WO2016068319A1 - レーザ溶接継手及びその製造方法 - Google Patents

レーザ溶接継手及びその製造方法 Download PDF

Info

Publication number
WO2016068319A1
WO2016068319A1 PCT/JP2015/080814 JP2015080814W WO2016068319A1 WO 2016068319 A1 WO2016068319 A1 WO 2016068319A1 JP 2015080814 W JP2015080814 W JP 2015080814W WO 2016068319 A1 WO2016068319 A1 WO 2016068319A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
laser
welding
welded
welded joint
Prior art date
Application number
PCT/JP2015/080814
Other languages
English (en)
French (fr)
Inventor
仁寿 ▲徳▼永
富士本 博紀
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP15854280.3A priority Critical patent/EP3213862B1/en
Priority to BR112017007552A priority patent/BR112017007552A2/pt
Priority to CA2963921A priority patent/CA2963921C/en
Priority to RU2017118448A priority patent/RU2684993C2/ru
Priority to JP2016556677A priority patent/JP6376221B2/ja
Priority to KR1020177010870A priority patent/KR102087664B1/ko
Priority to US15/522,035 priority patent/US11174883B2/en
Priority to MX2017005315A priority patent/MX2017005315A/es
Priority to CN201580058471.0A priority patent/CN107073650B/zh
Publication of WO2016068319A1 publication Critical patent/WO2016068319A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/08Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of welds or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/211Bonding by welding with interposition of special material to facilitate connection of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/322Bonding taking account of the properties of the material involved involving coated metal parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Definitions

