WO2016122195A1 - 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막 - Google Patents

방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막 Download PDF

Info

Publication number
WO2016122195A1
WO2016122195A1 PCT/KR2016/000834 KR2016000834W WO2016122195A1 WO 2016122195 A1 WO2016122195 A1 WO 2016122195A1 KR 2016000834 W KR2016000834 W KR 2016000834W WO 2016122195 A1 WO2016122195 A1 WO 2016122195A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polymer
electrolyte membrane
compound
polymer electrolyte
Prior art date
Application number
PCT/KR2016/000834
Other languages
English (en)
French (fr)
Inventor
장용진
한중진
김영제
강에스더
정세희
류현욱
유윤아
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680007303.3A priority Critical patent/CN107207427B/zh
Priority to US15/542,747 priority patent/US10418656B2/en
Priority to JP2017534792A priority patent/JP6460243B2/ja
Priority to EP16743673.2A priority patent/EP3252034B1/en
Publication of WO2016122195A1 publication Critical patent/WO2016122195A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/64Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and sulfur atoms, not being part of thio groups, bound to the same carbon skeleton
    • C07C323/67Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and sulfur atoms, not being part of thio groups, bound to the same carbon skeleton containing sulfur atoms of sulfonamide groups, bound to the carbon skeleton
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/14Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/62Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the nature of monomer used
    • C08G2650/64Monomer containing functional groups not involved in polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present specification relates to a compound including an aromatic ring, a polymer including the same, and a polymer electrolyte membrane using the same.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy.
  • a fuel cell is a power generation method that uses fuel gas and an oxidant and generates electric power by using electrons generated during the redox reaction.
  • the membrane electrode assembly (MEA) of a fuel cell is a portion in which an electrochemical reaction between hydrogen and oxygen occurs and is composed of a cathode, an anode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane.
  • a redox flow battery (redox flow battery) is an electrochemical storage device that stores the chemical energy of an active material directly as electrical energy by charging and discharging the active material contained in the electrolyte. to be.
  • the unit cell of the redox flow battery includes an electrode, an electrolyte, and an ion exchange membrane (electrolyte membrane).
  • Fuel cells and redox flow cells are being researched and developed as next generation energy sources due to their high energy efficiency and eco-friendly features with low emissions.
  • the key components of fuel cell and redox flow cell are polymer electrolyte membranes capable of cation exchange, including 1) excellent proton conductivity 2) prevention of crossover of electrolyte, 3) strong chemical resistance, 4) mechanical It is desirable to have properties of enhanced physical properties and / or 4) low swelling ratio.
  • the polymer electrolyte membrane is classified into fluorine-based, partially fluorine-based, hydrocarbon-based, and the like, and the partial fluorine-based polymer electrolyte membrane has a fluorine-based main chain, which has advantages of excellent physical and chemical stability and high thermal stability.
  • the partial fluorine-based polymer electrolyte membrane has a cation transfer functional group attached to the end of the fluorine-based chain, and thus has the advantages of a hydrocarbon-based polymer electrolyte membrane and a fluorine-based polymer electrolyte membrane.
  • the present specification is to provide a compound containing an aromatic ring and a polymer electrolyte membrane using the same.
  • An exemplary embodiment of the present specification provides a compound including an aromatic ring represented by Formula 1 below:
  • A is a direct bond, S, O, NH or SO 2 ,
  • n is an integer from 1 to 16
  • n1 and n2 are each an integer of 0 to 16
  • n and m are each an integer of 2 or more, the structures in the plurality of parentheses are the same as or different from each other,
  • R1 to R5 are the same as or different from each other, each independently represent a hydroxy group or a halogen group, and the rest are hydrogen;
  • R6 is -SO 3 H, -SO 3 - shown as M +, -PO 3 2- 2M +, and the formula 4 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H Is selected from the group consisting of
  • At least one of R7 to R9 is -SO 3 H, -SO 3 - M a +, and -PO 3 2- 2M + - M + , -COOH, -COO - M +, -PO 3 H 2, -PO 3 H Selected from the group consisting of, the remainder is hydrogen,
  • M is a group 1 element.
  • An exemplary embodiment of the present specification provides a polymer including a monomer derived from the compound of Formula 1.
  • an embodiment provides a polymer electrolyte membrane comprising a polymer comprising a monomer derived from the compound of Formula 1.
  • an exemplary embodiment of the present specification is an anode; Cathode; And it provides a membrane-electrode assembly comprising the above-described polymer electrolyte membrane provided between the anode and the cathode.
  • an exemplary embodiment of the present disclosure is two or more of the aforementioned membrane-electrode assembly
  • a stack comprising a bipolar plate provided between the membrane-electrode assemblies
  • a fuel supply unit supplying fuel to the stack
  • It provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • a cathode cell comprising an anode and an anode electrolyte solution
  • a cathode cell comprising a cathode and a cathode electrolyte
  • It provides a redox flow battery comprising the above-described polymer electrolyte membrane provided between the cathode cell and the anode cell.
  • a polymer electrolyte membrane prepared using a polymer including a monomer derived from a compound according to one embodiment of the present specification has excellent ion conductivity.
  • the polymer electrolyte membrane prepared by using a polymer including a monomer derived from a compound according to one embodiment of the present specification has a high ion exchange capacity (IEC) value because it has at least two acid units per unit structure.
  • IEC ion exchange capacity
  • the fuel cell and / or the redox flow battery including the polymer electrolyte membrane have excellent durability and efficiency.
  • FIG. 1 is a schematic diagram illustrating a principle of electricity generation of a fuel cell.
  • FIG. 2 is a view schematically showing a general structure of a redox flow battery.
  • FIG 3 is a view schematically showing an embodiment of a fuel cell.
  • the polymer electrolyte membrane used has excellent efficiency in a high humidification state, but has a problem of low cation conductivity in low humidity conditions.
  • the problem may be improved by using the compound represented by Chemical Formula 1 described above.
  • the compound represented by Chemical Formula 1 is a linker connecting two benzene rings including disulfonamide (-SO 2 NHSO 2- ) which may act as an acid, and A benzene ring substituted with an acid or at least one acid at the end of the linker.
  • the acid is an ion transfer functional group, -SO 3 H, -SO 3 - M + , -COOH, -COO - M + , -PO 3 H 2 , -PO 3 H - M + and -PO 3 2 - is selected from the group consisting of 2M +.
  • the polymer including the monomer derived from the compound represented by Formula 1 shows an increased number of acids per unit unit, and the ion exchange capacity (IEC) value of the polymer electrolyte membrane including the polymer may be increased.
  • IEC ion exchange capacity
  • the group 1 element M may be Li, Na or K.
  • two of R1 to R5 are a halogen group.
  • the halogen group may be chlorine or fluorine.
  • R1 and R5 is a halogen group
  • the R2 to R4 is hydrogen
  • R2 and R5 is a halogen group
  • R1, R3 and R4 is hydrogen
  • R3 and R5 is a halogen group, and R1, R2 and R4 are hydrogen.
  • R2 and R4 are a halogen group or a hydroxyl group
  • R1, R3 and R5 are hydrogen
  • three of R1 to R5 is a halogen group, the rest are hydrogen.
  • the halogen group may be chlorine or fluorine.
  • R1 to R5 is a halogen group, the remainder is hydrogen.
  • the halogen group may be chlorine or fluorine.
  • R6 is represented by the formula (4), and R7 to R9 of the formula (4) is ortho in the relationship with the carbon in which the linker linking two benzene ring is substituted And / or para.
  • Linkers linking two benzene rings contain functional groups and / or heteroatoms that exhibit an electron withdrawing effect, and with respect to them ion-transfer functional groups in the ortho and / or para positions.
  • the acidity of R6 to R8) increases.
  • the polymer electrolyte membrane including the polymer including the same has an advantage that the cationic conductivity can be improved.
  • A is S, O or SO 2 .
  • A is a direct bond.
  • A is S.
  • A is O.
  • A is O or SO 2 . Due to the chemical stability of sulfonyl or ether groups that are not readily decomposed by the strong acid of the electrolyte or radicals generated in the electrolyte, when A is O or SO 2 , the electrolyte membrane comprising the same may exhibit improved durability. . In particular, the les when the case of redox flow battery to the vanadium in the electrolyte acts as an oxidizing agent, linker, A is S, in order to prevent the problem, which is oxidized to SO (sulfoxide) can easily be decomposed, A is O or SO 2 of Most preferred.
  • A is NH.
  • B may be represented by the formula (2).
  • Chemical Formula 2 is preferably represented by the following Chemical Formula 2-1.
  • m is an integer of 1 to 8.
  • B may be represented by Chemical Formula 3.
  • n 2 or more
  • Bs are the same or different from each other.
  • both B's may be represented by Formula 2 or both may be represented by Formula 3
  • one B may be represented by Formula 2 and one B may be represented by Formula 3. .
  • At least one of R7 to R9 is an ion transfer functional group
  • the ion transfer functional group is a linker (-A- [B] n -to connect two benzene rings Ortho and / or para in relation to SO 2 NHSO 2- [Q] m- ).
  • the ion transfer functional groups are located at ortho and / or para, thereby showing improved reactivity in the polymerization reaction.
  • At least one of R7 to R9 is -SO 3 H or -SO 3 - M + .
  • the sulfonic acid group absorbs up to about 10 mole of water per mole, resulting in a high proton conductivity of about 0.1 Scm ⁇ 1 .
  • n 1
  • n may be two or more.
  • B is represented only by the formula (2), n is preferably an integer of 2 or more.
  • m is an integer of 0 to 2
  • a plurality of Q is the same or different from each other.
  • n1 and n2 is 1.
  • the compound represented by Formula 1 may be any one selected from the following structures.
  • the compound represented by Chemical Formula 1 may be prepared based on the preparation examples described below.
  • An exemplary embodiment of the present specification provides a polymer including a monomer derived from the compound represented by Chemical Formula 1. As described above, the monomer has an advantage of showing improved reactivity during the polymerization reaction.
  • monomer means a structure in which the compound is included in the form of two or more in the polymer by the polymerization reaction.
  • the monomer derived from the compound represented by Formula 1 may have a structure as follows.
  • the present invention is not limited thereto.
  • the polymer according to the exemplary embodiment of the present specification includes a monomer derived from the compound represented by Chemical Formula 1 as described above. Because of this, since the ion-transfer functional group including the partial fluorine-based in the polymer is present in the pendant (pendant) form, the ion-transfer functional groups in the polymer easily gather together to facilitate phase separation to easily form an ion channel, and consequently form the polymer It is possible to implement the effect of improving the ion conductivity of the polymer electrolyte membrane comprising. In addition, since the monomer unit structure includes at least two acid units (acid units), the effect of improving the ion conductivity is more excellent.
  • the polymer may be a random polymer.
  • a polymer having a high molecular weight can be obtained by a simple polymerization method.
  • the monomer derived from the compound represented by Formula 1 serves to control the ionic conductivity of the polymer electrolyte membrane including the polymer, the remaining proportion of the comonomer polymerized in a random form serves to improve the mechanical strength do.
  • the monomer derived from the compound represented by Formula 1 may be included in 0.1 mol% to 100 mol% of the entire polymer.
  • the polymer includes only monomers derived from the compound represented by Chemical Formula 1.
  • the polymer may further include a second monomer other than the monomer derived from the compound represented by Chemical Formula 1.
  • the content of the monomer derived from the compound represented by the formula (1) is preferably 0.5 mol% to 65 mol%. More preferably, it may be 5 mol% to 65 mol%. Polymers comprising monomers derived from compounds within this range have mechanical strength and high ionic conductivity.
  • the second monomer those known in the art may be used. In this case, one kind or two or more kinds of the second monomer may be used.
  • Examples of the second monomer include perfluorosulfonic acid polymer, hydrocarbon-based polymer, polyimide, polyvinylidene fluoride, polyethersulfone, polyphenylene sulfide, polyphenylene oxide, polyphosphazine, polyethylene naphthalate, polyester, Doped polybenzimidazoles, polyetherketones, polysulfones, monomers thereof or bases thereof may be used.
