WO2019083235A1 - 헤테로환 화합물 및 이를 포함하는 유기 전자 소자 - Google Patents

헤테로환 화합물 및 이를 포함하는 유기 전자 소자

Info

Publication number
WO2019083235A1
WO2019083235A1 PCT/KR2018/012476 KR2018012476W WO2019083235A1 WO 2019083235 A1 WO2019083235 A1 WO 2019083235A1 KR 2018012476 W KR2018012476 W KR 2018012476W WO 2019083235 A1 WO2019083235 A1 WO 2019083235A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
branched
formula
same
Prior art date
Application number
PCT/KR2018/012476
Other languages
English (en)
French (fr)
Inventor
김지훈
이지영
장송림
최두환
임보규
박정현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880005199.3A priority Critical patent/CN110099908B/zh
Priority to JP2019538215A priority patent/JP6786769B2/ja
Priority to US16/470,759 priority patent/US11398603B2/en
Publication of WO2019083235A1 publication Critical patent/WO2019083235A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to heterocyclic compounds and organic electronic devices containing them.
  • An organic electronic device means an element requiring charge exchange between an electrode and an organic material using holes and / or electrons.
  • the organic electronic device can be roughly classified into two types according to the operating principle as described below. First, an exciton is formed in an organic material layer by a photon introduced into an element from an external light source. The exciton is separated into an electron and a hole, and the electrons and holes are transferred to different electrodes to be used as a current source Type electronic device.
  • the second type is an electronic device that injects holes and / or electrons into an organic semiconductor that interfaces with an electrode by applying a voltage or current to two or more electrodes, and operates by injected electrons and holes.
  • Examples of the organic electronic device include an organic solar cell, an organic photoelectric device, an organic light emitting device, and an organic transistor.
  • an organic solar cell will be described in detail.
  • Electron injection or transport materials, or luminescent materials act on a similar principle.
  • Organic solar cells are important to increase efficiency so that they can output as much electrical energy as possible from solar energy. In order to increase the efficiency of such an organic solar cell, it is also important to generate as much excitons as possible in the semiconductor, but it is also important to draw out generated charges without loss.
  • One of the causes of loss of charge is that the generated electrons and holes are destroyed by recombination.
  • Various methods have been proposed as methods for transferring generated electrons and holes to electrodes without loss, but most of them require additional processing, which may increase the manufacturing cost.
  • Patent Document 1 US 5331183
  • Patent Document 2 US 5454880
  • the present invention provides a heterocyclic compound and an organic electronic device including the heterocyclic compound.
  • the present invention provides a heterocyclic compound represented by the following formula (1).
  • X, X 'and X1 to X6 are the same or different and each independently O, S or Se,
  • R1 and R2 are the same or different and each independently represents a substituted or unsubstituted straight or branched alkyl group; A substituted or unsubstituted straight or branched alkoxy group; Or a substituted or unsubstituted straight or branched thioalkoxy group,
  • Y1 and Y2 are the same or different from each other, and each independently hydrogen; A halogen group; A substituted or unsubstituted straight or branched alkyl group; Or a substituted or unsubstituted straight or branched chain alkoxy group,
  • EW1 and EW2 are the same or different and are each a group independently acting as an electron acceptor
  • Ar 1 to Ar 4 are the same or different and each independently represents a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • n1 and n2 are each 0 or 1
  • R1 and R2 are the same or different and are each independently a substituted or unsubstituted linear or branched alkyl group
  • Y1 and Y2 are the same or different from each other, group; A substituted or unsubstituted straight or branched alkyl group; Or a substituted or unsubstituted straight-chain or branched alkoxy group.
  • the present invention provides a composition for an organic electronic device comprising the above heterocyclic compound.
  • a plasma display panel comprising a first electrode; A second electrode facing the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the above-mentioned organic electronic device composition do.
  • the organic solar cell comprising the heterocyclic compound represented by Formula 1 according to one embodiment of the present invention has excellent photoelectric conversion efficiency.
  • FIG. 1 is a view showing an organic electronic device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing NMR data of Compound 1 according to one embodiment of the present invention.
  • FIG. 6 is a diagram showing UV-vis absorption spectra in the solution state of the compounds 1, 3, 6 and 8 according to one embodiment of the present invention.
  • FIG. 7 is a diagram showing the UV-vis absorption spectra of the compounds 1, 3, 6 and 8 in the film state according to one embodiment of the present invention.
  • FIG. 8 is a diagram showing UV-vis absorption spectra in a solution state of Compound 1 according to one embodiment of the present invention and Comparative Example Compound 2 (ITIC2).
  • FIG. 9 is a diagram showing UV-vis absorption spectra in a solution state of Compound 6 and Comparative Example Compound 2 (ITIC2) according to one embodiment of the present invention.
  • FIG. 10 is a diagram showing UV-vis absorption spectra in a solution state of Compound 11 and Comparative Example Compound 2 (ITIC2) according to one embodiment of the present invention.
  • the present invention provides a heterocyclic compound represented by the above formula (1).
  • the heterocyclic compound represented by Formula 1 may have a substituent such as an alkyl group, an alkoxy group, a S-Alkyl group and / or fluorine,
  • a substituent such as an alkyl group, an alkoxy group, a S-Alkyl group and / or fluorine
  • the heterocyclic compound is used as an n-type organic compound layer (electron acceptor material) of the photoactive layer of an organic solar cell with a low open-circuit voltage and a high LUMO energy, a high open-circuit voltage (V oc ) And has a photo-electric conversion efficiency.
  • the heterocyclic compound represented by the general formula (1) is a heterocyclic compound in which R1 and R2 are alkyl groups, and Y1 and Y2 include substituents other than hydrogen, especially fluorine, Absorbed. Accordingly, the organic solar cell including the same exhibits a short circuit current higher than that of an organic solar cell including a compound in which R1 and R2 in the formula (1) are alkyl groups and Y1 and Y2 are hydrogen.
  • a member when a member is located on another member, it includes not only the case where the member is in contact with the other member but also the case where another member exists between the two members.
  • substituted means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the substituted position is not limited as long as the substituent is a substitutable position, , Two or more substituents may be the same or different from each other.
  • substituted or unsubstituted A halogen group; An alkyl group; An alkenyl group; An alkoxy group; Thioalkoxy groups; Ester group; A carbonyl group; A carboxyl group; A hydroxy group; A cycloalkyl group; Silyl group; An arylalkenyl group; An aryloxy group; An alkyloxy group; An alkylsulfoxy group; Arylsulfoxy group; Boron group; An alkylamine group; An aralkylamine group; An arylamine group; A heterocyclic group; An arylamine group; An aryl group; A nitrile group; A nitro group; A hydroxy group; And a heteroaryl group containing at least one of N, O and S atoms, or does not have any substituent (s).
  • the substituents may be substituted or unsubstituted with an additional substituent.
  • the halogen group may be fluorine, chlorine, bromine or iodine.
  • the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the amide group may be mono- or di-substituted by nitrogen of the amide group with hydrogen, a straight-chain, branched-chain or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 50.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec- N-pentyl, 3-dimethylbutyl, 2-ethylbutyl, heptyl, n-hexyl, Cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethyl Heptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl and 5-methyl
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms. Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, But are not limited to, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert- butylcyclohexyl, cycloheptyl and cyclooctyl Do not.
  • the alkoxy group may be linear, branched or cyclic.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably 1 to 20 carbon atoms. Specific examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, isopentyloxy, n Butyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy and p-methylbenzyloxy, and the like. But is not limited thereto.
  • the thioalkoxy group can be applied to the description of the alkoxy group except that O of the alkoxy group is S.
  • the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, Butenyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, (Diphenyl-1-yl) vinyl-1-yl, stilbenyl, and styrenyl groups.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, But are not limited thereto.
  • the boron group may be -BR a R b , wherein R a and R b are the same or different and each independently hydrogen; heavy hydrogen; A halogen group; A nitrile group; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 30 carbon atoms; A substituted or unsubstituted, straight or branched chain alkyl group having 1 to 30 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; And a substituted or unsubstituted monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms.
  • the phosphine oxide group specifically includes a diphenylphosphine oxide group, a dinaphthylphosphine oxide group, and the like, but is not limited thereto.
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group, and includes a case where an alkyl group having 1 to 25 carbon atoms or an alkoxy group having 1 to 25 carbon atoms is substituted.
  • an aryl group in the present specification may mean an aromatic ring.
  • the aryl group is a monocyclic aryl group
  • the number of carbon atoms is not particularly limited, but is preferably 6 to 25 carbon atoms.
  • Specific examples of the monocyclic aryl group include phenyl group, biphenyl group, terphenyl group, and the like, but are not limited thereto.
  • the aryl group is a polycyclic aryl group
  • the number of carbon atoms is not particularly limited. And preferably has 10 to 24 carbon atoms.
  • Specific examples of the polycyclic aryl group include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group.
  • a fluorenyl group is a structure in which two cyclic organic compounds are connected through one atom.
  • the fluorenyl group may be substituted, and adjacent substituents may be bonded to each other to form a ring.
  • the heteroaryl group is a heteroaryl group containing at least one of O, N and S as a hetero atom.
  • the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • the heteroaryl group include a selenophene group, a thiophene group, a furan group, a pyrrolyl group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, , An acridyl group, a pyridazinyl group, a pyrazinyl group, a quinolinyl group, a quinazolinyl group, a quinoxalinyl group, a phthalazinyl group, a pyridopyrimidinyl group, a pyri
  • the hydrocarbon ring may be an aromatic, aliphatic or aromatic and aliphatic condensed ring, and may be selected from the examples of the cycloalkyl group or the aryl group except the univalent hydrocarbon ring.
  • the aromatic ring may be monocyclic or polycyclic and may be selected from the examples of the aryl group except that it is not monovalent.
  • the hetero ring includes one or more non-carbon atoms and hetero atoms.
  • the hetero atom may include one or more atoms selected from the group consisting of O, N, Se, and S, and the like.
  • the heterocyclic ring may be monocyclic or polycyclic, and may be an aromatic, aliphatic or aromatic and aliphatic condensed ring, and examples thereof may be selected from the heteroaryl group or the heterocyclic group except that the monocyclic group is not monovalent.
  • an electron donative group (EDG) or an electron donor substance is generally a substituent or substance having a pair of negative or non-covalent electrons and means donating electrons to a portion lacking a positive charge or electron pair. Further, in the present specification, an electron donative group (EDG) or an electron donor substance may have a negative electron retaining property when the light is received in a state mixed with an electron acceptor, And a substituent capable of transferring excited electrons to an electron acceptor having a high electronegativity.
  • an electron withdrawing group (EWG) or an electron acceptor material acting as an electron acceptor means a substituent or substance which accepts electrons from an electron hole excitation.
  • n1 is 0.
  • n1 is 1.
  • n2 is 0.
  • n2 is 1.
  • X is O.
  • X is S.
  • X is Se.
  • X ' is O.
  • X1 is O.
  • X1 is S.
  • X1 is Se.
  • X2 is O.
  • X2 in Formula 1 is S.
  • X2 is Se.
  • X3 is O.
  • X3 is S.
  • X3 is Se.
  • X4 is O.
  • X4 is S.
  • X4 is Se.
  • X5 is O.
  • X5 is S.
  • X5 is Se.
  • X6 is O.
  • X6 is S.
  • X6 is Se.
  • Formula 1 is represented by Formula 1-1 or Formula 1-2.
  • R1, R2, Y1, Y2, and Ar1 to Ar4 have the same meanings as defined in Formula 1,
  • Cy1 and Cy2 are the same or different and each independently represents an aromatic hydrocarbon ring substituted or unsubstituted with a halogen group, a linear or branched alkyl group, or a linear or branched alkoxy group; Or a halogen group, a straight chain or branched alkyl group, or a substituted or unsubstituted heterocycle with a straight or branched chain alkoxy group.
  • the formula (1) is represented by any one of the following formulas (1-3) to (1-5).
  • Y1, Y2 and Ar1 to Ar4 have the same meanings as defined in formula (1)
  • R11 and R12 are the same or different and each independently represents a substituted or unsubstituted straight or branched alkyl group
  • Y11 and Y12 are the same or different and are each independently a halogen group
  • Cy1 and Cy2 are the same or different and each independently represents an aromatic hydrocarbon ring substituted or unsubstituted with a halogen group, a linear or branched alkyl group, or a linear or branched alkoxy group; Or a halogen group, a straight chain or branched alkyl group, or a substituted or unsubstituted heterocycle with a straight or branched chain alkoxy group.
  • R11 and R12 are the same or different and are each independently a straight chain or branched alkyl group.
  • R11 and R12 are the same or different and are each independently a branched chain alkyl group.
  • R11 and R12 are the same or different and are each independently a branched chain alkyl group having 3 to 20 carbon atoms.
  • R11 and R12 are the same or different and are each independently a branched chain alkyl group having 3 to 10 carbon atoms.
  • R11 and R12 are the same or different from each other, and each independently is a 2-ethylhexyl group.
  • Y11 and Y12 are fluorine.
  • the formula (1) is represented by any one of the following formulas (2-1) to (2-6).
  • R1, R2, Y1 and Y2 are the same as defined in Formula 1,
  • R31 to R34 are the same or different and each independently represents a straight or branched alkyl group; A linear or branched alkoxy group; Or a linear or branched thioalkoxy group,
  • Cy1 and Cy2 are the same or different and each independently represents an aromatic hydrocarbon ring substituted or unsubstituted with a halogen group, a linear or branched alkyl group, or a linear or branched alkoxy group; Or a halogen group, a straight chain or branched alkyl group, or a substituted or unsubstituted heterocycle with a straight or branched chain alkoxy group.
  • R31 to R34 are the same or different and each independently represents a straight or branched alkyl group; A linear or branched alkoxy group; Or a straight or branched thioalkoxy group.
  • R31 to R34 are the same or different and each independently represents a branched chain alkyl group; A branched chain alkoxy group; Or a branched thioalkoxy group.
  • R31 to R34 are the same or different and each independently represents a branched alkyl group having 3 to 20 carbon atoms; A branched chain alkoxy group having 3 to 20 carbon atoms; Or a branched chain thioalkoxy group having 3 to 20 carbon atoms.
  • R31 to R34 are the same or different and each independently represents a branched alkyl group having 3 to 10 carbon atoms; A branched chain alkoxy group having 3 to 10 carbon atoms; Or a branched thioalkoxy group having 3 to 10 carbon atoms.
  • R31 to R34 are the same or different and each independently is a 2-ethylhexyl group; 2-ethylhexyloxy group; Or a 2-ethylhexylthio group.
