WO2012008753A2 - 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막 - Google Patents

가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막 Download PDF

Info

Publication number
WO2012008753A2
WO2012008753A2 PCT/KR2011/005157 KR2011005157W WO2012008753A2 WO 2012008753 A2 WO2012008753 A2 WO 2012008753A2 KR 2011005157 W KR2011005157 W KR 2011005157W WO 2012008753 A2 WO2012008753 A2 WO 2012008753A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
arylene ether
group
sulfonated
copolymer
Prior art date
Application number
PCT/KR2011/005157
Other languages
English (en)
French (fr)
Other versions
WO2012008753A3 (ko
Inventor
이재석
김영제
손효경
김다영
고운
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to US13/807,455 priority Critical patent/US20130102740A1/en
Publication of WO2012008753A2 publication Critical patent/WO2012008753A2/ko
Publication of WO2012008753A3 publication Critical patent/WO2012008753A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4006(I) or (II) containing elements other than carbon, oxygen, hydrogen or halogen as leaving group (X)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1037Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having silicon, e.g. sulfonated crosslinked polydimethylsiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a sulfonated poly (arylene ether) copolymer comprising a crosslinked structure and a polymer electrolyte membrane comprising the same, and more particularly, to a sulfonated poly (aryl) having a crosslinked structure inside or at an end of a polymer chain.
  • Lene ether) copolymers and crosslinked polymer electrolyte membranes using the same are particularly preferred.
  • a fuel cell is an electrical energy conversion system invented by 19th century Grove and converts chemical energy into electrical energy by electrochemical reaction.
  • the fuel cell was used for special purposes like the Gemini spacecraft in the 1960s, but it is not only expected to be used as a power source for pollution-free vehicles from the late 1980s, but also as an alternative energy in response to the explosive increase in current population and electricity demand. Research and development on this has been actively conducted worldwide. In particular, due to the imminent regulation of the total amount of carbon dioxide through the Green Round and the regulation of automobile emissions through the mandatory sale of low-polluting cars, automobile companies in each country are in a hurry to develop pollution-free automobiles such as fuel cell vehicles. There is a situation.
  • fuel cells can be used directly for military power generation, such as small buildings, submarines and mobile communications on site and in some areas. These fuel cells do not accumulate electricity, but they are more efficient than conventional internal combustion engines, use less fuel, and emit little or no environmentally damaging substances such as sulfur oxides (SOx) and nitrogen oxides (NOx). It is expected to be a solution to environmental problems emerging from the use of fossil fuels as a clean high efficiency power generation device.
  • SOx sulfur oxides
  • NOx nitrogen oxides
  • a cation exchange membrane that is widely commercialized in the fuel cell field is Nafion TM -based membrane, a polymer containing perfluorinated sulfonic acid group, DuPont, USA.
  • This membrane has an ion conductivity of 0.1 S / cm, excellent mechanical strength and chemical resistance when saturated water content is present, and has stable performance as an electrolyte membrane for use in a fuel cell for automobiles.
  • commercially available membranes of a similar type may include Asahi Chemicals' Aciplex-S membrane, Dow Chemical's Dow membrane and Asahi Glass's. Flemion membrane, Gore & Associate's GoreSelcet membrane, etc., and polymers perfluorinated in alpha or beta form by Ballard Power System of Canada It is under development research.
  • the membranes are expensive and have difficulty in mass production due to the complexity of the synthesis methods.
  • the membranes exhibit methanol crossover in electrical energy systems such as direct methanol fuel cells, and low cationic conductivity at high or low temperatures. It is used in a limited form as a cation exchange membrane such as having a characteristic that efficiency is greatly reduced.
  • non-fluorine-based and partially fluorine-substituted cation exchange membranes include sulfonated poly (phenylene oxide), poly (phenylene sulfide), and polysulfone. , Poly (para-phenylene), polystyrene, polyether ether ketone or polyimide.
  • the present invention is not only excellent in thermal stability, mechanical stability, chemical stability, film formation ability, but also excellent in cationic conductivity, cell performance, dimensional stability, and the like.
  • Arylene ether) copolymer and a polymer electrolyte membrane comprising the same.
  • SAr1 and SAr2 are the same as or different from each other, and each independently represent a sulfonated aromatic
  • Ar1, Ar2, Ar3, Ar4 and Ar5 are the same as or different from each other, and each independently represent a non sulfonated aromatic
  • CM represents a crosslinkable moiety
  • k is a number from 0.001 to 0.999
  • m is a number from 0 to 1
  • s is a number from (1-k-m)
  • b is a number from 0.001 to 1
  • d is a number from (1-b)
  • n is a repeating unit of the high polymer and is an integer of 10 to 500.
  • SAr3 represents sulfonated aromatic
  • Ar6 and Ar7 are the same as or different from each other, and each independently represent a non sulfonated aromatic
  • CM ' represents a crosslinkable moiety
  • k is a number from 0.001 to 0.999, and s is a number from (1-k) value,
  • n is a repeating unit of the high polymer and is an integer of 10 to 500.
  • Polymer by polycondensing a crosslinkable compound with at least one monomer selected from the group consisting of sulfonated dihydroxy monomers, unsulfonated dihydroxy monomers, sulfonated dihalide monomers and unsulfonated dihalide monomers It provides a method for producing a sulfonated poly (arylene ether) copolymer represented by the formula (1) or formula (2) comprising the step of forming a.
  • the present invention provides a polymer electrolyte membrane comprising a sulfonated poly (arylene ether) copolymer represented by the formula (1), (2) or (3).
  • the present invention also provides a crosslinkable compound comprising at least one crosslinkable group selected from the group consisting of the following structural formulas.
  • R is , , or ego
  • G is a single bond, , , or Is,
  • R1 is H, F, an alkyl group having 1 to 5 carbon atoms or ego,
  • R2 is H, F or an alkyl group having 1 to 5 carbon atoms.
  • a polymer electrolyte membrane using a sulfonated poly (arylene ether) copolymer containing a crosslinked structure is equivalent to or equivalent to a conventional commercialized polymer electrolyte membrane in terms of thermal stability, mechanical stability, chemical stability, and film forming ability.
  • the above level can be maintained.
  • the polymer electrolyte membrane exhibits a significantly improved effect compared to conventional polymer electrolyte membranes, and exhibits high dimensional stability even when exposed to moisture for a long time without change in electrolyte membrane characteristics, and can be used in fuel cells or secondary batteries. .
  • FIG. 3 is a diagram showing an NMR of ethynyl hydroquinone according to Preparation Example 1 of the present invention.
  • Example 4 is a diagram showing NMR of a sulfonated poly (arylene ether) copolymer according to Example 1 of the present invention.
  • Example 5 is a diagram showing an NMR of a sulfonated poly (arylene ether) copolymer according to Example 1 of the present invention.
  • FIG. 6 is a diagram showing an absorption spectrum of a sulfonated poly (arylene ether) copolymer according to Example 1 of the present invention.
  • One embodiment of the sulfonated poly (arylene ether) copolymer according to the present invention is represented by the following formula (1), (2) or (3).
  • SAr1, SAr2 and SAr3 each independently represent a sulfonated aromatic
  • Ar5, Ar6 and Ar7 each independently represent a non sulfonated aromatic
  • CM and CM ' represent a crosslinkable moiety
  • k is a number from 0.001 to 0.999
  • m is a number from 0 to 1
  • s is a number from (1-k-m)
  • b is a number from 0.001 to 1
  • d is a number from (1-b)
  • n is a repeating unit of the high polymer and is an integer of 10 to 500.
  • SAr1, SAr2 and SAr3 are each independently selected from the group consisting of the following structural formulas.
  • M + is a counterion having a cationic charge
  • potassium ions K +
  • sodium ions Na +
  • alkyl amines + NR ', wherein R' is an alkyl group having 1 to 5 carbon atoms
  • R' is an alkyl group having 1 to 5 carbon atoms
  • Z is a direct bond, , , or Is,
  • Y is a single bond or is selected from the group consisting of
  • A is a single bond, , , , , , , or ego,
  • E is H, F, an alkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, or ego,
  • L is H, F, a C1-C5 alkyl group, or a C1-C5 haloalkyl group.
  • Ar1, Ar2, Ar3, Ar4, Ar5, Ar6 and Ar7 are each independently selected from the group consisting of the following structural formulas.
  • Y is a single bond, or selected from the group consisting of
  • A is a single bond, , , , , , , or ego,
  • E is hydrogen, F, an alkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, or (Wherein L is hydrogen, F, an alkyl group having 1 to 5 carbon atoms or a haloalkyl group having 1 to 5 carbon atoms).
  • CM is preferably selected from the group consisting of the following structural formulas.
  • R is , , or ego
  • G is a single bond, , , or Is,
  • R1 is H, F, an alkyl group having 1 to 5 carbon atoms or ego,
  • R2 is H, F or an alkyl group having 1 to 5 carbon atoms.
  • CM ' is preferably selected from the group consisting of the following structural formulas.
  • R is , , or ego
  • G is a single bond, , , or Is,
  • R1 is H, F, an alkyl group having 1 to 5 carbon atoms or ego,
  • R2 is H, F or an alkyl group having 1 to 5 carbon atoms.
  • one embodiment of the method for preparing a sulfonated poly (arylene ether) copolymer represented by Formula 1 or Formula 2 according to the present invention is a sulfonated dihydroxy monomer, a non-sulfonated dihydroxy monomer Condensing the crosslinkable compound with at least one monomer selected from the group consisting of sulfonated dihalide monomers and unsulfonated dihalide monomers.
  • a sulfonated poly (arylene ether) copolymer containing a crosslinked structure inside the polymer chain represented by Chemical Formula 1 may be prepared as in Scheme 1 below. Same as
  • SAr1 represents sulfonated aromatic
  • Ar1, Ar2 and Ar3 are the same as or different from each other, and each independently represent a non sulfonated aromatic
  • CM represents a crosslinkable moiety
  • k is a number from 0.001 to 0.999
  • m is a number from 0 to 1
  • s is a number from (1-k-m)
  • b is a number from 0.001 to 1
  • d is a number from (1-b)
  • n is a repeating unit of the high polymer and is an integer of 10 to 500.
  • Scheme 1 is a reaction process for preparing a sulfonated poly (arylene ether) copolymer represented by Chemical Formula 1.
  • the method for preparing the sulfonated poly (arylene ether) copolymer represented by Chemical Formula 1 is a condensation polymerization method, and monomers participating in the reaction may be different. More specifically, the sulfonated monomer (HO-SAr1-OH) used in Scheme 1 may use a dihydroxy monomer.
  • a sulfonated poly (arylene ether) copolymer including a crosslinked structure in the polymer chain may be prepared.
  • the activation process is to facilitate the polycondensation reaction of the dihydroxy monomer with the dihalide monomer Activation process.
  • the unsulfonated dihalide monomer may be added to the manufacturing process in the same step as the dihydroxy monomer.
  • polycondensation polymerization is carried out for 1 to 100 hours in the temperature range of 0 to 300 ° C. in the presence of a solvent composed of a base, an azeotropic solvent, and an aprotic polar solvent to prepare a polymer according to Chemical Formula 1.
  • a solvent composed of a base, an azeotropic solvent, and an aprotic polar solvent to prepare a polymer according to Chemical Formula 1.
  • a protic polar solvent may be used instead of the aprotic polar solvent depending on the type of preparation.
  • Sulfonated poly (arylene ether) containing a crosslinked structure in the polymer chain represented by Chemical Formula 1, which is targeted by the present invention by replacing a crosslinkable moiety (CM) including a crosslinkable crosslinkable group by a polycondensation reaction. ) Copolymers can be prepared.
  • the crosslinkable compound includes a crosslinkable group selected from the group consisting of the following structural formulas. It is desirable to.
  • R is , , or ego
  • G is a single bond, , , or Is,
  • R1 is H, F, an alkyl group having 1 to 5 carbon atoms or ego,
  • R2 is H, F or an alkyl group having 1 to 5 carbon atoms.
  • hydroxides, carbonates and alkali metals and alkaline earth metals as bases are used.
  • An inorganic base selected from sulfates may be used, or an organic base selected from common amines including ammonia may be used.
  • an aprotic polar solvent or a protic polar solvent may be used as the reaction solvent.
  • the aprotic polar solvent N-methylpyrrolidone (NMP), dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and the like may be used.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethyl sulfoxide
  • polar solvent methylene chloride (CH 2 Cl 2 ), chloroform (CHCl 3 ), tetrahydrofuran (THF), and the like may be used.
  • benzene, toluene, xylene, or the like may be used.
  • the sulfonated poly (arylene ether) copolymer comprising a crosslinked structure in the polymer chain according to the present invention is conventionally sulfonated in thermal stability, film forming ability, mechanical stability, chemical properties, physical properties, cell performance, etc. It maintains the same or better level of poly (arylene ether) copolymer or Nafion membrane, which is currently used as a commercially available polymer electrolyte membrane, but also shows significantly improved effects on electrochemical properties, especially cationic conductivity and cell performance. Even if it is exposed for a long time, there is no change in the characteristics of the electrolyte membrane, and thus high dimensional stability can be exhibited.
  • a sulfonated poly (arylene ether) copolymer containing a crosslinked structure inside the polymer chain represented by Chemical Formula 2 may be prepared as in Scheme 18. Same as
  • SAr2 represents sulfonated aromatic
  • Ar4 and Ar5 are the same as or different from each other, and each independently represent a non sulfonated aromatic
  • CM represents a crosslinkable moiety
  • k is a number from 0.001 to 0.999
  • s is a number from (1-k)
  • b is a number from 0.001 to 1
  • d is a number from (1-b)
  • n is a repeating unit of the high polymer and is an integer of 10 to 500.
  • Scheme 18 is a reaction process for preparing a sulfonated poly (arylene ether) copolymer represented by the formula (2).
  • the method for preparing a polymer corresponding to the sulfonated poly (arylene ether) copolymer represented by Chemical Formula 2 is a condensation polymerization method, and monomers participating in the reaction may be different. More specifically, the sulfonated monomer (X-SAr2-X) used in Scheme 18 may use a dihalide monomer.
  • a sulfonated poly (arylene ether) copolymer containing a crosslinked structure in the polymer chain may be prepared.
  • the activation process is a process in which the dihydroxy monomer is activated to facilitate the polycondensation reaction with the dihalide monomer.
  • the unsulfonated dihalide monomer may be added to the manufacturing process in the same step as the dihydroxy monomer.
  • a polycondensation reaction is carried out for 1 to 100 hours in the temperature range of 0 to 300 ° C. in the presence of a solvent composed of a base, an azeotropic solvent, and an aprotic polar solvent to prepare a polymer according to Chemical Formula 2.
  • a solvent composed of a base, an azeotropic solvent, and an aprotic polar solvent to prepare a polymer according to Chemical Formula 2.
  • a protic polar solvent may be used instead of the aprotic polar solvent depending on the type of preparation.
  • condensation polymerization and crosslinking group introduction reaction for the synthesis of sulfonated poly (arylene ether) copolymer containing a crosslinked structure in the polymer chain of interest are used as alkali base, hydroxide of alkaline earth metal, carbonate as base.
  • inorganic bases selected from sulfates, or organic bases selected from common amines, including ammonia are used as alkali base, hydroxide of alkaline earth metal, carbonate.
  • inorganic bases selected from sulfates, or organic bases selected from common amines, including ammonia.
  • an aprotic polar solvent or a protic polar solvent may be used as the reaction solvent.
  • the aprotic polar solvent N-methylpyrrolidone (NMP), dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and the like may be used.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethyl sulfoxide
  • polar solvent methylene chloride (CH 2 Cl 2 ), chloroform (CHCl 3 ), tetrahydrofuran (THF), and the like may be used.
  • benzene, toluene, xylene, or the like may be used.
  • one embodiment of the method for producing a sulfonated poly (arylene ether) copolymer represented by the formula (3) according to the present invention is 1) sulfonated dihydroxy monomer, non-sulfonated dihydroxy monomer, Polycondensing at least one monomer selected from the group consisting of sulfonated dihalide monomers and unsulfonated dihalide monomers to form a polymer, and 2) using a crosslinkable compound at the ends of the polymer prepared above. Performing a substitution reaction.
  • step 1) Specific details of the step of forming a polymer by condensation polymerization of the monomer of step 1) are as described above.
  • step 2 it is preferable to use a phenyl compound substituted with a halide or a phenyl compound substituted with hydroxy.
  • the phenyl compound substituted with the halide and the phenyl compound substituted with hydroxy may be represented by the following structural formulas, but are not limited thereto.
  • R is , , or ego
  • G is a single bond, , , or Is,
  • R1 is H, F, an alkyl group having 1 to 5 carbon atoms or ego,
  • R2 is H, F or an alkyl group having 1 to 5 carbon atoms.
  • the present invention provides a polymer electrolyte membrane comprising a sulfonated poly (arylene ether) copolymer represented by the formula (1), (2) or (3).
  • the present invention also provides a crosslinkable compound comprising at least one crosslinkable group selected from the group consisting of the following structural formulas.
  • R is , , or ego
  • G is a single bond, , , or Is,
  • R1 is H, F, an alkyl group having 1 to 5 carbon atoms or ego,
  • R2 is H, F or an alkyl group having 1 to 5 carbon atoms.
  • the sulfonated poly (arylene ether) copolymer containing a crosslinked structure in the polymer chain of the present invention prepared by the method as described above has thermal stability, film forming ability, mechanical stability, chemical properties, physical properties, cells In terms of performance, it is equivalent to or higher than the conventional sulfonated poly (arylene ether) copolymer or the Nafion membrane used as a commercially available polymer electrolyte membrane, but in terms of electrochemical properties, especially cation conductivity and cell performance. Not only does it show a significantly improved effect, but even when exposed to moisture for a long time, there is no change in the characteristics of the electrolyte membrane, thus showing high dimensional stability.
  • the monomer of the present invention was prepared by the following Scheme 2.
  • Argon gas was bubbled into a 100 ml two-necked round flask equipped with a stirring apparatus in a 0 ° C. environment and a magnetic stub.
  • 0.026 mol bromohydroquinone, 0.063 mol triethylamine, 50 ml chloroform, 15 ml tetrahydrofuran were added and activated, followed by 0.063 mol
  • tert-butyldimethylsilyl chloride was added, the reaction was performed at room temperature for 18 hours. After the reaction, the mixture was poured into 50 ml of iced water and cooled, and then impurities were removed by using 100 ml of chloroform, saturated sodium bicarbonate aqueous solution, and extraction.
  • SHQk-EHQs-DFBP This is called SHQk-EHQs-DFBP.
  • EHQk-SHQs-DFBP of the copolymer k denotes the percentage of the molar ratio of hydroquinonesulfonic acid potassium salt, and s denotes the percentage of the molar ratio of ethynyl hydroquinone.
  • the copolymers formed according to the difference in molar ratio of the starting materials are named as SHQ90-EHQ10-DFBP, SHQ80-EHQ20-DFBP, and SHQ70-EHQ30-DFBP, respectively. Each yield was at least 90%.
  • Example 2 Preparation of sulfonated poly (arylene ether) copolymer having a crosslinked structure inside the polymer chain (SHQk-6FBPm-EHQs-DFBP, SHQk-6FBPm-EHQs-DFDPS, SHQk-BPm-EHQs-DFBP , SHQk-BPm-EHQs-DFDPS)
  • Example 2 The same method as in Example 1, except that 2,2'-bis (4-hydroxyphenyl) hexafluoropropane (2,2'-bis (4-hydroxyphenyl) hexa-fluoropropane) was added as a starting material , SHQk-6FBPm-EHQs-DFBP was prepared.
  • m represents the percentage of molar ratio of 2,2'-bis (4-hydroxyphenyl) hexafluoropropane (2,2'-bis (4-hydroxyphenyl) hexafluoropropane).
  • k represents the percentage of molar ratio of hydroquinonesulfonic acid potassium salt
  • s represents the percentage of molar ratio of ethynyl hydroquinone.
  • a sulfonated poly (arylene ether) copolymer SHQk-6FBPm-EHQs-DFDPS having a crosslinked structure inside the polymer chain was obtained.
  • the copolymer obtained by setting the molar ratio (k: m: s) of each starting material to 0.8: 0.1: 0.1 is referred to as SHQ80-6FBP10-EHQ10-DFDPS.
  • the yield was 90% or more.
  • the copolymer formed by setting the molar ratio (k: m: s) of each starting material to 0.8: 0.1: 0.1 is called SHQ80-BP10-EHQ10-DFBP, SHQ80-BP10-EHQ10-DFDPS.
  • the yield was 90% or more.
  • the molar ratio (k: s) of hydroquinonesulfonic acid potassium salt and 1-ethynyl-2,5-dihydroxybiphenyl in both materials The sulfonated poly (arylene ether) copolymers having a crosslinked structure in the polymer chain obtained as 0.9: 0.1 are named SHQ90-EDHBP10-DFBP and SHQ90-EDHBP10-DFDPS, respectively.
  • the yield is at least 90% each.
  • Example 4 Preparation of sulfonated poly (arylene ether) copolymer having a crosslinked structure inside the polymer chain (SHQk-6FBPm-EDHBPs-DFBP and SHQk-6FBPm-EDHB-Ps-DFDPS)
  • reaction was carried out in the same manner as above, but adding 2,2'-bis (4-hydroxyphenyl) hexafluoropropane (2,2'-bis (4-hydroxyphenyl) hexa-fluoropropane) as a starting material.
  • SHQk-6FBPm-EDHBPs-DFBP can be prepared through the same reaction.
  • m represents the percentage of the molar ratio of 2,2'-bis (4-hydroxyphenyl) hexafluoropropane (2,2'-bis (4-hydroxyphenyl) hexa-fluoropropane).
  • k denotes the percentage of molar ratio of hydroquinonesulfonic acid potassium salt, and s denotes 1-ethynyl-2,5-dihydroxybiphenyl. It represents the percentage of molar ratio.
  • SHQk-6FBPm-EDHBPs-DFDPS 44'-difluorodiphenyl sulfone may be used to prepare SHQk-6FBPm-EDHBPs-DFDPS as shown in Scheme 15.
  • Starting materials hydroquinonesulfonic acid potassium salt and 1-ethynyl-2,5-dihydroxybiphenyl, 2,
  • the molar ratio (k: m: s) of 2'-bis (4-hydroxyphenyl) hexafluoropropane (2,2'-bis (4-hydroxyphenyl) hexafluoropropane) is 12mmol: 1.5mmol: 1.5mmol (k: m : s 0.8: 0.1: 0.1) sulfonated poly (arylene ether) copolymer having a crosslinked structure inside the polymer chain is named SHQ80-6FBP10-EDHBP10-DFDPS. The yield was 90%.
  • SHQk-BPm-EDHBPs-DFDPS 44'-difluorodiphenyl sulfone may be used to prepare SHQk-BPm-EDHBPs-DFDPS as shown in Scheme 17.
  • SHQ80-BP10-EDHBP10-DFDPS The yield was 90%.
  • a crosslinked structure is formed in the polymer chain obtained by adjusting the percentage of the molar ratio (k: s) of 1-ethynyl-2,5-di-hydroxybiphenyl to 0.9: 0.1.
  • Branched sulfonated poly (arylene ether) copolymers are named 6FBP90-EDHBP10-SDFDPS and BP90-EDHBP10-SDFDPS, respectively. The yield is at least 90% each.
  • Sulfonated poly (arylene ether) copolymers having a crosslinked structure synthesized in Examples 1 to 6 were dissolved in a solvent, and then filtered using a 0.45 to 1 ⁇ m PTFE membrane filter. Thereafter, the polymer solvent was poured onto the glass plate by a casting method on a clean glass plate support, and then left in a 50 ° C. oven for 24 hours.
  • heat treatment was performed for at least 30 minutes at a temperature of 80 to 350 ° C. for crosslinking in the polymer chain.
  • the heat treatment is preferably performed for 2 hours or more at 250 ⁇ 260 °C.
  • the solvent that can be used is a dipolar solvent, specifically, N, N'-dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO) or N-methylpyrroli You can use money (NMP).
  • DMF N, N'-dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrroli
  • the acid treatment is immersed in 2 normal sulfuric acid (H 2 SO 4 ) aqueous solution, 1 normal concentration nitric acid (HNO 3 ) aqueous solution or 1 normal concentration hydrochloric acid (HCl) aqueous solution for 24 hours and then immersed in distilled water for 24 hours. It is put or put in a 0.5 molar sulfuric acid (H 2 SO 4 ) aqueous solution using a method of boiling for 2 hours, the acid treatment method is not limited thereto.
  • the acid treated polymer electrolyte membrane was immersed in distilled water for 24 hours and then the cationic conductivity was measured.
  • the name of the prepared polymer membrane is also given separately. That is, when the polymer membrane is manufactured using EHQk-SHQs-DFBP in Example 1, the name of the polymer membrane is referred to as C-EHQk-SHQs-DFBP.
  • a crosslinkable monomer having a dihydroxy group as a starting material ethynyl hydroquinone and 1-ethynyl-2,5
  • the names of the polymer membranes using 1-ethynyl-2,5-dihydroxybiphenyl are C-SHQk-EHQs-DFBP, C-SHQk-EHQs-DFDPS, C-SHQk-6FBPm according to the preparation procedure.
  • Table 1 below measures the solubility of the 20 kinds of polymer membranes.
  • the ion exchange capacity of the polymer electrolyte membrane prepared in Preparation Example 5 is shown in Table 2 below in comparison with Nafion which is currently commercialized.
  • the polymer electrolyte membrane using a sulfonated poly (arylene ether) copolymer containing a crosslinked structure is equivalent to or equivalent to the conventional commercialized polymer electrolyte membrane in terms of thermal stability, mechanical stability, chemical stability, and film forming ability. The above level can be maintained.
  • the polymer electrolyte membrane exhibits a significantly improved effect compared to conventional polymer electrolyte membranes, and exhibits high dimensional stability even when exposed to moisture for a long time without change in electrolyte membrane characteristics, and can be used in fuel cells or secondary batteries. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Polyethers (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막에 관한 것으로, 더욱 상세하게는 고분자 사슬 내부 또는 말단에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 이용한 가교된 고분자 전해질막에 관한 것이다. 본 발명에 따르면, 가교구조를 함유한 술폰화된 폴리(아릴렌 에테르) 공중합체를 이용한 고분자 전해질막은 열적 안정성, 기계적 안정성, 화학적 안정성, 막 형성 능력 등에서 기존의 상용화된 고분자 전해질 막과 동등 또는 그 이상의 수준을 유지할 수 있다. 또한, 양이온 전도도와 셀 성능 면에서는 기존의 고분자 전해질막에 비해 월등히 향상된 효과를 나타내며, 수분에 장시간 노출되어도 전해질막 특성의 변화가 없어 높은 치수안정성을 나타내며, 연료전지 또는 2차전지 등에 사용될 수 있다.

Description

가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막
본 발명은 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막에 관한 것으로, 더욱 상세하게는 고분자 사슬 내부 또는 말단에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 이용한 가교된 고분자 전해질막에 관한 것이다.
연료전지는 19세기 Grove에 의해 발명된 전기에너지 변환시스템이며, 전기화학반응에 의하여 화학에너지를 전기에너지로 변환한다. 상기 연료전지는 1960년대에 Gemini 우주선과 같이 특수 목적으로 사용되었으나, 1980년대 말부터 무공해 차량의 동력원으로 활용될 것이 기대될 뿐 아니라, 현재의 폭발적인 인구 및 전기수요의 증가에 대응하는 대체 에너지로써 전세계적으로 이에 대한 연구개발이 활발히 진행되어 오고 있다. 특히, Green Round(기후변화협약)를 통한 이산화탄소의 총량 규제, 저공해 자동차 의무 판매를 통한 자동차 배기가스의 규제 등이 임박해 옴에 따라 각국의 자동차 회사들은 연료전지 자동차와 같은 무공해 자동차의 개발을 서둘러 진행하고 있는 실정이다.
또한, 연료전지는 건물 및 일부 지역의 현지 설치형 소규모 발전, 잠수함 및 이동통신 등과 같은 군수용 발전에 곧바로 활용될 수 있다. 이러한 연료전지는 전기를 축적하는 기능은 없으나, 발전장치로 기존 내연기관에 비해 효율이 높고, 연료 사용량이 적으며, 황 산화물(SOx), 질소 산화물(NOx) 등 환경부화물질을 거의 배출하지 않는 청정 고효율 발전 장치로 최근 화석 연료 사용에 대두되는 환경 문제의 해결방안으로 기대된다.
연료전지 내에서 양이온 교환수지나 양이온 교환막으로써 사용되는 고분자 전해질은 수십년 동안 사용되었을 뿐 아니라 꾸준히 연구되고 있는 분야이다. 최근에 직접메탄올 연료전지(DMFC; direct methanol fuel cell)나 고분자 전해질막 연료전지(PEMFC; polymer electrolyte membrane fuel cell, solid polymer electrolyte fuel cell, solid polymer fuel cell, or proton exchange membrane fuel cell)에 사용되는 양이온을 전달하는 매개체로서 양이온 교환막에 대한 수많은 연구가 진행되고 있다.
현재 연료전지 분야에서 널리 상용화되는 양이온 교환막으로는 미국 듀퐁사의 과불소화 술폰산기 함유 고분자인 나피온(Nafion)™ 계열막이 있다. 이 막은 포화 수분 함량일 때, 0.1 S/㎝의 이온전도성과 우수한 기계적 강도 및 내화학성을 가지며, 자동차용 연료전지에 이용될 만큼 전해질막으로서 안정적인 성능을 가지고 있다. 또한, 이와 유사한 형태의 상용막으로는 아사히 케미칼스(Asahi Chemicals)사의 아시플렉스-에스(Aciplex-S)막, 다우 케미칼스(Dow Chemicals)사의 다우(Dow)막, 아사히 글래스(Asahi Glass)사의 플레미온(Flemion)막, 고어 & 어쏘시에이트(Gore & Associate)사의 고어셀렉트(GoreSelcet)막 등이 있으며, 캐나다의 발라드 파워 시스템(Ballard Power System)사에서 알파 또는 베타 형태로 과불소화된 고분자가 개발 연구 중에 있다.
그러나, 상기의 막들은 가격이 고가이며 합성방법들의 까다로움으로 인하여 대량 생산의 어려움이 있을 뿐더러, 직접메탄올 연료전지용과 같은 전기에너지 시스템에서 메탄올 크로스오버 현상, 높은 온도나 낮은 온도에서 낮은 양이온 전도도를 갖는 등의 양이온 교환막으로서 효율성이 크게 떨어지는 특성을 가지고 있기 때문에 제한적인 형태로 사용되고 있다.
이러한 단점 때문에, 비불소계 및 부분적으로 불소가 치환되어 있는 양이온 교환막에 대하여 많은 연구가 진행되고 있으며, 그 대표적인 예로 술폰화된 폴리(페닐렌 옥사이드)계, 폴리(페닐렌 설파이드)계, 폴리설폰계, 폴리(파라-페닐렌)계, 폴리스티렌계, 폴리에테르에테르케톤계 또는 폴리이미드계 등이 있다.
그러나, 이들의 이온전도성은 술폰화 정도에 비례하기 때문에 임계농도 이상으로 술폰화하였을 경우, 분자량 저하를 피할 수 없고, 수화시 기계적 물성 감소로 인해 장시간 이용할 수 없는 단점을 가지고 있다. 이를 개선하기 위하여 술폰화되어 있는 단량체를 이용하여 고분자를 제조하는 방법과 고분자를 선택적 술폰화하는 방법이 또한 연구 개발되고 있으나(미국 특허 제5,468,574호, 제5,679,482호, 제6,110,616호), 고온 안정성과 장기 사용시에 발생할 수 있는 문제점들을 완전히 해결하지는 못한 실정이다.
따라서, 우수한 전기화학적 특성을 가지면서 고온 안정성이 우수하고, 박막으로의 제조가 용이한, 새로운 형태의 소재 개발에 대한 연구가 절실히 요구되고 있는 실정이다.
본 발명은 열적 안정성, 기계적 안정성, 화학적 안정성, 막 형성 능력 등이 우수할 뿐만 아니라, 양이온 전도도, 셀 성능, 치수안정성 등이 우수한 고분자 전해질막을 제조할 수 있는 가교구조를 포함하는 술포환된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막을 제공하고자 한다.
이에 본 발명은,
하기 화학식 1 또는 화학식 2로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체를 제공한다.
[화학식 1]
Figure PCTKR2011005157-appb-I000001
[화학식 2]
Figure PCTKR2011005157-appb-I000002
상기 화학식 1 및 화학식 2에서,
SAr1 및 SAr2는 서로 동일하거나 상이하고, 각각 독립적으로 술폰화된 방향족(sulfonated aromatic)을 나타내고,
Ar1, Ar2, Ar3, Ar4 및 Ar5는 서로 동일하거나 상이하고, 각각 독립적으로 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며,
CM은 가교할 수 있는 부분(Crosslinkable moiety)을 나타내고,
k는 0.001 내지 0.999의 수, m은 0 내지 1의 수, s는 (1 - k - m) 값의 수, b는 0.001 내지 1의 수, 및 d는 (1 - b) 값의 수이며,
n은 고분자 중합체의 반복단위(repeating unit)로서, 10 내지 500의 정수이다.
또한, 본 발명은
하기 화학식 3으로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체를 제공한다.
[화학식 3]
Figure PCTKR2011005157-appb-I000003
상기 화학식 3에서,
SAr3은 술폰화된 방향족(sulfonated aromatic)을 나타내고,
Ar6 및 Ar7은 서로 동일하거나 상이하고, 각각 독립적으로 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며,
CM'는 가교할 수 있는 부분(Crosslinkable moiety)을 나타내고,
k는 0.001 내지 0.999의 수, 및 s는 (1 - k) 값의 수이며,
n은 고분자 중합체의 반복단위(repeating unit)로서, 10 내지 500의 정수이다.
또한, 본 발명은
술폰화된 디하이드록시 단량체, 술폰화되지 않은 디하이드록시 단량체, 술폰화된 디할라이드 단량체 및 술폰화되지 않은 디할라이드 단량체로 이루어진 군으로부터 선택되는 1종 이상의 단량체와 가교성 화합물을 축중합시켜서 중합체를 형성하는 단계를 포함하는 상기 화학식 1 또는 화학식 2로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법을 제공한다.
또한, 본 발명은
1) 술폰화된 디하이드록시 단량체, 술폰화되지 않은 디하이드록시 단량체, 술폰화된 디할라이드 단량체 및 술폰화되지 않은 디할라이드 단량체로 이루어진 군으로부터 선택되는 1종 이상의 단량체를 축중합시켜서 중합체를 형성하는 단계, 및
2) 상기 제조되는 중합체의 말단에 가교성 화합물을 이용하여 치환반응을 수행하는 단계
를 포함하는 상기 화학식 3으로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법을 제공한다.
또한, 본 발명은 상기 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체를 포함하는 고분자 전해질막을 제공한다.
또한, 본 발명은 하기 구조식으로 이루어진 군으로부터 선택되는 1종 이상의 가교 결합성기를 포함하는 가교성 화합물을 제공한다.
Figure PCTKR2011005157-appb-I000004
Figure PCTKR2011005157-appb-I000005
상기 구조식에서, R은
Figure PCTKR2011005157-appb-I000006
,
Figure PCTKR2011005157-appb-I000007
, 또는
Figure PCTKR2011005157-appb-I000008
이고,
G는 단일결합,
Figure PCTKR2011005157-appb-I000009
,
Figure PCTKR2011005157-appb-I000010
, 또는
Figure PCTKR2011005157-appb-I000011
이며,
R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
Figure PCTKR2011005157-appb-I000012
이고,
R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
본 발명에 따르면, 가교구조를 함유한 술폰화된 폴리(아릴렌 에테르) 공중합체를 이용한 고분자 전해질막은 열적 안정성, 기계적 안정성, 화학적 안정성, 막 형성 능력 등에서 기존의 상용화된 고분자 전해질 막과 동등 또는 그 이상의 수준을 유지할 수 있다. 또한, 양이온 전도도와 셀 성능 면에서는 기존의 고분자 전해질막에 비해 월등히 향상된 효과를 나타내며, 수분에 장시간 노출되어도 전해질막 특성의 변화가 없어 높은 치수안정성을 나타내며, 연료전지 또는 2차전지 등에 사용될 수 있다.
도 1은 본 발명의 제조예 1에 따른 1,4-비스(터트-부틸디메틸실록시)-2-브로모벤젠(1,4-bis(tert-butyldimethylsiloxy)-2-bromobenzne)의 NMR을 나타낸 도이다.
도 2는 본 발명의 제조예 1에 따른 1,4-비스(터트부틸디메틸실록시)-2-(트리메틸에티닐)벤젠(1,4-bis(tert-butylmethylsiloxy)-2-(trimethylethynyl)benzene)의 NMR을 나타낸 도이다.
도 3은 본 발명의 제조예 1에 따른 에티닐 하이드로퀴논(ethynyl hydroquinone)의 NMR을 나타낸 도이다.
도 4는 본 발명의 실시예 1에 따른 술폰화된 폴리(아릴렌 에테르) 공중합체의 NMR을 나타낸 도이다.
도 5는 본 발명의 실시예 1에 따른 술폰화된 폴리(아릴렌 에테르) 공중합체의 NMR을 나타낸 도이다.
도 6은 본 발명의 실시예 1에 따른 술폰화된 폴리(아릴렌 에테르) 공중합체의 흡수 스펙트럼을 나타낸 도이다.
이하, 본 발명을 보다 구체적으로 설명하기로 한다.
본 발명에 따른 술폰화된 폴리(아릴렌 에테르) 공중합체의 일구체예는 하기화학식 1, 화학식 2 또는 화학식 3으로 표시된다.
[화학식 1]
Figure PCTKR2011005157-appb-I000013
[화학식 2]
Figure PCTKR2011005157-appb-I000014
[화학식 3]
Figure PCTKR2011005157-appb-I000015
상기 화학식 1, 화학식 2 및 화학식 3에서,
SAr1, SAr2 및 SAr3은 각각 독립적으로 술폰화된 방향족(sulfonated aromatic)을 나타내고,
Ar1, Ar2, Ar3, Ar4. Ar5, Ar6 및 Ar7은 각각 독립적으로 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며,
CM 및 CM'는 가교할 수 있는 부분(Crosslinkable moiety)을 나타내고,
k는 0.001 내지 0.999의 수, m은 0 내지 1의 수, s는 (1 - k - m) 값의 수, b는 0.001 내지 1의 수, 및 d는 (1 - b) 값의 수이며,
n은 고분자 중합체의 반복단위(repeating unit)로서, 10 내지 500의 정수이다.
상기 화학식 1, 화학식 2 및 화학식 3에서, SAr1, SAr2 및 SAr3은 각각 독립적으로 하기 구조식으로 이루어진 군으로부터 선택되는 것이 바람직하다.
Figure PCTKR2011005157-appb-I000016
상기 구조식에서, M+는 양이온 전하를 가진 짝이온(counterion)으로서, 칼륨 이온(K+), 나트륨 이온(Na+), 또는 알킬 아민(+NR', 여기서 R'은 탄소수 1 내지 5의 알킬기이다)을 나타내고, 바람직하게는 칼륨 이온 또는 나트륨 이온이고,
Z는 직접결합이거나,
Figure PCTKR2011005157-appb-I000017
,
Figure PCTKR2011005157-appb-I000018
, 또는
Figure PCTKR2011005157-appb-I000019
이며,
Y는 단일결합이거나, 하기 구조식으로 이루어진 군으로부터 선택되고,
Figure PCTKR2011005157-appb-I000020
여기서, A는 단일결합이거나,
Figure PCTKR2011005157-appb-I000021
,
Figure PCTKR2011005157-appb-I000022
,
Figure PCTKR2011005157-appb-I000023
,
Figure PCTKR2011005157-appb-I000024
,
Figure PCTKR2011005157-appb-I000025
,
Figure PCTKR2011005157-appb-I000026
,
Figure PCTKR2011005157-appb-I000027
, 또는
Figure PCTKR2011005157-appb-I000028
이고,
E는 H, F, 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 할로알킬기, 또는
Figure PCTKR2011005157-appb-I000029
이고,
L은 H, F, 탄소수 1 내지 5의 알킬기 또는 탄소수 1 내지 5의 할로알킬기이다.
상기 화학식 1, 화학식 2 및 화학식 3에서, Ar1, Ar2, Ar3, Ar4, Ar5, Ar6 및 Ar7은 각각 독립적으로 하기 구조식으로 이루어진 군으로부터 선택되는 것이 바람직하다.
Figure PCTKR2011005157-appb-I000030
상기 구조식에서, Y는 단일결합이거나, 하기 구조식으로 이루어진 군으로부터 선택되고,
Figure PCTKR2011005157-appb-I000031
여기서, A는 단일결합이거나,
Figure PCTKR2011005157-appb-I000032
,
Figure PCTKR2011005157-appb-I000033
,
Figure PCTKR2011005157-appb-I000034
,
Figure PCTKR2011005157-appb-I000035
,
Figure PCTKR2011005157-appb-I000036
,
Figure PCTKR2011005157-appb-I000037
,
Figure PCTKR2011005157-appb-I000038
, 또는
Figure PCTKR2011005157-appb-I000039
이고,
E는 수소, F, 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 할로알킬기, 또는
Figure PCTKR2011005157-appb-I000040
(여기서, L은 수소, F, 탄소수 1 내지 5의 알킬기 또는 탄소수 1 내지 5의 할로알킬기) 이다.
상기 화학식 1 및 화학식 2에서, CM은 하기 구조식으로 이루어진 군으로부터 선택되는 것이 바람직하다.
Figure PCTKR2011005157-appb-I000041
Figure PCTKR2011005157-appb-I000042
상기 구조식에서, R은
Figure PCTKR2011005157-appb-I000043
,
Figure PCTKR2011005157-appb-I000044
, 또는
Figure PCTKR2011005157-appb-I000045
이고,
G는 단일결합,
Figure PCTKR2011005157-appb-I000046
,
Figure PCTKR2011005157-appb-I000047
, 또는
Figure PCTKR2011005157-appb-I000048
이며,
R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
Figure PCTKR2011005157-appb-I000049
이고,
R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
상기 화학식 3에서, CM'는 하기 구조식으로 이루어진 군으로부터 선택되는 것이 바람직하다.
Figure PCTKR2011005157-appb-I000050
Figure PCTKR2011005157-appb-I000051
상기 구조식에서, R은
Figure PCTKR2011005157-appb-I000052
,
Figure PCTKR2011005157-appb-I000053
, 또는
Figure PCTKR2011005157-appb-I000054
이고,
G는 단일결합,
Figure PCTKR2011005157-appb-I000055
,
Figure PCTKR2011005157-appb-I000056
, 또는
Figure PCTKR2011005157-appb-I000057
이며,
R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
Figure PCTKR2011005157-appb-I000058
이고,
R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
또한, 본 발명에 따른 상기 화학식 1 또는 화학식 2로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법의 일구체예는 술폰화된 디하이드록시 단량체, 술폰화되지 않은 디하이드록시 단량체, 술폰화된 디할라이드 단량체 및 술폰화되지 않은 디할라이드 단량체로 이루어진 군으로부터 선택되는 1종 이상의 단량체와 가교성 화합물을 축중합시키는 단계를 포함한다.
본 발명의 일구체예로서, 상기 화학식 1로 표시되는 고분자 사슬 내부에 가교 구조를 함유한 술폰화된 폴리(아릴렌 에테르) 공중합체는 하기 반응식 1과 같이 제조될 수 있으며, 더욱 구체적으로 살펴보면 다음과 같다.
[반응식 1]
Figure PCTKR2011005157-appb-I000059
상기 반응식 1에서,
SAr1은 술폰화된 방향족(sulfonated aromatic)을 나타내고,
Ar1, Ar2 및 Ar3은 서로 동일하거나 상이하고, 각각 독립적으로 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며,
CM은 가교할 수 있는 부분(Crosslinkable moiety)을 나타내고,
X는 할로겐을 나타내며,
k는 0.001 내지 0.999의 수, m은 0 내지 1의 수, s는 (1 - k - m) 값의 수, b는 0.001 내지 1의 수, 및 d는 (1 - b) 값의 수이며,
n은 고분자 중합체의 반복단위(repeating unit)로서, 10 내지 500의 정수이다.
상기 반응식 1은 화학식 1로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체를 제조하기 위한 반응과정이다. 상기 화학식 1로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체를 제조하는 방법은 축중합방법이며, 반응에 참여하는 단량체가 다를 수 있다. 더욱 상세하게는, 상기 반응식 1에 사용된 술폰화된 단량체(HO-SAr1-OH)는 디하이드록시 단량체를 사용할 수 있다.
상기 반응식 1을 통해 고분자 사슬 내부에 가교 구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체를 제조할 수 있다.
상기 반응식 1의 제조과정을 살펴보면, 먼저 술폰화된 디하이드록시 단량체 및 술폰화되지 않은 디하이드록시 단량체를 활성화시키는데, 상기 활성화 과정은 디하이드록시 단량체가 디할라이드 단량체와의 축중합 반응이 용이하도록 활성화시키는 과정이다.
또한, 상기 술폰화되지 않은 디할라이드 단량체는 디하이드록시 단량체와 동일 단계에서 제조공정에 투입될 수도 있다.
먼저, 염기, 공비 용매 및 비양성자성 극성용매(aprotic polar solvent)로 구성된 용매 존재 하에서 0 ~ 300 ℃ 온도 범위로 1 내지 100시간 축중합반응하여 상기 화학식 1에 해당하는 고분자 중합체를 제조한다. 또한, 제조의 형태에 따라 상기 비양자성 극성용매 대신에 양성자성 극성용매(protic polar solvent)가 사용될 수도 있다.
또한, 본 발명에서는 상기 화학식 1로 표시되는 고분자의 열적 안정성, 전기화학적 특성, 필름형성 능력, 치수 안정성, 기계적 안정성, 화학적 특성, 물리적 특성, 셀 성능 등의 향상을 위해, 고분자 사슬의 내부에 열적 가교가 가능한 가교결합성기를 포함하는 CM(Crosslinkable Moiety)을 축중합반응에 의하여 치환시켜 본 발명에서 목표로 하는 화학식 1로 표시되는 고분자 사슬 내부에 가교 구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체를 제조할 수 있다.
또한, 본 발명에 따른 상기 화학식 1 또는 화학식 2로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법에 있어서, 상기 가교성 화합물은 하기 구조식으로 이루어진 군으로부터 선택되는 가교 결합성기를 포함하는 것이 바람직하다.
Figure PCTKR2011005157-appb-I000060
Figure PCTKR2011005157-appb-I000061
상기 구조식에서, R은
Figure PCTKR2011005157-appb-I000062
,
Figure PCTKR2011005157-appb-I000063
, 또는
Figure PCTKR2011005157-appb-I000064
이고,
G는 단일결합,
Figure PCTKR2011005157-appb-I000065
,
Figure PCTKR2011005157-appb-I000066
, 또는
Figure PCTKR2011005157-appb-I000067
이며,
R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
Figure PCTKR2011005157-appb-I000068
이고,
R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
본 발명에서 목적하는 고분자 사슬 내부에 가교 구조를 함유한 술폰화된 폴리(아릴렌 에테르) 공중합체 합성을 위한 축중합 반응 및 가교 결합성기 도입반응에는 염기로서 알칼리 금속, 알칼리 토금속의 수산화물, 탄산염 및 황산염 중에서 선택된 무기 염기를 사용하거나, 또는 암모니아를 비롯한 통상의 아민류 중에서 선택된 유기 염기를 사용할 수도 있다.
또한, 상기 반응용매로는 비양자성 극성용매 또는 양성자성 극성용매가 사용될 수 있다. 상기 비양자성 극성용매로는 N-메틸피롤리돈(NMP), 디메틸포름아마이드(DMF), N,N-디메틸아세트아마이드(DMAc), 디메틸설폭사이드(DMSO) 등이 사용될 수 있고, 상기 양성자성 극성용매로는 메틸렌클로라이드(CH2Cl2), 클로로포름(CHCl3), 테트라하이드로퓨란(THF) 등이 사용될 수 있으며, 공비용매로서 벤젠, 톨루엔, 자일렌 등이 사용될 수 있다.
본 발명에 따른 고분자 사슬 내부에 가교 구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체는 열적 안정성, 필름형성 능력, 기계적 안정성, 화학적 특성, 물리적 특성, 셀 성능 등에서는 기존의 술폰네이션된 폴리(아릴렌 에테르) 공중합체나 현재 상용화된 고분자 전해질막으로 사용되는 나피온 막과 동등 또는 그 이상의 수준을 유지하면서도 전기화학적 특성, 특히 양이온 전도도와 셀 성능 면에서는 월등히 향상된 효과를 나타낼 뿐 아니라 수분에 장시간 노출되어도 전해질막 특성의 변화가 없어 높은 치수안정성을 보일 수 있다.
본 발명의 일구체예로서, 상기 화학식 2로 표시되는 고분자 사슬 내부에 가교 구조를 함유한 술폰화된 폴리(아릴렌 에테르) 공중합체는 하기 반응식 18과 같이 제조될 수 있으며, 더욱 구체적으로 살펴보면 다음과 같다.
[반응식 18]
Figure PCTKR2011005157-appb-I000069
상기 반응식 18에서,
SAr2은 술폰화된 방향족(sulfonated aromatic)을 나타내고,
Ar4 및 Ar5는 서로 동일하거나 상이하고, 각각 독립적으로 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며,
CM은 가교할 수 있는 부분(Crosslinkable moiety)을 나타내고,
X는 할로겐을 나타내며,
k는 0.001 내지 0.999의 수, s는 (1 - k) 값의 수, b는 0.001 내지 1의 수, 및 d는 (1 - b) 값의 수이며,
n은 고분자 중합체의 반복단위(repeating unit)로서, 10 내지 500의 정수이다.
상기 반응식 18은 화학식 2로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체를 제조하기 위한 반응 과정이다. 상기 화학식 2로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체에 해당하는 고분자 중합체를 제조하는 방법은 축중합방법이며, 반응에 참여하는 단량체가 다를 수 있다. 더욱 상세하게는, 상기 반응식 18에 사용된 술폰화된 단량체(X-SAr2-X)는 디할라이드 단량체를 사용할 수 있다.
상기 반응식 18을 통해 고분자 사슬 내부에 가교 구조를 함유한 술폰화된 폴리(아릴렌 에테르) 공중합체를 제조할 수 있다.
상기 반응식 18의 제조 과정을 살펴보면, 술폰화되지 않은 디하이드록시 단량체를 활성화시킨다. 상기 활성화 과정은 디하이드록시 단량체가 디할라이드 단량체와의 축중합 반응이 용이하도록 활성화시키는 과정이다.
또한, 상기 술폰화되지 않은 디할라이드 단량체는 디하이드록시 단량체와 동일 단계에서 제조공정에 투입될 수도 있다.
먼저, 염기, 공비 용매 및 비양성자성 극성용매(aprotic polar solvent)로 구성된 용매 존재 하에서 0 ~ 300 ℃ 온도 범위로 1 내지 100 시간 축중합반응하여 상기 화학식 2에 해당하는 고분자 중합체를 제조한다. 또한, 제조의 형태에 따라 상기 비양자성 극성용매 대신에 양성자성 극성용매(protic polar solvent)가 사용될 수도 있다.
또한, 본 실시예에서는 상기 화학식 2로 표시되는 고분자의 열적 안정성, 전기화학적 특성, 필름형성 능력, 치수 안정성, 기계적 안정성, 화학적 특성, 물리적 특성, 셀 성능 등의 향상을 위해, 고분자 사슬의 내부에 열적 가교가 가능한 가교결합성기를 포함하는 CM(Crosslinkable Moiety)을 축중합 반응에 의하여 치환시켜 본 발명에서 목표로 하는 상기 화학식 2로 표시되는 고분자 사슬 내부에 가교 구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체를 제조할 수 있다.
본 실시예에서 목적하는 고분자 사슬 내부에 가교구조를 함유한 술폰화된 폴리(아릴렌 에테르) 공중합체 합성을 위한 축중합반응 및 가교 결합성기 도입 반응에는 염기로서 알칼리 금속, 알칼리 토금속의 수산화물, 탄산염 및 황산염 중에서 선택된 무기 염기를 사용하거나, 또는 암모니아를 비롯한 통상의 아민류 중에서 선택된 유기 염기를 사용할 수도 있다.
또한, 상기 반응 용매로는 비양자성 극성용매 또는 양성자성 극성용매가 사용될 수 있다. 상기 비양자성 극성용매로는 N-메틸피롤리돈(NMP), 디메틸포름아마이드(DMF), N,N-디메틸아세트아마이드(DMAc), 디메틸설폭사이드 (DMSO) 등이 사용될 수 있고, 상기 양성자성 극성용매로는 메틸렌클로라이드(CH2Cl2), 클로로포름(CHCl3), 테트라하이드로퓨란(THF) 등이 사용될 수 있으며, 공비용매로서 벤젠, 톨루엔, 자일렌 등이 사용될 수 있다.
또한, 본 발명에 따른 상기 화학식 3으로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법의 일구체예는 1) 술폰화된 디하이드록시 단량체, 술폰화되지 않은 디하이드록시 단량체, 술폰화된 디할라이드 단량체 및 술폰화되지 않은 디할라이드 단량체로 이루어진 군으로부터 선택되는 1종 이상의 단량체를 축중합시켜서 중합체를 형성하는 단계, 및 2) 상기 제조되는 중합체의 말단에 가교성 화합물을 이용하여 치환반응을 수행하는 단계를 포함한다.
상기 1) 단계의 단량체를 축중합시켜서 중합체를 형성하는 단계의 구체적인 내용은 전술한 바와 같다.
상기 2) 단계의 치환반응은 할라이드가 치환된 페닐계 화합물 또는 하이드록시가 치환된 페닐계 화합물을 이용하는 것이 바람직하다.
상기 할라이드가 치환된 페닐계 화합물 및 하이드록시가 치환된 페닐계 화합물은 하기 구조식으로 표시될 수 있으나, 이에만 한정되는 것은 아니다.
Figure PCTKR2011005157-appb-I000070
Figure PCTKR2011005157-appb-I000071
상기 구조식에서, X는 할로겐이고,
R은
Figure PCTKR2011005157-appb-I000072
,
Figure PCTKR2011005157-appb-I000073
, 또는
Figure PCTKR2011005157-appb-I000074
이고,
G는 단일결합,
Figure PCTKR2011005157-appb-I000075
,
Figure PCTKR2011005157-appb-I000076
, 또는
Figure PCTKR2011005157-appb-I000077
이며,
R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
Figure PCTKR2011005157-appb-I000078
이고,
R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
또한, 본 발명은 상기 화학식 1, 화학식 2 또는 화학식 3으로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체를 포함하는 고분자 전해질막을 제공한다.
또한, 본 발명은 하기 구조식으로 이루어진 군으로부터 선택되는 1종 이상의 가교 결합성기를 포함하는 가교성 화합물을 제공한다.
Figure PCTKR2011005157-appb-I000079
Figure PCTKR2011005157-appb-I000080
상기 구조식에서, R은
Figure PCTKR2011005157-appb-I000081
,
Figure PCTKR2011005157-appb-I000082
, 또는
Figure PCTKR2011005157-appb-I000083
이고,
G는 단일결합,
Figure PCTKR2011005157-appb-I000084
,
Figure PCTKR2011005157-appb-I000085
, 또는
Figure PCTKR2011005157-appb-I000086
이며,
R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
Figure PCTKR2011005157-appb-I000087
이고,
R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
이상에서 설명한 바와 같은 방법으로 제조된 본 발명의 고분자 사슬 내부에 가교 구조를 함유한 술폰화된 폴리(아릴렌 에테르) 공중합체는 열적 안정성, 필름형성 능력, 기계적 안정성, 화학적 특성, 물리적 특성, 셀 성능 등에서는 기존의 술폰화된 폴리(아릴렌 에테르) 공중합체나 현재 상용화된 고분자 전해질막으로 사용되는 나피온 막과 동등 또는 그 이상의 수준을 유지하면서도 전기 화학적 특성, 특히 양이온 전도도와 셀 성능 면에서는 월등히 향상된 효과를 나타낼 뿐 아니라 수분에 장시간 노출되어도 전해질막 특성의 변화가 없어 높은 치수안정성을 보인다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
<실시예>
<제조예 1> 디히드록시기(dihydroxy group)와 가교가능한 에티닐기(crosslinkable ethynyl group)를 가지는 단량체의 제조(EHQ)
본 발명의 단량체는 아래 반응식 2에 의해 제조되었다.
[반응식 2]
Figure PCTKR2011005157-appb-I000088
(1) 1,4-비스(터트-부틸디메틸실록시)-2-브로모벤젠(1,4-bis(tert-butyldimethylsiloxy)-2-bromobenzne)의 제조
상기 반응식 2의 (1)은 하기의 반응식 3에 따라 제조되었다.
[반응식 3]
Figure PCTKR2011005157-appb-I000089
0 ℃ 환경의 교반장치, 마그네틱 스터바가 장착한 100ml 2구 둥근 플라스크에 아르곤 가스를 버블링(bubbling) 하였다. 0.026mol의 브로모하이드로퀴논(bromohydroquinone), 0.063mol의 트리에틸아민(triethylamine), 50ml의 클로로폼(chloroform), 15ml의 테트라하이드로퓨란(tetrahydrofuran)을 첨가하고 활성화(activation)시킨 다음, 0.063mol의 털트부틸다이메틸실릴 클로라이드(tert-butyldimethylsilyl chloride)를 첨가한 후, 상온에서 18시간 동안 반응시켰다. 반응이 끝난 후, 50ml의 얼음물에 부어서 차게 식힌 후, 100ml 클로로폼(Chloroform)과 포화 쏘듐 바이카보네이트 수용액(saturated sodium bicarbonate aquous), 추출(extraction) 방법을 이용하여 불순물을 제거하였다. 남은 용매는 회전증발(rotary evaporation) 방법을 통해 제거하고, 노르말-헥산(n-hexane)과 디메틸설폭사이드(dimethylsulfoxide, DMSO)를 이용하여 재결정법(recrystallization)을 시행한 뒤, 남은 용매는 동결 건조(freeze-drying) 방법으로 제거하여 최종 생성물을 얻었다. 수율은 90% 이상 이었다.
(2) 1,4-비스(터트부틸디메틸실록시)-2-(트리메틸에티닐)벤젠(1,4-bis(tert-butylmethylsiloxy)-2-(trimethylethynyl)benzene)의 제조
상기 반응식 2의 (2)는 하기의 반응식 4에 따라 제조되었다.
[반응식 4]
Figure PCTKR2011005157-appb-I000090
교반장치, 마그네틱 스터바를 장착한 100ml 2구 둥근 플라스크에 아르곤 가스를 버블링한 상태에서, 증류된 트리에틸아민 용액 50ml, (1)에서 제조한 1,4-비스(터트-부틸디메틸실록시)-2-브로모벤젠 0.012mol, 0.00048mol의 비스-(트리페닐포스파인)팔라듐 클로라이드(bis-(triphenylphosphine)palladium(II) chloride), 0.00060mol의 트리페닐포스파인(triphenylphos-phine), 0.00048mol의 코퍼아이오다이드(copper(Ⅰ) iodide)를 첨가한 후, 상온에서 활성화시켰다. 계속해서 아르곤 가스로 퍼징(purging)된 상태를 유지하면서 트리메틸실릴아세틸렌(trimethylsilylacetylene) 0.0144mol을 첨가한 후, 50 ℃에서 16시간 동안 반응시켰다. 반응이 끝나면, 침전으로 가라앉은 트리에틸암모늄염(triethylammonium salt)을 걸러내고, 남은 물질은 노르말-헥산으로 추출을 이용하여 정제한 후, 쏘듐설페이트(Na2SO4)로 탈수한 다음, 컬럼 크로마토그래피(column chromatography) 방법으로 정제하였다. 수율은 70% 이상 이었다.
(3) 에티닐 하이드로퀴논(ethynyl hydroquinone)의 제조
상기 반응식 2의 (3)은 하기의 반응식 5에 따라 제조되었다.
[반응식 5]
Figure PCTKR2011005157-appb-I000091
교반장치, 마그네틱 스터바를 장착한 100ml 2구 둥근 플라스크에 0.0046mol의 테트라하이드로퓨란(tetrahydrofuran, THF) 15ml와 (2)에서 제조한 1,4-비스(터트-부틸디메틸실록시)-2-(트리메틸에티닐)벤젠(1,4-bis(tert-butylmethylsiloxy)-2-(trimethylethynyl)benzene)을 0.0046mol 넣고 아르곤 가스로 버블링하였다. 그 다음 0 ℃ 환경으로 만들어주고, 테트라-노르말-부틸 암모늄 플루오라이드(tetra-n-butylammonium fluoride, TBAF) 28ml를 첨가한 후, 교반시켰다. 일정 시간이 지나면, 온도를 30 ℃로 올린 다음, 4시간 동안 반응시켰다. 반응이 끝나면 물과 에틸아세테이트(Ethyl acetate)로 희석시킨 후, 쏘듐클로라이드 포화수용액(saturated sodium chloride aquous)과 물로 혼합 유기층을 씻어내었다. 쏘듐설페이트(Na2SO4)로 탈수 후, 한 번 걸러내고, 증발(evaporation) 방법을 이용하여 농축시켰다. 컬럼 크로마토그래피(column chromatography)를 실시하여 최종 물질을 얻었다. 수율은 90% 이상 이었다.
<실시예 1> 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조(SHQk-EHQs-DFBP, SHQk-EHQs-DFDPS)
[반응식 6]
Figure PCTKR2011005157-appb-I000092
교반장치, 질소 도입관, 마그네틱 스터바 및 딘-스탁(Dean-Stark; azeotropic distillation) 장치가 장착된 250ml의 2구 둥근 플라스크에 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)의 몰비를 13.5mmol(k = 1)로 하고, 에티닐 하이드로 퀴논(ethynyl hydroquinone)의 몰비를 1.5mmol(s = 1)로 하여, K2CO3(1.25 당량비) 및 N,N-디메틸아세트아마이드(DMAc)(40ml)와 벤젠(20ml)을 첨가하였다.
활성화 단계(activation step)는 온도를 140 ℃에서 12시간 진행되었고, 반응 중 부산물로 생산된 물은 반응용매 중 하나인 벤젠과의 공비증류(azeotropic distillation) 방법에 의하여 제거되었고, 활성화 단계 종료 후, 벤젠은 반응기로부터 제거되었다. 이후에, 데카플루오로바이페닐(decafluorobiphenyl)의 몰비를 15mmol(d = 1)로 하여 반응기에 첨가한 후, 반응온도를 140 ℃로 유지시켜 24시간 반응시켰다. 반응이 끝난 후, 1L의 에탄올에 침전시키고, 에탄올로 여러 번 세척한 후, 60 ℃에서 3일간 진공 건조시켰다. 최종 생성물은 옅은 갈색의 고체로 얻어졌으며, 90% 이상의 수율을 얻었다.
이를 SHQk-EHQs-DFBP이라 지칭한다. 상기 공중합체의 명칭 EHQk-SHQs-DFBP에서 k는 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)의 몰비의 백분율을 나타내고, s는 에티닐 하이드로 퀴논의 몰비의 백분율을 나타낸다.
출발물질인 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)와 에티닐 하이드로 퀴논(ethynyl hydroquinone)의 몰비(k : s)를 13.5mmol : 1.5mmol(k : s = 0.9 : 0.1), 12mmol : 3mmol(k : s = 0.8 : 0.2), 10.5mmol : 4.5mmol(k : s = 0.7 : 0.3)으로 하여 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체들을 제조하였으며, 상기 출발물질의 몰비의 차이에 따라 형성된 공중합체들은 각각 SHQ90-EHQ10-DFBP, SHQ80-EHQ20-DFBP, SHQ70-EHQ30-DFBP으로 명명한다. 각각의 수율은 90% 이상이었다.
상기 반응과 동일하게 실시하되, 출발물질을 데카플루오로바이페닐(decafluorobiphenyl) 대신에 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)을 사용하여, 하기 반응식 7과 같은 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체 SHQk-EHQs-DFDPS를 얻을 수 있었다. 출발물질인 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)와 에티닐 하이드로 퀴논(ethynyl hydroquinone)의 몰비(k : s)에 변화를 주어 얻은 공중합체는 각각 SHQ90-EHQ10-DFDPS, SHQ80-EHQ20-DFDPS, SHQ70-EHQ30-DFDPS 라고 지칭한다. 수율은 각각 90% 이상이었다.
[반응식 7]
Figure PCTKR2011005157-appb-I000093
<실시예 2> 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조(SHQk-6FBPm-EHQs-DFBP, SHQk-6FBPm-EHQs-DFDPS, SHQk-BPm-EHQs-DFBP, SHQk-BPm-EHQs-DFDPS)
[반응식 8]
Figure PCTKR2011005157-appb-I000094
상기 실시예 1과 동일한 방법으로 실시하되, 출발물질로 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexa-fluoropropane)을 추가하여, SHQk-6FBPm-EHQs-DFBP를 제조하였다. m은 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexafluoropropane)의 몰비의 백분율을 나타낸다. k는 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)의 몰비의 백분율을 나타내고, s는 에티닐 하이드로 퀴논(ethynyl hydroquinone)의 몰비의 백분율을 나타낸다.
출발물질인 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)와 에티닐 하이드로 퀴논(ethynyl hydroquinone), 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexafluoropropane)의 몰비(k : m : s)를 12mmol : 1.5mmol : 1.5mmol(k : m : s = 0.8 : 0.1 : 0.1)으로 하여 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체들을 제조하였으며, 상기 출발물질의 몰비의 차이에 따라 형성된 공중합체는 SHQ80-6FBP10-EHQ10-DFBP 라고 명명한다. 수율은 90% 이상이었다.
상기 반응과 동일하게 실시하되, 출발물질을 데카플루오로바이페닐(decafluorobiphenyl) 대신에 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)을 사용하여, 하기 반응식 10과 같은 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체 SHQk-6FBPm-EHQs-DFDPS를 얻을 수 있었. 각각의 출발물질의 몰비(k : m : s)를 0.8 : 0.1 : 0.1로 하여 얻은 공중합체는 SHQ80-6FBP10-EHQ10-DFDPS 라고 지칭한다. 수율은 90% 이상이었다.
[반응식 9]
Figure PCTKR2011005157-appb-I000095
상기 반응과 동일하게 실시하되, 출발물질로 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexafluoropropane) 대신에 4,4'-바이페놀(4,4'-Biphenol)을 사용하면 하기 반응식 11, 반응식 12와 같은 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체 SHQk-BPm-EHQs-DFBP, SHQk-BPm-EHQs-DFDPS를 제조하였다. 각 출발물질의 몰비(k : m : s)를 0.8 : 0.1 : 0.1로 함에 따라 형성된 공중합체는 SHQ80-BP10-EHQ10-DFBP, SHQ80-BP10-EHQ10-DFDPS 이라 명명한다. 수율은 90% 이상이었다.
[반응식 10]
Figure PCTKR2011005157-appb-I000096
[반응식 11]
Figure PCTKR2011005157-appb-I000097
<실시예 3> 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조(SHQk-EDHBPs-DFBP 및 SHQk-EDPDHs-DFDPS)
상기 실시예 1과 동일한 방법으로 실시하되, 에티닐 하이드로퀴논 (ethynyl hydroquinone) 대신에, 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-dihydroxybiphenyl)을 사용하여 하기의 반응식 13과 같은 SHQk-EDPHs-DFBP를 제조하였다. 또한, 하기 반응식 13에서 출발물질인 데카플루오로바이페닐(decafluorobiphenyl) 대신에, 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)을 사용하면 하기의 반응식 14와 같은 SHQk-EDPHs-DFDPS를 얻을 수 있다. 두 물질에서 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)와 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-dihydroxybiphenyl)의 몰비(k : s)를 0.9 : 0.1로 하여 얻은 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체를 각각 SHQ90-EDHBP10-DFBP, SHQ90-EDHBP10-DFDPS 라고 명명한다. 수율은 각각 90% 이상이다.
[반응식 12]
Figure PCTKR2011005157-appb-I000098
[반응식 13]
Figure PCTKR2011005157-appb-I000099
<실시예 4> 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조(SHQk-6FBPm-EDHBPs-DFBP 및 SHQk-6FBPm-EDHB-Ps-DFDPS)