  • the content of the second monomer in the polymer may be greater than 0 wt% and 99.9 wt% or less.
  • the polymer when the polymer includes the second monomer, the polymer may be a random polymer.
  • the polymer is represented by the following formula (5).
  • An exemplary embodiment of the present specification also provides a polymer electrolyte membrane including the polymer.
  • the polymer electrolyte membrane may exhibit the above effects.
  • electrolyte membrane is a membrane capable of exchanging ions, such as membrane, ion exchange membrane, ion transfer membrane, ion conductive membrane, separator, ion exchange membrane, ion transfer membrane, ion conductive separator, ion exchange electrolyte membrane, ion And a transfer electrolyte membrane or an ion conductive electrolyte membrane.
  • the polymer electrolyte membrane according to the present specification may be manufactured using materials and / or methods known in the art, except for including monomers derived from the compound represented by Chemical Formula 1.
  • the weight average molecular weight of the polymer included in the polymer electrolyte membrane may be 500 or more and 5,000,000 or less (g / mol), and specifically 20,000 or more and 2,000,000 or less (g / mol).
  • the weight average molecular weight of the copolymer is 500 or more and 5,000,000 or less (g / mol)
  • the mechanical properties of the electrolyte membrane are not lowered, so that the preparation of the electrolyte membrane can be facilitated by maintaining appropriate solubility of the polymer.
  • the ion exchange capacity (IEC) value of the polymer electrolyte membrane is 0.01 mmol / g to 7 mmol / g.
  • IEC ion exchange capacity
  • the thickness of the electrolyte membrane may be 1 ⁇ m to 500 ⁇ m, and specifically 5 ⁇ m to 200 ⁇ m.
  • the thickness of the electrolyte membrane is 1 ⁇ m to 500 ⁇ m, electric short and crossover of the electrolyte material may be reduced, and excellent cation conductivity may be exhibited.
  • the ionic conductivity of the polymer electrolyte membrane may be 0.001 S / cm or more and 0.5 S / cm or less, specifically, may be 0.01 S / cm or more and 0.5 S / cm or less.
  • the ionic conductivity of the polymer electrolyte membrane may be measured under humidification conditions.
  • the humidification condition may mean full humidification condition, may mean 10% to 100% relative humidity (RH), or may mean 30% to 100% relative humidity (RH).
  • the ionic conductivity of the polymer electrolyte membrane may be 0.001 S / cm or more and 0.5 S / cm or less, and may be measured at 10% to 100% relative humidity (RH).
  • the ionic conductivity of the polymer electrolyte membrane may be 0.01 S / cm or more and 0.5 S / cm or less, and may be measured at a relative humidity (RH) of 30% to 100%.
  • the polymer may be in the form of a metal salt.
  • the metal salt may be substituted in the form of an acid.
  • it may be a general acid solution used for the acid treatment, specifically, may be hydrochloric acid or sulfuric acid.
  • the concentration of the acid solution may be 0.1M or more and 10M or less, specifically 1M or more and 2M or less.
  • concentration of the acid solution is 0.1M or more and 10M or less, it can be easily replaced with hydrogen instead of M without damaging the electrolyte membrane.
  • One embodiment of the present specification also includes an anode; Cathode; It provides a membrane-electrode assembly comprising the above-described polymer electrolyte membrane provided between the anode and the cathode.
  • Membrane-electrode assembly is an electrode (cathode and anode) in which the electrochemical catalysis of fuel and air occurs and a polymer membrane in which hydrogen ions are transferred.
  • the electrode (cathode and anode) and the electrolyte membrane are bonded together. It is a single unitary unit.
  • the membrane-electrode assembly of the present specification is a form in which the catalyst layer of the anode and the catalyst layer of the cathode are in contact with the electrolyte membrane, and may be prepared according to conventional methods known in the art.
  • the anode electrode may include an anode catalyst layer and an anode gas diffusion layer.
  • the anode gas diffusion layer may again include an anode microporous layer and an anode electrode substrate.
  • the cathode electrode may include a cathode catalyst layer and a cathode gas diffusion layer.
  • the cathode gas diffusion layer may further include a cathode microporous layer and a cathode electrode substrate.
  • FIG. 1 schematically illustrates the principle of electricity generation of a fuel cell.
  • the most basic unit for generating electricity is a membrane electrode assembly (MEA), which is an electrolyte membrane 100 and the electrolyte membrane 100. It consists of an anode (200a) and a cathode (200b) electrode formed on both sides of the.
  • MEA membrane electrode assembly
  • an anode 200a generates an oxidation reaction of a fuel such as hydrogen or a hydrocarbon such as methanol and butane to generate hydrogen ions (H + ) and electrons (e ⁇ ).
  • the hydrogen ions move to the cathode 200b through the electrolyte membrane 100.
  • water is generated by reacting hydrogen ions transferred through the electrolyte membrane 100 with an oxidant such as oxygen and electrons. This reaction causes the movement of electrons in the external circuit.
  • the catalyst layer of the anode electrode is where the oxidation reaction of the fuel occurs, the catalyst is selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy and platinum-transition metal alloy. Can be used.
  • the catalyst layer of the cathode electrode is where the reduction reaction of the oxidant occurs, platinum or platinum-transition metal alloy may be preferably used as a catalyst.
  • the catalysts can be used on their own as well as supported on a carbon-based carrier.
  • the introduction of the catalyst layer may be carried out by conventional methods known in the art, for example, the catalyst ink may be directly coated on the electrolyte membrane or coated on the gas diffusion layer to form the catalyst layer.
  • the coating method of the catalyst ink is not particularly limited, but spray coating, tape casting, screen printing, blade coating, die coating or spin coating may be used.
  • Catalytic inks can typically consist of a catalyst, a polymer ionomer, and a solvent.
  • the gas diffusion layer serves as a passage for the reaction gas and water together with a role as a current conductor, and has a porous structure. Therefore, the gas diffusion layer may include a conductive substrate. As the conductive substrate, carbon paper, carbon cloth or carbon felt may be preferably used. The gas diffusion layer may further include a microporous layer between the catalyst layer and the conductive substrate. The microporous layer may be used to improve the performance of the fuel cell in low-humidity conditions, and serves to reduce the amount of water flowing out of the gas diffusion layer so that the electrolyte membrane is in a sufficient wet state.
  • One embodiment of the present specification includes two or more of the aforementioned membrane-electrode assemblies; A stack comprising a bipolar plate provided between the membrane-electrode assemblies; A fuel supply unit supplying fuel to the stack; And it provides a polymer electrolyte fuel cell comprising an oxidant supply unit for supplying an oxidant to the stack.
  • the electrolyte membrane according to one embodiment of the present specification is used as an ion exchange membrane of a fuel cell, the above-described effects can be obtained.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy.
  • a fuel cell is a power generation method that uses fuel gas and an oxidant and generates electric power by using electrons generated during the redox reaction.
  • the fuel cell can be manufactured according to conventional methods known in the art using the membrane-electrode assembly (MEA) described above.
  • MEA membrane-electrode assembly
  • it may be prepared by configuring a membrane-electrode assembly (MEA) and a bipolar plate prepared above.
  • the fuel cell of the present specification includes a stack, a fuel supply unit and an oxidant supply unit.
  • FIG. 3 schematically illustrates the structure of a fuel cell, in which the fuel cell includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or two or more membrane electrode assemblies as described above, and includes two or more separators interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply unit 70 serves to supply the oxidant to the stack 60.
  • Oxygen is typically used as the oxidant, and may be used by injecting oxygen or air into the oxidant supply unit 70.
  • the fuel supply unit 80 serves to supply fuel to the stack 60, and to the fuel tank 81 storing fuel and the pump 82 supplying fuel stored in the fuel tank 81 to the stack 60.
  • fuel hydrogen or hydrocarbon fuel in gas or liquid state may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • the fuel cell may be a polymer electrolyte fuel cell, a direct liquid fuel cell, a direct methanol fuel cell, a direct formic acid fuel cell, a direct ethanol fuel cell, or a direct dimethyl ether fuel cell.
  • an exemplary embodiment of the present specification includes a positive electrode cell including a positive electrode and a positive electrode electrolyte; A cathode cell comprising a cathode and a cathode electrolyte; And it provides a redox flow battery comprising a polymer electrolyte membrane according to one embodiment of the present specification provided between the cathode cell and the anode cell.
  • the redox flow battery (redox flow battery) is an electrochemical storage device that stores the chemical energy of an active material directly as electrical energy. It is a system in which the active material contained in the electrolyte is oxidized, reduced, and charged and discharged. to be.
  • the redox flow battery uses a principle that charges and discharges are exchanged when electrons containing active materials having different oxidation states meet with an ion exchange membrane interposed therebetween.
  • a redox flow battery is composed of a tank containing an electrolyte solution, a battery cell in which charging and discharging occurs, and a circulation pump for circulating the electrolyte solution between the tank and the battery cell, and the unit cell of the battery cell includes an electrode, an electrolyte, and an ion. Exchange membrane.
  • the electrolyte membrane according to one embodiment of the present specification is used as an ion exchange membrane of a redox flow battery, the above-described effects may be exhibited.
  • the redox flow battery of the present specification may be manufactured according to conventional methods known in the art, except for including the polymer electrolyte membrane according to one embodiment of the present specification.
  • the redox flow battery is divided into the positive electrode cell 32 and the negative electrode cell 33 by the electrolyte membrane 31.
  • the anode cell 32 and the cathode cell 33 include an anode and a cathode, respectively.
  • the anode cell 32 is connected to the anode tank 10 for supplying and discharging the anode electrolyte 41 through a pipe.
  • the cathode cell 33 is also connected to the cathode tank 20 for supplying and discharging the cathode electrolyte 42 through a pipe.
  • the electrolyte is circulated through the pumps 11 and 21, and an oxidation / reduction reaction (that is, a redox reaction) in which the oxidation number of ions changes occurs, thereby causing charge and discharge at the anode and the cathode.
  • an oxidation / reduction reaction that is, a redox reaction
  • An exemplary embodiment of the present specification also provides a method of manufacturing the electrolyte membrane.
  • the preparation method of the electrolyte membrane may be prepared using materials and / or methods of the art, except for including a polymer including a monomer derived from the compound represented by Chemical Formula 1.
  • the polymer electrolyte membrane may be prepared by adding the polymer to a solvent to form a polymer solution and then forming a polymer solution using a solvent casting method.
  • the organic layer was dried over MgSO 4 and distilled under reduced pressure to obtain a crude sulfonyl chloride compound.
  • the sulfonyl chloride compound was dissolved in CH 2 Cl 2 without further purification, cooled to 0 ° C. and 100 ml of ammonia was slowly added dropwise. After slowly raising the temperature and reacting at room temperature for 16 hours, the mixture was distilled under reduced pressure under high pressure. The obtained compound was dissolved in ethyl acetate and washed several times with water. The organic layer was dried over MgSO 4 and distilled under reduced pressure to obtain 4.58 g (45.9%) of the compound.
  • Each monomer and potassium carbonate (K 2 CO 3 : molar ratio 4) were mixed in an NMP 20 wt% ratio and a benzene 20 wt% ratio, and polymerized at 140 ° C. for 4 hours and at 180 ° C. for 16 hours to prepare the polymer. .
  • An electrolyte membrane was prepared using the obtained polymer, the molecular weight was measured through GPC, and the result of measuring the cation conductivity and ion exchange capacity (IEC) of the pure membrane was described.
  • the polymer was prepared by using a monomer in a meta position based on a disulfonamide (-SO 2 NHSO 2- ) linker.
  • the electrolyte membrane was prepared using the polymer, and the results of measuring the cation conductivity and ion exchange capacity (IEC) of the pure membrane are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