  • the present invention relates to a laser welded joint that increases joint strength and a method for manufacturing the same, and more particularly, to a laser welded joint that increases joint strength of automobile members.
  • Spot welding is widely used as a welding method for automobile parts and home appliances.
  • spot welding since it is necessary to press and weld the material with the upper and lower electrodes, a space is required to enter the electrodes above and below the place to be welded. For this reason, spot welding is not suitable for one-side welding, and there is a drawback that the shape of the product to be welded is also restricted.
  • spot welding becomes intermittent welding, there exists a problem that rigidity falls compared with wire welding. Further, spot welding is not suitable for welding at places where airtightness is required.
  • laser welding unlike resistance spot welding in which a steel plate is sandwiched between electrodes, allows welding from one side and minimization of the flange. Moreover, since it has the characteristic that the rigidity of a member can be increased in order to weld linearly, there is an example in which laser welding is used instead of spot welding.
  • the heat source for laser welding is focused laser light. Since the laser has a single wavelength and no phase difference, it can be condensed at an extremely small point with an optical lens to obtain high-density energy. In laser welding, deep penetration high-speed welding is possible by using a concentrated heat source with high energy density.
  • Laser welding is a highly efficient welding method. Since the laser is used as a heat source, the heat input can be controlled reliably and easily as compared with arc welding such as TIG welding or MIG welding. For this reason, welding conditions, such as a welding speed, the irradiation output of a laser beam, and a shield gas flow rate, can be set appropriately. Furthermore, in laser welding, since the weld metal is in a very local molten state during welding, the influence of heat applied to the base material is small, and a high-quality welded joint with little distortion and deformation can be obtained.
  • Patent Documents 1 and 2 disclose a technique for obtaining excellent joint strength in a laser welding method.
  • Patent Document 1 laser welding is performed again beside the welded portion that ensures the joint strength of the welded joint, the heat affected zone of the welded portion is tempered, and the hardness of the heat affected zone is again measured by laser.
  • a technique is disclosed in which the strength of the shear joint is improved by setting the hardness of the heat-affected zone of the welded portion to 90% or less.
  • Patent Document 2 since the joint strength is reduced in the region of the crater formed at the end of welding, a pre-processed weld bead is formed at a part of the planned welding site using a remote laser head, and the pre-processed weld bead
  • the main weld bead is formed from the direction opposite to the forming direction of the steel plate, and the bulge of the weld bead formed by the pretreatment weld bead is forced to flow into the crater formed by the pretreatment weld bead.
  • a technique for preventing the formation of a crater is disclosed.
  • Patent Document 1 has a problem of increasing the welding time because it is necessary to perform welding twice in close proximity.
  • Patent Document 2 since it is necessary to perform welding twice at the same location, in addition to the problem of increasing the welding time, it is necessary to use an expensive remote laser head, which increases production costs. There's a problem.
  • the present invention provides a laser welded joint with improved shear joint strength without increasing the welding time and without using an expensive remote laser head, and a method for manufacturing the same, in view of the current state of the prior art described above.
  • the task is to do.
  • the present inventors diligently studied a method for solving the above problems.
  • the shear strength of the welded portion can be improved by increasing the width of the welded portion.
  • the inventors of the present invention have noticed that increasing the width of the welded portion around the overlapping portion of the plates is effective in improving the strength of the shear joint. Rather, it was found that a method of expanding the width of the melted part by actively using zinc that had been used.
  • the present invention has been made as a result of further investigation based on the above knowledge, and the gist thereof is as follows.
  • a welded joint obtained by laser welding metal plates arranged in a superimposed manner from the overlapping direction, The laser characterized in that the width of the weld metal at the joint interface is 0.6 t 1/3 +0.14 [mm] or more, where t [mm] is the total thickness of the metal plates that are overlapped and welded. Welded joints.
  • a method for manufacturing a laser welded joint in which a metal plate arranged in an overlapping manner is laser-welded from the overlapping direction, Forming a layer of a metal or metal compound having a boiling point higher than the melting point of the metal plate at a planned welding location on one surface of the metal plate; The other metal plate is overlaid on the metal or metal compound layer,
  • a method for manufacturing a laser-welded joint characterized in that laser welding is performed by irradiating a laser from a direction of overlapping steel plates so that a region including the metal or metal compound layer is melted.
  • the thickness of the metal or metal compound layer is 0.06 t 1/2 -0.01 [mm] or less, where t [mm] is the total thickness of the stacked metal plates.
  • the shear joint strength of a laser welded joint can be improved without increasing the welding time using an ordinary laser welding machine without using an expensive remote laser head.
  • the width of the molten part can be increased.
  • the pressure increases as the amount of metal vapor near the bonding interface increases from the other part of the keyhole, and the molten metal can be pushed out into the gaps between the metal plates to widen the width of the molten metal at the bonding interface.
  • the inventors of the present invention have examined means for welding steel plates. As a result, the present inventors placed a metal or a metal compound (hereinafter referred to as “metal body”) that decomposes and vaporizes in the molten metal at a planned welding location between the steel plates, and performs laser welding. The idea was to supply vaporized particles of metal in the vicinity of the joint interface.
  • metal body a metal or a metal compound
  • FIG. 1 shows an image of a cross-sectional photograph of a welded portion obtained by laser welding steel plates from the overlapping direction.
  • the cross section is a cross section obtained by cutting the steel plate along a plane parallel to the overlapping direction of the steel plates and perpendicular to the welding progress direction so as to include a laser welded weld.
  • FIG. 1A is a cross-sectional photograph of a welded portion of a welded material in which a zinc oxide layer is formed between steel plates
  • FIG. 1B is a diagram of the welded material in which a zinc oxide layer is not formed between steel plates. It is a cross-sectional photograph of a welding part.
  • the width of the welded part refers to the width of the weld metal at the joining interface of the laser welded welded part 1 indicated by the arrow in FIG.
  • the present invention has been made through further examination through the above examination process.
  • necessary requirements and preferable requirements will be sequentially described for the welded joint of the present invention and the manufacturing method thereof.
  • the manufacturing method of the present invention is a method of manufacturing a welded joint by laser welding metal plates arranged in an overlapping manner from the overlapping direction, and the following steps are performed in order to expand the width of the molten metal at the joining interface. Is.
  • (I) A step of forming a metal body layer between the metal plates by forming a metal body layer having a boiling point higher than the melting point of the metal plate at the planned welding location on the surface of the metal plate, and superimposing other metal plates.
  • step (i) First, a method for forming a metal layer between metal plates in step (i) will be described.
  • FIG. 2 shows a material to be welded having a metal layer between metal plates.
  • the laser irradiation side is the upper side, and the other is the lower side.
  • the workpiece 2 has a metal layer 5 between the upper metal plate 3 and the lower metal plate 4.
  • the upper metal plate 3 of the material to be welded 2 is a surface to which the laser 6 is irradiated, and the scanning direction of the laser 6 is the front side direction from the back side of the paper.
  • a location where the upper metal plate 3 and the lower metal plate 4 are welded is a planned welding location a.
  • FIG. 2 shows a case where the metal body layer 5 is formed on the entire upper surface of the lower metal plate 4.
  • the metal body layer 5 only needs to be formed at least at the planned welding location a of the lower metal plate 4, and it is not necessary to form the metal body layer 5 on the entire upper surface of the lower metal plate 4.
  • the metal layer 5 is also formed at the planned welding location of the lower metal plate 4 in the welding progress direction. When three or more sheets are overlapped, it is only necessary that a metal layer is formed on one overlapping surface at least.
  • the thickness of the metal layer is preferably 0.06 t 1/2 -0.01 [mm] or less, where t [mm] is the total thickness of the stacked metal plates to be welded.
  • t [mm] is the total thickness of the stacked metal plates to be welded.
  • the thickness of the metal layer exceeds 0.06 t 1/2 -0.01 [mm]
  • blow holes are likely to occur in the weld metal at the joint interface.
  • the thickness of the layer is preferably 1 ⁇ m or more.
  • the length of the metal body layer 5 in the welding progress direction (hereinafter referred to as “the length of the metal body layer”) preferably coincides with the length of the planned welding portion in the welding progress direction. Moreover, the length (hereinafter referred to as “the width of the metal body layer”) perpendicular to the welding progress direction of the metal body layer 5 and parallel to the steel plate surface is equal to or greater than the width of the planned welding location a and 0.1 mm or greater. It is preferable to do this. If the width of the metal layer is less than the width of the planned welding location a or less than 0.1 mm, it is difficult to increase the width of the molten metal at the joint interface.
  • the metal body of the metal body layer 5 is not particularly limited as long as the boiling point is higher than the melting point of the metal plate. If the metal body has a boiling point higher than the melting point of the metal plate, the same effect can be obtained in principle. For example, an amorphous oxide deviating from the stoichiometric composition may be used. When the metal plate is a steel plate, it is preferable to use a metal oxide considering the boiling point, and zinc oxide is particularly preferable.
  • the method for forming the metal body layer 5 on the upper surface of the lower metal plate 4 is not particularly limited.