  • R 1 and R 2 in the general formula (1) are the same or different and each independently represents a linear or branched alkyl group; A linear or branched alkoxy group; Or a straight or branched thioalkoxy group.
  • R 1 and R 2 are the same or different and each independently represents a branched chain alkyl group; A branched chain alkoxy group; Or a branched thioalkoxy group.
  • R 1 and R 2 are the same or different and each independently represents a branched chain alkyl group having 3 to 20 carbon atoms; A branched chain alkoxy group having 3 to 20 carbon atoms; Or a branched chain thioalkoxy group having 3 to 20 carbon atoms.
  • R1 and R2 are the same or different and each independently represents a branched alkyl group having 3 to 10 carbon atoms; A branched chain alkoxy group having 3 to 10 carbon atoms; Or a branched thioalkoxy group having 3 to 10 carbon atoms.
  • R 1 and R 2 are the same or different and are each independently a 2-ethylhexyl group; 2-ethylhexyloxy group; Or a 2-ethylhexylthio group.
  • Y1 and Y2 are the same or different from each other, and each independently hydrogen; Or a halogen group.
  • Y1 and Y2 are the same or different from each other, and each independently hydrogen; Or fluorine.
  • Y1 and Y2 are hydrogen.
  • Y1 and Y2 are fluorine.
  • Y1 is hydrogen
  • Y2 is hydrogen
  • Y1 is fluorine
  • Y2 is fluorine
  • n1 and n2 are 0, R1 and R2 are the same or different and each independently represents a linear or branched alkyl group, Y1 and Y2 are the same Or different, and each independently represents a halogen group.
  • n1 and n2 are 0, R1 and R2 are the same or different and each independently represents a branched chain alkyl group, and Y1 and Y2 are fluorine.
  • n1 and n2 are 0, R1 and R2 are the same or different and each independently represents a branched alkyl group having 3 to 20 carbon atoms, Y1 and Y2 Is fluorine.
  • n1 and n2 are 0, R1 and R2 are the same or different and each independently represents a branched alkyl group having 3 to 10 carbon atoms, Y1 and Y2 Is fluorine.
  • n1 and n2 are 0, R1 and R2 are 2-ethylhexyl groups, and Y1 and Y2 are fluorine.
  • EW1 and EW2 are the same or different and are each independently represented by the following formula (a).
  • Cy1 represents an aromatic hydrocarbon ring substituted or unsubstituted with a halogen group, a linear or branched alkyl group, or a linear or branched alkoxy group; Or a halogen group, a straight chain or branched chain alkyl group, or a substituted or unsubstituted heterocycle with a straight chain or branched chain alkoxy group,
  • Cy1 is a benzene ring substituted or unsubstituted with a halogen group, a straight chain or branched chain alkyl group, or a straight chain or branched chain alkoxy group; Thienothiophene ring; Dibenzothiophene ring; Or a thiophene ring which is substituted or unsubstituted with a halogen group, a straight chain or branched chain alkyl group, or a straight chain or branched chain alkoxy group.
  • Cy1 represents a benzene ring substituted or unsubstituted with a fluorine, a methyl group, or a methoxy group; Thienothiophene ring; Dibenzothiophene ring; Or a thiophene ring substituted or unsubstituted with a methyl group.
  • EW1 and EW2 are the same or different and independently selected from the following structures.
  • EW1 and EW2 control the energy level of Formula 1, that is, the absorption wavelength of light, and the organic solar cell including the EW1 and EW2 has a synergistic effect of the regulated voltage V oc and the short-circuit current J sc .
  • Cy1 in the formula (a) is a benzene ring substituted with a halogen group
  • the light absorption region moves to a longer wavelength side to obtain a high short-circuit current.
  • Cy1 is a benzene ring substituted with an alkyl group
  • LUMO energy The level is increased and a high open-circuit voltage can be obtained.
  • Ar 1 to Ar 4 are the same or different from each other and each independently represents a linear or branched alkyl group, a linear or branched alkoxy group, or a linear or branched thio An aryl group substituted or unsubstituted with an alkoxy group; Or a straight or branched alkyl group, a straight chain or branched alkoxy group, or a heteroaryl group substituted or unsubstituted with a linear or branched thioalkoxy group.
  • Ar 1 to Ar 4 are the same or different from each other and each independently represents a linear or branched alkyl group, a linear or branched alkoxy group, or a linear or branched thio A phenyl group substituted or unsubstituted with an alkoxy group; A linear or branched alkyl group, a linear or branched alkoxy group, or a furan group substituted or unsubstituted with a linear or branched thioalkoxy group; A linear or branched alkyl group, a linear or branched alkoxy group, or a thio group substituted or unsubstituted with a linear or branched thioalkoxy group; Or a linear or branched alkyl group, a linear or branched alkoxy group, or a selenophen group substituted or unsubstituted with a linear or branched thioalkoxy group.
  • Ar 1 to Ar 4 are the same or different and are each independently a phenyl group substituted or unsubstituted with a linear or branched alkyl group; A furan group substituted or unsubstituted with a linear or branched alkyl group; Thiophene groups substituted or unsubstituted with straight or branched chain alkyl groups; Or a selenophen group substituted or unsubstituted with a linear or branched alkyl group.
  • Ar 1 to Ar 4 are the same or different from each other and are each independently a phenyl group substituted or unsubstituted with a linear or branched alkyl group having 1 to 30 carbon atoms; A furan group substituted or unsubstituted with a straight or branched alkyl group having 1 to 30 carbon atoms; A thiophene group substituted or unsubstituted with a straight or branched alkyl group having 1 to 30 carbon atoms; Or a selenophen group substituted or unsubstituted with a straight or branched alkyl group having 1 to 30 carbon atoms.
  • Ar 1 to Ar 4 are the same or different and each independently represents a phenyl group substituted or unsubstituted with a straight or branched alkyl group having 1 to 10 carbon atoms; A furan group substituted or unsubstituted with a straight chain or branched alkyl group having 1 to 10 carbon atoms; A thiophene group substituted or unsubstituted with a straight or branched alkyl group having 1 to 10 carbon atoms; Or a selenophen group substituted or unsubstituted with a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Ar 1 to Ar 4 are the same or different and each is a phenyl group substituted with an n-hexyl group; a furan group substituted with an n-hexyl group; a thiophene group substituted with an n-hexyl group; Or a selenophen group substituted with an n-hexyl group.
  • Ar1 to Ar4 are the same or different and independently selected from the following structures.
  • X " is S, O or Se
  • R 100 and R 101 are the same or different from each other and each independently represents a linear or branched alkyl group, a linear or branched alkoxy group, or a linear or branched thioalkoxy group,
  • R100 and R101 are the same or different and are each independently a linear or branched alkyl group.
  • R100 and R101 are the same or different and each independently is a straight or branched alkyl group having 1 to 30 carbon atoms.
  • R100 and R101 are the same or different and each independently is a straight or branched alkyl group having 1 to 10 carbon atoms.
  • R100 and R101 are the same or different and each independently is a straight chain alkyl group having 1 to 30 carbon atoms.
  • R100 and R101 are the same or different and each independently is a straight chain alkyl group of 1 to 10 carbon atoms.
  • R100 and R101 are n-hexyl groups.
  • Ar1 to Ar4 are the same or different and independently selected from the following structures.
  • R100 and R101 are the same as described above.
  • Ar1 to Ar4 are the same or different and independently selected from the following structures.
  • the structures of Ar1 to Ar4 control the extinction coefficient of Formula 1, and organic solar cells containing the same control a high short circuit current.
  • the position of the substituted alkyl group in the phenyl group, thiophene and thienothiophene can induce the arrangement of molecules in the film state, which is favorable for devices of the organic solar cell,
  • the battery exhibits high short circuit current and charge rate.
  • Ar1 to Ar4 have a substituent at a meta position of the following structure.
  • R100 is the same as described above.
  • Formula 1 is selected from the following compounds.
  • the present invention provides a composition for an organic electronic device comprising the heterocyclic compound represented by the above formula (1).
  • the composition for organic electronic devices includes an electron donor material and an electron acceptor material, and the electron acceptor material includes the heterocyclic compound.
  • the electron donor material may be a material used in the art, for example, poly-3-hexyl thiophene (P3HT), poly [N- 2'-heptadecanyl-2,7-carbazole-alt-5,5- (4'-7'-di-2-thienyl-2 ', 1', 3'- benzothiadiazole)], PCPDTBT (poly [ Cyclopenta [2,1-b; 3,4-b '] dithiophene) -tallow-4,7- (2,1,3-benzothiadiazole) ), PFO-DBT (poly [2,7- (9,9-dioctyl-fluorene) -alt-5,5- (4,7-di 2-thienyl-2,1,3-benzothiadiazole) (PTB7-Th) (Poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2- b:
  • the composition for organic electronic devices includes an electron donor material and an electron acceptor material, and is contained in a weight ratio of 1:99 to 99: 1.
  • the photoactive layer comprises an electron donor material and an electron acceptor material, and is included in a weight ratio of 1: 5 to 5: 1.
  • the electron donor and the electron acceptor constitute a bulk heterojunction (BHJ).
  • BHJ bulk heterojunction
  • the composition for organic electronic devices may further comprise a solvent.
  • the composition for organic electronic devices may be a liquid.
  • the "liquid phase” means that the liquid phase is at normal temperature and pressure.
  • the solvent includes, for example, chlorinated solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; Ether solvents such as tetrahydrofuran and dioxane; Aromatic hydrocarbon solvents such as toluene, xylene, trimethylbenzene and mesitylene; Aliphatic hydrocarbon solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; Ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolv
  • the solvents may be used alone or in combination of two or more solvents.
  • the boiling point of the solvent is preferably 40 ° C to 250 ° C, more preferably 60 ° C to 230 ° C, but is not limited thereto.
  • the viscosity of the single or mixed solvent is preferably 1 CP to 10 CP, more preferably 3 CP to 8 CP, but is not limited thereto.
  • the concentration of the composition for organic electronic devices is preferably 0.1 wt / v% to 20 wt / v%, more preferably 0.5 wt / v% to 5 wt / v% It is not limited.
  • the composition for organic electronic devices further comprises an additive.
  • the molecular weight of the additive is from 50 g / mol to 1000 g / mol.
  • the additive is included in an amount of 0.1 to 10 parts by weight based on the composition for organic electronics.
  • the boiling point of the additive is an organic matter of 30 ⁇ ⁇ to 300 ⁇ ⁇ .
  • an organic substance means a substance containing at least one carbon atom.
  • the additive is selected from the group consisting of 1,8-diiodooctane (DIO), 1-chloronaphthalene (1-CN), diphenylether
  • DIO 1,8-diiodooctane
  • 1-CN 1-chloronaphthalene
  • diphenylether One or two additives among additives selected from the group consisting of octane dithiol, tetrabromothiophene, and the like.
  • the present invention provides an organic electronic device formed using the composition for an organic electronic device.
  • the present disclosure relates to a plasma display panel comprising a first electrode; A second electrode facing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes the composition for the organic electronic device.
  • the organic electronic device is selected from the group consisting of an organic photoelectric device, an organic transistor, an organic solar cell, and an organic light emitting device.
  • the organic electronic device may be an organic solar cell.
  • a liquid crystal display comprising: a first electrode; A second electrode facing the first electrode; And at least one organic compound layer disposed between the first electrode and the second electrode, wherein at least one of the organic compound layers includes the organic electronic device composition.
  • the organic layer includes a photoactive layer
  • the photoactive layer includes the composition for the organic electronic device.
  • the photoactive layer includes the composition for organic electronic devices
  • the composition for the organic electronic device includes the above-mentioned heterocyclic compound
  • the band gap of the heterocyclic compound is 1 eV to 3 eV, specifically 1 eV to 2 eV, and even more specifically 1 eV to 1.6 eV.
  • the bandgap measured the HOMO and LUMO energy levels through cyclic voltammetry (CV), and the difference between the HOMO and LUMO energy levels is the bandgap.
  • Cyclic voltammetry (CV) measures 0.1 M [nBu 4 N] + [PF 6 ] - using glassy carbon as a working electrode through an acetonitrile solution, It is not.
  • An organic solar cell includes a first electrode, a photoactive layer, and a second electrode.
  • the organic solar cell may further include a substrate, a hole transporting layer, and / or an electron transporting layer.
  • the organic solar cell when the organic solar cell receives photons from an external light source, electrons and holes are generated between the electron beams and the electron acceptors. The generated holes are transported to the anode through the electron donor layer.
  • FIG. 1 is a view illustrating an organic electronic device according to an embodiment of the present invention.
  • the first electrode 10, the photoactive layer 30, and the second electrode 20 are stacked in this order.
  • an additional organic material layer may be provided between the first electrode 10 and the second electrode 20.
  • the organic solar cell may further include an additional organic layer.
  • the organic solar cell can reduce the number of organic layers by using organic materials having various functions at the same time.
  • the first electrode is an anode and the second electrode is a cathode. In another embodiment, the first electrode is a cathode and the second electrode is an anode.
  • the organic solar cell may be arranged in the order of the cathode, the photoactive layer, and the anode, and may be arranged in the order of the anode, the photoactive layer, and the cathode.
  • the organic solar cell may be arranged in the order of an anode, a hole transporting layer, a photoactive layer, an electron transporting layer and a cathode, and may be arranged in the order of a cathode, an electron transporting layer, a photoactive layer, a hole transporting layer, , But is not limited thereto.
  • the organic solar cell has a normal structure.
  • the substrate, the anode, the organic material layer including the photoactive layer, and the cathode may be stacked in this order.
  • the organic solar cell is an inverted structure.
  • the substrate, the cathode, the organic material layer including the photoactive layer, and the anode may be stacked in this order.
  • the organic solar cell is a tandem structure.
  • the organic solar cell according to one embodiment of the present disclosure may have one photoactive layer or two or more layers. In the tandem structure, two or more photoactive layers may be included.
  • a buffer layer may be provided between the photoactive layer and the hole transporting layer or between the photoactive layer and the electron transporting layer.
  • a hole injection layer may be further provided between the anode and the hole transport layer.
  • an electron injecting layer may be further provided between the cathode and the electron transporting layer.
  • the substrate may be a glass substrate or a transparent plastic substrate having excellent transparency, surface smoothness, ease of handling, and waterproofness, but is not limited thereto, and is not limited as long as it is a substrate commonly used in organic solar cells.
  • Specific examples include glass or polyethylene terephthalate, polyethylene naphthalate (PEN), polypropylene (PP), polyimide (PI), and triacetyl cellulose (TAC) But is not limited thereto.
  • the anode electrode may be a transparent material having excellent conductivity, but is not limited thereto.
  • Metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof;
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO);
  • ZnO Al or SnO 2: a combination of a metal and an oxide such as Sb;
  • conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, but are not limited thereto .
  • the method of forming the anode electrode is not particularly limited and may be applied to one surface of the substrate or may be coated in a film form using, for example, sputtering, E-beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing . ≪ / RTI >
  • the anode electrode When the anode electrode is formed on a substrate, it may undergo cleaning, moisture removal and hydrophilic reforming processes.