본 명세서는 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자, 이를 포함하는 고분자 전해질막, 상기 고분자 전해질막을 포함하는 막-전극 접합체, 상기 막-전극 접합체를 포함하는 연료 전지 및 상기 고분자 전해질막을 포함하는 레독스 플로우 전지에 관한 것이다.

Description

방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
본 출원은 2015년 1월 26일에 한국특허청에 제출된 한국 특허 출원 제10-2015-0011994호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막에 관한 것이다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다. 연료전지의 막 전극 접합체(MEA)는 수소와 산소의 전기화학적 반응이 일어나는 부분으로서 캐소드와 애노드 그리고 전해질막, 즉 이온 전도성 전해질막으로 구성되어 있다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)란 전해액에 포함되어 있는 활성물질이 산화·환원되어 충전·방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지의 단위셀은 전극, 전해질 및 이온교환막(전해질막)을 포함한다.
연료전지 및 레독스 플로우 전지는 높은 에너지 효율성과 오염물의 배출이 적은 친환경적인 특징으로 인하여 차세대 에너지원으로 연구 개발되고 있다.
연료전지 및 레독스 플로우 전지에서 가장 핵심이 되는 구성요소는 양이온 교환이 가능한 고분자 전해질막으로서, 1) 우수한 양성자 전도도 2) 전해질의 크로스오버(Cross Over) 방지, 3) 강한 내화학성, 4) 기계적 물성 강화 및/또는 4) 낮은 스웰링 비(Swelling Ratio)의 특성을 갖는 것이 좋다. 고분자 전해질막은 불소계, 부분불소계, 탄화수소계 등으로 구분이 되며, 부분불소계 고분자 전해질막의 경우, 불소계 주 사슬을 가지고 있어 물리적, 화학적 안정성이 우수하며, 열적 안정성 높다는 장점이 있다. 또한, 부분불소계 고분자 전해질막은 불소계 고분자 전해질막과 마찬가지로 양이온 전달 관능기가 불소계 사슬의 말단에 붙어있어, 탄화수소계 고분자 전해질막과 불소계 고분자 전해질막의 장점을 동시에 가지고 있다.
연료전지 및/또는 레독스 플로우 전지의 경우, 저가습 조건에서 운전할 경우 양극의 반응성이 향상되고 수막현상 및 촉매의 오염을 저감하는 등의 다양한 장점이 있다. 그러나, 일반적으로 사용되고 있는 고분자 전해질막의 경우, 저가습 조건에서 양이온 전도도 등의 물성이 감소하여 급격한 전지 성능 저하를 보인다는 문제점이 있다. 따라서, 이를 해결하기 위한 연구가 필요한 실정이다.
[특허문헌]
대한민국 공개공보 제2003-0076057호
본 명세서는 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막을 제공하고자 한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 방향족 고리를 포함하는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2016000834-appb-I000001
상기 화학식 1에서,
A는 직접결합, S, O, NH 또는 SO2이고,
B 및 Q는 서로 같거나 상이하고, 각각 독립적으로 하기 화학식 2 또는 3으로 표시되며,
[화학식 2]
Figure PCTKR2016000834-appb-I000002
[화학식 3]
Figure PCTKR2016000834-appb-I000003
n은 1 내지 16의 정수이고,
m, n1 및 n2는 각각 0 내지 16의 정수이며,
n 및 m이 각각 2 이상의 정수일 경우, 복수의 괄호 내의 구조는 서로 같거나 상이하고,
R1 내지 R5 중 두 개 내지 네 개는 서로 같거나 상이하고, 각각 독립적으로 히드록시기 또는 할로겐기이며, 나머지는 수소이며,
R6은 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+, -PO3 2-2M+ 및 하기 화학식 4로 표시되는 기로 이루어진 군에서 선택되고,
[화학식 4]
Figure PCTKR2016000834-appb-I000004
상기 화학식 4에 있어서,
R7 내지 R9 중 적어도 하나는 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+ 및 -PO3 2-2M+으로 이루어진 군에서 선택되며, 나머지는 수소이며,
상기
Figure PCTKR2016000834-appb-I000005
는 화학식 1의 Q에 결합되는 부위이고
M은 1족 원소이다.
본 명세서의 일 실시상태는 상기 화학식 1의 화합물로부터 유래되는 단량체를 포함하는 고분자를 제공한다.
본 명세서는 일 실시상태는 상기 화학식 1의 화합물로부터 유래되는 단량체를 포함하는 중합체를 포함하는 것을 특징으로 하는 고분자 전해질막을 제공한다.
또한, 본 명세서의 일 실시상태는 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 전술한 고분자 전해질막을 포함하는 막-전극 접합체를 제공한다.
또한, 본 명세서의 일 실시상태는 2 이상의 전술한 막-전극 접합체;
상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택;
상기 스택으로 연료를 공급하는 연료공급부; 및
상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지를 제공한다.
본 명세서의 일 실시상태는 또한,
양극 및 양극 전해액을 포함하는 양극 셀;
음극 및 음극 전해액을 포함하는 음극 셀; 및
상기 양극 셀과 상기 음극 셀 사이에 구비되는 전술한 고분자 전해질막을 포함하는 레독스 플로우 전지를 제공한다.
본 명세서의 일 실시상태에 따른 화합물로부터 유래된 단량체를 포함하는 고분자를 이용하여 제조된 고분자 전해질막은 이온 전도도가 우수하다.
또한, 본 명세서의 일 실시상태에 따른 화합물로부터 유래된 단량체를 포함하는 고분자를 이용하여 제조된 고분자 전해질막은 단위 구조 당 적어도 2개의 산단위를 가지기 때문에 높은 이온교환용량(IEC, ion exchange capacity) 값을 가지고, 그 결과, 고가습 및/또는 저가습 조건에서 이온 전도도가 향상될 수 있다.
또한, 상기 고분자 전해질막을 포함하는 연료전지 및/또는 레독스 플로우 전지는 내구성 및 효율이 우수하다.
도 1은 연료전지의 전기 발생 원리를 나타내는 개략적인 도면이다.
도 2는 레독스 플로우 전지의 일반적인 구조를 개략적으로 도시한 도면이다.
도 3은 연료전지의 일 실시예를 개략적으로 나타낸 도면이다.
이하 본 명세서에 대하여 더욱 상세히 설명한다.
일반적으로 사용되는 고분자 전해질막의 경우, 고가습 상태에서는 우수한 효율을 보이지만 저가습 조건에서는 양이온 전도도가 낮아지는 문제점이 있다. 그러나, 본 명세서에서는 전술한 화학식 1로 표시되는 화합물을 이용함으로써 상기 문제점을 개선할 수 있다.
구체적으로, 본 명세서에 있어서, 상기 화학식 1로 표시되는 화합물은 산(acid)으로 작용할 수 있는 디설폰아미드(disulfonamide, -SO2NHSO2-)를 포함하는 두개의 벤젠고리를 연결하는 링커와 상기 링커의 말단에 산(acid) 또는 적어도 1개의 산(acid)으로 치환된 벤젠고리를 포함한다. 상기 산(acid)은 이온 전달 관능기로서, -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+ 및 -PO3 2-2M+으로 이루어진 군에서 선택된다. 따라서, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함하는 중합체는 증가된 단위 유닛(unit)당 산의 개수를 보이며, 상기 중합체를 포함하는 고분자 전해질막의 이온교환용량(IEC)값이 증가될 수 있다. 결과적으로 상기 고분자 전해질막은 고가습 조건뿐만 아니라 저가습 조건에서도 우수한 양이온 전도도를 나타낼 수 있다.
본 명세서의 일 실시상태에 따르면, 1족 원소인 M은 Li, Na 또는 K일 수 있다.
본 명세서의 일 실시상태에 따르면, R1 내지 R5 중 두 개는 할로겐기이다. 이 때, 할로겐기는 염소 또는 불소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R1 및 R5는 할로겐기이고, 상기 R2 내지 R4는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R2 및 R5는 할로겐기이고, 상기 R1, R3 및 R4는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R3 및 R5는 할로겐기이고, 상기 R1, R2 및 R4는 수소이다.
또 하나의 실시상태에 따르면, 상기 화학식 1에 있어서, R2 및 R4는 할로겐기 또는 히드록시기이고, R1, R3 및 R5는 수소이다.
본 명세서의 일 실시상태에 따르면, R1 내지 R5 중 세 개는 할로겐기이고, 나머지는 수소이다. 이 때, 할로겐기는 염소 또는 불소일 수 있다.
