WO2016052622A1 - フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池 - Google Patents

フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池 Download PDF

Info

Publication number
WO2016052622A1
WO2016052622A1 PCT/JP2015/077750 JP2015077750W WO2016052622A1 WO 2016052622 A1 WO2016052622 A1 WO 2016052622A1 JP 2015077750 W JP2015077750 W JP 2015077750W WO 2016052622 A1 WO2016052622 A1 WO 2016052622A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
fuel cell
stainless steel
content
mass
Prior art date
Application number
PCT/JP2015/077750
Other languages
English (en)
French (fr)
Inventor
樽谷 芳男
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016503470A priority Critical patent/JP5971446B1/ja
Priority to KR1020177011771A priority patent/KR20170063900A/ko
Priority to US15/513,581 priority patent/US20170301929A1/en
Priority to CN201580053171.3A priority patent/CN106795604A/zh
Publication of WO2016052622A1 publication Critical patent/WO2016052622A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a ferritic stainless steel material, a separator for a polymer electrolyte fuel cell using the same, and a polymer electrolyte fuel cell.
  • the separator here is sometimes called a bipolar plate.
  • Fuel cells are cells that generate direct current using hydrogen and oxygen, and are roughly classified into solid electrolyte type, molten carbonate type, phosphoric acid type, and solid polymer type. Each type is derived from the constituent material of the electrolyte part constituting the basic part of the fuel cell.
  • fuel cells that have reached the commercial stage include a phosphoric acid type that operates near 200 ° C. and a molten carbonate type that operates near 650 ° C.
  • solid polymer type that operates near room temperature
  • solid electrolyte type that operates at 700 ° C. or more are attracting attention as compact power supplies for automobiles or home use.
  • FIG. 1 is an explanatory view showing the structure of a polymer electrolyte fuel cell
  • FIG. 1 (a) is an exploded view of a fuel cell (single cell)
  • FIG. 1 (b) is a perspective view of the whole fuel cell. is there.
  • the fuel cell 1 is an assembly of single cells.
  • a fuel electrode membrane (anode) 3 is laminated on one surface of a solid polymer electrolyte membrane 2, and an oxidant electrode membrane (cathode) 4 is laminated on the other surface.
  • the separators 5a and 5b are stacked.
  • a fluorine ion exchange resin membrane having a hydrogen ion (proton) exchange group As a typical solid polymer electrolyte membrane 2, there is a fluorine ion exchange resin membrane having a hydrogen ion (proton) exchange group.
  • the fuel electrode film 3 and the oxidant electrode film 4 include a fluorine resin having particulate platinum catalyst, graphite powder, and hydrogen ion (proton) exchange groups on the surface of a diffusion layer made of carbon paper or carbon cloth made of carbon fiber.
  • the catalyst layer which consists of is contacted with the fuel gas or oxidizing gas which permeate
  • a fuel gas (hydrogen or hydrogen-containing gas) A is flowed from a flow path 6 a provided in the separator 5 a and hydrogen is supplied to the fuel electrode film 3. Further, an oxidizing gas B such as air is flowed from the flow path 6b provided in the separator 5b, and oxygen is supplied. The supply of these gases causes an electrochemical reaction to generate DC power.
  • the functions required of the polymer electrolyte fuel cell separator are (1) a function as a “flow path” for uniformly supplying fuel gas in the surface on the fuel electrode side, and (2) water generated on the cathode side as fuel. Function as a “flow path” that efficiently discharges the battery together with a carrier gas such as air and oxygen after reaction from the battery, and (3) between single cells that maintain low electrical resistance and good electrical conductivity as electrodes over a long period of time A function as an electrical “connector”, and (4) a function as “a partition wall” between an anode chamber of one cell and a cathode chamber of an adjacent cell in adjacent cells.
  • the thermally expansive graphite processed product is remarkably inexpensive, and is thus attracting the most attention as a material for polymer electrolyte fuel cell separators.
  • the thermally expansive graphite processed product is remarkably inexpensive, and is thus attracting the most attention as a material for polymer electrolyte fuel cell separators.
  • to deal with stricter dimensional accuracy deterioration of organic resin over time, which occurs during fuel cell application, carbon corrosion that progresses under the influence of battery operating conditions, and during fuel cell assembly and use Unexpected cracking accidents that occur are left as issues to be solved in the future.
  • Patent Document 1 discloses a fuel cell separator which is made of a metal member and directly gold-plated on a contact surface with an electrode of a unit cell.
  • the metal member include stainless steel, aluminum, and a Ni-iron alloy, and SUS304 is used as the stainless steel.
  • the separator is gold-plated, the contact resistance between the separator and the electrode is reduced, and the conduction of electrons from the separator to the electrode is improved, so that the output voltage of the fuel cell is increased. Yes.
  • Patent Document 2 discloses a polymer electrolyte fuel cell in which a separator made of a metal material in which a passive film formed on the surface is easily generated by the atmosphere is used. Stainless steel and titanium alloy are mentioned as metal materials. In the present invention, there is always a passive film on the surface of the metal used for the separator, and the degree to which the water generated in the fuel cell is ionized because the metal surface is hardly chemically attacked. It is said that it is reduced and the fall of the electrochemical reactivity of a fuel cell is suppressed. In addition, it is said that the electrical contact resistance value is reduced by removing the passive film at the portion in contact with the electrode film of the separator and forming a noble metal layer.
  • the steel does not contain B, and M 23 C 6 type, M 4 C type, M 2 C type, MC type carbide-based metal inclusions and M 2 B type boron as metal precipitates in the steel. No solid inclusions precipitate, and the amount of C in steel is 0.012% or less (in this specification, “%” relating to chemical composition means “% by mass” unless otherwise specified)
  • Ferritic stainless steel for fuel cell separators is disclosed.
  • Patent Documents 4 and 5 disclose polymer electrolyte fuel cells in which ferritic stainless steel in which such metal precipitates are not deposited is applied as a separator.
  • Patent Document 6 discloses a ferrite for a separator of a polymer electrolyte fuel cell in which B is not contained in steel but 0.01 to 0.15% C is contained in steel, and only Cr-based carbides are precipitated. Stainless steel and a polymer electrolyte fuel cell to which it is applied are shown.
  • Patent Document 7 discloses that a solid polymer that does not contain B in steel, contains 0.015 to 0.2% C in the steel, and contains 7 to 50% Ni and precipitates Cr-based carbides. An austenitic stainless steel for a separator of a fuel cell is shown.
  • Patent Document 8 discloses that among M 23 C 6 type, M 4 C type, M 2 C type, MC type carbide metal inclusions and M 2 B type boride inclusions having conductivity on a stainless steel surface.
  • 1 shows a stainless steel for a separator of a polymer electrolyte fuel cell in which one or more of these are dispersed and exposed, C: 0.15% or less, Si: 0.01 to 1.5%, Mn: 0 0.01 to 1.5%, P: 0.04% or less, S: 0.01% or less, Cr: 15 to 36%, Al: 0.001 to 6%, N: 0.035% or less
  • a ferritic stainless steel is described in which the Cr, Mo, and B contents satisfy 17% ⁇ Cr + 3 ⁇ Mo ⁇ 2.5 ⁇ B, and the balance is Fe and inevitable impurities.
  • Patent Document 9 discloses that M 23 C 6 type, M 4 C type, M 2 C type, MC type carbide-based metal inclusions and M having a surface of a stainless steel material corroded with an acidic aqueous solution and having conductivity on the surface. 2 A method for producing a stainless steel material for a separator of a polymer electrolyte fuel cell in which one or more of B-type boride-based metal inclusions are exposed is shown: C: 0.15% or less; Si: 0.
  • Patent Document 10 discloses that when an M 2 B type boride-based metal compound is exposed on the surface and the anode area and the cathode area are each 1, the area where the anode is in direct contact with the separator, and the cathode A solid polymer fuel cell is shown in which all of the areas in direct contact with the separator are in the ratio of 0.3 to 0.7, and M 23 C 6 type having conductivity on the stainless steel surface, M Stainless steel is shown in which one or more of 4 C type, M 2 C type, MC type carbide metal inclusions and M 2 B type boride inclusions are exposed.
  • the stainless steel constituting the separator is C: 0.15% or less, Si: 0.01 to 1.5%, Mn: 0.01 to 1.5%, P: 0.04% or less, S: 0.01% or less, Cr: 15 to 36%, Al: 0.2% or less, B: 3.5% or less (excluding 0%), N: 0.035% or less, Ni: 5% or less, Mo: 7% or less, W: 4% or less, V: 0.2% or less, Cu: 1% or less, Ti: 25 ⁇ (C% + N%) or less, Nb: 25 ⁇ (C% + N%) or less.
  • a ferritic stainless steel material in which the content of Cr, Mo and B satisfies 17% ⁇ Cr + 3 ⁇ Mo ⁇ 2.5 ⁇ B is shown.
  • Patent Documents 11 to 15 disclose an austenitic stainless clad steel material in which M 2 B type boride metal precipitates are exposed on the surface, and a method for producing the same.
  • Patent Document 16 discloses a fuel cell including a ferritic stainless steel in which B in the steel is precipitated as an M 2 B type boride and a separator made of the steel.
  • the ferritic stainless steel is, by mass%, C: 0.08% or less, Si: 0.01 to 1.5%, Mn: 0.01 to 1.5%, P: 0.035% or less, S : 0.01% or less, Cr: 17 to 36%, Al: 0.001 to 0.2%, B: 0.0005 to 3.5%, N: 0.035% or less, if necessary, Ni, Mo, It contains Cu, and the contents of Cr, Mo, and B satisfy 17% ⁇ Cr + 3Mo ⁇ 2.5B, and the balance is Fe and inevitable impurities.
  • Patent Document 17 discloses a stainless steel material for a separator of a polymer electrolyte fuel cell including a conductive substance made of M 2 B type boride-based metal inclusions.
  • a conductive substance made of M 2 B type boride-based metal inclusions for example, as austenitic stainless steel, by mass%, C: 0.2% or less, Si: 2% or less, Mn: 3% or less, Al: 0.001% or more and 6% or less, P: 0.06% or less S: 0.03% or less, N: 0.4% or less, Cr: 15% or more and 30% or less, Ni: 6% or more and 50% or less, B: 0.1% or more and 3.5% or less, balance Fe And stainless steel containing impurities.
  • Patent Document 18 discloses a ferritic stainless steel sheet on which an oxide film having good electrical conductivity at a high temperature is formed.
  • the ferritic stainless steel sheet is, in mass%, C: 0.02% or less, Si: 0.15% or less, Mn: 0.3 to 1%, P: 0.04% or less, S: 0.003 %: Cr: 20-25%, Mo: 0.5-2%, Al: 0.1% or less, N: 0.02% or less, Nb: 0.001-0.5%, the balance being Fe and It consists of inevitable impurities and satisfies 2.5 ⁇ Mn / (Si + Al) ⁇ 8.0.
  • the ferritic stainless steel sheet is further, in mass%, Ti: 0.5% or less, V: 0.5% or less, Ni: 2% or less, Cu: 1% or less, Sn: 1% or less, B: 0 0.005% or less, Mg: 0.005% or less, Ca: 0.005% or less, W: 1% or less, Co: 1% or less, and Sb: 0.5% or less. Yes.
  • Patent Document 19 discloses a ferritic stainless steel sheet in which a small amount of Sn is added to improve oxidation resistance and high-temperature strength.
  • the ferritic stainless steel sheet is, by mass%, C: 0.001 to 0.03%, Si: 0.01 to 2%, Mn: 0.01 to 1.5%, P: 0.005 to 0 0.05%, S: 0.0001 to 0.01%, Cr: 16 to 30%, N: 0.001 to 0.03%, Al: more than 0.8% to 3%, Sn: 0.01 to 1%, the balance consists of Fe and inevitable impurities.
  • Patent Document 20 discloses ferritic stainless steel in which the passive film is modified by adding Sn to improve the corrosion resistance.
  • the ferritic stainless steel is, by mass%, C: 0.01% or less, Si: 0.01 to 0.20%, Mn: 0.01 to 0.30%, P: 0.04% or less, S : 0.01% or less, Cr: 13 to 22%, N: 0.001 to 0.020%, Ti: 0.05 to 0.35%, Al: 0.005 to 0.050%, Sn: 0 0.001 to 1%, the balance being Fe and inevitable impurities.
  • Japanese Patent Laid-Open No. 10-228914 Japanese Patent Laid-Open No. 8-180883 JP 2000-239806 A JP 2000-294255 A JP 2000-294256 A JP 2000-303151 A JP 2000-309854 A JP 2003-193206 A JP 2001-214286 A JP 2002-151111 A JP 2004-071319 A JP 2004-156132 A JP 2004-306128 A JP 2007-1118025 A JP 2009-215655 A JP 2000-328205 A JP 2010-140886 A JP 2014-031572 A JP 2012-172160 A JP 2009-174036 A
  • An object of the present invention is to provide a ferritic stainless steel material having excellent corrosion resistance in the environment inside the solid molecular fuel cell and having a contact electric resistance equivalent to that of a gold plating material, and a solid polymer fuel cell comprising the stainless steel material Separator, and a polymer electrolyte fuel cell to which the separator is applied.
  • the present inventor has found that MEA composed of a diffusion layer, a polymer membrane, and a catalyst layer has very little metal elution from the surface of the metal separator even when used as a separator for a polymer electrolyte fuel cell for a long time.
  • the present invention is listed below.
  • the chemical composition is mass%, C: 0.001 to less than 0.020%, Si: 0.01 to 1.5%, Mn: 0.01 to 1.5%, P: 0.035% or less, S: 0.01% or less, Cr: 22.5 to 35%, Mo: 0.01 to 6%, Ni: 0.01-6%, Cu: 0.01 to 1%, N: 0.035% or less, V: 0.01 to 0.35%, B: 0.5 to 1.0%, Al: 0.001 to 6.0%, Sn: 0.02 to 2.50%, Rare earth elements: 0-0.1%, Nb: 0 to 0.35%, Ti: 0 to 0.35%, and Balance: Fe and impurities, and
  • the value calculated as ⁇ Cr content (mass%) + 3 ⁇ Mo content (mass%) ⁇ 2.5 ⁇ B content (mass%) ⁇ is 20 to 45%
  • a ferritic stainless steel material in which M 2 B-type boride-based metal precipitates are dispersed in a parent phase consisting only of a
  • the chemical composition is mass%, Nb: 0.001 to 0.35%, and Ti: 0.001 to 0.35%, Containing one or more selected from, and 3 ⁇ Nb / C ⁇ 25, 3 ⁇ Ti / (C + N) ⁇ 25,
  • a separator for a polymer electrolyte fuel cell comprising the ferritic stainless steel material for a polymer electrolyte fuel cell separator according to any one of (1) to (3) above.
  • a polymer electrolyte fuel cell comprising the ferritic stainless steel material for a polymer electrolyte fuel cell separator according to any one of (1) to (3) above.
  • M in M 2 B and M 23 C 6 represents a metal element, but not a specific metal element, but a metal element having a strong chemical affinity with Cr or B.
  • M is mainly composed of Cr and Fe and contains a small amount of Ni and Mo because of the relationship with coexisting elements in steel.
  • M 2 B type boride-based metal precipitates include Cr 2 B, (Cr, Fe) 2 B, (Cr, Fe, Ni) 2 B, (Cr, Fe, Mo) 2 B, (Cr, Fe, Ni, Mo) 2 B, Cr 1.2 Fe 0.76 Ni 0.04 B, and the like.
  • B also has an action as “M”.
  • Examples of the M 23 C 6 type include Cr 23 C 6 and (Cr, Fe) 23 C 6 .
  • M 23 (C, B) 6 type carbide metal in which a part of C is substituted with B in any of the above M 2 B type borate metal precipitate and M 23 C 6 type carbide metal precipitate
  • Metal deposits such as precipitates or M 2 (C, B) type boride metal deposits may also be deposited.
  • the above notation includes these. Basically, similar performance is expected for metal-based dispersions with good electrical conductivity.
  • the subscript index “ 2 ” in the “M 2 B” type notation is “a metal element in a boride, such as Cr, Fe, Mo, Ni, X (where X is Cr, Fe, Mo, Ni).
  • a metal element in a boride such as Cr, Fe, Mo, Ni, X (where X is Cr, Fe, Mo, Ni).
  • B content “(Cr mass% / Cr atomic mass + Fe mass% / Fe atomic mass + Mo mass% / Mo atomic mass + Ni mass% / Ni atomic mass + X mass% / X atomic mass) / ( This means that a stoichiometric relationship in which (B mass% / B atomic weight) is approximately 2 is established.
  • This notation is not a special one but a very general notation.
  • the present invention it is possible to reduce the contact resistance of the surface, and without performing expensive surface treatment such as expensive gold plating, it has excellent anti-eluting metal ion characteristics. That is, it is possible to obtain a ferritic stainless steel material that is remarkably excellent in corrosion resistance in the environment within the solid molecular fuel cell and that has a contact electric resistance equivalent to that of a gold plating material.
  • This stainless steel material is suitable for a separator of a polymer electrolyte fuel cell. For full-scale spread of polymer electrolyte fuel cells, it is extremely important to reduce the cost of the fuel cell body, particularly the separator cost.
  • the present invention is expected to accelerate the full-scale spread of polymer electrolyte fuel cells using metal separators.
  • FIG. 1 is an explanatory view showing the structure of a polymer electrolyte fuel cell
  • FIG. 1 (a) is an exploded view of a fuel cell (single cell)
  • FIG. 1 (b) is a perspective view of the whole fuel cell. is there.
  • FIG. 2 is a photograph showing the shape of the separator manufactured in Example 3.
  • M 2 B boride-type metal precipitate M 2 B contains 60% or more of Cr, and is more excellent in corrosion resistance than the parent phase. Since the Cr concentration is higher than that of the parent phase, the passive film formed on the surface is also thinner than the parent phase, and the conductivity (electrical contact resistance performance) is excellent.
  • the exposure means that the M 2 B type boride-based metal precipitate protrudes to the outer surface without being covered with the passive film formed on the surface of the parent phase of stainless steel.
  • M 2 B-type boride-based metal deposit is to function as electrical path (bypass), lowering the electrical contact resistance of the surface significantly Has an effect.
  • the M 2 B type boride metal precipitate exposed on the surface may drop off, the M 2 B boride metal precipitate is a metal precipitate and is thus metal-bonded to the parent phase. , None fall out.
  • the M 2 B-type boride-based metal precipitate is precipitated by a eutectic reaction that proceeds at the end of solidification, the M 2 B-type boride metal precipitate has characteristics that the composition is substantially uniform and is extremely stable thermally. Due to the thermal history in the manufacturing process of the steel material, there is no re-dissolution, re-precipitation, or component change. Further, the M 2 B type boride metal precipitate is a very hard precipitate. It is mechanically crushed in each process of hot forging, hot rolling, and cold rolling and finely and uniformly dispersed.
  • Metal tin and tin oxide Sn are dissolved in the parent phase by adding them as alloy elements in the molten steel stage.
  • pickling is performed to expose M 2 B in the steel located in the vicinity of the steel surface to the surface and reduce the electrical contact resistance of the steel surface.
  • the tin dissolved in the mother phase is concentrated not only on the surface of the mother phase but also on the M 2 B surface as metal tin or tin oxide as the mother phase is dissolved (corrosion) by pickling. .
  • the gradual metal elution proceeds according to the environment in the fuel cell, and the passive film changes.
  • the tin in the steel further concentrates not only on the surface of the parent phase, but also on the M 2 B surface, resulting in a behavior that becomes a surface enriched state suitable for securing desired characteristics.
  • Both metallic tin and tin oxide are excellent in electrical conductivity and work to lower the electrical contact resistance on the surface of the mother phase in the fuel cell.
  • Chemical composition (3-1) C 0.001 to less than 0.020% C is an impurity in the present invention. If the current scouring technique is applied, it can be made less than 0.001%, but the scouring time becomes longer and the scouring cost increases. Therefore, the C content is 0.001% or more. On the other hand, when the C content is 0.020% or more, corrosion resistance is lowered due to sensitization, and room temperature toughness is lowered and productivity is lowered. Therefore, the C content is less than 0.020%.
  • the C content is preferably 0.0015% or more, and preferably less than 0.010%.
  • Si 0.01 to 1.5%
  • Si is a deoxidizing element that is as effective as Al in mass-produced steel. If the Si content is less than 0.01%, deoxidation is insufficient. Therefore, the Si content is 0.01% or more. On the other hand, if the Si content exceeds 1.5%, the moldability deteriorates. Therefore, the Si content is 1.5% or less.
  • the Si content is preferably 0.05% or more, and more preferably 0.1% or more. Moreover, it is preferable that Si content is 1.2% or less, and it is more preferable that it is 1.0% or less.
  • Mn 0.01 to 1.5%
  • Mn has an effect of fixing S in steel as a Mn-based sulfide, and has an effect of improving hot workability.
  • Mn content shall be 0.01% or more.
  • the Mn content is 1.5% or less.
  • the Mn content is preferably 0.05% or more, and more preferably 0.1% or more. Further, the Mn content is preferably 1.2% or less, and more preferably 1.0% or less.
  • P in steel is the most harmful impurity along with S, so its content is 0.035% or less. The lower the P content, the better.
  • S in steel is the most harmful impurity along with P, so its content is 0.01% or less. The lower the S content, the better.
  • S is a Mn-based sulfide, Cr-based sulfide, Fe-based sulfide, or a composite non-metallic precipitate with these composite sulfides and oxides depending on the coexisting elements in the steel and the S content in the steel. Most of them are deposited. Further, S may form a rare earth element-based sulfide that is added as necessary.
  • non-metallic deposits of any composition can act as a starting point of corrosion to varying degrees, which is detrimental to maintaining a passive film and suppressing metal ion elution. It is.
  • the amount of S in steel of ordinary mass-produced steel is more than 0.005% and around 0.008%, but is preferably reduced to 0.004% or less in order to prevent the above-mentioned harmful effects.
  • the more preferable S content in steel is 0.002% or less, and the most preferable S content level in steel is less than 0.001%. The lower it is, the better. If it is less than 0.001% at the industrial mass production level, with the current refining technology, the increase in manufacturing cost is slight and there is no problem.
  • (3-6) Cr: 22.5 to 35.0% Cr is a very important basic alloy element for securing the corrosion resistance of the base material, and the higher the Cr content, the better the corrosion resistance. In ferritic stainless steel, if the Cr content exceeds 35.0%, production on a mass production scale becomes difficult. On the other hand, if the Cr content is less than 22.5%, the corrosion resistance necessary for a polymer electrolyte fuel cell separator cannot be secured even if other elements are changed, and the M 2 B type boride metal precipitate By precipitation, the amount of Cr in the parent phase that contributes to improvement in corrosion resistance may be lower than the amount of Cr in the molten steel, and the corrosion resistance of the base material may deteriorate.
  • M 23 C 6 type carbide metal precipitates may react with C in the steel to form M 23 C 6 type carbide metal precipitates.
  • the M 23 C 6 type carbide metal precipitate is a metal precipitate having excellent conductivity, but causes a decrease in corrosion resistance due to sensitization. By exposing the M 2 B type boride-based metal precipitate to the surface, the electrical surface contact resistance value can be reduced.
  • the amount of Cr is required so that the calculated value is 20 to 45%.
  • the Cr content is preferably 23.0% or more, and preferably 34.0% or less.
  • Mo 0.01 to 6.0% Mo has the effect of improving the corrosion resistance in a small amount as compared with Cr. In order to effectively exhibit corrosion resistance, the Mo content is set to 0.01% or more. On the other hand, if the Mo content exceeds 6.0%, precipitation of intermetallic compounds such as a sigma phase cannot be avoided during the production, and production becomes difficult due to the problem of embrittlement of steel. For this reason, the upper limit of the Mo content is set to 6.0%. Further, Mo has a feature that even if Mo in steel is eluted due to corrosion inside the polymer electrolyte fuel cell, the influence on MEA performance is relatively small.
  • Mo does not exist as a metal cation but exists as a molybdate ion, which is an anion, so that the influence on the cation conductivity of a fluorine-based ion exchange resin film having a hydrogen ion (proton) exchange group is small. Because. Mo is an extremely important element for maintaining corrosion resistance, and is calculated as ⁇ Cr content (% by mass) + 3 ⁇ Mo content (% by mass) ⁇ 2.5 ⁇ B content (% by mass) ⁇ . It is necessary that the amount of Mo in steel is 20 to 45%.
  • the Mo content is preferably 0.05% or more, and preferably 5.0% or less.
  • Ni 0.01 to 6.0% Ni has the effect of improving corrosion resistance and toughness.
  • the upper limit of the Ni content is 6.0%. If the Ni content exceeds 6.0%, it becomes difficult to obtain a ferrite-based single phase structure even if heat treatment is applied industrially.
  • the lower limit of the Ni content is 0.01%.
  • the lower limit of the Ni content is the amount of impurities mixed in when manufactured industrially.
  • the Ni content is preferably 0.03% or more, and preferably 5.0% or less.
  • Cu 0.01 to 1.0%
  • Cu contains 0.01% or more and 1.0% or less. If the Cu content exceeds 1.0%, hot workability will be reduced, and it will be difficult to ensure mass productivity. On the other hand, when the Cu content is less than 0.01%, the corrosion resistance in the polymer electrolyte fuel cell is lowered.
  • Cu exists in a solid solution state. When it is deposited as a Cu-based precipitate, it becomes a Cu elution starting point in the battery, and the fuel cell performance is lowered.
  • the Cu content is preferably 0.02% or more, and preferably 0.8% or less.
  • N in ferritic stainless steel is an impurity. Since N deteriorates room temperature toughness, the upper limit of the N content is set to 0.035%. The lower the better. Industrially, the N content is most preferably 0.007% or less. However, excessive reduction of the N content leads to an increase in melting cost, so the N content is preferably 0.001% or more, and more preferably 0.002% or more.
  • V 0.01 to 0.35%
  • V is not an additive element added intentionally, but is unavoidably contained in a Cr source added as a melting raw material used in mass production.
  • V content shall be 0.01% or more and 0.35% or less.
  • V has an effect of improving the room temperature toughness although it is slight.
  • the V content is preferably 0.03% or more, and preferably 0.30% or less.
  • B 0.5 to 1.0%
  • B is an important additive element in the present invention.
  • all B in the steel is precipitated as an M 2 B type boride-based metal precipitate by a eutectic reaction.
  • B is a metal precipitate which is extremely stable thermally.
  • the M 2 B type boride-based metal deposit exposed on the surface has a function of significantly reducing the electrical surface contact resistance. If the B content is less than 0.5%, the amount of precipitation is insufficient to obtain the desired performance. On the other hand, when the B content exceeds 1.0%, it is difficult to stably mass-produce and manufacture. For this reason, B content shall be 0.5% or more and 1.0% or less.
  • the B content is preferably 0.55% or more, and preferably 0.8% or less.
  • Al 0.001 to 6.0%
  • B contained in the stainless steel according to the present invention is an element having a strong binding force with oxygen in the molten steel, it is necessary to lower the oxygen concentration by Al deoxidation. Therefore, it is preferable to contain Al in the range of 0.001% to 6.0%.
  • Non-metal oxides are formed as deoxidation products in steel, but the remainder is in solid solution.
  • the Al content is preferably 0.01% or more, and preferably 5.5% or less.
  • Sn 0.02 to 2.50%
  • Sn is a very important additive element.
  • Sn dissolved in the matrix is not only the surface of the matrix in the polymer electrolyte fuel cell, but also M 2 Concentration as metal tin or tin oxide also on the B surface significantly suppresses the elution of metal ions from the mother phase and M 2 B, which progresses slightly, while reducing the surface contact resistance of the mother phase.
  • M 2 Concentration as metal tin or tin oxide also on the B surface significantly suppresses the elution of metal ions from the mother phase and M 2 B, which progresses slightly, while reducing the surface contact resistance of the mother phase.
  • M 2 B Concentration as metal tin or tin oxide also on the B surface significantly suppresses the elution of metal ions from the mother phase and M 2 B, which progresses slightly, while reducing the surface contact resistance of the mother phase.
  • the electrical contact resistance performance of M 2 B can be stabilized and improved to the same level as the
  • Sn content is less than 0.02%, such an effect cannot be obtained, and if it exceeds 2.50%, the productivity decreases. For this reason, Sn content shall be 0.02% or more and 2.50% or less.
  • the Sn content is preferably 0.05% or more, and preferably 2.40% or less.
  • Rare earth elements 0 to 0.1%
  • the rare earth element is an optional additive element and is added as misch metal.
  • Rare earth elements have the effect of improving hot manufacturability. For this reason, a rare earth element may be contained up to 0.1%.
  • the rare earth element content is preferably 0.005% or more, and more preferably 0.05% or less.
  • Nb 0 to 0.35%
  • Ti 0 to 0.35%
  • Nb and Ti are both optional elements in the present invention and are stabilizing elements for C and N in steel. Carbides and nitrides form in steel. For this reason, the contents of Ti and Nb are both set to 0.35% or less.
  • the content of Nb and Ti is preferably 0.001% or more, and preferably 0.30% or less.
  • Nb is contained so that the (Nb / C) value is 3 or more and 25 or less
  • Ti is contained so that the ⁇ Ti / (C + N) ⁇ value is 3 or more and 25 or less.
  • Steel materials 1 to 17 having the chemical composition shown in Table 1 were melted in a 180 kg vacuum melting furnace and formed into a flat ingot having a maximum thickness of 80 mm.
  • Steel materials 1 to 11 are examples of the present invention, and steel materials 12 to 17 are comparative examples.
  • the surface temperature of the steel ingot is 60 mm thick and 430 mm wide in a temperature range of 1170 ° C. to 930 ° C. after being heated and held in a city gas heating furnace heated to 1170 ° C. Forged into slab for hot rolling.
  • the hot-rolling slab was recharged in a city gas heating furnace heated to 1170 ° C with a surface temperature of 800 ° C or higher, reheated and held soaked, and then 30 mm thick by an upper and lower two-roll hot rolling mill. And then gradually cooled to room temperature.
  • the surface and end surfaces are cleaned by machining, they are heated and held again in a city gas heating furnace heated to 1170 ° C., and then hot-rolled to a thickness of 1.8 mm, with a coil width of 400 to 410 mm and a unit weight of 100 A coil of ⁇ 120 kg was used.
  • the final annealing was performed in a bright annealing furnace in a 75 volume% H 2 -25 volume% N 2 atmosphere with a dew point adjusted to ⁇ 50 to ⁇ 53 ° C.
  • the annealing temperature is 1060 ° C.
  • the structure is a single phase of ferrite.
  • the added B is precipitated as M 2 B in the steel, and M 2 B is about 1 ⁇ m for the small one and about 7 ⁇ m for the large one. It was confirmed that it was finely crushed to the size of and uniformly dispersed macroscopically including the thickness direction.
  • the bright annealed film on the surface was removed by polishing with No. 600 emery paper and washed, and the intergranular corrosion resistance was evaluated by a sulfuric acid-copper sulfate test method according to JIS-G-0575.
  • the steel material 17 in Table 2 is an austenitic stainless steel commercial steel equivalent material, and the steel material 18 is the gold plating material.
  • a 0.116 mm thick, 340 mm wide, 300 mm long cut plate is collected from steel materials 1 to 18, and spray etching treatment with a ferric chloride aqueous solution at 35 ° C. and 43 ° Baume is performed simultaneously on the entire upper and lower surfaces of the cut plate. It was.
  • the etching processing time by spraying is 40 seconds.
  • the amount of cutting was 8 ⁇ m on one side.
  • a 60 mm square sample collected separately from steel materials 1 to 18 was immersed in an aqueous solution of sulfuric acid having a pH of 3 containing 80 ppm F 2 - ions simulating the inside of a solid polymer fuel cell for 1000 hours, and subjected to a fuel cell. It was set as the material II for electrical surface contact resistance measurement which simulated the environment under application.
  • Table 2 summarizes the results of electrical contact resistance measurement and the amount of iron ions dissolved in a pH 3 sulfuric acid aqueous solution simulating the battery environment.
  • Cr ions, Mo ions and others are also quantified at the same time, but since they are very small, the behavior was shown by comparison with the amount of Fe ions with the largest amount of elution.
  • the steel material 18 is a material obtained by subjecting the surface contact resistance measurement materials I and II of the steel material 17 to gold plating treatment with an average thickness of 50 nm, and the gold plating treatment material is the most excellent electrical surface. It is said to be an ideal material with contact resistance performance. For this reason, the steel material 18 is shown collectively as a reference example.
  • M 2 B is precipitated and dispersed, and further contains Sn, so that the electrical surface contact resistance is stably equal to that of the gold plating material, and the eluted iron ions are also equal to that of the gold plating material. It was. Except for steel materials 12 to 15 and 17 to which Sn is not added, a fuel cell using an electric surface contact resistance measurement material I after spray etching treatment using ferric chloride aqueous solution and a pH 3 sulfuric acid aqueous solution The presence of metallic tin and tin oxide was confirmed on the surface of the material II simulating the environment under application.
  • the metal ion elution suppression effect by adding Sn is clear.
  • membrane which is excellent in corrosion resistance that the steel material 17 which is a gold plating material is favorable. It can be determined that the steel materials 1 to 11 as examples of the present invention are equivalent to gold plating, and accordingly, it is determined that a surface covering effect equivalent to gold plating in a fuel cell can be expected for metal tin and tin oxide.
  • Example 2 Using the coil material prepared in Example 1, a separator having the shape shown in the photograph in FIG. 2 was press-molded, and the fuel cell application evaluation was actually performed.
  • the separator has a channel area of 100 cm 2 .
  • the fuel cell operation setting evaluation condition is a constant current operation evaluation at a current density of 0.1 A / cm 2 , and is one of the operating environments of a home stationary fuel cell.
  • the utilization rate of hydrogen and oxygen was constant at 40%.
  • the evaluation time is 500 hours.

Abstract

 化学組成が、質量%で、C:0.001~0.020%未満、Si:0.01~1.5%、Mn:0.01~1.5%、P:0.035%以下、S:0.01%以下、Cr:22.5~35.0%、Mo:0.01~6.0%、Ni:0.01~6.0%、Cu:0.01~1.0%、N:0.035%以下、V:0.01~0.35%、B:0.5~1.0%、Al:0.001~6.0%、Sn:0.02~2.50%、希土類元素:0~0.1%、Nb:0~0.35%、Ti:0~0.35%、および、残部:Feおよび不純物であり、かつ、{Cr含有量(質量%)+3×Mo含有量(質量%)-2.5×B含有量(質量%)}として算出される値が20~45%であるとともに、フェライト相のみからなる母相中にM2B型硼化物系金属析出物が分散し、かつ、表面に露出している、フェライトステンレス鋼材である。

Description

フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池
 本発明は、フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池に関する。なお、ここでいうセパレータは、バイポーラプレートと呼ばれることもある。
 燃料電池は、水素と酸素を利用して直流電流を発電する電池であり、固体電解質形、溶融炭酸塩形、リン酸形および固体高分子形に大別される。それぞれの形式は、燃料電池の根幹部分を構成する電解質部分の構成材料に由来する。
 現在、商用段階に達している燃料電池として、200℃付近で動作するリン酸形、および650℃付近で動作する溶融炭酸塩形がある。近年の技術開発の進展とともに、室温付近で動作する固体高分子形と、700℃以上で動作する固体電解質形が、自動車搭載用または家庭用小型電源として注目されている。
 図1は、固体高分子形燃料電池の構造を示す説明図であり、図1(a)は、燃料電池セル(単セル)の分解図、図1(b)は燃料電池全体の斜視図である。
 図1(a)および図1(b)に示すように、燃料電池1は単セルの集合体である。単セルは、図1(a)に示すように固体高分子電解質膜2の1面に燃料電極膜(アノード)3を、他面には酸化剤電極膜(カソード)4が積層され、その両面にセパレータ5a、5bが重ねられた構造を有する。
 代表的な固体高分子電解質膜2として、水素イオン(プロトン)交換基を有するフッ素系イオン交換樹脂膜がある。
 燃料電極膜3および酸化剤電極膜4には、カーボン繊維から構成されるカーボンペーパまたはカーボンクロスからなる拡散層表面に粒子状の白金触媒と黒鉛粉、水素イオン(プロトン)交換基を有するフッ素樹脂からなる触媒層が設けられており、拡散層を透過した燃料ガスまたは酸化性ガスと接触する。
 セパレータ5aに設けられている流路6aから燃料ガス(水素または水素含有ガス)Aが流されて燃料電極膜3に水素が供給される。また、セパレータ5bに設けられている流路6bからは空気のような酸化性ガスBが流され、酸素が供給される。これらガスの供給により電気化学反応が生じて直流電力が発生する。
 固体高分子形燃料電池セパレータに求められる機能は、(1)燃料極側で、燃料ガスを面内均一に供給する“流路”としての機能、(2)カソード側で生成した水を、燃料電池より反応後の空気、酸素といったキャリアガスとともに効率的に系外に排出させる“流路”としての機能、(3)長時間にわたって電極として低電気抵抗、良電導性を維持する単セル間の電気的“コネクタ”としての機能、および(4)隣り合うセルで一方のセルのアノード室と隣接するセルのカソード室との“隔壁”としての機能などである。
 これまで、セパレータ材料としてカーボン板材の適用が実験室レベルでは鋭意検討されてきているが、カーボン板材には割れ易いという問題があり、さらに表面を平坦にするための機械加工コストおよびガス流路形成のための機械加工コストが非常に嵩むという問題がある。それぞれが大きな問題であり、燃料電池の商用化そのものを難しくしている状況がある。
 カーボンの中でも、熱膨張性黒鉛加工品は格段に安価であることから、固体高分子形燃料電池セパレータ用素材として最も注目されている。しかし、ますます厳しくなる寸法精度への対応、燃料電池適用中に生じる経年的な結着用有機樹脂の劣化、電池運転条件の影響を受けて進行するカーボン腐食、ならびに燃料電池組み立て時と使用中に起こる予期せぬ割れ事故などは、今後も解決すべき課題として残されている。
 こうした黒鉛系素材の適用の検討に対峙する動きとして、コスト削減を目的に、セパレータにステンレス鋼を適用する試みが開始されている。
 特許文献1には、金属製部材からなり、単位電池の電極との接触面に直接金めっきを施した燃料電池用セパレータが開示されている。金属製部材として、ステンレス鋼、アルミニウムおよびNi-鉄合金が挙げられており、ステンレス鋼としては、SUS304が用いられている。この発明では、セパレータは金めっきを施されているので、セパレータと電極との接触抵抗が低下し、セパレータから電極への電子の導通が良好となるため、燃料電池の出力電圧が大きくなるとされている。
 特許文献2には、表面に形成される不動態皮膜が大気により容易に生成される金属材料からなるセパレータが用いられている固体高分子形燃料電池が開示されている。金属材料としてステンレス鋼とチタン合金が挙げられている。この発明では、セパレータに用いられる金属の表面には、必ず不動態皮膜が存在しており、金属の表面が化学的に侵され難くなって燃料電池セルで生成された水がイオン化される度合いが低減され、燃料電池セルの電気化学反応度の低下が抑制されるとされている。また、セパレータの電極膜等に接触する部分の不動態皮膜を除去し、貴金属層を形成することにより、電気接触抵抗値が小さくなるとされている。
 しかし、特許文献1および2により開示された、表面に不動態皮膜を備えるステンレス鋼のような金属材料をそのままセパレータに用いても、耐食性が十分でなく金属の溶出が起こり、溶出金属イオンにより担持触媒性能が劣化する。また、溶出後に生成するCr-OHおよびFe-OHのような腐食生成物により、セパレータの接触抵抗が増加するので、金属材料からなるセパレータには、コストを度外視した金めっき等の貴金属めっきが施されているのが現状である。
 このような状況の下、セパレータとして、高価な表面処理を施さずに無垢のままで適用できる、耐食性に優れたステンレス鋼も提案されている。
 特許文献3により、鋼中にBを含有せず、鋼中に金属析出物としてM23型、MC型、MC型、MC型炭化物系金属介在物およびMB型硼化物系介在物のいずれも析出しない、鋼中C量が0.012%以下(本明細書では化学組成に関する「%」は特に断りがない限り「質量%」を意味する)の固体高分子形燃料電池セパレータ用フェライト系ステンレス鋼が開示されている。また、特許文献4および5には、このような金属析出物が析出していないフェライト系ステンレス鋼をセパレータとして適用する固体高分子形燃料電池が開示されている。
 特許文献6には、鋼中にBを含有せず、鋼中に0.01~0.15%のCを含有し、Cr系炭化物をのみが析出する固体高分子形燃料電池のセパレータ用フェライト系ステンレス鋼およびこれを適用した固体高分子形燃料電池が示されている。
 特許文献7には、鋼中にBを含有せず、鋼中に0.015~0.2%のCを含有し、Niを7~50%含有する、Cr系炭化物を析出する固体高分子形燃料電池のセパレータ用オーステナイト系ステンレス鋼が示されている。
 特許文献8には、ステンレス鋼表面に、導電性を有するM23型、MC型、MC型、MC型炭化物系金属介在物およびMB型硼化物系介在物のうちの1種以上が分散、露出している固体高分子形燃料電池のセパレータ用ステンレス鋼が示されており、C:0.15%以下、Si:0.01~1.5%、Mn:0.01~1.5%、P:0.04%以下、S:0.01%以下、Cr:15~36%、Al:0.001~6%、N:0.035%以下を含有し、かつCr、MoおよびB含有量が17%≦Cr+3×Mo-2.5×Bを満足し、残部Feおよび不可避不純物からなるフェライト系ステンレス鋼が記載されている。
 特許文献9には、ステンレス鋼材の表面を酸性水溶液により腐食させて、その表面に導電性を有するM23型、MC型、MC型、MC型炭化物系金属介在物およびMB型硼化物系金属介在物のうちの1種以上を露出させる固体高分子形燃料電池のセパレータ用ステンレス鋼材の製造方法が示されており、C:0.15%以下、Si:0.01~1.5%、Mn:0.01~1.5%、P:0.04%以下、S:0.01%以下、Cr:15~36%、Al:0.001~6%、B:0~3.5%、N:0.035%以下、Ni:0~5%、Mo:0~7%、Cu:0~1%、Ti:0~25×(C%+N%)、Nb:0~25×(C%+N%)を含有し、かつCr、MoおよびB含有量は17%≦Cr+3×Mo-2.5×Bを満足しており、残部Feおよび不純物からなるフェライト系ステンレス鋼材が開示されている。
 特許文献10には、表面にMB型の硼化物系金属化合物が露出しており、かつ、アノード面積およびカソード面積をそれぞれ1としたとき、アノードがセパレータと直接接触する面積、およびカソードがセパレータと直接接触する面積のいずれもが0.3から0.7までの割合である固体高分子形燃料電池が示されており、ステンレス鋼表面に、導電性を有するM23型、MC型、MC型、MC型炭化物系金属介在物およびMB型硼化物系介在物のうちの1種以上が露出しているステンレス鋼が示されている。さらに、セパレータを構成するステンレス鋼が、C:0.15%以下、Si:0.01~1.5%、Mn:0.01~1.5%、P:0.04%以下、S:0.01%以下、Cr:15~36%、Al:0.2%以下、B:3.5%以下(ただし0%を除く)、N:0.035%以下、Ni:5%以下、Mo:7%以下、W:4%以下、V:0.2%以下、Cu:1%以下、Ti:25×(C%+N%)以下、Nb:25×(C%+N%)以下で、かつCr、MoおよびBの含有量が、17%≦Cr+3×Mo-2.5×Bを満足するフェライト系ステンレス鋼材が示されている。
 さらに、特許文献11~15には、表面にMB型の硼化物系金属析出物が露出するオーステナイト系ステンレスクラッド鋼材ならびにその製造方法が開示されている。
 特許文献16には、鋼中のBがMB型硼化物として析出しているフェライト系ステンレス鋼およびその鋼からなるセパレータを備えた燃料電池が開示されている。該フェライト系ステンレス鋼は、質量%で、C:0.08%以下、Si:0.01~1.5%、Mn:0.01~1.5%、P:0.035%以下、S:0.01%以下、Cr:17~36%、Al:0.001~0.2%、B:0.0005~3.5%、N:0.035%以下、必要によりNi、Mo、Cuを含有し、かつCr、MoおよびB含有量は17%≦Cr+3Mo-2.5Bを満足しており、残部Feおよび不可避不純物からなる。
 特許文献17には、MB型硼化物系金属介在物からなる導電性物質を備える固体高分子形燃料電池のセパレータ用ステンレス鋼材が開示されている。例えば、オーステナイト系ステンレス鋼として、質量%で、C:0.2%以下、Si:2%以下、Mn:3%以下、Al:0.001%以上6%以下、P:0.06%以下、S:0.03%以下、N:0.4%以下、Cr:15%以上30%以下、Ni:6%以上50%以下、B:0.1%以上3.5%以下、残部Feおよび不純物を含有するステンレス鋼が挙げられている。
 特許文献18には、高温で良好な電気伝導性を有する酸化皮膜が形成されたフェライト系ステンレス鋼板が開示されている。該フェライト系ステンレス鋼板は、質量%にて、C:0.02%以下、Si:0.15%以下、Mn:0.3~1%、P:0.04%以下、S:0.003%以下、Cr:20~25%、Mo:0.5~2%、Al:0.1%以下、N:0.02%以下、Nb:0.001~0.5%、残部がFeおよび不可避的不純物からなり、かつ2.5<Mn/(Si+Al)<8.0を満たす。前記フェライト系ステンレス鋼板は、さらに質量%にて、Ti:0.5%以下、V:0.5%以下、Ni:2%以下、Cu:1%以下、Sn:1%以下、B:0.005%以下、Mg:0.005%以下、Ca:0.005%以下、W:1%以下、Co:1%以下、Sb:0.5%以下の1種または2種以上含有している。
 特許文献19には、微量のSnを添加して耐酸化性と高温強度を向上させたフェライト系ステンレス鋼板が開示されている。該フェライト系ステンレス鋼板は、質量%にて、C:0.001~0.03%、Si:0.01~2%、Mn:0.01~1.5%、P:0.005~0.05%、S:0.0001~0.01%、Cr:16~30%、N:0.001~0.03%、Al:0.8%超~3%、Sn:0.01~1%、残部がFeおよび不可避的不純物からなる。
 特許文献20には、Snの添加により不動態皮膜を改質して耐食性を向上させたフェライト系ステンレス鋼が開示されている。該フェライト系ステンレス鋼は、質量%で、C:0.01%以下、Si:0.01~0.20%、Mn:0.01~0.30%、P:0.04%以下、S:0.01%以下、Cr:13~22%、N:0.001~0.020%、Ti:0.05~0.35%、Al:0.005~0.050%、Sn:0.001~1%、残部がFeおよび不可避的不純物からなる。
特開平10-228914号公報 特開平8-180883号公報 特開2000-239806号公報 特開2000-294255号公報 特開2000-294256号公報 特開2000-303151号公報 特開2000-309854号公報 特開2003-193206号公報 特開2001-214286号公報 特開2002-151111号公報 特開2004-071319号公報 特開2004-156132号公報 特開2004-306128号公報 特開2007-118025号公報 特開2009-215655号公報 特開2000-328205号公報 特開2010-140886号公報 特開2014-031572号公報 特開2012-172160号公報 特開2009-174036号公報
 本発明の課題は、固体分子形燃料電池内の環境での耐食性が格段に優れ、接触電気抵抗が金めっき材と同等であるフェライト系ステンレス鋼材と、そのステンレス鋼材からなる固体高分子形燃料電池用セパレータ、ならびに、これを適用した固体高分子形燃料電池を提供することである。
 本発明者は、長年に亘り、固体高分子形燃料電池のセパレータとして長時間使用しても、金属セパレータ表面からの金属溶出が極めて少なく、拡散層、高分子膜ならびに触媒層から構成されるMEA(Membrane Electrode Assemblyの略称)の金属イオン汚染も殆ど進行することもない、触媒性能の低下ならびに高分子膜性能の低下を起こし難いステンレス鋼材の開発に専念してきた。
 具体的には、汎用のSUS304、SUS316L、それらの金めっき処理材、MBおよび、またはM23型金属析出物型ステンレス材、導電性微粒粉塗布または塗装処理ステンレス材、または表面改質処理ステンレス材等を用いた燃料電池適用を検討してきた結果、以下に列記の知見(a)~(c)を得るに至り、本発明を完成した。
 (a)鋼中に微細に分散し表面に露出したMBは、不動態皮膜で覆われたステンレス鋼表面で“電気の通り道”として機能することにより表面の導電性(電気的な接触抵抗)を顕著に改善する。ただし、電気的な接触抵抗性能は金めっき素材並みとなるものの、安定性には更なる改善の余地がある。
 (b)Snを添加することにより、母相中に固溶しているSnが、適用前に行う酸液処理および燃料電池適用中の緩やかな母相溶解にともない、母相の表面のみならず、MB表面にも金属スズまたは酸化スズとして濃化する。これにより、母相およびMBからの金属イオンの溶出を顕著に抑制するとともに、母相の表面接触抵抗を低減し、さらにMB表面に金属スズまたは酸化スズとして濃化する。これにより、MBの電気的な接触抵抗性能も安定して金めっき素材並みに改善する効果がある。
 (c)積極的にMoを添加することにより、良好な耐食性が確保される。Moは溶出したとしても、アノードおよびカソード部に担持されている触媒の性能に対する影響が比較的軽微である。このことは、溶出したMoが、陰イオンであるモリブデン酸イオンとして存在するため、水素イオン(プロトン)交換基を有するフッ素系イオン交換樹脂膜のプロトン伝導性を阻害する影響が小さいためと考えられる。同様の挙動がVにも期待できる。
 本発明は、以下に列記の通りである。
 (1)化学組成が、質量%で、
 C:0.001~0.020%未満、
 Si:0.01~1.5%、
 Mn:0.01~1.5%、
 P:0.035%以下、
 S:0.01%以下、
 Cr:22.5~35%、
 Mo:0.01~6%、
 Ni:0.01~6%、
 Cu:0.01~1%、
 N:0.035%以下、
 V:0.01~0.35%、
 B:0.5~1.0%、
 Al:0.001~6.0%、
 Sn:0.02~2.50%、
 希土類元素:0~0.1%、
 Nb:0~0.35%、
 Ti:0~0.35%、および、
 残部:Feおよび不純物であり、かつ、
 {Cr含有量(質量%)+3×Mo含有量(質量%)-2.5×B含有量(質量%)}として算出される値が20~45%であるとともに、
 フェライト相のみからなる母相中にMB型硼化物系金属析出物が分散し、かつ、表面に露出している、フェライトステンレス鋼材。
 (2)前記化学組成が、質量%で、
 希土類元素:0.005~0.1%を、
 含有する、上記(1)に記載のフェライトステンレス鋼材。
 (3)前記化学組成が、質量%で、
 Nb:0.001~0.35%、および、
 Ti:0.001~0.35%、
 から選択される1種以上を含有し、かつ、
 3≦Nb/C≦25、
 3≦Ti/(C+N)≦25、
 を満足する、上記(1)または(2)に記載のフェライトステンレス鋼材。
 (4)上記(1)から(3)までのいずれかに記載の固体高分子形燃料電池セパレータ用フェライト系ステンレス鋼材により構成される、固体高分子形燃料電池用セパレータ。
 (5)上記(1)から(3)までのいずれかに記載の固体高分子形燃料電池セパレータ用フェライト系ステンレス鋼材により構成される、固体高分子形燃料電池。
 本発明において、MB、M23の“M”は金属元素を示すが、特定の金属元素ではなく、CrまたはBとの化学的親和力の強い金属元素を示す。一般に、Mは鋼中共存元素との関係より、Cr,Feを主体とし、Ni,Moを微量含有することが多い。MB型硼化物系金属析出物としては、CrB、(Cr,Fe)B、(Cr,Fe,Ni)B、(Cr,Fe,Mo)B、(Cr,Fe,Ni,Mo)B、Cr1.2Fe0.76Ni0.04Bといったものがある。炭化物の場合、Bも“M”としての作用を有する。M23型としては、Cr23、(Cr,Fe)23などがある。
 上記のMB型硼化物系金属析出物、M23型炭化物系金属析出物のいずれにおいても、Cの一部がBで置換されたM23(C,B)型炭化物系金属析出物またはM(C,B)型硼化物系金属析出物といった金属析出物も析出することがある。上記の表記はこれらも含んでいるものとする。基本的に、電気伝導性が良好である金属系の分散物であれば類似の性能が期待される。
 本発明において“MB”型表記の添え字指数“”は、“硼化物中の金属元素であるCr,Fe,Mo,Ni,X(ここで、XはCr,Fe,Mo,Ni以外の鋼中金属元素)とB量との間において、“(Cr質量%/Cr原子量+Fe質量%/Fe原子量+Mo質量%/Mo原子量+Ni質量%/Ni原子量+X質量%/X原子量)/(B質量%/B原子量)が略2となる化学量論的関係が成立していることを意味する。本表記法は、特殊なものではなく、極めて一般的な表記法である。
 本発明により、表面の接触抵抗低減のために高価な金めっき等のコスト高の表面処理を施すこともなく、優れた耐溶出金属イオン特性を有する。すなわち、固体分子形燃料電池内の環境での耐食性が格段に優れるとともに、接触電気抵抗が金めっき材と同等であるフェライト系ステンレス鋼材が得られる。このステンレス鋼材は、固体高分子形燃料電池のセパレータに適している。固体高分子形燃料電池の本格普及には、燃料電池本体コスト、とくにセパレータコストの低減が極めて重要である。本発明により、金属セパレータ適用の固体高分子形燃料電池の本格普及が早まることが期待される。
図1は、固体高分子形燃料電池の構造を示す説明図であり、図1(a)は、燃料電池セル(単セル)の分解図、図1(b)は燃料電池全体の斜視図である。 図2は、実施例3で製造したセパレートの形状を示す写真である。
 本発明を実施するための形態を詳しく説明する。なお、以下に示す%表示はすべて質量%である。
 1.MB硼化物型金属析出物
 MBは、60%以上のCrを含有しており、母相よりも耐食性に優れる。Cr濃度が母相よりも高いことにより、表面に生成する不動態皮膜も母相に比較して薄くなり導電性(電気的な接触抵抗性能)が優れる。
 ステンレス鋼の表面に、導電性を有するMB型硼化物系金属析出物を微細に分散、露出させることにより、燃料電池内での電気的な接触抵抗を安定して、長期間にわたり顕著に低減させることができる。
 ここで、露出とは、MB型硼化物系金属析出物がステンレス鋼の母相表面に生成している不動態皮膜で覆われることなく外面に突出していることを意味する。MB型硼化物系金属析出物を露出させることにより、MB型硼化物系金属析出物が電気の通り道(迂回路)として機能して、表面の電気的な接触抵抗を顕著に下げる効果を有する。
 表面に露出したMB型硼化物系金属析出物は脱落することが懸念されるが、MB硼化物系金属析出物は金属析出物であることにより、母相と金属結合しており、脱落することはない。
 MB型硼化物系金属析出物は、凝固末期に進行する共晶反応により析出するため、組成がほぼ均一であるとともに、熱的にも極めて安定である特長を有している。鋼材の製造工程における熱履歴によって、再固溶も、再析出も、成分変化もすることがない。また、MB型硼化物系金属析出物は、非常に硬質な析出物である。熱間鍛造、熱間圧延、冷間圧延各工程で機械的に破砕され、微細に均一に分散する。
 2.金属スズおよび酸化スズ
 Snは、溶鋼段階で合金元素として添加することにより母相中に固溶している。固体高分子形燃料電池セパレータとして適用するに際して、鋼表面近傍に位置している鋼中のMBを表面に露出させて鋼表面の電気的な接触抵抗を下げるために酸洗する。このとき、母相中に固溶しているスズは、酸洗による母相溶解(腐食)に伴い母相の表面のみならず、MB表面にも金属スズ、または酸化スズとして濃化する。さらに、固体高分子形燃料電池セパレータとして適用開始した直後に燃料電池内環境に応じて緩やかな金属溶出が進行して不動態皮膜が変化する。その過程における母相の溶出に伴ってさらに鋼中のスズが母相の表面のみならず、MB表面にも濃化し、所望の特性を確保するに好適な表面濃化状態となる挙動を有している。金属スズ、酸化スズともに導電性に優れ、燃料電池内での母相表面の電気的な接触抵抗を下げる働きをする。
 3.化学組成
 (3-1)C:0.001~0.020%未満
 Cは、本発明においては不純物である。現状の精練技術を適用すれば0.001%未満とすることも可能であるが、精練時間が長くなり精練コストが嵩む。そのため、C含有量は、0.001%以上とする。一方、C含有量が0.020%以上であると、鋭敏化による耐食性低下を起こしやすくなるとともに、常温靭性が低下し、製造性が低下する。そのため、C含有量は、0.020%未満とする。C含有量は、0.0015%以上であることが好ましく、0.010%未満であることが好ましい。
 (3-2)Si:0.01~1.5%
 Siは、量産鋼において、Alと同様に有効な脱酸元素である。Si含有量が0.01%未満であると、脱酸が不十分となる。そのため、Si含有量は、0.01%以上とする。一方、Si含有量が1.5%を超えると、成形性が低下する。そのため、Si含有量は、1.5%以下とする。Si含有量は、0.05%以上であることが好ましく、0.1%以上であることがより好ましい。また、Si含有量は、1.2%以下であることが好ましく、1.0%以下であることがより好ましい。
 (3-3)Mn:0.01~1.5%
 Mnは、鋼中のSをMn系硫化物として固定する作用があり、熱間加工性を改善する効果がある。上記効果を効果的に発揮させるため、Mn含有量は0.01%以上とする。一方、Mn含有量が1.5%を超えると、製造時における加熱時に、表面に生成する高温酸化スケールの密着性が低下することにより、表面肌荒れの原因となるスケール剥離を起こしやすくなる。そのため、Mn含有量は、1.5%以下とする。Mn含有量は、0.05%以上であることが好ましく、0.1%以上であることがより好ましい。また、Mn含有量は、1.2%以下であることが好ましく、1.0%以下であることがより好ましい。
 (3-4)P:0.035%以下
 本発明においては、鋼中のPは、Sと並んで最も有害な不純物であるので、その含有量は0.035%以下とする。P含有量は低ければ低い程好ましい。
 (3-5)S:0.01%以下
 本発明において、鋼中のSは、Pと並んで最も有害な不純物であるので、その含有量は0.01%以下とする。S含有量は低ければ低いほど好ましい。Sは、鋼中共存元素および鋼中のS含有量に応じて、Mn系硫化物、Cr系硫化物、Fe系硫化物、または、これらの複合硫化物および酸化物との複合非金属析出物としてその殆どが析出する。また、Sは、必要に応じて添加する希土類元素系の硫化物を形成することもある。しかしながら、固体高分子形燃料電池のセパレータ環境においては、いずれの組成の非金属析出物も、程度の差はあるものの腐食の起点として作用するので、不動態皮膜の維持、金属イオン溶出抑制に有害である。通常の量産鋼の鋼中S量は、0.005%超0.008%前後であるが、上記の有害な影響を防止するためには0.004%以下に低減することが好ましい。より好ましい鋼中S量は0.002%以下であり、最も好ましい鋼中S量レベルは、0.001%未満である。低ければ低い程、望ましい。工業的量産レベルで0.001%未満とすることは、現状の精錬技術をもってすれば製造コストの上昇もわずかであり、問題ない。
 (3-6)Cr:22.5~35.0%
 Crは、母材の耐食性を確保する上で極めて重要な基本合金元素であり、Cr含有量は高いほど優れた耐食性を奏する。フェライト系ステンレス鋼においてはCr含有量が35.0%を超えると量産規模での生産が難しくなる。一方、Cr含有量が22.5%未満であると、その他の元素を変化させても固体高分子形燃料電池セパレータとして必要な耐食性を確保できないとともに、MB型硼化物系金属析出物として析出することにより、耐食性向上に寄与する母相中のCr量が溶鋼のCr量に比べて低下して母材の耐食性が劣化する場合がある。また、Crは鋼中のCと反応してM23型炭化物系金属析出物を形成する場合がある。M23型炭化物系金属析出物は導電性に優れる金属析出物であるが、鋭敏化による耐食性低下の原因となる。MB型硼化物系金属析出物を表面に露出させることにより、電気的な表面接触抵抗値を低減することができる。固体高分子形燃料電池内部での耐食性を確保するためには、少なくとも、{Cr含有量(質量%)+3×Mo含有量(質量%)-2.5×B含有量(質量%)}として算出される値を20~45%とするCr量が必要である。Cr含有量は、23.0%以上であることが好ましく、34.0%以下であることが好ましい。
 (3-7)Mo:0.01~6.0%
 Moは、Crに比べて、少量で耐食性を改善する効果がある。耐食性を効果的に発揮させるため、Mo含有量は、0.01%以上とする。一方、6.0%を超えてMoを含有すると、製造途中でシグマ相等の金属間化合物の析出を回避できなくなり、鋼の脆化の問題から生産が困難となる。このため、Mo含有量の上限を6.0%とする。また、Moは、固体高分子形燃料電池の内部で、仮に腐食により鋼中Moの溶出が起こったとしても、MEA性能に対する影響は比較的軽微であるという特徴を有する。この理由は、Moが金属陽イオンとして存在せずに陰イオンであるモリブデン酸イオンとして存在するため、水素イオン(プロトン)交換基を有するフッ素系イオン交換樹脂膜の陽イオン伝導度に対する影響が小さいためである。Moは、耐食性を維持するために極めて重要な元素であり、{Cr含有量(質量%)+3×Mo含有量(質量%)-2.5×B含有量(質量%)}として算出される値を20~45%とする鋼中Mo量であることが必要である。Mo含有量は、0.05%以上であることが好ましく、5.0%以下であることが好ましい。
 (3-8)Ni:0.01~6.0%
 Niは、耐食性および靭性を改善する効果を有する。Ni含有量の上限は6.0%とする。Ni含有量が6.0%を超えると、工業的に熱処理を施してもフェライト系単相組織とすることが困難となる。一方、Ni含有量の下限は0.01%とする。Ni含有量の下限は工業的に製造した場合に混入してくる不純物量である。Ni含有量は、0.03%以上であることが好ましく、5.0%以下であることが好ましい。
 (3-9)Cu:0.01~1.0%
 Cuは、0.01%以上、1.0%以下含有する。Cu含有量が1.0%を超えると、熱間での加工性を低下することになり、量産性の確保が難しくなる。一方、Cu含有量が0.01%未満であると、固体高分子形燃料電池中での耐食性が低下する。本発明に係るステンレス鋼においては、Cuは固溶状態で存在する。Cu系析出物として析出させると、電池内でのCu溶出起点となり燃料電池性能を低下させるようになる。Cu含有量は、0.02%以上であることが好ましく、0.8%以下であることが好ましい。
 (3-10)N:0.035%以下
 フェライト系ステンレス鋼におけるNは不純物である。Nは常温靭性を劣化させるのでN含有量の上限を0.035%とする。低ければ低い程望ましい。工業的に、N含有量は、0.007%以下とすることが最も望ましい。しかし、N含有量の過剰な低下は溶製コストの上昇をもたらすので、N含有量は0.001%以上とすることが好ましく、0.002%以上であることがより好ましい。
 (3-11)V:0.01~0.35%
 Vは、意図的に添加する添加元素ではないが、量産時に用いる溶解原料として添加するCr源中に不可避的に含有されている。V含有量は、0.01%以上0.35%以下とする。Vは、わずかではあるが常温靭性を改善する効果を有する。V含有量は、0.03%以上であることが好ましく、0.30%以下であることが好ましい。
 (3-12)B:0.5~1.0%
 Bは、本発明においては重要な添加元素である。溶鋼を造塊するに際して、すべての鋼中BがMB型硼化物系金属析出物として共晶反応により析出する。Bは熱的に極めて安定な金属析出物である。表面に露出したMB型硼化物系金属析出物は電気的な表面接触抵抗を顕著に下げる働きを有する。B含有量が0.5%未満では、析出量が所望の性能を得るには不十分である。一方、B含有量が1.0%を超えると安定して量産製造することが難しくなる。このため、B含有量は0.5%以上1.0%以下とする。B含有量は、0.55%以上であることが好ましく、0.8%以下であることが好ましい。
 (3-13)Al:0.001~6.0%
 Alは、脱酸元素として溶鋼段階で添加する。本発明に係るステンレス鋼が含有するBは溶鋼中酸素との結合力が強い元素であるので、Al脱酸により酸素濃度を下げておく必要がある。そのため、Alを0.001%以上6.0%以下の範囲で含有させるのがよい。鋼中では脱酸生成として非金属酸化物を形成するが、残余は固溶している。Al含有量は、0.01%以上であることが好ましく、5.5%以下であることが好ましい。
 (3-14)Sn:0.02~2.50%
 本発明においては、Snは極めて重要な添加元素である。鋼中にSnを0.02%から2.50%の範囲で含有することにより、母相中に固溶しているSnが固体高分子形燃料電池内では母相の表面のみならず、MB表面にも金属スズまたは酸化スズとして濃化することにより母相ならびにわずかといえども進行するMBからの金属イオンの溶出を顕著に抑制するとともに、母相の表面接触抵抗を低減し、さらにMB表面に金属スズまたは酸化スズとして濃化することにより、MBの電気的な接触抵抗性能も安定して金めっき素材並みに改善される。Sn含有量が、0.02%未満ではこのような効果が得られず、2.50%を超えると製造性が低下する。このため、Sn含有量は、0.02%以上2.50%以下とする。Sn含有量は、0.05%以上であることが好ましく、2.40%以下であることが好ましい。
 (3-15)希土類元素:0~0.1%
 本発明においては、希土類元素は任意添加元素であり、ミッシュメタルとして添加される。希土類元素は、熱間製造性を改善する効果がある。このため、希土類元素を、0.1%を上限として含有してもよい。希土類元素の含有量は、0.005%以上であることが好ましく、0.05%以下であることが好ましい。
 (3-16){Cr含有量(質量%)+3×Mo含有量(質量%)-2.5×B含有量(質量%)}として算出される値
 この値は、MB型硼化物系金属析出物が析出したフェライト系ステンレス鋼の耐食挙動を示す目安となる指数である。この値は20%以上45%以下とする。この値が20%未満であると固体高分子形燃料電池内での耐食性が十分確保できず金属イオン溶出量が多くなる。一方、この値が45%超では量産性が著しく悪くなる。
 (3-17)Nb:0~0.35%、Ti:0~0.35%
 NbおよびTiは、いずれも、本発明においては任意添加元素であり、鋼中のCおよびNの安定化元素である。鋼中では炭化物および窒化物を形成する。このため、TiおよびNbの含有量は、いずれも、0.35%以下とする。NbおよびTiの含有量は、0.001%以上であることが好ましく、0.30%以下であることが好ましい。Nbは(Nb/C)値が3以上25以下となるように、Tiは{Ti/(C+N)}値が3以上25以下となるように、含有する。
 上記以外の残部はFeおよび不純物である。
 次に、本発明の効果を、実施例を参照しながら具体的に説明する。
 表1に示す化学組成を有する鋼材1~17を180kg真空溶解炉にて溶解し、最大厚み80mmの扁平インゴットに造塊した。鋼材1から11が本発明例であり、鋼材12から17が比較例である。表1における印は本発明で規定される範囲外であることを示し、REMはミッシュメタル(希土類元素)を示し、Index(%)=Cr%+3×Mo%-2.5×B%である。
Figure JPOXMLDOC01-appb-T000001
 インゴットの鋳肌表面を機械削りにより取り除き、1170℃に加熱した都市ガス加熱炉内にて加熱保持した後に、鋼塊の表面温度が1170℃から930℃の温度範囲で厚さ60mm、幅430mmの熱延用スラブに鍛造した。熱延用スラブは表面温度800℃以上でそのまま1170℃に加熱した都市ガス加熱炉に再装入して再加熱し、均熱保持した後に、上下2段ロール式熱間圧延機で厚さ30mmまで熱間圧延して、室温まで徐冷した。
 機械削りによる表面、端面手入れを行った後に、1170℃に加熱した都市ガス加熱炉にて再度、加熱保持した後に、厚さ1.8mmまで熱間圧延を行ないコイル幅400~410mm、単重100~120kgのコイルとした。
 コイル幅を360mmまでスリット加工した後、常温でコイルグラインダーによる表面黒皮研削し、1080℃での中間焼鈍、中間コイル酸洗処理、端面スリット加工を挟みながら、厚み0.116mm、幅340mmの冷間圧延コイルに仕上げた。
 最終焼鈍は、露点を-50~-53℃に調整した75体積%H-25体積%N雰囲気の光輝焼鈍炉内にて行った。焼鈍温度は1060℃である。
 全ての鋼材1~17において、本試作過程における顕著な端面割れ、コイル破断、コイル表面疵、コイル穴あきは認められなかった。
 組織はフェライト単相であり、Bを添加したすべての鋼材において、添加したBはMBとして鋼中に析出し、かつ、MBは、小さいもので1μメートル、大きなもので7μメートル程度の大きさまで微細に破砕され、板厚方向含めてマクロ的に均一に分散していることを確認した。
 表面の光輝焼鈍皮膜を600番エメリー紙研磨で除いた後に洗浄し、JIS-G-0575に従う硫酸-硫酸銅試験法による耐粒界腐食性評価を行った。
 結果を表2にまとめて示す。表2中の鋼材17はオーステナイト系ステンレス市販鋼相当材であり、鋼材18はその金めっき材である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、鋼材1~11には鋭敏化は認められなかった。また、抽出残渣分析を行ったが、M23に代表されるCr系炭化物の析出は確認できなかった。
 鋼材1~18より、厚み0.116mm、幅340mm、長さ300mmの切り板を採取し、35℃、43°ボーメの塩化第二鉄水溶液によるスプレーエッチング処理を切り板の上下面全面に同時に行った。噴霧によるエッチング処理時間は40秒間である。溶削量は片面8μmとした。
 スプレーエッチング処理直後には清浄水によるスプレー洗浄と清浄水への浸漬洗浄、オーブンによる乾燥処理を連続して行った。乾燥処理後に、60mm角サンプル切り出しを行い、電気的な表面接触抵抗測定用素材Iとした。
 また、鋼材1~18より、別途採取した60mm角サンプルを、固体高分子形燃料電池内を模擬した80ppmFイオン含有のpH3の硫酸水溶液、90℃中に1000時間の浸漬処理を行い、燃料電池適用中の環境模擬した電気的な表面接触抵抗測定用素材IIとした。
 電気的な表面接触抵抗測定を、東レ製カーボンペーパTGP-H-90で評価用素材を挟み込んだ状態で、白金板間に挟んで行った。燃料電池用セパレータ材評価で一般的に用いられている4端子法による測定である。測定時の負荷荷重は10kgf/cmである。測定値が低ければ低いほど、発電時のIR損が小さく、発熱によるエネルギー損も小さくなることが示される。東レ製カーボンペーパTGP-H-90は測定毎に交換した。なお、測定は、それぞれの鋼材の異なる場所で、2回ずつ行った。
 表2に電気的な接触抵抗測定結果、電池内環境を模擬したpH3の硫酸水溶液中に溶けだした鉄イオン量をまとめて示す。金属イオン溶出測定ではCrイオン、Moイオン他も同時に定量されるがわずかであるので、最も溶出量の多いFeイオン量で比較することで挙動を示した。
 なお、鋼材18は、上述のように、鋼材17の表面接触抵抗測定用素材IおよびIIに平均厚み50nmの金めっき処理を施した素材であり、金めっき処理材は最も優れた電気的な表面接触抵抗性能を有する理想的な素材であるとされている。このため、鋼材18を参考例として併せて示す。
 鋼材1から11は、MBが析出分散し、さらにSnを含有することにより、電気的な表面接触抵抗は安定して金めっき材並みとなっており、かつ溶出鉄イオンも金めっき材並みとなっていた。Snを添加していない鋼材12から15および17を除いて、塩化第二鉄水溶液に拠るスプレーエッチング処理後の電気的な表面接触抵抗測定用素材I、ならびに、pH3の硫酸水溶液を用いた燃料電池適用中の環境を模擬した素材IIの表面には、金属スズ、酸化スズの存在が確認された。MB金属析出物が析出していない鋼材12、14および17、ならびに、Snを添加していないために金属スズ、酸化スズが表面に存在していない鋼材13および15と比較して、BおよびSn添加材である鋼材1から11の本発明例の電気的な表面接触抵抗値は明瞭に低下しており、その改善効果は顕著である。また、鋼材16のように、Snは含有しているが、MBが析出分散していない比較例では、BおよびSn添加材である鋼材1から11の本発明例と比較して、電気的な表面接触抵抗が上昇している。よって、鋼材1から11は、MBが析出分散し、かつSnを含有している改善効果は顕著である。
 表2中に示した燃料電池内を模擬した浸漬液中の鉄イオン分析結果により、Sn添加による金属イオン溶出抑制効果が明瞭である。なお、金めっき材である鋼材17が良好であるのは、耐食性に優れる金めっき膜の被覆効果に拠る。本発明例である鋼材1~11は金めっき相当であると判断でき、これにより、金属スズ、酸化スズにも燃料電池内での金めっき並みの表面被覆効果が期待できると判断される。
 実施例1で作成したコイル素材を用いて、図2に写真で示す形状を有するセパレータをプレス成形して、実際に燃料電池適用評価を行った。セパレータの流路部面積は100cmである。
 燃料電池運転の設定評価条件は、電流密度0.1A/cmでの定電流運転評価であり、家庭用据え置き型燃料電池の運転環境のひとつである。水素、酸素利用率は40%で一定とした。評価時間は500時間である。
 鋼材1~18の評価結果を表3にまとめて示す。なお、表3中の鋼材12、14、16および17は性能低下が顕著であり400時間未満で評価を終了した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、市販の鶴賀電機株式会社製抵抗計(MODEL3565)で測定されるセル抵抗値には顕著な相違が認められ、MBの析出分散効果およびSn添加効果が確認された。さらに、表3に示すように、本発明例の鋼材1~11は時間による性能劣化も小さい。運転終了後に、スタックを解体して適用したセパレータ表面を観察したが、セパレータからの発錆は皆無であり、かつ、MEA中の金属イオン量も増加していないことが確認された。
1 燃料電池
2 固体高分子電解質膜
3 燃料電極膜(アノード)
4 酸化剤電極膜(カソード)
5a,5b セパレータ
6a,6b 流路
 

Claims (5)

  1.  化学組成が、質量%で、
     C:0.001~0.020%未満、
     Si:0.01~1.5%、
     Mn:0.01~1.5%、
     P:0.035%以下、
     S:0.01%以下、
     Cr:22.5~35.0%、
     Mo:0.01~6%、
     Ni:0.01~6%、
     Cu:0.01~1%、
     N:0.035%以下、
     V:0.01~0.35%、
     B:0.5~1.0%、
     Al:0.001~6.0%、
     Sn:0.02~2.50%、
     希土類元素:0~0.1%、
     Nb:0~0.35%、
     Ti:0~0.35%、および、
     残部:Feおよび不純物であり、かつ、
     {Cr含有量(質量%)+3×Mo含有量(質量%)-2.5×B含有量(質量%)}として算出される値が20~45%であるとともに、
     フェライト相のみからなる母相中にMB型硼化物系金属析出物が分散し、かつ、表面に露出している、フェライトステンレス鋼材。
  2.  前記化学組成が、質量%で、
     希土類元素:0.005~0.1%を、
     含有する、請求項1に記載のフェライトステンレス鋼材。
  3.  前記化学組成が、質量%で、
     Nb:0.001~0.35%、および、
     Ti:0.001~0.35%、
     から選択される1種以上を含有し、かつ、
     3≦Nb/C≦25、
     3≦Ti/(C+N)≦25、
     を満足する、請求項1または請求項2に記載のフェライトステンレス鋼材。
  4.  請求項1から請求項3までのいずれか1項に記載の固体高分子形燃料電池セパレータ用フェライト系ステンレス鋼材により構成される、固体高分子形燃料電池用セパレータ。
  5.  請求項1から請求項3までのいずれか1項に記載の固体高分子形燃料電池セパレータ用フェライト系ステンレス鋼材により構成される、固体高分子形燃料電池。
     
PCT/JP2015/077750 2014-10-01 2015-09-30 フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池 WO2016052622A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016503470A JP5971446B1 (ja) 2014-10-01 2015-09-30 フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池
KR1020177011771A KR20170063900A (ko) 2014-10-01 2015-09-30 페라이트계 스테인리스강재와, 이것을 이용하는 고체 고분자형 연료 전지용 세퍼레이터 및 고체 고분자형 연료 전지
US15/513,581 US20170301929A1 (en) 2014-10-01 2015-09-30 Ferritic stainless steel material, and, separator for solid polymer fuel cell and solid polymer fuel cell which uses the same
CN201580053171.3A CN106795604A (zh) 2014-10-01 2015-09-30 铁素体类不锈钢材、使用其的固体高分子型燃料电池用分隔件以及固体高分子型燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014203320 2014-10-01
JP2014-203320 2014-10-01

Publications (1)

Publication Number Publication Date
WO2016052622A1 true WO2016052622A1 (ja) 2016-04-07

Family

ID=55630647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077750 WO2016052622A1 (ja) 2014-10-01 2015-09-30 フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池

Country Status (5)

Country Link
US (1) US20170301929A1 (ja)
JP (1) JP5971446B1 (ja)
KR (1) KR20170063900A (ja)
CN (1) CN106795604A (ja)
WO (1) WO2016052622A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278172B1 (ja) * 2016-08-30 2018-02-14 新日鐵住金株式会社 フェライト系ステンレス鋼材、セパレーター、セルおよび燃料電池
WO2018043285A1 (ja) * 2016-08-30 2018-03-08 新日鐵住金株式会社 フェライト系ステンレス鋼材、セパレーター、セルおよび燃料電池
US20190267640A1 (en) * 2018-02-28 2019-08-29 Toyota Jidosha Kabushiki Kaisha Stainless steel substrate, fuel cell separator, and fuel cell
JP2020152949A (ja) * 2019-03-19 2020-09-24 日鉄ステンレス株式会社 ステンレス鋼板およびステンレス鋼板の製造方法
US10833335B2 (en) 2018-02-28 2020-11-10 Toyota Jidosha Kabushiki Kaisha Stainless steel substrate
CN112281074A (zh) * 2020-10-29 2021-01-29 东北大学 一种低密度lng储罐用高锰中厚板及其制备方法
WO2024047936A1 (en) * 2022-08-31 2024-03-07 Jfe Steel Corporation Component for solid oxide fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876661A (zh) * 2020-06-17 2020-11-03 宁波宝新不锈钢有限公司 一种燃料电池用高耐蚀铁素体不锈钢及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328205A (ja) * 1999-05-24 2000-11-28 Sumitomo Metal Ind Ltd 通電電気部品用フェライト系ステンレス鋼および燃料電池
JP2004107704A (ja) * 2002-09-17 2004-04-08 Sumitomo Metal Ind Ltd 含硼素フェライト系ステンレス鋼帯の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100361548B1 (ko) * 1999-04-19 2002-11-21 스미토모 긴조쿠 고교 가부시키가이샤 고체고분자형 연료전지용 스텐레스 강재
JP4651682B2 (ja) * 2008-01-28 2011-03-16 新日鐵住金ステンレス株式会社 耐食性と加工性に優れた高純度フェライト系ステンレス鋼およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328205A (ja) * 1999-05-24 2000-11-28 Sumitomo Metal Ind Ltd 通電電気部品用フェライト系ステンレス鋼および燃料電池
JP2004107704A (ja) * 2002-09-17 2004-04-08 Sumitomo Metal Ind Ltd 含硼素フェライト系ステンレス鋼帯の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278172B1 (ja) * 2016-08-30 2018-02-14 新日鐵住金株式会社 フェライト系ステンレス鋼材、セパレーター、セルおよび燃料電池
WO2018043285A1 (ja) * 2016-08-30 2018-03-08 新日鐵住金株式会社 フェライト系ステンレス鋼材、セパレーター、セルおよび燃料電池
US20190267640A1 (en) * 2018-02-28 2019-08-29 Toyota Jidosha Kabushiki Kaisha Stainless steel substrate, fuel cell separator, and fuel cell
JP2019149353A (ja) * 2018-02-28 2019-09-05 トヨタ自動車株式会社 ステンレス鋼基材、燃料電池用セパレータ及び燃料電池
US10833335B2 (en) 2018-02-28 2020-11-10 Toyota Jidosha Kabushiki Kaisha Stainless steel substrate
US11183696B2 (en) 2018-02-28 2021-11-23 Toyota Jidosha Kabushiki Kaisha Stainless steel substrate, fuel cell separator, and fuel cell
JP7172056B2 (ja) 2018-02-28 2022-11-16 トヨタ自動車株式会社 ステンレス鋼基材、燃料電池用セパレータ及び燃料電池
JP2020152949A (ja) * 2019-03-19 2020-09-24 日鉄ステンレス株式会社 ステンレス鋼板およびステンレス鋼板の製造方法
JP7281929B2 (ja) 2019-03-19 2023-05-26 日鉄ステンレス株式会社 ステンレス鋼板およびステンレス鋼板の製造方法
CN112281074A (zh) * 2020-10-29 2021-01-29 东北大学 一种低密度lng储罐用高锰中厚板及其制备方法
WO2024047936A1 (en) * 2022-08-31 2024-03-07 Jfe Steel Corporation Component for solid oxide fuel cell

Also Published As

Publication number Publication date
KR20170063900A (ko) 2017-06-08
US20170301929A1 (en) 2017-10-19
JP5971446B1 (ja) 2016-08-17
CN106795604A (zh) 2017-05-31
JPWO2016052622A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5971446B1 (ja) フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池
JP4078966B2 (ja) 固体高分子型燃料電池のセパレータ用ステンレス鋼および固体高分子型燃料電池
JP5979331B1 (ja) フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池
JP3365385B2 (ja) 固体高分子型燃料電池のセパレータ用ステンレス鋼材の製造方法
JP2001032056A (ja) 通電部品用ステンレス鋼および固体高分子型燃料電池
JP6315158B1 (ja) ステンレス鋼板及びその製造方法、固体高分子型燃料電池用セパレータ、固体高分子型燃料電池セル、並びに固体高分子型燃料電池
JP6112262B2 (ja) 固体高分子形燃料電池セパレータ用ステンレス薄鋼板
JP5377613B2 (ja) 表面電気伝導性に優れた導電部材用ステンレス鋼板
JP2008285731A (ja) 表面電気伝導性優れたステンレス鋼板およびその製造方法
JP5152193B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼材および固体高分子型燃料電池
JP2000328200A (ja) 通電電気部品用オーステナイト系ステンレス鋼および燃料電池
KR102385477B1 (ko) 연료 전지의 세퍼레이터용 강판의 기재 스테인리스 강판 및 그 제조 방법
KR101878115B1 (ko) 페라이트계 스테인리스강재, 세퍼레이터, 고체 고분자형 연료 전지, 및 세퍼레이터의 제조 방법
JP3397169B2 (ja) 固体高分子型燃料電池セパレータ用オーステナイト系ステンレス鋼および固体高分子型燃料電池
JP3397168B2 (ja) 固体高分子型燃料電池セパレータ用フェライト系ステンレス鋼および固体高分子型燃料電池
KR101356954B1 (ko) 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법
JP2004269969A (ja) 固体高分子型燃料電池用セパレータおよびその製造方法
JP7257794B2 (ja) ステンレス鋼板及びその製造方法、燃料電池用セパレータ、燃料電池セル、並びに燃料電池スタック
JP2000328205A (ja) 通電電気部品用フェライト系ステンレス鋼および燃料電池
KR102458725B1 (ko) 스테인리스 강재, 구성 부재, 셀 및 연료 전지 스택
JP7257793B2 (ja) ステンレス鋼板、燃料電池用セパレータ、燃料電池セル、及び燃料電池スタック

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016503470

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15513581

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177011771

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15846055

Country of ref document: EP

Kind code of ref document: A1