  • the patterned ITO substrate is sequentially washed with a cleaning agent, acetone, and isopropyl alcohol (IPA), and then dried on a heating plate at 100 ° C to 150 ° C for 1 to 30 minutes, preferably 120 ° C for 10 minutes And when the substrate is completely cleaned, the surface of the substrate is hydrophilically modified.
  • a cleaning agent acetone, and isopropyl alcohol (IPA)
  • IPA isopropyl alcohol
  • the junction surface potential can be maintained at a level suitable for the surface potential of the photoactive layer. Further, in the modification, the formation of the polymer thin film on the anode electrode is facilitated, and the quality of the thin film may be improved.
  • Pretreatment techniques for the anode electrode include a) surface oxidation using a parallel plate discharge, b) a method of oxidizing the surface through ozone generated using UV ultraviolet radiation in vacuum, and c) oxygen radicals generated by the plasma And the like.
  • One of the above methods can be selected depending on the state of the anode electrode or the substrate. However, whichever method is used, it is preferable to prevent oxygen from escaping from the surface of the anode electrode or the substrate and to suppress the residual of moisture and organic matter as much as possible. At this time, the substantial effect of the pretreatment can be maximized.
  • a method of oxidizing the surface through ozone generated using UV can be used.
  • the ITO substrate patterned after the ultrasonic cleaning is baked on a hot plate, dried well, then put into a chamber, and is irradiated with ozone generated by reaction of oxygen gas with UV light by operating a UV lamp
  • the patterned ITO substrate can be cleaned.
  • the method of modifying the surface of the patterned ITO substrate in the present specification is not particularly limited, and any method may be used as long as it is a method of oxidizing the substrate.
  • the cathode electrode may be a metal having a small work function, but is not limited thereto. Specifically, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Or a multilayer structure material such as LiF / Al, LiO 2 / Al, LiF / Fe, Al: Li, Al: BaF 2 and Al: BaF 2 : Ba.
  • the cathode electrode may be formed by depositing in a thermal evaporator having a degree of vacuum of 5 x 10 < -7 > torr or less, but the method is not limited thereto.
  • the hole transporting layer and / or the electron transporting layer material efficiently transfer electrons and holes separated from the photoactive layer to the electrode, and the material is not particularly limited.
  • the hole transport layer material may include poly (3,4-ethylenediocythiophene) doped with poly (styrenesulfonic acid) (PEDOT: PSS), molybdenum oxide (MoO x ); Vanadium oxide (V 2 O 5 ); Nickel oxide (NiO); And tungsten oxide (WO x ), but the present invention is not limited thereto.
  • PEDOT poly(styrenesulfonic acid)
  • MoO x molybdenum oxide
  • V 2 O 5 Vanadium oxide
  • NiO Nickel oxide
  • WO x tungsten oxide
  • the electron transport layer material may be electron-extracting metal oxides, specifically a metal complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Metal complexes including Liq; LiF; Ca; Titanium oxide (TiO x ); Zinc oxide (ZnO); And cesium carbonate (Cs 2 CO 3 ), but the present invention is not limited thereto.
  • the photoactive layer may be formed by applying the composition for an organic electronic device on a substrate by spin coating, dip coating, screen printing, spray coating, doctor blade, brush painting, roll to roll printing, inkjet printing, nozzle printing, offset printing, Screen printing, or the like.
  • spin coating dip coating, screen printing, spray coating, doctor blade, brush painting, roll to roll printing, inkjet printing, nozzle printing, offset printing, Screen printing, or the like.
  • the present invention is not limited to these methods.
  • composition for an organic electronic device according to one embodiment of the present invention is advantageous in terms of time and cost in manufacturing a device because a solution process is suitable for its structural characteristics.
  • the photoactive layer has a uniform photoelectric conversion efficiency within a thickness range of 50 nm to 150 nm.
  • the thickness of the photoactive layer is 50 nm to 150 nm, specifically 100 to 150 nm.
  • the organic electronic device may be an organic transistor.
  • an organic transistor including a source, a drain, a gate, and one or more organic layers, wherein at least one of the organic layers includes the heterocyclic compound.
  • the organic layer includes an n-type semiconductor layer and a p-type semiconductor layer, and the n-type semiconductor layer includes the heterocyclic compound.
  • Fig. 2 shows NMR data of the above compound 1.
  • FIG. 3 shows NMR data of the compound 3.
  • Fig. 6 is a diagram showing UV-vis absorption spectra of the compounds 1, 3, 6 and 8 in the solution state
  • Fig. 7 is a graph showing the UV-vis absorption spectra of the compounds 1, 3, 6 and 8 in the film state
  • FIG. 6 is data obtained by measuring the absorption spectrum of UV-vis after dissolving each of the compounds 1, 3, 6 and 8 in chlorobenzene
  • FIG. 7 is a graph showing the absorption spectra of the compounds 1, 3, 6, , And measured by UV-vis absorption spectra after spin-coating the film.
  • Comparative Examples 1 and 2 were purchased from Solarmer materials Inc. and used.
  • Table 7 shows the optical properties of the compounds 1, 3, 6, 8 and 16 to 25.
  • the results of the following Table 7 were measured according to FIGS. 6 and 7, and UV-vis spectra of the solution state and the film state were measured and the following results were obtained.
  • the physical properties of the compounds 1 to 25 were measured and are shown in Table 8 below.
  • Solution ⁇ max denotes the maximum absorption wavelength in the solution state
  • Film ⁇ max denotes the maximum absorption wavelength in the film state
  • Film ⁇ edge denotes the absorption edge wavelength in the film state
  • Optical bandgap HOMO (Highest Occupied Molecular Orbital) is the highest occupied molecular orbital
  • LUMO Large Unoccupied Molecular Orbital
  • the compounds 1, 3, 6, 8 and 16 to 25 are excellent in the ability to attract electrons, and thus can absorb light in a long wavelength region.
  • a composite solution was prepared by dissolving the following compound PBDB-T and Comparative Example Compound 1 (BT-IC) in 1: 2 in chlorobenzene (CB). At this time, the concentration was adjusted to 2 wt / vol%, stirred at 700 rpm overnight, and 0.25% of diphenylether (DPE) was added to the complex solution and annealed at 100 ° C to 120 ° C.
  • the organic solar cell has an inverted structure of ITO / ZnO NP / photoactive layer / MoO 3 / Ag.
  • the glass substrate (11.5 ⁇ / ⁇ ) coated with a 1.5 cm ⁇ 1.5 cm bar type ITO was ultrasonically cleaned using distilled water, acetone, and 2-propanol, and the ITO surface was subjected to ozone treatment for 10 minutes ZnO NP (ZnO nanograde N-10 2.5 wt% in 1-butanol, filtered to 0.45 ⁇ m PTFE) was spin coated on the ZnO NP solution at 4000 rpm for 40 seconds, The remaining solvent was removed by heat treatment to complete the electron transport layer.
  • the annealed composite solution was spin-coated at 1500 rpm for 15 seconds.
  • MoO 3 was thermally deposited at a rate of 0.2 ⁇ / s at 10 -7 Torr to a thickness of 10 nm to prepare a hole transport layer.
  • Ag was deposited in a thermal evaporator at a rate of 1 ⁇ / s to form a 100 nm organic solar cell.
  • An organic solar cell was prepared in the same manner as in Comparative Example 1-1, except that the complex solution was spin-coated at 1500 rpm in Table 9 below in order to coat the photoactive layer in Comparative Example 1-1.
  • Comparative Example 1-1 the compound 1 was used instead of the Comparative Example Compound 1, and the compound solution prepared by using Compound 1 instead of the Comparative Example Compound 1 was spin-coated at an angular velocity shown in Table 11 instead of 1500 rpm An organic solar cell was prepared in the same manner as in Comparative Example 1-1.
  • Example 1-1 1000 0.917 15.654 0.739 10.60 10.41 0.916 15.163 0.736 10.22 Examples 1-2 1200 0.912 15.198 0.726 10.06 9.90 0.907 14.647 0.733 9.73
  • Example 1-3 1400 0.914 13.305 0.737 8.97 9.22 0.911 13.933 0.746 9.47 Examples 1-4 1600 0.913 13.379 0.746 9.11 9.09 0.910 13.383 0.745 9.07 Examples 1-5 1800 0.910 13.132 0.744 8.89 9.09 0.907 13.772 0.744 9.29 Examples 1-6 2000 0.898 12.880 0.724 8.37 8.29 0.902 12.235 0.743 8.21
  • Comparative Example 1-1 the compound 3 was used in place of the Comparative Example Compound 1, and the compound solution prepared by using Compound 3 instead of the Comparative Example Compound 1 was spin-coated at an angular velocity shown in Table 12 instead of 1500 rpm An organic solar cell was prepared in the same manner as in Comparative Example 1-1.
  • Example 2-1 800 0.896 16.173 0.681 9.87 9.78 0.885 16.248 0.673 9.68
  • Example 2-3 1200 0.887 16.080 0.708 10.10 10.39 0.885 17.294 0.698 10.68
  • Examples 2-4 1400 0.891 15.483 0.711 9.81 9.90 0.887 15.981 0.705 9.99
  • Example 2-5 1600 0.884 15.481 0.717 9.82 9.82 0.887 15.467 0.716 9.82
  • Comparative Example 1-1 the compound 6 was used in place of the Comparative Example Compound 1, and the compound solution prepared by using Compound 6 instead of the Comparative Example Compound 1 was spin-coated at an angular velocity shown in Table 13 instead of 1500 rpm An organic solar cell was prepared in the same manner as in Comparative Example 1-1.
  • Example 3-1 800 0.853 16.132 0.669 9.20 9.23 0.851 16.508 0.659 9.26
  • Example 3-2 1000 0.856 15.895 0.680 9.24 9.32 0.856 15.843 0.693 9.39
  • Example 3-3 1200 0.849 15.137 0.697 8.96 9.04 0.845 15.487 0.696 9.11
  • Example 3-4 1400 0.849 15.018 0.699 8.92 8.91 0.847 14.925 0.705 8.90
  • Example 3-5 1600 0.849 14.443 0.706 8.65 8.73 0.846 14.574 0.714 8.81
  • Comparative Example 1-1 the compound 8 was used in place of the Comparative Example Compound 1, and the compound solution prepared by using Compound 8 instead of the Comparative Example Compound 1 was spin-coated at an angular velocity shown in Table 14 instead of 1500 rpm An organic solar cell was prepared in the same manner as in Comparative Example 1-1.
  • Example 4-1 1000 0.893 15.852 0.705 9.97 9.97 - - - - Example 4-2 1200 0.895 15.829 0.704 9.98 9.99 0.889 15.778 0.713 10.00
  • Example 4-3 1400 0.894 15.318 0.696 9.53 9.83 0.886 16.118 0.710 10.13
  • Example 4-4 1600 0.893 15.519 0.713 9.89 9.97 0.891 15.714 0.718 10.04
  • the organic solar cell including the heterocyclic compound represented by Formula 1 according to one embodiment of the present invention has higher filling rate and optical-activity than the organic solar cell including Comparative Examples 1 and 2, It can be seen that the conversion efficiency is excellent.
  • the compound PBDB-T and the comparative compound 2 (ITIC2) were dissolved in chlorobenzene (CB) at a ratio of 1: 2 to prepare a composite solution. At this time, the concentration was adjusted to 2 wt / vol%, stirred at 700 rpm overnight, and 0.5% of 1,8-diiodooctane (DIO: 1,8-diiodooctane) 0.0 > 120 C < / RTI >
  • the organic solar cell has an inverted structure of ITO / ZnO NP / photoactive layer / MoO 3 / Ag.
  • the glass substrate (11.5 ⁇ / ⁇ ) coated with a 1.5 cm ⁇ 1.5 cm bar type ITO was ultrasonically cleaned using distilled water, acetone, and 2-propanol, and the ITO surface was subjected to ozone treatment for 10 minutes ZnO NP (ZnO nanograde N-10 2.5 wt% in 1-butanol, filtered to 0.45 ⁇ m PTFE) was spin coated on the ZnO NP solution at 4000 rpm for 40 seconds, The remaining solvent was removed by heat treatment to complete the electron transport layer.
  • the annealed composite solution was spin-coated at 800 rpm for 15 seconds.
  • MoO 3 was thermally deposited at a rate of 0.2 ⁇ / s at 10 -7 Torr to a thickness of 10 nm to prepare a hole transport layer.
  • Ag was deposited in a thermal evaporator at a rate of 1 ⁇ / s to form a 100 nm organic solar cell.
  • An organic solar cell was prepared in the same manner as in Comparative Example 3-1, except that the composite solution was spin-coated at an angular speed shown in Table 15 instead of 800 rpm for coating the photoactive layer in Comparative Example 3-1.
  • Comparative Example 3-1 the compound 1 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 1 instead of the Comparative Example Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • FIG. 8 is data obtained by dissolving each of the compound 1 and the comparative compound 2 (ITIC2) in chlorobenzene and measuring the UV-vis absorption spectrum.
  • Comparative Example 3-1 the compound 6 was used in place of the Comparative Compound 2, and the compound solution prepared by using Compound 6 instead of the Comparative Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • Fig. 9 is a diagram showing the UV-vis absorption spectrum in the solution state of the compound 6 and the comparative compound 2 (ITIC2). Fig.
  • FIG. 9 is data obtained by dissolving the compound 6 and the comparative compound 2 (ITIC2) in chlorobenzene and measuring the UV-vis absorption spectrum.
  • Comparative Example 3-1 the compound 11 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 11 instead of the Comparative Example Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • FIG 10 is a diagram showing the UV-vis absorption spectrum in the solution state of the compound 11 and the comparative compound 2 (ITIC2).
  • FIG. 10 is data obtained by dissolving the compound 11 and the comparative compound 2 (ITIC2) in chlorobenzene and measuring the UV-vis absorption spectrum.
  • Comparative Example 3-1 the compound 16 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 16 instead of the Comparative Example Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • Comparative Example 3-1 the compound 17 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 17 instead of the Comparative Example Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • Comparative Example 3-1 the compound 18 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 18 instead of the Comparative Example Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • Comparative Example 3-1 the compound 19 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 19 instead of the Comparative Example Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • Comparative Example 3-1 the compound 21 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 21 instead of the Comparative Example Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • Comparative Example 3-1 the compound 22 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 22 instead of the Comparative Example Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • Comparative Example 3-1 the compound 23 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 23 instead of the Comparative Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • Comparative Example 3-1 the compound 24 was used in place of the Comparative Example Compound 2, and the compound solution prepared by using Compound 24 instead of the Comparative Example Compound 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • the compound 25 prepared in Comparative Example 3-1 was used in place of the compound of Comparative Example 2, and the compound solution prepared by using Compound 25 instead of the compound of Comparative Example 2 was spin-coated at an angular velocity shown in Table 15 instead of 800 rpm An organic solar cell was prepared in the same manner as in Comparative Example 3-1.
  • Comparative Examples 3-1 to 3-4 and Examples 5-1 to 5-4, 6-1 to 6-4, 7-1 to 7-4, 8-1 to 8-4, 9-1 to 9 -4, 10-1 to 10-4, 11-1 to 11-4, 12-1 to 12-4, 13-1 to 13-4, 14-1 to 14-4, 15-1 to 15-4 , 16-1 to 16-4 and 17-1 to 17-4 were measured under the conditions of 100 mW / cm 2 (AM 1.5), and the results are shown in Table 15 below Respectively.
  • V oc denotes an open-circuit voltage
  • J sc denotes a short-circuit current
  • FF denotes a fill factor
  • PCE ( ⁇ ) denotes energy conversion efficiency.
  • the open-circuit voltage and the short-circuit current are the X-axis and Y-axis intercepts in the fourth quadrant of the voltage-current density curve, respectively. The higher the two values, the higher the efficiency of the solar cell.
  • the fill factor is the width of the rectangle that can be drawn inside the curve divided by the product of the short-circuit current and the open-circuit voltage. The energy conversion efficiency can be obtained by dividing these three values by the intensity of the irradiated light, and a higher value is preferable.
  • the organic solar cell to which it is applied has a high short-circuit current of 15.5 mA / cm 2 or more, Conversion efficiency.
  • the organic solar cell to which the compound 11 is applied has a high short circuit current of 15.5 mA / cm 2 or more and a high light- Conversion efficiency.
  • Examples 8-1 to 8-4, 9-1 to 9-4, 10-1 to 10-4, 11-1 to 11-4, 12-1 to 12-4, 13-1 to 13-4 , 14-1 to 14-4, 15-1 to 15-4, 16-1 to 16-4 and 17-1 to 17-4, the compounds 16 to 25 contain hexyl groups at the meta positions of Ar1 to Ar4 The conversion efficiency of the photo-electric conversion is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 헤테로환 화합물 및 이를 포함하는 유기 전자 소자에 관한 것이다.

Description

헤테로환 화합물 및 이를 포함하는 유기 전자 소자
본 출원은 2017년 10월 23일에 한국특허청에 제출된 한국 특허 출원 제 10-2017-0137489호 및 2018년 3월 8일에 한국특허청에 제출된 한국 특허 출원 제 10-2018-0027346호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 헤테로환 화합물 및 이를 포함하는 유기 전자 소자에 관한 것이다.
유기 전자 소자란 정공 및/또는 전자를 이용한 전극과 유기물 사이에서의 전하 교류를 필요로 하는 소자를 의미한다. 유기 전자 소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exciton)이 형성되고 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 전자 소자이다. 둘째는 2개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기물 반도체에 정공 및/또는 전자를 주입하고, 주입된 전자와 정공에 의하여 동작하는 형태의 전자 소자이다.
유기 전자 소자의 예로는 유기 태양 전지, 유기 광전 소자, 유기 발광 소자, 유기 트랜지스터 등이 있으며, 이하에서는 주로 유기 태양 전지에 대하여 구체적으로 설명하지만, 상기 유기 전자 소자들에서는 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 또는 발광 물질이 유사한 원리로 작용한다.
유기 태양 전지는 태양 에너지로부터 가능한 많은 전기 에너지를 출력할 수 있도록 효율을 높이는 것이 중요하다. 이러한 유기 태양 전지의 효율을 높이기 위해서는 반도체 내부에서 가능한 많은 엑시톤을 생성하는 것도 중요하지만 생성된 전하를 손실됨 없이 외부로 끌어내는 것 또한 중요하다. 전하가 손실되는 원인 중의 하나가 생성된 전자 및 정공이 재결합(recombination)에 의해 소멸하는 것이다. 생성된 전자나 정공이 손실되지 않고 전극에 전달되기 위한 방법으로 다양한 방법이 제시되고 있으나, 대부분 추가 공정이 요구되고 이에 따라 제조 비용이 상승할 수 있다.
[특허문헌]
(특허문헌 1) US 5331183
(특허문헌 2) US 5454880
본 명세서는 헤테로환 화합물 및 이를 포함하는 유기 전자 소자를 제공한다.
본 명세서는 하기 화학식 1로 표시되는 헤테로환 화합물을 제공한다.
[화학식 1]
Figure PCTKR2018012476-appb-I000001
상기 화학식 1에 있어서,
X, X' 및 X1 내지 X6은 서로 같거나 상이하고, 각각 독립적으로 O, S 또는 Se이며,
R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 직쇄 또는 분지쇄의 알콕시기; 또는 치환 또는 비치환된 직쇄 또는 분지쇄의 티오알콕시기이고,
Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기; 또는 치환 또는 비치환된 직쇄 또는 분지쇄의 알콕시기이고,
EW1 및 EW2는 서로 같거나 상이하고, 각각 독립적으로 전자 받개로 작용하는 기이며,
Ar1 내지 Ar4는 서로 같거나 상이하며, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
n1 및 n2는 각각 0 또는 1이며,
상기 n1 및 n2가 0이고, 상기 R1 및 R2가 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기인 경우, Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기; 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기; 또는 치환 또는 비치환된 직쇄 또는 분지쇄의 알콕시기이다.
본 명세서는 전술한 헤테로환 화합물을 포함하는 유기 전자 소자용 조성물을 제공한다.
또한, 본 명세서는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 전자 소자로서, 상기 유기물층 중 1층 이상은 전술한 유기 전자 소자용 조성물을 포함하는 것인 유기 전자 소자를 제공한다.
본 명세서의 일 실시상태에 따른 상기 화학식 1로 표시되는 헤테로환 화합물을 포함하는 유기 태양 전지는 우수한 광-전 변환 효율을 갖는다.
도 1은 본 명세서의 일 실시상태에 따른 유기 전자 소자를 나타낸 도이다.
도 2는 본 명세서의 일 실시상태에 따른 화합물 1의 NMR 데이터를 나타낸 도이다.
도 3는 본 명세서의 일 실시상태에 따른 화합물 3의 NMR 데이터를 나타낸 도이다.
도 4는 본 명세서의 일 실시상태에 따른 화합물 6의 NMR 데이터를 나타낸 도이다.
도 5는 본 명세서의 일 실시상태에 따른 화합물 8의 NMR 데이터를 나타낸 도이다.
도 6은 본 명세서의 일 실시상태에 따른 화합물 1, 3, 6 및 8의 용액상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 7은 본 명세서의 일 실시상태에 따른 화합물 1, 3, 6 및 8의 필름상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 8은 본 명세서의 일 실시상태에 따른 화합물 1과 비교예 화합물 2(ITIC2)의 용액상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 9는 본 명세서의 일 실시상태에 따른 화합물 6과 비교예 화합물 2(ITIC2)의 용액상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
도 10은 본 명세서의 일 실시상태에 따른 화합물 11과 비교예 화합물 2(ITIC2)의 용액상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
이하, 본 명세서에 대하여 상세히 설명한다.
본 명세서는 상기 화학식 1로 표시되는 헤테로환 화합물을 제공한다.
본 명세서의 일 실시상태에 따른 상기 화학식 1로 표시되는 헤테로환 화합물은 치환기로 알킬기, 알콕시기, 티오알콕시기(S-Alkyl group) 및/또는 불소(flurorine)의 도입을 통해 넓은 파장의 빛을 흡수하고, 높은 LUMO에너지를 가지므로, 낮은 개방 전압의 손실로 상기 헤테로환 화합물을 유기 태양 전지의 광활성층의 n형 유기물층(전자 받개 물질)으로 사용하는 경우, 높은 개방 전압(Voc) 및 우수한 광-전 변환 효율을 갖는다.
본 명세서의 일 실시상태에 따른 화학식 1로 표시되는 헤테로환 화합물은 R1 및 R2가 알킬기인 경우, Y1 및 Y2는 수소 이외의 치환기, 특히 불소를 포함하므로, 상기 헤테로환 화합물은 장파장 영역의 빛을 흡수한다. 따라서, 이를 포함하는 유기 태양 전지는 상기 화학식 1의 R1 및 R2가 알킬기이고, Y1 및 Y2가 수소인 화합물을 포함하는 유기 태양 전지 보다 높은 단락 전류를 나타낸다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
상기 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 같거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 티오알콕시기; 에스터기; 카보닐기; 카복실기; 히드록시기; 시클로알킬기; 실릴기; 아릴알케닐기; 아릴옥시기; 알킬티옥시기; 알킬술폭시기; 아릴술폭시기; 붕소기; 알킬아민기; 아랄킬아민기; 아릴아민기; 헤테로고리기; 아릴아민기; 아릴기; 니트릴기; 니트로기; 히드록시기; 및 N, O, S 원자 중 1개 이상을 포함하는 헤테로아릴기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환되었거나 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
상기 치환기들은 추가의 치환기로 치환 또는 비치환될 수 있다.
본 명세서에 있어서, 할로겐기는 불소, 염소, 브롬 또는 요오드가 될 수 있다.
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2018012476-appb-I000002
본 명세서에 있어서, 아미드기는 아미드기의 질소가 수소, 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 1 또는 2 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2018012476-appb-I000003
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 50인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실 및 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸 및 시클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시 및 p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 티오알콕시기는 상기 알콕시기의 O가 S인 것을 제외하고는 상기 알콕시기의 설명이 적용될 수 있다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기 및 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기 및 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 -BRaRb일 수 있으며, 상기 Ra 및 Rb은 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 및 치환 또는 비치환된 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기로 이루어진 군으로부터 선택될 수 있다.
본 명세서에 있어서, 포스핀옥사이드기는 구체적으로 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있으며, 탄소수 1 내지 25의 알킬기 또는 탄소수 1 내지 25의 알콕시기가 치환되는 경우를 포함한다. 또한, 본 명세서 내에서의 아릴기는 방향족고리를 의미할 수 있다.
상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 25인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기 및 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 24인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기 및 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조이다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2018012476-appb-I000004
Figure PCTKR2018012476-appb-I000005
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 이종 원소로 O, N 및 S 중 1개 이상을 포함하는 헤테로아릴기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴기의 예로는 셀레노펜기, 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 벤조티아디아졸릴기, 페노티아지닐기, 티에노티오펜기, 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 탄화수소고리는 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 1가가 아닌 것을 제외하고 상기 시클로알킬기 또는 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 방향족고리는 단환 또는 다환일 수 있으며, 1가가 아닌 것을 제외하고 상기 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 헤테로고리는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 상기 헤테로고리는 단환 또는 다환일 수 있으며, 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 1가가 아닌 것을 제외하고 상기 헤테로아릴기 또는 헤테로고리기의 예시 중에서 선택될 수 있다.
본 명세서에서 전자 주개로서 작용하는 기(EDG: electron donative group) 또는 전자 주개 물질은 일반적으로 음전하 또는 비공유전자쌍을 가지는 치환기 또는 물질로, 양전하 또는 전자쌍이 결여된 부분에 전자를 공여하는 것을 의미한다. 추가로, 본 명세서에서의 전자 주개로서 작용하는 기(EDG: electron donative group) 또는 전자 주개 물질은 음전하나 비공유 전자쌍을 가지지 않더라도 전자 받개와 섞인 상태에서 빛을 받았을 시에 분자 자체의 풍부한 전자 보유 성질로 인하여 전기 음성도가 큰 전자 받개로 전자(excited electron)를 전달할 수 있는 치환기를 포함한다.
본 명세서에서 전자 받개로서 작용하는 기(EWG: electron withdrawing group) 또는 전자 받개 물질은 전자 공여기로부터 전자를 받아들이는 치환기 또는 물질을 통틀어 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n1은 0 이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n1은 1이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n2은 0 이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n2은 1 이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X은 Se이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X'은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X'은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X'은 Se이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X1은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X1은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X1은 Se이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X2는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X2는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X2는 Se이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X3은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X3은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X3은 Se이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X4는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X4는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X4는 Se이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X5는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X5는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X5는 Se이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X6은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X6은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, X6은 Se이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시된다.
[화학식 1-1]
Figure PCTKR2018012476-appb-I000006
[화학식 1-2]
Figure PCTKR2018012476-appb-I000007
상기 화학식 1-1 및 1-2에 있어서,
R1, R2, Y1, Y2 및 Ar1 내지 Ar4의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
Cy1 및 Cy2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 방향족 탄화수소고리; 또는 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 헤테로고리이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 1-3 내지 1-5 중 어느 하나로 표시된다.
[화학식 1-3]
Figure PCTKR2018012476-appb-I000008
[화학식 1-4]
Figure PCTKR2018012476-appb-I000009
[화학식 1-5]
Figure PCTKR2018012476-appb-I000010
상기 화학식 1-3 내지 1-5에 있어서,
Y1, Y2 및 Ar1 내지 Ar4의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기이고,
Y11 및 Y12는 서로 같거나 상이하고, 각각 독립적으로 할로겐기이며,
Cy1 및 Cy2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 방향족 탄화수소고리; 또는 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 헤테로고리이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 분지쇄의 알킬기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 탄소수 3 내지 20의 분지쇄의 알킬기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 탄소수 3 내지 10의 분지쇄의 알킬기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 2-에틸헥실기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 Y11 및 Y12는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 2-1 내지 2-6 중 어느 하나로 표시된다.
[화학식 2-1]
Figure PCTKR2018012476-appb-I000011
[화학식 2-2]
Figure PCTKR2018012476-appb-I000012
[화학식 2-3]
Figure PCTKR2018012476-appb-I000013
[화학식 2-4]
Figure PCTKR2018012476-appb-I000014
[화학식 2-5]
Figure PCTKR2018012476-appb-I000015
[화학식 2-6]
Figure PCTKR2018012476-appb-I000016
상기 화학식 2-1 내지 2-6에 있어서,
R1, R2, Y1 및 Y2의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
R31 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기; 직쇄 또는 분지쇄의 알콕시기; 또는 직쇄 또는 분지쇄의 티오알콕시기이고,
Cy1 및 Cy2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 방향족 탄화수소고리; 또는 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 헤테로고리이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2-1 내지 2-6에 있어서, R31 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기; 직쇄 또는 분지쇄의 알콕시기; 또는 직쇄 또는 분지쇄의 티오알콕시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2-1 내지 2-6에 있어서, R31 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 분지쇄의 알킬기; 분지쇄의 알콕시기; 또는 분지쇄의 티오알콕시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2-1 내지 2-6에 있어서, R31 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 탄소수 3 내지 20의 분지쇄의 알킬기; 탄소수 3 내지 20의 분지쇄의 알콕시기; 또는 탄소수 3 내지 20의 분지쇄의 티오알콕시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2-1 내지 2-6에 있어서, R31 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 탄소수 3 내지 10의 분지쇄의 알킬기; 탄소수 3 내지 10의 분지쇄의 알콕시기; 또는 탄소수 3 내지 10의 분지쇄의 티오알콕시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2-1 내지 2-6에 있어서, R31 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 2-에틸헥실기; 2-에틸헥실옥시기; 또는 2-에틸헥실티옥시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기; 직쇄 또는 분지쇄의 알콕시기; 또는 직쇄 또는 분지쇄의 티오알콕시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 분지쇄의 알킬기; 분지쇄의 알콕시기; 또는 분지쇄의 티오알콕시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 탄소수 3 내지 20의 분지쇄의 알킬기; 탄소수 3 내지 20의 분지쇄의 알콕시기; 또는 탄소수 3 내지 20의 분지쇄의 티오알콕시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 탄소수 3 내지 10의 분지쇄의 알킬기; 탄소수 3 내지 10의 분지쇄의 알콕시기; 또는 탄소수 3 내지 10의 분지쇄의 티오알콕시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 2-에틸헥실기; 2-에틸헥실옥시기; 또는 2-에틸헥실티옥시기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 할로겐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Y1 및 Y2는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Y1 및 Y2는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Y1은 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Y2는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Y1는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Y2는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n1 및 n2가 0이고, 상기 R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기이고, Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n1 및 n2가 0이고, 상기 R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 분지쇄의 알킬기이고, Y1 및 Y2는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n1 및 n2가 0이고, 상기 R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 탄소수 3 내지 20의 분지쇄의 알킬기이고, Y1 및 Y2는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n1 및 n2가 0이고, 상기 R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 탄소수 3 내지 10의 분지쇄의 알킬기이고, Y1 및 Y2는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n1 및 n2가 0이고, 상기 R1 및 R2는 2-에틸헥실기이고, Y1 및 Y2는 불소이다.
본 명세서의 일 실시상태에 따르면, 상기 EW1 및 EW2는 서로 같거나 상이하고, 각각 독립적으로 하기 화학식 a로 표시된다.
[화학식 a]
Figure PCTKR2018012476-appb-I000017
상기 화학식 a에 있어서,
Cy1은 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 방향족 탄화수소고리; 또는 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 헤테로고리이며,
Figure PCTKR2018012476-appb-I000018
는 상기 화학식 1에 결합되는 부위이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 a에 있어서, Cy1은 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 벤젠고리; 티에노티오펜고리; 디벤조티오펜고리; 또는 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 티오펜고리이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 a에 있어서, Cy1은 불소, 메틸기, 또는 메톡시기로 치환 또는 비치환된 벤젠고리; 티에노티오펜고리; 디벤조티오펜고리; 또는 메틸기로 치환 또는 비치환된 티오펜고리이다.
본 명세서의 일 실시상태에 따르면, 상기 EW1 및 EW2는 서로 같거나 상이하고, 각각 독립적으로 하기 구조 중에서 선택된다.
Figure PCTKR2018012476-appb-I000019
상기 EW1 및 EW2의 구조는 상기 화학식 1의 에너지 레벨을 조절, 즉 빛의 흡수파장을 조절하여, 이를 포함하는 유기 태양 전지는 개압전압(Voc) 및 단락전류(Jsc)의 상승 효과가 있다. 구체적으로, 상기 화학식 a의 Cy1이 할로겐기로 치환된 벤젠 고리인 경우, 빛의 흡수 영역이 장파장쪽으로 이동하게 되어 높은 단락 전류를 얻을 수 있고, 상기 Cy1이 알킬기로 치환된 벤젠고리인 경우, LUMO 에너지 레벨이 상승하여 높은 개방전압을 얻을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기로 치환 또는 비치환된 아릴기; 또는 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기로 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기로 치환 또는 비치환된 페닐기; 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기로 치환 또는 비치환된 퓨란기; 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기로 치환 또는 비치환된 티오펜기; 또는 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기로 치환 또는 비치환된 셀레노펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 페닐기; 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 퓨란기; 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 티오펜기; 또는 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 셀레노펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 페닐기; 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 퓨란기; 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 티오펜기; 또는 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 셀레노펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 페닐기; 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 퓨란기; 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 티오펜기; 또는 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 셀레노펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 n-헥실기로 치환된 페닐기; n-헥실기로 치환된 퓨란기; n-헥실기로 치환된 티오펜기; 또는 n-헥실기로 치환된 셀레노펜기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 하기 구조 중에서 선택된다.
Figure PCTKR2018012476-appb-I000020
상기 구조에 있어서,
X"는 S, O 또는 Se이고,
R100 및 R101은 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기이고,
Figure PCTKR2018012476-appb-I000021
는 상기 화학식 1에 결합되는 부위이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R100 및 R101은 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R100 및 R101은 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R100 및 R101은 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R100 및 R101은 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 30의 직쇄의 알킬기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R100 및 R101은 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 직쇄의 알킬기이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 R100 및 R101은 n-헥실기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 하기 구조 중에서 선택된다.
Figure PCTKR2018012476-appb-I000022
상기 구조에 있어서, R100 및 R101은 전술한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 하기 구조 중에서 선택된다.
Figure PCTKR2018012476-appb-I000023
상기 Ar1 내지 Ar4의 구조는 상기 화학식 1의 흡광계수를 조절하며, 이를 포함하는 유기 태양 전지는 높은 단락전류를 나타낸다. 또한, 상기 구조에 있어서, 페닐기, 티오펜 및 티에노티오펜에 치환된 알킬기의 치환 위치에 따라 상기 화학식 1의 HOMO 및 LUMO 에너지 레벨의 조절이 가능하며, 이는 유기 태양 전지의 개방 전압 상승 효과를 가져올 수 있다. 뿐만 아니라, 상기 페닐기, 티오펜 및 티에노티오펜에 치환된 알킬기의 위치는 분자의 필름 상태에서의 배열이 유기 태양 전지의 소자에 유리한 face-on 분자 배열을 유도할 수 있으므로, 이를 포함하는 유기 태양 전지는 높은 단락전류 및 충전률을 나타낸다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, Ar1 내지 Ar4는 하기 구조의 meta 위치의 치환기를 가진다.
Figure PCTKR2018012476-appb-I000024
상기 구조에 있어서, R100은 전술한 바와 동일하다.
특히, 메타(meta) 위치의 치환기를 가지는 경우, 파라(para) 위치의 치환기를 가지는 경우보다 높은 광-전 변환 효율을 얻을 수 있다. 구체적으로, 용해도 문제가 개선되어 도너(donor)와 억셉터(acceptor)의 블렌드(blend) 상태의 박막 형성이 쉬워진다. 또한, 분자 간의 interaction의 증가로 인해 이동도가 증가한다. 결과적으로 광-전 변환 효율이 증가하게 된다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화합물 중에서 선택된다.
Figure PCTKR2018012476-appb-I000025
Figure PCTKR2018012476-appb-I000026
Figure PCTKR2018012476-appb-I000027
Figure PCTKR2018012476-appb-I000028
Figure PCTKR2018012476-appb-I000029
Figure PCTKR2018012476-appb-I000030
Figure PCTKR2018012476-appb-I000031
Figure PCTKR2018012476-appb-I000032
Figure PCTKR2018012476-appb-I000033
Figure PCTKR2018012476-appb-I000034
Figure PCTKR2018012476-appb-I000035
본 명세서는 상기 화학식 1로 표시되는 헤테로환 화합물을 포함하는 유기 전자 소자용 조성물을 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 전자 소자용 조성물은 전자 주개 물질 및 전자 받개 물질을 포함하고, 상기 전자 받개 물질은 상기 헤테로환 화합물을 포함한다.
또한, 상기 유기 전자 소자용 조성물에서 전자 주개 물질은 가시광선 영역에서 최대 흡수파장을 갖는 대부분의 전자 주개 물질을 적용하는 것이 가능 하나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 전자 주개 물질은 당기술 분야에서 적용되는 물질을 사용할 수 있으며, 예컨대, 폴리 3-헥실 티오펜 (P3HT: poly 3-hexyl thiophene), PCDTBT(poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4'-7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PCPDTBT(poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]), PFO-DBT(poly[2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4,7-di 2-thienyl-2,1,3-benzothiadiazole)]), PTB7(혹은 PTB7-Th)(Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]), PSiF-DBT(Poly[2,7-(9,9-dioctyl-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]), poly(benzodithiophene-benzotriazole) (PBDB-T) 로 이루어진 군에서 선택되는 1종 이상의 물질을 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 전자 소자용 조성물은 전자 주개 물질 및 전자 받개 물질을 포함하며, 1: 99 내지 99: 1의 중량비로 포함한다.
명세서의 일 실시상태에 따르면, 상기 광활성층은 전자 주개 물질 및 전자 받개 물질을 포함하며, 1: 5 내지 5: 1의 중량비로 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 전자 주개 및 전자 받개는 벌크 헤테로 정션(BHJ)을 구성한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 전자 소자용 조성물은 용매를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 전자 소자용 조성물은 액상일 수 있다. 상기 "액상"은 상온 및 상압에서 액체 상태인 것을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 용매는 예컨대, 클로로포름, 염화메틸렌, 1,2-디클로로에탄, 1,1,2-트리클로로에탄, 클로로벤젠, o-디클로로벤젠 등의 염소계 용매; 테트라히드로푸란, 디옥산 등의 에테르계 용매; 톨루엔, 크실렌, 트리메틸벤젠, 메시틸렌 등의 방향족 탄화수소계 용매; 시클로헥산, 메틸시클로헥산, n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸 등의 지방족 탄화수소계 용매; 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤계 용매; 아세트산에틸, 아세트산부틸, 에틸셀로솔브아세테이트 등의 에스테르계 용매; 에틸렌글리콜, 에틸렌글리콜모노부틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 디메톡시에탄, 프로필렌글리콜, 디에톡시메탄, 트리에틸렌글리콜모노에틸에테르, 글리세린, 1,2-헥산디올 등의 다가 알코올 및 그의 유도체; 메탄올, 에탄올, 프로판올, 이소프로판올, 시클로헥산올 등의 알코올계 용매; 디메틸술폭시드 등의 술폭시드계 용매; 및 N-메틸-2-피롤리돈, N,N-디메틸포름아미드 등의 아미드계 용매; 메틸 벤조에이트, 부틸 벤조에이트, 3-페녹시 벤조에이트 등의 벤조에이트계 용매; 테트랄린 등의 용매가 예시되나, 본 명세서의 일 실시상태에 따른 화합물을 용해 또는 분산시킬 수 있는 용매면 족하고, 이들을 한정하지 않는다.
또 하나의 실시상태에 있어서, 상기 용매는 1 종 단독으로 사용하거나, 또는 2 종 이상의 용매를 혼합하여 사용할 수 있다.
또 하나의 실시상태에 있어서, 상기 용매의 비점은 바람직하게 40℃ 내지 250℃, 더욱 바람직하게는 60℃ 내지 230℃이나, 이에 한정되지 않는다.
또 하나의 실시상태에 있어서, 상기 단독 혹은 혼합 용매의 점도는 바람직하게 1 CP 내지 10 CP, 더욱 바람직하게는 3 CP 내지 8 CP이나, 이에 한정되지 않는다.
또 하나의 실시상태에 있어서, 상기 유기 전자 소자용 조성물의 농도는 바람직하게 0.1 wt/v% 내지 20 wt/v%, 더욱 바람직하게는 0.5 wt/v% 내지 5 wt/v%, 이나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 따르면, 상기 유기 전자 소자용 조성물은 첨가제를 더 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 첨가제의 분자량은 50 g/mol 내지 1000 g/mol이다.
본 명세서의 일 실시상태에 따르면, 상기 첨가제는 상기 상기 유기 전자용 조성물에 대하여, 0.1 내지 10 중량부로 포함된다.
또 하나의 실시상태에 있어서, 상기 첨가제의 끓는점은 30℃ 내지 300℃의 유기물이다.
본 명세서에서 유기물이란 탄소 원자를 적어도 1 이상 포함하는 물질을 의미한다.
하나의 실시상태에 있어서, 상기 첨가제는 1,8-디아이오도옥탄(DIO:1,8-diiodooctane), 1-클로로나프탈렌(1-CN:1-chloronaphthalene), 디페닐에테르 (DPE:diphenylether), 옥탄디티올(octane dithiol) 및 테트라브로모싸이오펜(tetrabromothiophene)으로 이루어진 군에서 선택되는 첨가제 중에서 1 또는 2 종의 첨가제를 더 포함할 수 있다.
본 명세서는 상기 유기 전자 소자용 조성물을 이용하여 형성된 유기 전자 소자를 제공한다.
본 명세서는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 전자 소자로서, 상기 유기물층 중 1층 이상은 상기 유기 전자 소자용 조성물을 포함하는 것인 유기 전자 소자를 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 전자 소자는 유기 광전 소자, 유기 트랜지스터, 유기 태양 전지, 및 유기 발광 소자로 이루어진 군에서 선택된다.
본 명세서의 일 실시상태에 따르면, 상기 유기 전자 소자는 유기 태양 전지일 수 있다.
본 명세서의 일 실시상태에 따르면, 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 태양 전지로서, 상기 유기물층 중 1층 이상은 상기 유기 전자 소자용 조성물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 광활성층을 포함하고, 상기 광활성층은 상기 유기 전자 소자용 조성물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 광활성층은 상기 유기 전자 소자용 조성물을 포함하고, 상기 유기 전자 소자용 조성물은 전술한 헤테로환 화합물을 포함하며, 상기 헤테로환 화합물의 밴드갭은 1 eV 내지 3 eV이고, 구체적으로 1 eV 내지 2 eV이며, 더욱더 구체적으로는 1 eV 내지 1.6 eV이다.
상기 밴드갭은 사이클로 볼타메트리(Cyclic voltammetry (CV))를 통해 HOMO 및 LUMO 에너지 준위를 측정하였으며, HOMO 및 LUMO 에너지 준위의 차이가 밴드갭이다. 사이클로 볼타메트리(Cyclic voltammetry (CV))는 0.1M [nBu4N]+[PF6]-, 아세토니트릴 용액을 통해 glassy carbon 을 작업 전극(working electrode)으로 사용하여 측정하나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시예에 따른 유기 태양 전지는 제1 전극, 광활성층 및 제2 전극을 포함한다. 상기 유기 태양 전지는 기판, 정공수송층 및/또는 전자수송층이 더 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 태양 전지가 외부 광원으로부터 광자를 받으면 전자 주개와 전자 받개 사이에서 전자와 정공이 발생한다. 발생된 정공은 전자 도너층을 통하여 양극으로 수송된다.
도 1은 본 명세서의 일 실시상태에 따른 유기 전자 소자를 나타낸 도이고, 제1 전극(10), 광활성층(30) 및 제2 전극(20)이 순서대로 적층된 구조이며, 이에 한정되는 것은 아니며, 상기 제1 전극(10)과 제2 전극(20) 사이에 추가의 유기물층이 구비될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 태양 전지는 부가적인 유기물층을 더 포함할 수 있다. 상기 유기 태양 전지는 여러 기능을 동시에 갖는 유기물을 사용하여 유기물층의 수를 감소시킬 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 전극은 애노드이고, 상기 제2 전극은 캐소드이다. 또 하나의 실시상태에 있어서, 상기 제1 전극은 캐소드이고, 상기 제2 전극은 애노드이다.
본 명세서의 일 실시상태에 따르면, 유기 태양 전지는 캐소드, 광활성층 및 애노드 순으로 배열될 수도 있고, 애노드, 광활성층 및 캐소드 순으로 배열될 수도 있으나, 이에 한정되지 않는다.
또 하나의 실시상태에 있어서, 상기 유기 태양 전지는 애노드, 정공수송층, 광활성층, 전자수송층 및 캐소드 순으로 배열될 수도 있고, 캐소드, 전자수송층, 광활성층, 정공수송층 및 애노드 순으로 배열될 수도 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 따르면, 상기 유기 태양 전지는 노멀(Normal)구조이다. 상기 노멀구조에서 기판, 애노드, 광활성층을 포함하는 유기물층 및 캐소드의 순서로 적층될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 태양 전지는 인버티드(Inverted) 구조이다. 상기 인버티드 구조에서는 기판, 캐소드, 광활성층을 포함하는 유기물층 및 애노드의 순서로 적층될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 태양 전지는 탠덤 (tandem) 구조이다.
본 명세서의 일 실시상태에 따른 유기태양 전지는 광활성층이 1층 또는 2층 이상일 수 있다. 상기 탠덤 구조에서는 광활성층을 2 이상 포함할 수 있다.
또 하나의 실시상태에 있어서, 버퍼층이 광활성층과 정공수송층 사이 또는 광활성층과 전자수송층 사이에 구비될 수 있다. 이때, 정공 주입층이 애노드와 정공수송층사이에 더 구비될 수 있다. 또한, 전자주입층이 캐소드와 전자수송층 사이에 더 구비될 수 있다.
본 명세서에서 상기 기판은 투명성, 표면평활성, 취급용이성 및 방수성이 우수한 유리기판 또는 투명 플라스틱 기판이 될 수 있으나, 이에 한정되지 않으며, 유기 태양 전지에 통상적으로 사용되는 기판이면 제한되지 않는다. 구체적으로 유리 또는 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PP(polypropylene), PI(polyimide), TAC(triacetyl cellulose) 등이 있으나. 이에 한정되는 것은 아니다.
상기 애노드 전극은 투명하고 전도성이 우수한 물질이 될 수 있으나, 이에 한정되지 않는다. 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 및 폴리(3-메틸싸이오펜), 폴리[3,4-(에틸렌-1,2-디옥시)싸이오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 애노드 전극의 형성 방법은 특별히 한정되지 않으나, 예컨대 스퍼터링, E-빔, 열증착, 스핀코팅, 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 기판의 일면에 도포되거나 필름형태로 코팅됨으로써 형성될 수 있다.
상기 애노드 전극을 기판 상에 형성하는 경우, 이는 세정, 수분제거 및 친수성 개질 과정을 거칠 수 있다.
예컨대, 패터닝된 ITO 기판을 세정제, 아세톤, 이소프로필 알코올(IPA)로 순차적으로 세정한 다음, 수분 제거를 위해 가열판에서 100℃ 내지 150℃에서 1 내지 30 분간, 바람직하게는 120℃에서 10분간 건조하고, 기판이 완전히 세정되면 기판 표면을 친수성으로 개질한다.
상기와 같은 표면 개질을 통해 접합 표면 전위를 광활성층의 표면 전위에 적합한 수준으로 유지할 수 있다. 또한, 개질 시 애노드 전극 위에 고분자 박막의 형성이 용이해지고, 박막의 품질이 향상될 수도 있다.
애노드 전극의 위한 전처리 기술로는 a) 평행 평판형 방전을 이용한 표면 산화법, b) 진공상태에서 UV 자외선을 이용하여 생성된 오존을 통해 표면을 산화하는 방법, 및 c) 플라즈마에 의해 생성된 산소 라디칼을 이용하여 산화하는 방법 등이 있다.
애노드 전극 또는 기판의 상태에 따라 상기 방법 중 한가지를 선택할 수 있다. 다만, 어느 방법을 이용하든지 공통적으로 애노드 전극 또는 기판 표면의 산소이탈을 방지하고 수분 및 유기물의 잔류를 최대한 억제하는 것이 바람직하다. 이 때, 전처리의 실질적인 효과를 극대화할 수 있다.
구체적인 예로서, UV를 이용하여 생성된 오존을 통해 표면을 산화하는 방법을 사용할 수 있다. 이 때, 초음파 세정 후 패터닝된 ITO 기판을 가열판(hot plate)에서 베이킹(baking)하여 잘 건조시킨 다음, 챔버에 투입하고, UV 램프를 작용시켜 산소 가스가 UV 광과 반응하여 발생하는 오존에 의하여 패터닝된 ITO 기판을 세정할 수 있다.
그러나, 본 명세서에 있어서의 패터닝된 ITO 기판의 표면 개질 방법은 특별히 한정시킬 필요는 없으며, 기판을 산화시키는 방법이라면 어떠한 방법도 무방하다.
상기 캐소드 전극은 일함수가 작은 금속이 될 수 있으나, 이에 한정되지 않는다. 구체적으로 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; 또는 LiF/Al, LiO2/Al, LiF/Fe, Al:Li, Al:BaF2, Al:BaF2:Ba와 같은 다층 구조의 물질이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 캐소드 전극은 5x10-7torr 이하의 진공도를 보이는 열증착기 내부에서 증착되어 형성될 수 있으나, 이 방법에만 한정되는 것은 아니다.
상기 정공수송층 및/또는 전자수송층 물질은 광활성층에서 분리된 전자와 정공을 전극으로 효율적으로 전달시키는 역할을 담당하며, 물질을 특별히 제한하지는 않는다.
상기 정공수송층 물질은 PEDOT:PSS(Poly(3,4-ethylenediocythiophene) doped with poly(styrenesulfonic acid)), 몰리브데늄 산화물(MoOx); 바나듐 산화물(V2O5); 니켈 산화물(NiO); 및 텅스텐 산화물(WOx) 등이 될 수 있으나, 이들에만 한정되는 것은 아니다.