본 명세서의 일 실시상태에 따르면, R1 내지 R5 중 네 개는 할로겐기이고, 나머지는 수소이다. 이 때, 할로겐기는 염소 또는 불소일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, R6이 화학식 4이고, 상기 화학식 4의 R7 내지 R9가 두개의 벤젠고리를 이어주는 링커가 치환되어 있는 탄소와의 관계에서 오르쏘(ortho) 및/또는 파라(para)에 위치한다. 두개의 벤젠고리를 이어주는 링커는 전자 끌개 효과(electron withdrawing effect)를 보이는 작용기 및/또는 헤테로원자를 포함하며, 이들에 대하여 오르쏘(ortho) 및/또는 파라(para)위치에 있는 이온 전달 관능기(R6 내지 R8)의 산도가 증가한다. 결과적으로, 이를 포함하는 고분자를 포함하는 고분자 전해질막은 향상된 양이온 전도도를 보일 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, A는 S, O 또는 SO2이다. 이 경우, 상기 화학식 1로 표시되는 방향족 고리를 포함하는 화합물 합성이 보다 용이하다는 장점이 있다.본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, A는 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, A는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, A는 O이다.
본 명세서의 일 실시상태에 따르면, A는 O 또는 SO2이다. 전해질의 강산 또는 전해질에서 생성되는 라디컬(radical)에 의해 쉽게 분해되지 않은 술포닐기 또는 에테르기의 화학적 안정성으로 인하여, A가 O 또는 SO2인 경우, 이를 포함하는 전해질막은 향상된 내구성을 보일 수 있다. 특히, 레독스 플로우 전지의 경우 전해질의 바나듐이 산화제로 작용하여, 링커인 A가 S일 경우, SO(sulfoxide)로 산화되어 쉽게 분해될 수 있는 문제점을 방지하기 위하여, A가 O 또는 SO2인 것이 가장 바람직하다.
본 명세서의 일 실시상태에 따르면, A는 NH이다.
본 명세서의 일 실시상태에 따르면, B는 화학식 2로 표시될 수 있다. 이 경우, 화학식 2는 하기 화학식 2-1로 표시되는 것이 바람직하다.
[화학식 2-1]
Figure PCTKR2016000834-appb-I000006
상기 화학식 2-1 에서 m은 1 내지 8의 정수이다.
또 하나의 실시상태에 따르면, B는 화학식 3으로 표시될 수 있다.
본 명세서에 있어서, n이 2 이상일 경우, 복수의 B는 서로 동일하거나 상이하다. 예를 들면, n이 2인 경우, 2개의 B는 모두 화학식 2로 표시될 수도 있고, 모두 화학식 3으로 표시될 수도 있으며, 1개의 B는 화학식 2로 1개의 B는 화학식 3으로 표시될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 4에 있어서, R7 내지 R9 중 적어도 하나는 이온 전달 관능기이며, 상기 이온 전달 관능기는 두개의 벤젠고리를 연결시켜주는 링커(-A-[B]n-S02NHSO2-[Q]m-)와의 관계에서 오르쏘(ortho) 및/또는 파라(para)에 위치한다. 전술한 바와 같이, 이온 전달 관능기가 오르쏘(ortho) 및/또는 파라(para)에 위치함으로써, 중합 반응시 향상된 반응성을 보일 수 있다.
본 명세서의 일 실시상태에 따르면, R7 내지 R9 중 적어도 하나는 -SO3H 또는 -SO3 -M+이다. 술폰산기는 1 mole당 최대 약 10 mole의 물을 흡수하여, 약 0.1 Scm-1의 높은 양성자 전도율을 나타낸다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n은 1이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1에 있어서, n은 2 이상일 수 있다. B가 화학식 2로만 표시되는 경우, n은 2 이상의 정수인 것이 바람직하다.
본 명세서의 일 실시상태에 따르면, 상기 m은 0 내지 2의 정수이고, 상기 m 이 2 인 경우, 복수의 Q는 서로 같거나 상이하다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 3에 있어서, n1 및 n2는 1이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 하기의 구조들 중 선택되는 어느 하나일 수 있다.
Figure PCTKR2016000834-appb-I000007
Figure PCTKR2016000834-appb-I000008
Figure PCTKR2016000834-appb-I000009
Figure PCTKR2016000834-appb-I000010
Figure PCTKR2016000834-appb-I000011
상기 화학식 1로 표시되는 화합물은 후술하는 제조예를 기초로 제조될 수 있다.
본 명세서의 일 실시상태는 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함하는 중합체를 제공한다. 상기의 단량체는 전술한 바와 같이 중합 반응시 향상된 반응성을 보인다는 장점이 있다.
본 명세서에 있어서, "단량체"는 화합물이 중합반응에 의해서 중합체 내에서 2가기 이상의 형태로 포함되는 구조를 의미한다. 구체적으로, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체는 하기와 같은 구조를 가질 수 있다. 다만, 이에 의하여 한정되는 것은 아니다.
Figure PCTKR2016000834-appb-I000012
본 명세서의 일 실시상태에 따른 상기 중합체는 전술한 바와 같이, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함한다. 이로 인하여, 중합체 내에서 부분불소계를 포함하는 이온전달관능기가 펜던트(pendant) 형태로 존재하기 때문에 중합체 내에서 이온전달관능기들끼리 잘 모여 상분리가 용이해서 이온 채널을 쉽게 형성하고, 결과적으로 상기 중합체를 포함하는 고분자 전해질막의 이온전도도가 향상되는 효과를 구현할 수 있다. 또한, 단량체 단위구조 당 적어도 2개의 산 단위(acid unit)을 포함하기 때문에 이온 전도도 향상의 효과가 더욱 우수하다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 랜덤 중합체일 수 있다. 이 경우, 간단한 중합 방법으로 높은 분자량을 갖는 중합체를 얻을 수 있다.
이 때, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체는 상기 중합체를 포함하는 고분자 전해질막의 이온 전도도를 조절하는 역할을 하고, 랜덤 형태로 중합되는 나머지 비율의 공단량체는 기계적 강도를 향상시키는 역할을 한다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체는 전체 중합체의 0.1 몰% 내지 100 몰%로 포함될 수 있다. 구체적으로 중합체는 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체만을 포함한다. 또 다른 실시상태에 있어서, 상기 중합체는 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체 이외의 제2 단량체를 더 포함할 수 있다. 이 경우, 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체의 함량은 0.5 몰% 내지 65 몰%인 것이 바람직하다. 더욱 바람직하게는 5 몰% 내지 65 몰%일 수 있다. 상기 범위 내의 화합물로부터 유래되는 단량체를 포함하는 중합체는 기계적 강도와 높은 이온 전도도를 갖는다.
상기 제2 단량체는 당 기술분야에 알려져 있는 것들이 사용될 수 있다. 이때, 제2 단량체는 1종류 또는 2종류 이상이 사용될 수 있다.
상기 제2 단량체의 예로는 퍼플루오르술폰산 폴리머, 탄화수소계 폴리머, 폴리이미드, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리페닐렌설파이드, 폴리페닐렌옥사이드, 폴리포스파진, 폴리에틸렌나프탈레이트, 폴리에스테르, 도핑된 폴리벤즈이미다졸, 폴리에테르케톤, 폴리술폰, 이들의 산 또는 이들의 염기를 구성하는 단량체가 사용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체 중 제2 단량체의 함량은 0 중량% 초과 99.9 중량% 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체가 상기 제2 단량체를 포함하는 경우, 상기 중합체는 랜덤 중합체일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 중합체는 하기 화학식 5로 표시된다.
[화학식 5]
Figure PCTKR2016000834-appb-I000013
상기 화학식 5에 있어서,
상기 p 및 q는 각각 0 초과 1 미만이며, p+q=1이다.