  • it can be formed by dispersing a powder of a metal body in water or alcohol, applying it with a brush, and then drying it.
  • a zinc oxide layer can also be formed by heat-processing.
  • the metal powder may be directly deposited and laser welded. You may heat-process before laser welding, after depositing a metal body powder.
  • a heat treatment method a method such as putting in a heating furnace, heating with a hot plate, directly applying a heat source such as an arc, laser, infrared, or the like to a metal body, or heating by high frequency induction heating can be considered.
  • a metal body can also be provided to the surface of a metal plate in the manufacturing process of a metal plate.
  • the thickness adjusting member is, for example, a plate member having a predetermined thickness, a frame member having an opening in a portion corresponding to the formation region of the metal body layer, or the like.
  • metal powder is spread on the upper surface of the lower metal plate 4 to form a metal body layer 5 having a desired thickness, and then the thickness adjusting member is removed, and the upper metal plate 3 is removed. Is superposed on the metal body layer 5 to form the welded material 2 having the metal body layer 5 between the two metal plates.
  • the particle size of the metal powder to be used is not particularly limited and may be selected in consideration of the workability of spraying.
  • the primary particle diameter is preferably 0.5 ⁇ m or less.
  • the zinc oxide powder is dispersed as follows: the zinc oxide layer width is 0.6 mm, the zinc oxide layer length is 100 mm, and the zinc oxide layer thickness t is 1 to 100 ⁇ m. In the case of zinc oxide powder having an average primary particle size of 0.025 ⁇ m, it is exemplified that 0.34 to 13.44 mg is sprayed.
  • the type and component composition of the metal plate are not particularly limited, and may be a metal plate that can obtain mechanical characteristics and the like according to the application.
  • a metal plate for example, a steel plate, an aluminum alloy plate, a titanium alloy plate, a magnesium alloy plate or the like can be used.
  • the steel plate for example, a galvanized steel plate, an aluminized steel plate, a hot stamp, a bare steel plate and the like can be used.
  • board thickness of a metal plate is not specifically limited.
  • the present invention is most effective when the thickness of the metal plate is in the range of 0.5 to 3.2 mm. Even if the plate thickness is less than 0.5 mm, the effect of improving the weld joint strength of the weld can be obtained, but since the joint strength affects the plate thickness, the effect of improving the overall strength of the joint is reduced. The application range of members is limited. Moreover, even if the plate thickness is over 3.2 mm, the effect of improving the weld joint strength of the welded portion can be obtained, but the range of application of the metal plate member is limited from the viewpoint of reducing the weight of the metal plate member.
  • the number of metal plates to be stacked is not particularly limited, and the manufacturing method of the present invention is not limited to the application when laser welding is performed by stacking two metal plates, but by stacking three or more metal plates. You may apply when carrying out laser welding.
  • the types, component compositions, and plate thicknesses of the respective metal plates may all be the same or different from each other.
  • a metal layer may be formed between the metal plates, or may be formed between some metal plates.
  • the shape of the metal plate used for manufacturing the welded joint may be at least a part where the welded joint is formed, and may not be a plate as a whole.
  • the metal plate is press-molded into a specific shape of a cross-sectional hat shape.
  • the flange portion of the member is included.
  • it is not limited to what is comprised from a separate metal plate,
  • superposed the edge part may be sufficient.
  • the laser welding apparatus to be used is not particularly limited, and a conventional laser welding apparatus can be employed.
  • a remote laser head can also be used for the laser welding apparatus.
  • the remote laser head is expensive, it is preferable to use the same as the conventional laser welding apparatus.
  • a conventional laser welding apparatus includes a laser oscillator, an optical path, a condensing optical system, a drive system, a shield gas system, and the like.
  • the laser oscillator for example, a laser such as a CO 2 laser, a YAG laser, a fiber laser, a DISK laser, or a semiconductor laser can be used.
  • the laser oscillated by the laser oscillator is guided to the condensing optical system through the optical path.
  • the condensing optical system is composed of a parabolic mirror, a condensing lens, and the like, and condenses the transmitted laser.
  • the focal position of the laser is variable, but is set on the upper surface of the upper metal plate 3, for example. Then, welding is performed by irradiating the focused laser beam to the steel plate. And a drive system is moved and welding is advanced. Further, it is possible to use a semiconductor laser in which light emitted from an oscillator is guided directly to a condensing optical system without using an optical path. Shielding gas may be used as necessary.
  • the laser welding method can employ conventional laser welding conditions except that the welding is performed on the workpiece 2 having the metal layer 5 between the metal plates.
  • a laser output of 2 to 30 kW, a focused spot diameter of 0.1 to 1.0 mm welding is performed on a workpiece 2 having a zinc oxide layer as a metal layer 5 between steel plates.
  • the welding can be performed at a speed of 0.1 to 60 m / min.
  • the keyhole formed in the laser welding may be formed so as to penetrate the lower metal plate 4.
  • the shape of the welded portion may be not only a straight line but also a curved line, a circular shape, a donut shape, or the like.
  • the metal body is caught in the molten metal, but since the boiling point of the metal body is higher than the melting point of the metal plate, it does not immediately become a gas in the molten metal. However, since the temperature inside and around the keyhole becomes even higher, the metal body becomes vaporized particles, thereby increasing the pressure in the keyhole. As a result, the molten metal is pushed out into the gap between the metal plates, and the width of the molten metal at the joining interface is 0.6 t 1/3 +0.14 [mm, where the total thickness of the stacked metal plates is t [mm]. It is possible to make the width larger than the width of the weld metal on the front surface and the back surface of the metal plate which are preferably welded in piles. Thus, by expanding the width of the molten metal at the joining interface, a laser welded joint with improved shear joint strength can be obtained.
  • the shear joint strength of a laser welded joint can be improved using an ordinary laser welding machine without using an expensive remote laser head. Further, since the heat treatment becomes unnecessary by providing the metal layer, the welding time is not increased, and further, the thermal deformation due to the heat treatment step can be suppressed, so that the accuracy of the member is improved.
  • Example 1 Two steel plates having a plate thickness of 1.6 mm and 30 mm ⁇ 100 mm were prepared. Zinc oxide powder (ZnO) is sprayed on the upper surface of one steel plate so as to have a thickness of 20 ⁇ m to form a zinc oxide layer, and the other steel plate is overlapped on this zinc oxide layer. It was created. In addition, two steel plates having the same dimensions are prepared, a zinc oxide layer is not formed on the upper surface of one steel plate, a thickness adjusting member having a thickness of 20 ⁇ m is arranged at a portion that is not a welded portion, and the other steel plate is attached. The material to be welded 2 having a gap of 20 ⁇ m between the steel plates was created by superimposing them. The welded materials 1 and 2 were prepared in two pieces each for laser beam welding to perform cross-sectional observation and shear tensile test of the welded portion.
  • test pieces 1 and 2 were welded at 30 mm using a YAG laser under the welding conditions of a spot diameter of 0.6 mm, a laser output of 4.5 kW, and a welding speed of 4.0 mm / min.
  • the welded materials 1 and 2 that are welded are referred to as test pieces 1 and 2, respectively.
  • test pieces 1 and 2 were cut in parallel to the stacking direction of the steel plates including the welded part in order to observe the cross section of the welded part.
  • the width of the weld metal at the joint interface of the laser welded weld was measured.
  • FIG. 3 shows the relationship between the presence or absence of the zinc oxide layer and the width of the joint interface of the weld.
  • the test piece 1 has a weld interface width of about 1.5 times that of the test piece 2.
  • the test piece 1 has a zinc oxide layer disposed between steel plates, and the test piece 2 has a thickness adjusting member disposed at a portion that is not a welded portion so that the distance between the steel plates in the test pieces 1 and 2 is the same. Therefore, the difference in the width of the joint interface between the welds in the test pieces 1 and 2 is derived from the action of the zinc oxide layer.
  • FIG. 4 shows the relationship between the presence of the zinc oxide layer and the shear joint strength. From FIG. 4, the test piece 1 has a shear joint strength improved by about 10% with respect to the test piece 2.
  • the relationship between the presence or absence of the zinc oxide layer to the width of the weld interface and the shear joint strength is the same, that is, when having a zinc oxide layer. Since the shear joint strength is increased, the shear joint strength is improved in the test piece 1 because the width of the joint interface of the welded portion is increased. The reason why the width of the joint interface of the welded portion is increased is that the molten metal is pushed out to the overlapped portion by vaporizing zinc oxide in the vicinity of the joint interface in the keyhole and increasing the internal pressure.
  • Example 2 The effect of zinc oxide layer thickness on shear joint strength was investigated.
  • a test piece was prepared in the same manner as the test piece 1 except that the thickness of the zinc oxide layer was 1 ⁇ m, 20 ⁇ m, 40 ⁇ m, 50 ⁇ m, and 100 ⁇ m, and was welded under the same laser welding conditions. And about these test pieces, the shear tension test was implemented based on JISZ3136.
  • FIG. 5 shows the relationship between the thickness of the zinc oxide layer and the shear joint strength.
  • FIG. 5 also shows the relationship between the thickness of the zinc oxide layers of the test pieces 1 and 2 and the shear joint strength. From FIG. 5, the shear strength of the test piece with a zinc oxide layer thickness of 1 ⁇ m was improved as compared with the test piece 2. However, the test piece in which the thickness of the zinc oxide layer was 100 ⁇ m produced blowholes in the weld metal at the joint interface, and the shear joint strength was lower than that of the test piece 2.
  • the shear joint strength of a laser welded joint can be improved without increasing the welding time using an ordinary laser welding machine without using an expensive remote laser head. Therefore, the present invention has high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)

Abstract

 溶接時間を増加させることなく、また、高価なリモートレーザヘッドを用いることなく、せん断継手強度を向上させたレーザ溶接継手であって、重ねあわせて配置された金属板を重ね方向からレーザ溶接した溶接継手であって、重ね合わせて溶接された金属板の合計板厚をt[mm]としたとき、接合界面の溶接金属の幅が0.6t1/3+0.14[mm]以上であることを特徴とするレーザ溶接継手。

Description

レーザ溶接継手及びその製造方法
 本発明は、継手強度を高めるレーザ溶接継手及びその製造方法に関し、特に、自動車用部材の継手強度を高めるレーザ溶接継手に関するものである。
 自動車用部材や家電製品などの溶接方法として、スポット溶接が広く普及している。しかしながら、スポット溶接では、上下電極により材料を加圧して溶接する必要があるため、溶接する箇所の上下に電極を入り込むためのスペースが必要となる。そのため、スポット溶接は片側溶接には適さず、また、溶接する製品形状にも制約を受けるといった欠点がある。また、スポット溶接は断続的な溶接となるため、線溶接に比べて剛性が低下する問題がある。さらに、スポット溶接は、気密性が必要とされる箇所の溶接にも適さない。
 これに対して、レーザ溶接は、鋼板を電極で挟んで溶接する抵抗スポット溶接とは異なり、片側からの溶接やフランジの極小化が可能である。また、線状に溶接するために、部材の高剛性化が可能であるといった特徴を持っており、スポット溶接に代わりレーザ溶接を使用する例がある。
 レーザ溶接の熱源は集光されたレーザ光である。レーザは、単一波長で位相差の無い光であるため、光学レンズで極めて小さな点に集光して、高密度のエネルギーを得ることができる。レーザ溶接では、集光された高エネルギー密度の熱源を利用することで、深溶け込みの高速溶接が可能となる。
 レーザ溶接は高能率な溶接方法である。そして、レーザを熱源とするため、TIG溶接やMIG溶接などのアーク溶接に比べて、入熱量の制御が確実かつ容易である。このため、溶接速度やレーザビームの照射出力、シールドガス流量などの溶接条件を適切に設定することができる。さらに、レーザ溶接では、溶接時に、溶接金属が極めて局所的な溶融状態となるため、母材に加わる熱の影響も小さく、歪や変形の小さな高品質の溶接継手を得ることができる。
 近年、自動車の燃費の改善や安全性の向上といった要求に対応するため、高強度の薄鋼板が自動車車体に多く使用されるようになっている。特に、鋼板を重ね合わせて溶接する方法において、車体の軽量化と衝突安全性向上の両立を狙い、さらに優れた接合部強度が得られるレーザ溶接方法が望まれている。
 特許文献1及び2には、レーザ溶接方法において、優れた接合部強度を得る技術が、開示されている。
 特許文献1には、溶接継手の接合強度を担保する溶接部の横に、再度レーザ溶接を実施し、前記溶接部の熱影響部を焼き戻して、当該熱影響部の硬さを、再度レーザ溶接した溶接部の熱影響部の硬さの90%以下とすることで、せん断継手強度を向上させる技術が開示されている。
 特許文献2には、溶接終端に形成されるクレータの領域で継手強度が低下するため、リモートレーザヘッドを用いて、溶接予定箇所の一部に前処理溶接ビードを形成し、当該前処理溶接ビードの形成方向と反対方向から本溶接ビードを形成して、前処理溶接ビードによって形成された溶接ビードの膨らみを、前処理溶接ビードによって形成されたクレータに押し流すことによって、本溶接ビードで過剰な深さのクレータが形成されることを防止する技術が開示されている。
 特許文献1に開示の技術では、近接する箇所に溶接を2回実施する必要があるため、溶接時間が増加する問題がある。特許文献2に開示の技術では、同じ箇所に溶接を2回実施する必要があるため、溶接時間が増加する問題に加えて、高価なリモートレーザヘッドを用いる必要があるため、生産費用が増加する問題がある。
特開2010-012504号公報 特開2013-215755号公報
 本発明は、上記の従来技術の現状に鑑みて、溶接時間を増加させることなく、また、高価なリモートレーザヘッドを用いることなく、せん断継手強度を向上させたレーザ溶接継手及びその製造方法を提供することを課題とする。
 本発明者らは、前記課題を解決する方法について鋭意検討した。一般に、溶接部のせん断強度は、溶接部の幅を拡大することで向上できる。
 本発明者らは、特に、板の重ね合わせ部分の周辺で溶接部の幅を拡大することが、せん断継手強度の向上に有効であることに注目し、従来スパッタの原因となり溶接において有害と考えられていた亜鉛をむしろ積極的に利用し、溶融部の幅を拡大する方法を見出した。
 本発明は、上記の知見に基き、さらに検討を進めた結果なされたものであり、その要旨は以下のとおりである。
 (1)重ねあわせて配置された金属板を重ね方向からレーザ溶接した溶接継手であって、
 重ね合わせて溶接された金属板の合計板厚をt[mm]としたとき、接合界面の溶接金属の幅が0.6t1/3+0.14[mm]以上であることを特徴とするレーザ溶接継手。
 (2)前記接合界面の溶接金属の幅が、前記重ねあわせて溶接された金属板の表面及び裏面の溶接金属の幅よりも大きいことを特徴とする前記(1)のレーザ溶接継手。
 (3)重ね合わせて配置された金属板を重ね方向からレーザ溶接するレーザ溶接継手の製造方法であって、
 上記金属板の一方の面上の溶接予定箇所に、沸点が前記金属板の融点よりも高い金属又は金属化合物の層を形成し、
 他方の金属板を上記金属又は金属化合物の層に重ね合わせ、
 上記金属又は金属化合物の層を含む領域が溶融するように鋼板の重ね方向からレーザを照射してレーザ溶接することを特徴とするレーザ溶接継手の製造方法。
 (4)前記金属又は金属化合物の層は、金属又は金属化合物の粉末を塗布することにより形成されることを特徴とする前記(3)のレーザ溶接継手の製造方法。
 (5)前記金属又は金属化合物は金属酸化物であることを特徴とする前記(3)又は(4)のレーザ溶接継手の製造方法。
 (6)前記金属酸化物は酸化亜鉛であることを特徴とする前記(5)のレーザ溶接継手の製造方法。
 (7)前記金属又は金属化合物の層の厚みが、前記重ね合わせて配置された金属板の合計板厚をt[mm]としたとき、0.06t1/2-0.01[mm]以下であることを特徴とする前記(3)~(6)のいずれかのレーザ溶接継手の製造方法。
 本発明によれば、高価なリモートレーザヘッドを用いることなく、通常のレーザ溶接機を用いて、溶接時間を増加させずに、レーザ溶接継手のせん断継手強度を向上させることができる。
鋼板を重ね方向からレーザ溶接された溶接部の断面写真の画像を示す図である。(a)は鋼板の間に酸化亜鉛層を形成した被溶接材の溶接部の断面写真の画像を示し、(b)は鋼板の間に酸化亜鉛層を形成していない被溶接材の溶接部の断面写真の画像を示す。 金属板の間に金属又は金属化合物の層を有する被溶接材を示す図である。 酸化亜鉛層の有無と溶接部の接合界面の幅との関係を示す図である。 酸化亜鉛層の有無とせん断継手強度との関係を示す図である。 酸化亜鉛層の厚さとせん断継手強度との関係を示す図である。
 レーザ溶接では、金属板にレーザビームを照射すると、鋼板が溶融・気化し、キーホールが形成される。キーホールを広げる力としては、金属蒸気の圧力が有る。キーホールを収縮させる力としては、溶融金属の表面張力が有る。両者のバランスによってキーホールは保持される。
 接合界面の近傍のキーホール内の圧力を局所的に高めれば、溶融部の幅を広げることができる。つまり、キーホールの他の部分より、接合界面の近傍の金属蒸気量が増加すれば圧力が増大し、溶融金属を金属板間の隙間に押し出し、接合界面の溶融金属の幅を広げることができる。
 本発明者らは、鋼板の溶接について、そのための手段について検討した。その結果、本発明者らは、鋼板の間の溶接予定箇所に、溶融金属内で分解し蒸気化する金属又は金属化合物(以下「金属体」という)を配置し、レーザ溶接を行うことで、接合界面の近傍に金属体の気化粒子を供給することを着想した。
 そして、金属体として酸化亜鉛を用い、重ね合わされた鋼板の間に酸化亜鉛層を形成した被溶接材と、重ね合わされた鋼板の間に酸化亜鉛層を形成していない被溶接材とを準備して、それらをレーザ溶接して、酸化亜鉛層の効果を調べた。
 図1に、鋼板を重ね方向からレーザ溶接された溶接部の断面写真の画像を示す。断面は、レーザ溶接された溶接部を含むように、鋼板の重ね方向に対して平行で、溶接進行方向に直行する面で鋼板を切断した断面である。図1(a)は鋼板の間に酸化亜鉛層を形成した被溶接材の溶接部の断面写真であり、図1(b)は鋼板の間に酸化亜鉛層を形成していない被溶接材の溶接部の断面写真である。溶接部の幅とは、図1の矢印が指すレーザ溶接された溶接部1の接合界面の溶接金属の幅をいう。
 図1から、鋼板の間に酸化亜鉛層を形成した被溶接材をレーザ溶接した場合、鋼板の間に酸化亜鉛層を形成していない被溶接材をレーザ溶接した場合より、溶接部1の接合界面の溶接金属の幅が拡大したことが分かる。そして、鋼板の間に酸化亜鉛層を形成した被溶接材をレーザ溶接した試験片と、鋼板の間に酸化亜鉛層を形成していない被溶接材をレーザ溶接した試験片に対して、せん断継手強度を測定した結果、鋼板の間に酸化亜鉛層を形成した被溶接材をレーザ溶接した試験片の方が、せん断継手強度が高かった。
 本発明は、以上のような検討過程を経て、さらに検討を進めてなされたものである。以下、本発明の溶接継手及びその製造方法について、さらに、必要な要件や好ましい要件について順次説明する。
 本発明の製法は、重ね合わせて配置された金属板を重ね方向からレーザ溶接して溶接継手を製造する方法であって、接合界面の溶融金属の幅を拡大するために、以下の工程を行うものである。
 (i)金属板の面の溶接予定箇所に、沸点が該金属板の融点よりも高い金属体層を形成し、他の金属板を重ね合わせて、金属板の間に金属体層を形成する工程
 (ii)金属体層を含む領域が溶融するように、金属板の重ね方向からレーザを照射してレーザ溶接する工程
 まず、(i)の工程である金属板の間に金属体層を形成する方法について説明する。
 (金属板の間に金属体層を有する被溶接材)
 以下、説明を簡便とするために、金属板を2枚とし、金属板の間に金属体層を有する被溶接材について、図面を用いて説明する。後述するように、本発明における金属板の枚数は2枚に限るものではない。図2に、金属板の間に金属体層を有する被溶接材を示す。なお、以下、金属板の重ね合わせ方向において、レーザを照射する側を上側として、他方を下側とする。
 図2に示すように、被溶接材2は、上側金属板3と下側金属板4の間に金属体層5を有する。被溶接材2の上側金属板3は、レーザ6が照射される面であり、レーザ6の走査方向は、紙面奥側から、手前側方向である。上側金属板3と下側金属板4の溶接される箇所は、溶接予定箇所aである。
 図2では、下側金属板4の上面の全面に金属体層5を形成する場合を示している。金属体層5は、少なくとも下側金属板4の溶接予定箇所aに形成されていればよく、下側金属板4の上面の全面に金属体層5を形成する必要はない。ただし、下側金属板4の溶接進行方向の溶接予定箇所にも、金属体層5を形成する。3枚以上を重ね合わせる場合は、最低でもどこか1つの重ね合わせ面に金属体層が形成されていればよい。
 金属体層の厚さは、溶接する金属板を重ねあわせた合計板厚をt[mm]としたとき、0.06t1/2-0.01[mm]以下とするのが好ましい。金属体層の厚さが0.06t1/2-0.01[mm]を超えると、接合界面の溶接金属内にブローホールを生じやすくなる。また、本発明の接合界面の溶接金属の幅を拡大する効果を得るためには、層の厚さは1μm以上とすることが好ましい。
 金属体層5の溶接進行方向の長さ(以下「金属体層の長さ」という)は、溶接進行方向の溶接予定の箇所の長さと一致することが好ましい。また、金属体層5の溶接進行方向に直行し、鋼板面に平行な長さ(以下「金属体層の幅」という)は、溶接予定箇所aの幅以上とし、かつ、0.1mm以上とするのが好ましい。金属体層の幅が、溶接予定箇所aの幅未満、又は0.1mm未満とすると、接合界面の溶融金属の幅を拡大することが困難となる。
 金属体層5の金属体は、沸点が金属板の融点よりも高いものであれば特に限定されるものではない。沸点が金属板の融点よりも高い金属体であれば、原理的に同様の効果が得られる。たとえば、化学量論組成から外れた不定形酸化物でもよい。金属板が鋼板の場合、沸点を考慮すると金属酸化物を用いるのが好ましく、特に酸化亜鉛が好ましい。
 (金属体層を形成する方法)
 下側金属板4の上面に金属体層5を形成する方法は、特に限定されるものではない。たとえば、金属体の粉末を水やアルコールに分散し、刷毛などで塗布したのち乾燥させて形成することができる。また、金属体が亜鉛めっき鋼板の場合は、加熱処理することにより、酸化亜鉛層を形成することもできる。また、金属体粉末をそのまま盛ってレーザ溶接してもよい。金属体粉末を盛った後に、レーザ溶接の前に加熱処理してもよい。加熱処理の方法としては、加熱炉に入れる、ホットプレートで加熱する、アーク、レーザ、赤外線等の熱源を直接金属体に当てる、高周波誘導加熱により加熱する等の方法が考えられる。また、金属板の製造過程で、金属板の表面に金属体を付与することもできる。
 金属体粉末を下側金属板4の上面に散布して、金属体層5を形成する方法の一例について説明する。金属体粉末を下側金属板4の上面に散布する際に、所望の厚さの金属体層5を形成するために、下側金属板4の上面の金属体層5を形成しない部分に、又は、下側金属板4の周辺に、厚さ調整部材を配置して散布することが好ましい。厚さ調整部材は、たとえば、所定の厚さ板状部材、金属体層の形成領域と対応する部分に開口を有する枠状部材などである。
 そして、厚さ調整部材を用いて、下側金属板4の上面に金属体粉末を散布し、所望の厚さの金属体層5を形成した後、厚さ調整部材を取り外し、上側金属板3を金属体層5に重ね合わせて、2枚の金属板の間に金属体層5を有する被溶接材2を形成する。
 使用する金属体粉末の粒子径は、特に限定されるものでなく、散布の作業性を考慮して選択すればよい。一次粒子径は0.5μm以下が好ましい。また、金属体として酸化亜鉛を用いる場合、酸化亜鉛粉末の散布として、酸化亜鉛層の幅を0.6mm、酸化亜鉛層の長さ100mmに対して、酸化亜鉛層の厚さtを1~100μm未満とすると、平均一次粒子径0.025μmの酸化亜鉛粉末の場合、0.34~13.44mg散布することが例示される。
 また、金属板の種類や成分組成は特に限定されるものでなく、用途に応じた機械特性などが得られる金属板とすればよい。金属板としては、たとえば、鋼板、アルミ合金板、チタン合金板、マグネシウム合金板等を用いることができる。鋼板としては、たとえば、亜鉛めっき鋼板、アルミめっき鋼版、ホットスタンプ、裸鋼板等を用いることができる。また、金属板の板厚は、特に限定されるものでない。
 本発明は、金属板の板厚が0.5~3.2mmの範囲で、最も効果が得られる。板厚が0.5mm未満であっても、溶接部の溶接継手強度の向上の効果は得られるが、継手強度が板厚に影響するので、継手全体の強度向上の効果が小さくなり、金属板部材の適用範囲が限定される。また、板厚が3.2mm超であっても、溶接部の溶接継手強度の向上の効果は得られるが、金属板部材の軽量化の観点から、金属板部材の適用範囲が限定される。
 重ねる金属板の枚数は、特に限定されるものでなく、本発明の製法は、2枚の金属板を重ね合わせてレーザ溶接する際の適用に限らず、3枚以上の金属板を重ね合わせてレーザ溶接する際に適用してもよい。各金属板の種類や成分組成、及び板厚は、すべて同じとしても、相互に異なっていてもよい。また、3枚以上の金属板を重ね合わせて、レーザ溶接する場合、各金属板の間に金属体層を形成してもよいし、一部の金属板の間に形成してもよい。
 (溶接継手を構成する重ね合わせ部の形態)
 溶接継手の製造に用いられる金属板の形状は、少なくとも溶接継手を形成する部分が板状であればよく、全体が板でなくともよく、たとえば、断面ハット形の特定の形状にプレス成型された部材のフランジ部などを含むものである。また、別々の金属板から構成されるものに限定されず、1枚の金属板を管状などの所定の形状に成形して、端部を重ね合わせたものの重ね溶接継手であってもよい。
 次に、(ii)の工程である被溶接材に対して、金属板の重ね方向からレーザ溶接する方法について説明する。
 (レーザ溶接装置)
 本発明では、用いるレーザ溶接装置は特に限定されるものでなく、従来のレーザ溶接装置を採用することができる。レーザ溶接装置に、リモートレーザヘッドを用いることもできる。ただし、リモートレーザヘッドは高価であるので、従来のレーザ溶接装置と同様のものを使用することが好ましい。
 従来のレーザ溶接装置は、レーザ発振器、光路、集光光学系、駆動系、シールドガス系などで構成されている。レーザ発振器としては、たとえば、COレーザ、YAGレーザ、ファイバーレーザ、DISKレーザ、半導体レーザなどのレーザを用いることができる。レーザ発振器で発振されたレーザは、光路を通じて集光光学系へ導かれる。集光光学系は、放物線面鏡や集光レンズなどで構成されており、伝送されてきたレーザを集光する。
 レーザの焦点位置は可変であるが、たとえば、上側金属板3の上面に設定する。そして、集光されたレーザを鋼板に照射して溶接を行う。そして、駆動系を移動させて溶接を進行させる。また、光路を用いず発振器から出た光が直接集光光学系へ導かれる半導体レーザを用いることもできる。シールドガスは、必要によって使用してもよい。
 (レーザ溶接方法)
 レーザ溶接方法は、金属板の間に金属体層5を有する被溶接材2に溶接する以外は、従来のレーザ溶接の条件を採用することができる。たとえば、従来のレーザ溶接装置を用いて、鋼板の間に金属体層5として酸化亜鉛層を有する被溶接材2に、レーザ出力2~30kW、集光スポット径0.1~1.0mm、溶接速度0.1~60m/minの溶接条件で行うことができる。
 また、レーザ溶接において形成されるキーホールは、下側金属板4を貫通するように形成してもよい。下側金属板4を貫通させない場合は、下側金属板4までキーホールが到達していることが望ましい。また溶接部の形状は、直線だけでなく、曲線、円形状、ドーナツ形状などを用いてもよい。
 このように溶接することにより、金属体が溶融金属に巻き込まれるが、金属体の沸点は金属板の融点よりも高いため、溶融金属中で直ちに気体とはならない。しかし、キーホール中やその周囲はさらに高温となるため、金属体が気化粒子となり、それにより、キーホール内の圧力が高くなる。その結果、溶融金属が金属板間の隙間に押し出され、接合界面の溶融金属の幅を、重ね合わせた金属板の合計板厚をt[mm]として0.6t1/3+0.14[mm]以上とし、好ましくは重ねあわせて溶接された金属板の表面及び裏面の溶接金属の幅よりも大きく広げることができる。このように接合界面の溶融金属の幅を広げることによって、せん断継手強度を向上させたレーザ溶接継手を得ることができる。
 以上説明したとおり、本発明によれば、高価なリモートレーザヘッドを用いることなく、通常のレーザ溶接機を用いて、レーザ溶接継手のせん断継手強度を向上させることができる。また、金属体層を設けることによって熱処理が不要となるので、溶接時間を増加させることもない、さらに、熱処理工程による熱変形が抑制できるから、部材の精度が向上する。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例1)
 板厚1.6mm、30mm×100mmの鋼板を2枚用意した。一方の鋼板の上面に厚さ20μmとなるように、酸化亜鉛粉末(ZnO)を散布して、酸化亜鉛層を形成し、この酸化亜鉛層に、他方の鋼板を重ね合わせて、被溶接材1を作成した。また、同様の寸法の鋼板を2枚用意し、一方の鋼板の上面に、酸化亜鉛層を形成せず、溶接箇所でない部分に、厚さ20μmの厚さ調整部材を配置し、他方の鋼板を重ね合わせて、鋼板の間に20μmの隙間を有する被溶接材2を作成した。なお、被溶接材1及び2は、レーザ溶接後に、溶接部の断面観察及びせん断引張試験を行うため、それぞれ、2片ずつ作成した。
 被溶接材1及び2の溶接箇所に、YAGレーザを用いて、スポット径φ0.6mm、レーザ出力4.5kW、溶接速度4.0mm/minの溶接条件で、30mmの溶接を行った。以下、溶接された被溶接材1及び2を、それぞれ、試験片1及び2とする。
 次に、試験片1及び2について、溶接部の断面観察を行うため、溶接部を含む鋼板の重ね方向に対して平行に切断した。この断面において、レーザ溶接された溶接部の接合界面の溶接金属の幅を測定した。図3に、酸化亜鉛層の有無と溶接部の接合界面の幅との関係を示す。図3より、試験片1は、試験片2の約1.5倍の溶接部の接合界面の幅を有している。
 試験片1は、鋼板の間に酸化亜鉛層を配置して、また、試験片2は、厚さ調整部材を溶接箇所でない部分に配置して、試験片1及び2における鋼板の間隔を同一にしているため、試験片1及び2における溶接部の接合界面の幅の違いは、酸化亜鉛層の作用に由来するものである。
 次に、試験片1及び2について、せん断引張試験方法(JISZ3136)に基づき、せん断引張試験を実施した。図4に、酸化亜鉛層の有無とせん断継手強度との関係を示す。図4より、試験片1は、試験片2に対して、10%程度せん断継手強度が向上している。
 図3及び図4に示されるように、溶接部の接合界面の幅及びせん断継手強度に対する酸化亜鉛層の有無の関係が同一、すなわち、酸化亜鉛層を有する場合、溶接部の接合界面の幅及びせん断継手強度が大きくなることから、試験片1において、せん断継手強度が向上したのは、溶接部の接合界面の幅が拡大したためである。そして、溶接部の接合界面の幅が拡大したのは、キーホール内の接合界面の近傍で酸化亜鉛が蒸気化し内圧が上がることで、重ね部に溶融金属が押し出されたためである。
(実施例2)
 せん断継手強度に対する酸化亜鉛層の厚さの影響を調査した。試験片は、酸化亜鉛層の厚さを1μm、20μm、40μm、50μm、100μmとしたことを除いて、試験片1と同様に作成し、同様のレーザ溶接条件で溶接した。そして、これら試験片について、JISZ3136に基づき、せん断引張試験を実施した。
 図5に、酸化亜鉛層の厚さとせん断継手強度との関係を示す。図5には、試験片1及び2の酸化亜鉛層の厚さとせん断継手強度の関係もあわせて示す。図5より、酸化亜鉛層の厚さを1μmとした試験片は、試験片2よりせん断継手強度が向上した。しかし、酸化亜鉛層の厚さを100μmとした試験片は、接合界面の溶接金属内にブローホールを生じ、試験片2よりせん断継手強度が低下した。
 本発明によれば、高価なリモートレーザヘッドを用いることなく、通常のレーザ溶接機を用いて、溶接時間を増加させずに、レーザ溶接継手のせん断継手強度を向上させることができる。よって、本発明は、産業上の利用可能性が高いものである。
 1  溶接部
 2  被溶接材
 3  上側金属板
 4  下側金属板
 5  金属体層
 6  レーザ
 a  溶接予定箇所
 t  金属体層の厚さ

Claims (7)

  1.  重ねあわせて配置された金属板を重ね方向からレーザ溶接した溶接継手であって、
     重ね合わせて溶接された金属板の合計板厚をt[mm]としたとき、接合界面の溶接金属の幅が0.6t1/3+0.14[mm]以上であることを特徴とするレーザ溶接継手。
  2.  前記接合界面の溶接金属の幅が、前記重ねあわせて溶接された金属板の表面及び裏面の溶接金属の幅よりも大きいことを特徴とする請求項1に記載のレーザ溶接継手。
  3.  重ね合わせて配置された金属板を重ね方向からレーザ溶接するレーザ溶接継手の製造方法であって、
     上記金属板の一方の面上の溶接予定箇所に、沸点が前記金属板の融点よりも高い金属又は金属化合物の層を形成し、
     他方の金属板を上記金属又は金属化合物の層に重ね合わせ、
     上記金属又は金属化合物の層を含む領域が溶融するように鋼板の重ね方向からレーザを照射してレーザ溶接することを特徴とするレーザ溶接継手の製造方法。
  4.  前記金属又は金属化合物の層は、金属又は金属化合物の粉末を塗布することにより形成されることを特徴とする請求項3に記載のレーザ溶接継手の製造方法。
  5.  前記金属又は金属化合物は金属酸化物であることを特徴とする請求項3又は4に記載のレーザ溶接継手の製造方法。
  6.  前記金属酸化物は酸化亜鉛であることを特徴とする請求項5に記載のレーザ溶接継手の製造方法。
  7.  前記金属又は金属化合物の層の厚みが、前記重ね合わせて配置された金属板の合計板厚をt[mm]としたとき、0.06t1/2-0.01[mm]以下であることを特徴とする請求項3~6のいずれか1項に記載のレーザ溶接継手の製造方法。
PCT/JP2015/080814 2014-10-30 2015-10-30 レーザ溶接継手及びその製造方法 WO2016068319A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP15854280.3A EP3213862B1 (en) 2014-10-30 2015-10-30 Method of laser weldinng
BR112017007552A BR112017007552A2 (pt) 2014-10-30 2015-10-30 junta soldada a laser e método para produção da mesma
CA2963921A CA2963921C (en) 2014-10-30 2015-10-30 Laser welded joint and method of production of same
RU2017118448A RU2684993C2 (ru) 2014-10-30 2015-10-30 Соединение лазерной сваркой и способ его изготовления
JP2016556677A JP6376221B2 (ja) 2014-10-30 2015-10-30 レーザ溶接継手及びその製造方法
KR1020177010870A KR102087664B1 (ko) 2014-10-30 2015-10-30 레이저 용접 조인트 및 그 제조 방법
US15/522,035 US11174883B2 (en) 2014-10-30 2015-10-30 Laser welded joint and method of production of same
MX2017005315A MX2017005315A (es) 2014-10-30 2015-10-30 Union de soldadura por laser y metodo de produccion de la misma.
CN201580058471.0A CN107073650B (zh) 2014-10-30 2015-10-30 激光焊接接头及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-221951 2014-10-30
JP2014221951 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016068319A1 true WO2016068319A1 (ja) 2016-05-06

Family

ID=55857652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080814 WO2016068319A1 (ja) 2014-10-30 2015-10-30 レーザ溶接継手及びその製造方法

Country Status (10)

Country Link
US (1) US11174883B2 (ja)
EP (1) EP3213862B1 (ja)
JP (1) JP6376221B2 (ja)
KR (1) KR102087664B1 (ja)
CN (1) CN107073650B (ja)
BR (1) BR112017007552A2 (ja)
CA (1) CA2963921C (ja)
MX (1) MX2017005315A (ja)
RU (1) RU2684993C2 (ja)
WO (1) WO2016068319A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11992899B2 (en) * 2020-02-17 2024-05-28 Fca Us Llc Mitigation of the effects of aluminum from AISi coated boron steels during laser welding of tailor welded blanks by additive manufacturing
JP7213209B2 (ja) * 2020-08-20 2023-01-26 プライムプラネットエナジー&ソリューションズ株式会社 金属部材の溶接構造、金属部材の溶接方法および蓄電モジュール
TWI810121B (zh) * 2022-11-30 2023-07-21 裕隆汽車製造股份有限公司 用於電池電極的多次雷射焊接與局部微區退火方法及電池模組

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144066A (ja) * 2000-11-16 2002-05-21 Honda Motor Co Ltd アルミメッキ鋼板の溶接方法
JP2003094184A (ja) * 2001-09-20 2003-04-02 Nippon Steel Corp 亜鉛めっき鋼板の重ねレーザー溶接方法
JP2010089138A (ja) * 2008-10-09 2010-04-22 Nissan Motor Co Ltd 亜鉛めっき鋼板のレーザ溶接方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969604A (en) * 1973-10-04 1976-07-13 Ford Motor Company Method of welding galvanized steel
US4097287A (en) * 1975-09-04 1978-06-27 Kansai Paint Co., Ltd. Inorganic film forming composition for coating
JPS59120384A (ja) * 1982-12-28 1984-07-11 Nippon Piston Ring Co Ltd カムシヤフトの製造方法
JPS59150683A (ja) 1983-02-17 1984-08-28 Toshiba Corp 鋼板枠の製造方法
SU1345499A1 (en) * 1986-03-18 1993-11-30 Yu S Ishchenko Method of manufacture of multilayer structure
DE68917332T2 (de) * 1988-02-19 1994-12-08 Nippon Steel Corp Verwendung eines Zink oder Zinklegierung-plattierten Stahlblechs mit ausgezeichneten Punktschweisseigenschaften.
US5599395A (en) * 1995-05-23 1997-02-04 Weirton Steel Corporation Apparatus for continuous flat-rolled steel strip cleansing and finishing operations
FR2765129B1 (fr) * 1997-06-30 1999-10-01 Peugeot Procede de soudage de toles revetues par un faisceau d'energie, tel qu'un faisceau laser
DE19915038A1 (de) 1999-04-01 2000-10-26 Vaw Ver Aluminium Werke Ag Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens
JP2003088969A (ja) 2001-09-18 2003-03-25 Hitachi Zosen Corp 厚板重ね溶接方法及び装置
JP3634819B2 (ja) 2002-05-20 2005-03-30 川崎重工業株式会社 レーザ溶接方法
US20080035615A1 (en) * 2004-09-16 2008-02-14 Y. Norman Zhou Lap welding of steel articles having a corrosion resisting metallic coating
JP2006175493A (ja) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd 溶接装置および溶接方法
JP2008105037A (ja) * 2006-10-23 2008-05-08 Futaba Industrial Co Ltd 亜鉛めっき鋼板のレーザー溶接方法
JP4968201B2 (ja) 2008-07-04 2012-07-04 住友金属工業株式会社 レーザ溶接構造部材およびその製造方法
JP5267317B2 (ja) 2008-12-09 2013-08-21 新日鐵住金株式会社 高強度薄鋼板のレーザ重ね溶接継手及びその製造方法
JP5531623B2 (ja) * 2010-01-08 2014-06-25 スズキ株式会社 亜鉛めっき鋼板のレーザ重ね溶接方法
WO2012000106A1 (en) * 2010-07-01 2012-01-05 Magna International Inc. Laser-based lap welding of sheet metal components using laser induced protuberances to control gap
JP2013215755A (ja) 2012-04-05 2013-10-24 Nippon Steel & Sumitomo Metal Corp レーザ溶接方法、重ね溶接継手、及びレーザ溶接装置
JP6599796B2 (ja) * 2016-02-22 2019-10-30 株式会社コロナ カバー係止機構

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144066A (ja) * 2000-11-16 2002-05-21 Honda Motor Co Ltd アルミメッキ鋼板の溶接方法
JP2003094184A (ja) * 2001-09-20 2003-04-02 Nippon Steel Corp 亜鉛めっき鋼板の重ねレーザー溶接方法
JP2010089138A (ja) * 2008-10-09 2010-04-22 Nissan Motor Co Ltd 亜鉛めっき鋼板のレーザ溶接方法

Also Published As

Publication number Publication date
US20170314595A1 (en) 2017-11-02
RU2684993C2 (ru) 2019-04-16
JPWO2016068319A1 (ja) 2017-07-20
EP3213862A4 (en) 2018-08-22
RU2017118448A3 (ja) 2018-11-30
KR102087664B1 (ko) 2020-03-11
RU2017118448A (ru) 2018-11-30
CA2963921A1 (en) 2016-05-06
JP6376221B2 (ja) 2018-08-22
EP3213862A1 (en) 2017-09-06
CN107073650A (zh) 2017-08-18
BR112017007552A2 (pt) 2017-12-19
CN107073650B (zh) 2018-12-07
MX2017005315A (es) 2017-06-28
EP3213862B1 (en) 2020-12-02
KR20170058427A (ko) 2017-05-26
CA2963921C (en) 2019-10-29
US11174883B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
JP5941252B2 (ja) ハイブリッドレーザアーク溶接プロセス及び装置
JP6034490B2 (ja) 溶接ブランクアセンブリおよび方法
WO2017035729A1 (en) Method for laser welding aluminum workpieces
JP5267320B2 (ja) 鋼板の重ね溶接方法及び鋼板の重ね溶接継手
JP6690540B2 (ja) レーザ溶接継手及びレーザ溶接方法
JP4780526B2 (ja) 異種材料の接合方法、接合装置及び接合構造
JP2009148781A (ja) レーザ溶接方法
JP6376221B2 (ja) レーザ溶接継手及びその製造方法
JP4326492B2 (ja) レーザ溶接を用いた異材の接合方法
JP2018075596A (ja) 亜鉛メッキ鋼板のレーザー接合方法
JP2008030113A (ja) 異種金属の接合方法
JP6729192B2 (ja) 溶接継手及びその製造方法
JP2011224655A (ja) レーザ溶接鋼管の製造方法
JP5424005B2 (ja) 異種金属の接合方法
JP2007330973A (ja) 異種金属パネルの接合方法、接合装置及び接合構造
JP6213332B2 (ja) 厚鋼板のホットワイヤ・レーザ複合溶接方法
JP2011156572A (ja) レーザ溶接方法
US10518359B2 (en) Method of welding in deep joints
JP2006116600A (ja) 異材接合方法
JP4868223B2 (ja) 異種金属パネルの接合方法及び接合装置
JP2008264820A (ja) 異種金属の接合構造及び接合方法
JP6885088B2 (ja) 溶接継手を有する鋼部材及びその製造方法
JP4998633B1 (ja) レーザ溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556677

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2963921

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015854280

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015854280

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177010870

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/005315

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017007552

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15522035

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017118448

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017007552

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170412