상기 전자수송층 물질은 전자추출금속 산화물(electron-extracting metal oxides)이 될 수 있으며, 구체적으로 8-히드록시퀴놀린의 금속착물; Alq3를 포함한 착물; Liq를 포함한 금속착물; LiF; Ca; 티타늄 산화물(TiOx); 아연 산화물(ZnO); 및 세슘 카보네이트(Cs2CO3) 등이 될 수 있으나, 이들에만 한정되는 것은 아니다.
상기 광활성층은 상기 유기 전자 소자용 조성물을 스핀 코팅, 딥코팅, 스크린 프린팅, 스프레이 코팅, 닥터 블레이드, 브러쉬 페인팅, 롤투롤(Roll to Roll) 프린팅, 잉크젯 프린팅, 노즐 프린팅, 오프셋 프린팅, 전사 프린팅 또는 스크린 프린팅 등의 방법으로 형성할 수 있으나, 이들 방법에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따른 유기 전자 소자용 조성물은 구조적인 특성으로 용액 공정이 적합하여 소자의 제조 시에 시간 및 비용적으로 경제적인 효과가 있다.
또한, 상기 유기 전자 소자용 조성물은 상기 화학식 1의 헤테로환 화합물을 포함하므로, 상기 광활성층은 50 nm 내지 150 nm 두께 범위 내에서 일정하게 우수한 광전 변환 효율을 갖는 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 광활성층의 두께는 50 nm 내지 150 nm이며, 구체적으로는 100 내지 150 nm이다.
본 명세서의 일 실시상태에 있어서, 상기 유기 전자 소자는 유기 트랜지스터 일 수 있다.
본 명세서의 일 실시상태에 따르면, 소스, 드레인, 게이트 및 1층 이상의 유기물층을 포함하는 유기 트랜지스터로서, 상기 유기물층 중 1층 이상은 상기 헤테로환 화합물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 n형 반도체층 및 p형 반도체층을 포함하고, 상기 상기 n형 반도체층은 상기 헤테로환 화합물을 포함한다.
상기 헤테로환 화합물의 제조 방법 및 이를 포함하는 유기 전자 소자의 제조는 이하 제조예 및 실시예에서 구체적으로 설명한다. 그러나, 하기 실시예는 본 명세서를 예시하기 위한 것이며, 본 명세서의 범위가 이들에 의하여 한정되는 것은 아니다.
<제조예 1> 화합물 1의 제조
1) 화합물 A-1의 제조
Figure PCTKR2018012476-appb-I000036
컨덴서가 장착된 둥근 플라스크에 4,8-비스(5-((2-에틸헥실)티오)티오펜-2-일)벤조[1,2-b':4,5-b']디티오펜-2,6-디일)비스(트리메틸스탄난) ((4,8-bis(5-((2-ethylhexyl)thio)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane)) 6 g, 에틸 2-브로모-티오펜-3-카복실레이트 (ethyl 2-bromo-thiophene-3-carboxylate) 3.28g (2.5eq), 트리스(디벤질리덴아세톤)디팔라듐(0) (Tris(dibenzylideneacetone)dipalladium(0), Pd2(dba)3) 0.27g (0.05eq) 및 트리(o-톨릴)포스핀 (tri(o-tolyl)phosphine) 0.30g (0.1eq) 를 톨루엔에 녹인 후 12시간 환류시켰다. 디클로로메탄을 통해 반응을 종료 하고 증류수를 통해 추출한 후, 컬럼크로마토그래피를 통해 정제 하여 화합물 A-1을 수득하였다.
2) 화합물 A-2의 제조
Figure PCTKR2018012476-appb-I000037
둥근 플라스크에 1-브로모-4-헥실벤젠 (1-bromo-4-hexylbenzene) 7.28g (5.3eq)를 테트라하이드로퓨란에 녹인 후 -78℃에서 n-부틸리튬 12.08 mL (1.0eq)를 천천히 주입하였고, 1시간 같은 온도에서 교반하였다. 그 후, 화합물 A-1(5.3g)을 테트라하이드로퓨란에 녹여 천천히 주입하였다. 12시간 동안 상온에서 교반 후 증류수를 통해 반응을 종료시켜 디클로로메탄으로 추출하고, 컬럼크로마토 그래피로 정제 한 후, acetic acid/HCl (40mL/0.5mL) 조건에서 4시간 환류시켜 화합물 A-2를 수득하였다.
3) 화합물 A-3의 제조
Figure PCTKR2018012476-appb-I000038
둥근 플라스크에 화합물 A-2(2.6g)를 테트라하이드로퓨란에 녹인 후 -78℃에서 n-부틸리튬 2.0 mL (2.5 eq)를 천천히 주입하였고, 1시간 같은 온도에서 교반하였다. 그 후 디메틸포름아마이드(dimethylformamide) 0.39 mL 를 천천히 주입하였다. 12시간 동안 상온에서 교반 후 증류수를 통해 반응을 종료시켜 컬럼크로마토그래피로 정제하여 화합물 A-3을 수득하였다.
4) 화합물 1의 제조
Figure PCTKR2018012476-appb-I000039
컨덴서가 장착된 둥근 플라스크에 화합물 A-3(0.4g)과 2-(3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 (2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile) 0.2g (5eq)을 클로로포름에 녹인 후 피리딘(pyridine) 1mL를 주입 후 65℃에서 환류시켰다. 12시간 뒤 메탄올에 의해 생성된 고체를 컬럼크로마토그래피를 통해 정제하여 화합물 1을 수득하였다.
도 2는 상기 화합물 1의 NMR 데이터를 나타낸 도이다.
<제조예 2 내지 5> 화합물 2 내지 5의 제조
상기 제조예 1의 4)에서 2-(3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 (2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile) 대신 각각 하기 표 1의 재료를 사용한 것을 제외하고는 상기 제조예 1과 동일한 과정을 진행하여 하기 화합물 2 내지 5를 제조하였다.
목적 화합물 사용된 재료
화합물 2 2-(6-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 3 2-(5,6-디플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴말로노니트릴
화합물 4 2-(6-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 5 2-(5,6-디메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴
[화합물 2]
Figure PCTKR2018012476-appb-I000040
[화합물 3]
Figure PCTKR2018012476-appb-I000041
[화합물 4]
Figure PCTKR2018012476-appb-I000042
[화합물 5]
Figure PCTKR2018012476-appb-I000043
도 3은 상기 화합물 3의 NMR 데이터를 나타낸 도이다.
<제조예 6> 화합물 6의 제조
Figure PCTKR2018012476-appb-I000044
상기 제조예 1의 1)에서 4,8-비스(5-((2-에틸헥실)티오)티오펜-2-일)벤조[1,2-b':4,5-b']디티오펜-2,6-디일)비스(트리메틸스탄난) ((4,8-bis(5-((2-ethylhexyl)thio)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane)) 대신 4,8-비스(5-(2-에틸헥실)-4-플루오로티오펜-2-일)벤조[1,2-b':4,5-b']디티오펜-2,6-디일)비스(트리메틸스탄난) (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane)을 사용한 것을 제외하고는 동일하게 제조하여, 상기 화합물 6을 제조하였다.
<제조예 7 내지 10> 화합물 7 내지 10의 제조
상기 제조예 6에서 2-(3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴(2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile) 대신 각각 하기 표 2의 재료를 사용한 것을 제외하고는 상기 제조예 6과 동일한 과정을 진행하여 하기 화합물 7 내지 10을 제조하였다.
목적 화합물 사용된 재료
화합물 7 2-(6-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 8 2-(5,6-디플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴말로노니트릴
화합물 9 2-(6-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 10 2-(5,6-디메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴
[화합물 7]
Figure PCTKR2018012476-appb-I000045
[화합물 8]
Figure PCTKR2018012476-appb-I000046
[화합물 9]
Figure PCTKR2018012476-appb-I000047
[화합물 10]
Figure PCTKR2018012476-appb-I000048
도 5는 상기 화합물 8의 NMR 데이터를 나타낸 도이다.
도 6은 상기 화합물 1, 3, 6 및 8의 용액상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이며, 도 7은 상기 화합물 1, 3, 6 및 8의 필름상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로, 도 6은 상기 화합물 1, 3, 6 및 8 각각을 클로로벤젠에 녹인 후 UV-vis 흡수 스펙트럼을 측정한 데이터이며, 도 7은 상기 화합물 1, 3, 6 및 8의 각각을 클로로벤젠에 녹여 스핀코팅 방법을 통하여 필름으로 제조한 후에 UV-vis 흡수 스펙트럼을 측정한 데이터이다.
<제조예 11> 화합물 11의 제조
Figure PCTKR2018012476-appb-I000049
상기 제조예 1에서 4,8-비스(5-((2-에틸헥실)티오)티오펜-2-일)벤조[1,2-b':4,5-b']디티오펜-2,6-디일)비스(트리메틸스탄난) (4,8-bis(5-((2-ethylhexyl)thio)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) 대신 4,8-비스(5-((2-에틸헥실)옥시)티오펜-2-일)벤조[1,2-b':4,5-b']디티오펜-2,6-디일)비스(트리메틸스탄난) (4,8-bis(5-((2-ethylhexyl)oxy)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) 을 사용한 것을 제외하고는 동일하게 제조하여, 상기 화합물 11을 제조하였다.
<제조예 12 내지 15> 화합물 12 내지 15의 제조
상기 제조예 11에서 2-(3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 (2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile) 대신 각각 하기 표 3의 재료를 사용한 것을 제외하고는 상기 제조예 11와 동일한 과정을 진행하여 하기 화합물 12 내지 15를 제조하였다.
목적 화합물 사용된 재료
화합물 12 2-(6-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 13 2-(5,6-디플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴말로노니트릴
화합물 14 2-(6-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 15 2-(5,6-디메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴
[화합물 12]
Figure PCTKR2018012476-appb-I000050
[화합물 13]
Figure PCTKR2018012476-appb-I000051
[화합물 14]
Figure PCTKR2018012476-appb-I000052
[화합물 15]
Figure PCTKR2018012476-appb-I000053
<제조예 16> 화합물 16의 제조
Figure PCTKR2018012476-appb-I000054
상기 제조예 1에서 1-브로모-4-헥실벤젠 (1-bromo-4-hexylbenzene) 대신 3-브로모-4-헥실벤젠 (3-bromo-4-hexylbenzene)을 사용한 것을 제외하고는 동일하게 제조하여, 상기 화합물 16을 제조하였다.
<제조예 17 내지 20> 화합물 17 내지 20의 제조
상기 제조예 16에서 2-(3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴(2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile) 대신 각각 하기 표 4의 재료를 사용한 것을 제외하고는 상기 제조예 16과 동일한 과정을 진행하여 하기 화합물 17 내지 20을 제조하였다.
목적 화합물 사용된 재료
화합물 17 2-(6-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 18 2-(5,6-디플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴말로노니트릴
화합물 19 2-(6-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 20 2-(5,6-디메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴
[화합물 17]
Figure PCTKR2018012476-appb-I000055
[화합물 18]
Figure PCTKR2018012476-appb-I000056
[화합물 19]
Figure PCTKR2018012476-appb-I000057
[화합물 20]
Figure PCTKR2018012476-appb-I000058
<제조예 21> 화합물 21의 제조
Figure PCTKR2018012476-appb-I000059
상기 제조예 6에서 1-브로모-4-헥실벤젠 (1-bromo-4-hexylbenzene) 대신 3-브로모-4-헥실벤젠 (3-bromo-4-hexylbenzene)을 사용한 것을 제외하고는 동일하게 제조하여, 상기 화합물 21을 제조하였다.
<제조예 22 내지 25> 화합물 22 내지 25의 제조
상기 제조예 21에서 2-(3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 (2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile) 대신 각각 하기 표 5의 재료를 사용한 것을 제외하고는 상기 제조예 21과 동일한 과정을 진행하여 하기 화합물 22 내지 25를 제조하였다.
목적 화합물 사용된 재료
화합물 22 2-(6-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 23 2-(5,6-디플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴말로노니트릴
화합물 24 2-(6-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 25 2-(5,6-디메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴
[화합물 22]
Figure PCTKR2018012476-appb-I000060
[화합물 23]
Figure PCTKR2018012476-appb-I000061
[화합물 24]
Figure PCTKR2018012476-appb-I000062
[화합물 25]
Figure PCTKR2018012476-appb-I000063
<제조예 26> 화합물 26 의 제조
Figure PCTKR2018012476-appb-I000064
상기 제조예 11에서 1-브로모-4-헥실벤젠 (1-bromo-4-hexylbenzene) 대신 3-브로모-4-헥실벤젠 (3-bromo-4-hexylbenzene)을 사용한 것을 제외하고는 동일하게 제조하여, 상기 화합물 26을 제조하였다.
<제조예 27 내지 30> 화합물 27 내지 30 의 제조
상기 제조예 26에서 2-(3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 (2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile) 대신 각각 하기 표 6의 재료를 사용한 것을 제외하고는 상기 제조예 26과 동일한 과정을 진행하여 하기 화합물 27 내지 30을 제조하였다.
목적 화합물 사용된 재료
화합물 27 2-(6-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 28 2-(5,6-디플루오로-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴말로노니트릴
화합물 29 2-(6-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴 및 2-(5-메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴이 3:7의 질량비로 혼합된 화합물
화합물 30 2-(5,6-디메틸-3-옥소-2,3-디하이드로-1H-인덴-1-일리덴)말로노니트릴
[화합물 27]
Figure PCTKR2018012476-appb-I000065
[화합물 28]
Figure PCTKR2018012476-appb-I000066
[화합물 29]
Figure PCTKR2018012476-appb-I000067
[화합물 30]
Figure PCTKR2018012476-appb-I000068
[비교예 화합물 1 (BT-IC)]
Figure PCTKR2018012476-appb-I000069
[비교예 화합물 2 (ITIC2)]
Figure PCTKR2018012476-appb-I000070
상기 비교예 화합물 1 및 2는 Solarmer materials Inc.에서 구입하여 사용하였다.
하기 표 7은 상기 화합물 1, 3, 6, 8 및 16 내지 25의 광학 물성을 나타낸 것이다. 하기 표 7의 결과는 상기 도 6 및 7에 의하여 측정된 것이며, 용액상태 및 필름상태의 UV-vis 스펙트럼을 측정하여 하기 결과를 얻었다. 또한 상기 화합물 1 내지 25의 물성을 측정하여 하기 표 8에 나타내었다.
Solution Film
λmax, abs(nm) λmax(nm) λedge(nm)
화합물 1 670 704 794
화합물 3 683 711 809
화합물 6 678 579 779
화합물 8 691 623 786
화합물 16 680 681 805
화합물 17 681 683 826
화합물 18 683 685 832
화합물 19 678 680 789
화합물 20 676 678 784
화합물 21 677 680 821
화합물 22 678 681 837
화합물 23 679 682 810
화합물 24 675 677 843
화합물 25 675 678 800
Optical bandgap (eV) HOMO (eV) LUMO (eV)
화합물 1 1.55 -5.73 -4.18
화합물 2 1.54 -5.80 -4.26
화합물 3 1.52 -5.86 -4.34
화합물 4 1.58 -5.83 -4.25
화합물 5 1.56 -5.79 -4.23
화합물 6 1.55 -5.88 -4.34
화합물 7 1.54 -5.96 -4.46
화합물 8 1.52 -6.04 -4.55
화합물 9 1.58 -5.87 -4.30
화합물 10 1.56 -5.82 -4.24
화합물 11 1.55 -5.73 -4.18
화합물 12 1.54 -5.80 -4.26
화합물 13 1.52 -5.86 -4.34
화합물 14 1.58 -5.83 -4.25
화합물 15 1.56 -5.79 -4.23
화합물 16 1.54 -5.88 -4.34
화합물 17 1.50 -5.96 -4.46
화합물 18 1.49 -6.04 -4.55
화합물 19 1.57 -5.87 -4.30
화합물 20 1.58 -5.82 -4.24
화합물 21 1.51 -5.99 -4.48
화합물 22 1.48 -6.00 -4.53
화합물 23 1.53 -5.75 -4.22
화합물 24 1.47 -5.80 -4.33
화합물 25 1.55 -5.82 -4.27
상기 표 7에서, Solution λmax는 용액상태에서의 최대 흡수파장, Film λmax는 필름상태에서의 최대 흡수 파장, Film λedge는 필름상태에서의 흡수단 파장을 의미하고, 상기 표 8에서 Optical bandgap는 광학 밴드 갭, HOMO(Highest Occupied Molecular Orbital)는 가장 높은 점유된 분자 궤도 함수, LUMO(Lowest Unoccupied Molecular Orbital)는 가장 낮은 비점유된 분자 궤도 함수를 의미한다.
상기 표 7의 결과와 같이 상기 화합물 1, 3, 6, 8 및 16 내지 25는 전자를 당기는 능력이 우수하므로, 장파장 영역의 빛을 흡수할 수 있다.
비교예 1-1. 유기 태양 전지의 제조
하기 화합물 PBDB-T와 상기 비교예 화합물 1(BT-IC)을 1:2로 클로로벤젠(Chlorobenzene, CB)에 녹여 복합 용액(composit solution)을 제조하였다. 이때, 농도는 2 wt/vol%로 조절하였으며, 70℃에서 700rpm으로 하룻밤 동안 교반하였고, 상기 복합용액에 디페닐에테르(DPE:diphenylether)를 0.25% 첨가하여, 100℃ 내지 120℃ annealing 하였다. 유기 태양전지는 ITO/ZnO NP/광활성층/MoO3/Ag의 인버티드 구조로 하였다.
ITO는 바타입(bar type)으로 1.5 cm Х 1.5 cm가 코팅된 유리 기판(11.5 Ω/□)은 증류수, 아세톤, 2-프로판올을 이용하여 초음파 세척하고, ITO 표면을 10 분 동안 오존 처리한 후 ZnO NP(ZnO nanograde N-10 2.5wt% in 1-butanol, 0.45㎛ PTFE에 필터링)를 만들고, 이 ZnO NP 용액을 4000 rpm으로 40초간 스핀 코팅(spin-coating) 한 후, 80℃에서 10분간 열처리하여 남아있는 용매를 제거하여 전자수송층을 완성하였다. 광활성층의 코팅을 위해서 상기 annealing한 복합 용액을 1500rpm으로 15초간 스핀 코팅하였다. 열증착기에서 MoO3를 0.2 Å/s의 속도로 10-7 Torr에서 10 nm의 두께로 열증착하여 정공수송층을 제조하였다. 상기 순으로 제조 후 열증착기 내부에서 Ag를 1 Å/s의 속도로 100 nm 증착하여 역방향 구조의 유기 태양 전지를 제조하였다.
[PBDB-T]
Figure PCTKR2018012476-appb-I000071
비교예 1-2 내지 1-4. 유기 태양 전지의 제조
상기 비교예 1-1에서 광활성층의 코팅을 위해서 상기 복합 용액을 1500rpm 대신 하기 표 9에 기재된 각속도로 스핀코팅한 것을 제외하고, 비교예 1-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 비교예 1-1 내지 1-4에 의하여 제조된 유기 태양 전지의 광-전 변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 9에 그 결과를 나타내었다.
Spin-speed (rpm) Voc(V) Jsc(mA/cm2) FF(%) η (%) 평균η (%)
비교예 1-1 1500 1.027 13.289 0.550 7.50 7.44
1.023 13.140 0.549 7.37
비교예 1-2 1700 1.030 13.286 0.567 7.75 7.75
- - - -
비교예 1-3 1900 1.030 13.539 0.592 8.26 8.19
1.028 13.220 0.597 8.11
비교예 1-4 2200 1.030 13.340 0.610 8.38 8.41
1.026 13.620 0.603 8.43
비교예 2-1 내지 2-4. 유기 태양 전지의 제조
상기 비교예 1-1에서 상기 비교예 화합물 1 대신 상기 비교예 화합물 2(ITIC2)를 사용하고, 상기 비교예 화합물 1 대신 상기 비교예 화합물 2(ITIC2)를 사용하여 제조된 복합용액을 1500rpm 대신 하기 표 10에 기재된 각속도로 한 것을 제외하고는 비교예 1-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 비교예 2-1 내지 2-4에 의하여 제조된 유기 태양 전지의 광-전 변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 10에 그 결과를 나타내었다.
Spin-speed (rpm) V oc(V) J sc(mA/cm2) FF(%) η (%) 평균 η (%)
비교예 2-1 1500 1.021 13.870 0.586 8.30 8.19
1.017 14.232 0.557 8.07
비교예 2-2 1700 1.024 13.775 0.582 8.22 8.59
1.018 14.853 0.592 8.95
비교예 2-3 1900 1.028 14.635 0.602 9.07 9.18
1.024 14.720 0.616 9.29
비교예 2-4 2200 1.023 13.914 0.620 8.83 8.87
1.021 14.230 0.613 8.91
실시예 1-1 내지 1-6. 유기 태양 전지의 제조
상기 비교예 1-1에서 상기 비교예 화합물 1 대신 상기 화합물 1을 사용하고, 상기 비교예 화합물 1 대신 상기 화합물 1을 사용하여 제조된 복합용액을 1500rpm 대신 하기 표 11에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 1-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실시예 1-1 내지 1-6에 의하여 제조된 유기 태양 전지의 광-전 변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 11에 그 결과를 나타내었다.
Spin-speed (rpm) Voc(V) Jsc(mA/cm2) FF(%) η (%) 평균 η (%)
실시예 1-1 1000 0.917 15.654 0.739 10.60 10.41
0.916 15.163 0.736 10.22
실시예 1-2 1200 0.912 15.198 0.726 10.06 9.90
0.907 14.647 0.733 9.73
실시예 1-3 1400 0.914 13.305 0.737 8.97 9.22
0.911 13.933 0.746 9.47
실시예 1-4 1600 0.913 13.379 0.746 9.11 9.09
0.910 13.383 0.745 9.07
실시예 1-5 1800 0.910 13.132 0.744 8.89 9.09
0.907 13.772 0.744 9.29
실시예 1-6 2000 0.898 12.880 0.724 8.37 8.29
0.902 12.235 0.743 8.21
실시예 2-1 내지 2-5. 유기 태양 전지의 제조
상기 비교예 1-1에서 상기 비교예 화합물 1 대신 상기 화합물 3를 사용하고, 상기 비교예 화합물 1 대신 상기 화합물 3를 사용하여 제조된 복합용액을 1500rpm 대신 하기 표 12에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 1-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실시예 2-1 내지 2-5에 의하여 제조된 유기 태양 전지의 광-전 변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 12에 그 결과를 나타내었다
Spin-speed (rpm) Voc(V) Jsc(mA/cm2) FF(%) η (%) 평균 η (%)
실시예 2-1 800 0.896 16.173 0.681 9.87 9.78
0.885 16.248 0.673 9.68
실시예 2-2 1000 0.889 16.464 0.703 10.29 10.38
0.890 16.796 0.700 10.46
실시예 2-3 1200 0.887 16.080 0.708 10.10 10.39
0.885 17.294 0.698 10.68
실시예 2-4 1400 0.891 15.483 0.711 9.81 9.90
0.887 15.981 0.705 9.99
실시예 2-5 1600 0.884 15.481 0.717 9.82 9.82
0.887 15.467 0.716 9.82
실시예 3-1 내지 3-5. 유기 태양 전지의 제조
상기 비교예 1-1에서 상기 비교예 화합물 1 대신 상기 화합물 6을 사용하고, 상기 비교예 화합물 1 대신 상기 화합물 6을 사용하여 제조된 복합용액을 1500rpm 대신 하기 표 13에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 1-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실시예 3-1 내지 3-5에 의하여 제조된 유기 태양 전지의 광-전 변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 13에 그 결과를 나타내었다.
Spin-speed (rpm) Voc(V) Jsc(mA/cm2) FF(%) η(%) 평균 η(%)
실시예 3-1 800 0.853 16.132 0.669 9.20 9.23
0.851 16.508 0.659 9.26
실시예 3-2 1000 0.856 15.895 0.680 9.24 9.32
0.856 15.843 0.693 9.39
실시예 3-3 1200 0.849 15.137 0.697 8.96 9.04
0.845 15.487 0.696 9.11
실시예 3-4 1400 0.849 15.018 0.699 8.92 8.91
0.847 14.925 0.705 8.90
실시예 3-5 1600 0.849 14.443 0.706 8.65 8.73
0.846 14.574 0.714 8.81
실시예 4-1 내지 4-4. 유기 태양 전지의 제조
상기 비교예 1-1에서 상기 비교예 화합물 1 대신 상기 화합물 8을 사용하고, 상기 비교예 화합물 1 대신 상기 화합물 8을 사용하여 제조된 복합용액을 1500rpm 대신 하기 표 14에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 1-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 실시예 4-1 내지 4-4에 의하여 제조된 유기 태양 전지의 광-전 변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 14에 그 결과를 나타내었다.
Spin-speed (rpm) Voc(V) Jsc(mA/cm2) FF(%) η (%) 평균 η (%)
실시예 4-1 1000 0.893 15.852 0.705 9.97 9.97
- - - -
실시예 4-2 1200 0.895 15.829 0.704 9.98 9.99
0.889 15.778 0.713 10.00
실시예 4-3 1400 0.894 15.318 0.696 9.53 9.83
0.886 16.118 0.710 10.13
실시예 4-4 1600 0.893 15.519 0.713 9.89 9.97
0.891 15.714 0.718 10.04
상기 표 9 내지 14의 결과로, 본 명세서의 일 실시상태에 따른 화학식 1로 표시되는 헤테로환 화합물을 포함하는 유기 태양 전지는 상기 비교예 화합물 1 및 2를 포함하는 유기 태양 전지 보다 충전율 및 광-전 변환 효율이 우수함을 알 수 있다.
비교예 3-1. 유기 태양 전지의 제조
상기 화합물 PBDB-T와 상기 비교예 화합물 2(ITIC2)를 1:2로 클로로벤젠(Chlorobenzene, CB)에 녹여 복합 용액(composit solution)을 제조하였다. 이때, 농도는 2 wt/vol%로 조절하였으며, 70℃에서 700rpm으로 하룻밤 동안 교반하였고, 상기 복합용액에 1,8-디아이오도옥탄(DIO:1,8-diiodooctane)을 0.5% 첨가하여, 100℃ 내지 120℃ annealing 하였다. 유기 태양전지는 ITO/ZnO NP/광활성층/MoO3/Ag의 인버티드 구조로 하였다.
ITO는 바타입(bar type)으로 1.5 cm Х 1.5 cm가 코팅된 유리 기판(11.5 Ω/□)은 증류수, 아세톤, 2-프로판올을 이용하여 초음파 세척하고, ITO 표면을 10 분 동안 오존 처리한 후 ZnO NP(ZnO nanograde N-10 2.5wt% in 1-butanol, 0.45㎛ PTFE에 필터링)를 만들고, 이 ZnO NP 용액을 4000 rpm으로 40초간 스핀 코팅(spin-coating) 한 후, 80℃에서 10분간 열처리하여 남아있는 용매를 제거하여 전자수송층을 완성하였다. 광활성층의 코팅을 위해서 상기 annealing한 복합 용액을 800rpm으로 15초간 스핀 코팅하였다. 열증착기에서 MoO3를 0.2 Å/s의 속도로 10-7 Torr에서 10 nm의 두께로 열증착하여 정공수송층을 제조하였다. 상기 순으로 제조 후 열증착기 내부에서 Ag를 1 Å/s의 속도로 100 nm 증착하여 역방향 구조의 유기 태양 전지를 제조하였다.
비교예 3-2 내지 3-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 광활성층의 코팅을 위해서 상기 복합 용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀코팅한 것을 제외하고, 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 5-1 내지 5-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 1을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 1를 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
도 8은 상기 화합물 1과 비교예 화합물 2(ITIC2)의 용액상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로, 도 8은 상기 화합물 1 및 비교예 화합물 2(ITIC2) 각각을 클로로벤젠에 녹인 후 UV-vis 흡수 스펙트럼을 측정한 데이터이다.
상기 도 8에서 상기 화합물 1은 티오알콕시의 도입으로 UV-Vis 흡수 영역이 상기 비교예 화합물 2 보다 장파장 쪽으로 이동한 것을 확인할 수 있었다. 또한, 도 8에서 상기 화합물 1의 UV-Vis 흡수 스펙트럼에서 나타나는 720nm의 shoulder peak는 비교예 화합물 2 보다 우수한 π- π stacking 한다는 증거로 알 수 있고, 이는 분자 자체의 정공/전자 이동도가 우수하다는 간접적인 증거가 될 수 있다. 이는 유기 태양 전지에서 높은 단락 전류를 나타내는 중요한 요소가 된다.
실시예 6-1 내지 6-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 6을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 6를 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
도 9는 상기 화합물 6과 비교예 화합물 2(ITIC2)의 용액상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로, 도 9는 상기 화합물 6 및 비교예 화합물 2(ITIC2) 각각을 클로로벤젠에 녹인 후 UV-vis 흡수 스펙트럼을 측정한 데이터이다.
상기 도 9에서 상기 화합물 6은 F 원자의 도입으로 UV-Vis 흡수 영역이 상기 비교예 화합물 2 보다 장파장 쪽으로 이동한 것을 확인할 수 있었고, 이는 유기 태양 전지에서 높은 단락 전류를 나타내는 중요한 요소가 된다.
실시예 7-1 내지 7-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 11을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 11을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
도 10은 상기 화합물 11과 비교예 화합물 2(ITIC2)의 용액상태에서의 UV-vis 흡수 스펙트럼을 나타낸 도이다.
구체적으로, 도 10은 상기 화합물 11 및 비교예 화합물 2(ITIC2) 각각을 클로로벤젠에 녹인 후 UV-vis 흡수 스펙트럼을 측정한 데이터이다.
상기 도 10에서 상기 화합물 11은 알콕시기의 도입으로 UV-Vis 흡수 영역이 상기 비교예 화합물 2 보다 장파장 쪽으로 이동한 것을 확인할 수 있었다.
또한, 전자 공여 능력이 우수한 산소원자가 도입되어 UV-Vis 스펙트럼의 장파장 이동 범위가 크다는 것을 알 수 있다. 이는 유기 태양 전지에서 높은 단락 전류를 나타내는 중요한 요소가 된다.
실시예 8-1 내지 8-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 16을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 16을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 9-1 내지 9-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 17을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 17을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 10-1 내지 10-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 18을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 18을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 11-1 내지 11-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 19을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 19을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 12-1 내지 12-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 20 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 20을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 13-1 내지 13-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 21을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 21을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 14-1 내지 14-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 22을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 22을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 15-1 내지 15-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 23을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 23을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 16-1 내지 16-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 24을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 24을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
실시예 17-1 내지 17-4. 유기 태양 전지의 제조
상기 비교예 3-1에서 상기 비교예 화합물 2 대신 상기 화합물 25을 사용하고, 상기 비교예 화합물 2 대신 상기 화합물 25을 사용하여 제조된 복합용액을 800rpm 대신 하기 표 15에 기재된 각속도로 스핀 코팅한 것을 제외하고는 비교예 3-1과 동일한 방법으로 유기 태양 전지를 제조하였다.
상기 비교예 3-1 내지 3-4 및 실시예 5-1 내지 5-4, 6-1 내지 6-4, 7-1 내지 7-4, 8-1 내지 8-4, 9-1 내지 9-4, 10-1 내지 10-4, 11-1 내지 11-4, 12-1 내지 12-4, 13-1 내지 13-4, 14-1 내지 14-4, 15-1 내지 15-4, 16-1 내지 16-4 및 17-1 내지 17-4에 의하여 제조된 유기 태양 전지의 광-전 변환특성을 100 mW/cm2(AM 1.5) 조건에서 측정하고, 하기 표 15에 그 결과를 나타내었다.
Spin-speed (rpm) V oc(V) J sc(mA/cm2) FF η(%) 평균 η(%)
비교예 3-1 800 0.941 12.427 0.613 7.17 7.47
0.943 13.388 0.614 7.76
비교예 3-2 1000 0.953 13.422 0.628 8.04 8.01
0.948 13.140 0.641 7.98
비교예 3-3 1200 0.953 12.747 0.642 7.80 7.69
0.898 12.250 0.688 7.58
비교예 3-4 1400 0.951 12.124 0.654 7.54 7.41
0.940 11.910 0.649 7.27
실시예 5-1 900 0.903 15.876 0.648 9.28 9.18
0.901 15.765 0.639 9.08
실시예 5-2 1000 0.897 16.246 0.630 9.18 9.31
0.895 16.520 0.638 9.43
실시예 5-3 1100 0.902 16.189 0.662 9.67 9.56
0.898 16.193 0.649 9.44
실시예 5-4 1200 0.892 15.891 0.650 9.21 9.35
0.891 16.078 0.663 9.49
실시예 6-1 800 0.896 15.976 0.651 9.32 9.32
- - - -
실시예 6-2 1000 0.890 16.125 0.658 9.44 9.32
0.884 16.258 0.640 9.20
실시예 6-3 1200 0.890 15.849 0.655 9.23 9.07
0.884 15.225 0.662 8.91
실시예 6-4 1400 0.891 14.998 0.672 8.98 8.43
0.872 13.914 0.649 7.88
실시예 7-1 800 0.910 16.294 0.638 9.46 9.54
0.908 16.279 0.651 9.62
실시예 7-2 1000 0.896 16.082 0.649 9.34 9.34
- - - -
실시예 7-3 1200 0.906 16.134 0.649 9.49 9.49
- - - -
실시예 7-4 1400 0.878 15.819 0.616 8.55 8.74
0.878 15.998 0.636 8.93
실시예 8-1 900 0.778 19.044 0.546 8.08 8.08
- - - -
실시예 8-2 1000 0.786 19.295 0.643 9.75 9.30
0.781 18.962 0.598 8.85
실시예 8-3 1200 0.794 18.833 0.638 9.54 9.47
0.789 18.593 0.640 9.40
실시예 8-4 1500 0.789 18.662 0.660 9.72 9.47
0.781 18.439 0.640 9.22
실시예 9-1 900 0.784 19.355 0.607 9.20 9.09
0.783 18.976 0.604 8.97
실시예 9-2 1000 0.788 19.218 0.612 9.26 9.38
0.783 19.438 0.624 9.50
실시예 9-3 1200 0.779 18.926 0.596 8.78 9.34
0.784 19.280 0.655 9.90
실시예 9-4 1500 0.776 18.641 0.635 9.19 9.39
0.775 18.649 0.663 9.58
실시예 10-1 900 0.769 19.386 0.583 8.70 8.53
0.760 19.424 0.567 8.36
실시예 10-2 1000 0.773 19.192 0.617 9.16 9.20
0.768 19.429 0.620 9.24
실시예 10-3 1200 0.763 18.754 0.620 8.87 8.40
0.751 18.869 0.560 7.93
실시예 10-4 1500 0.762 18.471 0.619 8.71 8.65
0.761 18.551 0.608 8.58
실시예 11-1 900 0.770 19.887 0.610 9.34 9.60
0.768 20.060 0.640 9.86
실시예 11-2 1000 0.769 19.104 0.642 9.43 9.63
0.766 19.389 0.662 9.83
실시예 11-3 1200 0.771 18.935 0.659 9.62 9.47
0.764 18.859 0.646 9.31
실시예 11-4 1500 0.766 18.062 0.683 9.45 9.40
0.763 18.600 0.659 9.34
실시예 12-1 900 0.920 18.173 0.601 10.05 10.05
- - - -
실시예 12-2 1000 0.914 17.674 0.614 9.92 9.83
0.909 17.856 0.600 9.74
실시예 12-3 1200 - - - - 10.41
0.930 17.694 0.633 10.41
실시예 12-4 1500 0.913 17.485 0.620 9.90 9.76
0.904 17.271 0.616 9.62
실시예 13-1 900 0.924 18.016 0.618 10.29 10.19
0.922 17.784 0.615 10.08
실시예 13-2 1000 0.868 17.605 0.588 8.99 8.99
- - - -
실시예 13-3 1200 0.851 18.257 0.575 8.93 8.93
- - - -
실시예 13-4 1500 0.926 17.557 0.629 10.22 10.18
0.919 17.563 0.628 10.13
실시예 14-1 900 0.900 18.221 0.616 10.09 10.03
0.895 17.866 0.623 9.96
실시예 14-2 1000 0.908 17.777 0.627 10.12 10.11
0.903 17.405 0.642 10.09
실시예 14-3 1200 0.879 17.090 0.621 9.33 9.33
- - - -
실시예 14-4 1500 0.910 16.689 0.655 9.95 9.95
- - - -
실시예 15-1 900 0.894 17.816 0.626 9.98 9.93
0.882 17.675 0.633 9.87
실시예 15-2 1000 0.906 17.776 0.632 10.18 10.20
0.901 17.634 0.643 10.21
실시예 15-3 1200 0.891 17.264 0.646 9.94 9.91
0.886 17.474 0.638 9.87
실시예 15-4 1500 0.913 16.946 0.650 10.06 10.05
0.904 16.974 0.654 10.04
실시예 16-1 1000 0.824 16.884 0.644 8.97 8.84
0.823 15.880 0.666 8.70
실시예 16-2 1100 0.810 16.636 0.649 8.74 8.43
0.803 16.731 0.603 8.11
실시예 16-3 1200 0.825 17.252 0.625 8.90 9.14
0.826 17.193 0.660 9.37
실시예 16-4 1300 0.827 14.906 0.660 8.14 8.14
- - - -
실시예 17-1 1000 0.823 17.250 0.653 9.27 9.45
0.823 17.345 0.675 9.62
실시예 17-2 1100 0.825 16.715 0.681 9.39 9.48
0.822 17.113 0.681 9.57
실시예 17-3 1300 0.818 15.994 0.691 9.04 9.06
0.816 16.323 0.681 9.07
실시예 17-4 1500 0.825 15.365 0.684 8.67 8.74
0.823 15.355 0.696 8.80
상기 표 9 내지 15에서, 상기 Voc는 개방전압을, Jsc는 단락전류를, FF는 충전율(Fill factor)를, PCE(η)는 에너지 변환 효율을 의미한다. 개방전압과 단락전류는 각각 전압-전류 밀도 곡선의 4사분면에서 X축과 Y축 절편이며, 이 두 값이 높을수록 태양전지의 효율은 바람직하게 높아진다. 또한 충전율(Fill factor)은 곡선 내부에 그릴 수 있는 직사각형의 넓이를 단락전류와 개방전압의 곱으로 나눈 값이다. 이 세 가지 값을 조사된 빛의 세기로 나누면 에너지 변환 효율을 구할 수 있으며, 높은 값일수록 바람직하다.
상기 티오알콕시기를 포함하는 화합물 1(실시예 5)은 상기 비교예 화합물 2 보다 장파장 영역의 빛을 흡수하므로, 이를 적용한 유기 태양 전지는 15.5 mA/cm2이상의 높은 단락전류 및 9% 이상의 높은 광-전 변환 효율을 나타내었다.
상기 F를 포함하는 화합물 6(실시예 6)은 상기 비교예 화합물 2 보다 장파장 영역의 빛을 흡수하므로, 이를 적용한 유기 태양 전지는 13.9 mA/cm2이상의 높은 단락전류 및 8.4% 이상의 높은 광-전 변환 효율을 나타내었다.
상기 알콕시기를 포함하는 화합물 11(실시예 7)은 상기 비교예 화합물 2 보다 장파장 영역의 빛을 흡수하므로, 이를 적용한 유기 태양 전지는 15.5 mA/cm2이상의 높은 단락전류 및 8.5% 이상의 높은 광-전 변환 효율을 나타내었다.
상기 실시예 8-1 내지 8-4, 9-1 내지 9-4, 10-1 내지 10-4, 11-1 내지 11-4, 12-1 내지 12-4, 13-1 내지 13-4, 14-1 내지 14-4, 15-1 내지 15-4, 16-1 내지 16-4 및 17-1 내지 17-4에서 사용한 화합물 16 내지 25는 Ar1 내지 Ar4의 meta 위치에 헥실기를 포함하는 구조로 광-전 변환 효율이 높다.
[부호의 설명]
10: 제1 전극
20: 제2 전극
30: 광활성층
100: 유기 전자 소자

Claims (17)

  1. 하기 화학식 1로 표시되는 헤테로환 화합물:
    [화학식 1]
    Figure PCTKR2018012476-appb-I000072
    상기 화학식 1에 있어서,
    X, X' 및 X1 내지 X6은 서로 같거나 상이하고, 각각 독립적으로 O, S 또는 Se이며,
    R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 직쇄 또는 분지쇄의 알콕시기; 또는 치환 또는 비치환된 직쇄 또는 분지쇄의 티오알콕시기이고,
    Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기; 또는 치환 또는 비치환된 직쇄 또는 분지쇄의 알콕시기이고,
    EW1 및 EW2는 서로 같거나 상이하고, 각각 독립적으로 전자 받개로 작용하는 기이며,
    Ar1 내지 Ar4는 서로 같거나 상이하며, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
    n1 및 n2는 각각 0 또는 1이며,
    상기 n1 및 n2가 0이고, 상기 R1 및 R2가 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기인 경우, Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기; 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기; 또는 치환 또는 비치환된 직쇄 또는 분지쇄의 알콕시기이다.
  2. 청구항 1에 있어서, 상기 R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 분지쇄의 알킬기; 분지쇄의 알콕시기; 또는 분지쇄의 티오알콕시기인 것인 헤테로환 화합물.
  3. 청구항 1에 있어서, 상기 Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 할로겐기인 것인 헤테로환 화합물.
  4. 청구항 1에 있어서, 상기 Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기로 치환 또는 비치환된 아릴기; 또는 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기로 치환 또는 비치환된 헤테로아릴기인 것인 헤테로환 화합물.
  5. 청구항 1에 있어서, 상기 Ar1 내지 Ar4는 서로 같거나 상이하고, 각각 독립적으로 하기 구조에서 선택되는 하나인 것인 헤테로환 화합물:
    Figure PCTKR2018012476-appb-I000073
    R100 및 R101은 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기, 직쇄 또는 분지쇄의 알콕시기, 또는 직쇄 또는 분지쇄의 티오알콕시기이고,
    Figure PCTKR2018012476-appb-I000074
    는 상기 화학식 1에 결합되는 부위이다.
  6. 청구항 1에 있어서, 상기 EW1 및 EW2는 서로 같거나 상이하고, 각각 독립적으로 하기 화학식 a로 표시되는 기인 것인 헤테로환 화합물:
    [화학식 a]
    Figure PCTKR2018012476-appb-I000075
    상기 화학식 a에 있어서,
    Cy1은 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 방향족 탄화수소고리; 또는 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 헤테로고리이며,
    Figure PCTKR2018012476-appb-I000076
    는 상기 화학식 1에 결합되는 부위이다.
  7. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-1 또는 1-2로 표시되는 것인 헤테로환 화합물:
    [화학식 1-1]
    Figure PCTKR2018012476-appb-I000077
    [화학식 1-2]
    Figure PCTKR2018012476-appb-I000078
    상기 화학식 1-1 및 1-2에 있어서,
    R1, R2, Y1, Y2 및 Ar1 내지 Ar4의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
    Cy1 및 Cy2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 방향족 탄화수소고리; 또는 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 헤테로고리이다.
  8. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 2-1 내지 2-6 중 어느 하나로 표시되는 것인 헤테로환 화합물:
    [화학식 2-1]
    Figure PCTKR2018012476-appb-I000079
    [화학식 2-2]
    Figure PCTKR2018012476-appb-I000080
    [화학식 2-3]
    Figure PCTKR2018012476-appb-I000081
    [화학식 2-4]
    Figure PCTKR2018012476-appb-I000082
    [화학식 2-5]
    Figure PCTKR2018012476-appb-I000083
    [화학식 2-6]
    Figure PCTKR2018012476-appb-I000084
    상기 화학식 2-1 내지 2-6에 있어서,
    R1, R2, Y1 및 Y2의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
    R31 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 직쇄 또는 분지쇄의 알킬기; 직쇄 또는 분지쇄의 알콕시기; 또는 직쇄 또는 분지쇄의 티오알콕시기이고,
    Cy1 및 Cy2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 방향족 탄화수소고리; 또는 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 헤테로고리이다.
  9. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-3 내지 1-5 중 어느 하나로 표시되는 것인 헤테로환 화합물:
    [화학식 1-3]
    Figure PCTKR2018012476-appb-I000085
    [화학식 1-4]
    Figure PCTKR2018012476-appb-I000086
    [화학식 1-5]
    Figure PCTKR2018012476-appb-I000087
    상기 화학식 1-3 내지 1-5에 있어서,
    Y1, Y2 및 Ar1 내지 Ar4의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
    R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬기이고,
    Y11 및 Y12는 서로 같거나 상이하고, 각각 독립적으로 할로겐기이며,
    Cy1 및 Cy2는 서로 같거나 상이하고, 각각 독립적으로 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 방향족 탄화수소고리; 또는 할로겐기, 직쇄 또는 분지쇄의 알킬기, 또는 직쇄 또는 분지쇄의 알콕시기로 치환 또는 비치환된 헤테로고리이다.
  10. 청구항 1에 있어서, 상기 화학식 1은 하기 화합물 중에서 선택되는 것인 헤테로환 화합물:
    Figure PCTKR2018012476-appb-I000088
    Figure PCTKR2018012476-appb-I000089
    Figure PCTKR2018012476-appb-I000090
    Figure PCTKR2018012476-appb-I000091
    Figure PCTKR2018012476-appb-I000092
    Figure PCTKR2018012476-appb-I000093
    Figure PCTKR2018012476-appb-I000094
    Figure PCTKR2018012476-appb-I000095
    Figure PCTKR2018012476-appb-I000096
    Figure PCTKR2018012476-appb-I000097
    Figure PCTKR2018012476-appb-I000098
    .
  11. 청구항 1 내지 10 중 어느 한 항에 따른 헤테로환 화합물을 포함하는 유기 전자 소자용 조성물.
  12. 청구항 11에 있어서, 상기 유기 전자 소자용 조성물은 전자 주개 물질 및 전자 받개 물질을 포함하고, 상기 전자 받개 물질은 상기 헤테로환 화합물을 포함하는 것인 유기 전자 소자용 조성물.
  13. 청구항 11에 있어서, 상기 전자 주개 물질 및 상기 전자 받개 물질은 벌크 헤테로 정션(BHJ)를 구성하는 것인 유기 전자 소자용 조성물.
  14. 제1 전극;
    상기 제1 전극과 대향하여 구비되는 제2 전극; 및
    상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 전자 소자로서,
    상기 유기물층 중 1층 이상은 청구항 11에 따른 유기 전자 소자용 조성물을 포함하는 것인 유기 전자 소자.
  15. 청구항 14에 있어서, 상기 유기 전자 소자는 유기 광전 소자, 유기 트랜지스터, 유기 태양 전지, 및 유기 발광 소자로 이루어진 군으로부터 선택되는 것인 유기 전자 소자.
  16. 청구항 14에 있어서, 상기 유기 전자 소자는 제1 전극;
    상기 제1 전극과 대향하여 구비되는 제2 전극; 및
    상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 태양 전지로서,
    상기 유기물층 중 1층 이상은 상기 유기 전자 소자용 조성물을 포함하는 것인 유기 전자 소자.
  17. 청구항 16에 있어서, 상기 유기물층은 광활성층을 포함하고, 상기 광활성층은 상기 유기 전자용 조성물을 포함하는 것인 유기 전자 소자.
PCT/KR2018/012476 2017-10-23 2018-10-22 헤테로환 화합물 및 이를 포함하는 유기 전자 소자 WO2019083235A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880005199.3A CN110099908B (zh) 2017-10-23 2018-10-22 杂环化合物和包含其的有机电子器件
JP2019538215A JP6786769B2 (ja) 2017-10-23 2018-10-22 ヘテロ環化合物およびこれを含む有機電子素子
US16/470,759 US11398603B2 (en) 2017-10-23 2018-10-22 Heterocyclic compound and organic electronic device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0137489 2017-10-23
KR20170137489 2017-10-23
KR10-2018-0027346 2018-03-08
KR20180027346 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019083235A1 true WO2019083235A1 (ko) 2019-05-02

Family

ID=66246622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012476 WO2019083235A1 (ko) 2017-10-23 2018-10-22 헤테로환 화합물 및 이를 포함하는 유기 전자 소자

Country Status (5)

Country Link
US (1) US11398603B2 (ko)
JP (1) JP6786769B2 (ko)
KR (1) KR102271481B1 (ko)
CN (1) CN110099908B (ko)
WO (1) WO2019083235A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902129B1 (ko) * 2017-05-24 2018-09-28 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
KR102655911B1 (ko) * 2019-01-25 2024-04-08 주식회사 엘지화학 헤테로환 화합물, 이를 포함하는 유기 전자 소자 및 이를 이용한 유기 전자 소자의 제조 방법
KR102639496B1 (ko) * 2019-04-09 2024-02-21 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 전자 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138077A (ja) * 2008-12-09 2010-06-24 Tosoh Corp ヘテロアセン誘導体及びその用途
CN106467547A (zh) * 2016-08-30 2017-03-01 苏州大学 一种基于多稠环类的非富勒烯太阳能电池受体材料及其制备方法和应用
CN107011361A (zh) * 2017-03-13 2017-08-04 南开大学 有机光电受体材料及其制备方法和应用
KR101902129B1 (ko) * 2017-05-24 2018-09-28 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 전자 소자

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335530Y2 (ko) 1985-08-22 1991-07-29
US5331183A (en) 1992-08-17 1994-07-19 The Regents Of The University Of California Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells
WO2016120166A1 (en) 2015-01-27 2016-08-04 Sony Corporation Squaraine-based molecules as material for organic photoelectric conversion layers in organic photodiodes
KR101758061B1 (ko) 2015-08-28 2017-07-17 경상대학교산학협력단 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
KR101702306B1 (ko) 2016-06-17 2017-02-03 한국화학연구원 신규한 유기반도체 화합물 및 이를 이용한 유기 전자 소자
CN107759621B (zh) * 2016-08-17 2020-04-21 国家纳米科学中心 一种含有并噻吩(并硒吩)修饰的光电化合物及其制备方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138077A (ja) * 2008-12-09 2010-06-24 Tosoh Corp ヘテロアセン誘導体及びその用途
CN106467547A (zh) * 2016-08-30 2017-03-01 苏州大学 一种基于多稠环类的非富勒烯太阳能电池受体材料及其制备方法和应用
CN107011361A (zh) * 2017-03-13 2017-08-04 南开大学 有机光电受体材料及其制备方法和应用
KR101902129B1 (ko) * 2017-05-24 2018-09-28 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 전자 소자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, J. ET AL.: "Enhancing Performance of Nonfullerene Acceptors via Side-chain Conjugation Strategy", ADV. MATER., vol. 29, 2017, pages 1702125-1 - 1702125-7, XP055598308 *
YAO, H. ET AL.: "Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Open-circuit Voltage", ADV MATER., vol. 29, no. 21, 2017, pages 1 - 8, XP055536507, DOI: doi:10.1002/adma.201700254 *

Also Published As

Publication number Publication date
US11398603B2 (en) 2022-07-26
KR102271481B1 (ko) 2021-07-01
JP6786769B2 (ja) 2020-11-18
JP2020506897A (ja) 2020-03-05
CN110099908B (zh) 2022-09-13
CN110099908A (zh) 2019-08-06
US20200251661A1 (en) 2020-08-06
KR20190045078A (ko) 2019-05-02

Similar Documents

Publication Publication Date Title
WO2018159933A1 (ko) 플루오렌계 화합물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2014171755A1 (ko) 플러렌 유도체, 이를 이용한 유기 태양 전지 및 이의 제조 방법
WO2016099218A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2018216880A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2015064937A9 (ko) 단분자 및 이를 포함하는 유기 태양 전지
WO2018236100A1 (ko) 유기 태양 전지
WO2015142067A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2019066305A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2021125813A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019083235A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2019004605A1 (ko) 유기 태양 전지
WO2015037966A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2019225989A1 (ko) 화합물, 이를 포함하는 코팅 조성물 및 유기 발광 소자
WO2019221386A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2019164383A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021154041A1 (ko) 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2018164353A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2016175573A2 (ko) 화합물 및 이를 포함하는 유기 태양 전지
WO2017095141A1 (ko) 카바졸 유도체 및 이를 이용한 유기 발광 소자
WO2015119436A1 (ko) 플러렌 유도체, 이를 이용한 유기 태양 전지 및 이의 제조 방법
WO2016144097A2 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2019172571A1 (ko) 유기 태양 전지의 제조방법 및 이를 이용하여 제조된 유기 태양 전지
WO2019132483A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2015147598A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2018174476A1 (ko) 화합물 및 이를 포함하는 유기 태양 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870182

Country of ref document: EP

Kind code of ref document: A1