본 명세서의 일 실시상태는 또한, 상기의 중합체를 포함하는 고분자 전해질막을 제공한다. 상기 고분자 전해질막은 전술한 효과를 나타낼 수 있다.
본 명세서에서 "전해질막"은 이온을 교환할 수 있는 막으로서, 막, 이온교환막, 이온전달막, 이온 전도성 막, 분리막, 이온교환 분리막, 이온전달 분리막, 이온 전도성 분리막, 이온 교환 전해질막, 이온전달 전해질막 또는 이온 전도성 전해질막 등을 포함한다.
본 명세서에 따른 고분자 전해질막은 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함하는 것을 제외하고는 당 기술분야에 알려진 재료 및/또는 방법이 이용되어 제조될 수 있다.
또 하나의 일 실시상태에 따르면, 상기 고분자 전해질막에 포함되는 중합체의 중량평균분자량은 500 이상 5,000,000 이하 (g/mol)일 수 있고, 구체적으로 20,000 이상 2,000,000 이하 (g/mol)일 수 있다.
상기 공중합체의 중량평균분자량이 500 이상 5,000,000 이하(g/mol)일 때, 전해질막의 기계적 물성이 저하되지 않고, 적절한 고분자의 용해도를 유지하여 전해질막의 제작을 용이하게 할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 전해질막의 이온교환용량(IEC) 값은 0.01 mmol/g 내지 7 mmol/g 이다. 상기 이온교환용량값의 범위를 갖는 경우에는 상기 고분자 전해질막에서의 이온 채널이 형성되고, 중합체가 이온 전도도를 나타낼 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전해질막의 두께는 1 ㎛ 내지 500 ㎛일 수 있고, 구체적으로 5 ㎛ 내지 200 ㎛일 수 있다. 전해질막의 두께가 1 ㎛ 내지 500 ㎛일 때, 전기적 쇼트(Electric Short) 및 전해질 물질의 크로스오버(Cross Over)를 저하시키고, 우수한 양이온 전도도 특성을 나타낼 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 0.001 S/cm 이상 0.5 S/cm 이하일 수 있으며, 구체적으로, 0.01 S/cm 이상 0.5 S/cm 이하일 수 있다.
또 하나의 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 가습 조건에서 측정될 수 있다. 가습조건이란 풀(full) 가습 조건을 의미할 수도 있고, 상대 습도(RH) 10% 내지 100% 를 의미할 수도 있으며, 상대 습도(RH) 30% 내지 100%를 의미할 수도 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 0.001 S/cm 이상 0.5 S/cm 이하일 수 있으며, 상대 습도(RH) 10% 내지 100% 에서 측정될 수 있다. 또 하나의 실시상태에 따르면, 상기 고분자 전해질막의 이온 전도도는 0.01 S/cm 이상 0.5 S/cm 이하일 수 있으며, 상대 습도(RH) 30% 내지 100% 에서 측정될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 중의 적어도 일부가 금속염의 형태일 수 있다. 또한, 상기 금속염은 산의 형태로 치환될 수 있다.
구체적으로, 상기 화학식 1에서 R7 내지 R9 중 적어도 하나가 -SO3 -M+, -COO-M+, -PO3H-M+, 또는 -PO3 2-2M+인 고분자에 산 용액을 가하여 금속 M 대신 H(수소)로 치환된 고분자를 포함하는 전해질막을 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 산 처리에 사용되는 일반적인 산 용액일 수 있으며, 구체적으로 염산 또는 황산일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 산 용액의 농도는 0.1M 이상 10M 이하일 수 있고, 구체적으로 1M 이상 2M 이하일 수 있다. 상기 산 용액의 농도가 0.1M 이상 10M 이하일 때, 전해질막의 손상 없이 M 대신 수소로 용이하게 치환할 수 있다.
본 명세서의 일 실시상태는 또한, 애노드; 캐소드; 상기 애노드와 상기 캐소드 사이에 구비된 전술한 고분자 전해질막을 포함하는 막-전극 접합체를 제공한다.
막-전극 접합체(MEA)는 연료와 공기의 전기화학 촉매 반응이 일어나는 전극(캐소드와 애노드)과 수소 이온의 전달이 일어나는 고분자 막의 접합체를 의미하는 것으로서, 전극(캐소드와 애노드)과 전해질막이 접착된 단일의 일체형 유니트(unit)이다.
본 명세서의 상기 막-전극 접합체는 애노드의 촉매층과 캐소드의 촉매층이 전해질막에 접촉하도록 하는 형태로서, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 상기 캐소드; 애노드; 및 상기 캐소드와 상기 애노드 사이에 위치하는 전해질막을 밀착시킨 상태에서 100 내지 400℃로 열압착하여 제조될 수 있다.
애노드 전극은 애노드 촉매층과 애노드 기체확산층을 포함할 수 있다. 애노드 기체확산층은 다시 애노드 미세 기공층과 애노드 전극 기재를 포함할 수 있다.
캐소드 전극은 캐소드 촉매층과 캐소드 기체확산층을 포함할 수 있다. 캐소드 기체확산층은 다시 캐소드 미세 기공층과 캐소드 전극 기재를 포함할 수 있다.
도 1은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 전해질막(100)과 이 전해질막(100)의 양면에 형성되는 애노드(200a) 및 캐소드(200b) 전극으로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1을 참조하면, 애노드(200a)에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 전해질막(100)을 통해 캐소드(200b)로 이동한다. 캐소드(200b)에서는 전해질막(100)을 통해 전달된 수소 이온과, 산소와 같은 산화제 및 전자가 반응하여 물이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
상기 애노드 전극의 촉매층은 연료의 산화 반응이 일어나는 곳으로, 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 및 백금-전이금속 합금으로 이루어진 군에서 선택되는 촉매가 바람직하게 사용될 수 있다. 상기 캐소드 전극의 촉매층은 산화제의 환원 반응이 일어나는 곳으로, 백금 또는 백금-전이금속 합금이 촉매로 바람직하게 사용될 수 있다. 상기 촉매들은 그 자체로 사용될 수 있을 뿐만 아니라 탄소계 담체에 담지되어 사용될 수 있다.
촉매층을 도입하는 과정은 당해 기술 분야에 알려져 있는 통상적인 방법으로 수행할 수 있는데, 예를 들면 촉매 잉크를 전해질막에 직접적으로 코팅하거나 기체확산층에 코팅하여 촉매층을 형성할 수 있다. 이때 촉매 잉크의 코팅 방법은 특별하게 제한되는 것은 아니지만, 스프레이 코팅, 테이프 캐스팅, 스크린 프린팅, 블레이드 코팅, 다이 코팅 또는 스핀 코팅 방법 등을 사용할 수 있다. 촉매 잉크는 대표적으로 촉매, 폴리머 이오노머(polymer ionomer) 및 용매로 이루어질 수 있다.
상기 기체확산층은 전류전도체로서의 역할과 함께 반응 가스와 물의 이동 통로가 되는 것으로, 다공성의 구조를 가진다. 따라서, 상기 기체확산층은 도전성 기재를 포함하여 이루어질 수 있다. 도전성 기재로는 탄소 페이퍼(carbon paper), 탄소 천공(carbon cloth) 또는 탄소 펠트(carbon felt)가 바람직하게 사용될 수 있다. 상기 기체확산층은 촉매층 및 도전성 기재 사이에 미세기공층을 더 포함하여 이루어질 수 있다. 상기 미세기공층은 저가습 조건에서의 연료전지의 성능을 향상시키기 위하여 사용될 수 있으며, 기체확산층 밖으로 빠져나가는 물의 양을 적게하여 전해질막이 충분한 습윤상태에 있도록 하는 역할을 한다.
본 명세서의 일 실시상태는 2 이상의 전술한 막-전극 접합체; 상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택; 상기 스택으로 연료를 공급하는 연료공급부; 및 상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지를 제공한다.
본 명세서의 일 실시상태에 따른 전해질막을 연료전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다.
연료전지는 전술한 막-전극 접합체(MEA)를 사용하여 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 예를 들면, 상기에서 제조된 막-전극 접합체(MEA)와 바이폴라 플레이트(bipolar plate)로 구성하여 제조될 수 있다.
본 명세서의 연료전지는 스택, 연료공급부 및 산화제공급부를 포함하여 이루어진다.
도 3은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 상술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 산화제 공급부(70)로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 연료전지는 고분자 전해질 연료전지, 직접 액체 연료전지, 직접 메탄올 연료전지, 직접 개미산 연료전지, 직접 에탄올 연료전지, 또는 직접 디메틸에테르 연료전지 등이 가능하다.