상기 반응과 동일하게 실시하되, 출발물질로 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판 (2,2'-bis(4-hydroxyphenyl)hexa-fluoropropane)을 추가하면, 반응식 14와 같은 반응을 통해 SHQk-6FBPm-EDHBPs-DFBP을 제조할 수 있다. m은 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexa-fluoropropane)의 몰비의 백분율을 나타낸다. k는 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)의 몰비의 백분율을 나타내고, s는 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-dihydroxybiphenyl)의 몰비의 백분율을 나타낸다.
출발물질인 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)와 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-dihydroxybiphenyl), 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexafluoropropane)의 몰비(k : m : s)를 12mmol : 1.5mmol : 1.5mmol(k : m : s = 0.8 : 0.1 : 0.1)으로 하여 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체들을 제조하였으며, 상기 출발물질의 몰비의 차이에 따라 형성된 공중합체는 SHQ80-6FBP10-EDHBP10-DFBP 이라 명명한다. 수율은 90% 이상이었다.
또한, 데카플루오로바이페닐(decafluorobiphenyl) 대신에, 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)을 사용하여 반응식 15와 같은 SHQk-6FBPm-EDHBPs-DFDPS를 제조할 수 있었고, 출발물질인 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)와 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-di-hydroxybiphenyl), 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexafluoropropane)의 몰비(k : m : s)를 12mmol : 1.5mmol : 1.5mmol(k : m : s = 0.8 : 0.1 : 0.1)으로 하여 얻은 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체는 SHQ80-6FBP10-EDHBP10-DFDPS 라고 명명한다. 수율은 90% 였다.
[반응식 14]
Figure PCTKR2011005157-appb-I000100
[반응식 15]
Figure PCTKR2011005157-appb-I000101
<실시예 5> 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조(SHQk-BPm-EDHBPs-DFBP 및 SHQk-BPm-EDHBPs-DFDPS)
상기 반응과 동일하게 실시하되, 출발물질로 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexa-fluoropro-pane) 대신에 2,2'-바이페놀(2,2'-biphenol)을 사용하여 반응식 16과 같은 반응을 통해 SHQk-BPm-EDHBPs-DFBP을 제조하였다. m은 2,2'-바이페놀(2,2'-biphenol)의 몰비의 백분율을 나타낸다. k는 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)의 몰비의 백분율을 나타내고, s는 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-dihydroxybiphenyl)의 몰비의 백분율을 나타낸다.
출발물질인 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)와 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-dihydroxybiphenyl), 2,2'-바이페놀(2,2'-biphenol)의 몰비(k : m : s)를 12mmol : 1.5mmol : 1.5mmol(k : m : s = 0.8 : 0.1 : 0.1)으로 하여 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체들을 제조하였으며, 상기 출발물질의 몰비의 차이에 따라 형성된 공중합체는 SHQ80-BP10-EDHBP10-DFBP 이라 명명한다. 수율은 90% 이상이었다.
또한, 데카플루오로바이페닐(decafluorobiphenyl) 대신에, 4,4'-다이플루오로다이페닐설폰(4,4'-difluorodiphenyl sulfone)을 사용하여 반응식 17과 같은 SHQk-BPm-EDHBPs-DFDPS를 제조할 수 있었고, 출발물질인 하이드로퀴논술폰닉 에시드 포타슘 쏠트(hydroquinonesulfonic acid potassium salt)와 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-di-hydroxybi-phenyl), 2,2'-바이페놀(2,2'-biphenol)의 몰비(k : m : s)를 12mmol : 1.5mmol : 1.5mmol(k : m : s = 0.8 : 0.1 : 0.1)으로 하여 얻은 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체는 SHQ80-BP10-EDHBP10-DFDPS 라고 명명한다. 수율은 90% 였다.
[반응식 16]
Figure PCTKR2011005157-appb-I000102
[반응식 17]
Figure PCTKR2011005157-appb-I000103
<실시예 6> 고분자 사슬 내부에 가교구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조(6FBPk-EHQs-SDFDPS, BPk-EHQs-SDFDPS, 6FBPk-EDHBPs-SDFDPS 및 BPk-EDHBPs-SDFDPS)
[반응식 19]
Figure PCTKR2011005157-appb-I000104
실시예 1과 같은 방법으로 실시하되, 출발물질로 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexafluoropropane), 에티닐하이드로퀴논(ethynyl hydroquinone), 3,3'-술폰네이티드-4,4'-다이플루오로다이페닐설폰(3,3'-sulfonated-4,4'-di-fluorodiphenyl sulfone)을 사용하여 반응식 19와 같은 6FBPk-EHQs-SDFDPSb를 제조하였다. 출발물질인 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexafluoropropane), 에티닐하이드로퀴논(ethynyl hydroquinone)의 몰비(k : s)의 백분율을 0.9 : 0.1로 하여 얻은 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리 (아릴렌 에테르) 공중합체는 6FBP90-EHQ10-SDFDPS 라고 명명한다. 수율은 90% 이상이었다.
또한, 위와 같은 반응을 실시하되, 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexafluoropropane) 대신에, 2,2'-바이페놀(2,2'-biphenol)을 사용하면, 하기의 반응식 20과 같은 BPk-EHQs-SDFDPS 를 제조할 수 있고, 2,2'-바이페놀(2,2'-biphenol)과 에티닐 하이드로퀴논(ethynyl hydroquinone)의 몰비(k : s)의 백분율을 0.9 : 0.1로 하여 얻은 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체는 BP90-EHQ10-SDFDPS라고 명명하며, 수율은 90% 이상이다.
[반응식 20]
Figure PCTKR2011005157-appb-I000105
계속해서, 이와 같은 반응으로 실시하며, 에티닐 하이드로퀴논(ethynyl hydroquione) 대신에, 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-di-hydroxybiphenyl)을 사용하여, 하기의 반응식 21과 반응식 22와 같은 6FBPk-EDHBPs-SDFDPS 및 BPk-EDHBPs-SDFDPS를 제조 하였다. 2,2'-비스(4-하이드록시페닐)헥사플루오로프로판(2,2'-bis(4-hydroxyphenyl)hexafluoropropane)과 및 2,2'-바이페놀(2,2'-biphenol)과 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-di-hydroxybiphenyl)의 몰비(k : s)의 백분율을 0.9 : 0.1로 조절하여 얻은 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체는 각각 6FBP90-EDHBP10-SDFDPS, BP90-EDHBP10-SDFDPS 이라 명명한다. 수율은 각각 90% 이상이다.
[반응식 21]
Figure PCTKR2011005157-appb-I000106
[반응식 22]
Figure PCTKR2011005157-appb-I000107
<실험예> 고분자 전해질막의 제조
상기 실시예 1 ~ 6에 의해 합성된 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체들을 용매에 녹인 후, 0.45 ~ 1㎛의 PTFE 멤브레인 필터를 이용하여 여과하였다. 그 후, 깨끗한 유리판 지지체에 고분자 용매를 주물(casting) 방법으로 유리판 위에 부은 후, 50 ℃ 오븐에 24시간 동안 방치하였다.
계속해서, 고분자 사슬 내부의 가교를 위해 80 ~ 350 ℃의 온도에서 30분 이상 열처리를 수행하였다. 또한, 바람직하기로는 상기 열처리는 250 ~ 260 ℃에서 2시간 이상 열처리를 수행하였다.
이 때, 사용 가능한 용매로는 이중극성 용매(dipolar solvent)로 구체적으로는 N,N'-디메틸포름아마이드(DMF), 디메틸아세트아마이드(DMAc), 디메틸술폭사이드(DMSO) 또는 N-메틸피롤리돈(NMP)을 사용할 수 있다.
열처리가 끝난 후, 상온으로 식힌 뒤 산 처리를 통해 상기 반응식 5 내지 반응식 8에서 제조된 고분자의 술폰 부분의 염이온(Na+, K+, alkyl amonium ion)을 수소로 치환시킨다.
산 처리하는 방법은 2 노르말 농도의 황산(H2SO4) 수용액, 1노르말 농도의 질산(HNO3) 수용액 또는 1 노르말 농도의 염산(HCl) 수용액에 24시간 동안 담군 후 증류수에 24시간 동안 담궈두거나 0.5몰 농도의 황산(H2SO4) 수용액에 넣어 2시간 동안 끓이는 방법을 이용하는데, 산 처리하는 방법이 이에 한정되는 것은 아니다.
산 처리한 고분자 전해질 막을 24시간 동안 증류수에 담궈놓은 뒤 양이온 전도도를 측정한다.
상기 실시예 1 ~ 6에 의한 고분자 사슬 내부에 가교 구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체들의 명칭에 따라, 제조된 고분자막의 명칭도 별도로 부여한다. 즉, 실시예 1에서의 EHQk-SHQs-DFBP를 이용하여 고분자막을 제조한 경우, 그 고분자막의 명칭은 C-EHQk-SHQs-DFBP로 지칭한다. 즉, 실시예 1 ~ 6에 개시된 술폰화된 폴리(아릴렌 에테르) 공중합체들 중에서 출발물질로 디히드록시기를 가지는 가교가능한 단량체, 에티닐 하이드로 퀴논(ethynyl hydroquinone)과 1-에티닐-2,5-디하이드록시바이페닐(1-ethynyl-2,5-dihydroxybiphenyl)을 이용한 고분자막들의 명칭은 제조예의 순서에 따라, C-SHQk-EHQs-DFBP, C-SHQk-EHQs-DFDPS, C-SHQk-6FBPm-EHQs-DFBP, C-SHQk-6FBPm-EHQs-DFDPS, C-SHQk-BPm-EHQs-DFBP, C-SHQk-BPm-EHQs-DFDPS, C-SHQk-EDHBPs-DFBP, C-SHQk-EDHBPs-DFDPS, C-SHQk-6FBPm-EDHBPs-DFBP, C-SHQk-BPm-EDHBPs-DFBP, C-SHQk-6FBPm-EDHBPs-DFDPS, C-SHQk-BPm-EDHBPs-DFDPS, C-6FBPk-EHQs-SDFDPS, C-BPk-EHQs-SDFDPS, C-6FBPk-EDHBPs-SDFDPS, C-BPk-EDHBPs-SDFDPS 로 지칭한다.
하기 표 1은 상기 20여 종의 고분자막의 용해도를 측정한 것이다.
[표 1]
Figure PCTKR2011005157-appb-I000108
S: Soluble
I: Insoluble
상기 표 1에서 I는 각각의 용매에 용해되지 않음(insolubility)을 나타낸다. 또한, 상기 표 1에서 알 수 있듯이, 고분자 전해질막은 어느 용매에도 녹지 않아 고분자 전해질막이 가교가 되었음을 나타낸다. 또한, 화학적으로 매우 안정할 뿐 아니라 치수 안정성이 뛰어남을 알 수 있다.
상기 제조예 5에서 제조된 고분자 전해질막의 이온교환능을 현재 상용화되어 있는 나피온과 비교하여 하기 표 2에 나타내었다.
[표 2]
Figure PCTKR2011005157-appb-I000109
상기 표 2에서, 이온교환능은 24시간 동안 0.01N NaCl 용액에 담근 후, 0.01N NaOH로 적정하여 측정하였다(지시약으로는 페놀프탈레인을 사용).
상기 표 2에서 알 수 있듯이, 제조된 고분자 전해질막의 이온교환능이 나피온에 비해 상당히 높은 것으로 보아, 고분자 전해질막의 가장 중요한 특성인 양이온 전도도(proton conductivity) 또한 나피온에 비해 높은 값을 가질 것으로 예상할 수 있다.
상기 제조예 5에서 제조된 고분자 전해질막의 물흡수율(water uptake) 및 양이온 전도도(proton conductivity)를 현재 상용화되어 있는 나피온과 비교하여 하기 표 3에 나타내었다.
[표 3]
Figure PCTKR2011005157-appb-I000110
상기 표 3에서, 이온전도도는 임피던스 분석기(AutoLab, PGSTAT 30, Netherlands)로 측정하였다(σ = (S/cm) = L/(R × A), 여기서 L(cm)은 두 전극 사이의 거리를 나타내고, R(Ω)은 막저항을 나타내며, A(cm2)은 이온이 통과하는 막의 표면적을 나타낸다).
상기 표 3에서, 물흡수율은 막의 무게를 측정하여 계산하였다(물 흡수율(%) = (Wwet - Wdry) × 100/Wdry, 여기서 Wwet는 젖은 상태의 막의 무게를 나타내고, Wdry는 마른 상태의 막의 무게를 나타낸다).
상기 표 3에서 알 수 있듯이, 고분자 전해질막으로서 가장 중요한 특성인 양이온 전도도가 나피온과 비슷하거나 많이 향상되었음을 알 수 있다.
상기 결과와 같이, 가교구조를 함유한 술폰화된 폴리(아릴렌 에테르) 공중합체를 이용한 고분자 전해질막은 열적 안정성, 기계적 안정성, 화학적 안정성, 막 형성 능력 등에서 기존의 상용화된 고분자 전해질 막과 동등 또는 그 이상의 수준을 유지할 수 있다. 또한, 양이온 전도도와 셀 성능 면에서는 기존의 고분자 전해질막에 비해 월등히 향상된 효과를 나타내며, 수분에 장시간 노출되어도 전해질막 특성의 변화가 없어 높은 치수안정성을 나타내며, 연료전지 또는 2차전지 등에 사용될 수 있다.

Claims (15)

  1. 하기 화학식 1 또는 화학식 2로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체:
    [화학식 1]
    Figure PCTKR2011005157-appb-I000111
    [화학식 2]
    Figure PCTKR2011005157-appb-I000112
    상기 화학식 1 및 화학식 2에서,
    SAr1 및 SAr2는 서로 동일하거나 상이하고, 각각 독립적으로 술폰화된 방향족(sulfonated aromatic)을 나타내고,
    Ar1, Ar2, Ar3, Ar4 및 Ar5는 서로 동일하거나 상이하고, 각각 독립적으로 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며,
    CM은 가교할 수 있는 부분(Crosslinkable moiety)을 나타내고,
    k는 0.001 내지 0.999의 수, m은 0 내지 1의 수, s는 (1 - k - m) 값의 수, b는 0.001 내지 1의 수, 및 d는 (1 - b) 값의 수이며,
    n은 고분자 중합체의 반복단위(repeating unit)로서, 10 내지 500의 정수이다.
  2. 하기 화학식 3으로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체:
    [화학식 3]
    Figure PCTKR2011005157-appb-I000113
    상기 화학식 3에서,
    SAr3은 각각 독립적으로 술폰화된 방향족(sulfonated aromatic)을 나타내고,
    Ar6 및 Ar7은 각각 독립적으로 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며,
    CM'는 가교할 수 있는 부분(Crosslinkable moiety)을 나타내고,
    k는 0.001 내지 0.999의 수, 및 s는 (1 - k) 값의 수이며,
    n은 고분자 중합체의 반복단위(repeating unit)로서, 10 내지 500의 정수이다.
  3. 제1항 또는 제2항에 있어서,
    상기 화학식 1, 화학식 2 또는 화학식 3의 SAr1, SAr2 또는 SAr3은 각각 독립적으로 하기 구조식으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 술폰화된 폴리(아릴렌 에테르) 공중합체:
    Figure PCTKR2011005157-appb-I000114
    상기 구조식에서, M+는 양이온 전하를 가진 짝이온(counterion)으로서, 칼륨 이온(K+), 나트륨 이온(Na+), 또는 알킬 아민(+NR', 여기서 R'는 탄소수 1 내지 5의 알킬기이다)을 나타내고, 바람직하게는 칼륨 이온 또는 나트륨 이온이고,
    Z는 직접결합이거나,
    Figure PCTKR2011005157-appb-I000115
    ,
    Figure PCTKR2011005157-appb-I000116
    , 또는
    Figure PCTKR2011005157-appb-I000117
    이며,
    Y는 단일결합이거나, 하기 구조식으로 이루어진 군으로부터 선택되고,
    Figure PCTKR2011005157-appb-I000118
    여기서, A는 단일결합이거나,
    Figure PCTKR2011005157-appb-I000119
    ,
    Figure PCTKR2011005157-appb-I000120
    ,
    Figure PCTKR2011005157-appb-I000121
    ,
    Figure PCTKR2011005157-appb-I000122
    ,
    Figure PCTKR2011005157-appb-I000123
    ,
    Figure PCTKR2011005157-appb-I000124
    ,
    Figure PCTKR2011005157-appb-I000125
    , 또는
    Figure PCTKR2011005157-appb-I000126
    이고,
    E는 H, F, 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 할로알킬기, 또는
    Figure PCTKR2011005157-appb-I000127
    이고,
    L은 H, F, 탄소수 1 내지 5의 알킬기 또는 탄소수 1 내지 5의 할로알킬기이다.
  4. 제1항 또는 제2항에 있어서,
    상기 화학식 1, 화학식 2 또는 화학식 3의 Ar1, Ar2, Ar3, Ar4, Ar5, Ar6 또는 Ar7은 각각 독립적으로 하기 구조식으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 술폰화된 폴리(아릴렌 에테르) 공중합체:
    Figure PCTKR2011005157-appb-I000128
    상기 구조식에서, Y는 단일결합이거나, 하기 구조식으로 이루어진 군으로부터 선택되고,
    Figure PCTKR2011005157-appb-I000129
    여기서, A는 단일결합이거나,
    Figure PCTKR2011005157-appb-I000130
    ,
    Figure PCTKR2011005157-appb-I000131
    ,
    Figure PCTKR2011005157-appb-I000132
    ,
    Figure PCTKR2011005157-appb-I000133
    ,
    Figure PCTKR2011005157-appb-I000134
    ,
    Figure PCTKR2011005157-appb-I000135
    ,
    Figure PCTKR2011005157-appb-I000136
    , 또는
    Figure PCTKR2011005157-appb-I000137
    이고,
    E는 수소, F, 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 할로알킬기, 또는
    Figure PCTKR2011005157-appb-I000138
    (여기서, L은 수소, F, 탄소수 1 내지 5의 알킬기 또는 탄소수 1 내지 5의 할로알킬기) 이다.
  5. 제1항에 있어서,
    상기 화학식 1 또는 화학식 2의 CM은 하기 구조식으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 술폰화된 폴리(아릴렌 에테르) 공중합체:
    Figure PCTKR2011005157-appb-I000139
    Figure PCTKR2011005157-appb-I000140
    상기 구조식에서, R은
    Figure PCTKR2011005157-appb-I000141
    ,
    Figure PCTKR2011005157-appb-I000142
    , 또는
    Figure PCTKR2011005157-appb-I000143
    이고,
    G는 단일결합,
    Figure PCTKR2011005157-appb-I000144
    ,
    Figure PCTKR2011005157-appb-I000145
    , 또는
    Figure PCTKR2011005157-appb-I000146
    이며,
    R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
    Figure PCTKR2011005157-appb-I000147
    이고,
    R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
  6. 제2항에 있어서,
    상기 화학식 3의 CM'는 하기 구조식으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 술폰화된 폴리(아릴렌 에테르) 공중합체:
    Figure PCTKR2011005157-appb-I000148
    Figure PCTKR2011005157-appb-I000149
    상기 구조식에서, R은
    Figure PCTKR2011005157-appb-I000150
    ,
    Figure PCTKR2011005157-appb-I000151
    , 또는
    Figure PCTKR2011005157-appb-I000152
    이고,
    G는 단일결합,
    Figure PCTKR2011005157-appb-I000153
    ,
    Figure PCTKR2011005157-appb-I000154
    , 또는
    Figure PCTKR2011005157-appb-I000155
    이며,
    R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
    Figure PCTKR2011005157-appb-I000156
    이고,
    R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
  7. 술폰화된 디하이드록시 단량체, 술폰화되지 않은 디하이드록시 단량체, 술폰화된 디할라이드 단량체 및 술폰화되지 않은 디할라이드 단량체로 이루어진 군으로부터 선택되는 1종 이상의 단량체와 가교성 화합물을 축중합시켜서 중합체를 형성하는 단계를 포함하는 하기 화학식 1 또는 화학식 2로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2011005157-appb-I000157
    [화학식 2]
    Figure PCTKR2011005157-appb-I000158
    상기 화학식 1 및 화학식 2에서,
    SAr1 및 SAr2는 서로 동일하거나 상이하고, 각각 독립적으로 술폰화된 방향족(sulfonated aromatic)을 나타내고,
    Ar1, Ar2, Ar3, Ar4 및 Ar5는 서로 동일하거나 상이하고, 각각 독립적으로 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며,
    CM은 가교할 수 있는 부분(Crosslinkable moiety)을 나타내고,
    k는 0.001 내지 0.999의 수, m은 0 내지 1의 수, s는 (1 - k - m) 값의 수, b는 0.001 내지 1의 수, 및 d는 (1 - b) 값의 수이며,
    n은 고분자 중합체의 반복단위(repeating unit)로서, 10 내지 500의 정수이다.
  8. 1) 술폰화된 디하이드록시 단량체, 술폰화되지 않은 디하이드록시 단량체, 술폰화된 디할라이드 단량체 및 술폰화되지 않은 디할라이드 단량체로 이루어진 군으로부터 선택되는 1종 이상의 단량체를 축중합시켜서 중합체를 형성하는 단계, 및
    2) 상기 제조되는 중합체의 말단에 가교성 화합물을 이용하여 치환반응을 수행하는 단계
    를 포함하는 하기 화학식 3으로 표시되는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법:
    [화학식 3]
    Figure PCTKR2011005157-appb-I000159
    상기 화학식 3에서,
    SAr3은 각각 독립적으로 술폰화된 방향족(sulfonated aromatic)을 나타내고,
    Ar6 및 Ar7은 각각 독립적으로 술폰화되지 않은 방향족(none sulfonated aromatic)을 나타내며,
    CM'는 가교할 수 있는 부분(Crosslinkable moiety)을 나타내고,
    k는 0.001 내지 0.999의 수, 및 s는 (1 - k) 값의 수이며,
    n은 고분자 중합체의 반복단위(repeating unit)로서, 10 내지 500의 정수이다.
  9. 제7항에 있어서,
    상기 가교성 화합물은 하기 구조식으로 이루어진 군으로부터 선택되는 가교 결합성기를 포함하는 것을 특징으로 하는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법:
    Figure PCTKR2011005157-appb-I000160
    Figure PCTKR2011005157-appb-I000161
    상기 구조식에서, R은
    Figure PCTKR2011005157-appb-I000162
    ,
    Figure PCTKR2011005157-appb-I000163
    , 또는
    Figure PCTKR2011005157-appb-I000164
    이고,
    G는 단일결합,
    Figure PCTKR2011005157-appb-I000165
    ,
    Figure PCTKR2011005157-appb-I000166
    , 또는
    Figure PCTKR2011005157-appb-I000167
    이며,
    R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
    Figure PCTKR2011005157-appb-I000168
    이고,
    R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
  10. 제7항 또는 제8항에 있어서,
    상기 축중합시키는 단계는 염기, 공비용매, 및 비양자성 극성용매 또는 양성자성 극성용매를 사용하고, 10 ~ 300 ℃의 온도에서 수행되는 것을 특징으로 하는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법.
  11. 제10항에 있어서,
    상기 비양자성 극성용매는 N-메틸피롤리돈(NMP), 디메틸포름아마이드(DMF), N,N-디메틸아세트아마이드(DMAc) 및 디메틸설폭사이드(DMSO)로 이루어진 군으로부터 선택되는 1종 이상을 포함하고, 상기 양성자성 극성용매는 메틸렌클로라이드(CH2Cl2), 클로로포름(CH3Cl) 및 테트라하이드로퓨란(THF)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하며, 상기 공비용매는 벤젠, 톨루엔 및 자일렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법.
  12. 제8항에 있어서,
    상기 2) 단계의 치환반응은 할라이드가 치환된 페닐계 화합물 또는 하이드록시가 치환된 페닐계 화합물을 이용하는 것을 특징으로 하는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법.
  13. 제12항에 있어서,
    상기 할라이드가 치환된 페닐계 화합물 및 하이드록시가 치환된 페닐계 화합물은 각각 하기 구조식으로 표시되는 것을 특징으로 하는 술폰화된 폴리(아릴렌 에테르) 공중합체의 제조방법:
    Figure PCTKR2011005157-appb-I000169
    Figure PCTKR2011005157-appb-I000170
    상기 구조식에서, X는 할로겐이고,
    R은
    Figure PCTKR2011005157-appb-I000171
    ,
    Figure PCTKR2011005157-appb-I000172
    , 또는
    Figure PCTKR2011005157-appb-I000173
    이고,
    G는 단일결합,
    Figure PCTKR2011005157-appb-I000174
    ,
    Figure PCTKR2011005157-appb-I000175
    , 또는
    Figure PCTKR2011005157-appb-I000176
    이며,
    R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
    Figure PCTKR2011005157-appb-I000177
    이고,
    R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
  14. 제1항 또는 제2항의 술폰화된 폴리(아릴렌 에테르) 공중합체를 포함하는 고분자 전해질막.
  15. 하기 구조식으로 이루어진 군으로부터 선택되는 1종 이상의 가교 결합성기를 포함하는 가교성 화합물:
    Figure PCTKR2011005157-appb-I000178
    Figure PCTKR2011005157-appb-I000179
    상기 구조식에서, R은
    Figure PCTKR2011005157-appb-I000180
    ,
    Figure PCTKR2011005157-appb-I000181
    , 또는
    Figure PCTKR2011005157-appb-I000182
    이고,
    G는 단일결합,
    Figure PCTKR2011005157-appb-I000183
    ,
    Figure PCTKR2011005157-appb-I000184
    , 또는
    Figure PCTKR2011005157-appb-I000185
    이며,
    R1은 H, F, 탄소수 1 내지 5의 알킬기 또는
    Figure PCTKR2011005157-appb-I000186
    이고,
    R2는 H, F 또는 탄소수 1 내지 5의 알킬기이다.
PCT/KR2011/005157 2010-07-15 2011-07-13 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막 WO2012008753A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/807,455 US20130102740A1 (en) 2010-07-15 2011-07-13 Sulfonated poly(arylene ether) copolymer having a cross-linkable structure, and polyelectrolyte membrane comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100068481A KR101235167B1 (ko) 2010-07-15 2010-07-15 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막
KR10-2010-0068481 2010-07-15

Publications (2)

Publication Number Publication Date
WO2012008753A2 true WO2012008753A2 (ko) 2012-01-19
WO2012008753A3 WO2012008753A3 (ko) 2012-04-05

Family

ID=45469925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005157 WO2012008753A2 (ko) 2010-07-15 2011-07-13 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막

Country Status (3)

Country Link
US (1) US20130102740A1 (ko)
KR (1) KR101235167B1 (ko)
WO (1) WO2012008753A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765626B2 (en) 2011-11-30 2014-07-01 Basf Corporation Internal donor structure for olefin polymerization catalysts and methods of making and using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193986B (zh) * 2014-06-30 2016-09-14 中国科学院上海有机化学研究所 可固化的聚醚醚酮及其制备和应用
DE102015214896A1 (de) 2015-08-05 2017-02-09 Leibniz-Institut Für Polymerforschung Dresden E.V. Membranen und Verfahren zur ihrer Herstellung
KR101823050B1 (ko) * 2016-02-26 2018-01-31 한양대학교 산학협력단 수처리 분리막용 다공성 지지체, 이를 포함하는 초박형 복합막 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155347A (ja) * 2001-11-22 2003-05-27 Tosoh Corp スルホアルコキシ基を持つポリアリーレンエーテルスルホン及びその製造方法
US20070163951A1 (en) * 2006-01-18 2007-07-19 Mcgrath James E Chlorine resistant desalination membranes based on directly sulfonated poly(Arylene Ether Sulfone) copolymers
KR100819332B1 (ko) * 2006-11-22 2008-04-03 광주과학기술원 말단에 가교구조를 형성하는 술폰화된 폴리(아릴렌 에테르)공중합체, 이의 제조방법 및 이를 이용한 고분자 전해질막
KR20090036999A (ko) * 2007-10-11 2009-04-15 광주과학기술원 가교구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체및 이를 이용하여 가교된 고분자 전해질막
EP2048182A1 (en) * 2007-10-11 2009-04-15 Gwangju Institute of Science and Technology Sulfonate poly(arylene ether) having crosslinkable moiety combined in chain of polymer, sulfonated poly(arylene ether) having crosslinkable moieties combined in polymer and at polymer end group, and polymer electrolyte membrane using sulfonated poly(arylene ether)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748410B2 (ja) * 2004-12-22 2011-08-17 独立行政法人 日本原子力研究開発機構 架橋構造を導入した高耐久性燃料電池用高分子電解質膜の製造方法
KR100634551B1 (ko) * 2005-10-12 2006-10-16 삼성에스디아이 주식회사 이온전도성 가교 공중합체 및 이를 포함하는 연료전지
KR100934529B1 (ko) * 2007-10-11 2009-12-29 광주과학기술원 고분자 사슬 내부에 가교구조를 가지는 술폰화된폴리(아릴렌 에테르) 공중합체, 고분자 사슬 내부 및말단에 가교구조를 가지는 술폰화된 폴리(아릴렌 에테르)공중합체 및 이를 이용하는 고분자 전해질막

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155347A (ja) * 2001-11-22 2003-05-27 Tosoh Corp スルホアルコキシ基を持つポリアリーレンエーテルスルホン及びその製造方法
US20070163951A1 (en) * 2006-01-18 2007-07-19 Mcgrath James E Chlorine resistant desalination membranes based on directly sulfonated poly(Arylene Ether Sulfone) copolymers
KR100819332B1 (ko) * 2006-11-22 2008-04-03 광주과학기술원 말단에 가교구조를 형성하는 술폰화된 폴리(아릴렌 에테르)공중합체, 이의 제조방법 및 이를 이용한 고분자 전해질막
KR20090036999A (ko) * 2007-10-11 2009-04-15 광주과학기술원 가교구조를 가지는 술폰화된 폴리(아릴렌 에테르) 공중합체및 이를 이용하여 가교된 고분자 전해질막
EP2048182A1 (en) * 2007-10-11 2009-04-15 Gwangju Institute of Science and Technology Sulfonate poly(arylene ether) having crosslinkable moiety combined in chain of polymer, sulfonated poly(arylene ether) having crosslinkable moieties combined in polymer and at polymer end group, and polymer electrolyte membrane using sulfonated poly(arylene ether)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765626B2 (en) 2011-11-30 2014-07-01 Basf Corporation Internal donor structure for olefin polymerization catalysts and methods of making and using same

Also Published As

Publication number Publication date
KR101235167B1 (ko) 2013-02-20
KR20120007782A (ko) 2012-01-25
US20130102740A1 (en) 2013-04-25
WO2012008753A3 (ko) 2012-04-05

Similar Documents

Publication Publication Date Title
WO2014073934A1 (ko) 부분 가지형 블록 공중합체를 포함하는 이온전도성 고분자 및 이의 용도
WO2013081437A1 (ko) 술포네이트계 화합물, 이를 포함하는 고분자 전해질막 및 이를 포함하는 연료전지
WO2016089158A1 (ko) 중합체 및 이를 포함하는 고분자 전해질막
WO2014200286A2 (ko) 술포네이트계 화합물 및 이를 이용한 고분자 전해질막
WO2021112420A1 (ko) 신규 폴리플루오렌계 중합체 이오노머, 음이온교환막 및 이의 제조방법
WO2013137691A1 (ko) 고분자 전해질 조성물, 전해질 막, 막-전극 접합체 및 연료전지
WO2012008753A2 (ko) 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막
WO2014081235A1 (ko) 2개 이상의 술폰화 방향족기로 치환된 페닐 펜던트를 포함하는 이온전도성 고분자 및 이의 용도
WO2012134254A2 (ko) 고분자 전해질 및 이의 제조 방법
WO2021118238A1 (ko) 신규한 중합체 및 이를 이용하는 유기 전자 소자
WO2019004781A1 (ko) 페로브스카이트 태양전지
WO2014061867A1 (ko) 신규한 유기 반도체 화합물 및 이의 제조방법
WO2017171290A1 (ko) 블록 중합체 및 이를 포함하는 고분자 전해질막
WO2012134095A2 (ko) 술폰산기가 도입된 디페닐플루오렌기를 포함하는 수소이온 전도성 공중합체, 그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를 이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막 연료전지
WO2018012877A1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2016068606A1 (ko) 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막
WO2023234725A1 (ko) 신규한 가지부 함유 폴리(아릴 피페리디늄) 공중합체 이오노머, 음이온교환막 및 그 제조방법
WO2010076911A1 (ko) 퍼플루오로싸이클로부탄기를 포함하는 후술폰화된 공중합체, 이의 제조방법 및 이의 용도
WO2016089123A1 (ko) 고분자, 이의 제조방법 및 이를 포함하는 전해질막
WO2014204082A1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 태양전지
WO2016068605A1 (ko) 브랜처용 불소계 화합물, 이를 이용한 고분자 및 이를 이용한 고분자 전해질막
WO2018194395A2 (ko) 화학적으로 개질된 음이온 교환막 및 그 제조 방법
WO2022131665A1 (ko) 신규 폴리플루오렌계 가교 공중합체 및 그 제조방법, 이를 이용한 알칼리 연료전지용 음이온교환막
WO2019059705A2 (ko) 고분자 전해질 및 이의 제조방법
WO2011040760A2 (ko) 사슬 내부에 가교구조를 형성하는 술폰화된 폴리(아릴렌 에터) 공중합체로 이루어진 고분자 염제거막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11807038

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13807455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11807038

Country of ref document: EP

Kind code of ref document: A2