing the UV-vis absorption spectrum of Polymer 16.
  • the UV absorption spectrum of FIG. 21 is an absorption spectrum of a sample of polymer 16 in a film state and a solution state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the GPC measurement of the polymer 17 showed that the number average molecular weight was 34,000, the weight average molecular weight was 52,400, the HOMO was 5.33 eV, the LUMO was 3.66 eV, the band gap was 1.67, the ⁇ edge was 744.6 nm, and the PDI was 1.54.
  • the UV absorption spectrum of FIG. 22 is an absorption spectrum of a sample of polymer 17 in a film state and a solution state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • GPC measurement of the polymer 18 showed a number average molecular weight of 26,390, a weight average molecular weight of 39,310, a HOMO of 5.31 eV, a LUMO of 3.63 eV, a band gap of 1.68, a lambda edge of 737 nm, and a PDI of 1.49.
  • FIG. 23 is a diagram showing the UV-vis absorption spectrum of Polymer 18.
  • the UV absorption spectrum of FIG. 23 is an absorption spectrum of a sample of polymer 18 in a film state and a solution state, and was analyzed using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the number average molecular weight was 25,600, the weight average molecular weight was 38,400, the HOMO was 5.31 eV, the LUMO was 3.63 eV, the band gap was 1.68, the ⁇ edge was 740 nm, and the PDI was 1.5.
  • the UV absorption spectrum of FIG. 24 is an absorption spectrum of a sample of polymer 19 in a film state and a solution state, and was analyzed by using a UV-Vis absorption spectrum (UV-Vis absorption spectrometer).
  • the polymer 1 and PC 61 BM were dissolved in chlorobenzene (CB) 1: 2 to prepare a composite solution.
  • CB chlorobenzene
  • the concentration was adjusted to 4 wt%
  • the organic solar cell was ITO / PEDOT: PSS / photoactive layer / Al structure.
  • ITO is a bar type, 1.5 ⁇ 1.5 cm 2 coated glass substrate is ultrasonically cleaned with distilled water, acetone, 2-propanol, ozonated the ITO surface for 10 minutes, and then PEDOT: PSS (AI4083) was spin coated at 4000 rpm for 40 seconds and heat treated at 235 ° C. for 10 minutes.
  • FIG. 4 is a diagram showing current density by voltage of an organic solar cell according to Experimental Example 1.
  • the polymer 1 and PC 71 BM were dissolved in chlorobenzene (CB) 1: 2 to prepare a composite solution. At this time, the concentration was adjusted to 4 wt%, the organic solar cell was an inverted structure of ITO / ZnO / photoactive layer / MoO 3 / Ag.
  • ITO is a bar type, 1.5 ⁇ 1.5 cm 2 coated glass substrate is ultrasonically cleaned with distilled water, acetone, 2-propanol, and the surface of the ITO after ozone treatment for 10 minutes, ZnO precursor solution: Prepare ZnO nanoparticle 25mg / ml in butanol), spin-coate this zinc oxide (ZnO) solution at 4000 rpm for 40 seconds, and heat-treat at 100 ° C for 10 minutes to remove the remaining solvent The transport layer was completed. For coating the photoactive layer, a composite solution of Polymer 1 and PC 71 BM was spin coated at 1000 rpm for 20 seconds.
  • MoO 3 was deposited in a thermal evaporator at a thickness of 10 nm at a rate of 0.2 ⁇ / s to prepare a hole transport layer. After fabrication in the above order, 100 nm of Ag was deposited in the thermal evaporator at a rate of 1 ⁇ / s to manufacture an organic solar cell having a reverse structure.
  • the organic embodiment was the same as in Experiment 2, except that 1 vol% of 1,8-dioodooctane (DIO: 1,8-diiodooctane) was added to the complex solution of Polymer 1 and PC 71 BM in Experimental Example 2.
  • DIO 1,8-dioodooctane
  • the organic embodiment of the present invention was the same as in Experiment 2, except that 2 vol% of 1,8-dioodooctane (DIO: 1,8-diiodooctane) was added to the complex solution of Polymer 1 and PC 71 BM in Experimental Example 2.
  • DIO 1,8-dioodooctane
  • FIG. 5 is a diagram showing current density by voltage of an organic solar cell according to Experimental Examples 3 to 5.
  • FIG. 5 is a diagram showing current density by voltage of an organic solar cell according to Experimental Examples 3 to 5.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that 1 vol% of 1-chloronaphthalene (1-CN: 1-chloronaphthalene) was added to the complex solution of polymer 1 and PC 71 BM in Experimental Example 2. It was.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that 2 vol% of 1-chloronaphthalene (1-CN: 1-chloronaphthalene) was added to the complex solution of polymer 1 and PC 71 BM in Experimental Example 2. It was.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that 3 vol% of 1-chloronaphthalene (1-CN: 1-chloronaphthalene) was added to the complex solution of polymer 1 and PC 71 BM in Experimental Example 2. It was.
  • FIG. 6 is a diagram showing current density by voltage of an organic solar cell according to Experimental Examples 6 to 8.
  • FIG. 6 is a diagram showing current density by voltage of an organic solar cell according to Experimental Examples 6 to 8.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that 1 vol% of diphenylether (DPE) was added to the complex solution of polymer 1 and PC 71 BM in Experimental Example 2.
  • DPE diphenylether
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except for adding 2 vol% of diphenylether (DPE: diphenylether) to the complex solution of Polymer 1 and PC 71 BM in Experimental Example 2.
  • DPE diphenylether
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that 3 vol% of diphenylether (DPE: diphenylether) was added to the complex solution of polymer 1 and PC 71 BM in Experimental Example 2.
  • DPE diphenylether
  • FIG. 7 is a diagram illustrating current densities according to voltages of organic solar cells according to Experimental Examples 9 to 11.
  • FIG. 7 is a diagram illustrating current densities according to voltages of organic solar cells according to Experimental Examples 9 to 11.
  • the polymer 3 and PC 61 BM were dissolved in chlorobenzene (CB) in a ratio of 1: 2 to prepare a composite solution. At this time, the concentration was adjusted to 4 wt%, the organic solar cell was an inverted structure of ITO / ZnO NP / photoactive layer / MoO 3 / Ag.
  • CB chlorobenzene
  • ITO is a bar type, 1.5 cm ⁇ 1.5 cm coated glass substrates are ultrasonically cleaned with distilled water, acetone, 2-propanol, ozonated ITO surface for 10 minutes, and then ZnO nanograde N -10 2.5wt% in isopropanol) and spin-coating the ZnO NP solution at 4000 rpm for 20 seconds, followed by heat treatment at 100 ° C for 10 minutes to remove the remaining solvent to complete the electron transport layer.
  • a composite solution of polymer 3 and PC 61 BM was spin coated at 1000 rpm for 20 seconds.
  • MoO 3 was deposited in a thermal evaporator at a thickness of 10 nm at a rate of 0.2 ⁇ / s to prepare a hole transport layer. After fabrication in the above order, 100 nm of Ag was deposited in the thermal evaporator at a rate of 1 ⁇ / s to manufacture an organic solar cell having a reverse structure.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 12-1, except that the composite solution of Polymer 3 and PC 61 BM was spin-coated at 1500 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 12-1.
  • An organic solar cell was manufactured by the same method as Experimental Example 12-1, except that the composite solution of Polymer 3 and PC 61 BM was spin-coated at 2000 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 12-1.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 12-4, except that the composite solution of Polymer 3 and PC 71 BM was spin-coated at 1500 rpm instead of 1000 rpm to coat the photoactive layer in Experimental Example 12-4.
  • An organic solar cell was manufactured by the same method as Experimental Example 12-4, except that the composite solution of Polymer 3 and PC 71 BM was spin-coated at 2000 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 12-4.
  • An organic solar cell was manufactured by the same method as Experimental Example 12-1, except that Polymer 4 was used instead of Polymer 3 as the photoactive layer electron donor material in Experimental Example 12-1.
  • An organic solar cell was manufactured by the same method as Experimental Example 13-1, except that the composite solution of Polymer 4 and PC 61 BM was spin-coated at 1500 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 13-1.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 13-1, except that the composite solution of Polymer 4 and PC 61 BM was spin-coated at 2000 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 13-1.
  • Example 13-1 The experiment, except that the PC 71 BM PC 61 BM instead electron acceptor (acceptor) of the optically active material layer in Example 13-1 was prepared in an organic solar cell in the same manner as in Experimental Example 13-1.
  • An organic solar cell was manufactured by the same method as Experimental Example 13-4, except that the composite solution of Polymer 4 and PC 71 BM was spin-coated at 2000 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 13-4.
  • An organic solar cell was manufactured by the same method as Experimental Example 12-1, except that Polymer 5 was used instead of Polymer 3 as the photoactive layer electron donor material in Experimental Example 12-1.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 14-1, except that the composite solution of Polymer 5 and PC 61 BM was spin-coated at 1500 rpm instead of 1000 rpm to coat the photoactive layer in Experimental Example 14-1.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 14-1, except that the composite solution of Polymer 5 and PC 61 BM was spin-coated at 2000 rpm instead of 1000 rpm to coat the photoactive layer in Experimental Example 14-1.
  • Example 14-1 The experiment, except that the PC 71 BM PC 61 BM instead electron acceptor (acceptor) of the optically active material layer in Example 14-1 was prepared in an organic solar cell in the same manner as in Experimental Example 14-1.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 14-4, except that the composite solution of Polymer 5 and PC 71 BM was spin-coated at 1500 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 14-4.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 14-4, except that the composite solution of Polymer 5 and PC 71 BM was spin-coated at 2000 rpm instead of 1000 rpm to coat the photoactive layer in Experimental Example 14-4.
  • An organic solar cell was manufactured by the same method as Experimental Example 12-1, except that Polymer 6 was used instead of Polymer 3 as the photoactive layer electron donor material in Experimental Example 12-1.
  • An organic solar cell was manufactured by the same method as Experimental Example 15-1, except that the composite solution of Polymer 6 and PC 61 BM was spin-coated at 1500 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 15-1.
  • An organic solar cell was manufactured by the same method as Experimental Example 15-1, except that the composite solution of Polymer 6 and PC 61 BM was spin-coated at 2000 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 15-1.
  • Example 15-1 The experiment, except that the PC 71 BM PC 61 BM instead electron acceptor (acceptor) of the optically active material layer in Example 15-1 was prepared in an organic solar cell in the same manner as in Experimental Example 15-1.
  • the organic solar cell was manufactured by the same method as Experimental Example 15-4, except that the composite solution of Polymer 6 and PC 71 BM was spin-coated at 1500 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 15-4.
  • An organic solar cell was manufactured by the same method as Experimental Example 15-4, except that the composite solution of polymer 6 and PC 71 BM was spin-coated at 2000 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 15-4.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that polymer 7 was used instead of polymer 1 in Experimental Example 2.
  • An organic solar cell was manufactured by the same method as Experimental Example 16-1, except that the composite solution of Polymer 7 and PC 71 BM was spin-coated at 1200 rpm instead of 1000 rpm for coating the photoactive layer in Experimental Example 16-1.
  • 25 is a diagram showing current densities according to voltages of organic solar cells according to Experimental Examples 16-1 and 16-2.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that Polymer 8 was used instead of Polymer 1 in Example 2, and the composite solution of Polymer 8 and PC 71 BM was spin-coated at 700 rpm instead of 1000 rpm.
  • An organic solar cell was manufactured by the same method as Experimental Example 17-1, except that the composite solution of Polymer 8 and PC 71 BM was spin-coated at 1100 rpm instead of 700 rpm for coating the photoactive layer in Experimental Example 17-1.
  • FIG. 26 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 17-1 and 17-2.
  • FIG. 26 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 17-1 and 17-2.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that Polymer 9 was used instead of Polymer 1 in Experimental Example 2, and the composite solution of Polymer 9 and PC 71 BM was spin-coated at 700 rpm instead of 1000 rpm.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 18-1, except that the composite solution of Polymer 9 and PC 71 BM was spin-coated at 1100 rpm instead of 700 rpm to coat the photoactive layer in Experimental Example 18-1.
  • FIG. 27 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 18-1 and 18-2.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that Polymer 10 was used instead of Polymer 1 in Example 2, and the spin coating was performed at 900 rpm instead of 1000 rpm for the complex solution of Polymer 10 and PC 71 BM.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that polymer 10 was used instead of polymer 1 in Experimental Example 2.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that Polymer 11 was used instead of Polymer 1 in Experimental Example 2, and the composite solution of Polymer 11 and PC 71 BM was spin-coated at 700rpm instead of 1000rpm.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 20-1, except that the composite solution of Polymer 11 and PC 71 BM was spin-coated at 1300 rpm instead of 700 rpm to coat the photoactive layer in Experimental Example 20-1.
  • 29 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 20-1 and 20-2.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that Polymer 12 was used instead of Polymer 1 in Example 2, and the composite solution of Polymer 12 and PC 71 BM was spin-coated at 700 rpm instead of 1000 rpm.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that polymer 12 was used instead of polymer 1 in Experimental Example 2.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 2, except that Polymer 13 was used instead of Polymer 1 in Example 2, and the composite solution of Polymer 13 and PC 71 BM was spin-coated at 700 rpm instead of 1000 rpm.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that polymer 13 was used instead of polymer 1 in Experimental Example 2.
  • FIG. 31 is a diagram showing current densities according to voltages of organic solar cells according to Experimental Examples 22-1 and 22-2.
  • the polymer 14 and PC 71 BM were dissolved in chlorobenzene (CB) in a ratio of 1: 2 to prepare a composite solution. At this time, the concentration was adjusted to 2.5 wt%, and the organic solar cell had an inverted structure of ITO / ZnO NP / photoactive layer / MoO 3 / Ag.
  • CB chlorobenzene
  • ITO is a bar type, 1.5 cm ⁇ 1.5 cm coated glass substrates are ultrasonically cleaned with distilled water, acetone, 2-propanol, ozonated ITO surface for 10 minutes, and then ZnO nanograde N -10 2.5wt% in isopropanol) and spin-coating the ZnO NP solution at 4000 rpm for 20 seconds, followed by heat treatment at 100 ° C for 10 minutes to remove the remaining solvent to complete the electron transport layer.
  • a composite solution of polymer 14 and PC 71 BM was spin coated at 700 rpm.
  • MoO 3 was deposited in a thermal evaporator at a thickness of 10 nm at a rate of 0.2 ⁇ / s to prepare a hole transport layer. After fabrication in the above order, 100 nm of Ag was deposited in the thermal evaporator at a rate of 1 ⁇ / s to manufacture an organic solar cell having a reverse structure.
  • An organic solar cell was manufactured by the same method as Experimental Example 23-1, except that the composite solution of Polymer 14 and PC 71 BM was spin-coated at 1500 rpm instead of 700 rpm in Experimental Example 23-1.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that polymer 15 was used instead of polymer 1 in Experimental Example 2, and the composite solution of polymer 15 and PC 71 BM was spin-coated at 700rpm instead of 1000rpm.
  • An organic solar cell was manufactured by the same method as Experimental Example 24-1, except that the composite solution of Polymer 15 and PC 71 BM was spin-coated at 1500 rpm instead of 700 rpm in Experimental Example 24-1.
  • An organic solar cell was manufactured by the same method as Experimental Example 23-1, except that Polymer 16 was used instead of Polymer 14 in Experimental Example 23-1.
  • An organic solar cell was manufactured by the same method as Experimental Example 25-1, except that the complex solution of Polymer 16 and PC 71 BM was spin-coated at 1000 rpm instead of 700 rpm in Experimental Example 25-1.
  • 34 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 25-1 and 25-2.
  • An organic solar cell was manufactured by the same method as Experimental Example 2, except that polymer 17 was used instead of polymer 1 in Experimental Example 2.
  • An organic solar cell was manufactured by the same method as Experimental Example 26-1, except that the complex solution of the polymer 17 and the PC 71 BM was spin-coated at 1200 rpm instead of 1000 rpm in Experimental Example 26-1.
  • 35 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 26-1 and 26-2.
  • the polymer 18 and PC 71 BM were dissolved in chlorobenzene (CB) at a ratio of 1: 2 to prepare a composite solution. At this time, the concentration was adjusted to 2 wt%, and the organic solar cell had an inverted structure of ITO / ZnO / photoactive layer / MoO 3 / Ag.
  • CB chlorobenzene
  • ITO is a bar type, 1.5 ⁇ 1.5 cm 2 coated glass substrate is ultrasonically cleaned with distilled water, acetone, 2-propanol, and the surface of the ITO after ozone treatment for 10 minutes, ZnO precursor solution: Prepare ZnO nanoparticle 25mg / ml in butanol), spin-coate this zinc oxide (ZnO) solution at 4000 rpm for 40 seconds, and heat-treat at 100 ° C for 10 minutes to remove the remaining solvent The transport layer was completed. For coating the photoactive layer, a composite solution of polymer 18 and PC 71 BM was spin coated at 700 rpm for 20 seconds.
  • MoO 3 was deposited in a thermal evaporator at a thickness of 10 nm at a rate of 0.2 ⁇ / s to prepare a hole transport layer. After fabrication in the above order, 100 nm of Ag was deposited in the thermal evaporator at a rate of 1 ⁇ / s to manufacture an organic solar cell having a reverse structure.
  • An organic solar cell was manufactured by the same method as Experimental Example 27-1, except that the complex solution of Polymer 18 and PC 71 BM was spin-coated at 1000 rpm instead of 700 rpm in Experimental Example 27-1.
  • 36 is a diagram showing current density by voltage of organic solar cells according to Experimental Examples 27-1 and 27-2.
  • An organic solar cell was manufactured in the same manner as in Experimental Example 27-1, except that Polymer 19 was used instead of Polymer 18 in Experimental Example 27-1, and spin-coated at 19 rpm instead of 700 rpm for a complex solution of Polymer 19 and PC 71 BM. Prepared.
  • An organic solar cell was manufactured by the same method as Experimental Example 28-1, except that the complex solution of Polymer 19 and PC 71 BM was spin-coated at 1500 rpm instead of 1000 rpm in Experimental Example 28-1.
  • V oc is an open voltage
  • J sc is a short circuit current
  • FF is a fill factor
  • PCE ( ⁇ ) is an energy conversion efficiency.
  • the open-circuit and short-circuit currents are the X- and Y-axis intercepts in the four quadrants of the voltage-current density curve, respectively. The higher these two values, the higher the efficiency of the solar cell.
  • the fill factor is the area of the rectangle drawn inside the curve divided by the product of the short circuit current and the open voltage. By dividing these three values by the intensity of the emitted light, the energy conversion efficiency can be obtained, and higher values are preferable. As a result of Tables 1 to 25 it can be seen that the polymer according to one embodiment of the present specification shows a high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 명세서는 중합체 및 이를 포함하는 유기 태양 전지에 관한 것이다.

Description

중합체 및 이를 포함하는 유기 태양 전지
본 출원은 2015년 3월 9일에 한국특허청에 제출된 한국 특허 출원 제 10-2015-0032475호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 중합체 및 이를 포함하는 유기 태양 전지에 관한 것이다.
유기 태양전지는 광기전력효과(photovoltaic effect)를 응용함으로써 태양에너지를 직접 전기에너지로 변환할 수 있는 소자이다. 태양전지는 박막을 구성하는 물질에 따라 무기 태양전지와 유기 태양전지로 나뉠 수 있다. 전형적인 태양전지는 무기 반도체인 결정성 실리콘(Si)을 도핑(doping)하여 p-n 접합으로 만든 것이다. 빛을 흡수하여 생기는 전자와 정공은 p-n 접합점까지 확산되고 그 전계에 의하여 가속되어 전극으로 이동한다. 이 과정의 전력변환 효율은 외부 회로에 주어지는 전력과 태양전지에 들어간 태양전력의 비로 정의되며, 현재 표준화된 가상 태양 조사 조건으로 측정 시 24%정도까지 달성되었다. 그러나 종래 무기 태양전지는 이미 경제성과 재료상의 수급에서 한계를 보이고 있기 때문에, 가공이 쉬우며 저렴하고 다양한 기능성을 가지는 유기물 반도체 태양전지가 장기적인 대체 에너지원으로 각광받고 있다.
태양전지는 태양 에너지로부터 가능한 많은 전기 에너지를 출력할 수 있도록 효율을 높이는 것이 중요하다. 이러한 태양전지의 효율을 높이기 위해서는 반도체 내부에서 가능한 많은 엑시톤을 생성하는 것도 중요하지만 생성된 전하를 손실됨 없이 외부로 끌어내는 것 또한 중요하다. 전하가 손실되는 원인 중의 하나가 생성된 전자 및 정공이 재결합(recombination)에 의해 소멸하는 것이다. 생성된 전자나 정공이 손실되지 않고 전극에 전달되기 위한 방법으로 다양한 방법이 제시되고 있으나, 대부분 추가 공정이 요구되고 이에 따라 제조 비용이 상승할 수 있다.
[특허문헌]
한국 특허 공개공보 2014-0025621호
[비특허문헌]
Two-layer organic photovoltaic cell(C.W.Tang, Appl. Phys. Lett., 48, 183.(1996))
Efficiencies via Network of Internal Donor-Acceptor Heterojunctions(G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789. (1995))
본 명세서는 중합체 및 이를 포함하는 유기 태양 전지를 제공하는 것을 목적으로 한다.
본 명세서는 하기 화학식 1로 표시되는 제1 단위; 및
하기 화학식 2로 표시되는 제2 단위를 포함하는 중합체를 제공한다.
[화학식 1]
Figure PCTKR2016002356-appb-I000001
[화학식 2]
Figure PCTKR2016002356-appb-I000002
상기 화학식 1 및 2에 있어서,
X, X', X" 및 X"'는 서로 동일하거나 상이하고, 각각 독립적으로 S 또는 Se 이고,
A1 및 A2는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 불소이며,
A3 및 A4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 불소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
R1 내지 R8은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
a1 내지 a4는 각각 0 또는 1의 정수이다. 또한, 본 명세서는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되고, 광활성층을 포함하는 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 전술한 중합체를 포함하는 것인 유기 태양 전지를 제공한다.
본 명세서의 일 실시상태에 따른 중합체는 에너지 레벨이 700nm 이상으로 단락전류(Jsc)가 높아 높은 효율의 소자를 제공할 수 있다. 또한, 본 명세서의 일 실시상태에 따른 중합체는 용해도가 우수하여, 소자의 제조시, 시간 및 비용 상 경제적이다.
도 1은 본 명세서의 일 실시상태에 따른 유기 태양 전지를 나타낸 도이다.
도 2는 중합체 1의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 3은 중합체 2의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 4는 실험예 1에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 5는 실험예 3 내지 5에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 6은 실험예 6 내지 8에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 7은 실험예 9 내지 11에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 8은 중합체 3의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 9는 중합체 4의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 10은 중합체 5의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 11은 중합체 6의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 12은 중합체 7의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 13는 중합체 8의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 14은 중합체 9의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 15은 중합체 10의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 16는 중합체 11의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 17은 중합체 12의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 18는 중합체 13의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 19은 중합체 14의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 20은 중합체 15의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 21는 중합체 16의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 22은 중합체 17의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 23는 중합체 18의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 24은 중합체 19의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 25는 실험예 16-1 및 16-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 26는 실험예 17-1 및 17-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 27는 실험예 18-1 및 18-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 28는 실험예 19-1 및 19-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 29는 실험예 20-1 및 20-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 30는 실험예 21-1 및 21-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 31는 실험예 22-1 및 22-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 32는 실험예 23-1 및 23-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 33는 실험예 24-1 및 24-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 34는 실험예 25-1 및 25-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 35는 실험예 26-1 및 26-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 36는 실험예 27-1 및 27-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
도 37는 실험예 28-1 및 28-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서에 있어서 '단위'란 단량체가 중합체에 포함되는 반복되는 구조로서, 단량체가 중합에 의하여 중합체 내에 결합된 구조를 의미한다.
본 명세서에 있어서 '단위를 포함'의 의미는 중합체 내의 주쇄에 포함된다는 의미이다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 상기 화학식 1로 표시되는 제1 단위와 상기 화학식 2로 표시되는 제2 단위를 포함한다.
본 명세서의 또 하나의 실시상태에 있어서, 상기 중합체에 포함되는 1 또는 2 이상의 화학식 1로 표시되는 제1 단위와 1 또는 2 이상의 화학식 2로 표시되는 제2 단위를 포함한다.
본 명세서에서 상기 중합체에 포함하는 제1 단위 및/또는 제2 단위가 2 이상인 경우, 2 이상의 제1 단위 및/또는 제2 단위는 서로 동일하거나 상이할 수 있다. 상기 복수 개의 제1 단위 및/또는 제2 단위를 동일하거나 상이하게 조절함으로써, 소자의 제조시 필요한 중합체의 용해도 및/또는 소자의 수명, 효율 특성 등을 조절할 수 있다.
화학식 1로 표시되는 제1 단위는 불소를 포함하고, 화학식 2로 표시되는 제2 단위는 알콕시기 또는 티오에테르기를 포함한다. 따라서, 상기 화학식 1로 표시되는 제1 단위와 상기 화학식 2로 표시되는 제2 단위를 동시에 포함하는 경우에는 중합체의 용해도가 우수하다. 이 경우, 소자의 제조시 시간 및/또는 비용 상 경제적인 이점이 있다.
또한, 본 명세서의 일 실시상태에 따른 중합체는 에너지 레벨이 700nm 이상으로 단락전류(Jsc)가 높아 높은 효율의 소자를 제공할 수 있다. 또한, 본 명세서의 일 실시상태에 따른 중합체는 용해도가 우수하여, 소자의 제조시, 시간 및 비용 상 경제적이다.
또한, 본 명세서의 일 실시상태에 있어서, -O-A3와 -O-A4를 포함하는 제2 단위는 HOMO 에너지 준위의 값을 높이고, A1 및 A2를 포함하는 제1 단위는 HOMO 에너지 준위의 값을 낮춘다. 따라서, 제1 단위와 제2 단위의 비율을 조절하여, 적절한 HOMO 에너지 준위를 조절하여, 높은 유기 태양 전지를 구현할 수 있다.
본 명세서에 있어서, 에너지 준위는 에너지의 크기를 의미하는 것이다. 따라서, 진공준위로부터 마이너스(-) 방향으로 에너지 준위가 표시되는 경우에도, 에너지 준위는 해당 에너지 값의 절대값을 의미하는 것으로 해석된다. 예컨대, HOMO 에너지 준위란 진공준위로부터 최고 점유 분자 오비탈(highest occupied molecular orbital)까지의 거리를 의미한다. 또한, LUMO 에너지 준위란 진공준위로부터 최저 비점유 분자 오비탈(lowest unoccupied molecular orbital)까지의 거리를 의미한다.
또한, 상기 HOMO 에너지 준위 값을 낮춘다는 의미는 에너지 준위의 절대값이 커진다는 것을 의미하며, HOMO 에너지 준위 값을 높인다는 의미는 에너지 준위의 절대값이 작아진다는 것을 의미한다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 이미드기; 아미드기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2016002356-appb-I000003
본 명세서에 있어서, 아미드기는 아미드기의 질소가 수소, 탄소수 1 내지 30의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 30의 아릴기로 1 또는 2 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2016002356-appb-I000004
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에서 상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 25인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서 상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 24인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2016002356-appb-I000005
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로 고리기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Si, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 헤테로 고리기의 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로 고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기는 N 원자에, 아릴기, 알킬기, 아릴알킬기, 및 헤테로고리기 등으로 치환될 수 있으며, 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴옥시기, 아릴티옥시기 및 아릴술폭시기 중의 아릴기는 전술한 아릴기의 예시와 같다. 구체적으로 아릴옥시기로는 페녹시, p-토릴옥시, m-토릴옥시, 3,5-디메틸-페녹시, 2,4,6-트리메틸페녹시, p-tert-부틸페녹시, 3-비페닐옥시, 4-비페닐옥시, 1-나프틸옥시, 2-나프틸옥시, 4-메틸-1-나프틸옥시, 5-메틸-2-나프틸옥시, 1-안트릴옥시, 2-안트릴옥시, 9-안트릴옥시, 1-페난트릴옥시, 3-페난트릴옥시, 9-페난트릴옥시 등이 있고, 아릴티옥시기로는 페닐티옥시기, 2-메틸페닐티옥시기, 4-tert-부틸페닐티옥시기 등이 있으며, 아릴술폭시기로는 벤젠술폭시기, p-톨루엔술폭시기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 알킬티옥시기 및 알킬술폭시기 중의 알킬기는 전술한 알킬기의 예시와 같다. 구체적으로 알킬티옥시기로는 메틸티옥시기, 에틸티옥시기, tert-부틸티옥시기, 헥실티옥시기, 옥틸티옥시기 등이 있고, 알킬술폭시기로는 메실, 에틸술폭시기, 프로필술폭시기, 부틸술폭시기 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 a1은 1이다.
또 하나의 실시상태에 있어서, 상기 a2는 1이다.
본 명세서의 일 실시상태에 있어서, R2는 수소이다.
또 하나의 실시상태에 있어서, 상기 R3는 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 제1 단위는 1종 또는 2종 이상 포함된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 제2 단위는 1 종 또는 2종 이상 포함된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 제1 단위는 하기 화학식 1-1로 표시된다.
[화학식 1-1]
Figure PCTKR2016002356-appb-I000006
상기 화학식 1-1에 있어서,
X, X', A1, A2, R1 및 R4는 화학식 1에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 X는 S이다.
또 하나의 실시상태에 있어서, 상기 X'는 S이다.
또 다른 실시상태에 있어서, 상기 X는 Se이다.
본 명세서의 일 실시상태에 있어서, 상기 X'는 Se이다.
본 명세서의 일 실시상태에 있어서, 상기 A1은 수소이다.
또 하나의 실시상태에 있어서, 상기 A1은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 A1은 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 A2는 수소이다.
또 다른 실시상태에 있어서, 상기 A2는 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 A2는 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1-1로 표시되는 제1 단위는 하기 화학식 1-1-1 내지 1-1-3 중 어느 하나로 표시된다.
[화학식 1-1-1]
Figure PCTKR2016002356-appb-I000007
[화학식 1-1-2]
Figure PCTKR2016002356-appb-I000008
[화학식 1-1-3]
Figure PCTKR2016002356-appb-I000009
상기 화학식 1-1-1 내지 1-1-3에 있어서,
X, X', R1 및 R4는 전술한 바와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 -L1-A3 및 -L2-A4는 각각 -O-A3 및 -O-A4이다.
본 명세서의 일 실시상태에 있어서, 상기 A3는 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 A4는 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 a3는 0이다.
또 다른 실시상태에 있어서, 상기 a3는 1이다.
또 하나의 실시상태에 있어서, 상기 a4는 0이다.
도 다른 실시상태에 있어서, 상기 a4는 1이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 제2 단위는 하기 화학식 2-1 또는 2-2로 표시된다.
[화학식 2-1]
Figure PCTKR2016002356-appb-I000010
[화학식 2-2]
Figure PCTKR2016002356-appb-I000011
상기 화학식 2-1 및 2-2에 있어서,
X", X'", R5 내지 R8, A3 및 A4는 화학식 2에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 있어서, a1 내지 a4는 0 또는 1이다.
본 명세서의 일 실시상태에 있어서, a1 내지 a4가 1인 경우에는 분자의 회전을 방지하고, X 내지 X'"의 S 또는 Se 원자와 A1, A2의 할로겐기 또는 화학식 2의 O 원자와 서로 상호작용(interaction)을 통하여 평면성이 증가할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 X"는 S이다.
또 하나의 실시상태에 있어서, 상기 X"는 Se이다.
본 명세서의 일 실시상태에 있어서, 상기 X"'는 S이다.
본 명세서의 다른 실시상태에 있어서, 상기 X"'는 Se이다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 하기 화학식 3 중 어느 하나로 표시되는 제3 단위를 더 포함한다.
[화학식 3]
Figure PCTKR2016002356-appb-I000012
상기 화학식 3에 있어서,
X3 내지 X6는 서로 동일하거나 상이하고, 각각 독립적으로 CR10, NR10, O, SiR10R11, PR10, S, GeR10R11, Se 또는 Te이고,
Y5 및 Y6는 서로 동일하거나 상이하고, 각각 독립적으로 CR12, N, SiR12, P 또는 GeR12이며,
b는 1 내지 3의 정수이고,
b가 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하며,
R10 내지 R14는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 티오에테르기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 X3는 S이다.
또 하나의 실시상태에 있어서, 상기 Y5는 CR12이다.
또 하나의 실시상태에 있어서, 상기 Y6는 CR12이다.
본 명세서의 일 실시상태에 있어서, 상기 R12는 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 R12는 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R12는 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 X3는 Se 이다.
또 다른 실시상태에 있어서, 상기 X3는 Ge이다.
본 명세서의 다른 실시상태에 있어서, 상기 X4는 S이다.
본 명세서의 일 실시상태에 있어서, 상기 X4는 Se 이다.
또 다른 실시상태에 있어서, 상기 X4는 Ge이다.
또 다른 실시상태에 있어서, 상기 X4는 NR10이다.
본 명세서의 일 실시상태에 있어서, 상기 X4는 SiR10R11 이다.
또 다른 실시상태에 있어서, 상기 X4는 CR10R11이다.
본 명세서의 일 실시상태에 있어서, 상기 X4는 GeR10R11 이다.
또 다른 실시상태에 있어서, 상기 X4는 CR10R11이다.
본 명세서의 일 실시상태에 있어서, 상기 X5는 S이다.
본 명세서의 일 실시상태에 있어서, X5는 O이다.
본 명세서의 일 실시상태에 있어서, X6은 S이다.
본 명세서의 일 실시상태에 있어서, Y5는 CR12이다.
또 다른 실시상태에 있어서, Y6는 CR12이다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 하기 화학식 3-1 중 어느 하나로 표시되는 제3 단위를 더 포함한다.
[화학식 3-1]
Figure PCTKR2016002356-appb-I000013
상기 화학식 3-1에 있어서, R10, R11, R12는 전술한 바와 동일하고,
R12'는 R12의 정의와 동일하며,
상기 화학식 3-1의 구조는 각각 독립적으로 중수소; 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 티오에테르기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 치환기로 추가로 치환 또는 비치환될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 단위 및 제2 단위를 포함하는 중합체는 교대 중합체이다.
또 하나의 실시상태에 있어서, 상기 제1 단위 및 제2 단위를 포함하는 중합체는 랜덤 중합체이다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 하기 화학식 4 내지 6 중 어느 하나로 표시되는 단위를 포함한다.
[화학식 4]
Figure PCTKR2016002356-appb-I000014
[화학식 5]
Figure PCTKR2016002356-appb-I000015
[화학식 6]
Figure PCTKR2016002356-appb-I000016
[화학식 7]
Figure PCTKR2016002356-appb-I000017
상기 화학식 4 내지 7에 있어서,
A 및 A'는 서로 같거나 상이하고, 각각 독립적으로 상기 화학식 1로 표시되는 제1 단위이고,
B는 상기 화학식 2로 표시되는 제2 단위이며,
C, C' 및 C"는 서로 같거나 상이하고, 각각 독립적으로 하기 화학식 3 중 어느 하나로 표시되는 제3 단위이고,
[화학식 3]
Figure PCTKR2016002356-appb-I000018
상기 화학식 3에 있어서,
X3 내지 X6는 서로 동일하거나 상이하고, 각각 독립적으로 CR10, NR10, O, SiR10R11, PR10, S, GeR10R11, Se 또는 Te이고,
Y5 및 Y6는 서로 동일하거나 상이하고, 각각 독립적으로 CR12, N, SiR12, P 또는 GeR12이며,
b는 1 내지 3의 정수이고,
b가 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하며,
R10 내지 R14는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 티오에테르기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
l은 몰분율로서 0 < l < 1 이며,
m은 몰분율로서 0 < m <1 이고,
o는 몰분율로서 0 < o < 1이며,
p는 몰분율로서 0 < p <1 이고,
q는 몰분율로서 0 < q < 1이며,
l + m = 1이고,
o + p + q = 1이며,
n은 단위의 반복수로서, 1 내지 10,000의 정수이다.
본 명세서에서 상기 화학식 4로 표시되는 단위를 포함하는 중합체는 제1 단위 및 제2 단위만으로 구성된 단위를 포함하는 것으로 교대 중합체를 구성할 수 있다.
본 명세서에서 상기 화학식 5로 표시되는 단위를 포함하는 중합체는 제1 단위 및 제2 단위만으로 구성된 단위를 포함하는 것으로 랜덤 중합체를 구성할 수 있으며, l 및 m의 몰분율에 따라서, 제1 단위 및 제2 단위의 함량을 조절할 수 있다.
본 명세서에서 상기 화학식 6으로 표시되는 단위를 포함하는 중합체는 제1 단위 및 제2 단위 외에도 추가의 단위를 더 포함하는 것으로 랜덤 중합체를 구성할 수 있다.
본 명세서에서 상기 화학식 7로 표시되는 단위를 포함하는 중합체는 서로 같거나 상이한 2개의 제1 단위 및 제2 단위 외에도 추가의 단위를 더 포함하는 것으로 랜덤 중합체를 구성할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 4로 표시되는 단위는 하기 화학식 4-1로 표시된다.
또 하나의 실시상태에 있어서, 상기 화학식 5로 표시되는 단위는 하기 화학식 5-1로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 6으로 표시되는 단위는 하기 화학식 6-1로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 7로 표시되는 단위는 하기 화학식 7-1로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 하기 화학식 4-1, 화학식 5-1, 화학식 6-1 및 화학식 7-1 중 어느 하나로 표시되는 단위를 포함한다.
[화학식 4-1]
Figure PCTKR2016002356-appb-I000019
[화학식 5-1]
Figure PCTKR2016002356-appb-I000020
[화학식 6-1]
Figure PCTKR2016002356-appb-I000021
[화학식 7-1]
Figure PCTKR2016002356-appb-I000022
상기 화학식 4-1, 화학식 5-1, 화학식 6-1 및 화학식 7-1 에 있어서,
A1 내지 A4, R1 및 R4 내지 R8는 화학식 1 및 2에서 정의한 바와 동일하고,
A'1, A'2, R'1, R'4는 상기 화학식 1의 A1, A2, R1 및 R4의 정의와 동일하며,
R10 내지 R13, R'12 및 R'13은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
l은 몰분율로서 0 < l < 1 이며,
m은 몰분율로서 0 < m <1 이고,
o는 몰분율로서 0 < o < 1이며,
p는 몰분율로서 0 < p <1 이고,
q는 몰분율로서 0 < q < 1이며,
l + m = 1이고,
o + p + q = 1이며,
n은 단위의 반복수로서, 1 내지 10,000의 정수이다.
본 명세서의 일 실시상태에 있어서, 상기 A3 및 A4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기이다.
또 하나의 실시상태에 있어서, 상기 A3 및 A4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기이다.
본 명세서의 일 실시상태에 있어서, A3 및 A4는 치환 또는 비치환된 도데실기이다.
본 명세서의 일 실시상태에 있어서, A3 및 A4는 치환 또는 비치환된 옥틸기이다.
본 명세서의 일 실시상태에 있어서, A3 및 A4는 치환 또는 비치환된 헥실기이다.
본 명세서의 일 실시상태에 있어서, A3 및 A4는 치환 또는 비치환된 부틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 A3은 도데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 A4는 도데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 A3은 n-도데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 A4는 n-도데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 A3은 옥틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 A4는 옥틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 A3은 n-옥틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 A4는 n-옥틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 A3은 헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 A4는 헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 A3은 n-헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 A4는 n-헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 A3은 부틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 A4는 부틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 A3은 n-부틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 A4는 n-부틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 직쇄 또는 분지쇄의 탄소수 1 내지 30의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 2-에틸헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 2-옥틸도데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 2-에틸데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 2-부틸옥틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1은 2-에틸헥실기이다.
또 하나의 실시상태에 있어서, 상기 R4는 2-에틸헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1은 2-옥틸도데실기이다.
또 하나의 실시상태에 있어서, 상기 R4는 2-옥틸도데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1은 2-에틸데실기이다.
또 하나의 실시상태에 있어서, 상기 R4는 2-에틸데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1은 2-부틸옥틸기이다.
또 하나의 실시상태에 있어서, 상기 R4는 2-부틸옥틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 R5는 수소이다.
또 하나의 실시상태에 있어서, 상기 R5는 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R5는 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 R6는 수소이다.
또 하나의 실시상태에 있어서, 상기 R6는 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R6는 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 R7은 수소이다.
또 하나의 실시상태에 있어서, 상기 R7은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R7은 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 R8은 수소이다.
또 하나의 실시상태에 있어서, 상기 R8은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R8은 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 R10는 수소이다.
또 하나의 실시상태에 있어서, 상기 R10는 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R10는 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 R11은 수소이다.
또 하나의 실시상태에 있어서, 상기 R11은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R11은 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 R12은 수소이다.
또 하나의 실시상태에 있어서, 상기 R12은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R12은 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 R13은 수소이다.
또 하나의 실시상태에 있어서, 상기 R13은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R13은 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 A'1은 수소이다.
또 하나의 실시상태에 있어서, 상기 A'1은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 A'1은 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 A'2는 수소이다.
또 다른 실시상태에 있어서, 상기 A'2는 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 A'2는 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1 및 R'4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1 및 R'4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1 및 R'4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 직쇄 또는 분지쇄의 탄소수 1 내지 30의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1 및 R'4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 2-에틸헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1 및 R'4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 2-옥틸도데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1 및 R'4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 2-에틸데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1 및 R'4는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 2-부틸옥틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1은 2-에틸헥실기이다.
또 하나의 실시상태에 있어서, 상기 R'4는 2-에틸헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1은 2-옥틸도데실기이다.
또 하나의 실시상태에 있어서, 상기 R'4는 2-옥틸도데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1은 2-에틸데실기이다.
또 하나의 실시상태에 있어서, 상기 R'4는 2-에틸데실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'1은 2-부틸옥틸기이다.
또 하나의 실시상태에 있어서, 상기 R'4는 2-부틸옥틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 R'12은 수소이다.
또 하나의 실시상태에 있어서, 상기 R'12은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R'12은 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 R'13은 수소이다.
또 하나의 실시상태에 있어서, 상기 R'13은 할로겐기이다.
또 하나의 실시상태에 있어서, 상기 R'13은 불소이다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 하기 화학식 4-1-1 내지 화학식 4-1-10, 화학식 5-1-1 내지 화학식 5-1-3, 화학식 6-1-1 내지 화학식 6-1-14 및 화학식 7-1-1 내지 7-1-5 중 어느 하나로 표시되는 단위를 포함한다.
[화학식 4-1-1]
Figure PCTKR2016002356-appb-I000023
[화학식 4-1-2]
Figure PCTKR2016002356-appb-I000024
[화학식 4-1-3]
Figure PCTKR2016002356-appb-I000025
[화학식 4-1-4]
Figure PCTKR2016002356-appb-I000026
[화학식 4-1-5]
Figure PCTKR2016002356-appb-I000027
[화학식 4-1-6]
Figure PCTKR2016002356-appb-I000028
[화학식 4-1-7]
Figure PCTKR2016002356-appb-I000029
[화학식 4-1-8]
Figure PCTKR2016002356-appb-I000030
[화학식 4-1-9]
Figure PCTKR2016002356-appb-I000031
[화학식 4-1-10]
Figure PCTKR2016002356-appb-I000032
[화학식 5-1-1]
Figure PCTKR2016002356-appb-I000033
[화학식 5-1-2]
Figure PCTKR2016002356-appb-I000034
[화학식 5-1-3]
Figure PCTKR2016002356-appb-I000035
[화학식 6-1-1]
Figure PCTKR2016002356-appb-I000036
[화학식 6-1-2]
Figure PCTKR2016002356-appb-I000037
[화학식 6-1-3]
Figure PCTKR2016002356-appb-I000038
[화학식 6-1-4]
Figure PCTKR2016002356-appb-I000039
[화학식 6-1-5]
Figure PCTKR2016002356-appb-I000040
[화학식 6-1-6]
Figure PCTKR2016002356-appb-I000041
[화학식 6-1-7]
Figure PCTKR2016002356-appb-I000042
[화학식 6-1-8]
Figure PCTKR2016002356-appb-I000043
[화학식 6-1-9]
Figure PCTKR2016002356-appb-I000044
[화학식 6-1-10]
Figure PCTKR2016002356-appb-I000045
[화학식 6-1-11]
Figure PCTKR2016002356-appb-I000046
[화학식 6-1-12]
Figure PCTKR2016002356-appb-I000047
[화학식 6-1-13]
Figure PCTKR2016002356-appb-I000048
[화학식 6-1-14]
Figure PCTKR2016002356-appb-I000049
[화학식 7-1-1]
Figure PCTKR2016002356-appb-I000050
[화학식 7-1-2]
Figure PCTKR2016002356-appb-I000051
[화학식 7-1-3]
Figure PCTKR2016002356-appb-I000052
[화학식 7-1-4]
Figure PCTKR2016002356-appb-I000053
[화학식 7-1-5]
Figure PCTKR2016002356-appb-I000054
상기 화학식 4-1-1 내지 화학식 4-1-10, 화학식 5-1-1 내지 화학식 5-1-3, 화학식 6-1-1 내지 화학식 6-1-14 및 화학식 7-1-1 내지 7-1-5에 있어서,
l은 몰분율로서 0 < l < 1 이며,
m은 몰분율로서 0 < m <1 이고,
o는 몰분율로서 0 < o < 1이며,
p는 몰분율로서 0 < p <1 이고,
q는 몰분율로서 0 < q < 1이며,
l + m = 1이고,
o + p + q = 1이며,
n은 단위의 반복수로서, 1 내지 10,000의 정수이다.
본 명세서의 일 실시상태에 있어서, 상기 l은 0.5이다.
또 하나의 실시상태에 있어서, 상기 l은 0.6이다.
본 명세서의 일 실시상태에 있어서, 상기 m은 0.5이다.
또 다른 실시상태에 있어서, 상기 m은 0.4이다.
본 명세서의 일 실시상태에 있어서, 상기 o는 0.5이다.
본 명세서의 일 실시상태에 있어서, 상기 p는 0.4이다.
또 하나의 실시상태에 있어서, 상기 p는 0.35이다.
또 하나의 실시상태에 있어서, 상기 p는 0.3이다.
또 하나의 실시상태에 있어서, 상기 p는 0.25이다.
또 하나의 실시상태에 있어서, 상기 p는 0.2이다.
또 하나의 실시상태에 있어서, 상기 p는 0.15이다.
본 명세서의 일 실시상태에 있어서, 상기 q는 0.1이다.
또 하나의 실시상태에 있어서, 상기 q는 0.15이다.
또 하나의 실시상태에 있어서, 상기 q는 0.2이다.
또 하나의 실시상태에 있어서, 상기 q는 0.25이다.
또 하나의 실시상태에 있어서, 상기 q는 0.3이다.
또 하나의 실시상태에 있어서, 상기 q는 0.35이다.
본 명세서의 일 실시상태에 있어서, 상기 HOMO 에너지 준위는 5 eV 내지 5.9 eV 이다.
본 명세서에서 상기 HOMO 에너지 준위의 측정은 전기화학적 방법인 사이클릭 볼타메트리 (cyclic voltammetry)로 HOMO 에너지 준위를 측정하였고, LUMO 에너지 준위는 HOMO 에너지 에서 UV 엣지(edge)로부터 나온 에너지 밴드갭의 차이로 측정하였다.
구체적으로 사이클릭 볼타메트리 (cyclic voltammetry)는 카본 전극인 작업(Working)전극, 기준(Reference) 전극, 백금 판인 카운터(Counter) 전극으로 이루어져 있으며 전위를 시간에 따라 일정한 속도로 오르내리게 하면서 전극에 흐르는 전류를 측정하는 방법이다. HOMO 및 LUMO의 계산식은 아래와 같다.
[식]
HOMO(or LUMO)(eV)=-4.8-(Eonset-E1/2(Ferrocene))
본 명세서의 일 실시상태에 있어서, 상기 중합체는 클로로벤젠에 대한 용해도가 0.1 wt% 내지 20 wt%이다. 상기 용해도 측정은 상온에서 측정된 값을 의미할 수 있다.
본 명세서의 하나의 실시상태에 있어서, 상기 중합체의 말단기는 트라이플루오로-벤젠기(trifluoro-benzene) 및/또는 4-Bromodiphenyl ether를 사용하나, 일반적으로 공지된 말단기를 당업자의 필요에 따라 변경하여 사용할 수 있으며, 이를 한정하지 않는다.
본 명세서의 일 실시상태에 따르면, 상기 중합체의 수평균 분자량은 5,000 g/mol 내지 1,000,000 g/mol이 바람직하다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 1 내지 10의 분자량 분포를 가질 수 있다. 바람직하게는 상기 중합체는 1 내지 3의 분자량 분포를 가진다.
또한, 일정 이상의 용해도를 가져서 용액도포법 적용이 유리하도록 하기 위해 수평균 분자량은 100,000이하인 것이 바람직하다.
본 명세서에 따른 중합체는 다단계 화학반응으로 제조할 수 있다. 알킬화 반응, 그리냐르(Grignard) 반응, 스즈끼(Suzuki) 커플링 반응 및 스틸(Stille) 커플링 반응 등을 통하여 모노머들을 제조한 후, 스틸 커플링 반응 등의 탄소-탄소 커플링 반응을 통하여 최종 중합체들을 제조할 수 있다. 도입하고자 하는 치환기가 보론산(boronic acid) 또는 보론산 에스터(boronic ester) 화합물인 경우에는 스즈키 커플링 반응을 통해 제조할 수 있고, 도입하고자 하는 치환기가 트리부틸틴(tributyltin) 또는 트리메틸틴(trimethyltin) 화합물인 경우에는 스틸 커플링 반응을 통해 제조할 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비되고, 광활성층을 포함하는 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 중합체를 포함하는 것인 유기 태양 전지를 제공한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서의 일 실시예에 따른 유기 태양 전지는 제1 전극, 광활성층 및 제2 전극을 포함한다. 상기 유기 태양 전지는 기판, 정공수송층 및/또는 전자수송층이 더 포함될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 태양 전지가 외부 광원으로부터 광자를 받으면 전자 주개와 전자 받개 사이에서 전자와 정공이 발생한다. 발생된 정공은 전자 도너층을 통하여 양극으로 수송된다.
본 명세서의 일 실시상태에 있어서, 상기 유기물층은 정공 수송층, 정공 주입층 또는 정공 수송과 정공 주입을 동시에 하는 층을 포함하고, 상기 정공 수송층, 정공 주입층 또는 정공 수송과 정공 주입을 동시에 하는 층은 상기 중합체를 포함한다.
또 하나의 일 실시상태에 있어서, 상기 유기물층은 전자주입층, 전자 수송층 또는 전자 주입과 전자 수송을 동시에 하는 층을 포함하고, 상기 전자주입층, 전자 수송층 또는 전자 주입과 전자 수송을 동시에 하는 층은 상기 중합체를 포함한다.
도 1 본 명세서의 일 실시상태에 따른 유기 태양 전지를 나타낸 도이다.
본 명세서의 일 실시상태에 있어서, 상기 유기 태양 전지가 외부 광원으로부터 광자를 받으면 전자 주개와 전자 받개 사이에서 전자와 정공이 발생한다. 발생된 정공은 전자 도너층을 통하여 양극으로 수송된다.
본 명세서의 일 실시상태에 있어서, 상기 유기 태양 전지는 부가적인 유기물층을 더 포함할 수 있다. 상기 유기 태양 전지는 여러 기능을 동시에 갖는 유기물을 사용하여 유기물층의 수를 감소시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 애노드이고, 상기 제2 전극은 캐소드이다. 또 하나의 실시상태에 있어서, 상기 제1 전극은 캐소드이고, 상기 제2 전극은 애노드이다.
본 명세서의 일 실시상태에 있어서, 유기 태양 전지는 캐소드, 광활성층 및 애노드 순으로 배열될 수도 있고, 애노드, 광활성층 및 캐소드 순으로 배열될 수도 있으나, 이에 한정되지 않는다.
또 하나의 실시상태에 있어서, 상기 유기 태양 전지는 애노드, 정공수송층, 광활성층, 전자수송층 및 캐소드 순으로 배열될 수도 있고, 캐소드, 전자수송층, 광활성층, 정공수송층 및 애노드 순으로 배열될 수도 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 유기 태양 전지는 노멀(Normal)구조이다. 상기 노말 구조는 기판 상에 애노드가 형성되는 것을 의미할 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 유기태양전지가 노말 구조인 경우, 기판 상에 형성되는 제1 전극이 애노드일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 태양 전지는 인버티드(Inverted) 구조이다. 상기 인버티드 구조는 기판 상에 캐소드가 형성되는 것을 의미할 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 유기태양전지가 인버티드 구조인 경우, 기판 상에 형성되는 제1 전극이 캐소드일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 태양 전지는 탠덤 (tandem) 구조이다. 이 경우 상기 유기 태양 전지는 2 층 이상의 광활성층을 포함할 수 있다. 본 명세서의 일 실시상태에 따른 유기태양 전지는 광활성층이 1층 또는 2층 이상일 수 있다.
또 하나의 실시상태에 있어서, 버퍼층이 광활성층과 정공수송층 사이 또는 광활성층과 전자수송층 사이에 구비될 수 있다. 이때, 정공 주입층이 애노드와 정공수송층사이에 더 구비될 수 있다. 또한, 전자주입층이 캐소드와 전자수송층 사이에 더 구비될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 광활성층은 전자 주개 및 받개로 이루어진 군에서 선택되는 1 또는 2 이상을 포함하고, 상기 전자 주개는 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 전자 받개 물질은 플러렌, 플러렌 유도체, 바소쿠프로인, 반도체성 원소, 반도체성 화합물 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 구체적으로 플러렌(fullerene), 플러렌 유도체(PCBM((6,6)-phenyl-C61-butyric acid-methylester) 또는 PCBCR((6,6)-phenyl-C61-butyric acid-cholesteryl ester), 페릴렌(perylene) PBI(polybenzimidazole), 및 PTCBI(3,4,9,10-perylene-tetracarboxylic bis-benzimidazole)로 이루어진 군에서 선택되는 1 또는 2 이상의 화합물이다.
본 명세서의 일 실시상태에 있어서, 상기 전자 주개 및 전자 받개는 벌크 헤테로 정션(BHJ)을 구성한다.
벌크 헤테로 정션이란 광활성층에서 전자 주개 물질과 전자 받개 물질이 서로 섞여 있는 것을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 광활성층은 첨가제를 더 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 첨가제의 분자량은 50 g/mol 내지 1000 g/mol이다.
또 하나의 실시상태에 있어서, 상기 첨가제의 끓는점은 30℃ 내지 300℃의 유기물이다.
본 명세서에서 유기물이란 탄소 원자를 적어도 1 이상 포함하는 물질을 의미한다.
하나의 실시상태에 있어서, 상기 첨가제는 1,8-디아이오도옥탄(DIO:1,8-diiodooctane), 1-클로로나프탈렌(1-CN:1-chloronaphthalene), 다이페닐에테르 (DPE:diphenylether), 옥탄디티올(octane dithiol) 및 테트라브로모싸이오펜(tetrabromothiophene)으로 이루어진 군에서 선택되는 첨가제 중에서 1 또는 2 종의 첨가제를 더 포함할 수 있다.
유기 태양 전지에서 엑시톤의 원활한 분리와 분리된 전하의 효과적인 수송을 위해서는 전자 주개와 받개 사이의 계면을 최대한으로 늘리되 적당한 상분리를 통해 전자 주개와 받개의 연속적 통로를 확보하여, 모폴로지의 향상을 유도하는 것이 요구된다.
본 명세서의 일 실시상태에 따라, 첨가제를 활성층에 도입함으로써 고분자와 플러렌 유도체의 첨가제에 대한 선택적 용해도 및 용매와 첨가제의 끓는점 차이로 유도되는 효과적인 상분리를 유도할 수 있다. 또한 전자받개물질이나 전자주개물질을 가교화시켜 모폴로지를 고정시켜 상분리가 일어나지 않도록 할 수가 있고, 전자주개물질의 분자 구조의 변화를 통해서도 모폴로지를 컨트롤할 수 있다.
추가로 전자주개 물질의 입체규칙성 제어를 통한 모폴로지 향상뿐만 아니라, 고온에서의 열처리와 같은 후처리를 통해 모폴로지를 향상시킬 수 있다. 이는 본 명세서의 일 실시상태에 따른 중합체의 배향 및 결정화를 유도할 수 있고, 광활성층의 거칠기를 증가시켜, 전극과 접촉이 용이하게 하여 효과적인 전하의 이동을 유도할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 광활성층은 n 형 유기물층 및 p 형 유기물층을 포함하는 이층 박막(bilayer) 구조이며, 상기 p형 유기물층은 상기 중합체를 포함한다.
본 명세서에서 상기 기판은 투명성, 표면평활성, 취급용이성 및 방수성이 우수한 유리기판 또는 투명 플라스틱 기판이 될 수 있으나, 이에 한정되지 않으며, 유기 태양 전지에 통상적으로 사용되는 기판이면 제한되지 않는다. 구체적으로 유리 또는 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PP(polypropylene), PI(polyimide), TAC(triacetyl cellulose) 등이 있으나. 이에 한정되는 것은 아니다.
상기 애노드 전극은 투명하고 전도성이 우수한 물질이 될 수 있으나, 이에 한정되지 않는다. 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸싸이오펜), 폴리[3,4-(에틸렌-1,2-디옥시)싸이오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 애노드 전극의 형성 방법은 특별히 한정되지 않으나, 예컨대 스퍼터링, E-빔, 열증착, 스핀코팅, 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 기판의 일면에 도포되거나 필름형태로 코팅됨으로써 형성될 수 있다.
상기 애노드 전극을 기판 상에 형성하는 경우, 이는 세정, 수분제거 및 친수성 개질 과정을 거칠 수 있다.
예컨대, 패터닝된 ITO 기판을 세정제, 아세톤, 이소프로필 알코올(IPA)로 순차적으로 세정한 다음, 수분 제거를 위해 가열판에서 100℃~150℃에서 1~30분간, 바람직하게는 120℃에서 10분간 건조하고, 기판이 완전히 세정되면 기판 표면을 친수성으로 개질한다.
상기와 같은 표면 개질을 통해 접합 표면 전위를 광활성층의 표면 전위에 적합한 수준으로 유지할 수 있다. 또한, 개질 시 애노드 전극 위에 고분자 박막의 형성이 용이해지고, 박막의 품질이 향상될 수도 있다.
애노드 전극의 전 처리 기술로는 a) 평행 평판형 방전을 이용한 표면 산화법, b) 진공상태에서 UV 자외선을 이용하여 생성된 오존을 통해 표면을 산화하는 방법, 및 c) 플라즈마에 의해 생성된 산소 라디칼을 이용하여 산화하는 방법 등이 있다.
애노드 전극 또는 기판의 상태에 따라 상기 방법 중 한가지를 선택할 수 있다. 다만, 어느 방법을 이용하든지 공통적으로 애노드 전극 또는 기판 표면의 산소이탈을 방지하고 수분 및 유기물의 잔류를 최대한 억제하는 것이 바람직하다. 이 때, 전 처리의 실질적인 효과를 극대화할 수 있다.
구체적인 예로서, UV를 이용하여 생성된 오존을 통해 표면을 산화하는 방법을 사용할 수 있다. 이 때, 초음파 세정 후 패터닝된 ITO 기판을 가열판(hot plate)에서 베이킹(baking)하여 잘 건조시킨 다음, 챔버에 투입하고, UV 램프를 작용시켜 산소 가스가 UV 광과 반응하여 발생하는 오존에 의하여 패터닝된 ITO 기판을 세정할 수 있다.
그러나, 본 명세서에 있어서의 패터닝된 ITO 기판의 표면 개질 방법은 특별히 한정시킬 필요는 없으며, 기판을 산화시키는 방법이라면 어떠한 방법도 무방하다.
상기 캐소드 전극은 일함수가 작은 금속이 될 수 있으나, 이에 한정되지 않는다. 구체적으로 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al, LiO2/Al, LiF/Fe, Al:Li, Al:BaF2, Al:BaF2:Ba와 같은 다층 구조의 물질이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 캐소드 전극은 5x10- 7torr 이하의 진공도를 보이는 열증착기 내부에서 증착되어 형성될 수 있으나, 이 방법에만 한정되는 것은 아니다.
상기 정공수송층 및/또는 전자수송층 물질은 광활성층에서 분리된 전자와 정공을 전극으로 효율적으로 전달시키는 역할을 담당하며, 물질을 특별히 제한하지는 않는다.
상기 정공수송층 물질은 PEDOT:PSS(Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)), 몰리브데늄 산화물(MoOx); 바나듐 산화물(V2O5); 니켈 산화물(NiO); 및 텅스텐 산화물(WOx) 등이 될 수 있으나, 이들에만 한정되는 것은 아니다.
상기 전자수송층 물질은 전자추출금속 산화물(electron-extracting metal oxides)이 될 수 있으며, 구체적으로 8-히드록시퀴놀린의 금속착물; Alq3를 포함한 착물; Liq를 포함한 금속착물; LiF; Ca; 티타늄 산화물(TiOx); 아연 산화물(ZnO); 및 세슘 카보네이트(Cs2CO3), 폴리 에틸렌 이민(PEI) 등이 될 수 있으나, 이들에만 한정되는 것은 아니다.
광활성층은 전자공여체 및/또는 전자수용체와 같은 광활성 물질을 유기용매에 용해시킨 후 용액을 스핀 코팅, 딥코팅, 스크린 프린팅, 스프레이 코팅, 닥터 블레이드, 브러쉬 페인팅 등의 방법으로 형성할 수 있으나, 이들 방법에만 한정되는 것은 아니다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
합성예 1. 모노머 1의 합성
Figure PCTKR2016002356-appb-I000055
[모노머 1]
상기 모노머 1의 화합물은 JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2011, 49, 4387-4397 4389를 기초로 합성하였다.
합성예 2. 모노머 2의 합성
Figure PCTKR2016002356-appb-I000056
Figure PCTKR2016002356-appb-I000057
1) 3-(2-Ethyldecyl)thiophene의 합성
50mmol의 1-bromo-2-ethyldecane과 50mmol의 Mg turnings를 50ml diethylether에 넣고 교반시켜 Grignard reagent 만든 후, 0.1mmol의 Ni(dppp)Cl2 을 실온에서 첨가하고, 20ml의 diethylether에 들어있는 50mmol의 3-bromothiophene을 천천히 첨가해주었다. 환류 조건에서 15시간 동안 교반시켜 0 ℃에서 2M HCl로 quneching 시킨 후 diethylether로 추출하였다. 컬럼 크로마토 그래피로 정제하여 무색의 액체 3-(2-Ethyldecyl)thiophene를 얻었다. (수득률 70%)
2) 2-(Trimethylstannyl)-4-(2-ethyldecyl)thiophene의 합성
10mmol의 3-(2-Ethyldecyl)thiophene을 100ml의 테트라하이드로퓨란에 녹이고 -78℃에서 n-BuLi을 11mmol 첨가하여 1시간 교반시킨 후 0℃에서 30분 교반시켰다. 다시 -78℃로 냉각 시키고 12mmol의 Me3SnCl을 첨가하였다. 1시간 동안 -78℃에서 교반시키고 천천히 실온으로 온도를 올리며 교반한 후 용매를 제거하고 남은 것은 hexane에 녹여 필터한다. 여과액으로 침전을 잡아 무색의 2-(Trimethylstannyl)-4-(2-ethyldecyl)thiophene 결정을 얻었다.
3) 5,6-Difluoro-4,7-diiodobenzo[c][1,2,5]thiadiazole의 합성
5,6-Difluoro-4,7-diiodobenzo[c][1,2,5]thiadiazole는 Polymer Chemistry, 5(2), 502-511; 2014을 기초로 합성하였다.
4) 5,6-Difluoro-4,7-bis(4-(2-ethyldecyl)-2-thienyl)-2,1,3-benzothiadiazole의 합성
12 mmol의 5,6-Difluoro-4,7-diiodobenzo[c][1,2,5]thiadiazole 과 2-(Trimethylstannyl)-4-(2-ethyldecyl)thiophene 26.4 mmol 을 50 mL dry toluene 에 녹이고 100mg의 Pd(PPh3)4 을 넣은 후 24시간 동안 환류 교반시켰다. 반응이 끝나면 실온으로 온도를 내리고 용매를 제거한 후 컬럼 크로마토그래피로 정제를 하여 주황색 고체의 5,6-Difluoro-4,7-diiodobenzo[c][1,2,5]thiadiazole을 얻었다.
전술한 합성예 1 및 2를 기초로, 화학식 1로 표시되는 제1 단위 및 화학식 2로 표시되는 제2 단위를 제조하였다.
제조예 1. 중합체의 제조
상기 중합체 각 제1 단위 및 제2 단위의 단량체를 클로로 벤젠을 용매로 하여, Pd2(dba)3, P(o-tolyl)3, 넣고 마이크로웨이브 반응기로 중합하여 제조하였다.
중합체의 특성 측정
상기 제조예 1에서 제조된 하기 중합체 1 내지 19의 특성은 하기와 같다.
[중합체 1]
Figure PCTKR2016002356-appb-I000058
중합체 1의 제조 후 GPC 측정 결과 수평균 분자량은 18,700이고 중량 평균 분자량은 26,200이었고 HOMO는 5.28eV, LUMO는 3.62eV 이고 band gap은 1.63이었다.
도 2는 중합체 1의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 3의 UV 흡광 스펙트럼은 1) 중합체 1이 석슐렛에서 클로로 포름에 녹아나온 것을 클로로 벤젠에 녹여 만든 필름 샘플의 흡광 스펙트럼 2) 클로로 벤젠에 녹아나온 중합체 1을 클로로 벤젠에 녹여 만든 필름 샘플의 흡광 스펙트럼, 3) 1)을 120℃ 열처리 한 뒤 측정한 샘플의 흡광 스펙트럼, 4) 2)를 120℃ 열처리 한 뒤 측정한 샘플의 흡광 스펙트럼으로 UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 2]
Figure PCTKR2016002356-appb-I000059
도 3은 중합체 2의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 3의 UV 흡광 스펙트럼은 1) 필름 상태의 중합체 2의 샘플의 흡광 스펙트럼, 2) 필름 상태의 중합체 2를 120℃ 열처리 한 뒤 측정한 샘플의 흡광 스펙트럼, 3) 중합체 2를 클로로 벤젠에 녹인 샘플의 흡광 스펙트럼, 4) 중합체 2를 클로로 포름에 녹인 후, 120℃ 열처리 한 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 3]
Figure PCTKR2016002356-appb-I000060
중합체 3의 제조 후 GPC 측정 결과 수평균 분자량은 30,740이고 중량 평균 분자량은 49,500이었고, HOMO는 5.31eV, LUMO는 3.62eV 이고 band gap은 1.69이었다.
도 8은 중합체 3의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 8의 UV 흡광 스펙트럼은 필름 상태의 중합체 3의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 4]
Figure PCTKR2016002356-appb-I000061
중합체 4의 제조 후 GPC 측정 결과 수평균 분자량은 38,540이고 중량 평균 분자량은 54,000이었고, HOMO는 5.32eV, LUMO는 3.63eV 이고 band gap은 1.69이었다.
도 9는 중합체 4의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 9의 UV 흡광 스펙트럼은 필름 상태의 중합체 4의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 5]
Figure PCTKR2016002356-appb-I000062
중합체 5의 제조 후 GPC 측정 결과 수평균 분자량은 33,742이고 중량 평균 분자량은 47,700이었고, HOMO는 5.32eV, LUMO는 3.63eV 이고 band gap은 1.69이었다.
도 10은 중합체 5의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 10의 UV 흡광 스펙트럼은 필름 상태의 중합체 5의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 6]
Figure PCTKR2016002356-appb-I000063
중합체 6의 제조 후 GPC 측정 결과 수평균 분자량은 31,650이고 중량 평균 분자량은 43,920이었고, HOMO는 5.31eV, LUMO는 3.63eV 이고 band gap은 1.68이었다.
도 11은 중합체 6의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 11의 UV 흡광 스펙트럼은 필름 상태의 중합체 6의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 7]
Figure PCTKR2016002356-appb-I000064
중합체 7의 제조 후 GPC 측정 결과 수평균 분자량은 36,866이고 중량 평균 분자량은 50,477이었고, HOMO는 5.33eV, LUMO는 3.67eV 이고, band gap은 1.66, λedge는 743nm, PDI는 1.37이었다.
도 12은 중합체 7의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 12의 UV 흡광 스펙트럼은 필름 상태 및 용액상태의 중합체 7의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 8]
Figure PCTKR2016002356-appb-I000065
중합체 8의 제조 후 GPC 측정 결과 수평균 분자량은 30,000이고 중량 평균 분자량은 47,100이었고, HOMO는 5.4eV, LUMO는 3.7eV 이고, band gap은 1.7, λedge는 732nm, PDI는 1.57이었다.
도 13는 중합체 8의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 13의 UV 흡광 스펙트럼은 필름 상태 및 용액상태의 중합체 8의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 9]
Figure PCTKR2016002356-appb-I000066
중합체 9의 제조 후 GPC 측정 결과 수평균 분자량은 27,300이고 중량 평균 분자량은 45,400이었고, HOMO는 5.32eV, LUMO는 3.63eV 이고, band gap은 1.69, λedge는 732nm, PDI는 1.66이었다.
도 14는 중합체 9의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 14의 UV 흡광 스펙트럼은 필름 상태 및 용액상태의 중합체 9의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 10]
Figure PCTKR2016002356-appb-I000067
중합체 10의 제조 후 GPC 측정 결과 수평균 분자량은 31,300이고 중량 평균 분자량은 48,700이었고, HOMO는 5.3eV, LUMO는 3.63eV 이고, band gap은 1.67, λedge는 743.8nm, PDI는 1.56이었다.
도 15은 중합체 10의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 15의 UV 흡광 스펙트럼은 필름 상태의 중합체 10의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 11]
Figure PCTKR2016002356-appb-I000068
중합체 11의 제조 후 GPC 측정 결과 수평균 분자량은 36,200이고 중량 평균 분자량은 51,800이었고, HOMO는 5.29eV, LUMO는 3.61eV 이고, band gap은 1.68, λedge는 740nm, PDI는 1.43이었다.
도 16은 중합체 11의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 16의 UV 흡광 스펙트럼은 필름 상태의 중합체 11의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 12]
Figure PCTKR2016002356-appb-I000069
중합체 12의 제조 후 GPC 측정 결과 수평균 분자량은 34,800이고 중량 평균 분자량은 51,900이었고, HOMO는 5.30eV, LUMO는 3.62eV 이고, band gap은 1.68, λedge는 739nm, PDI는 1.49이었다.
도 17은 중합체 12의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 17의 UV 흡광 스펙트럼은 필름 상태 및 용액 상태의 중합체 12의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 13]
Figure PCTKR2016002356-appb-I000070
중합체 13의 제조 후 GPC 측정 결과 수평균 분자량은 31,800이고 중량 평균 분자량은 50,360이었고, HOMO는 5.31eV, LUMO는 3.62eV 이고, band gap은 1.69, λedge는 734nm, PDI는 1.58이었다.
도 18은 중합체 13의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 18의 UV 흡광 스펙트럼은 필름 상태 및 용액 상태의 중합체 13의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 14]
Figure PCTKR2016002356-appb-I000071
중합체 14의 제조 후 GPC 측정 결과 수평균 분자량은 38,300이고 중량 평균 분자량은 52,000이었고, HOMO는 5.3eV, LUMO는 3.65eV 이고, band gap은 1.65, λedge는 741nm, PDI는 1.36이었다.
도 19은 중합체 14의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 19의 UV 흡광 스펙트럼은 필름 상태 및 용액 상태의 중합체 14의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 15]
Figure PCTKR2016002356-appb-I000072
중합체 15의 제조 후 GPC 측정 결과 수평균 분자량은 38,500이고 중량 평균 분자량은 52,700이었고, HOMO는 5.29eV, LUMO는 3.62eV 이고, band gap은 1.67, λedge는 742nm, PDI는 1.37이었다.
도 20은 중합체 15의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 20의 UV 흡광 스펙트럼은 필름 상태 및 용액 상태의 중합체 15의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 16]
Figure PCTKR2016002356-appb-I000073
중합체 16의 제조 후 GPC 측정 결과 수평균 분자량은 28,900이고 중량 평균 분자량은 43,500이었고, HOMO는 5.27eV, LUMO는 3.61eV 이고, band gap은 1.66, λedge는 745nm, PDI는 1.5이었다.
도 21은 중합체 16의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 21의 UV 흡광 스펙트럼은 필름 상태 및 용액 상태의 중합체 16의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 17]
Figure PCTKR2016002356-appb-I000074
중합체 17의 제조 후 GPC 측정 결과 수평균 분자량은 34,000이고 중량 평균 분자량은 52,400이었고, HOMO는 5.33eV, LUMO는 3.66eV 이고, band gap은 1.67, λedge는 744.6nm, PDI는 1.54이었다.
도 22은 중합체 17의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 22의 UV 흡광 스펙트럼은 필름 상태 및 용액 상태의 중합체 17의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 18]
Figure PCTKR2016002356-appb-I000075
중합체 18의 제조 후 GPC 측정 결과 수평균 분자량은 26,390이고 중량 평균 분자량은 39,310이었고, HOMO는 5.31eV, LUMO는 3.63eV 이고, band gap은 1.68, λedge는 737nm, PDI는 1.49이었다.
도 23은 중합체 18의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 23의 UV 흡광 스펙트럼은 필름 상태 및 용액 상태의 중합체 18의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
[중합체 19]
Figure PCTKR2016002356-appb-I000076
중합체 19의 제조 후 GPC 측정 결과 수평균 분자량은 25,600이고 중량 평균 분자량은 38,400이었고, HOMO는 5.31eV, LUMO는 3.63eV 이고, band gap은 1.68, λedge는 740nm, PDI는 1.5이었다.
도 24은 중합체 19의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로 도 24의 UV 흡광 스펙트럼은 필름 상태 및 용액 상태의 중합체 19의 샘플의 흡광 스펙트럼으로, UV-Vis 흡광 스펙트럼(UV-Vis absorption spectrometer)를 이용하여 분석하였다.
실험예 1. 유기 태양 전지의 제조
상기 중합체 1과 PC61BM 을 1:2로 클로로벤젠(Chlorobenzene, CB)에 녹여 복합 용액(composit solution)을 제조하였다. 이때, 농도는 4 wt%로 조절하였으며, 유기 태양전지는 ITO/PEDOT:PSS/광활성층/Al 의 구조로 하였다. ITO는 바타입(bar type)으로 1.5 × 1.5 cm2가 코팅된 유리 기판은 증류수, 아세톤, 2-프로판올을 이용하여 초음파 세척하고, ITO 표면을 10 분 동안 오존 처리한 후 45 nm 두께로 PEDOT:PSS(AI4083)를 4000 rpm으로 40초간 스핀코팅하고, 235 ℃에서 10 분 동안 열처리하였다. 광활성층의 코팅을 위해서는 중합체 PC61BM 복합용액을 158nm 두께로 1,000 rpm으로 20초간 스핀코팅하여, 3x10-8 torr 진공 하에서 열 증발기(thermal evaporator)를 이용하여 100 nm 두께로 1 Å/s 속도로 Al 을 증착하여 유기 태양전지를 제조하였다.
도 4는 실험예 1에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
상기 실험예 1 및 하기 실험예 2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 1에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 1 0.643 16.728 0.495 5.32
실험예 2 0.723 14.307 0.607 6.27
실험예 2. 유기 태양 전지의 제조
상기 중합체 1과 PC71BM 을 1:2로 클로로벤젠(Chlorobenzene, CB)에 녹여 복합 용액(composit solution)을 제조하였다. 이때, 농도는 4 wt%로 조절하였으며, 유기 태양전지는 ITO/ZnO/광활성층/MoO3/Ag 의 인버티드 구조로 하였다.
ITO는 바타입(bar type)으로 1.5 × 1.5 cm2가 코팅된 유리 기판은 증류수, 아세톤, 2-프로판올을 이용하여 초음파 세척하고, ITO 표면을 10 분 동안 오존 처리한 후 산화 아연 전구체(ZnO precursor solution: ZnO nanoparticle 25mg/ml in butanol)를 만들고, 이 산화아연(ZnO) 용액을 4000 rpm으로 40초간 스핀 코팅(spin-coating) 한 후, 100 ℃에서 10분간 열처리하여 남아있는 용매를 제거하여 전자수송층을 완성하였다. 광활성층의 코팅을 위해서 중합체 1과 PC71BM의 복합 용액을 1000rpm으로 20초간 스핀 코팅하였다. 열증착기에서 MoO3를 0.2 Å/s의 속도로 10 nm의 두께로 증착하여 정공수송층을 제조하였다. 상기 순으로 제조 후 열증착기 내부에서 Ag를 1 Å/s의 속도로 100 nm 증착하여 역방향 구조의 유기 태양전지를 제조하였다.
실험예 3. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1과 PC71BM 의 복합 용액에 1,8-디아이오도옥탄(DIO: 1,8-diiodooctane)을 1 vol% 첨가한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 4. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1과 PC71BM 의 복합 용액에 1,8-디아이오도옥탄(DIO: 1,8-diiodooctane)을 2 vol% 첨가한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 5. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1과 PC71BM 의 복합 용액에 1,8-디아이오도옥탄(DIO: 1,8-diiodooctane)을 3 vol% 첨가한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 3 내지 5에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 2에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 3 0.754 17.795 0.605 8.12
실험예 4 0.74 17.538 0.594 7.72
실험예 5 0.734 17.263 0.578 7.33
도 5은 실험예 3 내지 5에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 6. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1과 PC71BM 의 복합 용액에 1-클로로나프탈렌(1-CN: 1-chloronaphthalene)을 1 vol% 첨가한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 7. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1과 PC71BM 의 복합 용액에 1-클로로나프탈렌(1-CN: 1-chloronaphthalene)을 2 vol% 첨가한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 8. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1과 PC71BM 의 복합 용액에 1-클로로나프탈렌(1-CN: 1-chloronaphthalene)을 3 vol% 첨가한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 6 내지 8에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 3에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 6 0.8 16.711 0.57 7.62
실험예 7 0.796 16.076 0.587 7.51
실험예 8 0.792 15.324 0.583 7.08
도 6은 실험예 6 내지 8에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 9. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1과 PC71BM 의 복합 용액에 다이페닐에테르 (DPE:diphenylether)를 1 vol% 첨가한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 10. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1과 PC71BM 의 복합 용액에 다이페닐에테르 (DPE:diphenylether)를 2 vol% 첨가한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 11. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1과 PC71BM 의 복합 용액에 다이페닐에테르 (DPE:diphenylether)를 3 vol% 첨가한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 9 내지 11에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 4에 그 결과를 나타내었다.
VOC(V) JSC(mA/cm2) FF(%) PCE(%)
실험예 9 0.767 17.672 0.597 8.09
실험예 10 0.755 16.72 0.62 7.82
실험예 11 0.744 17.35 0.635 8.19
도 7는 실험예 9 내지 11에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 12-1. 유기 태양 전지의 제조
상기 중합체 3과 PC61BM 을 1:2로 클로로벤젠(Chlorobenzene, CB)에 녹여 복합 용액(composit solution)을 제조하였다. 이때, 농도는 4 wt%로 조절하였으며, 유기 태양전지는 ITO/ZnO NP/광활성층/MoO3/Ag 의 인버티드 구조로 하였다.
ITO는 바타입(bar type)으로 1.5 cm × 1.5 cm가 코팅된 유리 기판은 증류수, 아세톤, 2-프로판올을 이용하여 초음파 세척하고, ITO 표면을 10 분 동안 오존 처리한 후 ZnO NP(ZnO nanograde N-10 2.5wt% in isopropanol)를 만들고, 이 ZnO NP 용액을 4000 rpm으로 20초간 스핀 코팅(spin-coating) 한 후, 100 ℃에서 10분간 열처리하여 남아있는 용매를 제거하여 전자수송층을 완성하였다. 광활성층의 코팅을 위해서 중합체 3과 PC61BM의 복합 용액을 1000rpm으로 20초간 스핀 코팅하였다. 열증착기에서 MoO3를 0.2 Å/s의 속도로 10 nm의 두께로 증착하여 정공수송층을 제조하였다. 상기 순으로 제조 후 열증착기 내부에서 Ag를 1 Å/s의 속도로 100 nm 증착하여 역방향 구조의 유기 태양전지를 제조하였다.
실험예 12-2. 유기 태양 전지의 제조
상기 실험예 12-1에서 광활성층의 코팅을 위해서 중합체 3과 PC61BM의 복합 용액을 1000rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 12-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 12-3. 유기 태양 전지의 제조
상기 실험예 12-1에서 광활성층의 코팅을 위해서 중합체 3과 PC61BM의 복합 용액을 1000rpm 대신 2000rpm으로 스핀코팅한 것을 제외하고, 실험예 12-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 12-1 내지 12-3에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 5에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 12-1 0.808 11.388 0.714 6.57
실험예 12-2 0.807 9.679 0.736 5.75
실험예 12-3 0.802 9.303 0.687 5.12
실험예 12-4. 유기 태양 전지의 제조
상기 실험예 12-1에서 광활성층의 전자받개(acceptor)물질로 PC61BM 대신 PC71BM을 사용한 것을 제외하고는 실험예 12-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 12-5. 유기 태양 전지의 제조
상기 실험예 12-4에서 광활성층의 코팅을 위해서 중합체 3과 PC71BM의 복합 용액을 1000rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 12-4와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 12-6. 유기 태양 전지의 제조
상기 실험예 12-4에서 광활성층의 코팅을 위해서 중합체 3과 PC71BM의 복합 용액을 1000rpm 대신 2000rpm으로 스핀코팅한 것을 제외하고, 실험예 12-4와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 12-4 내지 12-6에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 6에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 12-4 0.823 12.727 0.673 7.05
실험예 12-5 0.830 11.264 0.719 6.72
실험예 12-6 0.831 11.549 0.730 7.01
실험예 13-1. 유기 태양 전지의 제조
상기 실험예 12-1에서 광활성층 전자주개(donor)물질로 중합체 3 대신 중합체 4를 사용한 것을 제외하고, 실험예 12-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 13-2. 유기 태양 전지의 제조
상기 실험예 13-1에서 광활성층의 코팅을 위해서 중합체 4와 PC61BM의 복합 용액을 1000rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 13-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 13-3. 유기 태양 전지의 제조
상기 실험예 13-1에서 광활성층의 코팅을 위해서 중합체 4와 PC61BM의 복합 용액을 1000rpm 대신 2000rpm으로 스핀코팅한 것을 제외하고, 실험예 13-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 13-1 내지 13-3에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 7에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 13-1 0.784 15.577 0.708 8.65
실험예 13-2 0.798 13.35 0.691 7.36
실험예 13-3 0.806 12.182 0.716 7.03
실험예 13-4. 유기 태양 전지의 제조
상기 실험예 13-1에서 광활성층의 전자받개(acceptor)물질로 PC61BM 대신 PC71BM을 사용한 것을 제외하고는 실험예 13-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 13-5. 유기 태양 전지의 제조
상기 실험예 13-4에서 광활성층의 코팅을 위해서 중합체 4와 PC71BM의 복합 용액을 1000rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 13-4와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 13-6. 유기 태양 전지의 제조
상기 실험예 13-4에서 광활성층의 코팅을 위해서 중합체 4와 PC71BM의 복합 용액을 1000rpm 대신 2000rpm으로 스핀코팅한 것을 제외하고, 실험예 13-4와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 13-4 내지 13-6에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 8에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 13-4 0.804 16.651 0.632 8.46
실험예 13-5 0.820 15.614 0.603 7.71
실험예 13-6 0.819 13.302 0.713 7.77
실험예 14-1. 유기 태양 전지의 제조
상기 실험예 12-1에서 광활성층 전자주개(donor)물질로 중합체 3 대신 중합체 5를 사용한 것을 제외하고, 실험예 12-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 14-2. 유기 태양 전지의 제조
상기 실험예 14-1에서 광활성층의 코팅을 위해서 중합체 5와 PC61BM의 복합 용액을 1000rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 14-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 14-3. 유기 태양 전지의 제조
상기 실험예 14-1에서 광활성층의 코팅을 위해서 중합체 5와 PC61BM의 복합 용액을 1000rpm 대신 2000rpm으로 스핀코팅한 것을 제외하고, 실험예 14-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 14-1 내지 14-3에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 9에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 14-1 0.785 16.581 0.644 8.38
실험예 14-2 0.79 14.24 0.638 7.17
실험예 14-3 0.794 12.946 0.663 6.82
실험예 14-4. 유기 태양 전지의 제조
상기 실험예 14-1에서 광활성층의 전자받개(acceptor)물질로 PC61BM 대신 PC71BM을 사용한 것을 제외하고는 실험예 14-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 14-5. 유기 태양 전지의 제조
상기 실험예 14-4에서 광활성층의 코팅을 위해서 중합체 5와 PC71BM의 복합 용액을 1000rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 14-4와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 14-6. 유기 태양 전지의 제조
상기 실험예 14-4에서 광활성층의 코팅을 위해서 중합체 5와 PC71BM의 복합 용액을 1000rpm 대신 2000rpm으로 스핀코팅한 것을 제외하고, 실험예 14-4와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 14-4 내지 14-6에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 10에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 14-4 0.798 16.481 0.569 7.48
실험예 14-5 0.807 14.573 0.561 6.60
실험예 14-6 0.810 14.848 0.615 7.39
실험예 15-1. 유기 태양 전지의 제조
상기 실험예 12-1에서 광활성층 전자주개(donor)물질로 중합체 3 대신 중합체 6을 사용한 것을 제외하고, 실험예 12-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 15-2. 유기 태양 전지의 제조
상기 실험예 15-1에서 광활성층의 코팅을 위해서 중합체 6과 PC61BM의 복합 용액을 1000rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 15-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 15-3. 유기 태양 전지의 제조
상기 실험예 15-1에서 광활성층의 코팅을 위해서 중합체 6과 PC61BM의 복합 용액을 1000rpm 대신 2000rpm으로 스핀코팅한 것을 제외하고, 실험예 15-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 15-1 내지 15-3에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 11에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 15-1 0.742 16.534 0.555 6.82
실험예 15-2 0.76 13.556 0.603 6.21
실험예 15-3 0.76 12.401 0.633 5.97
실험예 15-4. 유기 태양 전지의 제조
상기 실험예 15-1에서 광활성층의 전자받개(acceptor)물질로 PC61BM 대신 PC71BM을 사용한 것을 제외하고는 실험예 15-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 15-5. 유기 태양 전지의 제조
상기 실험예 15-4에서 광활성층의 코팅을 위해서 중합체 6과 PC71BM의 복합 용액을 1000rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 15-4와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 15-6. 유기 태양 전지의 제조
상기 실험예 15-4에서 광활성층의 코팅을 위해서 중합체 6과 PC71BM의 복합 용액을 1000rpm 대신 2000rpm으로 스핀코팅한 것을 제외하고, 실험예 15-4와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 15-4 내지 15-6에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 12에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 15-4 0.758 14.489 0.477 5.23
실험예 15-5 0.769 13.910 0.565 6.05
실험예 15-6 0.774 13.350 0.575 5.95
실험예 16-1. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 7을 사용한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 16-2. 유기 태양 전지의 제조
상기 실험예 16-1에서 광활성층의 코팅을 위해서 중합체 7과 PC71BM의 복합 용액을 1000rpm 대신 1200rpm으로 스핀코팅한 것을 제외하고, 실험예 16-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 16-1 및 16-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 13에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 16-1 0.792 15.623 0.637 7.89
실험예 16-2 0.797 15.498 0.632 7.80
도 25은 실험예 16-1 및 16-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 17-1. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 8를 사용하고, 중합체 8와 PC71BM의 복합 용액을 1000rpm 대신 700rpm으로 스핀코팅한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 17-2. 유기 태양 전지의 제조
상기 실험예 17-1에서 광활성층의 코팅을 위해서 중합체 8와 PC71BM의 복합 용액을 700rpm 대신 1100rpm으로 스핀코팅한 것을 제외하고, 실험예 17-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 17-1 및 17-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 14에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 17-1 0.792 11.711 0.706 6.55
실험예 17-2 0.799 10.446 0.703 5.87
도 26은 실험예 17-1 및 17-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 18-1. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 9를 사용하고, 중합체 9과 PC71BM의 복합 용액을 1000rpm 대신 700rpm으로 스핀코팅한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 18-2. 유기 태양 전지의 제조
상기 실험예 18-1에서 광활성층의 코팅을 위해서 중합체 9과 PC71BM의 복합 용액을 700rpm 대신 1100rpm으로 스핀코팅한 것을 제외하고, 실험예 18-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 18-1 및 18-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 15에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 18-1 0.839 12.065 0.667 6.74
실험예 18-2 0.840 10.594 0.691 6.14
도 27은 실험예 18-1 및 18-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 19-1. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 10를 사용하고, 중합체 10과 PC71BM의 복합 용액을 1000rpm 대신 900rpm으로 스핀코팅한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 19-2. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 10를 사용한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 19-1 및 19-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 16에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 19-1 0.764 16.760 0.555 7.11
실험예 19-2 0.763 16.721 0.588 7.50
도 28은 실험예 19-1 및 19-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 20-1. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 11를 사용하고, 중합체 11와 PC71BM의 복합 용액을 1000rpm 대신 700rpm으로 스핀코팅한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 20-2. 유기 태양 전지의 제조
상기 실험예 20-1에서 광활성층의 코팅을 위해서 중합체 11와 PC71BM의 복합 용액을 700rpm 대신 1300rpm으로 스핀코팅한 것을 제외하고, 실험예 20-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 20-1 및 20-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 17에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 20-1 0.775 15.698 0.502 6.11
실험예 20-2 0.787 14.077 0.682 7.56
도 29은 실험예 20-1 및 20-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 21-1. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 12을 사용하고, 중합체 12과 PC71BM의 복합 용액을 1000rpm 대신 700rpm으로 스핀코팅한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 21-2. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 12을 사용한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 21-1 및 21-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 18에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 21-1 0.813 11.331 65.49 6.033
실험예 21-2 0.818 11.278 66.95 6.179
도 30은 실험예 21-1 및 21-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 22-1. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 13를 사용하고, 중합체 13와 PC71BM의 복합 용액을 1000rpm 대신 700rpm으로 스핀코팅한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 22-2. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 13를 사용한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 22-1 및 22-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 19에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 22-1 0.793 10.308 67.08 5.482
실험예 22-2 0.792 8.898 65.66 4.627
도 31은 실험예 22-1 및 22-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 23-1. 유기 태양 전지의 제조
상기 중합체 14와 PC71BM 을 1:2로 클로로벤젠(Chlorobenzene, CB)에 녹여 복합 용액(composit solution)을 제조하였다. 이때, 농도는 2.5 wt%로 조절하였으며, 유기 태양전지는 ITO/ZnO NP/광활성층/MoO3/Ag 의 인버티드 구조로 하였다.
ITO는 바타입(bar type)으로 1.5 cm × 1.5 cm가 코팅된 유리 기판은 증류수, 아세톤, 2-프로판올을 이용하여 초음파 세척하고, ITO 표면을 10 분 동안 오존 처리한 후 ZnO NP(ZnO nanograde N-10 2.5wt% in isopropanol)를 만들고, 이 ZnO NP 용액을 4000 rpm으로 20초간 스핀 코팅(spin-coating) 한 후, 100 ℃에서 10분간 열처리하여 남아있는 용매를 제거하여 전자수송층을 완성하였다. 광활성층의 코팅을 위해서 중합체 14과 PC71BM의 복합 용액을 700rpm으로 스핀 코팅하였다. 열증착기에서 MoO3를 0.2 Å/s의 속도로 10 nm의 두께로 증착하여 정공수송층을 제조하였다. 상기 순으로 제조 후 열증착기 내부에서 Ag를 1 Å/s의 속도로 100 nm 증착하여 역방향 구조의 유기 태양전지를 제조하였다.
실험예 23-2. 유기 태양 전지의 제조
상기 실험예 23-1에서 중합체 14와 PC71BM의 복합 용액을 700rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 23-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 23-1 및 23-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 20에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 23-1 0.804 13.477 0.664 7.19
실험예 23-2 0.810 13.295 0.662 7.13
도 32은 실험예 23-1 및 23-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 24-1. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 15를 사용하고, 중합체 15와 PC71BM의 복합 용액을 1000rpm 대신 700rpm으로 스핀코팅한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 24-2. 유기 태양 전지의 제조
상기 실험예 24-1에서 중합체 15와 PC71BM의 복합 용액을 700rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 24-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 24-1 및 24-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 21에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 24-1 0.761 16.474 0.459 5.75
실험예 24-2 0.778 13.838 0.580 6.25
도 33은 실험예 24-1 및 24-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 25-1. 유기 태양 전지의 제조
상기 실험예 23-1에서 중합체 14 대신 중합체 16을 사용한 것을 제외하고, 실험예 23-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 25-2. 유기 태양 전지의 제조
상기 실험예 25-1에서 중합체 16과 PC71BM의 복합 용액을 700rpm 대신 1000rpm으로 스핀코팅한 것을 제외하고, 실험예 25-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 25-1 및 25-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 22에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 25-1 0.750 14.230 0.619 6.60
실험예 25-2 0.749 13.486 0.660 6.67
도 34은 실험예 25-1 및 25-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 26-1. 유기 태양 전지의 제조
상기 실험예 2에서 중합체 1 대신 중합체 17를 사용한 것을 제외하고, 실험예 2와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 26-2. 유기 태양 전지의 제조
상기 실험예 26-1에서 중합체 17와 PC71BM의 복합 용액을 1000rpm 대신 1200rpm으로 스핀코팅한 것을 제외하고, 실험예 26-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 26-1 및 26-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 23에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 26-1 0.693 16.398 53.18 6.045
실험예 26-2 0.687 16.788 57.34 6.617
도 35은 실험예 26-1 및 26-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 27-1. 유기 태양 전지의 제조
상기 중합체 18와 PC71BM 을 1:2로 클로로벤젠(Chlorobenzene, CB)에 녹여 복합 용액(composit solution)을 제조하였다. 이때, 농도는 2 wt%로 조절하였으며, 유기 태양전지는 ITO/ZnO/광활성층/MoO3/Ag 의 인버티드 구조로 하였다.
ITO는 바타입(bar type)으로 1.5 × 1.5 cm2가 코팅된 유리 기판은 증류수, 아세톤, 2-프로판올을 이용하여 초음파 세척하고, ITO 표면을 10 분 동안 오존 처리한 후 산화 아연 전구체(ZnO precursor solution: ZnO nanoparticle 25mg/ml in butanol)를 만들고, 이 산화아연(ZnO) 용액을 4000 rpm으로 40초간 스핀 코팅(spin-coating) 한 후, 100 ℃에서 10분간 열처리하여 남아있는 용매를 제거하여 전자수송층을 완성하였다. 광활성층의 코팅을 위해서 중합체 18과 PC71BM의 복합 용액을 700rpm으로 20초간 스핀 코팅하였다. 열증착기에서 MoO3를 0.2 Å/s의 속도로 10 nm의 두께로 증착하여 정공수송층을 제조하였다. 상기 순으로 제조 후 열증착기 내부에서 Ag를 1 Å/s의 속도로 100 nm 증착하여 역방향 구조의 유기 태양전지를 제조하였다.
실험예 27-2. 유기 태양 전지의 제조
상기 실험예 27-1에서 중합체 18와 PC71BM의 복합 용액을 700rpm 대신 1000rpm으로 스핀코팅한 것을 제외하고, 실험예 27-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 27-1 및 27-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 24에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 27-1 0.755 12.702 0.595 5.70
실험예 27-2 0.798 13.206 0.618 6.52
도 36은 실험예 27-1 및 27-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
실험예 28-1. 유기 태양 전지의 제조
상기 실험예 27-1에서 중합체 18 대신 중합체 19을 사용하고, 중합체 19과 PC71BM의 복합 용액을 700rpm 대신 1000rpm으로 스핀코팅한 것을 제외하고, 실험예 27-1와 동일한 방법으로 유기 태양 전지를 제조하였다.
실험예 28-2. 유기 태양 전지의 제조
상기 실험예 28-1에서 중합체 19과 PC71BM의 복합 용액을 1000rpm 대신 1500rpm으로 스핀코팅한 것을 제외하고, 실험예 28-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실험예 28-1 및 28-2에서 제조된 유기 태양 전지의 광전변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 25에 그 결과를 나타내었다.
VOC (V) JSC (mA/cm2) FF (%) PCE (%)
실험예 28-1 0.794 12.254 0.571 5.55
실험예 28-2 0.782 12.335 0.580 5.60
도 37은 실험예 28-1 및 28-2에 따른 유기 태양 전지의 전압에 따른 전류 밀도를 나타낸 도이다.
상기 Voc는 개방전압을, Jsc는 단락전류를, FF는 충전율(Fill factor)를, PCE(η)는 에너지 변환 효율을 의미한다. 개방전압과 단락전류는 각각 전압-전류 밀도 곡선의 4사분면에서 X축과 Y축 절편이며, 이 두 값이 높을수록 태양전지의 효율은 바람직하게 높아진다. 또한 충전율(Fill factor)은 곡선 내부에 그릴 수 있는 직사각형의 넓이를 단락전류와 개방전압의 곱으로 나눈 값이다. 이 세 가지 값을 조사된 빛의 세기로 나누면 에너지 변환 효율을 구할 수 있으며, 높은 값일수록 바람직하다. 상기 표 1 내지 25의 결과로 본 명세서의 일 실시상태에 따른 중합체는 높은 효율을 나타내는 것을 확인할 수 있다.
[부호의 설명]
101: 기판
102: 제1 전극
103: 정공수송층
104: 광활성층
105: 제2 전극

Claims (16)

  1. 하기 화학식 1로 표시되는 제1 단위; 및
    하기 화학식 2로 표시되는 제2 단위를 포함하는 중합체:
    [화학식 1]
    Figure PCTKR2016002356-appb-I000077
    [화학식 2]
    Figure PCTKR2016002356-appb-I000078
    상기 화학식 1 및 2에 있어서,
    X, X', X" 및 X"'는 서로 동일하거나 상이하고, 각각 독립적으로 S 또는 Se 이고,
    A1 및 A2는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 불소이며,
    A3 및 A4는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 불소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
    R1 내지 R8은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
    a1 내지 a4는 각각 0 또는 1의 정수이다.
  2. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 제1 단위는 하기 화학식 1-1로 표시되는 것인 중합체:
    [화학식 1-1]
    Figure PCTKR2016002356-appb-I000079
    상기 화학식 1-1에 있어서,
    X, X', A1, A2, R1 및 R4는 화학식 1에서 정의한 바와 동일하다.
  3. 청구항 1에 있어서,
    상기 화학식 2로 표시되는 제2 단위는 하기 화학식 2-1 또는 2-2로 표시되는 것인 중합체:
    [화학식 2-1]
    Figure PCTKR2016002356-appb-I000080
    [화학식 2-2]
    Figure PCTKR2016002356-appb-I000081
    상기 화학식 2-1 및 2-2에 있어서,
    X", X'", R5 내지 R8, A3 및 A4는 화학식 2에서 정의한 바와 동일하다.
  4. 청구항 1에 있어서,
    상기 중합체는 하기 화학식 3 중 어느 하나로 표시되는 제3 단위를 더 포함하는 것인 중합체:
    [화학식 3]
    Figure PCTKR2016002356-appb-I000082
    화학식 3에 있어서,
    X3 내지 X6는 서로 동일하거나 상이하고, 각각 독립적으로 CR10, NR10, O, SiR10R11, PR10, S, GeR10R11, Se 또는 Te이고,
    Y5 및 Y6는 서로 동일하거나 상이하고, 각각 독립적으로 CR12, N, SiR12, P 또는 GeR12이며,
    b는 1 내지 3의 정수이고,
    b가 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하며,
    R10 내지 R14는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 티오에테르기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
  5. 청구항 1에 있어서,
    상기 중합체는 하기 화학식 4 내지 7 중 어느 하나로 표시되는 단위를 포함하는 것인 중합체:
    [화학식 4]
    Figure PCTKR2016002356-appb-I000083
    [화학식 5]
    Figure PCTKR2016002356-appb-I000084
    [화학식 6]
    Figure PCTKR2016002356-appb-I000085
    [화학식 7]
    Figure PCTKR2016002356-appb-I000086
    상기 화학식 4 내지 7에 있어서,
    A 및 A'는 서로 같거나 상이하고, 각각 독립적으로 상기 화학식 1로 표시되는 제1 단위이고,
    B는 상기 화학식 2로 표시되는 제2 단위이며,
    C, C' 및 C"는 서로 같거나 상이하고, 각각 독립적으로 하기 화학식 3 중 어느 하나로 표시되는 제3 단위이고,
    [화학식 3]
    Figure PCTKR2016002356-appb-I000087
    상기 화학식 3에 있어서,
    X3 내지 X6는 서로 동일하거나 상이하고, 각각 독립적으로 CR10, NR10, O, SiR10R11, PR10, S, GeR10R11, Se 또는 Te이고,
    Y5 및 Y6는 서로 동일하거나 상이하고, 각각 독립적으로 CR12, N, SiR12, P 또는 GeR12이며,
    b는 1 내지 3의 정수이고,
    b가 2 이상의 정수인 경우, 2 이상의 괄호 내의 구조는 서로 동일하거나 상이하며,
    R10 내지 R14는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 티오에테르기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
    l은 몰분율로서 0 < l < 1 이며,
    m은 몰분율로서 0 < m <1 이고,
    o는 몰분율로서 0 < o < 1이며,p는 몰분율로서 0 < p <1 이고,
    q는 몰분율로서 0 < q < 1이며,
    l + m = 1이고,
    o + p + q = 1이며,
    n은 단위의 반복수로서, 1 내지 10,000의 정수이다.
  6. 청구항 1에 있어서,
    상기 중합체는 하기 화학식 4-1, 화학식 5-1, 화학식 6-1 및 화학식 7-1 중 어느 하나로 표시되는 단위를 포함하는 것인 중합체:
    [화학식 4-1]
    Figure PCTKR2016002356-appb-I000088
    [화학식 5-1]
    Figure PCTKR2016002356-appb-I000089
    [화학식 6-1]
    Figure PCTKR2016002356-appb-I000090
    [화학식 7-1]
    Figure PCTKR2016002356-appb-I000091
    상기 화학식 4-1, 화학식 5-1, 화학식 6-1 및 화학식 7-1 에 있어서,
    A1 내지 A4, R1 및 R4 내지 R8는 화학식 1 및 2에서 정의한 바와 동일하고,
    A'1, A'2, R'1, R'4는 상기 화학식 1의 A1, A2, R1 및 R4의 정의와 동일하며,
    R10 내지 R13, R'12 및 R'13은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
    l은 몰분율로서 0 < l < 1 이며,
    m은 몰분율로서 0 < m <1 이고,
    o는 몰분율로서 0 < o < 1이며,
    p는 몰분율로서 0 < p <1 이고,
    q는 몰분율로서 0 < q < 1이며,
    l + m = 1이고,
    o + p + q = 1이며,
    n은 단위의 반복수로서, 1 내지 10,000의 정수이다.
  7. 청구항 1에 있어서,
    상기 중합체는 하기 화학식 4-1-1 내지 화학식 4-1-10, 화학식 5-1-1 내지 화학식 5-1-3, 화학식 6-1-1 내지 화학식 6-1-14 및 화학식 7-1-1 내지 7-1-5 중 어느 하나로 표시되는 단위를 포함하는 것인 중합체:
    [화학식 4-1-1]
    Figure PCTKR2016002356-appb-I000092
    [화학식 4-1-2]
    Figure PCTKR2016002356-appb-I000093
    [화학식 4-1-3]
    Figure PCTKR2016002356-appb-I000094
    [화학식 4-1-4]
    Figure PCTKR2016002356-appb-I000095
    [화학식 4-1-5]
    Figure PCTKR2016002356-appb-I000096
    [화학식 4-1-6]
    Figure PCTKR2016002356-appb-I000097
    [화학식 4-1-7]
    Figure PCTKR2016002356-appb-I000098
    [화학식 4-1-8]
    Figure PCTKR2016002356-appb-I000099
    [화학식 4-1-9]
    Figure PCTKR2016002356-appb-I000100
    [화학식 4-1-10]
    Figure PCTKR2016002356-appb-I000101
    [화학식 5-1-1]
    Figure PCTKR2016002356-appb-I000102
    [화학식 5-1-2]
    Figure PCTKR2016002356-appb-I000103
    [화학식 5-1-3]
    Figure PCTKR2016002356-appb-I000104
    [화학식 6-1-1]
    Figure PCTKR2016002356-appb-I000105
    [화학식 6-1-2]
    Figure PCTKR2016002356-appb-I000106
    [화학식 6-1-3]
    Figure PCTKR2016002356-appb-I000107
    [화학식 6-1-4]
    Figure PCTKR2016002356-appb-I000108
    [화학식 6-1-5]
    [화학식 6-1-6]
    Figure PCTKR2016002356-appb-I000110
    [화학식 6-1-7]
    Figure PCTKR2016002356-appb-I000111
    [화학식 6-1-8]
    Figure PCTKR2016002356-appb-I000112
    [화학식 6-1-9]
    Figure PCTKR2016002356-appb-I000113
    [화학식 6-1-10]
    Figure PCTKR2016002356-appb-I000114
    [화학식 6-1-11]
    Figure PCTKR2016002356-appb-I000115
    [화학식 6-1-12]
    Figure PCTKR2016002356-appb-I000116
    [화학식 6-1-13]
    Figure PCTKR2016002356-appb-I000117
    [화학식 6-1-14]
    Figure PCTKR2016002356-appb-I000118
    [화학식 7-1-1]
    Figure PCTKR2016002356-appb-I000119
    [화학식 7-1-2]
    Figure PCTKR2016002356-appb-I000120
    [화학식 7-1-3]
    Figure PCTKR2016002356-appb-I000121
    [화학식 7-1-4]
    Figure PCTKR2016002356-appb-I000122
    [화학식 7-1-5]
    Figure PCTKR2016002356-appb-I000123
    상기 화학식 4-1-1 내지 화학식 4-1-10, 화학식 5-1-1 내지 화학식 5-1-3, 화학식 6-1-1 내지 화학식 6-1-14 및 화학식 7-1-1 내지 7-1-5에 있어서,
    l은 몰분율로서 0 < l < 1 이며,
    m은 몰분율로서 0 < m <1 이고,
    o는 몰분율로서 0 < o < 1이며,
    p는 몰분율로서 0 < p <1 이고,
    q는 몰분율로서 0 < q < 1이며,
    l + m = 1이고,
    o + p + q = 1이며,
    n은 단위의 반복수로서, 1 내지 10,000의 정수이다.
  8. 청구항 1에 있어서,
    상기 중합체의 HOMO 에너지 준위는 5 eV 내지 5.9 eV인 것인 중합체.
  9. 청구항 1에 있어서,
    상기 중합체는 클로로벤젠에 대한 용해도가 0.1 wt% 내지 20 wt%인 것인 중합체.
  10. 청구항 1에 있어서,
    상기 중합체의 수평균 분자량은 5,000 g/mol 내지 1,000,000 g/mol인 것인 중합체.
  11. 청구항 1에 있어서,
    상기 중합체의 분자량 분포는 1 내지 10인 것인 중합체.
  12. 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되고, 광활성층을 포함하는 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 청구항 1 내지 11 중 어느 하나의 항에 따른 중합체를 포함하는 것인 유기 태양 전지.
  13. 청구항 12에 있어서,
    상기 광활성층은 전자 주개 및 전자 받개로 이루어진 군에서 선택되는 1 또는 2 이상을 포함하고,
    상기 전자 주개는 상기 중합체를 포함하는 것인 유기 태양 전지.
  14. 청구항 13에 있어서,
    상기 전자 주개 및 전자 받개는 벌크 헤테로 정션(BHJ)을 구성하는 것인 유기 태양 전지.
  15. 청구항 13에 있어서,
    상기 광활성층은 첨가제를 더 포함하는 것인 유기 태양 전지.
  16. 청구항 12에 있어서,
    상기 광활성층은 n형 유기물층 및 p형 유기물층을 포함하는 이층 박막(bilayer)구조이며,
    상기 p형 유기물층은 상기 중합체를 포함하는 것인 유기 태양 전지.
PCT/KR2016/002356 2015-03-09 2016-03-09 중합체 및 이를 포함하는 유기 태양 전지 WO2016144097A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680011065.3A CN107428919B (zh) 2015-03-09 2016-03-09 聚合物和包含其的有机太阳能电池
EP16761984.0A EP3269753B1 (en) 2015-03-09 2016-03-09 Polymer and organic solar cell comprising same
US15/546,488 US20180026192A1 (en) 2015-03-09 2016-03-09 Polymer and organic solar cell comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150032475 2015-03-09
KR10-2015-0032475 2015-03-09

Publications (2)

Publication Number Publication Date
WO2016144097A2 true WO2016144097A2 (ko) 2016-09-15
WO2016144097A3 WO2016144097A3 (ko) 2016-12-22

Family

ID=56879625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002356 WO2016144097A2 (ko) 2015-03-09 2016-03-09 중합체 및 이를 포함하는 유기 태양 전지

Country Status (5)

Country Link
US (1) US20180026192A1 (ko)
EP (1) EP3269753B1 (ko)
KR (1) KR101807391B1 (ko)
CN (1) CN107428919B (ko)
WO (1) WO2016144097A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669323B (zh) * 2017-03-06 2019-08-21 南韓商Lg化學股份有限公司 聚合物及含彼之有機太陽能電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233508B (zh) * 2021-05-10 2022-10-21 北京化工大学 一种α-MoO3溶液的制备方法及其应用
CN113583156B (zh) * 2021-06-30 2023-01-13 苏州大学 用于高通量太阳光敞口聚合的孔板制备方法及高通量太阳光敞口聚合方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156018A1 (en) * 2008-09-03 2011-06-30 Sumitomo Chemical Company, Limited Polymer compound and polymer light-emitting device using the same
AU2009321486A1 (en) * 2008-11-28 2011-07-07 The University Of Melbourne Novel compounds, derivatives thereof and their use in heterojunction devices
CN101875716B (zh) * 2009-04-30 2012-01-11 中国科学院化学研究所 一种嵌段共轭聚合物及其制备方法与应用
CN102391479B (zh) * 2011-09-19 2013-05-22 南昌大学 功能基封端的基于n-取代咔唑和氟代苯并噻二唑共轭聚合物及制备和应用
KR20130090736A (ko) * 2012-02-06 2013-08-14 주식회사 엘지화학 헤테로 방향족 화합물 및 이를 포함하는 유기 태양전지
TWI635111B (zh) * 2012-03-16 2018-09-11 馬克專利公司 共軛聚合物
KR101595147B1 (ko) 2012-08-20 2016-02-18 주식회사 엘지화학 방향족 화합물 및 이를 포함하는 유기 태양전지
CN103030790A (zh) * 2012-12-14 2013-04-10 华南理工大学 一种含氟代苯并噻二唑的共轭聚合物及其制备方法与应用
TWI482796B (zh) 2013-04-19 2015-05-01 Au Optronics Corp 有機半導體材料及薄膜電晶體
EP3009463A4 (en) * 2013-07-15 2016-12-07 Lg Chemical Ltd COPOLYMER AND ORGANIC SOLAR CELL WITH IT
KR101707028B1 (ko) * 2014-09-15 2017-02-16 한국화학연구원 신규한 벤조티아디아졸기를 포함한 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 반도체 소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669323B (zh) * 2017-03-06 2019-08-21 南韓商Lg化學股份有限公司 聚合物及含彼之有機太陽能電池

Also Published As

Publication number Publication date
CN107428919B (zh) 2019-09-13
EP3269753A4 (en) 2018-10-31
KR20160110199A (ko) 2016-09-21
US20180026192A1 (en) 2018-01-25
EP3269753B1 (en) 2021-09-29
CN107428919A (zh) 2017-12-01
WO2016144097A3 (ko) 2016-12-22
EP3269753A2 (en) 2018-01-17
KR101807391B1 (ko) 2017-12-11

Similar Documents

Publication Publication Date Title
WO2014171755A1 (ko) 플러렌 유도체, 이를 이용한 유기 태양 전지 및 이의 제조 방법
WO2016099218A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2015064937A2 (ko) 단분자 및 이를 포함하는 유기 태양 전지
WO2018097661A1 (ko) 유기 발광 소자
WO2017034303A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018216880A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2018236100A1 (ko) 유기 태양 전지
WO2017183806A1 (ko) 카바졸 유도체 및 이를 이용한 유기 발광 소자
WO2015142067A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2015163614A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2016171465A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2017086724A1 (ko) 스피로형 화합물 및 이를 포함하는 유기 발광 소자
WO2019112220A1 (ko) 극성관능기가 부분적으로 도입된 중합체, 이의 제조방법 및 이를 함유하는 유기 전자 소자
WO2019066305A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2015190762A2 (ko) 축합고리 유도체 및 이를 포함하는 유기 태양 전지
WO2019004781A1 (ko) 페로브스카이트 태양전지
WO2014181986A1 (ko) 플러렌 유도체를 포함하는 유기 전자 소자
WO2015016626A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2019004605A1 (ko) 유기 태양 전지
WO2015037966A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2016144097A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2018164353A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2019164383A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020017739A1 (ko) 신규 캐소드 버퍼층 소재, 및 이를 포함하는 유기 또는 유/무기 하이브리드 광전소자
WO2019221386A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761984

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15546488

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016761984

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE