WO2016056297A1 - 流体漏洩データの管理装置及び管理システム - Google Patents
流体漏洩データの管理装置及び管理システム Download PDFInfo
- Publication number
- WO2016056297A1 WO2016056297A1 PCT/JP2015/072539 JP2015072539W WO2016056297A1 WO 2016056297 A1 WO2016056297 A1 WO 2016056297A1 JP 2015072539 W JP2015072539 W JP 2015072539W WO 2016056297 A1 WO2016056297 A1 WO 2016056297A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- unit
- display
- leakage
- fluid leakage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0267—Fault communication, e.g. human machine interface [HMI]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/24—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/20—Status alarms responsive to moisture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/24—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
- G01M3/243—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
Definitions
- the present invention relates to a fluid leakage data management apparatus and management system for managing data of each fluid leakage location collected by fluid leakage diagnosis for a plant.
- Patent Document 1 discloses a microphone that detects ultrasonic waves generated at the fluid leak location, About the same leakage location, the input means for inputting the location information of the location, the imaging means for capturing the leakage location, the display means for displaying the location information input by the input means and the image of the leakage location captured by the imaging means There may be provided data processing means for making a storage state in which the output data of the microphone, input position information by the input means, and a photographed image by the imaging means are associated with each other, and arithmetic means for calculating the amount of fluid leakage at the corresponding leakage location.
- a portable leak detection device has been proposed.
- repair work on a fluid leak location requires a lot of labor and time.To save this labor and time, not only is it easy to identify a fluid leak location, but the repair work can be done efficiently. It is desirable to use data so that a repair work plan can be made.
- fluid leaks in the plant are caused by aging of piping systems and container systems associated with plant production activities.
- fluid leakage will occur again.
- the frequency of fluid leakage varies from plant to plant, and there are areas where fluid leaks occur in the same plant and areas that do not. It is required to make a maintenance plan considering the tendency of fluid leakage in the plant. Under such circumstances, a data utilization method that can grasp the tendency of fluid leakage in a plant is desired.
- a main problem of the present disclosure is to provide a fluid leakage data management device and a management system that can effectively utilize data of each fluid leakage location collected by fluid leakage diagnosis for a plant.
- a fluid leakage data management apparatus comprising: an input unit for inputting data of each fluid leakage point collected by fluid leakage diagnosis for a plant; and a display unit for displaying the data input to the input unit, With respect to the configuration diagram image of the plant, for each position data that is the position in the plant of each fluid leakage location input to the input unit, in an arrangement corresponding to each position data on the configuration diagram image, A data processing unit is provided that displays on the display unit a leak location display image in which a display indicating that the location is a fluid leak location is displayed.
- the tendency of fluid leakage in the plant can be accurately grasped from the distribution of the indicator on the configuration diagram image of the plant, such as an area where fluid leakage is swarming or an area where fluid leakage does not occur so much. Can do.
- each fluid leakage location in the plant can be clearly understood from the positional relationship of the indicator on the leakage location display image, and the order of repairing the fluid leakage location is efficient. It is possible to formulate a simple repair work plan.
- the fluid leakage diagnosis for the plant means diagnosis of fluid leakage from each part of the piping system and container system in the plant.
- the data processing unit is preferably configured to display the indicator displayed on the leak location display image in a state associated with the fluid leak amount at each corresponding fluid leak location. is there.
- the tendency of fluid leakage in the plant can be grasped more accurately from the leakage location display image including not only the distribution of the fluid leakage location in the plant but also the distribution of the fluid leakage amount.
- analysis with higher accuracy, such as planning a future maintenance plan based on the tendency of fluid leakage in the plant and estimating the degree of equipment deterioration and defects.
- the fluid leak location where the repair work is performed can be easily narrowed down by using the leak location display image with the above configuration. Therefore, it is possible to easily plan the repair work.
- the data processing unit is preferably configured to display the indicator displayed on the leak location display image in a state associated with the leaked fluid type at each corresponding fluid leak location. is there.
- the tendency of fluid leakage in the plant can be more accurately grasped from the leakage location display image including not only the distribution of the fluid leakage location in the plant but also the distribution of the leaked fluid type.
- analysis with higher accuracy, such as planning a future maintenance plan based on the tendency of fluid leakage in the plant and estimating the degree of equipment deterioration and defects.
- the fluid leak location to be repaired can be easily narrowed down by using the leak location display image with the above configuration, The repair work plan can be made easily.
- a leakage fluid type selection unit for selecting and instructing the leakage fluid type is provided, and the data processing unit selects one or more of the leakage fluids selected according to a selection instruction to the leakage fluid type selection unit It is preferable that only the indicator associated with the seed is displayed on the display unit.
- an enlargement / reduction instruction unit for instructing enlargement / reduction of the leakage place display image to be displayed on the display unit
- the data processing unit is configured to respond to an instruction to the enlargement / reduction instruction unit. It is preferable that the display image is enlarged or reduced and displayed on the display unit.
- a ratio instruction unit that instructs a ratio for uniformly changing all the indicators at a ratio that defines the size of the indicator displayed on the display unit, and the data processing unit includes the ratio instruction It is preferable that the size of all the display elements is uniformly changed at a ratio corresponding to an instruction to the unit and displayed on the display unit.
- a display selection unit that selects the display to be displayed on the display unit
- the data processing unit corresponds to the selected display in response to a selection instruction to the display selection unit.
- a storage unit that stores the data input to the input unit in an accumulative manner is provided, and the data processing unit performs a plurality of fluids for the same plant stored in the storage unit.
- the leak location display image is generated for each leak diagnosis, and an image in which the leak location display images for each of the plurality of fluid leak diagnoses are arranged can be displayed on the display unit.
- a storage unit that stores the data input to the input unit in an accumulative manner is provided, and the data processing unit performs fluid leakage diagnosis for each of a plurality of plants stored in the storage unit.
- the leak location display image is generated and an image in which the leak location display images of the plurality of plants are arranged can be displayed on the display unit.
- the difference in fluid leak in the plants to be compared (fluid leak location, leaked fluid type, difference in distribution of fluid leak amount) I can grasp. Analyzing the relationship between the difference in the fluid leakage in the compared plant and the difference in the operating condition of the plant (plant equipment configuration, operating time, usage of various fluids, etc.), the fluid in the compared plant It is possible to estimate what kind of operating condition of the plant the difference in leakage is, that is, the cause of the difference in fluid leakage, thereby taking measures against the fluid leakage in the target plant.
- the data processing unit is configured to generate the leak location display image based on data input to the input unit during a fluid leak diagnosis for the plant.
- the diagnosis plan is changed to diagnose the area.
- the fluid leakage diagnosis for the undiagnosed area is based on the tendency of the fluid leakage in the undiagnosed area.
- the plan can be changed to an effective plan that matches the tendency of fluid leakage.
- the data processing unit is configured to display the leakage location display image separately in a diagnosed area and an undiagnosed area in the fluid leakage diagnosis for the plant.
- the above configuration it is possible to clearly identify whether the area where the indicator is not displayed on the leakage location display image has been diagnosed but the fluid leakage location has not been found or is simply an undiagnosed region. It is possible to clearly grasp which area of the location display image has been diagnosed, and to more accurately evaluate whether the diagnosis plan made for the diagnosed area is appropriate, and to prevent fluid leakage in the undiagnosed area. The tendency can be estimated more accurately. Thereby, the plan of the fluid leakage diagnosis for the undiagnosed region can be changed to a more effective plan.
- the fluid leakage location management system includes: A fluid leakage point management system comprising any management device according to the present disclosure and a portable leakage detection device used for fluid leakage diagnosis for the plant, Data of each fluid leak location collected by the leak detection device is input from the leak detection device to the input unit in the management device,
- the leak detection device can input detection position data, which is a position in the plant of the detected fluid leak location, to the leak detection device,
- the data processing unit arranges the indicator in an arrangement corresponding to the detected position data on the configuration diagram image in the leaked portion display image, using the detected position data input to the input unit as the position data. It is configured to do.
- the fluid leak location data is input to the management device by the leak detection device, the troublesome task of manually inputting the fluid leak location data one by one is eliminated, and The data can be easily input. Furthermore, since the indicator corresponding to the detected position data is displayed on the leak location display image as the indicator location, the detection location data that is the location of the leak detected location is leaked together with the detection of the fluid leak location in the fluid leak diagnosis. By inputting to the detection device, the indicator is automatically displayed at the position of the fluid leakage location in the leakage location display image by only inputting data from the leakage detection device to the management device without complicated work. Can be placed.
- the data processing unit converts the detected position data input to the input unit into the coordinate value in the configuration diagram image, and the converted coordinate value
- the arrangement shown is the arrangement of the indicator in the leakage location display image, or the leakage detection device converts the detection position data into the coordinate value in the configuration diagram image and stores it, and the detection position data converted into the coordinate value is stored. What is necessary is just to perform it by suitable means, such as inputting into a management apparatus and making arrangement
- the leak detection apparatus includes a display, and an image indicating a diagnosis area is displayed on the display, and a mark indicating the position of the fluid leak point in the diagnosis area is included in the display image. It is preferable that the detection position data is input to the leakage detection device with the indicated position on the display image of the mark as the detection position data when attached according to the instruction operation.
- the detection position data that is the position of the fluid leakage location is input while referring to the image indicating the diagnosis area by so-called marking operation, the detection position data can be input to the leakage detection device accurately and easily. Can do.
- FIG. 1 A diagram showing the form of detection of leaked parts Perspective view of leak detection device Enlarged rear view of portable detector Enlarged view of the tip of a portable detector Diagram showing data entry screen Figure showing the location information input screen Figure showing the calculation condition input screen Figure showing the shot image screen Diagram showing area diagram screen Block diagram of leak detection device Management device block diagram Diagram showing list image Diagram showing detailed data image Diagram showing detailed data image Diagram showing detailed data image Diagram showing map image Diagram showing repair schedule Chart showing amount conversion table Diagram showing a diagnostic report
- the present disclosure relates to a management device that manages data of each fluid leakage location collected by fluid leakage diagnosis for a plant, and a management system that includes the management device and a leakage detection device used for fluid leakage diagnosis.
- FIG. 1 shows an outline of the present disclosure.
- fluid leak diagnosis for a plant is performed using a portable leak detection device R, and collected data is input to a host computer 24 that is a management device.
- a fluid leak diagnosis using the leak detection device R a fluid leak from each part of the plant piping system or container system is diagnosed, and when a fluid leak is detected by the leak detection device R (in FIG. 1) Symbol L), input of various information (leakage fluid type, detection date and time, device causing the fluid leak location, etc.) to the leak detection device R, calculation instruction of the fluid leak amount at that location, imaging of the fluid leak location, diagnostic area
- the fluid leakage point is marked on the area diagram image Pa and the photographed image Pb, and the input information, the calculated fluid leakage amount, the designated position on the photographed image Pb, the area diagram image Pa, and the photographed image Pb are leaked. Collected data D associated with the management number assigned to the location is created.
- the collected data D includes the state of fluid leakage (fluid leakage amount, leaked fluid type, leaking device, etc.) and specific positions (marking on the photographed image Pb, area diagram image Pa, and photographed image Pb). Data, etc.). Then, diagnosis is sequentially performed on each location, and collection data D is created for each fluid leakage location each time a fluid leakage is detected, and this collection data D is accumulated and stored.
- the host computer 24 uses the collected data D not only for specifying the fluid leakage location, but also by collecting the fluid leakage location based on the input collection data D. It provides information on repair work plans for future discovered fluid leaks, future maintenance plans, and plant equipment improvements. That is, according to the present disclosure, it is possible to provide an effective utilization method of the collected data collected by the fluid leakage diagnosis for the plant.
- the present disclosure will be specifically described.
- the configuration of the leak detection device used for the fluid leak diagnosis will be described, followed by a description of the method of fluid leak diagnosis for the plant using the leak detection device and data collection of each fluid leak location, and then the management device (hereinafter referred to as the management device) In the description, management of collected data using the host computer 24) will be described.
- the leak detection device R includes a gun-shaped portable detector 1 as a main device and a portable computer 2 attached to the portable detector 1.
- a directional microphone 3 and a light beam emitting light source 4 for detecting ultrasonic waves generated at a fluid leakage point are arranged at the tip of the portable detector 1, and the portable detector 1 is arranged behind the portable detector 1.
- a display unit 5 and various keys 6 for displaying ultrasonic detection values (specifically, detected sound pressure) in a bar graph display and a digital display are disposed at the end. Is connected to an earphone 7 that outputs a detection sound obtained by making the detected ultrasonic wave audible.
- the portable detector 1 receives the output signal of the microphone 3 through the amplification unit 8, the filter unit 9, the detection unit 10, and the rectification unit 11, and an ultrasonic detection value based on this input signal.
- the display unit 5 is displayed on the display unit 5 and an audible detection sound is output to the earphone 7, and a storage unit 13 for storing various data is provided.
- a plurality of microphones 3 are distributed at the vertex positions of a regular polygon K (regular hexagon in this example) in the same direction in a state where a common overlapping portion SS occurs in the directivity range S.
- the light beam emission light source 4 is arranged at the center of gravity of the regular polygon K in the microphone direction view so that the light beam is emitted to the common overlapping portion SS of the microphone direction range S.
- the ultrasonic detection sensitivity (that is, the signal amplification degree in the amplification unit 8) can be set and changed by operating the key 6, and the setting sensitivity is displayed on the display unit 5 together with the ultrasonic detection value.
- the calculation unit 12 associates the ultrasonic detection value at the leaked location as microphone output data at the leaked location with the set sensitivity at that time by the assigned management number for the leaked location. Then, it is stored in the storage unit 13 together with the set sensitivity.
- Reference numeral 14 denotes a conical cap having a small opening 15 formed at the tip.
- the cap 14 is attached to the tip of the portable detector 1 as necessary. In the state where the directivity as a whole is strengthened, the leakage point is approached, and the leakage point is confirmed by the ultrasonic detection value and the detection sound at that time.
- the power switch 16 is a power switch that is operated in the same manner as the trigger. When the power switch 16 is turned on, an ultrasonic detection state is entered. The light beam emission is turned on / off by operating the key 6.
- the portable computer 2 includes a display 19 and various keys 20 as well as a calculation unit 17 and a storage unit 18, and a small digital camera 21 can be attached.
- the portable computer 2 is attached to the upper portion of the portable detector 1 by a fixture 22 so as to be detachable and adjustable in posture, and can communicate with the portable detector 1 by a wired or wireless communication unit 23. .
- Fluid leak diagnosis In fluid leakage diagnosis, first, an area diagram image Pa (an image as shown in FIG. 10) of a diagnosis area of a plant to be diagnosed is stored in the storage unit 18 of the portable computer 2. After that, while moving in the diagnosis area, as shown in FIG. 2, the portable detector 1 is used to diagnose the leak location based on the ultrasonic detection value and the detection sound, and when the leak location is found, The ultrasonic detection value is stored in the storage unit 13 of the portable detector 1 by operating the key 6 as described above.
- an area diagram image Pa an image as shown in FIG. 10
- the portable detector 1 is used to diagnose the leak location based on the ultrasonic detection value and the detection sound, and when the leak location is found.
- the ultrasonic detection value is stored in the storage unit 13 of the portable detector 1 by operating the key 6 as described above.
- the computing unit 12 of the portable detector 1 calls the computing unit 17 of the portable computer 2, and in response thereto, the computing unit 17 of the portable computer 2 is associated with the management number and is associated with the portable detector 1.
- the ultrasonic detection value and setting sensitivity stored in the storage unit 13 are read, and a data input screen Ga as shown in FIG. 6 is displayed on the display 19, and the management number for the leaked portion in the data input screen Ga,
- the ultrasonic detection value, setting sensitivity detection date and time, diagnosis person name (or ID), and repaired check column are displayed.
- the calculation unit 17 displays a calculation condition input screen Gb as shown in FIG. 8 on the display 19, and the calculation condition input screen Gb displays the distance, For each item of type, direction, and fluid, when the calculation conditions for the leak location are input, the calculation unit 17 determines the fluid at the leak location based on the ultrasonic detection value of the leak location and the input calculation conditions. The leakage amount is calculated, and the calculated leakage amount is displayed in the calculation condition input screen Gb.
- the distance is the distance between the leak point and the detector 1
- the type is the type of the piping member or the like that has leaked
- the direction is the ultrasonic detection direction relative to the leak point
- the fluid is the type of the leaked fluid.
- the calculation unit 17 individually lists calculation condition data for each item.
- (pull-down menu) is displayed on the screen Gb and calculation condition data corresponding to the corresponding leakage location is selected from the list, the calculation unit 17 executes the above calculation using the selected data as an input calculation condition.
- the calculation condition data in the list is sent to the portable computer 2 from the host computer 24 by the wired or wireless communication unit 25 as shown in FIG.
- the information is stored in the storage unit 18 of the portable computer 2 and can be rewritten as needed according to the diagnosis area to be targeted and the type of leaked part to be detected by the same operation.
- the leak amount calculation function is also applicable to the portable detector 1 so that the leak amount can be calculated even when the portable computer 2 is detached from the portable detector 1 and the portable detector 1 is used alone to detect the leak location.
- the ultrasonic detection value is stored in the storage unit 13 of the portable detector 1 and the calculation condition is input for each item by operating the key 6 while checking the input data on the display unit 5, the portable detector 1
- the calculation unit 12 calculates a fluid leakage amount based on the ultrasonic detection value and the input calculation condition, displays the calculated leakage amount on the display unit 5, and sets the calculated leakage amount, the ultrasonic detection value, and the setting value.
- the sensitivity is stored in the storage unit 13 in association with the assigned management number for the corresponding leak location.
- the computing unit 17 of the portable computer 2 stores the memory of the portable detector 1.
- the calculated leakage amount is also read from the storage unit 13 of the portable detector 1.
- the leakage amount calculated on the portable computer 2 side or the portable detector 1 side is the management number, ultrasonic detection value, setting sensitivity, detection date and time, diagnosis person name, and repaired for the leakage point. Is displayed in the data input screen Ga together with the check column.
- the calculation unit 17 displays the position information input screen Gc as shown in FIG.
- the screen Gc for each item of area, floor, target member, target site, and used fluid type, position information about the leaked location is input (note that the target site and used fluid type are hidden in FIG. 7 and scroll. Display and enter the target part and fluid type items by operating the bar).
- the calculation unit 17 when inputting information on the position information input screen Gc, if a list display is instructed by key operation in the screen Gc for each item of area, floor, target member, target site, and fluid type used, the calculation unit 17 For each item, a list of position data (pull-down menu) is individually displayed on the screen Gc, and when position data corresponding to the corresponding leak location is selected from the list, the calculation unit 17 displays the selected data for the leak location. Input position information.
- the area is the name of the area to be diagnosed
- the floor is the number of floors in the plant of the diagnosis area
- the target member is the type of the device (piping, valve, etc.) causing the fluid leakage
- the target part is the leakage of the target member
- the portion (main body portion, joint portion, flange portion, etc.) and fluid type used means the type of fluid used in the target member.
- the position data and the item names of the area, floor, target member, and target part items in the list are created using a dedicated program in the host computer 24 prior to a series of detection operations, like the calculation condition data described above. 2 is stored in the storage unit 18 and can be rewritten as needed according to the diagnosis area to be detected and the type of leakage location to be detected.
- a remarks column is provided at the bottom of the position information input screen Gc, and detailed location information (such as “north side / main line / valve”) indicating a specific place in the area can be input.
- the calculation unit 17 displays the area diagram screen Gd as shown in FIG.
- the storage area diagram image Pa is displayed on the area diagram screen Gd.
- a marking operation (corresponding to an artificial position instruction operation) for instructing the position of the leakage location (that is, the position in the diagnosis area of the leakage location) on the displayed area diagram image Pa is performed according to a predetermined operation procedure.
- the calculation unit 17 displays a mark Ma (in this example, a circle centered on the indicated position) indicating the position of the leakage location in the display area diagram image Pa.
- the calculation unit 17 displays FIG. A photographed image screen Ge as shown in FIG. 5 is displayed on the display 19, and a photographed image Pb of the leaked portion is displayed on the photographed image screen Ge. Then, when a marking operation for indicating the detailed position of the leakage is performed on the displayed captured image Pb in accordance with a predetermined operation procedure, the calculation unit 17 sets the leakage detailed position in the displayed captured image Pb as shown in FIG. A mark Mb (in this example, a circle centered on the indicated position) is displayed.
- the captured image Pb the image is zoomed down to include equipment around the leaked position as necessary in addition to the image shown in FIG. 9 taken by zooming up the leaked position. An image is also taken, and the same marking operation is performed for this.
- the leaked part may be repaired at the same time.
- the repaired column is checked by key operation in the data input screen Ga.
- the calculation unit 17 detects the ultrasonic detection value, the setting sensitivity, the leakage amount, the detection date and time, the name of the person in charge of diagnosis, the input position information (area) , Floor, target member, target part, fluid type, location detailed information entered in the remarks column), input calculation conditions (distance, type, direction, fluid), indicated position of the mark Ma in the displayed area diagram image Pa,
- the storage unit 18 stores the collected image D as the collected data D by associating the designated position of the mark Mb in the photographed image Pb, the displayed photographed image Pb of the leaked location, and the presence or absence of the repaired check with the management number assigned to the leaked location Keep in.
- the indicated position of the mark Ma in the displayed area diagram image Pa is converted into a coordinate value in the area diagram image Pa and stored in the storage unit 18.
- the indicated position of the mark Mb in the captured image Pb is also stored in the storage unit 18 as a coordinate value in the captured image Pb.
- the collected data D (the management number of each leaked point) is obtained by performing the above processing operation on each leaked point.
- the collected data D stored in the storage unit 18 of the portable computer 2 is hosted by the wired or wireless communication unit 25 as shown in FIG. Input to the computer 24.
- the portable detector 1 can also be wired or wirelessly communicated with the host computer 24 for use alone, and the collected data D stored in the storage unit 13 of the portable detector 1 can be used. Can be input to the host computer 24, or various data can be directly written into the storage unit 13 of the portable detector 1 from the host computer 24.
- the management ID and the area / floor / target member / fluid type / location detailed information in the plant are associated with each other in advance, and the correspondence table is provided.
- the storage unit 18 stores the management ID as the position information input on the position information input screen Gc, and the calculation unit 17 displays the management ID corresponding to the area, floor, target member, fluid type, It may be converted into detailed location information, and the location information may be stored in the storage unit 18 in a state associated with the management number assigned to the leaked location.
- the management ID is associated with the coordinate values in the area diagram image Pa in advance
- the correspondence table is stored in the storage unit 18, and the calculation unit 17 inputs the management ID and the area diagram corresponding to the management ID is input.
- the coordinate value of the mark Ma is stored in the storage unit 18 in a state associated with the management number assigned to the leaked part without performing the marking operation on the area diagram image Pa by converting into the coordinate value in the image Pa. It may be.
- the position information of the management ID and the conversion to the coordinate value of the mark Ma may be performed by the database management unit 32 described later.
- a configuration diagram image of the plant may be stored in the storage unit 18 instead of the area diagram image Pa.
- a marking operation is performed to indicate the position of the leakage location on the configuration diagram image.
- the mark Ma indicating the position is displayed, and the coordinate value of the mark Ma in the configuration diagram image is stored in the storage unit 18 in a state associated with the management number assigned to the leakage location.
- the host computer 24 includes an operation unit 26 (corresponding to a leakage fluid type selection unit, an enlargement / reduction instruction unit, a ratio instruction unit, and a display selection unit) composed of a keyboard and a mouse.
- a dedicated terminal for the portable computer 2 or the portable detector 1 a wireless communication means such as an infrared communication device, an input unit 27 including a CD drive, a storage unit 28 including a hard disk, and an arithmetic unit including a built-in CPU (data processing) 29) and a display unit 30 comprising a display.
- the storage unit 28 stores a management program and a database Db.
- the host computer 24 performs operations such as processing of input data by execution of the management program by the arithmetic unit 29.
- the input to the host computer 24 of the collected data D (collected data D stored in the storage unit 18 of the portable computer 2 or the storage unit 13 of the portable detector 1) of each fluid leakage point collected by the fluid leakage diagnosis for the plant is as follows: This is performed by the input unit 27.
- the input collected data D is stored cumulatively in the database Db as will be described later.
- the host computer 24 includes a GUI unit 31 for realizing a graphic user interface, as shown in FIG. 12, in order to receive a command input by a simple operation of the operation unit 26 through the display unit 30.
- the GUI unit 31 includes a database It cooperates with various functional units such as a management unit 32, an analysis processing unit 33, and a diagnostic report creation unit 42.
- the analysis processing unit 33 includes a leak location map creation unit 34, a leak tendency estimation unit 35, a plant contrast information generation unit 36, a diagnosis plan evaluation unit 37, a pipe connection estimation unit 38, a repair schedule creation unit 39, and a monetary conversion unit 40. And a functional unit of the compressor determination unit 41.
- the host computer 24 performs operations corresponding to various functional units in accordance with instructions from the operation unit 26.
- each functional unit will be described.
- the database management unit 32 manages the database Db and displays data recorded in the database Db. As the database recording function, the database management unit 32 reads the collected data D from the input unit 27 and records it in the database Db in an accumulative manner. Also, the entire configuration diagram image (or partial configuration diagram) of the plant subject to fluid leakage diagnosis An image (hereinafter the same) is read from the input unit 27 and recorded in the database Db.
- a management ID is attached to an apparatus in a plant including piping
- the management ID and the area / floor / target member / fluid type / location detailed information in the plant are associated with each other in advance, and the correspondence table is provided.
- the management ID may be converted into the corresponding area / floor / target member / fluid type / location detailed information, and the position information may be recorded in the database Db. Further, the management ID is associated with the coordinate values in the area diagram image Pa in advance, the correspondence table is stored in the storage unit 28, the management ID is converted into the coordinate values in the corresponding area diagram image Pa, and the database is stored. It may be recorded in Db.
- a list image Pc in which data such as collected data D recorded in the database Db is displayed in a table format is displayed on the display unit 30.
- data editing such as rewriting and writing can be performed on each data in the list by operation of the operation unit 26.
- Db is updated.
- data in a desired fluid leakage location can be displayed by scrolling the list by the operation unit 26.
- it has a filter function (see the upper area, floor, and diagnostic section in the figure). For example, it displays only the data of the fluid leak location in the specified area or diagnosed by a specific diagnostic staff. It is possible to display only the fluid leak location of a specific condition, such as displaying only the data of the fluid leak location.
- This database management unit 32 allows you to overlook the data of all the fluid leakage points and display only necessary data, facilitating data management. If there is an error in the collected data D, it can be easily corrected by data editing.
- the database management unit 32 it is possible to input / edit a check on whether to lock the annual plant operation time, the unit price of the fluid used, the operation time, and the unit price required for the calculation in the money amount conversion unit 40.
- a batch input column (not shown) for annual plant operating hours and a batch input column (not shown) for unit cost of fluid used are provided for each combination of fluid type and plant area.
- each value can be directly input to the column of the operating time of each fluid leakage location and the unit price of the fluid used displayed in the list image Pc, and can be individually edited for each fluid leakage location.
- the database Db is updated according to the input content. By checking the check box for whether to lock the operating time and unit price, a new operating time or unit price can be added to the batch input field (not shown) for the annual plant operating time or the unit price input column for the fluid used. Even if an entry is made, the value of the leaked place that is checked in the check field is fixed at the value that was originally input without the value entered in the collective entry field being entered.
- the batch input column for annual plant operating hours is provided only for each type of fluid used or only for each area in the plant, and the batch input column for the unit price of used fluid is only for each type of fluid used. Is also provided.
- a check on the check column for locking the input operation time and unit price, operation time and unit price is recorded in the database Db.
- the database management unit 32 has a detailed data display function.
- the database management unit 32 accesses the database Db to extract data, and the fluid corresponding to the selected item.
- the detailed data image Pd related to the leaked portion is displayed so as to overlap the list image Pc.
- the host computer 24 displays, as the detailed data image Pd, an image Pd1 that displays fluid leakage information, position information, a photographed image Pb, and the like of the selected fluid leakage location, and the selected fluid leakage location.
- the layout image Pd2 for displaying the position on the overall configuration diagram of the plant and the supplementary information image Pd3 for displaying supplementary information are switched by the operation of the operation unit 26 and displayed.
- an ultrasonic detection value (measured sound pressure), setting sensitivity, detection date and time, leakage amount (leak amount), input calculation conditions (distance, type) , Direction, fluid) are displayed in the upper stage, input position information (area, floor, target member, target part, fluid type) is displayed in the middle stage as position information, and the photographed image Pb with the mark Mb is displayed in the lower stage.
- the captured image Pb displayed in the lower row is an image as shown in FIG. 9 (corresponding to “up” in the figure) taken by zooming in on the leakage position, and an image (in FIG.
- zoomed down to include equipment around the leakage position ( In the figure, it corresponds to pulling), and if a zoomed-down image is not taken, that portion is left blank.
- Other information includes the name of the person in charge of diagnosis (measurer name), annual plant operation time and unit price of fluid used, check column for whether to lock the operation time and unit price, and check column for whether repair has been completed. Display in the middle. Also in this case, various data editing such as rewriting and writing of each information, replacement of the photographed image Pb, and change of the position of the mark Mb on the photographed image Pb can be performed by the operation of the operation unit 26, and data editing has been performed. If so, the database Db is updated accordingly.
- an image with the mark Ma added thereto is displayed on the overall configuration diagram image of the plant recorded in the database Db according to the indicated position of the mark Ma corresponding to the selected fluid leakage location.
- the position of the mark Ma can be edited by the operation of the operation unit 26 and the data is edited, the contents of the collected data D stored in the storage unit 28 are updated accordingly.
- the displayed entire configuration diagram image is enlarged or reduced, or the display location of the entire configuration diagram image is changed by scrolling the entire configuration diagram image.
- a remarks column for displaying the detailed location information (corresponding to “note” in the figure)
- a diagnostics remarks column in which items to be transmitted from the diagnostics are entered and images Pd1, Pd2
- An edit column (corresponding to the custom item in the figure) for entering the contents of the data editing performed on is displayed. Also in this case, data editing such as rewriting and writing can be performed for each column by the operation of the operation unit 26, and when there is data editing, the database Db is updated accordingly.
- This detailed data display function makes it possible to grasp and manage the data of each fluid leak location collectively for each fluid leak location, and the database Db can be effectively managed by combining with the database display function.
- the leak location map creation unit 34 accesses the database Db via the database management unit 32, and as shown in FIG. 15a, each fluid leaks with respect to the entire configuration diagram image (or partial configuration diagram image) of the target plant.
- a map image (corresponding to a leak location display image) in which the position data indicating the location of the location in the plant is displayed by superimposing an indicator indicating that it is a fluid leak location on the arrangement corresponding to each position data on the overall configuration diagram image ) Pe is created and displayed on the display unit 30.
- the coordinate value in the area diagram image Pa as the designated position of the mark Ma is converted into the coordinate value in the entire configuration diagram image as position data, and the arrangement indicated by the converted coordinate value is the indicator arrangement. To do.
- the indicator is configured to display in a state associated with the amount of fluid leakage and the type of leakage fluid at each corresponding fluid leakage location.
- the amount of fluid leakage is divided into four stages, and the indicator belonging to the stage with the larger fluid leakage amount is displayed larger, and the indicator is displayed in a color set for each leakage fluid type. They are displayed in different colors.
- the indicator is associated with the amount of fluid leakage and the type of fluid leaked at each fluid leakage location, but for example, the area, floor, and device that causes the fluid leakage,
- the part that is, the target member or target part in the collected data D
- the detection date and time the name of the person in charge of diagnosis, and the like may be displayed in association with other data.
- the leak location map creation unit 34 displays only a specific display on the map image Pe, enlarges or reduces the map image Pe, and displays the display. Is changed and displayed.
- only the indicator associated with one or more leaked fluid types selected by the operation unit 26 can be displayed on the map image Pe.
- the indicator whose fluid leakage type is fluid type 4 is displayed.
- the indicator is associated with other collected data D
- the classification type in each data associated with the indicator for example, when the device causing the fluid leakage is associated with the indicator, Among the device types
- only the display elements belonging to the classification type selected by the operation unit 26 can be displayed on the map image Pe.
- the indicator corresponding to the repaired fluid leakage location can be hidden.
- FIG. 15c shows an enlarged display of a portion surrounded by a broken line in FIG. 15a by enlarging and scrolling the map image Pe.
- the size of all the display elements can be uniformly changed (enlarged or reduced) at a ratio according to an instruction from the operation unit 26 and displayed on the map image Pe.
- the shape ( ⁇ , ⁇ , ⁇ , etc.), color, and size of the indicator to be displayed can be changed freely, and the form of association with each data (that is, which indicator for each classification type of each data) You can also change the display mode of
- the map image Pe includes the apparatus and its part (that is, the target member or target part in the collected data D), the amount of fluid leakage at the fluid leaking part, the type of fluid leaked at the fluid leaking part, and the photographed image Pb of the fluid leaking part. Display side by side.
- the leak location map creation unit 34 estimates that the equipment has deteriorated in an area where the number of fluid leak locations is large in the target plant, or when the number of fluid leak locations or the amount of fluid leak is abnormally large It is possible to estimate the degree of deterioration of the equipment and the equipment failure from the tendency of the distribution of the indicators displayed on the map image Pe, such as presuming that some kind of equipment is defective. In addition, it is possible to grasp the trend of data distribution of fluid leakage in the target plant from the distribution of the indicator, such as which area and the type of fluid used should be mainly diagnosed or frequently diagnosed, etc. Efficient plans for future fluid leak diagnosis can be made. Thus, various analyzes can be performed using the leak location map creation unit 34.
- the leakage tendency estimation unit 35 determines the plant in multiple fluid leakage diagnosis performed from the past to the present.
- Fluid leak tendency information indicating the tendency of fluid leak over time in the target plant, which summarizes information related to the fluid leak points, is generated and displayed on the display unit 30.
- the fluid leak location is repaired based on the diagnosis result.
- the data of multiple fluid leak diagnoses from the past to the present are This is data of a fluid leakage part newly generated between the performed fluid leakage diagnosis and the fluid leakage diagnosis at that time.
- the information on the tendency of fluid leakage is the newly generated fluid leakage location in each period (period from the previous fluid leakage diagnosis to the current fluid leakage diagnosis) in multiple times of fluid leakage diagnosis from the past to the present. It shows the information about.
- the map image Pe in each fluid leakage diagnosis created by the leakage location map creation unit 34 (that is, each fluid on the overall configuration diagram image with respect to the overall configuration diagram image of the target plant) An image in which an image indicating that a fluid leaking portion is superimposed and displayed on an arrangement corresponding to the position data of the leaking portion is generated. Or, on the entire configuration diagram image of the target plant, an indicator indicating that it is a fluid leakage location is displayed in an overlapping manner on the arrangement corresponding to the position data of each fluid leakage location on the overall configuration diagram.
- the map image Pe displayed by changing the display form (color or shape ( ⁇ , ⁇ , ⁇ , etc.)) of the indicator indicating the fluid leakage location in the diagnosis may be generated.
- the fluid leakage tendency information the total number of fluid leakage points and the total fluid leakage amount for each leakage fluid type in each fluid leakage diagnosis for the entire target plant or for each area in the target plant May be generated.
- the fluid leak diagnosis data displayed as the fluid leak tendency information may be data on all fluid leak diagnoses from the past to the present, or may be data only on selected times of all fluid leak diagnoses.
- this fluid leakage trend information it is possible to grasp the transition of the fluid leakage location, leakage fluid type, and fluid leakage amount in the target plant from the past to the present.
- the trend can be grasped.
- the trend over time of the fluid leak is also taken into account, so that the interval of appropriate fluid leak diagnosis in the target plant, which area and the type of fluid used are focused on diagnosis It is possible to make a more efficient plan for future fluid leakage diagnosis, such as whether to perform diagnosis or whether to perform diagnosis frequently. Further, from the transition of the fluid leakage of the target plant from the past to the present, it is possible to confirm the effect of continuing the fluid leakage diagnosis and the repair based on the diagnosis result.
- the leakage tendency estimation unit 35 determines whether or not the fluid leakage over time in the target plant is based on the transition of the fluid leakage in the target plant indicated from the data of the fluid leakage point in each fluid leakage diagnosis such as fluid leakage tendency information. Analyzing the trend, algorithms for evaluating the degree of equipment deterioration and equipment failure in the target plant from the trend of fluid leakage and the trend of fluid leakage over time, and future fluid leakage diagnosis according to the trend and trend of fluid leakage In this manner, the leakage tendency estimation unit 35 not only generates and displays the fluid leakage tendency information, but also evaluates the degree of deterioration of the equipment, evaluation information about the equipment failure, and the future. A plan for fluid leakage diagnosis may be generated and displayed on the display unit 30.
- Plant contrast information generator 36 When the results of the fluid leakage diagnosis performed for a plurality of plants are accumulated and stored in the database Db, the plant comparison information generation unit 36 compares the tendency of fluid leakage in two or more plants to be compared with each other. Information is generated and displayed on the display unit 30. For example, as the plant contrast information, a map in which map images Pe in each plant created by the leak location map creating unit 34 are arranged for each plant is generated. Further, as the plant contrast information, data is generated in which the total number of fluid leaks and the total fluid leak amount of each leaked fluid type in the fluid leak diagnosis are arranged for the entire plant to be compared or for each area in the plant to be compared.
- the operation unit 26 selects the multiple fluid leak diagnoses recorded in the database Db.
- the plant comparison information can be generated for the data in the fluid leakage diagnosis that has been performed, and as the plant comparison information, data arranged for each plant for comparing the fluid leakage tendency information generated by the leakage tendency estimation unit 35 is generated. be able to.
- the number of plants to be compared in the plant comparison information is not particularly limited, and may be any number of 2 or more.
- differences in fluid leakage in the plants to be compared differences in various data such as distribution of fluid leak locations, leaked fluid types, fluid leaks, etc. Difference in general tendency). Then, by analyzing the relationship between the differences in these fluid leaks and the differences in the operation conditions of the plants to be compared (plant equipment configuration, operating time, usage of various fluids, etc.), the fluid in the plants to be compared It is possible to estimate what kind of operating condition of the plant the difference in leakage is, that is, the cause of the difference in fluid leakage, thereby taking measures against the fluid leakage in the target plant.
- the plant comparison information generation unit 36 reads the operation conditions of the compared plant from the outside, and analyzes the relationship between the difference in fluid leakage and the difference in the operation condition in the compared plant, based on the analyzed relationship. May be provided with an algorithm for estimating the cause of the difference in fluid leakage in the compared plant and proposing countermeasures against the fluid leakage in the target plant, whereby the plant comparison information generating unit 36 stores the plant comparison information. In addition to generating and displaying, the analysis result of the relationship between the difference in fluid leakage and the difference in operating conditions in the compared plant, the cause of the difference in fluid leakage, and countermeasures against the fluid leakage are generated and displayed on the display unit 30. You may make it display.
- the fluid leakage diagnosis for the plant is performed over a plurality of days along a predetermined diagnosis process.
- the fluid leakage diagnosis is not necessarily performed for every part of the plant, but the area to be diagnosed in advance in the plant within a limited schedule due to the balance between the scale of the plant and the complexity of the equipment and the cost required for the diagnosis.
- fluid leakage diagnosis is performed by limiting the number of devices and devices. In this case, the diagnosis area, device, diagnosis path, and the like are determined based on some criteria, but this diagnosis plan is not necessarily appropriate for the plant that performs the diagnosis. For this reason, in the middle of the fluid leakage diagnosis, there may be a case where the expected number of fluid leakage points are not found, and in that case, it is necessary to consider changing the diagnosis plan in the remaining diagnosis.
- the entire configuration diagram image (or partial configuration diagram image) of the plant is diagnosed and undiagnosed in the fluid leakage diagnosis.
- an indicator is superimposed on each arrangement corresponding to the position data (indicated position of the mark Ma) of each fluid leakage point detected in the diagnosed area on the entire configuration diagram of the plant.
- the displayed diagnostic range display image is generated and displayed on the display unit 30.
- the indicator displays the fluid leak amount and the leaked fluid type at the corresponding fluid leak locations in association with each other.
- this diagnostic range display image it is possible to grasp the region where the fluid leakage diagnosis has been performed and the tendency of the distribution of the fluid leakage location, the leakage fluid type and the fluid leakage amount in that region. Thereby, it can be evaluated whether the diagnostic plan performed with respect to the diagnosed area
- diagnosis plan evaluation unit 37 can evaluate the validity of the plan of the fluid leak diagnosis and change the plan to a more effective plan at any time while performing the fluid leak diagnosis.
- the diagnosis process display unit evaluates the validity of the current diagnosis plan from the tendency of fluid leakage in the diagnosed area and estimates the tendency of fluid leakage in the undiagnosed area.
- An algorithm that proposes a plan for fluid leakage diagnosis for an undiagnosed region based on the tendency of fluid leakage in the region may be provided, so that the diagnostic process display unit only generates and displays a diagnostic range display image. Rather, the diagnostic plan for the target plant is read from the outside, and evaluation information on the validity of the current diagnostic plan, information on the tendency of fluid leakage in undiagnosed areas, and plan for fluid leakage diagnosis in undiagnosed areas You may make it produce
- the data collected by the fluid leakage diagnosis for the past plant that performs the fluid leakage diagnosis and the data collected by the fluid leakage diagnosis at other plants are accumulated and stored in the database Db, and based on the accumulated data.
- the validity of the current diagnosis plan may be evaluated and the tendency of fluid leakage in an undiagnosed area may be estimated.
- the pipe connection estimation unit 38 reads the piping diagram in the target plant from the outside, and on the read piping diagram, the position data of each fluid leakage location (the indicated position of the mark Ma is the position in the piping diagram).
- a pipe connection estimation image is generated by displaying the indicator on each arrangement corresponding to each of the arrangements corresponding to the display unit 30 and displayed on the display unit 30.
- the pipe connection estimation unit 38 includes the read pipe diagram and the map image Pe displayed on the entire configuration diagram (or partial configuration diagram) of the plant with the indicator indicating that it is a fluid leaking portion being superimposed. You may generate
- an indicator corresponding to the fluid leaking location may be highlighted. Thereby, it can be easily found that a new pipe is provided at that position from the time of plant construction.
- unused pipes that are not allowed to circulate fluid may be displayed separately from the pipes in use, such as by changing the color.
- an indicator corresponding to the fluid leak location may be displayed with emphasis. Thereby, it can be easily grasped that fluid leakage has occurred in the unused piping, and it can be easily found that the fluid flow to the unused piping is not completely cut off.
- the display can be emphasized compared to other indicators such as displaying the display large, changing the color of the display, or displaying the display with a thicker line. Any method may be used.
- the pipe connection estimation unit 38 may include an algorithm for estimating a line of pipes that are in a connected state on the piping diagram from the distribution tendency of the fluid leakage location. Generate pipe connection state estimation information, and in accordance with this estimation information, display a column of pipes that are estimated to be in connection, highlighted, displayed in the same color, or traced with a line For example, the pipe connection estimation image may be displayed in a state indicating that the pipe is in a connected state.
- the repair schedule creation unit 39 creates a repair schedule S for the fluid leak location of the plant based on the position data of each fluid leak location and displays it on the display unit 30. For example, based on the position data of the fluid leakage location to be repaired, a repair work order in which the total travel distance or total travel time in the repair work is shortened is calculated.
- a repair slip in which the detailed location information and the captured image Pb and the layout image Pd2 of the fluid leakage location are collected is generated, and the repair slip is arranged in the order of the calculated repair work as shown in FIG. Create In this case, you may obtain
- repair schedule S it is also possible to narrow down the fluid leak locations where repair work is performed from the amount of fluid leak at each fluid leak location, and create a repair schedule for the narrowed fluid leak locations.
- the type of repair work such as replacement members and tools necessary for repairing the fluid leakage point will be different.
- the repair work order may be obtained in consideration of not only the position data of the fluid leakage location but also the target member and the target part.
- the money amount conversion unit 40 calculates the money amount conversion value from the fluid leakage amount at each fluid leakage location, and generates a money amount conversion table. For example, when the amount of fluid leakage at each fluid leakage location recorded in the database Db is the amount of fluid leakage per unit time, for all fluid leakage locations excluding the repaired fluid leakage location, the unit time for each leakage fluid type The total fluid leakage per unit time is calculated based on the total fluid leakage per unit time for each leakage fluid type, the annual plant operating time, and the unit price per unit fluid amount for each fluid used.
- the amount converted value for each leaked fluid type is calculated from the amount ⁇ operating time ⁇ unit price, and the amount converted value for all leaked fluid types is added up to calculate the amount of loss due to annual fluid leakage in the target plant. Then, as shown in FIG. 17, an amount consisting of an amount converted value for each leakage fluid type (that is, an amount of loss due to annual fluid leakage for each leakage fluid type) and an amount of loss due to annual fluid leakage in the target plant.
- a conversion table M is generated and displayed on the display unit 30.
- compressor determination unit 41 In the compressor determination unit 41, the compressor in the target plant is compared with the repaired plant when it is assumed that the fluid leak point in the target plant is repaired based on the total fluid leak amount of the fluid leak point in the target plant. Compressor determination information for determining whether the number and model of the compressors are appropriate is generated.
- the number of compressors used in the target plant, each model, the amount of fluid Ld that can be delivered according to that model, and the fluid usage per unit time of each type of fluid used in the target plant The quantity La is read from outside and acquired. Then, the total fluid leakage amount Lb per unit time of each fluid type is calculated from the fluid leakage amount at each fluid leakage location stored in the database Db, and further, from each fluid usage amount La of each fluid type, each fluid type is calculated. By subtracting the total fluid leakage amount Lb, a post-repair fluid use amount Lc necessary for operation of the plant after repair is calculated.
- the total fluid leakage amount Lb per unit time of each fluid type is a fluid leakage amount that can be reduced by repairing the fluid leakage location, out of the fluid usage amount La per unit time of each fluid type used in the target plant. Moreover, it corresponds to the amount of fluid that is wasted from the compressor in the plant without being related to the operation of the plant. That is, the required fluid usage Lc obtained by subtracting the total fluid leakage amount Lb of each fluid type from the fluid usage La of each usage fluid type means a fluid usage amount that is truly necessary and sufficient for plant operation.
- a total deliverable fluid amount Le is calculated by adding the deliverable fluid amount Ld, which is the amount of fluid that can be delivered by the model of the model.
- the compressor determination unit 41 uses the fluid usage amount La per unit time in the target plant as compressor determination information for each type of fluid used.
- the total fluid leakage amount Lb per unit time, the repaired fluid usage amount Lc per unit time, the sendable fluid amount Ld and the total sendable fluid amount Le according to the type of each compressor used to send out the used fluid Are arranged and displayed on the display unit 30.
- the amount of fluid used after repair Lc, the amount of fluid Ld that can be sent, and the total amount of fluid that can be sent Le according to this compressor determination information the amount of fluid corresponding to the amount of fluid used after repair Lc is delivered.
- the compressor determination information to be displayed includes the compressor power consumption Wa per unit time in the target plant, the converted power amount Wb obtained by converting the total fluid leakage amount Lb per unit time into power, and the unit time per unit time. It consists of the power consumption after repair Wc, the maximum power consumption Wd corresponding to the type of each compressor used to deliver the fluid used, and the total power consumption We.
- the compressor determination unit 41 determines whether or not the number of compressors currently used and each model are appropriate for the plant after repair assuming that the fluid leakage point has been repaired based on the compressor determination information.
- An algorithm for deriving an optimal combination of the number and type of compressors for the repaired fluid usage Lc based on the determination algorithm and compressor determination information may be provided, so that the compressor determination unit 41 is used in the plant. Judgment on the number and type of compressors being used and the optimal combination of compressors after repairing a fluid leakage point, and determination of the currently used compressor and the optimal compressor combination after repair Is generated and displayed on the display unit 30. Good.
- the diagnostic report creation unit 42 creates a diagnostic report X that summarizes all or selected data and images created by the various functional units. For example, as shown in FIG. 18, as a diagnostic report, a monetary conversion table M by the monetary conversion unit 40, a leakage location list from which data is extracted in the database management unit 32, a map image Pe by the leakage location map creation unit 34, a repair schedule A summary of the repair schedule S by the creation function is created.
- Plant maintenance using the present invention is performed, for example, according to the following procedures (a) to (e).
- the range of the fluid leakage diagnosis for the plant is determined by discussion with the plant maintenance requester. Specifically, whether the fluid leakage diagnosis is to be performed for the entire plant area or a part of the plant, whether the fluid leakage diagnosis is performed for all facilities, or only for specific devices. Determine by meeting. In this case, at least a diagnosis range in which the effect can be grasped after repairing the discovered fluid leakage point is set.
- a fluid leakage diagnosis is performed on the range determined by discussion with the client based on the planned diagnosis plan, the collected data D is input to the host computer 24, and the collected data D is stored in the database Db cumulatively. .
- the diagnosis plan evaluation unit 37 based on the diagnosis range display image by the diagnosis plan evaluation unit 37, the plan of the ongoing fluid leakage diagnosis is evaluated as necessary, and changes in the plan for the remaining portions are examined.
- diagnostic report creating unit 42 creates a diagnostic report X in which images and information generated by the analysis processing unit 32 are collected. In addition, it includes information on economic effects obtained by collecting fluid leakage points, repair work plans for discovered fluid leakage points, future maintenance plans, and plant equipment improvements.
- a plan for fluid leakage diagnosis will be made for the remaining range. Repair the discovered fluid leak. Then, while referring to the diagnosis report X, a plan (period etc.) for future maintenance of the plant is determined by a meeting.
- the client purchases a device such as the leakage detection device R and chooses to perform a fluid leakage diagnosis by the client himself, referring to the diagnosis report X, the maintenance of the plant is operated based on what criteria. Propose to the client what to do. In addition, a person in charge of diagnosis is determined, and fluid leak diagnosis training using the leak detection device R is performed for the person in charge of diagnosis.
- a fluid comprising: an input unit to which data of each fluid leakage point detected by the fluid leakage diagnosis as a result of the fluid leakage diagnosis for the plant is input; and a storage unit that stores the data input to the input unit in an accumulative manner
- a device for managing leaked data A leakage tendency estimation unit for generating fluid leakage tendency information indicating a tendency of fluid leakage over time in a target plant from the result of a plurality of fluid leakage diagnosis for the same plant stored cumulatively in the storage unit; Management device comprising, Can also be realized.
- the leakage tendency estimation unit is configured as the fluid leakage tendency information, with respect to the configuration diagram image of the target plant, each fluid leakage point for all fluid leakage diagnosis.
- an indicator indicating that it is a fluid leaking location is superimposed on the arrangement corresponding to each position data on the block diagram image, and each time the fluid is You may make it the structure which produces
- the leakage tendency estimation unit uses the leakage in each fluid leakage diagnosis as the fluid leakage tendency information for the entire target plant or for each area in the target plant. You may make it the structure which produces
- the leakage tendency estimation unit is configured to determine the time-lapse of the target plant based on the transition of the fluid leak in the target plant indicated from the data of the fluid leak location in each fluid leak diagnosis. Analysis of the trend of general fluid leakage, and may be configured to generate evaluation information that evaluates the degree of equipment deterioration and equipment failure in the target plant from the transition of fluid leakage and the tendency of fluid leakage over time, Furthermore, it may be configured to generate a plan for a future fluid leakage diagnosis from the transition of fluid leakage and the tendency of fluid leakage over time.
- management apparatus can employ not only the above-described configuration alone, but also a combination thereof.
- management apparatus according to another embodiment (1) may have other functions that the host computer 24 has.
- the function realized by the above-described plant comparison information generation unit 36 is not limited to the host computer 24,
- a fluid comprising: an input unit to which data of each fluid leakage point detected by the fluid leakage diagnosis as a result of the fluid leakage diagnosis for the plant is input; and a storage unit that stores the data input to the input unit in an accumulative manner
- a device for managing leaked data A plant comparison information generation unit that generates plant comparison information for comparing the tendency of fluid leakage in two or more plants to be compared from the result of fluid leakage diagnosis for a plurality of plants stored cumulatively in the storage unit.
- Management device comprising, Can also be realized.
- the plant comparison information generation unit is configured as the plant comparison information with respect to each configuration diagram image of the comparison target plant with respect to each fluid leakage location input to the input unit.
- a leak location display image in which an indicator indicating that it is a fluid leak location is displayed in an arrangement corresponding to each position data on each overall configuration diagram image. May be generated for each of the comparison target plants to generate an image in which the leaked portion display images are arranged, and as the plant comparison information, the entire comparison target plant or the comparison For each target plant area, generate a list of the total number of fluid leaks and total fluid leaks for each leaked fluid type. Configuration may be.
- the management device of another embodiment (2) is a fluid that shows a tendency of fluid leakage over time in the target plant from the result of multiple fluid leakage diagnosis for the same plant stored cumulatively in the storage unit.
- a leakage tendency estimation unit that generates leakage tendency information may be provided, and the plant comparison information generation unit may generate a configuration in which the fluid leakage tendency information in the comparison target plant is arranged as the plant comparison information. .
- an operating condition in the comparison target plant is input to the input unit, and the plant comparison information generation unit is configured to detect a fluid leakage point in a fluid leakage diagnosis for the comparison target plant. It may be configured to generate analysis result information analyzing the relationship between the difference in fluid leakage in the comparison target plant indicated from the data and the difference in the operation condition in the comparison target plant.
- the comparison information generation unit may be configured to generate evaluation information for estimating the cause of the difference in fluid leakage in the comparison target plant based on the analyzed relationship and a countermeasure plan for the comparison target plant with respect to the cause. .
- the management device according to another embodiment (2) can adopt not only the above-described configuration alone but also a combination thereof. Moreover, what is produced
- the difference in fluid leakage is the difference in various data trends such as the distribution of fluid leakage locations, the type of fluid leaking, the amount of fluid leakage, and the time-dependent trend of fluid leakage from the past to the present. Yes, the difference in plant operating conditions refers to the plant equipment configuration, operating time, usage of various fluids, and the like.
- diagnosis plan evaluation unit 37 is not limited to the host computer 24, A fluid leakage data management device comprising an input unit for inputting data of each fluid leakage point collected by fluid leakage diagnosis for a plant, A diagnostic plan evaluation unit for generating evaluation information on the diagnostic plan in the fluid leakage diagnosis for the plant based on the data input to the input unit during the fluid leakage diagnosis for the plant performed in accordance with a predetermined diagnostic plan; Management device comprising, Can also be realized.
- the management apparatus includes a display unit that displays the data input to the input unit, and the diagnostic plan evaluation unit fluidly leaks an overall configuration diagram image of the plant as the evaluation information.
- a diagnostic range display image that is displayed separately in a diagnosed region and an undiagnosed region in diagnosis, and in the plant of each of the fluid leakage points input to the input unit with respect to the diagnostic range display image
- the diagnostic range display image is generated by displaying an indicator indicating that it is a fluid leaking location in each arrangement corresponding to each position data on the diagnostic range display image. You may make it the structure displayed on the said display part.
- the diagnostic plan evaluation unit analyzes a tendency of data of a fluid leakage point in a fluid leakage diagnosis for the plant as the evaluation information, and the diagnostic plan is based on the analyzed tendency. It may be configured to generate information for evaluating the validity of the information, or may be configured to generate trend estimation information in which the tendency of fluid leakage in an undiagnosed region is estimated based on the analyzed trend.
- the management apparatus includes a storage unit that stores the data input to the input unit in a cumulative manner, and the diagnosis plan evaluation unit is the same stored in the storage unit. Or you may make it the structure which produces
- the diagnosis plan evaluation unit may generate a fluid leakage diagnosis plan for an undiagnosed region based on the tendency estimation information.
- management apparatus of another embodiment (3) can adopt not only the above-described configuration but also a combination thereof. Furthermore, the management apparatus of another embodiment (3) may have other functions that the host computer 24 has.
- a fluid leakage data management device comprising: an input unit for inputting data of each fluid leakage point collected by fluid leakage diagnosis for a plant; and a display unit for displaying the data input to the input unit, For each position data which is a position in the plant of the fluid leakage location generated in the plant piping among the fluid leakage locations input to the input unit, with respect to the overall configuration diagram image of the plant, A management device comprising a data processing unit for displaying a leaked portion display image on a display unit in which an indicator indicating a fluid leaking portion is superimposed on an arrangement corresponding to each position data on an overall configuration diagram image. make use of, A pipe connection estimation method for estimating a pipe connection state in the plant by referring to the piping diagram in the plant and the arrangement of the indicator in the leaked portion display image, Can also be realized.
- a fluid leakage data management device comprising: an input unit for inputting data of each fluid leakage point collected by fluid leakage diagnosis for a plant; and a display unit for displaying the data input to the input unit, About each position data of the said fluid leakage location which arose in piping of the said plant among the positional data which is the position in the said plant of each said fluid leakage location input to the said input part with respect to the piping diagram image of the said plant And a data processing unit that displays on the display unit a pipe connection estimation image in which an indicator indicating a fluid leaking portion is superimposed on each arrangement corresponding to each position data on the piping diagram image.
- a fluid leakage data management device comprising: an input unit for inputting data of each fluid leakage point collected by fluid leakage diagnosis for a plant; and a display unit for displaying the data input to the input unit,
- About each arrangement corresponding to each position data on the overall configuration diagram image comprises a data processing unit for generating a leakage location display image in which a display indicating that it is a fluid leakage location is superimposed and displayed.
- the data processing unit is configured to display, on the display unit, a pipe connection estimation image in which a piping diagram image of the plant and an image in a range corresponding to the piping diagram image in the leakage location display image are displayed side by side.
- Management device Can also be realized.
- the data processing unit includes: In the pipe connection estimation image, when the indicator is located at a position where there is no pipe, the indicator may be highlighted and displayed. A pipe line that is in a connected state is estimated based on the distribution of the indicator in the pipe connection estimated image, and the pipe line that is assumed to be in the connected state in the pipe connection estimated image is changed to a pipe connected state. It may be configured to display in a state indicating that, In the pipe connection estimation image, when the indicator is located at a position corresponding to an unused pipe that is refusing the fluid flow, the indicator may be highlighted and displayed. Furthermore, you may make it the structure which distinguishes and displays the said unused piping among other piping in the said piping connection estimated image.
- the management apparatus of another embodiment (4) can adopt not only the above-described configuration but also a combination thereof.
- the management apparatus of another embodiment (4) may have other functions that the host computer 24 has.
- the display can be emphasized compared to other indicators such as displaying the display large, changing the color of the display, or displaying the display with a thicker line. Any method may be used.
- a state indicating that the pipe is in the connected state the column of the pipe that is estimated to be in the connected state is highlighted, displayed in the same color, or traced with a line. Any pipe may be used as long as it indicates that the pipe is in a connected state.
- the function realized by the above-described repair schedule creation unit 39 is not limited to the host computer 24, Data for each fluid leak location collected by fluid leak diagnosis for the plant and data for repair work that summarizes data for each fluid leak location based on the data input to the input portion
- a fluid leakage data management device comprising a data processing unit that generates each fluid leakage location
- the repair work data includes a device causing fluid leakage and its detailed part, a photographed image of the fluid leakage part, and an image with a mark at a position corresponding to the fluid leakage part in the photographed image, and It consists of an image of the plant configuration diagram and an image with a mark at the position corresponding to the fluid leakage location in the configuration diagram image.
- the data processing unit is configured to generate a repair schedule in which the repair work data for a fluid leakage location to be repaired is arranged in a predetermined order, Can also be realized.
- the data processing unit is based on the total movement distance or total movement time in the repair work calculated from each position data which is the position in the plant of the fluid leakage point to be repaired.
- the order in the repair schedule may be determined, and further, the order in the repair schedule may be determined in consideration of the type of repair work determined by the device causing the fluid leakage and its detailed part.
- the fluid leakage location to be repaired may be selected based on the amount of fluid leakage at the fluid leakage location.
- management apparatus of another embodiment (5) can adopt not only the above-described configuration but also a combination thereof. Furthermore, the management apparatus of another embodiment (5) may have other functions that the host computer 24 has.
- the function realized by the compressor determination unit 41 is not limited to a management device such as the host computer 24,
- a fluid leakage data management device comprising an input unit for inputting data of each fluid leakage point collected by fluid leakage diagnosis for a plant, Based on the total amount of fluid leakage in the target plant, the number and type of compressors used in the target plant are appropriate for the repaired plant when it is assumed that the fluid leakage point in the target plant has been repaired
- a management device including a compressor determination unit that generates determination information for determining whether or not Can also be realized.
- the compressor determination unit By subtracting the total fluid leakage amount from the total fluid usage amount in the target plant, a post-repair fluid usage amount in the repaired plant is calculated, and as the determination information, the repaired fluid usage amount and the compressor It may be configured to generate fluid amount comparison information that summarizes the amount of fluid that can be delivered, which is the amount of fluid that can be delivered by that type of model.
- the compressor determination unit may generate the fluid amount comparison information or the power amount comparison information for each leaked fluid type.
- the compressor determination unit determines whether the number and type of the compressors are appropriate for the repaired plant based on the fluid amount comparison information or the power amount comparison information.
- a configuration that proposes an optimal combination of the number and type of compressors for the plant after repair may be used.
- management apparatus of another embodiment (6) can adopt not only the above-described configuration but also a combination thereof.
- management device of another embodiment (6) may have other functions that the host computer 24 has.
- the area diagram image Pa stored in the storage unit 18 of the portable computer 2 is carried by an appropriate means, for example, input from the host computer 24 to the portable computer 2 by wired or wireless communication means. What is necessary is just to input into the computer 2, and when it moves to the area different from the area figure image Pa stored in the memory
- the collected data D accumulated and stored in the storage unit 18 of the portable computer 2 is collectively input to the host computer 24 side.
- the collected data D of the fluid leaking point is collected at any time during diagnosis work by wireless communication. You may make it the structure sent to the host computer 24 side.
- the fluid leakage data management apparatus and management system of the present disclosure can be applied to management of fluid leakage data in various plants in various fields.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Human Computer Interaction (AREA)
- Examining Or Testing Airtightness (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Pipeline Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
プラントに対する流体漏洩診断により収集される各流体漏洩箇所のデータが入力される入力部と、前記入力部に入力された前記データを表示する表示部とを備える流体漏洩データの管理装置であって、
前記プラントの構成図画像に対して、前記入力部に入力された前記各流体漏洩箇所の前記プラントにおける位置である各位置データについて、前記構成図画像上の前記各位置データに対応する配置に、流体漏洩箇所であることを示す表示子を重ねて表示した漏洩箇所表示画像を前記表示部に表示するデータ処理部を備える。
本開示に係るいずれかの管理装置と前記プラントに対する流体漏洩診断に用いる可搬式の漏洩検出装置とを備える流体漏洩箇所の管理システムであって、
前記漏洩検出装置により収集された前記各流体漏洩箇所のデータが、前記漏洩検出装置から前記管理装置における前記入力部に入力され、
前記漏洩検出装置は、検出した流体漏洩箇所の前記プラントにおける位置である検出位置データを前記漏洩検出装置に対して入力可能であり、
前記データ処理部は、前記入力部に入力された前記検出位置データを前記位置データとして、前記漏洩箇所表示画像において、前記構成図画像上の前記検出位置データに対応する配置に前記表示子を配置する構成にしてある。
図2,図3に示すように、漏洩検出装置Rは、主体装置としてのガン形状の携帯検出器1及びその携帯検出器1に取り付けた携帯コンピュータ2を備えている。
流体漏洩診断にあたっては、先ず、この携帯コンピュータ2の記憶部18に診断対象のプラントの診断エリアのエリア図画像Pa(図10に示す如き画像)を格納する。その後、診断エリア中を移動しながら、図2に示す如く携帯検出器1を用いて超音波検出値及び探知音に基づき漏洩箇所の診断を行ない、漏洩箇所が発見されると、その漏洩箇所での超音波検出値を前述の如くキー6操作により携帯検出器1の記憶部13に保管する。
ホストコンピュータ(管理装置に相当)24は、図1に示すように、キーボードやマウスからなる操作部26(漏洩流体種選択部、拡大縮小指示部、比率指示部、表示子選択部に相当)と、携帯コンピュータ2又は携帯検出器1用の専用端子、赤外線通信機器などの無線通信手段、CDドライブ等からなる入力部27と、ハードディスクからなる記憶部28と、内臓CPUからなる演算部(データ処理部に相当)29と、ディスプレイからなる表示部30と、を備える。記憶部28には管理用プログラム、及びデータベースDbを格納してある。ホストコンピュータ24は演算部29による管理用プログラムの実行により入力データの処理などの動作を行う。
データベース管理部32は、データベースDbの管理及びデータベースDbに記録されたデータの表示を行う。データベース管理部32は、データベース記録機能として、収集データDを入力部27から読み込んでデータベースDbに蓄積的に記録し、また、流体漏洩診断の対象とするプラントの全体構成図画像(又は部分構成図画像、以下同じ)を入力部27から読み込んで、データベースDbに記録する。また、配管を含めてプラントにおける装置に管理用IDを付した場合には、予め管理用IDとプラントにおけるエリア・階・対象部材・使用流体種・場所詳細情報を対応付けて、その対応表を記憶部28に記憶しておき、管理用IDを対応するエリア・階・対象部材・使用流体種・場所詳細情報に変換し、これら位置情報をデータベースDbに記録してもよい。さらに、予め管理用IDをエリア図画像Paにおける座標値と対応付け、その対応表を記憶部28に記憶しておき、管理用IDを対応するエリア図画像Paにおける座標値に変換して、データベースDbに記録してもよい。
漏洩箇所マップ作成部34は、データベース管理部32を介してデータベースDbにアクセスし、図15aに示すように、対象のプラントの全体構成図画像(又は部分構成図画像)に対して、各流体漏洩箇所のプラントにおける位置である位置データについて、全体構成図画像上の各位置データに対応する配置に、流体漏洩箇所であることを示す表示子を重ねて表示したマップ画像(漏洩箇所表示画像に相当)Peを作成し、表示部30に表示する。具体的には、マークMaの指示位置としてのエリア図画像Paにおける座標値を、全体構成図画像における座標値に変換したものを位置データとして、変換した座標値の示す配置を表示子の配置とする。マップ画像Peにおいて、表示子は、対応する前記各流体漏洩箇所における流体漏洩量及び漏洩流体種とそれぞれ関連付けた状態で表示する構成にしてある。具体的には、図15aでは、流体漏洩量を4段階に区分けし流体漏洩量が多い段階に属する表示子ほど表示子を大きく表示し、また、漏洩流体種ごとに設定した色で表示子を色分けして表示してある。なお、ここでは、表示子を各流体漏洩箇所における流体漏洩量及び漏洩流体種と関連付けたものを示したが、例えば、各流体漏洩箇所の属するエリア、階や、流体漏洩を起こしている装置やその部位(即ち、収集データDのうちの対象部材や対象部位)、検出日時、診断担当者名など、他のデータと関連付けて表示してもよい。
データベースDbに過去に同一プラントについて行った流体漏洩診断の結果が蓄積されて保存されている場合、漏洩傾向推定部35では、過去から現在に至るまで行われた複数回の流体漏洩診断におけるプラントの流体漏洩箇所に関する情報をまとめた、対象のプラントにおける経時的な流体漏洩の傾向を示す流体漏洩傾向情報を生成し、表示部30に表示する。流体漏洩診断が行われた場合には、その診断結果に基づき流体漏洩箇所の補修が行われているため、基本的には、過去から現在にわたる複数回の流体漏洩診断のデータは、その前に行われた流体漏洩診断からそのときの流体漏洩診断までの間に新たに発生した流体漏洩箇所のデータとなっている。このため、流体漏洩傾向情報は、過去から現在にわたる複数回の流体漏洩診断における各期間(前に行われた流体漏洩診断からそのときの流体漏洩診断までの期間)において新たに発生した流体漏洩箇所に関する情報を示すものとなる。
データベースDbに複数のプラントについて行った流体漏洩診断の結果が蓄積されて保存されている場合、プラント対比情報生成部36では、対比対象とする2以上のプラントにおける流体漏洩の傾向を対比するプラント対比情報を生成して、表示部30に表示する。例えば、プラント対比情報として、漏洩箇所マップ作成部34により作成される各プラントにおけるマップ画像Peをプラントごとに並べたものを生成する。また、プラント対比情報として、対比するプラント全体について、又は、対比するプラントにおけるエリアごとについて、流体漏洩診断における各漏洩流体種の合計流体漏洩箇所数及び合計流体漏洩量を並べたデータを生成する。対比するプラントについて、データベースDbに過去から現在にわたるまでの複数回の流体漏洩診断のデータが蓄積されている場合には、データベースDbに記録された複数回の流体漏洩診断のうち操作部26により選択した回の流体漏洩診断におけるデータについてプラント対比情報を生成することができ、また、プラント対比情報として、漏洩傾向推定部35により生成する流体漏洩傾向情報を対比するプラントごとに並べたデータを生成することができる。また、プラント対比情報において対比するプラントの数は特に限定されず、2以上のどのような数であってもよい。
プラントに対する流体漏洩診断は、予め計画した診断行程に沿って複数日にわたって行われる。そして、流体漏洩診断は必ずしもプラントの全箇所について行われるものではなく、プラントの規模やその設備の複雑さと診断に要する費用との兼ね合いから、限られた日程の中で、予めプラントにおいて診断するエリアや装置などを限定して流体漏洩診断を行う場合もある。この場合、何らかの基準に基づいて診断計画として診断するエリアや装置、診断経路などを定めることになるが、この診断計画は診断を行うプラントについて必ずしも適切なものであるとは限らない。このため、流体漏洩診断の途中において、想定される数の流体漏洩箇所の発見がないような場合もありえ、そうすると残りの診断において診断計画の変更を検討する必要が生じる。
一般に種々のガス、エア、蒸気など種々の流体が使用されているプラントでは、そのプラント施工後に、配管や装置の修理や交換などに伴い配管に枝管が足されている。そうすると配管の接続状態が複雑となり、どの配管とどの配管とが接続されているのかなど、その把握が困難となる。さらに、プラント施工時の配管図から更新していない場合には、配管図に載らない配管がプラント中に存在することになる。しかし、配管の接続状態を正確に把握できないのはプラントの管理上問題である。
補修スケジュール作成部39では、各流体漏洩箇所の位置データなどに基づいて、プラントの流体漏洩箇所に対する補修スケジュールSを作成し、表示部30に表示する。例えば、補修対象の流体漏洩箇所の位置データに基づき、補修作業における総移動距離又は総移動時間が短くなる補修作業順を演算により求める。そして、各流体漏洩箇所について、流体漏洩箇所における流体漏洩量、流体漏洩箇所における漏洩流体種、対象部材(流体漏洩を起こしている装置)、対象部位(流体漏洩を起こしている装置における部位)、場所詳細情報、及び、流体漏洩箇所の撮影画像Pb、配置図画像Pd2をまとめた補修伝票を生成し、補修スケジュールSとして、図16に示すような、演算した補修作業順に補修伝票を並べたデータを作成する。この場合、プラントのエリアごとに、各エリアにおける流体漏洩箇所の補修作業順を求めてもよい。
金額換算部40は、各流体漏洩箇所における流体漏洩量からその金額換算値を演算し、金額換算表を生成する。例えば、データベースDbに記録された各流体漏洩箇所における流体漏洩量が単位時間当たりの流体漏洩量である場合は、修理済みの流体漏洩箇所を除く全流体漏洩箇所について、漏洩流体種ごとに単位時間当たりの合計流体漏洩量を演算し、この漏洩流体種ごとの単位時間当たりの合計流体漏洩量と年間のプラントの稼働時間と各使用流体における単位流体量当たりの単価とに基づいて、合計流体漏洩量×稼働時間×単価から、漏洩流体種ごとの金額換算値を演算するとともに、全漏洩流体種における金額換算値を合算して、対象のプラントにおける年間の流体漏洩による損失額を演算する。そして、図17に示すような、漏洩流体種ごとの金額換算値(つまり、各漏洩流体種についての年間の流体漏洩による損失額)と対象のプラントにおける年間の流体漏洩による損失額とからなる金額換算表Mを生成して、表示部30に表示する。
コンプレッサー判定部41では、対象のプラントにおける流体漏洩箇所についての合計流体漏洩量に基づいて、対象のプラントにおける流体漏洩箇所を補修したと仮定したときの補修後のプラントに対し、対象のプラントにおけるコンプレッサーの台数及び型式が適正であるかを判定するためのコンプレッサー判定情報を生成する。
診断レポート作成部42は、上記各種機能部により作成したデータ及び画像の全部又はそのうちの選択したものをまとめた診断レポートXを作成する。例えば、図18に示すように、診断レポートとして、金額換算部40による金額換算表M、データベース管理部32におけるデータを抽出した漏洩箇所一覧表、漏洩箇所マップ作成部34によるマップ画像Pe、補修スケジュール作成機能による補修スケジュールSをまとめたものを作成する。
本件発明を用いたプラントのメンテナンスは、例えば次の(a)~(e)の手順で行う。
(1)上記した漏洩傾向推定部35により実現される機能は、ホストコンピュータ24に限らず、
プラントに対する流体漏洩診断の結果として流体漏洩診断により検出された各流体漏洩箇所のデータが入力される入力部と、前記入力部に入力された前記データを蓄積的に保存する記憶部とを備える流体漏洩データの管理装置であって、
前記記憶部に蓄積的に保存された同一のプラントについての複数回の流体漏洩診断の結果から、対象のプラントにおける経時的な流体漏洩の傾向を示す流体漏洩傾向情報を生成する漏洩傾向推定部を備える管理装置、
によっても実現できる。
プラントに対する流体漏洩診断の結果として流体漏洩診断により検出された各流体漏洩箇所のデータが入力される入力部と、前記入力部に入力された前記データを蓄積的に保存する記憶部とを備える流体漏洩データの管理装置であって、
前記記憶部に蓄積的に保存された複数のプラントについての流体漏洩診断の結果から、対比対象とする2以上のプラントにおける流体漏洩の傾向を対比するプラント対比情報を生成するプラント対比情報生成部を備える管理装置、
によっても実現できる。
プラントに対する流体漏洩診断により収集される各流体漏洩箇所のデータが入力される入力部を備える流体漏洩データの管理装置であって、
所定の診断計画に従って行われるプラントに対する流体漏洩診断の途中において前記入力部に入力された前記データに基づいて、前記プラントに対する流体漏洩診断における前記診断計画についての評価情報を生成する診断計画評価部を備える管理装置、
によっても実現できる。
プラントに対する流体漏洩診断により収集される各流体漏洩箇所のデータが入力される入力部と、前記入力部に入力された前記データを表示する表示部とを備える流体漏洩データの管理装置であって、前記プラントの全体構成図画像に対して、前記入力部に入力された前記各流体漏洩箇所のうちの前記プラントの配管に生じた前記流体漏洩箇所の前記プラントにおける位置である各位置データについて、前記全体構成図画像上の前記各位置データに対応する配置に、流体漏洩箇所であることを示す表示子を重ねて表示した漏洩箇所表示画像を前記表示部に表示するデータ処理部を備える管理装置を用いて、
前記プラントにおける配管図と前記漏洩箇所表示画像における表示子の配置とを参照することにより、前記プラントにおける配管の接続状態を推定する配管接続推定方法、
によっても実現できる。
前記配管図上で配管がない位置に前記漏洩箇所表示画像上に前記表示子があるときに、前記表示子に対応する位置に新たに配管が設けられていることを推定してもよく、
前記漏洩箇所表示画像上の前記表示子の分布から、前記配管図上において接続状態となっている配管列を推定してもよく、
前記配管図上における流体の流通を断っている未使用配管に対応する位置に前記漏洩箇所表示画像上に前記表示子があるときに、前記未使用配管に対する流体の流通が断たれていないことを推定してもよい。
プラントに対する流体漏洩診断により収集される各流体漏洩箇所のデータが入力される入力部と、前記入力部に入力された前記データを表示する表示部とを備える流体漏洩データの管理装置であって、
前記プラントの配管図画像に対して、前記入力部に入力された前記各流体漏洩箇所の前記プラントにおける位置である位置データのうち、前記プラントの配管に生じた前記流体漏洩箇所の各位置データについて、前記配管図画像上の前記各位置データに対応する各配置に、流体漏洩箇所であることを示す表示子を重ねて表示した配管接続推定画像を前記表示部に表示するデータ処理部を備える管理装置、または、
プラントに対する流体漏洩診断により収集される各流体漏洩箇所のデータが入力される入力部と、前記入力部に入力された前記データを表示する表示部とを備える流体漏洩データの管理装置であって、
前記プラントの全体構成図画像に対して、前記入力部に入力された前記各流体漏洩箇所の前記プラントにおける位置である位置データのうち、前記プラントの配管に生じた前記流体漏洩箇所の各位置データについて、前記全体構成図画像上の前記各位置データに対応する各配置に、流体漏洩箇所であることを示す表示子を重ねて表示した漏洩箇所表示画像を生成するデータ処理部を備え、
前記データ処理部は、前記プラントの配管図画像と、前記漏洩箇所表示画像における前記配管図画像に対応する範囲の画像とを並べて表示した配管接続推定画像を前記表示部に表示する構成にしてある管理装置、
によっても実現できる。
前記配管接続推定画像において、配管がない位置に前記表示子が位置しているときに、その表示子を強調して表示する構成にしてもよく、
前記配管接続推定画像における前記表示子の分布に基づいて接続状態となっている配管列を推定し、前記配管接続推定画像において、接続状態にあるとされた配管の列を、配管が接続状態にあることを示す状態で表示する構成にしてもよく、
前記配管接続推定画像において、流体の流通を断っている未使用配管に対応する位置に前記表示子が位置するときに、その表示子を強調して表示する構成にしてもよく、この構成において、さらに、前記配管接続推定画像における配管のうち前記未使用配管については他の配管と区別して表示する構成にしてもよい。
プラントに対する流体漏洩診断により収集される各流体漏洩箇所のデータが入力される入力部と、前記入力部に入力された前記データに基づき、各流体漏洩箇所についてのデータをまとめた補修作業用データを流体漏洩箇所ごとに生成するデータ処理部とを備える流体漏洩データの管理装置であって、
前記補修作業用データは、流体漏洩を起こしている装置とその詳細部位、流体漏洩箇所の撮影画像であってその撮影画像中の流体漏洩箇所に対応する位置にマークを付した画像、及び、前記プラントの構成図画像であってその構成図画像中の流体漏洩箇所に対応する位置にマークを付した画像からなり、
前記データ処理部は、補修対象とする流体漏洩箇所についての前記補修作業用データを所定の順番で並べた補修スケジュールを生成する構成にしてある管理装置、
によっても実現できる。
プラントに対する流体漏洩診断により収集される各流体漏洩箇所のデータが入力される入力部を備える流体漏洩データの管理装置であって、
対象のプラントにおける総流体漏洩量に基づいて、前記対象のプラントにおける流体漏洩箇所を補修したと仮定したときの補修後プラントに対し、前記対象のプラントで使用するコンプレッサーの台数及び型式が適正であるかを判定するための判定情報を生成するコンプレッサー判定部を備える管理装置、
によっても実現できる。
前記対象のプラントにおける総流体使用量から前記総流体漏洩量を減算することで前記補修後プラントにおける補修後流体使用量を演算し、前記判定情報として、前記補修後流体使用量と、前記コンプレッサーごとのその型式の機種が送出可能な流体量である送出可能流体量とをまとめた流体量比較情報を生成する構成にしてもよく、
前記総流体漏洩量を電力に換算した換算電力量を演算するとともに、前記プラントにおける前記コンプレッサーの総電力消費量から前記換算電力量を減算することで前記補修後プラントにおける前記コンプレッサーの補修後電力消費量を演算し、前記判定情報として、前記補修後電力消費量と、前記コンプレッサーごとのその型式の機種における最大電力消費量とをまとめた電力量比較情報を生成する構成にしてもよい。
携帯コンピュータ2の記憶部18に格納するエリア図画像Paは、例えば、有線又は無線の通信手段によりホストコンピュータ24から携帯コンピュータ2に入力するなど、適当な手段により携帯コンピュータ2に入力すればよく、また、診断作業中の移動により記憶部18に格納してあるエリア図画像Paと異なるエリアに移動したときなど、必要に応じて、無線通信手段によりホストコンピュータから随時新しいエリア図画像Paを漏洩検出装置Rの側に送るようにしてもよい。
24 ホストコンピュータ(管理装置)
26 操作部(漏洩流体種選択部、拡大縮小指示部、比率指示部、表示子選択部)
27 入力部
28 記憶部
29 演算部(データ処理部)
30 表示部
D 収集データ(流体漏洩箇所のデータ)
Ma マーク
Pa エリア図画像(診断エリアを示す画像)
Pe マップ画像(漏洩箇所表示画像)
R 可搬式の漏洩検出装置
Claims (13)
- プラントに対する流体漏洩診断により収集される各流体漏洩箇所のデータが入力される入力部と、前記入力部に入力された前記データを表示する表示部とを備える流体漏洩データの管理装置であって、
前記プラントの構成図画像に対して、前記入力部に入力された前記各流体漏洩箇所の前記プラントにおける位置である各位置データについて、前記構成図画像上の前記各位置データに対応する配置に、流体漏洩箇所であることを示す表示子を重ねて表示した漏洩箇所表示画像を前記表示部に表示するデータ処理部を備える管理装置。 - 前記データ処理部は、前記漏洩箇所表示画像上に表示する前記表示子を、対応する前記各流体漏洩箇所における流体漏洩量と関連付けた状態で表示する構成にしてある請求項1に記載の管理装置。
- 前記データ処理部は、前記漏洩箇所表示画像上に表示する前記表示子を、対応する前記各流体漏洩箇所における漏洩流体種と関連付けた状態で表示する構成にしてある請求項1又は2に記載の管理装置。
- 前記漏洩流体種を選択指示する漏洩流体種選択部を備え、
前記データ処理部は、前記漏洩流体種選択部に対する選択指示に応じて、選択した1又は2以上の前記漏洩流体種と関連付けた前記表示子のみを前記表示部に表示する構成にしてある請求項3に記載の管理装置。 - 前記表示部に表示する前記漏洩箇所表示画像の拡大又は縮小を指示する拡大縮小指示部を備え、
前記データ処理部は、前記拡大縮小指示部に対する指示に応じて、前記漏洩箇所表示画像を拡大又は縮小して前記表示部に表示する構成にしてある請求項1~4のいずれか1項に記載の管理装置。 - 前記表示部に表示する前記表示子のサイズを定めた比率で全表示子について一律に変更するための比率を指示する比率指示部を備え、
前記データ処理部は、前記比率指示部に対する指示に応じた比率で前記全表示子のサイズを一律に変更して前記表示部に表示する構成にしてある請求項1~5のいずれか1項に記載の管理装置。 - 前記表示部に表示する前記表示子を選択する表示子選択部を備え、
前記データ処理部は、前記表示子選択部に対する選択指示に応じて、選択された前記表示子に対応する流体漏洩箇所の詳細データとして、流体漏洩を起こしている装置とその部位、流体漏洩箇所における流体漏洩量、流体漏洩箇所における漏洩流体種、及び、流体漏洩箇所の撮影画像のうちのすくなくとも一つを前記漏洩箇所表示画像に重ねて前記表示部に表示する構成にしてある請求項1~6のいずれか1項に記載の管理装置。 - 前記入力部に入力された前記データを蓄積的に保存する記憶部を備え、
前記データ処理部は、前記記憶部に蓄積的に保存された同一のプラントについての複数回の流体漏洩診断ごとに前記漏洩箇所表示画像を生成し、前記複数回の流体漏洩診断ごとの前記漏洩箇所表示画像を並べた画像を前記表示部に表示可能な構成にしてある請求項1~7のいずれか1項に記載の管理装置。 - 前記入力部に入力された前記データを蓄積的に保存する記憶部を備え、
前記データ処理部は、前記記憶部に蓄積的に保存された複数のプラントそれぞれに対する流体漏洩診断ごとに前記漏洩箇所表示画像を生成し、前記複数のプラントそれぞれの前記漏洩箇所表示画像を並べた画像を前記表示部に表示可能な構成にしてある請求項1~8のいずれか1項に記載の管理装置。 - 前記データ処理部は、前記プラントに対する流体漏洩診断の途中において前記入力部に入力されたデータに基づいて、前記漏洩箇所表示画像を生成する構成にしてある請求項1~9のいずれか1項に記載の管理装置。
- 前記データ処理部は、前記漏洩箇所表示画像を前記プラントに対する流体漏洩診断における診断済みの領域と未診断の領域とに区別して表示する構成にしてある請求項10に記載の管理装置。
- 請求項1~11のいずれかの管理装置と前記プラントに対する流体漏洩診断に用いる可搬式の漏洩検出装置とを備える流体漏洩データの管理システムであって、
前記漏洩検出装置により収集された前記各流体漏洩箇所のデータが、前記漏洩検出装置から前記管理装置における前記入力部に入力され、
前記漏洩検出装置は、検出した流体漏洩箇所の前記プラントにおける位置である検出位置データを前記漏洩検出装置に対して入力可能であり、
前記データ処理部は、前記入力部に入力された前記検出位置データを前記位置データとして、前記漏洩箇所表示画像において、前記構成図画像上の前記検出位置データに対応する配置に前記表示子を配置する構成にしてある管理システム。 - 前記漏洩検出装置はディスプレイを備え、
診断エリアを示す画像を前記ディスプレイにより表示した状態でその表示画像中に流体漏洩箇所の前記診断エリア中における位置を示すマークが人為的な位置指示操作に応じて付されたとき、前記マークの表示画像上の指示位置を前記検出位置データとして、前記漏洩検出装置に対して前記検出位置データが入力される構成にしてある請求項12に記載の管理システム。
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580054614.0A CN106796156B (zh) | 2014-10-07 | 2015-08-07 | 流体泄漏数据的管理装置和管理系统 |
EP15849624.0A EP3206002B1 (en) | 2014-10-07 | 2015-08-07 | Fluid leakage data management system and method |
ES15849624T ES2839250T3 (es) | 2014-10-07 | 2015-08-07 | Sistema de gestión de datos de fugas de fluidos |
JP2016503039A JP5986336B1 (ja) | 2014-10-07 | 2015-08-07 | 流体漏洩データの管理システム、及び、管理方法 |
US15/517,291 US11422053B2 (en) | 2014-10-07 | 2015-08-07 | Fluid leakage data management apparatus and management system |
AU2015329347A AU2015329347B2 (en) | 2014-10-07 | 2015-08-07 | Fluid leakage data management apparatus and management system |
KR1020197012306A KR102144242B1 (ko) | 2014-10-07 | 2015-08-07 | 유체 누설 데이터의 관리 장치 및 배관 접속 추정 방법 |
MX2017004591A MX358192B (es) | 2014-10-07 | 2015-08-07 | Aparato de gestión de datos de fugas de fluido y sistema de gestión. |
CN202010185008.5A CN111504565B (zh) | 2014-10-07 | 2015-08-07 | 流体泄漏数据的管理装置和管理系统 |
SG11201702753SA SG11201702753SA (en) | 2014-10-07 | 2015-08-07 | Fluid leakage data management apparatus and management system |
KR1020177012521A KR101986923B1 (ko) | 2014-10-07 | 2015-08-07 | 유체 누설 데이터의 관리 장치 및 관리 시스템 |
MYPI2017701210A MY185588A (en) | 2014-10-07 | 2015-08-07 | Fluid leakage data management apparatus and management system |
EP20184009.7A EP3739413A1 (en) | 2014-10-07 | 2015-08-07 | Fluid leakage data management apparatus and method for deducing pipe connection |
AU2018205069A AU2018205069B2 (en) | 2014-10-07 | 2018-07-09 | Fluid leakage data management apparatus and management system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014206546 | 2014-10-07 | ||
JP2014-206546 | 2014-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016056297A1 true WO2016056297A1 (ja) | 2016-04-14 |
Family
ID=55652922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/072539 WO2016056297A1 (ja) | 2014-10-07 | 2015-08-07 | 流体漏洩データの管理装置及び管理システム |
Country Status (11)
Country | Link |
---|---|
US (1) | US11422053B2 (ja) |
EP (2) | EP3739413A1 (ja) |
JP (2) | JP5986336B1 (ja) |
KR (2) | KR102144242B1 (ja) |
CN (2) | CN106796156B (ja) |
AU (2) | AU2015329347B2 (ja) |
ES (1) | ES2839250T3 (ja) |
MX (1) | MX358192B (ja) |
MY (1) | MY185588A (ja) |
SG (1) | SG11201702753SA (ja) |
WO (1) | WO2016056297A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019095431A (ja) * | 2017-10-27 | 2019-06-20 | ファイファー バキユーム | トレーサガスによる被検査物の密封性検査用漏洩検知モジュール、および漏洩検知方法 |
JP2019133442A (ja) * | 2018-01-31 | 2019-08-08 | 株式会社関電工 | 測定データ入力支援装置、測定データ入力支援装置を用いた方法、及び測定データ入力支援装置に手順を実行させるプログラム |
JP2019175383A (ja) * | 2018-03-29 | 2019-10-10 | 株式会社リコー | 入力装置および入力装置の入力方法、ならびに、出力装置および出力装置の出力方法 |
CN110866130A (zh) * | 2018-08-07 | 2020-03-06 | 中国石油化工股份有限公司 | 存储器、炼厂密封点管理方法和设备 |
WO2021070923A1 (ja) * | 2019-10-11 | 2021-04-15 | 株式会社テイエルブイ | 診断システム、診断システムの運転方法、および診断プログラム |
WO2021070924A1 (ja) * | 2019-10-11 | 2021-04-15 | 株式会社テイエルブイ | 診断システム、診断システムの運転方法、および診断プログラム |
WO2021181675A1 (ja) * | 2020-03-13 | 2021-09-16 | コニカミノルタ株式会社 | ガス検査管理システム、ガス検査管理方法、及びプログラム |
JP2022113508A (ja) * | 2021-01-25 | 2022-08-04 | エクシオグループ株式会社 | 施工記録写真管理補助システム |
JP2023508633A (ja) * | 2019-12-31 | 2023-03-03 | サン-ゴバン パフォーマンス プラスティックス コーポレイション | 漏洩検出システム、並びにそれを製作及び使用する方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016213584A1 (de) * | 2016-07-25 | 2018-01-25 | Deere & Company | Verfahren, tragbares Gerät und Kombination aus einer mobilen Arbeitsmaschine und einem tragbaren Gerät zur Unterstützung des Auffindens einer zu Fehlerbehebungs -, Störungsbeseitigungs- oder Wartungsarbeiten aufzusuchenden Position an einer mobilen Arbeitsmaschine oder einem damit gekoppelten Gerät |
JP6682411B2 (ja) * | 2016-09-16 | 2020-04-15 | 横河電機株式会社 | プラント状態表示装置、プラント状態表示システム、及びプラント状態表示方法 |
DE102016117813A1 (de) | 2016-09-21 | 2018-03-22 | Samson Aktiengesellschaft | Tragbare Vorrichtung zum Diagnostizieren eines prozessfluidführenden Stellgeräts und Verfahren zur Diagnose des Zustands eines prozessfluidführenden Stellgeräts |
JP2019008654A (ja) * | 2017-06-27 | 2019-01-17 | 大陽日酸株式会社 | 保安システム及び保安方法 |
JP7156291B2 (ja) * | 2017-09-21 | 2022-10-19 | コニカミノルタ株式会社 | ガス検査レポート作成支援装置、ガス検査レポート作成支援方法、及び、ガス検査レポート作成支援プログラム |
WO2020090125A1 (ja) * | 2018-10-29 | 2020-05-07 | コニカミノルタ株式会社 | 検査支援方法、検査支援装置および検査支援用プログラム |
US10969296B2 (en) * | 2018-11-19 | 2021-04-06 | General Electric Company | Leak-detection systems including inspection vehicles and leak-detection devices |
WO2020110530A1 (ja) * | 2018-11-29 | 2020-06-04 | 株式会社テイエルブイ | 配管診断履歴表示装置、配管診断履歴表示方法、および配管診断履歴表示プログラム |
US11035749B2 (en) | 2019-02-07 | 2021-06-15 | Georg Fischer, LLC | Leak test system and method for thermoplastic piping |
JP2022032077A (ja) * | 2020-08-11 | 2022-02-25 | 株式会社ジェイテクト | 監視装置、集音装置及び監視方法 |
JP2022079836A (ja) * | 2020-11-17 | 2022-05-27 | 株式会社ミヤワキ | 診断装置 |
JP7075549B1 (ja) * | 2021-02-25 | 2022-05-25 | Jfeアドバンテック株式会社 | 漏洩量推定方法、漏洩量推定装置及び漏洩量推定システム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000048047A (ja) * | 1998-01-19 | 2000-02-18 | Asahi Glass Co Ltd | 時系列デ―タの保存方法及び時系列デ―タベ―スシステム、時系列デ―タの処理方法及び時系列デ―タ処理システム、時系列デ―タ表示システム、並びに記録媒体 |
JP2001188608A (ja) * | 1999-12-28 | 2001-07-10 | Tlv Co Ltd | 位置認識装置及びこの位置認識装置を備えた測定装置並びに測定システム |
JP2001337002A (ja) * | 2000-05-29 | 2001-12-07 | Tokyo Gas Co Ltd | 漏洩地点推定支援システムおよび漏洩地点推定方法 |
JP2002323401A (ja) * | 2001-02-20 | 2002-11-08 | Tlv Co Ltd | 可搬式漏洩検出装置 |
JP2005190196A (ja) * | 2003-12-25 | 2005-07-14 | Chugoku Electric Power Co Inc:The | 巡視点検支援方法、巡視点検支援装置 |
JP2011237597A (ja) * | 2010-05-11 | 2011-11-24 | Yahoo Japan Corp | 地図表示装置、方法、プログラム及び地図表示サーバ |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2884209B2 (ja) | 1992-12-16 | 1999-04-19 | 株式会社日立製作所 | 配管内状態表示方法および装置 |
JPH08171414A (ja) * | 1994-12-20 | 1996-07-02 | Takenaka Komuten Co Ltd | 設備検査装置 |
JP3543426B2 (ja) | 1995-07-06 | 2004-07-14 | 株式会社日立製作所 | 管路網管理方法およびシステム |
JP3318705B2 (ja) * | 1997-03-27 | 2002-08-26 | 清水建設株式会社 | 作業検査用タッチパネル式携帯型端末器 |
JPH1139030A (ja) * | 1997-07-15 | 1999-02-12 | Tlv Co Ltd | 設備管理装置及び設備管理プログラムを記録したコンピュータ読み取り可能な記録媒体 |
FR2772881B1 (fr) * | 1997-12-24 | 2000-01-14 | Alpes Systeme Automation | Dispositif de distribution d'un gaz de travail et installation de fourniture d'un gaz de travail equipee d'un tel dispositif |
JPH11231909A (ja) * | 1998-02-16 | 1999-08-27 | Mitsubishi Electric Corp | 協調作業支援装置 |
JPH11249731A (ja) | 1998-02-27 | 1999-09-17 | Osaka Gas Co Ltd | プラント点検管理装置 |
JPH11249729A (ja) * | 1998-03-03 | 1999-09-17 | Mitsubishi Electric Corp | 運転監視操作装置 |
JP4061922B2 (ja) * | 2002-02-21 | 2008-03-19 | 株式会社日立製作所 | ケーブル配線作業支援システム |
JP2003343761A (ja) * | 2002-05-30 | 2003-12-03 | Idemitsu Kosan Co Ltd | バルブ操作支援システム |
JP2004013197A (ja) * | 2002-06-03 | 2004-01-15 | Sopac System:Kk | 工場における設備情報管理システム |
JP3721184B2 (ja) * | 2003-10-03 | 2005-11-30 | 株式会社テイエルブイ | 設備診断用集計システムの動作方法、及び、設備診断用集計システム |
US7515977B2 (en) * | 2004-03-30 | 2009-04-07 | Fisher-Rosemount Systems, Inc. | Integrated configuration system for use in a process plant |
JP2006209594A (ja) * | 2005-01-31 | 2006-08-10 | Yokogawa Electric Corp | メインテナンス支援システム |
EP2208039B1 (en) * | 2007-10-10 | 2015-09-02 | Tecwel AS | Method and system for registering and measuring leaks and flows |
JP2009199445A (ja) * | 2008-02-22 | 2009-09-03 | Toshiba Corp | 灯火設備保守支援装置及び灯火設備保守支援システム |
JP5374071B2 (ja) | 2008-05-23 | 2013-12-25 | 株式会社Pfu | 携帯端末および領域特定処理実行方法 |
WO2010041960A1 (en) * | 2008-10-06 | 2010-04-15 | Institutt For Energiteknikk | Improved plant process display |
JP5456414B2 (ja) * | 2009-03-31 | 2014-03-26 | 日本ノーベル株式会社 | エリア監視用の表示方法、同監視装置 |
JP4560128B1 (ja) * | 2009-08-13 | 2010-10-13 | 株式会社パスコ | 地図画像統合データベース生成システム及び地図画像統合データベース生成プログラム |
KR101086142B1 (ko) * | 2010-02-02 | 2011-11-25 | 한국수력원자력 주식회사 | 카메라 영상신호를 이용한 누설판별 방법 및 시스템 |
JP5390502B2 (ja) * | 2010-12-22 | 2014-01-15 | 日立Geニュークリア・エナジー株式会社 | 図面表示装置 |
JP2013077134A (ja) * | 2011-09-30 | 2013-04-25 | Mitsubishi Electric Corp | 状態表示・指示入力装置 |
JP2013174581A (ja) * | 2012-01-25 | 2013-09-05 | Canon Inc | 画像データ生成装置および画像データ生成方法 |
JP2013195063A (ja) * | 2012-03-15 | 2013-09-30 | Chugoku Electric Power Co Inc:The | センサ取り付け方法及び気体漏れ監視システム |
JP5679521B2 (ja) * | 2012-05-18 | 2015-03-04 | 横河電機株式会社 | 情報表示装置及び情報表示システム |
JP5970243B2 (ja) * | 2012-06-04 | 2016-08-17 | 東邦瓦斯株式会社 | 疑似ガス漏洩箇所検査システム |
US10242414B2 (en) * | 2012-06-12 | 2019-03-26 | TaKaDu Ltd. | Method for locating a leak in a fluid network |
JP5469764B1 (ja) * | 2013-03-26 | 2014-04-16 | 三菱電機インフォメーションシステムズ株式会社 | 建造物表示装置及び建造物表示システム及び建造物表示方法及び建造物表示プログラム |
US10685283B2 (en) * | 2018-06-26 | 2020-06-16 | Sas Institute Inc. | Demand classification based pipeline system for time-series data forecasting |
-
2015
- 2015-08-07 KR KR1020197012306A patent/KR102144242B1/ko active IP Right Grant
- 2015-08-07 EP EP20184009.7A patent/EP3739413A1/en active Pending
- 2015-08-07 MY MYPI2017701210A patent/MY185588A/en unknown
- 2015-08-07 SG SG11201702753SA patent/SG11201702753SA/en unknown
- 2015-08-07 EP EP15849624.0A patent/EP3206002B1/en active Active
- 2015-08-07 US US15/517,291 patent/US11422053B2/en active Active
- 2015-08-07 CN CN201580054614.0A patent/CN106796156B/zh active Active
- 2015-08-07 AU AU2015329347A patent/AU2015329347B2/en active Active
- 2015-08-07 JP JP2016503039A patent/JP5986336B1/ja active Active
- 2015-08-07 KR KR1020177012521A patent/KR101986923B1/ko active IP Right Grant
- 2015-08-07 MX MX2017004591A patent/MX358192B/es active IP Right Grant
- 2015-08-07 CN CN202010185008.5A patent/CN111504565B/zh active Active
- 2015-08-07 WO PCT/JP2015/072539 patent/WO2016056297A1/ja active Application Filing
- 2015-08-07 ES ES15849624T patent/ES2839250T3/es active Active
-
2016
- 2016-08-03 JP JP2016152835A patent/JP6560169B2/ja active Active
-
2018
- 2018-07-09 AU AU2018205069A patent/AU2018205069B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000048047A (ja) * | 1998-01-19 | 2000-02-18 | Asahi Glass Co Ltd | 時系列デ―タの保存方法及び時系列デ―タベ―スシステム、時系列デ―タの処理方法及び時系列デ―タ処理システム、時系列デ―タ表示システム、並びに記録媒体 |
JP2001188608A (ja) * | 1999-12-28 | 2001-07-10 | Tlv Co Ltd | 位置認識装置及びこの位置認識装置を備えた測定装置並びに測定システム |
JP2001337002A (ja) * | 2000-05-29 | 2001-12-07 | Tokyo Gas Co Ltd | 漏洩地点推定支援システムおよび漏洩地点推定方法 |
JP2002323401A (ja) * | 2001-02-20 | 2002-11-08 | Tlv Co Ltd | 可搬式漏洩検出装置 |
JP2005190196A (ja) * | 2003-12-25 | 2005-07-14 | Chugoku Electric Power Co Inc:The | 巡視点検支援方法、巡視点検支援装置 |
JP2011237597A (ja) * | 2010-05-11 | 2011-11-24 | Yahoo Japan Corp | 地図表示装置、方法、プログラム及び地図表示サーバ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3206002A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019095431A (ja) * | 2017-10-27 | 2019-06-20 | ファイファー バキユーム | トレーサガスによる被検査物の密封性検査用漏洩検知モジュール、および漏洩検知方法 |
JP2019133442A (ja) * | 2018-01-31 | 2019-08-08 | 株式会社関電工 | 測定データ入力支援装置、測定データ入力支援装置を用いた方法、及び測定データ入力支援装置に手順を実行させるプログラム |
JP2022140527A (ja) * | 2018-01-31 | 2022-09-26 | 株式会社関電工 | 測定データ入力支援装置、測定データ入力支援装置を用いた方法、及び測定データ入力支援装置に手順を実行させるプログラム |
JP7109929B2 (ja) | 2018-01-31 | 2022-08-01 | 株式会社関電工 | 測定データ入力支援装置 |
JP2019175383A (ja) * | 2018-03-29 | 2019-10-10 | 株式会社リコー | 入力装置および入力装置の入力方法、ならびに、出力装置および出力装置の出力方法 |
JP2022097699A (ja) * | 2018-03-29 | 2022-06-30 | 株式会社リコー | 入力装置および入力装置の入力方法、ならびに、出力装置および出力装置の出力方法 |
JP7073850B2 (ja) | 2018-03-29 | 2022-05-24 | 株式会社リコー | 入力装置および入力装置の入力方法 |
CN110866130A (zh) * | 2018-08-07 | 2020-03-06 | 中国石油化工股份有限公司 | 存储器、炼厂密封点管理方法和设备 |
JP7036989B2 (ja) | 2019-10-11 | 2022-03-15 | 株式会社テイエルブイ | 診断システム、診断システムの運転方法、および診断プログラム |
JPWO2021070923A1 (ja) * | 2019-10-11 | 2021-10-28 | 株式会社テイエルブイ | 診断システム、診断システムの運転方法、および診断プログラム |
WO2021070924A1 (ja) * | 2019-10-11 | 2021-04-15 | 株式会社テイエルブイ | 診断システム、診断システムの運転方法、および診断プログラム |
WO2021070923A1 (ja) * | 2019-10-11 | 2021-04-15 | 株式会社テイエルブイ | 診断システム、診断システムの運転方法、および診断プログラム |
JP2023508633A (ja) * | 2019-12-31 | 2023-03-03 | サン-ゴバン パフォーマンス プラスティックス コーポレイション | 漏洩検出システム、並びにそれを製作及び使用する方法 |
JP7429777B2 (ja) | 2019-12-31 | 2024-02-08 | サン-ゴバン パフォーマンス プラスティックス コーポレイション | 漏洩検出システム、並びにそれを製作及び使用する方法 |
WO2021181675A1 (ja) * | 2020-03-13 | 2021-09-16 | コニカミノルタ株式会社 | ガス検査管理システム、ガス検査管理方法、及びプログラム |
JP2022113508A (ja) * | 2021-01-25 | 2022-08-04 | エクシオグループ株式会社 | 施工記録写真管理補助システム |
JP7171781B2 (ja) | 2021-01-25 | 2022-11-15 | エクシオグループ株式会社 | 施工記録写真管理補助システム |
Also Published As
Publication number | Publication date |
---|---|
JP6560169B2 (ja) | 2019-08-14 |
CN106796156B (zh) | 2020-03-13 |
KR101986923B1 (ko) | 2019-09-30 |
JPWO2016056297A1 (ja) | 2017-04-27 |
EP3206002B1 (en) | 2020-10-21 |
MY185588A (en) | 2021-05-24 |
CN111504565A (zh) | 2020-08-07 |
MX358192B (es) | 2018-05-18 |
EP3206002A4 (en) | 2018-05-23 |
JP2017003597A (ja) | 2017-01-05 |
US20170307465A1 (en) | 2017-10-26 |
KR20190047737A (ko) | 2019-05-08 |
CN111504565B (zh) | 2022-08-12 |
KR102144242B1 (ko) | 2020-08-12 |
US11422053B2 (en) | 2022-08-23 |
ES2839250T3 (es) | 2021-07-05 |
JP5986336B1 (ja) | 2016-09-06 |
AU2015329347B2 (en) | 2018-04-12 |
EP3206002A1 (en) | 2017-08-16 |
CN106796156A (zh) | 2017-05-31 |
AU2018205069A1 (en) | 2018-07-26 |
SG11201702753SA (en) | 2017-06-29 |
KR20170066608A (ko) | 2017-06-14 |
AU2015329347A1 (en) | 2017-05-11 |
AU2018205069B2 (en) | 2020-01-02 |
MX2017004591A (es) | 2017-06-27 |
EP3739413A1 (en) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6560169B2 (ja) | 流体漏洩データの管理装置及び配管接続推定方法 | |
CN109308556B (zh) | 一种基于内检测数据的管道评价方法及装置 | |
CN104871182B (zh) | 检查和维护工厂或其他设施的系统 | |
JPWO2007013466A1 (ja) | 機器管理方法、それに用いる分析システム、保守点検支援方法、及び、それに用いる保守点検支援装置 | |
JP5323103B2 (ja) | グラフィカルユーザインタフェース装置 | |
US9563198B2 (en) | Method and system to model risk of unplanned outages of power generation machine | |
JP3766232B2 (ja) | 機器カルテ管理評価装置および同装置を用いた機器カルテ管理評価方法 | |
CN101238491B (zh) | 机器管理方法、该机器管理方法所采用的分析系统、以及分析用数据结构、其机器管理方法所采用的维修检查支援装置 | |
Oxstrand et al. | Design Guidance for Computer-Based Procedures for Field Workers | |
JP2006139163A (ja) | 保安作業訓練システム | |
JP2010231376A (ja) | 機器品質管理方法、機器品質管理システム | |
US20040135821A1 (en) | Activity record maintenance and display tool | |
JP2006004219A (ja) | 設備保全システム | |
JP2005234942A (ja) | プラントの予防保全システム | |
JP7446789B2 (ja) | 情報提供装置、情報提供方法、及びプログラム | |
Ulrich et al. | Visualization Strategy and Human-Machine Interface Development of a Data Driven Condition Monitoring System for Maintenance | |
US10573092B2 (en) | Real-time remote visualization of frame damage from field data | |
JP2006266816A (ja) | 機器設備の保全診断システム | |
Kima et al. | Some Insights for Assessing Diagnosis Error Probabilities of Operators in Advanced MCRs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016503039 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15849624 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/004591 Country of ref document: MX Ref document number: 15517291 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015849624 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201702753S Country of ref document: SG |
|
ENP | Entry into the national phase |
Ref document number: 20177012521 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015329347 Country of ref document: AU Date of ref document: 20150807 Kind code of ref document: A |