또한, 본 명세서의 일 실시상태는 양극 및 양극 전해액을 포함하는 양극 셀; 음극 및 음극 전해액을 포함하는 음극 셀; 및 상기 양극 셀과 상기 음극 셀 사이에 구비되는 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 레독스 플로우 전지를 제공한다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)는 전해액에 포함되어 있는 활성물질이 산화·환원되어 충전·방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지는 산화상태가 다른 활성물질을 포함하는 전해액이 이온교환막을 사이에 두고 만날 때 전자를 주고받아 충전과 방전이 되는 원리를 이용한다. 일반적으로 레독스 플로우 전지는 전해액이 담겨있는 탱크와 충전과 방전이 일어나는 전지 셀, 그리고 전해액을 탱크와 전지 셀 사이에 순환시키기 위한 순환펌프로 구성되고, 전지 셀의 단위셀은 전극, 전해질 및 이온교환막을 포함한다.
본 명세서의 일 실시상태에 따른 전해질막을 레독스 플로우 전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
본 명세서의 레독스 플로우 전지는 본 명세서의 일 실시상태에 따른 고분자 전해질막을 포함하는 것을 제외하고는, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다.
도 2에 도시한 바와 같이, 레독스 플로우 전지는 전해질막(31)에 의해 양극 셀(32)과 음극 셀(33)로 나뉘어진다. 양극 셀(32)과 음극 셀(33)은 각각 양극과 음극을 포함한다. 양극 셀(32)은 파이프를 통해 양극 전해액(41)을 공급 및 방출하기 위한 양극 탱크(10)에 연결되어 있다. 음극 셀(33) 또한, 파이프를 통해 음극 전해액(42)을 공급 및 방출하기 위한 음극 탱크(20)에 연결되어 있다. 전해액은 펌프(11, 21)를 통해 순환되고, 이온의 산화수가 변화되는 산화/환원 반응(즉, 레독스 반응)이 일어남으로써 양극과 음극에서 충전 및 방전이 일어난다.
본 명세서의 일 실시상태는 또한, 상기 전해질막의 제조방법을 제공한다. 상기 전해질막의 제조방법은 상기 화학식 1로 표시되는 화합물로부터 유래되는 단량체를 포함하는 중합체를 포함하는 것을 제외하고는 당 기술분야의 재료 및/또는 방법이 이용되어 제조될 수 있다. 예컨대, 상기 중합체를 용매에 가하여 중합체 용액을 만든 후, 용매 캐스팅 방법을 이용하여 제막함으로서 고분자 전해질막을 제조할 수 있다.
[부호의 설명]
100: 전해질 막
200a: 애노드
200b: 캐소드
10, 20: 탱크
11, 21: 펌프
31: 전해질막
32: 양극 셀
33: 음극 셀
41: 양극 전해액
42: 음극 전해액
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것이며, 이에 의하여 본 명세서의 범위가 한정되는 것은 아니다.
<제조예 1> 2-((2,4-difluorophenyl)thio)-1,1,2,2-tetrafluoroethane-1-sulfonamide의 제조
Figure PCTKR2016000834-appb-I000014
2-((2,4-difluorophenyl)thio)-1,1,2,2-tetrafluoroethane-1-sulfonic acid 10g (30.65 mmol)을 POCl3 100ml에 녹인 후 PCl5 15.32g (73.57 mmol)을 첨가하고 120 ℃로 가열하였다. 반응물을 120℃에서 1시간 교반 후 다시 승온하여 150℃에서 2시간 더 교반시키고 실온으로 냉각하였다. 반응물을 고압하에서 감압 증류시켜 과량의 POCl3를 제거한 후 CH2Cl2에 녹이고 0℃의 물로 수차례 세척하였다. 유기층을 MgSO4로 건조하고 감압 증류하여 crude 형태의 sulfonyl chloride 화합물을 얻었다. sulfonyl chloride 화합물을 별도의 정제 과정없이 CH2Cl2에 녹이고 0℃로 냉각한 후 암모니아수 100ml를 천천히 적가 하였다. 온도를 천천히 올려 실온에서 16시간 반응 시킨 후 고압 하에서 감압 증류시켰다. 이때 얻어진 화합물을 에틸아세테이트에 녹인 후 물로 수 차례에 걸쳐 세척하고, 유기층을 MgSO4로 건조하고 감압 증류하여 상기의 화합물 4.58g (45.9%)을 얻었다.
1H NMR (500MHz,DMSO-D6) δ 8.78 (2H,brs), 7.83 (1H,m), 7.56 (1H,m), 7.28 (1H,m)
Mass 326 (M+H)
<제조예 2> 4-(N-((2-((2,4-difluorophenyl)thio)-1,1,2,2-tetrafluoro ethyl)sulfonyl)sulfamoyl)benzenesulfonyl chloride의 제조
Figure PCTKR2016000834-appb-I000015
제조예 1에서 얻어진 sulfonamide 4.58g (14.1 mmol)을 Acetonitrile 40ml에 녹인 후 1,4-benzenedisulfonyl chloride 4.26g (15.5 mmol)을 첨가하고 반응물을 0 ℃로 냉각 시켰다. 0 ℃에서 반응물에 Et3N 5.89ml (42.2 mol)을 천천히 적가한 후 서서히 실온으로 승온하여 1 내지 2시간 가량 교반하였다. 감압 증류하여 용매를 제거하여 얻은 crude 화합물을 에틸아세테이트에 녹인 후 1N HCl로 수차례 세척하여 Et3N을 제거하였다. 유기층을 분리하여 MgSO4로 건조하고 증류시킨 후 메텔렌 클로라이드 : 메틸 알코올 = 9 : 1 을 이용하여 컬럼크로마토그래피로 분리 정제하여 상기의 화합물 6.75g (85%)을 얻었다.
1H NMR (500MHz,DMSO-D6) δ 9.20 (1H,brs), 8.05 (4H,m), 7.74 (1H,m), 7.49 (1H,m), 7.23 (1H,m)
Mass 564 (M+H)
<제조예 3> 4-(N-((2-((2,4-difluorophenyl)thio)-1,1,2,2-tetrafluoro ethyl)sulfonyl)sulfamoyl)benzenesulfonic acid의 제조
Figure PCTKR2016000834-appb-I000016
제조예 2에서 얻어진 4-(N-((2-((2,4-difluorophenyl)thio)-1,1,2,2-tetrafluoro ethyl)sulfonyl)sulfamoyl)benzenesulfonyl chloride 6.75g (12.0 mmol)을 1,4-Dioxane 40ml에 녹인 후 10% HCl 40ml을 첨가하고 100℃로 가열하였다. 반응물을 100℃ 에서 16시간 동안 교반한 후 실온으로 냉각하고 감압 증류로 모든 용매를 제거 하였다. 이때 얻어진 crude 화합물을 H2O에 녹인 후 불순물을 제거하기 위해 CH2Cl2로 수차례 세척하고 남은 물층을 다시 감압 증류 하였다. CH2Cl2에 화합물을 녹인 후 n-Hexane에 서서히 적가하여 얻은 고체상의 화합물을 여과하고 N2 gas하에서 건조하여 상기의 화합물 5.62g (86.0%)을 얻었다.
1H NMR (500MHz,DMSO-D6) δ 9.20 (1H,brs), 8.50 (1H,brs). 8.15 (2H,m), 8.05 (2H,m), 7.72 (1H,m), 7.47 (1H,m), 7.21 (1H,m)
Mass 546 (M+H)
<실시예 1> 랜덤 중합체의 합성
Figure PCTKR2016000834-appb-I000017
각각의 모노머 및 탄산칼륨 (K2CO3: 몰 비 4)를 NMP 20 wt % 비율과 벤젠 20 wt % 비율로 혼합하여, 140 ℃에서 4시간, 180 ℃에서 16시간 중합하여 상기 중합체를 제조하였다.
상기 p 및 q는 각각 0 초과 1 미만이며, p+q=1이다.
얻어진 중합체를 이용하여 전해질막을 제조하고 GPC를 통해 분자량을 측정하고 순수막의 양이온 전도도 및 이온교환용량 (IEC)를 측정한 결과를 기재하였다.
Mn (g/mol) Mw (g/mol) Mw/Mn 이온전도도 (S/m) IEC
실시예 1 41,000 321,000 7.83 0.172 2.03
<비교예 1>
실시예 1과 같은 방법으로 술폰산의 위치가 디설폰아미드(disulfonamide, -SO2NHSO2-) linker를 기준으로 메타위치에 있는 모노머를 이용하여 중합체를 제조하였다. 중합체를 이용하여 전해질막을 제조하고 순수막의 양이온 전도도 및 이온교환용량 (IEC)를 측정한 결과를 하기 표 2에 나타내었다.
Multi acid 막 이온전도도(S/m) IEC
실시예 1 0.172 2.03
비교예 1 0.131 2.02
상기 표 2의 결과로 보아, 벤젠 고리에 있는 술폰산의 위치가 디설폰아미드(disulfonamide, -SO2NHSO2-) linker를 기준으로 메타위치에 있는 것보다 파라위치에 있는 고분자를 이용한 순수막의 양이온 전도도가 같은 조건에서 훨씬 높아 전해질막의 성능이 향상됨을 알 수 있었다.

Claims (17)

  1. 하기 화학식 1로 표시되는 방향족 고리를 포함하는 화합물:
    [화학식 1]
    Figure PCTKR2016000834-appb-I000018
    상기 화학식 1에서,
    A는 직접결합, S, O, NH 또는 SO2이고,
    B 및 Q는 서로 같거나 상이하고, 각각 독립적으로 하기 화학식 2 또는 3으로 표시되며,
    [화학식 2]
    Figure PCTKR2016000834-appb-I000019
    [화학식 3]
    Figure PCTKR2016000834-appb-I000020
    n은 1 내지 16의 정수이고,
    m, n1 및 n2는 각각 0 내지 16의 정수이며,
    n 및 m이 각각 2 이상의 정수일 경우, 복수의 괄호 내의 구조는 서로 같거나 상이하고,
    R1 내지 R5 중 두 개 내지 네 개는 서로 같거나 상이하고, 각각 독립적으로 히드록시기 또는 할로겐기이며, 나머지는 수소이며,
    R6은 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+, -PO3 2-2M+ 및 하기 화학식 4로 표시되는 기로 이루어진 군에서 선택되고,
    [화학식 4]
    Figure PCTKR2016000834-appb-I000021
    상기 화학식 4에 있어서,
    R7 내지 R9 중 적어도 하나는 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+ 및 -PO3 2-2M+으로 이루어진 군에서 선택되며, 나머지는 수소이며,
    상기
    Figure PCTKR2016000834-appb-I000022
    는 화학식 1의 Q에 결합되는 부위이고
    M은 1족 원소이다.
  2. 청구항 1에 있어서, 상기 R1 및 R5는 할로겐기이고, 상기 R2 내지 R4는 수소인 것인 화합물.
  3. 청구항 1에 있어서, 상기 R2 및 R5는 할로겐기이고, 상기 R1, R3 및 R4는 수소인 것인 화합물.
  4. 청구항 1에 있어서, 상기 R3 및 R5는 할로겐기이고, 상기 R1, R2 및 R4는 수소인 것인 화합물.
  5. 청구항 1에 있어서, 상기 R2 및 R4는 할로겐기 또는 히드록시기이고, 상기 R1, R3 및 R5는 수소인 것인 화합물.
  6. 청구항 1에 있어서, 상기 R7 내지 R9 중 적어도 하나는 -SO3H 또는 -SO3 -M+이고, 나머지는 수소이며, 상기 M의 정의는 화학식 1과 동일한 것인 화합물.
  7. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기의 구조들 중 선택되는 어느 하나인 것인 화합물:
    Figure PCTKR2016000834-appb-I000023
    Figure PCTKR2016000834-appb-I000024
    Figure PCTKR2016000834-appb-I000025
    Figure PCTKR2016000834-appb-I000026
    Figure PCTKR2016000834-appb-I000027
  8. 청구항 1 내지 7 중 어느 하나의 화합물로부터 유래되는 단량체를 포함하는 중합체.
  9. 청구항 8에 있어서, 상기 중합체는 하기 화학식 5로 표시되는 것인 중합체:
    [화학식 5]
    Figure PCTKR2016000834-appb-I000028
    상기 화학식 5에 있어서,
    상기 p 및 q는 각각 0 초과 1 미만이며, p+q=1이다.
  10. 청구항 8의 중합체를 포함하는 고분자 전해질막.
  11. 청구항 10에 있어서, 상기 고분자 전해질막의 이온교환용량(IEC) 값이 0.01 mmol/g 내지 7 mmol/g 인 것을 특징으로 하는 고분자 전해질막.
  12. 청구항 10에 있어서, 상기 중합체의 중량평균분자량이 500 이상 5,000,000 이하 (g/mol)인 것을 특징으로 하는 고분자 전해질막.
  13. 청구항 10에 있어서, 상기 고분자 전해질막의 두께가 1㎛ 이상 500㎛ 이하인 것을 특징으로 하는 고분자 전해질막.
  14. 청구항 10에 있어서, 상기 고분자 전해질막의 이온 전도도가 0.01 S/cm 이상 0.5 S/cm 이하인 것을 특징으로 하는 고분자 전해질막.
  15. 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 청구항 10의 고분자 전해질막을 포함하는 막-전극 접합체.
  16. 2 이상의 청구항 15에 따른 막-전극 접합체;
    상기 막-전극 접합체들 사이에 구비되는 바이폴라 플레이트를 포함하는 스택;
    상기 스택으로 연료를 공급하는 연료공급부; 및
    상기 스택으로 산화제를 공급하는 산화제공급부를 포함하는 고분자 전해질형 연료전지.
  17. 양극 및 양극 전해액을 포함하는 양극 셀;
    음극 및 음극 전해액을 포함하는 음극 셀; 및
    상기 양극 셀과 상기 음극 셀 사이에 구비되는 청구항 10의 고분자 전해질막을 포함하는 레독스 플로우 전지.
PCT/KR2016/000834 2015-01-26 2016-01-26 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막 WO2016122195A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680007303.3A CN107207427B (zh) 2015-01-26 2016-01-26 包含芳环的化合物、包含该化合物的聚合物和使用该聚合物的聚电解质膜
US15/542,747 US10418656B2 (en) 2015-01-26 2016-01-26 Compound comprising aromatic ring having sulfonamide and ion transport group, polymer comprising same, and polyelectrolyte membrane using same
JP2017534792A JP6460243B2 (ja) 2015-01-26 2016-01-26 芳香族環を含む化合物、これを含む高分子およびこれを用いた高分子電解質膜
EP16743673.2A EP3252034B1 (en) 2015-01-26 2016-01-26 Compound comprising aromatic ring, polymer comprising same, and polyelectrolyte membrane using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150011994 2015-01-26
KR10-2015-0011994 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016122195A1 true WO2016122195A1 (ko) 2016-08-04

Family

ID=56543735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000834 WO2016122195A1 (ko) 2015-01-26 2016-01-26 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막

Country Status (6)

Country Link
US (1) US10418656B2 (ko)
EP (1) EP3252034B1 (ko)
JP (1) JP6460243B2 (ko)
KR (1) KR101821479B1 (ko)
CN (1) CN107207427B (ko)
WO (1) WO2016122195A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010399B1 (ko) * 2016-02-17 2019-08-14 주식회사 엘지화학 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
KR102074551B1 (ko) * 2016-10-04 2020-02-06 주식회사 엘지화학 중합체 및 이를 포함하는 막
KR102186092B1 (ko) * 2016-11-07 2020-12-03 주식회사 엘지화학 코팅 조성물 및 이를 포함하는 유기전계 발광소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515846A (ja) * 2009-12-29 2013-05-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリアリーレンアイオノマー
KR20130062252A (ko) * 2011-12-02 2013-06-12 주식회사 엘지화학 고분자 전해질막 및 이를 포함하는 연료전지
US8853448B2 (en) * 2006-07-17 2014-10-07 Institut National Polytechnique De Grenoble Aromatic sulfonylimides, preparation thereof and use thereof as electrolyte

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013817A1 (en) * 2001-06-26 2003-01-16 Kelly Lu High temperature ionic polymers and membranes made therefrom
KR100446662B1 (ko) 2002-03-22 2004-09-04 주식회사 엘지화학 연료 전지용 복합 폴리머 전해질 막 및 그의 제조방법
JP2005166290A (ja) * 2003-11-28 2005-06-23 Sony Corp 電解質およびそれを用いた電池
JP4557576B2 (ja) 2004-03-25 2010-10-06 富士フイルム株式会社 感光性組成物及びこれを用いたパターン形成方法
US20090163692A1 (en) * 2007-12-21 2009-06-25 General Electric Company Aromatic polyethers
CN102066468B (zh) 2008-04-24 2015-01-28 3M创新有限公司 质子传导材料
JP5540681B2 (ja) * 2009-07-14 2014-07-02 株式会社豊田中央研究所 改質電解質及びその製造方法、並びに、改質剤
JP2011140605A (ja) * 2010-01-08 2011-07-21 Toyota Central R&D Labs Inc 高酸素透過電解質及びその製造方法、並びに、スルホンイミドモノマ
JP2011181423A (ja) 2010-03-03 2011-09-15 Toray Ind Inc 高分子電解質材料およびそれを用いた高分子電解質型燃料電池
JP2013218868A (ja) * 2012-04-09 2013-10-24 Toyobo Co Ltd イオン交換膜およびその製造方法、レドックスフロー電池、燃料電池
US9790323B2 (en) * 2012-08-02 2017-10-17 The Penn State Research Foundation Polymer conductor for lithium-ion batteries
KR101747492B1 (ko) 2013-06-14 2017-06-27 주식회사 엘지화학 술포네이트계 화합물 및 이를 이용한 고분자 전해질막

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853448B2 (en) * 2006-07-17 2014-10-07 Institut National Polytechnique De Grenoble Aromatic sulfonylimides, preparation thereof and use thereof as electrolyte
JP2013515846A (ja) * 2009-12-29 2013-05-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリアリーレンアイオノマー
KR20130062252A (ko) * 2011-12-02 2013-06-12 주식회사 엘지화학 고분자 전해질막 및 이를 포함하는 연료전지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252034A4 *
TOULGOAT, FABIEN ET AL.: "Efficient Preparation of New Fluorinated Lithium and Ammonium Sulfonimides", J. ORG. CHEM, vol. 73, 2008, pages 5613 - 5616, XP055466337 *

Also Published As

Publication number Publication date
JP2018509488A (ja) 2018-04-05
EP3252034A1 (en) 2017-12-06
JP6460243B2 (ja) 2019-01-30
CN107207427A (zh) 2017-09-26
EP3252034B1 (en) 2019-06-12
US10418656B2 (en) 2019-09-17
EP3252034A4 (en) 2018-08-15
KR20160091842A (ko) 2016-08-03
KR101821479B1 (ko) 2018-01-24
CN107207427B (zh) 2019-04-19
US20180006320A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
WO2013081437A1 (ko) 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
WO2014073934A1 (ko) 부분 가지형 블록 공중합체를 포함하는 이온전도성 고분자 및 이의 용도
WO2014178619A1 (ko) 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지
WO2021172706A1 (ko) 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도
WO2017171285A2 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2017142344A1 (ko) 코어-쉘 입자, 이를 포함하는 고분자 전해질막, 상기 고분자 전해질막을 포함하는 연료 전지 또는 전기화학 전지 및 코어-쉘 입자의 제조방법
WO2015047008A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2014081235A1 (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도
WO2016122195A1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
WO2016068606A1 (ko) 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막
WO2012134095A2 (ko) 술폰산기가 도입된 디페닐플루오렌기를 포함하는 수소이온 전도성 공중합체, 그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를 이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막 연료전지
WO2023234725A1 (ko) 신규한 가지부 함유 폴리(아릴 피페리디늄) 공중합체 이오노머, 음이온교환막 및 그 제조방법
WO2010076911A1 (ko) 퍼플루오로싸이클로부탄기를 포함하는 후술폰화된 공중합체, 이의 제조방법 및 이의 용도
WO2016068605A1 (ko) 브랜처용 불소계 화합물, 이를 이용한 고분자 및 이를 이용한 고분자 전해질막
WO2023106657A1 (ko) 폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법
WO2016089156A2 (ko) 중합체 및 이를 포함하는 고분자 전해질막
WO2021133045A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
EP3235809B1 (en) Compound and polymer electrolyte membrane using same
WO2016099050A1 (ko) 새로운 화합물 및 이를 이용한 고분자 전해질막
KR102010399B1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2019139415A1 (ko) 연료전지용 기체확산층, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료 전지 및 연료전지용 기체확산층의 제조방법
CN107922596A (zh) 嵌段聚合物和包含该嵌段聚合物的聚合物电解质膜
WO2016122287A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534792

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15542747

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016743673

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE