JP2008285731A - 表面電気伝導性優れたステンレス鋼板およびその製造方法 - Google Patents

表面電気伝導性優れたステンレス鋼板およびその製造方法 Download PDF

Info

Publication number
JP2008285731A
JP2008285731A JP2007133362A JP2007133362A JP2008285731A JP 2008285731 A JP2008285731 A JP 2008285731A JP 2007133362 A JP2007133362 A JP 2007133362A JP 2007133362 A JP2007133362 A JP 2007133362A JP 2008285731 A JP2008285731 A JP 2008285731A
Authority
JP
Japan
Prior art keywords
mass
less
atomic
stainless steel
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007133362A
Other languages
English (en)
Inventor
Takahiro Fujii
孝浩 藤井
Masayoshi Tadano
政義 多々納
Keiji Izumi
圭二 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2007133362A priority Critical patent/JP2008285731A/ja
Publication of JP2008285731A publication Critical patent/JP2008285731A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】固体高分子型燃料電池セパレータ、固体酸化物型燃料電池インターコネクターなどに好適な、表面電気伝導性を顕著に改善したステンレス鋼板を提供する。
【解決手段】最表面についてのAl、Ti、Nb、Si、Mn、Cr、Fe、Nの8元素の原子比が、Al:40原子%以上、Ti+Nbの合計:3原子%以上、Si:8原子%以下、Mn:10原子%以下、Cr:30原子%以下、Fe:10原子%以下、N:15原子%以下である酸化皮膜を表面に有する表面電気伝導性に優れたステンレス鋼板。この鋼板は、Al:0.03〜5質量%、Ti+Nbの合計:0.1〜3質量%であるステンレス鋼の母材鋼板を、水素濃度:5体積%以下(0体積%を含む)、酸素濃度:100体積ppm以下、残部不活性ガスからなり、露点が−50℃以下である雰囲気ガス中で、800〜1100℃に加熱する方法で製造できる。
【選択図】なし

Description

本発明は、電気接点材料や、固体高分子型燃料電池セパレータ材料、固体酸化物型燃料電池インターコネクター材料などに好適な、表面電気伝導性に優れたステンレス鋼板およびその製造方法に関する。
近年、固体高分子型燃料電池や固体酸化物型燃料電池などに使用される部材として、耐食性に加え、表面電気伝導性に優れた金属材料が要求されている。例えば、固体高分子型燃料電池のセパレータでは、電池反応により生成する水分への金属成分の溶出が電池性能の劣化を招くことから優れた耐食性が要求されるとともに、隣接するセルのカーボン電極間における通電を担うためにカーボン電極と接触する表面での良好な電気伝導性が要求される。固体酸化物型燃料電池のインターコネクター(集電部材)では、水蒸気を含む800℃以上の反応雰囲気中で優れた耐食性(耐酸化性)を示すことが要求されるとともに、低い接触抵抗が長時間維持できる耐久性が要求される。
これらの要求に適応できる可能性を有する安価な材料としてステンレス鋼が挙げられる。ステンレス鋼は周知のとおり、Crの濃化した不動態皮膜によって優れた耐食性を維持している。ところが、この不動態皮膜は導電性が非常に低い。このため、上記燃料電池部材や電気接点部材など、高い表面電気伝導性が要求される用途では、ステンレス鋼材を無垢のままで使用するには難がある。
従来、ステンレス鋼の表面電気伝導性を改善する手段として種々の表面処理が試みられてきた。例えば、電気めっきや物理蒸着などによって、錫、ニッケル、白金、カーボンなどをステンレス鋼母材の表面に被覆するする手法が挙げられる。しかし、このような手法は、めっき等の表面処理工程を実施するためのコスト増大を伴い、金や白金などの貴金属を使用する場合にはさらにコストが高くなる。したがって、燃料電池部材などにおける工業的な実用化にはあまり適していない。
一方、不動態皮膜の表面に導電性の析出物を多数露出させることによって、ステンレス鋼の表面電気伝導性を改善する技術も知られている。例えば、特許文献1にはM2B型の硼化物を析出させる手法が開示され、特許文献2には50〜50000nm径のTiNまたはNbNを多量に析出させる手法が開示されている。しかし、これらの析出物で表面電気伝導性を確保しようとすると、ステンレス鋼母材の内部にも本来不必要な析出物が多量に生成してしまうことが避けられない。また、これらの導電性析出物はそれ自体が硬いものである。したがって、このような鋼板を工業的に量産するには種々の問題がある。すなわち、熱間加工性が悪いために熱間加工時に耳割れを生じやすく、冷間圧延においても耳切れを生じやすい。表面に露出した析出物は圧延時に表面疵の原因となる。部材成形時のプレス加工に際しては、割れの発生、プレス負荷の増大、硬質粒子による摩耗に起因した型寿命の低下などが問題になる。
特開2000−328205号公報 特開2006−233281号公報
上述のように、従来の技術では表面電気伝導性の高い無垢のステンレス鋼材を得るためにはコスト面や製造性の面で多くの問題点がある。また、その表面電気伝導性についても、必ずしも十分な特性が得られていないのが現状である。
本発明は、固体高分子型燃料電池セパレータ、固体酸化物型燃料電池インターコネクターなどに適した、表面電気伝導性を顕著に改善したステンレス鋼板であって、製造性が良好で、工業的に安価に大量生産することが可能なものを提供することを目的とする。
ステンレス鋼の表面に存在する不動態皮膜は上記のように電気抵抗が大きいが、発明者らは詳細な研究の結果、ステンレス鋼表面を覆う皮膜を熱処理によって電気抵抗の小さいものに改質することができることを見出した。具体的には、TiあるいはNbが共存するAl系酸化物を主体とした皮膜構造とすることにより皮膜の導電性が顕著に向上することが明らかになった。
すなわち本発明では、Alが濃化した酸化皮膜を表面に形成したステンレス鋼板であって、その酸化皮膜は、最表面についてのAl、Ti、Nb、Si、Mn、Cr、Fe、Nの8元素の原子比が、Al:40原子%以上、Ti+Nbの合計:3原子%以上であり、かつSi:8原子%以下、Mn:10原子%以下、Cr:30原子%以下、Fe:10原子%以下、N:15原子%以下である表面電気伝導性に優れたステンレス鋼板が提供される。
ここで、最表面についての上記原子比は、X線光電子分光法(XPS)やオージェ電子分光法(AES)といった極表面分析法によって同定できる。「ステンレス鋼」はJIS G0203 番号4201に記載されるように、Cr含有量が10.5質量%以上の鋼であり、具体的にはJIS G4305に種々の鋼種が規定されている。中でもそれら既存鋼種をベースとしてAl:0.03〜5質量%、Ti+Nbの合計(すなわちTiの質量%とNbの質量%の合計):0.1〜3質量%を満たすようにAl、Ti、Nbの含有量が調整されたものが好適な対象となる。導電性および材料コストの観点からは、フェライト系の鋼種を採用することが有利となる。
母材ステンレス鋼の具体的な組成範囲を例示すると、例えば、C:0.1質量%以下、Si:1.5質量%以下、Mn:1.5質量%以下、P:0.04質量%以下、S:0.03質量%以下、Cr:10.5〜30質量%、Al:0.03〜5質量%、Ti+Nbの合計:0.1〜3質量%であり、必要に応じてさらにMo:5質量%以下、Cu:3質量%以下、Ni:5質量%以下の1種以上を含有し、残部が実質的にFeからなるステンレス鋼が挙げられる。「実質的に」とは、本発明の効果を阻害しない範囲で上記以外の元素の混入が許容されることを意味する。例えば、B:0.01質量%以下、V:0.3質量%以下、Zr:0.3質量%以下の混入は通常許容される。その他Ca、Mg、Co、REM(希土類元素)は、それらの合計が0.1質量%以下の範囲であれば通常、問題ない。「残部が実質的にFeからなる」の1態様として、「残部Feおよび不可避的不純物からなる」場合が挙げられる。
上記のような皮膜を表面に有するステンレス鋼板の製造方法として、Al、Ti、Nbの含有量が、Al:0.03〜5質量%、Ti+Nbの合計:0.1〜10質量%を満たすステンレス鋼の母材鋼板を、水素濃度:5体積%以下(0体積%を含む)、酸素濃度:100体積ppm以下、残部不活性ガスからなり、露点が−50℃以下である雰囲気ガス中で、800〜1100℃に加熱することにより、Alが濃化した酸化皮膜を母材鋼板の表面に形成させる表面電気伝導性に優れたステンレス鋼板の製造方法が提供される。ここで、「不活性ガス」は窒素および第18族元素(希ガス)である。2種以上の不活性ガスが混在していても構わない。
本発明によれば、無垢のステンレス鋼板において表面電気伝導性を顕著に改善したものが提供可能になった。この鋼板は導電性析出物を利用した従来技術のステンレス鋼板とは異なり、酸化皮膜を改質することにより導電性を確保したものであるから、基本的に母材鋼板の諸特性をそのまま活かすことができ、多量の析出物による製造性劣化も回避される。また、製造コストも比較的低廉であり、大量生産にも適している。したがって本発明は、燃料電池の工業的普及に寄与するものと期待される。
本発明では、ステンレス鋼板表層の酸化皮膜を、TiあるいはNbが共存するAl主体の酸化物で構成する。このとき、表面の電気伝導性が顕著に向上する。一般的にAl酸化物(Al23)は絶縁性であり、その電気抵抗は大きいことが知られている。ところが、TiあるいはNbが共存する状態において、Al主体の酸化皮膜は導電性の挙動を示すことがわかった。その原因については現時点で未解明であるが、3価のAlからなるAl23中に固溶した価数の大きい4価のTiや5価のNbがドナーとなり、半導体的性質を付与した可能性が考えられる。一方、絶縁性の大きいSi、Mn、Cr、Feの酸化物の存在比率が高くなるほど表面電気伝導性は低下することが実験で確かめられた。
以下、本発明を特定するための事項について説明する。
〔酸化皮膜の組成〕
本発明では酸化皮膜の組成をC、Oを除いたAl、Ti、Nb、Si、Mn、Cr、Fe、Nの8元素の原子比によって特定している。分析箇所はXPSあるいはAESにより測定される最表面とする。例えばXPSの場合だと、表面から数nm程度の深さ領域における各元素の結合エネルギースペクトルから、それぞれの元素の存在割合(原子比)が求められる。本明細書では特に断らない限り、XPSまたはAESで測定される上記8元素の合計量を100原子%として、酸化皮膜を構成する各元素の存在割合を表示している。
優れた表面電気伝導性を得るための酸化皮膜としては、まず、Al系酸化物が主体の皮膜であることが必要である。Alの存在量は、上記のような皮膜組成の特定の仕方において、40原子%以上であることが重要である。それよりAl含有量が低い場合には、ステンレス鋼母材の構成成分であるCr、Fe、Si、Mnの酸化物の存在量が相対的に多くなりすぎ、高い電気伝導性を得ることが困難である。Al含有量は60原子%以上であることがより好ましい。
また、Al主体の酸化皮膜中にTiおよびNbの1種以上が合計で3原子%以上含有されていることが重要である。TiやNbが皮膜中に十分含有されていないと、仮にAl酸化物主体の皮膜が形成されても、電気伝導性を顕著に改善することが困難である。TiとNbの合計含有量は5原子%であることが一層好ましい。
一方、酸化皮膜中のSi、Mn、Cr、Feの含有量は多くなりすぎないように制限される。これらの酸化物は電気抵抗が大きいため、電気伝導性の改善を阻害する要因となる。具体的には、Si:8原子%以下、Mn:10原子%以下、Cr:30原子%以下、Fe:10原子%以下とする必要がある。さらに好ましい範囲はSi:5原子%以下、Mn:5原子%以下、Cr:20原子%以下、Fe:5原子%以下である。ただし、Crの存在量があまり少なくなると耐食性が不十分となる場合があるので、耐食性を重視する用途では皮膜中に5原子%以上のCrを確保することが望ましい。
皮膜中にNが過剰に含まれると電気抵抗の上昇につながるので、皮膜中のN含有量は15原子%以下に制限され、10原子%以下であることがより好ましい。
XPSやAESでステンレス鋼表面の酸化皮膜を分析すると、通常、Cが検出される。このCは大部分が大気環境より吸着したコンタミであり、これは表面電気伝導性に直接的に影響するものではないので、本発明ではCの検出量については規定しない。また、Oについては表面酸化物を構成する主元素であるが、表面電気伝導性を評価する上では上記8元素を規定すれば足りるので、Oの存在割合を数値的に規定する必要はない。表面酸化皮膜には上記8元素およびC、Oの他にも、ステンレス鋼母材を構成する合金元素が多少存在する。ただし、Mo、Cu、Niなどの鋼中添加元素やP、S、Sn、Vなどの鋼中混入元素の合計含有量が、前記8元素の合計100原子%に対し、3原子%以内であれば本発明の効果を妨げるものではない。後述の製造方法に従えば、これらの元素の合計含有量は3原子%以内に収まるので、通常、問題になることはない。
〔ステンレス鋼母材の成分元素〕
鋼中のCは、オーステナイト形成元素であり、導電性やコスト面で有利なフェライト系鋼種を得るためには、高温熱処理後の冷却過程で硬質なマルテンサイト相が生成しないように、多量のC含有を避けるべきである。また、Cは固溶強化による加工性の低下や、Cr系炭化物の生成による耐食性低下を招く要因になる。これらのことを考慮すると、フェライト系、オーステナイト系いずれの鋼種においてもC含有量は0.1質量%以下とすることが望ましく、0.05質量%以下とすることがより好ましい。
鋼中のSiは、熱処理時に皮膜中において絶縁性のSi酸化物を形成する要因となる。皮膜中のSi酸化物の割合が多くなると表面電気伝導性の改善が不十分となるので、鋼中のSi含有量は3.0質量%以下とすることが望ましく、2.0質量%以下とすることがより好ましい。
鋼中のMnも、熱処理時に皮膜中において絶縁性のMn酸化物を形成する要因となる。このため、Siと同様、鋼中のMn含有量は1.5質量%以下とすることが望ましく、1.0質量%以下とすることがより好ましい。
鋼中のPは、熱処理時に鋼板表面に濃化しやすく、導電性に優れた皮膜の形成を阻害する要因となり得る。このため鋼中のP含有量は0.04質量%以下とすることが望ましい。
鋼中のSも、熱処理時に鋼板表面に濃化しやすく、導電性に優れた皮膜の形成を阻害する要因となり得る。このため鋼中のS含有量は0.03質量%以下とすることが望ましい。
鋼中のCrは、ステンレス鋼としての耐食性を維持させるために10.5質量%以上の含有量を確保することが望ましい。しかし、過剰のCrは靭性を劣化させ、また、皮膜中に絶縁性の高いCr酸化物を形成して表面電気伝導性の改善を阻害する要因ともなる。固体高分子型燃料電池のセパレータや固体酸化物型燃料電池のインターコネクターなどの用途では、通常、30質量%以下のCr含有量範囲において良好な特性を実現することができる。
鋼中のAlは、本発明で目的とするAlの濃化した酸化皮膜を形成させるためのAl供給源となる。発明者らの詳細な検討によれば、酸化皮膜を形成させる手法として後述の熱処理を利用する場合には、鋼中のAl含有量を0.03質量%以上確保しておくことが極めて有利であり、0.1質量%以上とすることがより効果的である。ただし、過剰のAl含有は母材鋼板製造過程で多量の酸化物系介在物や窒化物を形成させ、表面疵の発生および加工性の劣化を招く。したがって鋼中のAl含有量は5質量%以下に制限することが望ましい。固体高分子型燃料電池のセパレータや固体酸化物型燃料電池のインターコネクターなどの用途では、通常、4質量%以下のAl含有量範囲において良好な結果を得ることができる。
鋼中のTiおよびNbは、Alの濃化した酸化皮膜中に共存させるTiあるいはNbの供給源となる。詳細な検討の結果、酸化皮膜を形成させる手法として後述の熱処理を利用する場合には、Ti、Nbの1種以上を含有する鋼種であって、Ti+Nbの合計が0.05質量%以上確保されている母材を使用することが極めて有利であり、0.1質量%以上のものを使用することがより好ましい。ただし、これらの元素を過剰に含有させると母材鋼板製造過程で多量の酸化物系介在物や窒化物が生成し、表面疵の発生および加工性の劣化を招く要因となる。このため、Ti+Nbの合計含有量は3質量%以下とすることが望ましく、1.5質量%以下とすることがより好ましい。Ti、Nbはそれぞれ、Ti:0.5質量%以下、Nb:1.0質量%以下の範囲で1種以上を含有させることが望ましい。
鋼中のMo、Cu、Niは、ステンレス鋼の耐食性、耐候性向上に有効な元素であり、必要に応じてこれらの1種以上を含有させてもよい。Mo、Cu、Niとも、上記作用を十分に発揮させるためには、0.4質量%以上の含有量を確保することが効果的である。ただし、過剰の含有は耐食性等の効果が飽和しコスト増を招くので、Mo含有量は5質量%以下、Cu含有量は3質量%以下、Ni含有量は5質量%以下とすることが望ましい。
〔母材鋼板の製造〕
母材のステンレス鋼板は、一般的なステンレス鋼板製造工程を利用して製造することができる。用途に応じて最終的な板厚が決定されるが、例えば固体高分子型燃料電池のセパレータ用途では板厚0.1〜0.2mm程度の冷延鋼板が使用され、固体酸化物型燃料電池のインターコネクター用途では板厚0.2〜0.8mm程度の冷延鋼板が使用される。母材鋼板の表面仕上としては、熱延や焼鈍の工程で表面に生成した酸化スケールが除去されている無垢のステンレス鋼板(すなわち表層が不動態皮膜であるもの)であれば特にこだわる必要はなく、種々の仕上材が適用できる。一般的には酸洗仕上とすればよい。
〔酸化皮膜の形成〕
AlおよびTi+Nbの含有量が上記のように調整された母材鋼板を、以下に示す条件で熱処理することによって、表面電気伝導性が顕著に改善された酸化皮膜を構築することができる。
雰囲気ガスの基本成分は不活性ガス(窒素および第18族元素の1種以上)とする。工業生産におけるコスト面を考慮すると窒素ガスを用いることが望ましい。
雰囲気ガスに水素が多量に含まれていると表面酸化皮膜が還元され、このとき不活性ガス成分として窒素ガスを使用していれば、その窒素が表面から鋼中に拡散して、母材の表層部には多量の窒素が固溶するとともに大量の窒化物が生成してしまう。その結果、鋼板表層部での電気抵抗の増大を招くことになる。種々検討の結果、雰囲気ガス中の水素濃度は5体積%まで許容されるが、できるだけ低いことが望ましく、0体積%(すなわち水素無添加)とすることが表面電気伝導性を顕著に改善する上で最も好ましい。
雰囲気ガス中への酸素の混入はある程度不可避であるが、過剰の酸素が存在すると、Si、Mn、Cr、Feなどの非導電性酸化物が形成されやすくなる。種々検討の結果、酸素濃度は100体積ppm以下とする必要があり、50体積ppm以下とすることがより効果的である。
雰囲気ガスの露点は皮膜組成に大きく影響する。表面電気伝導性の高い皮膜を安定して得るには、雰囲気ガスの露点を−50℃以下にする必要がある。それより高いと電気抵抗の大きいSi、Mn、Cr、Feなどの酸化物が形成されやすくなるので好ましくない。
上記雰囲気ガス中における熱処理温度は500〜1100とする。500℃未満ではCrやMnの酸化物が生成しやすくなり、TiあるいはNbを含有する導電性の良いAl系酸化物の存在割合が相対的に低下して、表面電気伝導性の改善が不十分となることがある。600℃以上、あるいは800℃以上に設定することがより好ましい。一方、1100℃を超える温度では酸化物中のTi、Nbの存在量が低下して皮膜の表面電気伝導性を十分に改善することが難しくなる。
熱処理時間は、Alが濃化した酸化皮膜が概ね10〜100nm程度の厚さで形成されるように調整することが望ましい。通常、鋼板表面が500〜1100℃の温度域に維持される時間を0.5〜5minの範囲で調整すれば良好な結果が得られる。
常法による溶解、鋳造、熱間圧延、冷間圧延工程を経て表1に示す化学組成のフェライト系ステンレス冷延焼鈍鋼板(板厚0.7mm)を製造した。表面状態は酸洗仕上(No.2D)とした。これらの鋼板を母材として用いて、表2に示す種々の条件で熱処理を施すことによって表面酸化皮膜を形成し、供試材とした。熱処理時間は表面温度が表2中に示した温度に維持される時間で約1minとした。
なお、表1中の鋼種Aは、Al、Ti、Nbの含有量が本発明で規定するステンレス鋼板の製造方法を適用する上で好ましい範囲に調整されているものである。
Figure 2008285731
各供試材について、XPSにより表面酸化皮膜の最表面(コンタミ除去のためのエッチングは行っていない)についての元素分析を行った。そして、前述のようにAl、Ti、Nb、Si、Mn、Cr、Fe、Nの8元素の原子比を求めた。また、各供試材について以下の要領で表面電気伝導性を評価した。
〔表面電気伝導性の評価〕
各供試材サンプルの表面(片面)に直径15mmの円形カーボンペーパーを荷重10kg/cm2で接触させ、その接触面に電流密度I=1A/cm2の電流を流すのに必要な電圧Eを4端子法により測定し、接触抵抗R(mΩ・cm2)=E/Iを求めた。この方法による接触抵抗が20mΩ・cm2以下のものは、固体高分子型燃料電池セパレータとして使用可能な表面電気伝導性を有すると判断され、合格と評価した。
結果を表2中に示す。
Figure 2008285731
表2に示されるように、試料1〜6のステンレス鋼板は本発明で規定する組成の表面酸化皮膜を有しており、表面電気伝導性の顕著な改善効果が得られた。これらは接触抵抗が20mΩ・cm2以下を満たしており、無垢のままで固体高分子型燃料電池セパレータとして使用できるステンレス鋼板であると評価される。
これに対し、比較例である試料11〜19は、いずれも本発明で規定する組成の表面酸化皮膜を有しておらず、その結果、表面電気伝導性の改善が不十分であったものである。
具体的には、試料11はAl含有量の少ない鋼種Bを使用したことにより、この熱処理条件では皮膜中のSi濃度が相対的に高くなりすぎ、Al濃度が不十分となった。
試料12はTi+Nbの合計含有量が少ない鋼種Cを使用したことにより、この熱処理条件では、皮膜中のAl濃度は高められたものの、Ti+Nbの共存量が不十分となった。
試料13は雰囲気ガス中の酸素濃度が高すぎたことにより、電気抵抗の大きいSi系酸化物およびMn系酸化物が皮膜中に多く生成した。
試料14は雰囲気ガスの露点が高すぎたことにより、皮膜中のAl系酸化物の存在比率が少なくなり、かつNの浸入が生じた。
試料15は熱処理温度が低すぎたことにより、Al、Ti、Nbが十分に皮膜中に濃化しなかった。
試料16は熱処理温度が高すぎたことにより、Al濃度の高い皮膜は形成されたものの、Ti+Nbの共存量が不十分となった。
試料17は雰囲気ガスの水素濃度が高すぎたことにより、表面へのNの浸入が生じた。
試料18はステンレス鋼の光輝焼鈍の際に一般的に使用される水素主体の雰囲気ガスを採用したものであり、絶縁性の高いSi酸化物主体の皮膜となった。
試料19は酸洗仕上のまま、熱処理を行っていないものであり、表面にはCrおよびFeが主体の不動態皮膜が形成されている。不動態皮膜の表面電気伝導性は悪いことがわかる。
表3に示す種々の組成のフェライト系ステンレス鋼を用いて実施例1と同様の工程で冷延焼鈍鋼板(板厚0.7mm)を製造し、これらを母材に用いて、表2の試料3とほぼ同様の条件で熱処理を施すことによって供試材を得た。表3の各鋼種は、Al、Ti、Nbの含有量が本発明で規定するステンレス鋼板の製造方法を適用する上で好ましい範囲に調整されているものである。各供試材について、実施例1と同様に皮膜組成および接触抵抗を調べた。その結果、いずれの供試材も本発明で規定する組成の酸化皮膜を有しており、その結果、いずれも接触抵抗は20mΩ・cm2以下であった。
Figure 2008285731

Claims (5)

  1. Alが濃化した酸化皮膜を表面に形成したステンレス鋼板であって、その酸化皮膜は、最表面についてのAl、Ti、Nb、Si、Mn、Cr、Fe、Nの8元素の原子比が、Al:40原子%以上、Ti+Nbの合計:3原子%以上であり、かつSi:8原子%以下、Mn:10原子%以下、Cr:30原子%以下、Fe:10原子%以下、N:15原子%以下である表面電気伝導性に優れたステンレス鋼板。
  2. 母材のステンレス鋼はAl、Ti、Nbの含有量が、Al:0.03〜5質量%、Ti+Nbの合計:0.1〜3質量%を満たすものである請求項1に記載の表面電気伝導性に優れたステンレス鋼板。
  3. 母材のステンレス鋼は、C:0.1質量%以下、Si:3.0質量%以下、Mn:1.5質量%以下、P:0.04質量%以下、S:0.03質量%以下、Cr:10.5〜30質量%、Al:0.03〜5質量%、Ti+Nbの合計:0.1〜3質量%、残部が実質的にFeからなるものである請求項1に記載の表面電気伝導性に優れたステンレス鋼板。
  4. 母材のステンレス鋼は、さらにMo:5質量%以下、Cu:3質量%以下、Ni:5質量%以下の1種以上を含有するものである請求項3に記載の表面電気伝導性に優れたステンレス鋼板。
  5. Al、Ti、Nbの含有量が、Al:0.03〜5質量%、Ti+Nbの合計:0.1〜10質量%を満たすステンレス鋼の母材鋼板を、水素濃度:5体積%以下(0体積%を含む)、酸素濃度:100体積ppm以下、残部不活性ガスからなり、露点が−50℃以下である雰囲気ガス中で、500〜1100℃に加熱することにより、Alが濃化した酸化皮膜を母材鋼板の表面に形成させる表面電気伝導性に優れたステンレス鋼板の製造方法。
JP2007133362A 2007-05-18 2007-05-18 表面電気伝導性優れたステンレス鋼板およびその製造方法 Pending JP2008285731A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133362A JP2008285731A (ja) 2007-05-18 2007-05-18 表面電気伝導性優れたステンレス鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133362A JP2008285731A (ja) 2007-05-18 2007-05-18 表面電気伝導性優れたステンレス鋼板およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011233450A Division JP5377613B2 (ja) 2011-10-24 2011-10-24 表面電気伝導性に優れた導電部材用ステンレス鋼板

Publications (1)

Publication Number Publication Date
JP2008285731A true JP2008285731A (ja) 2008-11-27

Family

ID=40145751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133362A Pending JP2008285731A (ja) 2007-05-18 2007-05-18 表面電気伝導性優れたステンレス鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP2008285731A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202923A (ja) * 2009-03-02 2010-09-16 Nisshin Steel Co Ltd 意匠性を改善した軟磁性ステンレス鋼およびその製造方法
JP2011006757A (ja) * 2009-06-26 2011-01-13 Toyota Central R&D Labs Inc 耐食導電性皮膜、耐食導電材、固体高分子型燃料電池とそのセパレータおよび耐食導電材の製造方法
WO2011013832A1 (ja) * 2009-07-30 2011-02-03 Jfeスチール株式会社 導電性と延性に優れた燃料電池セパレータ用ステンレス鋼およびその製造方法
JP2011047041A (ja) * 2009-07-23 2011-03-10 Jfe Steel Corp 耐食性に優れた燃料電池用ステンレス鋼およびその製造方法
JP2011179063A (ja) * 2010-03-01 2011-09-15 Nisshin Steel Co Ltd 固体酸化物形燃料電池の導電部材
WO2012133506A1 (ja) * 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 バイオ燃料供給系部品用フェライト系ステンレス鋼、バイオ燃料供給系部品、排熱回収器用フェライト系ステンレス鋼、及び排熱回収器
US8613807B2 (en) 2009-02-06 2013-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive film, corrosion-resistant conduction film, corrosion-resistant conduction material and process for producing the same
WO2016072485A1 (ja) * 2014-11-06 2016-05-12 京セラ株式会社 導電部材、セルスタック装置、モジュール、モジュール収納装置および導電部材の製造方法
US9611525B2 (en) 2011-03-29 2017-04-04 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit
WO2018122947A1 (ja) * 2016-12-27 2018-07-05 本田技研工業株式会社 ステンレス鋼
WO2018147087A1 (ja) * 2017-02-09 2018-08-16 Jfeスチール株式会社 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法
JP2020164883A (ja) * 2019-03-28 2020-10-08 アイシン精機株式会社 フェライト系ステンレス鋼および集電部材

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180001A (ja) * 1993-12-22 1995-07-18 Nippon Steel Corp 加工性と耐銹性に優れたフェライト系ステンレス鋼光輝焼鈍材

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180001A (ja) * 1993-12-22 1995-07-18 Nippon Steel Corp 加工性と耐銹性に優れたフェライト系ステンレス鋼光輝焼鈍材

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8613807B2 (en) 2009-02-06 2013-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive film, corrosion-resistant conduction film, corrosion-resistant conduction material and process for producing the same
JP2010202923A (ja) * 2009-03-02 2010-09-16 Nisshin Steel Co Ltd 意匠性を改善した軟磁性ステンレス鋼およびその製造方法
JP2011006757A (ja) * 2009-06-26 2011-01-13 Toyota Central R&D Labs Inc 耐食導電性皮膜、耐食導電材、固体高分子型燃料電池とそのセパレータおよび耐食導電材の製造方法
JP2011047041A (ja) * 2009-07-23 2011-03-10 Jfe Steel Corp 耐食性に優れた燃料電池用ステンレス鋼およびその製造方法
KR101169624B1 (ko) 2009-07-23 2012-07-30 제이에프이 스틸 가부시키가이샤 내식성이 우수한 연료 전지용 스테인리스강 및 그 제조 방법
WO2011013832A1 (ja) * 2009-07-30 2011-02-03 Jfeスチール株式会社 導電性と延性に優れた燃料電池セパレータ用ステンレス鋼およびその製造方法
JP2011047043A (ja) * 2009-07-30 2011-03-10 Jfe Steel Corp 導電性と延性に優れた燃料電池セパレータ用ステンレス鋼およびその製造方法
KR101231462B1 (ko) 2009-07-30 2013-02-07 제이에프이 스틸 가부시키가이샤 도전성과 연성이 우수한 연료 전지 세퍼레이터용 스테인리스강 및 그 제조 방법
US8440029B2 (en) 2009-07-30 2013-05-14 Jfe Steel Corporation Stainless steel having good conductivity and ductility for use in fuel cell and method for producing the same
JP2011179063A (ja) * 2010-03-01 2011-09-15 Nisshin Steel Co Ltd 固体酸化物形燃料電池の導電部材
US9611525B2 (en) 2011-03-29 2017-04-04 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit
WO2012133506A1 (ja) * 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 バイオ燃料供給系部品用フェライト系ステンレス鋼、バイオ燃料供給系部品、排熱回収器用フェライト系ステンレス鋼、及び排熱回収器
US10236515B2 (en) 2014-11-06 2019-03-19 Kyocera Corporation Electrically conductive member, cell stack device, module, module housing device, and method for manufacturing electrically conductive member
CN106663822A (zh) * 2014-11-06 2017-05-10 京瓷株式会社 导电构件、蓄电池组装置、模块、模块收纳装置以及导电构件的制造方法
JPWO2016072485A1 (ja) * 2014-11-06 2017-07-20 京セラ株式会社 導電部材、セルスタック装置、モジュール、モジュール収納装置および導電部材の製造方法
EP3217457A4 (en) * 2014-11-06 2018-05-02 KYOCERA Corporation Conductive member, cell stack device, module, module housing device, and method for manufacturing conductive member
WO2016072485A1 (ja) * 2014-11-06 2016-05-12 京セラ株式会社 導電部材、セルスタック装置、モジュール、モジュール収納装置および導電部材の製造方法
JPWO2018122947A1 (ja) * 2016-12-27 2019-04-04 本田技研工業株式会社 ステンレス鋼
CN109196130A (zh) * 2016-12-27 2019-01-11 本田技研工业株式会社 不锈钢
GB2564631A (en) * 2016-12-27 2019-01-16 Honda Motor Co Ltd Stainless steel
WO2018122947A1 (ja) * 2016-12-27 2018-07-05 本田技研工業株式会社 ステンレス鋼
US11255004B2 (en) 2016-12-27 2022-02-22 Honda Motor Co., Ltd. Stainless steel
JP6414369B1 (ja) * 2017-02-09 2018-10-31 Jfeスチール株式会社 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法
TWI640122B (zh) * 2017-02-09 2018-11-01 日商杰富意鋼鐵股份有限公司 燃料電池之分隔件用鋼板之基材不鏽鋼鋼板及其製造方法
WO2018147087A1 (ja) * 2017-02-09 2018-08-16 Jfeスチール株式会社 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法
US11380907B2 (en) 2017-02-09 2022-07-05 Jfe Steel Corporation Substrate stainless steel sheet for fuel cell separators and production method therefor
JP2020164883A (ja) * 2019-03-28 2020-10-08 アイシン精機株式会社 フェライト系ステンレス鋼および集電部材

Similar Documents

Publication Publication Date Title
JP5377613B2 (ja) 表面電気伝導性に優れた導電部材用ステンレス鋼板
JP2008285731A (ja) 表面電気伝導性優れたステンレス鋼板およびその製造方法
JP6726735B2 (ja) 燃料電池分離板用ステンレス鋼およびその製造方法
KR101558276B1 (ko) 내식성 및 전기 전도성이 우수한 페라이트계 스테인리스 강과 그의 제조 방법, 고체 고분자형 연료 전지 세퍼레이터 및 고체 고분자형 연료 전지
JP4078966B2 (ja) 固体高分子型燃料電池のセパレータ用ステンレス鋼および固体高分子型燃料電池
JP6315158B1 (ja) ステンレス鋼板及びその製造方法、固体高分子型燃料電池用セパレータ、固体高分子型燃料電池セル、並びに固体高分子型燃料電池
JP5821336B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼およびその製造方法並びに固体高分子型燃料電池セパレータ
TWI474539B (zh) 燃料電池隔板用不鏽鋼
TW201406970A (zh) 肥粒鐵系不鏽鋼板及具優異氧化皮膜之導電性與密著性的肥粒鐵系不鏽鋼板之製造方法
US9580789B2 (en) Method for reducing formation of electrically resistive layer on ferritic stainless steels
WO2016052623A1 (ja) フェライト系ステンレス鋼材と、これを用いる固体高分子形燃料電池用セパレータおよび固体高分子形燃料電池
KR20170063900A (ko) 페라이트계 스테인리스강재와, 이것을 이용하는 고체 고분자형 연료 전지용 세퍼레이터 및 고체 고분자형 연료 전지
JP5152193B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼材および固体高分子型燃料電池
JP5972877B2 (ja) 燃料電池セパレータ用ステンレス鋼の製造方法
JP2012177157A (ja) 固体高分子形燃料電池セパレータ用ステンレス鋼およびその製造方法
CN110249462B (zh) 燃料电池的隔板用钢板的基材不锈钢板及其制造方法
JP2010106305A (ja) 電池構成部材用ステンレス鋼およびその製造方法
JP6898451B2 (ja) 接触抵抗が優秀な高分子燃料電池分離板用ステンレス鋼およびその製造方法
KR101356954B1 (ko) 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법
JP2004269969A (ja) 固体高分子型燃料電池用セパレータおよびその製造方法
JP2022096547A (ja) 燃料電池のセパレータのオーステナイト系ステンレス鋼板およびその製造方法
JP7361478B2 (ja) 燃料電池セパレータ用オーステナイト系ステンレス鋼材及びその製造方法、燃料電池セパレータ、並びに燃料電池
JP2020111806A (ja) ステンレス鋼板及びその製造方法、燃料電池用セパレータ、燃料電池セル、並びに燃料電池スタック
JP2010003417A (ja) 燃料電池セパレータ用オーステナイト系ステンレス鋼
JP2009019228A (ja) 固体高分子形燃料電池用金属セパレータ材料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110