WO2016051784A1 - 二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池 - Google Patents

二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2016051784A1
WO2016051784A1 PCT/JP2015/004960 JP2015004960W WO2016051784A1 WO 2016051784 A1 WO2016051784 A1 WO 2016051784A1 JP 2015004960 W JP2015004960 W JP 2015004960W WO 2016051784 A1 WO2016051784 A1 WO 2016051784A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
resin composition
binder resin
bis
Prior art date
Application number
PCT/JP2015/004960
Other languages
English (en)
French (fr)
Inventor
雅亮 猿山
克典 西浦
佳広 坂田
仁志 大西
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2016551547A priority Critical patent/JP6529506B2/ja
Priority to CN201580047850.XA priority patent/CN106605324B/zh
Publication of WO2016051784A1 publication Critical patent/WO2016051784A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a secondary battery, a method for producing the same, and a lithium ion secondary battery including the same.
  • negative electrode active material for lithium ion secondary batteries development of a next-generation negative electrode active material having a charge / discharge capacity that greatly exceeds the theoretical capacity of a carbon material is being promoted.
  • negative electrode active materials using silicon atoms, tin atoms, and the like are expected to be put to practical use because they have a large charge / discharge capacity.
  • silicon atoms and tin atoms have a very large volume change associated with insertion and extraction of lithium ions, and tend to repeat expansion and contraction with charge / discharge cycles.
  • the negative electrode active material is easily pulverized or detached from the binder. If the negative electrode active material is pulverized or detached, there is a drawback that cycle deterioration of the lithium ion secondary battery is likely to occur.
  • the conventional polyimide when used as the binder of the negative electrode active material layer, it is necessary to heat the electrode (negative electrode) to an extremely high temperature, and a special apparatus and environment are required. Therefore, it is desired to provide a polyimide capable of producing an electrode by heat treatment at a temperature similar to that of a binder such as polyvinylidene fluoride or rubber resin, that is, at a relatively low temperature.
  • a binder such as polyvinylidene fluoride or rubber resin
  • the current collectors for batteries such as copper foil
  • a current collector having a thickness of 10 ⁇ m or less has been used. Therefore, when the current collector is exposed to a high temperature during the manufacturing process of the electrode, problems such as a significant decrease in the mechanical strength of the obtained electrode are likely to occur. Therefore, it is desired to provide a negative electrode for a secondary battery that can be manufactured by heat treatment even at a relatively low temperature of about 200 ° C.
  • an object of the present invention is to obtain a negative electrode for a secondary battery that can be produced even at a relatively low temperature of about 200 ° C. and exhibits good cycle characteristics when applied to a lithium ion secondary battery.
  • a negative electrode active material layer including a binder made of a cured product of a binder resin composition containing 50% by mass or more of polyamic acid and / or polyimide obtained by a reaction between a diamine compound and tetracarboxylic dianhydride
  • the imidation ratio of polyamic acid and / or polyimide in the binder is 20% to 70%
  • a film having a thickness of 20 ⁇ m obtained by heat-treating the binder resin composition at 170 ° C. for 1 hour is 50 ° C.
  • a negative electrode for a secondary battery having a coefficient of thermal expansion at ⁇ 100 ° C. of ⁇ 15 ppm to 15 ppm.
  • the weight increase rate after the film is immersed in a solution in which ethylene carbonate and methyl ethyl carbonate are mixed at a mass ratio of 3: 7 and stored at 60 ° C. for one day is less than 10%.
  • the diamine compound is at least one compound selected from the group consisting of compounds (A) to (C) represented by the following chemical formula: 50 mol% or more and 100 mol relative to the total amount of the diamine compound: % Of the negative electrode for a secondary battery according to [1] or [2].
  • n represents an integer of 1 to 3
  • X is hydrogen, an alkyl group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a trimethylsilyl group, a phenyl group, OH, COOH, NO 2 , CN, F, Cl , Br or I
  • Y is a single bond, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —O—, —SO 2 —, —CO—, —CH 2 —, —CF 2 —, or —Si (CH 3 ) 2 — is represented.
  • a lithium ion secondary battery including a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte, wherein the negative electrode is the secondary battery according to any one of [1] to [3] Lithium ion secondary battery, which is a negative electrode for use.
  • the negative electrode for a secondary battery of the present invention can be produced even at a relatively low temperature of about 200 ° C., and exhibits good cycle characteristics when applied to a lithium ion secondary battery.
  • the negative electrode active material layer of the negative electrode for a secondary battery of the present invention contains a binder made of a cured product of a binder resin composition containing polyamic acid and / or polyimide.
  • a binder resin composition for obtaining the binder of the negative electrode active material layer will be described, and then the negative electrode for the secondary battery and the lithium ion secondary battery using the same will be described.
  • Binder resin composition containing polyamic acid and / or polyimide contains a cured product of a binder resin composition containing polyamic acid and / or polyimide.
  • the polyimide contained in the binder resin composition corresponds to the polyamic acid, that is, the polyamic acid is imidized.
  • the binder of the negative electrode active material layer of the negative electrode for secondary battery of the present invention includes a cured product of the binder resin composition.
  • the imidization ratio of the polyamic acid and / or polyimide is preferably 20% or more and 90% or less, more preferably 20% or more and 70% or less, and 20% or more and 60% or less. More preferably, it is 20% or more and 50% or less.
  • the thermal expansion coefficient at 50 ° C. to 100 ° C. of a film having a thickness of 20 ⁇ m obtained by heat-treating the binder resin composition at 170 ° C. for 1 hour is preferably ⁇ 30 ppm to 35 ppm, and ⁇ 20 ppm to 20 ppm. It is preferably -15 ppm to 15 ppm, more preferably -12 ppm to 10 ppm.
  • the thermal expansion coefficient at 50 ° C. to 100 ° C. of a film having a thickness of 15 ⁇ m to 25 ⁇ m obtained by heat-treating the binder resin composition at 170 ° C. for 1 hour is also preferably ⁇ 30 ppm to 35 ppm, and ⁇ 20 ppm It is more preferably 20 ppm or less, and further preferably -15 ppm or more and 15 ppm or less.
  • the specification means that the thermal expansion coefficient of the film satisfies the above range at any film thickness in the range of 15 ⁇ m to 25 ⁇ m.
  • the thermal expansion coefficient is a value measured when the temperature of the film is increased from 50 ° C. to 100 ° C. at a temperature increase rate of 5 ° C./min by a thermal analyzer.
  • the imidization ratio of the polyamic acid and / or polyimide in the binder is in the above range, and further obtained from the binder resin composition under specific conditions.
  • the thermal expansion coefficient of the film is within the above range, the swelling resistance of the binder to the electrolytic solution is sufficiently high, and the binding property of the binder is hardly lowered in the battery system. Therefore, in a lithium ion secondary battery using the negative electrode for a secondary battery, the capacity can be maintained over a long-term cycle.
  • the imidization ratio of the polyamic acid and / or polyimide in the binder is determined by infrared spectrophotometer (IR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAFS), X-ray absorption edge fine structure (NEXAFS), and a condensed water quantitative measurement with a temperature-programmed desorption gas analyzer (TDS-MS).
  • IR infrared spectrophotometer
  • XPS X-ray photoelectron spectroscopy
  • XAFS X-ray absorption spectroscopy
  • NEXAFS X-ray absorption edge fine structure
  • TDS-MS temperature-programmed desorption gas analyzer
  • the binder resin composition is obtained by immersing a 20 ⁇ m thick film obtained by heat-treating the binder resin composition at 170 ° C. for 1 hour in a solution in which ethylene carbonate and methyl ethyl carbonate are mixed at a mass ratio of 3: 7.
  • the weight increase after storage at 60 ° C. for 1 day is preferably less than 10%, and more preferably less than 6%.
  • the weight increase rate is in the above range, the swelling resistance of the binder obtained by curing the binder resin composition to the electrolyte is sufficiently high, and the binding property of the binder does not decrease in the secondary battery system, Capacity can be maintained over a long cycle.
  • the polyamic acid and / or polyimide contained in the binder resin composition has a diamine unit derived from a diamine compound and a tetracarboxylic dianhydride unit derived from tetracarboxylic dianhydride.
  • diamine units and tetracarboxylic dianhydride units will be described.
  • Diamine unit The diamine compound for obtaining the diamine unit constituting the polyamic acid or the polyimide is not particularly limited as long as the thermal expansion coefficient of the film falls within the above range when the above-mentioned film is produced.
  • the diamine compound may contain at least one compound selected from the group consisting of compounds (A) to (C) represented by the following chemical formulas in a range of 50 mol% to 100 mol% with respect to the total amount of the diamine compound. Preferably, it is more than 75 mol% and 100 mol% or less. In the above chemical formulas (A) to (C), n represents an integer of 1 to 3.
  • X is hydrogen, an alkyl group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a trimethylsilyl group, a phenyl group, OH, COOH, NO 2 , CN, F , Cl, Br or I.
  • Y is a single bond, —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, —O—, —SO 2 —, —CO—, —CH 2 —, —CF 2 —, or —Si ( Represents CH 3 ) 2 —.
  • the diamine compound may contain only one kind of compounds represented by the above chemical formulas (A) to (C), or may contain two or more kinds.
  • a diamine compound contains 2 or more types of the said compounds, it is preferable that these total amounts are 50 mol% or more and 100 mol% or less with respect to the total amount of a diamine compound.
  • the diamine compound preferably contains 4,4′-diaminobenzanilide and / or p-phenylenediamine in an amount of 50 mol% to 100 mol%.
  • the diamine compound may contain a diamine compound other than the compounds represented by the chemical formulas (A) to (C).
  • Examples of other diamine compounds include the following diamine compounds.
  • the first example of the diamine compound is a diamine having a benzene ring.
  • Examples of the diamine having a benzene ring include the following ⁇ 1> to ⁇ 6>.
  • Diamine having one benzene ring such as m-phenylenediamine, p-xylylenediamine, m-xylylenediamine; ⁇ 2>3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminobenzanilide, 3,4'-diaminobenzanilide, 3,3'- Diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3 , 3'-diaminobenzophenone
  • Second examples of other diamine compounds include 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4,4′-dibiphenoxybenzophenone, 3,3′-diamino Diamines having aromatic substituents such as -4-phenoxybenzophenone and 3,3′-diamino-4-biphenoxybenzophenone are included.
  • Third examples of other diamine compounds include 6,6′-bis (3-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, 6,6′- Diamines having a spirobiindane ring such as bis (4-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane are included.
  • Examples of other diamine compounds include 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, ⁇ , ⁇ -bis ( Siloxane diamines such as 3-aminopropyl) polydimethylsiloxane and ⁇ , ⁇ -bis (3-aminobutyl) polydimethylsiloxane are included.
  • Examples of other diamine compounds include bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, bis (2-aminomethoxy) ethyl] ether, bis [ 2- (2-aminoethoxy) ethyl] ether, bis [2- (3-aminoprotoxy) ethyl] ether, 1,2-bis (aminomethoxy) ethane, 1,2-bis (2-aminoethoxy) ethane 1,2-bis [2- (aminomethoxy) ethoxy] ethane, 1,2-bis [2- (2-aminoethoxy] ethane, ethylene glycol bis (3-aminopropyl) ether, diethylene glycol bis (3 -Aminopropyl) ether, triethylene glycol bis (3-aminopropyl) ether, etc. It is included Min class.
  • diamine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, , 8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane and other alkylenediamines.
  • diamine compounds include cyclobutanediamine, diaminooxybicycloheptane, diaminomethyloxybicycloheptane (including oxanorbornanediamine), isophorone diamine, diaminotricyclodecane, diaminomethyltricyclodecane, bis (amino (Cyclohexyl) isopropylidene and the like.
  • alicyclic diamines represented by the following chemical formula.
  • n and m each independently represents 0 or 1.
  • —X— represents a divalent group selected from direct bond, —O—, —S—, —SO 2 —, —CO—, —CH 2 —.
  • direct connection is defined as a bond form in which cyclohexane rings or norbornane rings are directly covalently bonded.
  • Tetracarboxylic dianhydride unit The tetracarboxylic dianhydride unit which becomes a structural unit of polyamic acid and / or polyimide is not particularly limited.
  • the tetracarboxylic dianhydride unit is, for example, a structural unit derived from a tetracarboxylic dianhydride having a tetravalent organic substituent Y having 4 to 27 carbon atoms, as shown in the following general formula (III). It is possible.
  • the organic substituent Y may be a monocyclic aromatic group, a condensed polycyclic aromatic group, or a non-condensed polycyclic aromatic group in which aromatic groups are connected to each other directly or via a connecting group. . Further, it may be a non-condensed polycyclic aromatic group.
  • the organic substituent Y preferably has 6 to 27 carbon atoms.
  • the tetracarboxylic dianhydride represented by the general formula (III) is not particularly limited as long as it can be reacted with a diamine to produce polyamic acid, and thus polyimide.
  • aromatic tetracarboxylic dianhydride or alicyclic tetra It can be a carboxylic dianhydride.
  • aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride Bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl)- 1,1,1,3,3,3-hexafluoropropane dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-bis
  • the tetracarboxylic dianhydride contains an aromatic ring such as a benzene ring, part or all of the hydrogen atoms on the aromatic ring are fluoro group, methyl group, methoxy group, trifluoromethyl group, and trifluoromethoxy group. It may be substituted with a group or the like.
  • the tetracarboxylic dianhydride contains an aromatic ring such as a benzene ring, the ethynyl group, benzocyclobuten-4′-yl group, vinyl group, allyl group, cyano group, isocyanate group is used depending on the purpose.
  • Tetracarboxylic dianhydride has a main chain skeleton (the above organic substituent Y) having a crosslinking point such as a vinylene group, a vinylidene group, and an ethynylidene group within a range that does not impair molding processability. Also good.
  • Polyamic acid and / or polyimide may contain units derived from trimellitic anhydrides, hexacarboxylic dianhydrides, octacarboxylic dianhydrides in addition to units derived from tetracarboxylic dianhydrides. Good.
  • polyamic acid and / or polyimide may contain only one type of unit derived from the above tetracarboxylic dianhydride, or may contain two or more types.
  • the weight average molecular weight of the polyimide or polyamic acid contained in the polyimide and / or polyamic acid binder resin composition is preferably 1.0 ⁇ 10 3 to 5.0 ⁇ 10 5 .
  • the weight average molecular weight is less than 1.0 ⁇ 10 3 , the mechanical strength of the binder obtained by curing the binder resin composition may be lowered.
  • the weight average molecular weight exceeds 5.0 ⁇ 10 5 , it may be difficult to apply the negative electrode mixture paste containing the binder resin composition.
  • the weight average molecular weight of the polyimide or its precursor polyamic acid can be measured by gel permeation chromatography (GPC).
  • the content ratio of polyimide and / or polyamic acid with respect to the entire binder resin composition is 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more.
  • the content ratio of polyimide and / or polyamic acid is 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more.
  • the logarithmic viscosity of the polyimide and / or polyamic acid contained in the binder resin composition is, for example, in the range of 0.2 to 3.0 dL / g from the viewpoint of dispersibility and applicability of the negative electrode mixture paste.
  • the range of 0.3 to 2.0 dL / g is more preferable.
  • Preparation Method of Polyimide or Polyamic Acid contains a diamine containing a diamine represented by the general formula (I) or the general formula (II) and a tetracarboxylic dianhydride represented by the general formula (III). It can be obtained by reacting with acid dianhydride in the presence of a solvent.
  • the polyimide is obtained by heating the polyamic acid at 120 ° C. to 270 ° C. and subjecting it to a dehydration condensation reaction.
  • the dehydration condensation reaction may be performed under heating in the presence or absence of conventionally known catalysts such as acids, tertiary amines, and anhydrides.
  • an aprotic polar solvent is preferable, and an aprotic amide solvent is more preferable.
  • aprotic amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, and 1,3-dimethyl-2-imidazo Lydinone, N, N-diethylformamide, N-methylcaprolactam, hexamethylphosphoramide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxy Toluene, diglyme, triglyme, tetraglyme, dioxane, ⁇ -butyrolactone, dioxolane, cyclohexanone, cyclopentanone, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,2-t
  • solvents may coexist if necessary.
  • examples of other solvents include benzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, 1,2,4-trimethylbenzene, o-cresol, m-cresol, p-cresol, o-chloro Toluene, m-chlorotoluene, p-chlorotoluene, o-bromotoluene, m-bromotoluene, p-bromotoluene, chlorobenzene, bromobenzene, methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, etc. are included .
  • tertiary amines are preferable.
  • the catalyst include trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidine, N- Ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, isoquinoline and the like are included, and at least one catalyst selected from these is preferably used.
  • the amount of the catalyst used is preferably from 0.1 to 100 mol%, more preferably from 1 to 10 mol%, based on the tetracarboxylic dianhydride component in order to make the reaction time as short as possible.
  • M1: M2 is more preferably 0.92 to 1.08: 1.00, and further preferably 0.95 to 1.05: 1.00.
  • Polyamide acid includes silane coupling agents such as aminopropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, trimethoxyvinylsilane, trimethoxyglycidoxysilane, triazine compounds, phenanthroline compounds, triazole compounds, etc.
  • the polyamic acid may be contained in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount.
  • the polyamic acid contains these compounds, that is, the polyamic acid or the polyimide obtained from the polyamic acid is modified with the above compound, thereby further improving the adhesion between the binder and the active material or the current collector. it can.
  • the polyamic acid is modified with a silane coupling agent.
  • the silane coupling agent is preferably 3-aminopropyltrimethoxysilane or 3-glycidoxypropyltrimethoxysilane.
  • the binder resin composition may contain an alkali metal ion.
  • Alkali metal ions are required to be dispersed in polyamic acid and / or polyimide. Therefore, the alkali metal ion is preferably added as a salt of (mono) carboxylic acid when preparing the binder resin composition.
  • the binder resin composition contains alkali metal ions
  • the permeability of lithium ions to the binder obtained by curing the binder resin composition is increased. Therefore, the resistance in the obtained negative electrode for secondary batteries can be lowered.
  • the binder of the negative electrode for secondary batteries of the present invention contains a part of polyimide, the electrical resistance may be increased. Therefore, you may combine with an alkali metal ion.
  • the content of alkali metal ions contained in the binder resin composition is preferably 4 to 50 mol% with respect to 100 mol% of the tetracarboxylic dianhydride.
  • Anode mixture paste (Anode mixture paste for lithium ion secondary battery)
  • the negative electrode mixture paste for obtaining the negative electrode mixture layer of the negative electrode for secondary battery of the present invention is not only the binder resin composition and the negative electrode active material described above, but also a solvent and other components (such as a conductive auxiliary agent). May further be included.
  • a negative electrode mixture paste (a negative electrode mixture paste for a lithium ion secondary battery) will be described by taking a case where the negative electrode for a secondary battery is a negative electrode for a lithium ion secondary battery as an example. However, you may use the negative electrode for secondary batteries of this invention for the secondary battery using alkali metals other than lithium.
  • alkali metals other than lithium examples include sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), and the like.
  • Na sodium
  • K potassium
  • Rb rubidium
  • Cs cesium
  • Fr francium
  • the negative electrode for a secondary battery of the present invention may be applied to a polyvalent ion battery using an alkaline earth metal or the like.
  • Negative electrode active material The negative electrode active material is not particularly limited, and may be an active material made of a carbon material. However, the negative electrode active material may be an active material having a volume expansion coefficient greater than 110% during insertion and / or insertion of lithium ions. The volume expansion coefficient of the negative electrode active material may be 150% or more, or 200% or more. This is because the binder resin composition described above maintains good binding properties even when the volume expansion coefficient of the negative electrode active material accompanying charge / discharge is large.
  • the volume expansion coefficient of the negative electrode active material is disclosed, for example, in “Development Trends of Automotive Lithium Ion Batteries”, Kinki University Faculty of Engineering Research and Public Forum, October 27, 2010, and the like.
  • the negative electrode active material an active material containing a silicon atom, a tin atom or a germanium atom having a large charge / discharge capacity can be preferably used. More preferably, the negative electrode active material includes one or more of silicon particles, silicon oxide, and silicon alloy. Although these negative electrode active materials have a large volume change accompanying charge / discharge, they are well bound by the binder resin composition.
  • Examples of the negative electrode active material containing silicon atoms include (i) silicon fine particles, (ii) tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony or chromium, Examples include alloys with silicon, (iii) compounds of boron, nitrogen, oxygen, or carbon and silicon, and those having the metal exemplified in (ii).
  • silicon alloys or compounds include SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO x (0 ⁇ x ⁇ 2), LiSiO, or the like.
  • Examples of the negative electrode active material containing tin atoms include (i) an alloy of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony or chromium and tin, ( ii) Oxygen or a compound of carbon and tin, and those having the metal exemplified in (i).
  • Examples of tin alloys or compounds include SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, Mg 2 Sn, and the like.
  • Examples of the negative electrode active material containing germanium include germanium oxide, carbide, nitride, carbonitride, and the like.
  • the negative electrode active material may be a mixture of a negative electrode active material having a volume expansion coefficient of greater than 110% during insertion and / or insertion of lithium ions and a negative electrode active material having a volume expansion coefficient of 110% or less.
  • the volume expansion coefficient of the whole negative electrode active material may be larger than 110%.
  • Examples of the negative electrode active material having a volume expansion coefficient of 110% or less include natural graphite, artificial graphite, non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), mesocarbon microbeads, lithium titanate Is mentioned.
  • the surface of the negative electrode active material may be covered with a conductive material such as carbon or copper. Thereby, the electroconductivity of a negative electrode can be improved. Further, the surface of the negative electrode active material may be treated with a silane coupling agent or the like.
  • the average particle diameter of the negative electrode active material is preferably 0.1 to 25 ⁇ m.
  • the negative electrode mixture paste for a lithium ion secondary battery may contain a solvent.
  • a solvent will not be restrict
  • the solvent is preferably an aprotic polar solvent, and more preferably an aprotic amide solvent.
  • aprotic amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, and 1,3-dimethyl-2-imidazo Lysinone, etc. are included. These solvents may be used alone or in combination of two or more.
  • solvents may coexist as necessary.
  • examples of other solvents include benzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, 1,2,4-trimethylbenzene, o-cresol, m-cresol, p-cresol, o-chloro Toluene, m-chlorotoluene, p-chlorotoluene, o-bromotoluene, m-bromotoluene, p-bromotoluene, chlorobenzene, bromobenzene, methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, etc. are included .
  • the amount of solvent in the negative electrode mixture paste for lithium ion secondary batteries is appropriately set in consideration of the viscosity of the negative electrode mixture paste.
  • the amount of the solvent is preferably 50 to 900 parts by mass, and more preferably 65 to 500 parts by mass with respect to 100 parts by mass of the solid content contained in the negative electrode mixture paste.
  • the negative electrode mixture paste for a lithium ion secondary battery may contain a conductive aid together with the negative electrode active material.
  • the negative electrode active materials are connected to each other by making point contact. Therefore, the conductivity between the negative electrode active materials may not be sufficiently increased.
  • a conductive support agent has the function to reduce the high electrical resistance resulting from the point contact of the particles of a negative electrode active material.
  • the conductive aid can be a carbon material.
  • the carbon material is not particularly limited, but may be artificial graphite, graphite such as natural graphite, carbon fiber (carbon nanotube, vapor-grown carbon fiber, etc.), or pyrolysis of organic matter under various pyrolysis conditions. It is possible.
  • a carbon material may be used individually by 1 type, respectively, and may be used in combination of 2 or more type.
  • Thermal decomposition products of organic substances include coal-based coke; petroleum-based coke; carbides from coal-based pitch; carbides from petroleum-based pitch; or carbides obtained by oxidizing these pitches; needle coke; pitch coke; phenol resin, crystalline cellulose, etc. And carbon materials obtained by partially graphitizing them; furnace black; acetylene black; pitch-based carbon fiber; Of these, graphite is preferable, and artificial graphite, purified natural graphite, or those obtained by subjecting these graphites to various surface treatments are particularly preferable, which are produced by subjecting easy-graphite pitches obtained from various raw materials to high-temperature heat treatment. .
  • the negative electrode mixture paste for lithium ion secondary batteries may contain metal oxides such as tin oxide, sulfides and nitrides, lithium alloys such as lithium alone and lithium aluminum alloys, and the like. These may be used individually by 1 type, and may be used in combination of 2 or more types. Moreover, you may use in combination with the above-mentioned carbon material.
  • the content (mass ratio) of the conductive assistant with respect to the total amount (mass) of the solid content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more. More preferably, it is 0.1% by mass or more. Moreover, 20 mass% or less is preferable normally, More preferably, it is 10 mass% or less.
  • the negative electrode mixture paste for lithium ion secondary battery includes the binder resin composition described above or a varnish containing the binder resin, a negative electrode active material, and a conductive additive, if necessary. It can be produced by mixing a solvent or the like and stirring or kneading. Examples of the mixing method of the raw materials include the following two methods, but are not limited thereto.
  • An active material and a solvent are added to a binder resin composition for a lithium ion secondary battery or a varnish containing the binder resin composition to obtain an electrode mixture paste.
  • An active material is added and kneaded to a binder resin composition for a lithium ion secondary battery or a varnish containing the binder resin composition.
  • a solvent is added to the kneaded material obtained and stirred to obtain an electrode mixture paste.
  • the stirring may be normal stirring using a stirring blade or the like, or stirring using a rotation / revolution mixer or the like.
  • a kneader or the like can be used for the kneading operation.
  • Anode for secondary battery (Anode for lithium ion secondary battery)
  • the negative electrode for a secondary battery of the present invention may be a laminate of a current collector and a negative electrode active material layer.
  • the negative electrode for a secondary battery of the present invention is a negative electrode for a lithium ion secondary battery (a negative electrode for a lithium ion secondary battery)
  • the shape of the negative electrode for lithium ion secondary batteries is not specifically limited, For example, a sheet-like negative electrode may be sufficient.
  • a sheet-like negative electrode can be made into the structure which consists of a sheet-like collector and the negative electrode active material layer arrange
  • Negative electrode active material layer is a cured product of the electrode mixture paste for a lithium ion secondary battery described above. That is, the negative electrode active material and the binder which consists of the hardened
  • the negative electrode active material layer may further contain other components (such as a conductive aid).
  • the thickness of the negative electrode active material layer is not particularly limited and is preferably, for example, 5 ⁇ m or more, more preferably 10 ⁇ m or more. Moreover, it is preferable to set it as 200 micrometers or less, More preferably, it is 100 micrometers or less, More preferably, it is 75 micrometers or less. If the negative electrode active material layer is too thin, the practicality as an electrode is lacking due to the balance with the particle size of the active material. On the other hand, if the thickness is too thick, it may be difficult to obtain a sufficient Li storage / release function for high-density current values.
  • the ratio of the binder (mass) to the mass of all the components constituting the negative electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, and more preferably 5% by mass or more. Moreover, it is 80 mass% or less normally, Preferably it is 60 mass% or less, More preferably, it is 40 mass% or less, Most preferably, it is 20 mass% or less.
  • the ratio of the binder is too low, the negative electrode active material cannot be sufficiently retained, and the negative electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics.
  • the ratio of the binder is too high, the battery capacity and the conductivity may be reduced.
  • the material of the current collector of the negative electrode for a lithium ion secondary battery is made of metal materials such as silicon and / or silicon alloys, tin and alloys thereof, silicon-copper alloys, copper, nickel, stainless steel, nickel-plated steel, Carbon materials such as carbon cloth and carbon paper.
  • the shape of the current collector of the negative electrode for a lithium ion secondary battery is a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, etc. in the case of a metal material; in the case of a carbon material, a carbon plate, a carbon thin film, carbon It can be a cylinder or the like.
  • the thickness of the current collector is not particularly limited, but is usually, for example, 5 ⁇ m to 30 ⁇ m, and preferably 9 to 20 ⁇ m.
  • a negative electrode for a lithium ion secondary battery is obtained by applying the above-described negative electrode mixture paste for a lithium ion secondary battery to a current collector, and heating and curing the paste. It is obtained by doing. More specifically, a step of applying a negative electrode mixture paste for a lithium ion secondary battery including the binder resin composition and the negative electrode active material described above is performed, and then in the negative electrode mixture paste for a lithium ion secondary battery It is obtained by performing a step of curing the binder resin composition.
  • Application of the negative electrode mixture paste for a lithium ion secondary battery can be performed by methods such as screen printing, roll coating, and slit coating.
  • a mesh-like active material layer can be formed by applying a negative electrode mixture paste for a lithium ion secondary battery in a pattern.
  • the heat curing of the negative electrode mixture paste for a lithium ion secondary battery can usually be performed under atmospheric pressure, but may be performed under pressure or under vacuum.
  • the atmosphere at the time of heating and drying is not particularly limited, but is usually preferably performed in an atmosphere of air, nitrogen, helium, neon, argon, or the like, and more preferably in an atmosphere of nitrogen or argon as an inert gas.
  • the heating temperature in the heat curing of the negative electrode mixture paste for a lithium ion secondary battery containing a binder resin composition containing a polyamic acid is such that the imidization ratio of polyamic acid and / or polyimide in the binder of the negative electrode mixture layer is It is preferable to adjust so that it may be 20% or more and 70% or less.
  • the heating temperature and heating temperature of the negative electrode mixture paste for lithium ion secondary batteries are preferably 170 ° C. to 230 ° C. for 1 minute to 20 hours, more preferably It is preferable that the temperature is 170 to 200 ° C. for 1 minute to 1 hour.
  • a heating temperature other than the above may be used.
  • heat treatment may be performed at 140 ° C. to 270 ° C. for 0.5 minutes to 24 hours.
  • a reliable negative electrode can be obtained by performing a ring-closing reaction of polyamic acid, which is a polyimide precursor, to polyimide. Further, it may be carried out at 170 ° C. to 250 ° C. for 1 minute to 20 hours.
  • Lithium ion secondary battery The basic configuration of the lithium ion secondary battery of the present invention is the same as that of a conventionally known lithium ion secondary battery.
  • a typical lithium ion secondary battery includes a pair of electrodes (a negative electrode and a positive electrode) capable of inserting and extracting lithium ions, a separator, and an electrolyte.
  • Negative electrode The negative electrode in the lithium ion secondary battery of the present invention is the above-described negative electrode for a lithium ion secondary battery.
  • the positive electrode can be a laminate in which a current collector and a positive electrode active material layer are laminated.
  • a current collector As the material for the current collector of the positive electrode, metal materials such as aluminum, stainless steel, nickel plating, titanium and tantalum, and carbon materials such as carbon cloth and carbon paper are usually used. Of these, metal materials are preferable, and aluminum is particularly preferable.
  • As the shape of the current collector in the case of a metal material, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, etc., a carbon material, a carbon plate, a carbon thin film, A carbon cylinder etc. are mentioned. Among these, metal thin films are preferable because they are currently used in industrialized products. In addition, you may form a thin film suitably in mesh shape.
  • the positive electrode current collector is a thin film
  • its thickness is arbitrary, but it is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more. Moreover, it is 100 mm or less normally, Preferably it is 1 mm or less, More preferably, it is 50 micrometers or less. If the thickness is less than the above range, the strength required for the current collector may be insufficient. On the other hand, if it is thicker than the above range, the handleability may be impaired.
  • the positive electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium, and may be a positive electrode active material usually used in lithium ion secondary batteries.
  • lithium-manganese composite oxide such as LiMn 2 O 4
  • lithium-nickel composite oxide such as LiNiO 2
  • lithium-cobalt composite oxide such as LiCoO 2
  • lithium-iron composite oxide such as LiFeO 2 etc.
  • lithium-nickel-manganese composite oxide LiNi 0.5 Mn 0.5 O 2 etc.
  • lithium-nickel-cobalt composite oxide LiNi 0.8 Co 0.2 O 2 etc.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is usually 10% by mass or more, preferably 30% by mass or more, and more preferably 50% by mass or more. Moreover, it is 99.9 mass% or less normally, Preferably it is 99 mass% or less.
  • the binder resin for binding the positive electrode active material may be a cured product (polyamic acid and / or polyimide) of the above-described binder resin composition, but a known binder resin may be arbitrarily selected and used.
  • known binder resins include inorganic compounds such as silicate and water glass, Teflon (registered trademark), polyvinylidene fluoride, and polymers having no unsaturated bond.
  • the lower limit of the weight average molecular weight of these polymers is usually 10,000, preferably 100,000, and the upper limit is usually 3 million, preferably 1 million.
  • the ratio of the binder resin (mass) to the mass of all the components constituting the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, and more preferably 5% by mass or more. Moreover, it is 80 mass% or less normally, Preferably it is 60 mass% or less, More preferably, it is 40 mass% or less, Most preferably, it is 10 mass% or less.
  • the ratio of the binder resin is too low, the positive electrode active material cannot be sufficiently retained, and the mechanical strength of the positive electrode is insufficient, which may deteriorate battery performance such as cycle characteristics.
  • the ratio of binder resin is too high, there exists a possibility of leading to a battery capacity and electroconductivity fall.
  • the positive electrode active material layer may contain a conductive material in order to improve the conductivity of the electrode.
  • the conductive agent is not particularly limited as long as it can be mixed with an active material in an appropriate amount to impart conductivity, but is usually carbon powder such as acetylene black, carbon black, and graphite, various metal fibers, powder, and foil. Etc.
  • the thickness of the positive electrode active material layer is usually about 10 to 200 ⁇ m.
  • the positive electrode is obtained by forming a film of a binder resin composition containing a positive electrode active material and the binder resin on a current collector.
  • the positive electrode active material layer is usually formed by pressing a positive electrode material, a binder resin, and, if necessary, a conductive material and a thickener in a dry form into a sheet, and then pressing the positive electrode current collector on the positive electrode current collector.
  • these materials are prepared by dissolving or dispersing them in a liquid medium to form a paste, and applying and drying the positive electrode current collector.
  • the positive electrode active material layer obtained by applying the paste to the positive electrode current collector and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material.
  • a positive electrode active material, a binder resin, and a conductive material and a thickener that can be used as necessary can be dissolved or dispersed in the solvent, in particular.
  • the liquid medium may be either an aqueous solvent or an organic solvent.
  • aqueous solvent examples include water and alcohol.
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N , N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF), toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, etc. be able to.
  • a dispersant is added together with a thickener, and a paste is formed using a latex such as SBR.
  • these solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • a separator is disposed between the positive electrode and the negative electrode. Thereby, a short circuit between the electrodes is prevented.
  • the separator is usually a porous body such as a porous film or a nonwoven fabric.
  • the porosity of the separator is appropriately set according to the permeability of electrons and ions, the material of the separator, and the like, but generally it is preferably 30 to 80%.
  • the separator for example, a microporous film having excellent ion permeability, a glass fiber sheet, a nonwoven fabric, a woven fabric, or the like is used. Also, from the viewpoint of organic solvent resistance and hydrophobicity, as a material for the separator, polypropylene, polyethylene, polyphenylene sulfide, polyethylene terephthalate, polyethylene naphthalate, polymethylpentene, polyamide, polyimide, or the like is used. These may be used alone or in combination of two or more.
  • polypropylene is used, but when reflow resistance is imparted to a lithium ion secondary battery, among these, polypropylene sulfide, polyethylene terephthalate, polyamide, polyimide, etc. having a heat distortion temperature of 230 ° C. or higher should be used. Is preferred.
  • the thickness of the separator is, for example, 10 to 300 ⁇ m.
  • the electrolytic solution of the lithium ion secondary battery can be a non-aqueous electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent. Further, it may be a gel, rubber, or solid sheet obtained by adding an organic polymer compound or the like to this non-aqueous electrolyte solution.
  • the non-aqueous electrolyte includes a lithium salt and a non-aqueous solvent.
  • the lithium salt can be appropriately selected from known lithium salts. For example, halides such as LiCl and LiBr; perhalogenates such as LiClO 4 , LiBrO 4 and LiClO 4 ; inorganic fluoride salts such as LiPF 6 , LiBF 4 and LiAsF 6 ; lithium bis (oxalatoborate) LiBC 4 O Inorganic lithium salts such as 8 ; perfluoroalkane sulfonates such as LiCF 3 SO 3 and LiC 4 F 9 SO 3 ; perfluoroalkane sulfonic acid imides such as Li trifluorosulfonimide ((CF 3 SO 2 ) 2 NLi) And fluorine-containing organic lithium salts such as salts; Lithium salts may be used alone or in combination of two or more.
  • non-aqueous solvents examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl Chain carbonates such as methyl carbonate (EMC) and dipropyl carbonate (DPC); Aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate, and ethyl propionate; ⁇ -lactones such as ⁇ -butyrolactone Chain ethers such as 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE) and ethoxymethoxyethane (EME); cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; Sid, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane,
  • organic polymer compounds include polyether polymer compounds such as polyethylene oxide and polypropylene oxide; crosslinked polymers of polyether polymer compounds; vinyl alcohol polymers such as polyvinyl alcohol and polyvinyl butyral.
  • Compound Insolubilized product of vinyl alcohol polymer compound; Polyepichlorohydrin; Polyphosphazene; Polysiloxane; Vinyl polymer compound such as polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile; Poly ( ⁇ -methoxyoligooxyethylene methacrylate), Examples thereof include polymer copolymers such as poly ( ⁇ -methoxyoligooxyethylene methacrylate-co-methyl methacrylate) and poly (hexafluoropropylene-vinylidene fluoride).
  • the electrolytic solution may further contain a film forming agent.
  • a film forming agent include vinylene carbonate, vinyl ethylene carbonate, vinyl ethyl carbonate, methyl phenyl carbonate and other carbonate compounds, fluoroethylene carbonate, difluoroethylene carbonate, trifluoromethyl ethylene carbonate, bis (trifluoromethyl) ethylene carbonate.
  • the content thereof is usually 10% by mass or less, particularly 8% by mass or less, and more preferably 5% by mass with respect to the total amount (mass) of the components of the electrolytic solution. In the following, it is particularly preferably 2% by mass or less. If the content of the film forming agent is too large, other battery characteristics such as an increase in initial irreversible capacity, low temperature characteristics, and deterioration in rate characteristics of the lithium ion secondary battery may be adversely affected.
  • Form of lithium ion secondary battery The form of the lithium ion secondary battery of the present invention is not particularly limited. Examples of the form of the lithium ion secondary battery include a cylinder type in which the sheet electrode and the separator are spiral, a cylinder type having an inside-out structure in which the pellet electrode and the separator are combined, a coin type in which the pellet electrode and the separator are stacked, and the like. It is done. Moreover, it is good also as arbitrary shapes, such as a coin type
  • the procedure for assembling the lithium ion secondary battery is not particularly limited, and may be assembled by an appropriate procedure according to the structure of the battery.
  • a negative electrode is placed on an outer case, an electrolyte and a separator are provided on the outer case, and a positive electrode is placed so as to face the negative electrode.
  • the battery is then caulked together with a gasket and a sealing plate.
  • NMP N-methyl-2-pyrrolidone BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • DABA 4,4′-diaminobenzanilide
  • TPE-R 1,3-bis (4- Aminophenoxy) benzene
  • pPD paraphenylenediamine
  • mBP 4,4′-bis (3-aminophenoxy) biphenyl
  • ODA 4,4′-diaminodiphenyl ether
  • APB 1,3-bis (3-aminophenoxy) benzene
  • the characteristics measurement method used is shown below.
  • the imidization ratio of polyamic acid and / or polyimide contained in the electrode binder was measured by a microscopic FT-IR / transmission method using an evaluation electrode. From the peak intensity ratio of the absorption derived from the imide near 1370 cm ⁇ 1 and the absorption derived from the benzene ring at 1515 to 1480 cm ⁇ 1 , the peak intensity of the polyimide film having the same structure (film thickness 15 ⁇ m to 25 ⁇ m) heat-treated at 330 ° C. for 2 hours The ratio was calculated at 100%.
  • Example 1 Evaluation of Binder Properties A varnish of the binder resin composition 1 was cast on a glass substrate using a doctor blade. This was transferred to an oven, heated from 50 ° C. to 170 ° C. in a nitrogen stream over 2 hours, and then kept at 170 ° C. for 2 hours to obtain a film having a thickness of 20 ⁇ m having self-supporting properties. CTE and electrolyte solution swelling degree evaluation were performed using the said film. The results are shown in Table 1.
  • Imidation rate evaluation A negative electrode mixture paste was prepared so that the Si active material (made by High Purity Chemical Laboratory, particle size 5 ⁇ m) and the binder resin composition had a mass ratio of 90:10.
  • the electrode for evaluation was produced by coating and heat-processing at 170 degreeC for 10 minute (s).
  • the imidation ratio of the polyamic acid and / or polyimide in the binder of the negative electrode active material layer was evaluated using the electrode. The results are shown in Table 1.
  • Electrode characteristic evaluation ⁇ Preparation of negative electrode> A binder resin composition 2 containing 10 parts by mass of polyamic acid and / or polyimide and 3 parts by mass of a conductive additive (manufactured by Showa Denko, VGCF-H) are mixed with a battery compound stirrer (Primix Co., Ltd., TK The mixture was kneaded using Hibismix Model 2P-03). To the obtained paste, 87 parts by mass of silicon oxide (manufactured by Shin-Etsu Chemical Co., Ltd., KSC-1064) was added and further kneaded to prepare a negative electrode mixture paste.
  • the negative electrode mixture paste was applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and heat-treated at 170 ° C. for 10 minutes in a nitrogen atmosphere.
  • the negative electrode sheet 1 was produced by curing.
  • the mass of the negative electrode active material layer after drying was 2.15 mg / cm 2 per unit area.
  • TK Hibismix Model 2P-03 manufactured by Primics
  • a coin cell was prepared in order to evaluate the battery characteristics of the battery including the negative electrode.
  • As the electrodes a negative electrode having a diameter of 14.5 mm ⁇ and a positive electrode having a diameter of 13 mm ⁇ were used.
  • the electrolyte used was a solution of LiPF 6 dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and methyl ethyl carbonate (volume ratio 3: 7 mixture), and a porous polypropylene having a diameter of 16 mm ⁇ and a film thickness of 25 ⁇ m.
  • a membrane was used. Using this coin cell, the discharge capacity retention rate after 100 cycles was evaluated. The results are shown in Table 1.
  • Example 2 The negative electrode mixture paste described in Example 1 was applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and 200 ° C. and 10 ° C. in a nitrogen atmosphere. A negative electrode sheet was prepared by performing heat treatment for 5 minutes to cure. Using this negative electrode, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • Example 3 A negative electrode mixture paste was prepared in the same manner as in Example 1 except that the binder resin composition 2 was changed to a binder resin composition. And it apply
  • Example 4 The negative electrode mixture paste described in Example 3 was applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and 230 ° C. and 10 ° C. in a nitrogen atmosphere. A negative electrode sheet was prepared by performing heat treatment for 5 minutes to cure. Using this negative electrode, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • Example 5 A negative electrode mixture paste was prepared in the same manner as in Example 1 except that the binder resin composition 3 was changed to a binder resin composition. And it apply
  • Example 6 The negative electrode mixture paste described in Example 1 was applied to a copper foil (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) as a current collector using an applicator, and 170 ° C. for 10 minutes in the atmosphere. A negative electrode sheet was prepared by heat treatment and curing. And using the said negative electrode sheet, the coin cell produced similarly to Example 1 was left to stand at 25 degreeC for 24 hours, Then, it charged until it became 4.2V with the measurement temperature of 55 degreeC and the current density of 0.05C. Thereafter, the battery was discharged to 2.3 V at a current density of 0.05C.
  • a copper foil rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m
  • a negative electrode sheet was prepared by heat treatment and curing. And using the said negative electrode sheet, the coin cell produced similarly to Example 1 was left to stand at 25 degreeC for 24 hours, Then, it charged until it became 4.2V with the measurement temperature of 55 degreeC and the current density of
  • the battery was charged at a current density of 1C until it reached 4.2V, and further charged at a constant voltage of 4.2V until the current density reached 0.05C. Thereafter, the battery was discharged to 2.3 V at a current density of 1C. Charging / discharging was performed under the above conditions, and the discharge capacity retention rate after 100 cycles was calculated as described above. Table 2 shows the discharge capacity and the discharge capacity retention rate.
  • Example 1 The negative electrode mixture paste described in Example 1 was applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and 120 ° C. and 10 ° C. in a nitrogen atmosphere. A negative electrode sheet was prepared by performing heat treatment for 5 minutes to cure. Using this negative electrode sheet, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • Example 2 The negative electrode mixture paste described in Example 1 was applied to a copper foil as a current collector (rolled copper foil manufactured by Nippon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and 250 ° C. and 10 ° C. in a nitrogen atmosphere. A negative electrode sheet was prepared by performing heat treatment for 5 minutes to cure. Using this negative electrode sheet, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • Example 3 The negative electrode mixture paste described in Example 1 was applied to a copper foil as a current collector (rolled copper foil manufactured by Nippon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and 350 ° C. and 10 ° C. in a nitrogen atmosphere. A negative electrode sheet was prepared by performing heat treatment for 5 minutes to cure. Using this negative electrode sheet, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • Example 4 The electrode paste described in Example 3 was applied to a copper foil as a current collector (rolled copper foil manufactured by Nippon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and heat treated at 270 ° C. for 10 minutes in a nitrogen atmosphere. And was cured to prepare a negative electrode sheet. Using this negative electrode sheet, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • a negative electrode mixture paste was prepared in the same manner as in Example 1 except that the binder resin composition 6 was changed to a binder resin composition.
  • This negative electrode mixture paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and heat-treated at 170 ° C. for 10 minutes in a nitrogen atmosphere. And cured to prepare a negative electrode sheet.
  • a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • a negative electrode mixture paste was prepared in the same manner as in Example 1 except that the binder resin composition 7 was used for the binder resin composition.
  • This negative electrode mixture paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and heat-treated at 170 ° C. for 10 minutes in a nitrogen atmosphere. And cured to prepare a negative electrode sheet. Using this negative electrode sheet, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • a negative electrode mixture paste was prepared in the same manner as in Example 1 except that the binder resin composition 4 was used for the binder resin composition.
  • This negative electrode mixture paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and heat-treated at 170 ° C. for 10 minutes in a nitrogen atmosphere. And cured to prepare a negative electrode sheet. Using this negative electrode sheet, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • a negative electrode mixture paste was prepared in the same manner as in Example 1 except that the binder resin composition 5 was used for the binder resin composition.
  • This negative electrode mixture paste is applied to a copper foil as a current collector (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) using an applicator, and heat-treated at 170 ° C. for 10 minutes in a nitrogen atmosphere. And cured to prepare a negative electrode sheet. Using this negative electrode sheet, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The results are shown in Table 1.
  • Example 9 The negative electrode mixture paste described in Example 1 was applied to a copper foil (rolled copper foil manufactured by Nihon Foil Co., Ltd., thickness: 18 ⁇ m) as a current collector using an applicator, and 350 ° C. for 10 minutes in the air. A negative electrode sheet was prepared by heat treatment and curing. Using this negative electrode sheet, a battery was produced in the same manner as in Example 1, and the battery characteristics were evaluated in the same manner as in Example 6. The results are shown in Table 2.
  • Table 1 shows the results of the charge / discharge cycle test for the negative electrode heat-treated in a nitrogen atmosphere (Examples 1 to 5 and Comparative Examples 1 to 8).
  • Table 2 shows the results of the charge / discharge cycle test for the negative electrode heat-treated in the atmosphere (Example 6 and Comparative Example 9).
  • the polyamide in the binder of the negative electrode mixture layer of the negative electrode for a secondary battery has a thermal expansion coefficient in the range of -15 ppm to 15 ppm when the binder resin composition is cured at 170 ° C. to form a film having a thickness of 20 ⁇ m.
  • the imidization rate of the acid and / or polyimide is 20 to 70% (Examples 1 to 5)
  • the discharge capacity retention rate is very high, for example, compared with Comparative Example 1 having a low imidation rate. As a result, the value was nearly doubled.
  • the thermal expansion coefficient exceeds 15 ppm, the discharge capacity retention rate at high temperatures decreases, whereas when the thermal expansion coefficient is in the range of ⁇ 15 ppm to 15 ppm, the discharge capacity retention rate at high temperatures is difficult to decrease. It was. It is presumed that the active material can be sufficiently bound by the binder (polyamide acid and / or polyimide), and it is difficult for the active material to be detached.
  • the polyamide in the binder of the negative electrode mixture layer of the negative electrode for a secondary battery has a thermal expansion coefficient in the range of -15 ppm to 15 ppm when the binder resin composition is cured at 170 ° C. to form a film having a thickness of 20 ⁇ m.
  • the imidization rate of the acid and / or polyimide was 20 to 70% (Example 6)
  • the discharge capacity at 100 cycles was higher than that of Comparative Example 9 having a high imidization rate.
  • the copper foil was colored, whereas in Example 6, the copper foil was not colored.
  • the negative electrode for a secondary battery of the present invention can be produced even at a relatively low temperature of about 200 ° C., and exhibits good cycle characteristics when a lithium ion secondary battery is formed. Therefore, the lithium ion secondary battery using the said secondary battery negative electrode is applicable to various uses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、200℃程度の比較的低温でも製造可能であり、リチウムイオン二次電池に適用した際に、良好なサイクル特性を示す二次電池用負極を得ることを課題とする。 当該課題を解決するため、ジアミン化合物とテトラカルボン酸二無水物との反応によって得られるポリアミド酸及び/またはポリイミドを50質量%以上含有するバインダー樹脂組成物の硬化物からなるバインダーを含む負極活物質層を有する二次電池用負極とする。また、バインダー中のポリアミド酸及び/またはポリイミドのイミド化率を20%以上70%以下とする。さらに、バインダー樹脂組成物を170℃で1時間熱処理して得られる膜厚20μmのフィルムの、50℃~100℃における熱膨張係数を-15ppm以上15ppm以下とする。

Description

二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池
 本発明は、二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池に関する。
 リチウムイオン二次電池の負極活物質として、炭素材料の理論容量を大きく超える充放電容量を有する次世代の負極活物質の開発が進められている。特に、ケイ素原子やスズ原子等を用いた負極活物質は、大きな充放電容量を有するため、実用化が期待されている。しかしながら、ケイ素原子やスズ原子はリチウムイオンの吸蔵・放出に伴う体積変化が非常に大きく、充放電サイクルに伴い、膨張、収縮を繰り返す傾向がある。
 したがって、ポリフッ化ビニリデンなどを負極活物質層のバインダーとして用いた従来の二次電池用負極では、負極活物質が微粉化したりバインダーから脱離したりしやすい。負極活物質の微粉化や脱離が生じると、リチウムイオン二次電池のサイクル劣化が生じやすいという欠点がある。
 一方、リチウムイオン二次電池において、短時間に充放電を行うと、急激なイオンの移動によりリチウムイオン二次電池の温度が上昇しやすい。したがって、負極活物質層のバインダーには、耐熱性が求められており、例えば、機械強度と耐熱性に優れるポリイミドを負極活物質層のバインダーに適用することが提案されている(特許文献1)。
特開2011-216320号公報
 しかしながら、従来のポリイミドを負極活物質層のバインダーとする場合、電極(負極)作製の際に極めて高温に加熱する必要があり、特別な装置や環境が必要であった。そこで、ポリフッ化ビニリデンやゴム系樹脂などのバインダーと同程度の温度、つまり比較的低温での加熱処理によって、電極を製造可能なポリイミドの提供が望まれている。また近年、電池用の集電体(銅箔など)の極薄化が進んでおり、集電体として、厚さが10μm以下のものが使用されるようになってきている。そのため、電極の製造過程で集電体が高温に曝されると、得られる電極の機械強度が大幅に低下するなどの問題も生じやすい。したがって、200℃程度の比較的低温でも熱処理にて製造可能な二次電池用の負極の提供が望まれている。
 すなわち、本発明の目的は、200℃程度の比較的低温でも製造可能であり、リチウムイオン二次電池に適用した際に、良好なサイクル特性を示す二次電池用負極を得ることにある。
 本発明は、次の[1]~[5]に関する。
 [1]ジアミン化合物とテトラカルボン酸二無水物との反応によって得られるポリアミド酸及び/またはポリイミドを50質量%以上含有するバインダー樹脂組成物の硬化物からなるバインダーを含む負極活物質層を有し、前記バインダー中のポリアミド酸及び/またはポリイミドのイミド化率が20%以上70%以下であり、前記バインダー樹脂組成物を170℃で1時間熱処理して得られる膜厚20μmのフィルムの、50℃~100℃における熱膨張係数が-15ppm以上15ppm以下である、二次電池用負極。
 [2]前記フィルムをエチレンカーボネート及びメチルエチルカーボネートを質量比3:7で混合した溶液に浸漬して、60℃で1日保管したあとの重量上昇率が、10%未満である、[1]に記載の二次電池用負極。
 [3]前記ジアミン化合物が、下記化学式で表される化合物(A)~(C)からなる群から選ばれる少なくとも1種の化合物を、前記ジアミン化合物の総量に対して、50モル%以上100モル%以下含む、[1]または[2]に記載の二次電池用負極。
Figure JPOXMLDOC01-appb-C000001
(化学式(A)~(C)中、nは1~3の整数を表し、
 Xは水素、炭素数1~3のアルキル基、炭素数1~3のフルオロアルキル基、炭素数1~3のアルコキシル基、トリメチルシリル基、フェニル基、OH、COOH、NO、CN、F、Cl、BrまたはIを表し、
 Yは単結合、-C(CH-、-C(CF-、-O-、-SO-、-CO-、-CH-、-CF-、または、-Si(CH-を表す。)
 [4]ジアミン化合物とテトラカルボン酸二無水物との反応によって得られるポリアミド酸及び/またはポリイミドを50質量%以上含有するバインダー樹脂組成物を含む負極合材ペーストを集電体に塗布する工程と、前記バインダー樹脂組成物を120℃~230℃で加熱硬化させる工程と、を含み、前記バインダー樹脂組成物は、前記バインダー樹脂組成物を170℃で1時間熱処理して得られる膜厚20μmのフィルムの、50℃~100℃における熱膨張係数が-15ppm以上15ppm以下である、二次電池用負極の製造方法。
 [5]リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解液を備えたリチウムイオン二次電池であって、前記負極が、[1]~[3]のいずれかに記載の二次電池用負極である、リチウムイオン二次電池。
 本発明の二次電池用負極は、200℃程度の比較的低温でも製造が可能であり、リチウムイオン二次電池に適用した際に、良好なサイクル特性を示す。
 本発明の二次電池用負極の負極活物質層は、ポリアミド酸及び/またはポリイミドを含むバインダー樹脂組成物の硬化物からなるバインダーを含む。本発明の二次電池用負極は、負極活物質層のバインダー以外の成分や構成は特に制限されない。以下、負極活物質層のバインダーを得るためのバインダー樹脂組成物について説明し、その後、二次電池用負極や、これを用いたリチウムイオン二次電池について、説明する。
 1.ポリアミド酸及び/またはポリイミドを含むバインダー樹脂組成物
 本発明の二次電池用負極の負極活物質層は、ポリアミド酸及び/またはポリイミドを含むバインダー樹脂組成物の硬化物を含む。なお、バインダー樹脂組成物が含むポリイミドは、ポリアミド酸と対応する、つまりポリアミド酸がイミド化されたものである。
 本発明の二次電池用負極の負極活物質層のバインダーは、バインダー樹脂組成物の硬化物を含む。そして、当該バインダー中では、ポリアミド酸及び/またはポリイミドのイミド化率が20%以上90%以下であることが好ましく、20%以上70%以下であることがより好ましく、20%以上60%以下であることがさらに好ましく、20%以上50%以下であることが特に好ましい。
 また、バインダー樹脂組成物を170℃で1時間熱処理して得られる膜厚20μmのフィルムの50℃~100℃における熱膨張係数は、-30ppm以上35ppm以下であることが好ましく、-20ppm以上20ppm以下であることが好ましく、-15ppm以上15ppm以下であることがさらに好ましく、-12ppm以上10ppm以下であることが特に好ましい。
 また、バインダー樹脂組成物を170℃で1時間熱処理して得られる、膜厚15μm~25μmのフィルムの50℃から100℃における熱膨張係数も、-30ppm以上35ppm以下であることが好ましく、-20ppm以上20ppm以下であることがより好ましく、-15ppm以上15ppm以下であることがさらに好ましい。なお、当該特定は、フィルムの膜厚が15μm~25μmの範囲内のいずれの膜厚においても、フィルムの熱膨張係数が上記範囲を満たすことを意味する。また、上記熱膨張係数は、熱分析装置により、昇温速度5℃/分でフィルムの温度を50℃から100℃まで昇温させたときに測定される値である。
 本発明の二次電池用負極において、バインダー(バインダー樹脂組成物の硬化物)中のポリアミド酸及び/またはポリイミドのイミド化率が上記範囲であり、さらにバインダー樹脂組成物から特定の条件で得られるフィルムの熱膨張係数が上記範囲であると、バインダーの電解液に対する耐膨潤性が十分高くなり、電池系内においてバインダーの結着性が低下し難くなる。したがって、当該二次電池用負極を用いたリチウムイオン二次電池では、長期サイクルに亘り容量を維持することができる。
 ポリイミドはリチウムイオンを捕捉するため、ポリイミドを負極活物質層のバインダーに用いた場合、電池容量が低下することが知られている。これに対し、上述のように、バインダー中のポリアミド酸及び/またはポリイミドのイミド化率が20%以上90%以下、特に20%以上70%以下であると、リチウムイオンの捕捉を低減でき、初回充放電効率を高くすることができる。バインダー中のポリアミド酸及び/またはポリイミドのイミド化率は、赤外分光光度計(IR)や、X線光電子分光法(XPS)、X線吸収分光法(XAFS)、X線吸収端微細構造(NEXAFS)、昇温脱離ガス分析装置(TDS-MS)による縮合水の定量測定等で定量することができる。
 なお、上記バインダ樹脂組成物は、バインダー樹脂組成物を170℃で1時間熱処理して得られる膜厚20μmのフィルムをエチレンカーボネート及びメチルエチルカーボネートを質量比3:7で混合した溶液に浸漬して、60℃で1日保管したあとの重量上昇率は10%未満であることが好ましく、6%未満であることがさらに好ましい。重量上昇率が上記範囲であると、バインダー樹脂組成物を硬化して得られるバインダーの電解液に対する耐膨潤性が十分に高くなり、二次電池系内においてバインダーの結着性が低下せず、長期サイクルに亘り容量を維持することができる。
 上記バインダー樹脂組成物に含まれるポリアミド酸及び/またはポリイミドは、ジアミン化合物由来のジアミン単位と、テトラカルボン酸二無水物由来のテトラカルボン酸二無水物単位とを有する。以下、これらのジアミン単位及びテトラカルボン酸二無水物単位について説明する。
 1-1.ジアミン単位
 ポリアミド酸またはポリイミドを構成するジアミン単位を得るためのジアミン化合物は、前述のフィルムを作製した際に、フィルムの熱膨張係数が上記範囲となるものであれば特に制限されない。ジアミン化合物は、下記化学式で表される化合物(A)~(C)からなる群から選ばれる少なくとも1種の化合物を、ジアミン化合物の総量に対して、50モル%以上100モル%以下含むことが好ましく、75モル%超100モル%以下であることがより好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記化学式(A)~(C)中、nは1~3の整数を表す。
 また、Xは水素、炭素数1~3のアルキル基、炭素数1~3のフルオロアルキル基、炭素数1~3のアルコキシル基、トリメチルシリル基、フェニル基、OH、COOH、NO、CN、F、Cl、BrまたはIを表す。
 Yは単結合、-C(CH-、-C(CF-、-O-、-SO-、-CO-、-CH-、-CF-、または-Si(CH-を表す。
 ジアミン化合物は、上記化学式(A)~(C)で表される化合物を一種のみ含んでもよく、二種以上含んでもよい。ジアミン化合物が、上記化合物を二種以上含む場合、これらの総量が、ジアミン化合物の総量に対して、50モル%以上100モル%以下であることが好ましい。また特に、ジアミン化合物は、4,4’-ジアミノベンズアニリド及び/またはp-フェニレンジアミンを、50モル%以上100モル%以下で含むことが好ましい。
 ジアミン化合物は、上記化学式(A)~(C)で表される化合物以外のジアミン化合物を含んでもよい。その他のジアミン化合物の例には、以下のジアミン化合物が含まれる。
 ジアミン化合物の第一の例は、ベンゼン環を有するジアミンである。ベンゼン環を有するジアミンの例には、以下の<1>~<6>が含まれる。
 <1>m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミンなどのベンゼン環を1つ有するジアミン;
 <2>3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2-ジ(3-アミノフェニル)プロパン、2,2-ジ(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2,2-ジ(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ジ(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,1-ジ(3-アミノフェニル)-1-フェニルエタン、1,1-ジ(4-アミノフェニル)-1-フェニルエタン、1-(3-アミノフェニル)-1-(4-アミノフェニル)-1-フェニルエタン、1,5’-ジアミノナフタレンなどのベンゼン環を2つ有するジアミン;
 <3>1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノベンゾイル)ベンゼン、1,3-ビス(4-アミノベンゾイル)ベンゼン、1,4-ビス(3-アミノベンゾイル)ベンゼン、1,4-ビス(4-アミノベンゾイル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジメチルベンジル)ベンゼン、1,3-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,3-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(3-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、1,4-ビス(4-アミノ-α,α-ジトリフルオロメチルベンジル)ベンゼン、2,6-ビス(3-アミノフェノキシ)ベンゾニトリル、2,6-ビス(3-アミノフェノキシ)ピリジンなどのベンゼン環を3つ有するジアミン;
 <4>4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン環を4つ有するジアミン;
 <5>1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼンなどのベンゼン環を5つ有するジアミン;
 <6>4,4’-ビス[4-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’-ビス[4-(4-アミノフェノキシ)フェノキシ]ジフェニルスルホンなどのベンゼン環を6つ有するジアミンが含まれる。
 他のジアミン化合物の第二の例には、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノンなどの芳香族置換基を有するジアミンが含まれる。
 他のジアミン化合物の第三の例には、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダンなどのスピロビインダン環を有するジアミンが含まれる。
 他のジアミン化合物の第四の例には、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノブチル)ポリジメチルシロキサンなどのシロキサンジアミン類が含まれる。
 他のジアミン化合物の第五の例には、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテル、ビス(2-アミノメトキシ)エチル]エーテル、ビス[2-(2-アミノエトキシ)エチル]エーテル、ビス[2-(3-アミノプロトキシ)エチル]エーテル、1,2-ビス(アミノメトキシ)エタン、1,2-ビス(2-アミノエトキシ)エタン、1,2-ビス[2-(アミノメトキシ)エトキシ]エタン、1,2-ビス[2-(2-アミノエトキシ)エトキシ]エタン、エチレングリコールビス(3-アミノプロピル)エーテル、ジエチレングリコールビス(3-アミノプロピル)エーテル、トリエチレングリコールビス(3-アミノプロピル)エーテルなどのエチレングリコールジアミン類が含まれる。
 他のジアミン化合物の第六の例には、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどのアルキレンジアミン類が含まれる。
 他のジアミン化合物の第七の例には、シクロブタンジアミン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン(オキサノルボルナンジアミンを含む)、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロヘキシル)イソプロピリデンなどが含まれる。
 他のジアミン化合物の第八の例には、下記化学式で表される脂環構造ジアミン類が含まれる。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(I)及び(II)において、n及びmは、それぞれ独立して0または1を表す。
 -X-は、直結、-O-、-S-、-SO-、-CO-、-CH-から選ばれる二価の基を表す。なお、本発明で「直結」とはシクロヘキサン環同士、あるいはノルボルナン環同士が直接共有結合している結合形態として定義される。
 一般式(I)で表されるジアミンは、シクロヘキサンジアミン(m=n=0)であるか、ビスアミノメチルシクロヘキサン(m=1,n=0)であることが好ましく、ビスアミノメチルシクロヘキサンであることがより好ましく、1,4-ビスアミノメチルシクロヘキサンであることがさらに好ましい。
 一般式(II)で表されるジアミンは、ノルボルナンジアミン(m=n=0)であるか、ビスアミノメチルノルボルナン(m=1,n=0)であることが好ましく、ビスアミノメチルノルボルナンであることがより好ましく、2,5-ビスアミノメチルノルボルナン、2,6-ビスアミノメチルノルボルナンであることがさらに好ましい。
 1-2.テトラカルボン酸二無水物単位
 ポリアミド酸及び/またはポリイミドの構成単位となるテトラカルボン酸二無水物単位は、特に制限されない。テトラカルボン酸二無水物単位は、例えば、下記一般式(III)に示されるような、炭素数4~27である4価の有機置換基Yを有するテトラカルボン酸二無水物由来の構成単位でありうる。
Figure JPOXMLDOC01-appb-C000004
 有機置換基Yは、単環式芳香族基、縮合多環式芳香族基、または芳香族基が直接もしくは連結基を介して相互に連結された非縮合多環式芳香族基などでありうる。また、非縮合多環式芳香族基であってもよい。有機置換基Yの炭素数は、6~27であることが好ましい。
 一般式(III)で表されるテトラカルボン酸二無水物は特に限定されず、ジアミンと反応してポリアミド酸、ひいてはポリイミドを製造できればよく、例えば芳香族テトラカルボン酸二無水物または脂環族テトラカルボン酸二無水物でありうる。
 芳香族テトラカルボン酸二無水物の例には、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2-ビス[(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)スルフィド二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、1,3-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(2,3-ジカルボキシフェノキシ)ベンゼン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシベンゾイル)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシベンゾイル)ベンゼン二無水物、1,3-ビス(2,3-ジカルボキシベンゾイル)ベンゼン二無水物、1,4-ビス(2,3-ジカルボキシベンゾイル)ベンゼン二無水物、4,4’-イソフタロイルジフタリックアンハイドライドジアゾジフェニルメタン-3,3’,4,4’-テトラカルボン酸二無水物、ジアゾジフェニルメタン-2,2’,3,3’-テトラカルボン酸二無水物、2,3,6,7-チオキサントンテトラカルボン酸二無水物、2,3,6,7-アントラキノンテトラカルボン酸二無水物、2,3,6,7-キサントンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物などが含まれる。上記の中でも特に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が、これを使用した樹脂組成物の硬化物において、電解液に対し膨潤しにくいため好ましい。
 テトラカルボン酸二無水物がベンゼン環などの芳香環を含む場合には、芳香環上の水素原子の一部もしくは全ては、フルオロ基、メチル基、メトキシ基、トリフルオロメチル基、及びトリフルオロメトキシ基などで置換されていてもよい。また、テトラカルボン酸二無水物がベンゼン環などの芳香環を含む場合には、目的に応じて、エチニル基、ベンゾシクロブテン-4’-イル基、ビニル基、アリル基、シアノ基、イソシアネート基、ニトリロ基、及びイソプロペニル基などから選ばれる架橋点となる基を有していてもよい。テトラカルボン酸二無水物は、成形加工性を損なわない範囲内で、ビニレン基、ビニリデン基、及びエチニリデン基などの架橋点となる基を、主鎖骨格(上記有機置換基Y)に有してもよい。
 なお、ポリアミド酸及び/またはポリイミドは、テトラカルボン酸二無水物由来の単位以外に、トリメリット酸無水物類、ヘキサカルボン酸三無水物類、オクタカルボン酸四無水物類由来の単位を含んでもよい。
 また、ポリアミド酸及び/またはポリイミドは、上記テトラカルボン酸二無水物由来の単位を一種のみ含んでもよく、二種以上含んでもよい。
 1-3.ポリイミド及び/またはポリアミド酸
 バインダー樹脂組成物が含むポリイミドまたはポリアミド酸の重量平均分子量は、1.0×10~5.0×10であることが好ましい。重量平均分子量が1.0×10未満であると、バインダー樹脂組成物を硬化して得られるバインダーの機械強度が低下することがある。重量平均分子量が5.0×10を超えるとバインダー樹脂組成物を含む負極合材ペーストの塗工が困難となることがある。ポリイミドまたはその前駆体であるポリアミド酸の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)で測定され得る。
 ポリイミド及び/またはポリアミド酸の、バインダー樹脂組成物全体に対する含有比率は50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上である。ポリイミド及び/またはポリアミド酸の含有比率を一定以上とすることで、当該バインダー樹脂組成物の硬化物をバインダーとして含む負極活物質層において、負極活物質層と集電体との結着性が良好になり、さらに良好な耐還元性が得られやすい。上記ポリイミド及び/またはポリアミド酸の含有比率の上限は、100質量%である。
 また、バインダー樹脂組成物が含むポリイミド及び/またはポリアミド酸の対数粘度は、例えば負極合材ペーストの分散性や塗布性などの観点から、0.2~3.0dL/gの範囲であることが好ましく、0.3~2.0dL/gの範囲であることがより好ましい。
 ポリイミド及び/またはポリアミド酸の対数粘度は、以下の方法で測定されうる。即ち、ポリイミド及び/またはポリアミド酸を含むバインダー樹脂組成物を、濃度が0.5g/dl(溶媒はNMP)になるように希釈する。この希釈液を35℃にて、ラウダ社製 自動動粘度測定装置PVSを用いて流下時間(T1)を測定する。対数粘度は、ブランクのNMPの流下時間(T0)を用いて、次式から算出する。
 対数粘度[dl/g]={ln(T1/T0)}/0.5
 1-4.ポリイミドまたはポリアミド酸の調製方法
 ポリアミド酸は、前記一般式(I)または一般式(II)で表されるジアミンを含むジアミンと、一般式(III)で表されるテトラカルボン酸二無水物を含む酸二無水物とを、溶剤存在下で反応させて得られる。また、ポリイミドは、当該ポリアミド酸を120℃~270℃で加熱し、脱水縮合反応させて得られる。脱水縮合反応は、酸、三級アミン類、無水物などの従来公知の触媒の存在下または不存在下、加熱下で行ってもよい。
 溶剤としては、非プロトン性極性溶媒が好ましく、非プロトン性アミド系溶媒がより好ましい。非プロトン性アミド系溶媒の例には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、及び1,3-ジメチル-2-イミダゾリジノン、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾ-ル、フェノ-ル、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、ジブロモメタン、トリブロモメタン、1,2-ジブロモエタン、1,1,2-トリブロモエタンなどが含まれる。これらの溶媒は、単独で用いてもよく、二種類以上組み合わせてもよい。
 これらの溶剤以外にも、必要に応じて他の溶剤を共存させてもよい。他の溶媒の例には、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン、1,2,4-トリメチルベンゼン、o-クレゾール、m-クレゾール、p-クレゾール、o-クロロトルエン、m-クロロトルエン、p-クロロトルエン、o-ブロモトルエン、m-ブロモトルエン、p-ブロモトルエン、クロロベンゼン、ブロモベンゼン、メタノール、エタノール、n-プロパノール、イソプロピルアルコール及びn-ブタノール等が含まれる。
 上記方法でポリイミドを製造するための触媒としては、三級アミン類が好ましい。触媒の具体例にはトリメチルアミン、トリエチルアミン(TEA)、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリンなどが含まれ、これらから選ばれる少なくとも一種の触媒が用いられることが好ましい。触媒の使用量は、少量でなるべく短い反応時間とするために、テトラカルボン酸二無水物成分に対して0.1~100モル%とすることが好ましく、1~10モル%がより好ましい。
 テトラカルボン酸二無水物の仕込みモル量(M1)とジアミンの仕込みモル量(M2)との比率を、M1:M2=0.90~1.10:1.00とすることが好ましい。M1:M2は、0.92~1.08:1.00であることがより好ましく、0.95~1.05:1.00であることがさらに好ましい。
 また、ポリアミド酸は、アミノプロピルトリメトキシシラン、グリシドキシプロピルトリメトキシシラン、トリメトキシビニルシラン、トリメトキシグリシドキシシランなどのシランカップリング剤、トリアジン系化合物、フェナントロリン系化合物、トリアゾール系化合物などを、ポリアミド酸の総量100質量部に対して0.1~20質量部含有してもよい。ポリアミド酸がこれらの化合物を含有する、つまりポリアミド酸や当該ポリアミド酸から得られるポリイミドが、上記化合物で変性されていることで、バインダーと活物質や集電体との接着性をさらに高めることができる。
 また特に、ポリアミド酸が、シランカップリング剤で変性されていることが特に好ましい。なお、シランカップリング剤は、好ましくは、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシランである。
 1-5.アルカリ金属イオン
 バインダー樹脂組成物は、アルカリ金属イオンを含有していてもよい。アルカリ金属イオンは、ポリアミド酸及び/またはポリイミド中に分散されていることが求められる。そこで、アルカリ金属イオンは、バインダー樹脂組成物を調製する際に、(モノ)カルボン酸の塩として添加されることが好ましい。
 バインダー樹脂組成物にアルカリ金属イオンを含むと、バインダー樹脂組成物を硬化して得られるバインダーに対するリチウムイオンの透過性が高まる。そのため、得られる二次電池用負極内の抵抗を下げることができる。特に、本発明の二次電池用負極のバインダーはポリイミドを一部含むため、電気抵抗が高くなることがある。そのため、アルカリ金属イオンと組み合わせてもよい。
 バインダー樹脂組成物に含まれるアルカリ金属イオンの含有量は、前記テトラカルボン酸二無水物100モル%に対し4~50モル%であることが好ましい。
 2.負極合材ペースト(リチウムイオン二次電池用負極合材ペースト)
 本発明の二次電池用負極の負極合材層を得るための負極合材ペーストは、前述のバインダー樹脂組成物、及び負極活物質の他に、溶媒や、その他の成分(導電助剤など)をさらに含んでいてもよい。以下、二次電池用負極が、リチウムイオン二次電池用の負極である場合を例に、負極合材ペースト(リチウムイオン二次電池用負極合材ペースト)について説明する。ただし、本発明の二次電池用負極は、リチウム以外のアルカリ金属を用いた二次電池に用いてもよい。リチウム以外のアルカリ金属の例には、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)等が含まれる。例えば、ナトリウムを用いるとナトリウムイオン二次電池とすることができ、カリウムを用いるとカリウムイオン二次電池とすることができる。さらに、本発明の二次電池用負極は、アルカリ土類金属等を用いた、多価イオン電池に適用してもよい。
 2-1.負極活物質
 負極活物質は特に限定されず、炭素材料からなる活物質であってもよいが、リチウムイオン吸蔵及び/または挿入時の体積膨張率が110%より大きい活物質であってもよい。負極活物質の体積膨張率は150%以上であってもよく、200%以上であってもよい。上述のバインダー樹脂組成物は、充放電に伴う負極活物質の体積膨張率が大きくても、良好な結着性を維持するからである。
 負極活物質の体積膨張率は、例えば『車載用リチウムイオン電池の開発動向』,近畿大学工学部研究公開フォーラム,2010年10月27日等に公開されている。
 負極活物質は、充放電容量の大きいケイ素原子、スズ原子またはゲルマニウム原子を含む活物質を好ましく用いることができる。負極活物質は、より好ましくは、ケイ素粒子、ケイ素酸化物、及びケイ素合金のいずれか一以上を含む。これらの負極活物質は、充放電に伴う体積変化が大きいが、上記バインダー樹脂組成物によって良好に結着される。
 ケイ素原子を含む負極活物質の例には、(i)シリコン微粒子、(ii)スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムと、ケイ素との合金、(iii)ホウ素、窒素、酸素または炭素とケイ素との化合物や、これらにさらに(ii)に例示した金属を有するものなどが含まれる。ケイ素の合金あるいは化合物の例には、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<x≦2)あるいはLiSiOなどが含まれる。
 スズ原子を含む負極活物質の例には、(i)ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムと、スズとの合金、(ii)酸素または炭素とスズとの化合物や、これらにさらに(i)に例示した金属を有するものなどが挙げられる。スズの合金あるいは化合物の例には、SnO(0<w≦2)、SnSiO、LiSnOあるいはMgSnなどが含まれる。
 ゲルマニウムを含む負極活物質の例には、ゲルマニウムの酸化物、炭化物、窒化物、炭窒化物等が挙げられる。
 負極活物質は、リチウムイオン吸蔵及び/または挿入時の体積膨張率が110%より大きい負極活物質と、体積膨張率が110%以下の負極活物質との混合物であってもよい。負極活物質全体の体積膨張率が110%より大きくてもよい。体積膨張率が110%以下の負極活物質の例には、天然黒鉛、人造黒鉛、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)、メソカーボンマイクロビーズ、チタン酸リチウムが挙げられる。体積膨張率が110%より大きい負極活物質aと、体積膨張率が110%以下の負極活物質bとの含有比率は、a:b=3:97~80:20の範囲としうる。
 負極活物質の表面は、炭素や銅などの導電性を有する材料で覆われていてもよい。それにより、負極電極の導電性が向上されうる。また、負極活物質の表面は、シランカップリング剤などによって処理が施されていてもよい。
 負極活物質の平均粒径は0.1~25μmが好ましい。
 2-2.溶媒
 リチウムイオン二次電池用負極合材ペーストは、溶媒を含みうる。溶媒は、上述のバインダー樹脂組成物と活物質等とを均一に溶解もしくは分散可能なものであれば特に制限されない。溶剤は、非プロトン性極性溶媒が好ましく、非プロトン性アミド系溶媒がより好ましい。非プロトン性アミド系溶媒の例には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、及び1,3-ジメチル-2-イミダゾリジノン、などが含まれる。これらの溶媒は、単独で用いてもよいし、二種類以上組み合わせてもよい。
 これらの溶媒以外にも、必要に応じて他の溶媒を共存させてもよい。他の溶媒の例には、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン、1,2,4-トリメチルベンゼン、o-クレゾール、m-クレゾール、p-クレゾール、o-クロロトルエン、m-クロロトルエン、p-クロロトルエン、o-ブロモトルエン、m-ブロモトルエン、p-ブロモトルエン、クロロベンゼン、ブロモベンゼン、メタノール、エタノール、n-プロパノール、イソプロピルアルコール及びn-ブタノール等が含まれる。
 リチウムイオン二次電池用負極合材ペーストにおける溶媒量は、当該負極合材ペーストの粘度等を考慮して適宜設定される。上記溶媒量は、当該負極合材ペーストに含まれる固形分100質量部に対して、50~900質量部であることが好ましく、より好ましくは65~500質量部である。
 2-3.導電助剤
 リチウムイオン二次電池用負極合材ペーストは、負極活物質とともに導電助剤を含み得る。負極活物質は、負極活物質層において、点接触することによって互いを導通させている。そのため、負極活物質間の導通性が十分に高まらないことがある。導電助剤は、負極活物質の粒子同士の点接触に起因する高い電気抵抗を、低下させる機能を有する。
 導電助剤は、炭素材料でありうる。炭素材料は特に制限はないが、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)、炭素繊維(カーボンナノチューブ、気相成長炭素繊維など)や、様々な熱分解条件での有機物の熱分解物などでありうる。炭素材料は、それぞれ一種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 有機物の熱分解物は、石炭系コークス;石油系コークス;石炭系ピッチの炭化物;石油系ピッチの炭化物;或いはこれらピッチを酸化処理した後の炭化物;ニードルコークス;ピッチコークス;フェノール樹脂、結晶セルロース等の炭化物;及びこれらを一部黒鉛化した炭素材;ファーネスブラック;アセチレンブラック;ピッチ系炭素繊維;等が挙げられる。なかでも黒鉛が好ましく、特に種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された、人造黒鉛、精製天然黒鉛、又はこれらの黒鉛に種々の表面処理を施したものが好ましい。
 リチウムイオン二次電池用負極合材ペーストには、酸化錫などの金属酸化物、硫化物や窒化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金などが含まれていてもよい。これらは一種を単独で用いても良いし、二種以上を組み合わせて用いてもよい。また、上述の炭素材料と組み合わせて用いてもよい。
 リチウムイオン二次電池用負極合材ペーストにおける、固形分の総量(質量)に対する導電助剤の含有量(質量比)は、0.01質量%以上が好ましく、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上である。また通常20質量%以下が好ましく、より好ましくは10質量%以下である。
 2-4.リチウムイオン二次電池用負極合材ペーストの製造
 リチウムイオン二次電池用負極合材ペーストは、上述のバインダー樹脂組成物もしくはこれを含むワニスと、負極活物質と、必要に応じて導電助剤、溶剤等を混合し、撹拌ないし混錬して製造し得る。各原料の混合方法としては、以下の2つの方法が挙げられるが、これに限定されない。
 i)リチウムイオン二次電池用のバインダー樹脂組成物もしくはこれを含むワニスに、活物質及び溶媒を加えて電極合材ペーストとする。
 ii)リチウムイオン二次電池用のバインダー樹脂組成物もしくはこれを含むワニスに、活物質を添加して混練する。得られた混練物に溶媒を加えて撹拌して電極合材ペーストとする。
 上記攪拌は、攪拌羽根等を用いた通常撹拌や、自転・公転ミキサー等を用いた撹拌であればよい。混練操作は、混練機などを用いることができる。
 3.二次電池用負極(リチウムイオン二次電池用負極)
 本発明の二次電池用負極は、集電体と負極活物質層との積層体でありうる。以下、本発明の二次電池用負極が、リチウムイオン二次電池用の負極(リチウムイオン二次電池用負極)である場合を例に説明する。なお、リチウムイオン二次電池用の負極の形状は特に制限されず、例えばシート状負極であってもよい。シート状負極は、例えばシート状の集電体と、当該集電体の両面に配置された負極活物質層とからなる構造とすることができる。
 3-1.負極活物質層
 負極活物質層は、前述のリチウムイオン二次電池用電極合材ペーストの硬化物である。つまり、負極活物質と、それを結着する前述のバインダー樹脂組成物の硬化物からなるバインダーとを含む。負極活物質層には、さらにその他の成分(導電助剤など)を含んでいてもよい。
 負極活物質層の厚みは特に制限なく、例えば5μm以上であることが好ましく、より好ましくは10μm以上である。また200μm以下とすることが好ましく、より好ましくは100μm以下、更に好ましくは75μm以下である。負極活物質層が薄すぎると、活物質の粒径との兼ね合いから電極としての実用性に欠ける。一方厚みが厚すぎると、高密度の電流値に対する十分なLiの吸蔵・放出の機能が得られにくい場合がある。
 負極活物質層を構成する全ての成分の質量に対するバインダー(質量)の割合は、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは5質量%以上である。また、通常80質量%以下、好ましくは60質量%以下、更に好ましくは40質量%以下、特に好ましくは20質量%以下である。バインダーの割合が低すぎると、負極活物質を十分保持できずに負極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまうおそれがある。一方で、バインダーの割合が高すぎると、電池容量や導電性の低下につながるおそれがある。
 3-2.集電体
 リチウムイオン二次電池用負極の集電体の材質は、ケイ素及び/又はケイ素合金、スズ及びその合金、ケイ素-銅合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料などでありうる。
 リチウムイオン二次電池用負極の集電体の形状は、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜等であり;炭素材料の場合、炭素板、炭素薄膜、炭素円柱等でありうる。集電体の厚みは、特に制限はないが、例えば通常5μm~30μmであり、好ましくは9~20μmである。
 3-3.リチウムイオン二次電池用負極の製造方法
 リチウムイオン二次電池用負極は、前述のリチウムイオン二次電池用負極合材ペーストを集電体に塗布し、それを加熱硬化させて負極活物質層とすることで得られる。より具体的には、前述のバインダー樹脂組成物と負極活物質とを含むリチウムイオン二次電池用負極合材ペーストを塗布する工程を行い、その後、リチウムイオン二次電池用負極合材ペースト中のバインダー樹脂組成物を硬化させる工程を行うことで得られる。
 リチウムイオン二次電池用負極合材ペーストの塗布は、例えばスクリーン印刷、ロールコート、スリットコート等の方法で行い得る。リチウムイオン二次電池用負極合材ペーストをパターン状に塗布することで、メッシュ状の活物質層が形成されうる。
 リチウムイオン二次電池用負極合材ペーストの加熱硬化は、通常、大気圧下で行うことが可能であるが、加圧下、ないしは真空下で行ってもよい。また加熱乾燥時の雰囲気は、特に制限されないが、通常、空気、窒素、ヘリウム、ネオンまたはアルゴン等の雰囲気下で行うことが好ましく、より好ましくは不活性気体である窒素またはアルゴン雰囲気下で行う。
 また、ポリアミド酸を含むバインダー樹脂組成物を含むリチウムイオン二次電池用負極合材ペーストの加熱硬化における加熱温度は、負極合材層のバインダー中のポリアミド酸及び/またはポリイミドのイミド化率が、20%以上70%以下となるよう、調整することが好ましい。このようなイミド化率を達成するためには、リチウムイオン二次電池用負極合材ペーストの加熱温度及び加熱温度を170℃~230℃で1分間~20時間とすることが好ましく、より好ましくは170~200℃で1分間~1時間とすることが好ましい。
 なお、イミド化率を上記範囲とすることが可能であれば、上記以外の加熱温度であってもよく、例えば140℃~270℃で0.5分間~24時間熱処理してもよい。ポリイミド前駆体であるポリアミド酸のポリイミドへの閉環反応を行い、信頼性のある負極を得ることができる。また、170℃~250℃で1分間~20時間行ってもよい。
 4.リチウムイオン二次電池
 本発明のリチウムイオン二次電池の基本構成は、従来公知のリチウムイオン二次電池と同様である。通常のリチウムイオン二次電池は、リチウムイオンを吸蔵・放出可能な一対の電極(負極と正極)、セパレータ、及び電解質を備える。
 4-1.負極
 本発明のリチウムイオン二次電池における負極は、前述のリチウムイオン二次電池用負極である。
 4-2.正極
 正極は、集電体と、正極活物質層とが積層された積層体とし得る。正極の集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料が好ましく、アルミニウムが特に好ましい。集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されているため好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。
 正極集電体が薄膜である場合、その厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上である。また、通常100mm以下、好ましくは1mm以下、より好ましくは50μm以下である。上記範囲よりも薄いと、集電体として必要な強度が不足する虞がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる恐れがある。
 正極活物質は、リチウムの吸蔵放出が可能な材料であれば特に限定されず、リチウムイオン二次電池に通常用いられる正極活物質でありうる。具体的には、リチウム-マンガン複合酸化物(LiMnなど)、リチウム-ニッケル複合酸化物(LiNiOなど)、リチウム-コバルト複合酸化物(LiCoOなど)、リチウム-鉄複合酸化物(LiFeOなど)、リチウム-ニッケル-マンガン複合酸化物(LiNi0.5Mn0.5など)、リチウム-ニッケル-コバルト複合酸化物(LiNi0.8Co0.2など)、リチウム-ニッケル-コバルト-マンガン複合酸化物、リチウム-遷移金属リン酸化合物(LiFePOなど)、及びリチウム-遷移金属硫酸化合物(LixFe(SO)固溶体化合物(LiMO-LiMO M=Ni,Co,Mn)、酸化バナジウム系化合物、ケイ酸塩系化合物、硫黄系化合物などが挙げられる。
 これらの正極活物質は、単独で用いても複数を混合して用いてもよい。正極活物質層中の正極活物質の含有割合は、通常10質量%以上、好ましくは30質量%以上、更に好ましくは50質量%以上である。また、通常99.9質量%以下、好ましくは99質量%以下である。
 正極活物質を結着するバインダー樹脂は、上述のバインダー樹脂組成物の硬化物(ポリアミド酸及び/またはポリイミド)であってもよいが、公知のバインダー樹脂を任意に選択して用いてもよい。公知のバインダー樹脂の例には、シリケート、水ガラス等の無機化合物や、テフロン(登録商標)、ポリフッ化ビニリデン、不飽和結合を有さない高分子などが含まれる。これらの高分子の重量平均分子量は、下限が、通常1万、好ましくは10万、上限が、通常300万、好ましくは100万である。
 正極活物質層を構成する全ての成分の質量に対するバインダー樹脂(質量)の割合は、通常0.1質量%以上、好ましくは1質量%以上、更に好ましくは5質量%以上である。また、通常80質量%以下、好ましくは60質量%以下、更に好ましくは40質量%以下、特に好ましくは10質量%以下である。バインダー樹脂の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう虞がある。一方で、バインダー樹脂の割合が高すぎると、電池容量や導電性の低下につながる虞がある。
 正極活物質層には、電極の導電性を向上させるために、導電材を含有させてもよい。導電剤としては、活物質に適量混合して導電性を付与できるものであれば特に制限はないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。
 正極活物質層の厚さは、通常10~200μm程度である。正極は、正極活物質及び上記バインダー樹脂を含有するバインダー樹脂組成物を、集電体上に成膜して得られる。
 正極活物質層は、通常、正極材料と、バインダー樹脂と、更に必要に応じて導電材及び増粘剤などを、乾式で混合してシート状にしたものを正極集電体に圧着する。または、これらの材料を液体媒体中に溶解又は分散させてペースト状にして、正極集電体に塗布、乾燥することにより作製される。正極集電体へのペーストの塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。
 ペーストを形成するための液体媒体としては、正極活物質、バインダー樹脂、並びに必要に応じて使用される導電材及び増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はない。液体媒体は、水系溶媒または有機系溶媒のいずれでもよい。
 水系溶媒の例としては水、アルコールなどが挙げられ、有機系溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。特に水系溶媒を用いる場合、増粘剤と併せて分散剤を加え、SBR等のラテックスを用いてペースト化する。なお、これらの溶媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 4-3.セパレータ
 正極と負極との間に、通常、セパレータを配置する。それにより、電極間の短絡を防止する。
 セパレータは、通常、多孔膜や不織布などの多孔性体である。セパレータの空孔率は、電子やイオンの透過性、セパレータの素材などに応じて適宜設定されるが、一般的に30~80%であることが望ましい。
 セパレータには、例えば、優れたイオン透過性を有する微多孔性フィルム、ガラス繊維シート、不織布、織布などが用いられる。また、耐有機溶剤性と疎水性の観点から、セパレータの材料としては、ポリプロピレン、ポリエチレン、ポリフェニレンスルフイド、ポリエチレンテレフタレート、ポリエチレナフタレート、ポリメチルペンテン、ポリアミド、ポリイミドなどが用いられる。これらを単独で用いてもよく、2種以上組み合わせて用いてもよい。
 通常は、安価なポリプロピレンが用いられるが、リチウムイオン二次電池に耐リフロー性を付与する場合には、この中でも熱変形温度が230℃以上のポリプロピレンスルフィド、ポリエチレンテレフタレート、ポリアミド、ポリイミドなどを用いることが好ましい。
 セパレータの厚みは、例えば10~300μmである。
 4-4.電解液
 リチウムイオン二次電池の電解液は、非水系溶媒にリチウム塩を溶解させた非水系電解液でありうる。また、この非水系電解液に有機高分子化合物等を添加して、ゲル状、ゴム状、固体シート状にしたものなどでありうる。
 非水系電解液には、リチウム塩と非水系溶媒とが含まれる。リチウム塩は、公知のリチウム塩の中から、適宜選択して用いることができる。例えば、LiCl、LiBrなどのハロゲン化物;LiClO、LiBrO、LiClOなどの過ハロゲン酸塩;LiPF、LiBF、LiAsFなどの無機フッ化物塩;リチウムビス(オキサラトホウ酸塩)LiBCなどの無機リチウム塩;LiCFSO、LiCSOなどのパーフルオロアルカンスルホン酸塩;Liトリフルオロスルフォンイミド((CFSONLi)などのパーフルオロアルカンスルホン酸イミド塩;などの含フッ素有機リチウム塩などが挙げられる。リチウム塩は、単独で用いても、2種以上を混合して用いてもよい。非水系電解液中におけるリチウム塩の濃度は、通常0.5M以上、2.0M以下の範囲である。
 非水系溶媒の例には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類;γ-ブチロラクトン等のγ-ラクトン類、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類;ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンサルトン、アニソール、ジメチルスルホキシド、N-メチルピロリドン、ブチルジグライム、メチルテトラグライムなどの非プロトン性有機溶媒が挙げられ、これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、電解液に有機高分子化合物を含有させることで、ゲル状、ゴム状、或いは固体シート状の電解質とすることも可能である。このような有機高分子化合物の具体例には、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω-メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω-メトキシオリゴオキシエチレンメタクリレート-co-メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン-フッ化ビニリデン)等のポリマー共重合体などが挙げられる。
 電解液は、更に被膜形成剤を含んでいてもよい。被膜形成剤の具体例としては、ビニレンカーボネート、ビニルエチレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネートなどのカーボネート化合物、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネート、ビス(トリフルオロメチル)エチレンカーボネート、1-フルオロエチルメチルカーボネート、エチル1-フルオロエチルカーボネート、フルオロメチルメチルカーボネート、ビス(1-フルオロエチル)カーボネート、ビス(フルオロメチル)カーボネート、エチル2-フルオロエチルカーボネート、ビス(2-フルオロエチル)カーボネート、メチル1,1,1-トリフルオロプロパン-2-イルカーボネート、エチル1,1,1-トリフルオロプロパン-2-イルカーボネート、メチル2,2,2-トリフルオロエチルカーボネート、ビス(1,1,1-トリフルオロプロパン-2-イル)カーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、エチル3,3,3-トリフルオロプロピルカーボネート、ビス(3,3,3-トリフルオロプロピル)カーボネートなどのフッ素系カーボネート化合物、エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファイド;1,3-プロパンスルトン、1,4-ブタンスルトンなどのスルトン化合物;マレイン酸無水物、コハク酸無水物などの酸無水物などが含まれる。
 電解液に被膜形成剤が含まれる場合、その含有量は、電解液の構成成分全量(質量)に対して、被膜形成剤を通常10質量%以下、中でも8質量%以下、更には5質量%以下、特に2質量%以下とすることが好ましい。被膜形成剤の含有量が多過ぎると、リチウムイオン二次電池の初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼす場合がある。
 4-5.リチウムイオン二次電池の形態
 本発明のリチウムイオン二次電池の形態は特に制限されない。リチウムイオン二次電池の形態の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型、パウチ型等の任意の形状としてもよい。
 リチウムイオン二次電池を組み立てる手順も特に制限されず、電池の構造に応じて適切な手順で組み立てればよい。一例を挙げると、外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。
 以下、本発明を、実施例を参照してより詳細に説明するが、本発明の範囲は、これらの実施例によって限定されない。
 本実施例及び比較例で用いた化合物の略称を示す。
 NMP:N-メチル-2-ピロリドン
 BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
 DABA:4,4’-ジアミノベンズアニリド
 TPE-R:1,3-ビス(4‐アミノフェノキシ)ベンゼン
 pPD:パラフェニレンジアミン
 mBP:4,4’-ビス(3-アミノフェノキシ)ビフェニル
 ODA:4,4’-ジアミノジフェニルエーテル
 APB:1,3-ビス(3‐アミノフェノキシ)ベンゼン
 実施例で用いた特性の測定方法を以下に示す。
 <固形分濃度>
 試料溶液(その質量をw1とする)を、熱風乾燥機中300℃で60分間加熱処理して、加熱処理後の質量(その質量をw2とする)を測定する。固形分濃度[質量%]は、次式によって算出した。
 固形分濃度[質量%]=(w2/w1)×100
 <対数粘度>
 試料溶液を、固形分濃度に基づいて濃度が0.5g/dl(溶媒はNMP)になるように希釈した。この希釈液を35℃にて、ラウダ社製 自動動粘度測定装置PVSを用いて流下時間(T1)を測定した。対数粘度は、ブランクのNMPの流下時間(T0)を用いて、次式から算出した。
 対数粘度[dl/g]={ln(T1/T0)}/0.5
 <熱膨張係数(CTE)>
 熱分析装置(商品名「TMA50シリーズ」、島津製作所社製)を使用し、乾燥空気雰囲気下、昇温速度5℃/分で、50~100℃の範囲でポリイミドフィルムの熱膨張係数(ppm/K)を測定した。
 <電解液膨潤度>
 バインダー樹脂組成物から得られた厚さ20μmのポリイミドフィルム10cm角に切り出し、100℃で3時間真空乾燥後の質量を乾燥質量(Wd)とした。本フィルムを、エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比1:1混合)に、60℃で24時間浸漬した後の質量を膨潤質量(Ww)とし、それぞれ次式により膨潤率Sを計算した。
 S[質量%]=Ww/Wd×100
 <イミド化率>
 電極のバインダーに含まれるポリアミド酸及び/またはポリイミドのイミド化率は、評価用電極を用いて、顕微FT-IR/透過法により測定した。1370cm-1近傍のイミド由来の吸収と、1515~1480cm-1のベンゼン環由来の吸収のピーク強度比から、330℃で2時間熱処理した同一構造のポリイミドフィルム(膜厚15μm~25μm)のピーク強度比を100%にして算出した。
 <充放電サイクル試験>
 実施例1に記載した方法で作製したコインセルを、25℃にて24時間放置後、測定温度25℃または55℃にて、電流密度0.05Cで4.2Vになるまでそれぞれ充電した。その後、電流密度0.05Cで2.3Vまで放電した。2サイクル目以降、電流密度1Cで4.2Vになるまで充電し、さらに4.2V定電圧で、電流密度が0.05Cになるまで充電した。その後、電流密度1Cで2.3Vまで放電した。上記条件で充放電を行い、以下の(式3)にて、100サイクル時の放電容量維持率を算出した。結果を表1に示した。
Figure JPOXMLDOC01-appb-M000001
 (合成例1)
 撹拌機及び窒素導入管を備えた容器に、27.27gのDABA(0.120モル)と、溶媒として244.4gのNMPとを装入し、30分間撹拌した。その後、34.6gのBPDA(0.118モル)を約30分かけて投入し、104.8gのNMPをさらに加えて、20時間攪拌してバインダー樹脂組成物1のワニスを得た。得られたバインダー樹脂組成物1のワニスは、固形分濃度が14質量%であり、対数粘度は1.32dl/gであった。
 (合成例2)
 撹拌機及び窒素導入管を備えた容器に、21.63gのpPD(0.200モル)と、溶媒として185gのNMPとを装入し、50℃まで昇温して、pPDが溶解するまで撹拌した。室温まで冷却後、57.67gのBPDA(0.196モル)を約30分かけて投入し、302.1gのNMPをさらに加えて、20時間攪拌してバインダー樹脂組成物2のワニスを得た。得られたバインダー樹脂組成物2のワニスは、固形分濃度が14質量%であり、対数粘度は1.34dl/gであった。
 (合成例3)
 撹拌機及び窒素導入管を備えた容器に、14.77gのDABA(0.065モル)と、7.03gのpPD(0.065モル)、溶媒として201.3gのNMPとを装入し、30分間撹拌した。その後、37.48gのBPDA(0.127モル)を約30分かけて投入し、86.3gのNMPをさらに加えて、20時間攪拌してバインダー樹脂組成物3のワニスを得た。得られたバインダー樹脂組成物3のワニスは、固形分濃度が14質量%であり、対数粘度は1.32dl/gであった。
 (合成例4)
 撹拌機及び窒素導入管を備えた容器に、49.7gのTPE-R(0.17モル)と、溶媒として369.4gのNMPとを装入し、30分間撹拌した。その後、49.02gのBPDA(0.167モル)を約30分かけて投入し、158.3gのNMPをさらに加えて、20時間攪拌してバインダー樹脂組成物4のワニスを得た。得られたバインダー樹脂組成物4のワニスは、固形分濃度が14.8質量%であり、対数粘度は1.4dl/gであった。
 (合成例5)
 撹拌機及び窒素導入管を備えた容器に、38.00gのAPB(0.13モル)と、溶媒として222.5gのNMPとを装入し、30分間撹拌した。その後、37.48gのBPDA(0.127モル)を約30分かけて投入し、95.4gのNMPをさらに加えて、20時間攪拌してバインダー樹脂組成物5のワニスを得た。得られたバインダー樹脂組成物5のワニスは、固形分濃度が18.0質量%であり、対数粘度は0.86dl/gであった。
(合成例6)
 撹拌機及び窒素導入管を備えた容器に、4.87gのpPD(0.045モル)と、5.53gのmBP(0.015モル)と、溶媒として130gのNMPとを装入し、溶液の温度を50℃に昇温してpPD及びmBPが溶解するまで撹拌した。溶液の温度を室温まで下げた後、17.48gのBPDA(0.059モル)を約30分かけて投入し、55.9gのNMPをさらに加えて、20時間攪拌してバインダー樹脂組成物6のワニスを得た。得られたバインダー樹脂組成物6のワニスは、固形分濃度が12.0質量%であり、対数粘度は1.3dl/gであった。
 (合成例7)
 撹拌機及び窒素導入管を備えた容器に、30gのODA(0.15モル)と、43.3g(0.147モル)のBPDAと、溶媒として266gのNMPとを装入し、ODAが溶解するまで撹拌した。溶液の温度を室温まで下げた後、43.25gのBPDAを約30分かけて投入し、114gのNMPをさらに加えて、20時間攪拌してバインダー樹脂組成物7のワニスを得た。得られたバインダー樹脂組成物7のワニスは、固形分濃度が15.0質量%であり、対数粘度は1.0dl/gであった。
 〔実施例1〕
 1.バインダー物性評価
 バインダー樹脂組成物1のワニスを、ガラス基板上にドクターブレードを用いて流延した。これをオーブンに移して、窒素気流中、2時間かけて50℃から170℃まで昇温し、続いて更に170℃で2時間保持して自己支持性を有する膜厚20μmのフィルムを得た。当該フィルムを用いて、CTE及び、電解液膨潤度評価を行った。結果を表1に示す。
 2.イミド化率評価
 Si活物質(高純度化学研究所製 粒径5μm)とバインダー樹脂組成物とが、質量比で90:10となるように負極合材ペーストを調製し、これを銅箔上に塗工し、170℃で10分間熱処理することで評価用電極を作製した。当該電極を用いて負極活物質層のバインダー中のポリアミド酸及び/またはポリイミドのイミド化率を評価した。結果を表1に示す。
 3.電極特性評価
 <負極の作製>
 10質量部のポリアミド酸及び/またはポリイミドを含むバインダー樹脂組成物2と、3質量部の導電助剤(昭和電工製、VGCF-H)を、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練した。得られたペーストに、ケイ素酸化物(信越化学工業製、KSC-1064)を87質量部添加し、さらに混練を行い、負極合材ペーストを調製した。負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で170℃、10分間熱処理を行って硬化させて負極電極シート1を作製した。乾燥後の負極活物質層の質量は単位面積当たり2.15mg/cmであった。
 <正極の作製>
 93質量部のLiCo1/3Ni1/3Mn1/3に、3質量部のポリフッ化ビニリデンをNMPに溶解させた溶液と4質量部の導電助剤(電気化学製、デンカブラック)を加えて混合し、電池用コンパウンド攪拌機(プライミクス社製、T.K.ハイビスミックス モデル2P-03)を用いて混練し正極合材ペーストを得た。このペーストを厚み20μmのアルミニウム箔上に、乾燥後の正極活物質層の質量が単位面積当たり22.1mg/cmとなるように均一に塗布し、乾燥して正極活物質層を形成した後、ローラープレス機により常温プレスして正極を得た。
 <電池の作製>
 上記負極を含む電池の電池特性評価を行うためコインセルを作製した。電極には、直径14.5mmΦの負極と、直径13mmΦの正極を用いた。電解液には、エチレンカーボネートとメチルエチルカーボネートの混合溶媒(体積比3:7混合)にLiPFを1mol/lの濃度で溶解したものを用い、セパレータに直径16mmΦ、膜厚25μmのポリプロピレン多孔質膜を使用した。本コインセルを用いて、100サイクル後の放電容量維持率を評価した。結果を表1に示す。
 〔実施例2〕
 実施例1記載の負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で200℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極を用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔実施例3〕
 バインダー樹脂組成物2をバインダー樹脂組成物としたこと以外は、実施例1と同様に負極合材ペーストを調製した。そして、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で170℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極を用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔実施例4〕
 実施例3記載の負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で230℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極を用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔実施例5〕
 バインダー樹脂組成物3をバインダー樹脂組成物とした以外は、実施例1と同様に負極合材ペーストを調製した。そして、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で170℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極を用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔実施例6〕
 実施例1記載の負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、大気下で170℃、10分間熱処理を行って硬化させて負極電極シートを作製した。
 そして、当該負極電極シートを用いて、実施例1と同様に作製したコインセルを、25℃にて24時間放置後、測定温度55℃、電流密度0.05Cで4.2Vになるまで充電した。その後、電流密度0.05Cで2.3Vまで放電した。2サイクル目以降、電流密度1Cで4.2Vになるまで充電し、さらに4.2V定電圧で、電流密度が0.05Cになるまで充電した。その後、電流密度1Cで2.3Vまで放電した。上記条件で充放電を行い、前述のように100サイクル後の放電容量維持率を算出した。放電容量及び放電容量維持率を表2に示す。
 〔比較例1〕
 実施例1記載の負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で120℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極電極シートを用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔比較例2〕
 実施例1記載の負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で250℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極電極シートを用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔比較例3〕
 実施例1記載の負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で350℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極電極シートを用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔比較例4〕
 実施例3記載の電極ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で270℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極電極シートを用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔比較例5〕
 バインダー樹脂組成物6をバインダー樹脂組成物とした以外は、実施例1と同様の方法で負極合材ペーストを作製した。本負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で170℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極電極シートを用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す
 〔比較例6〕
 バインダー樹脂組成物7をバインダー樹脂組成物に使用したこと以外は、実施例1と同様の方法で負極合材ペーストを作製した。本負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で170℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極電極シートを用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔比較例7〕
 バインダー樹脂組成物4をバインダー樹脂組成物に使用したこと以外は、実施例1と同様の方法で負極合材ペーストを作製した。本負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で170℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極電極シートを用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔比較例8〕
 バインダー樹脂組成物5をバインダー樹脂組成物に使用したこと以外は、実施例1と同様の方法で負極合材ペーストを作製した。本負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、窒素雰囲気下で170℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極電極シートを用いて、実施例1と同様の操作で電池を作製し、電池特性を評価した。結果を表1に示す。
 〔比較例9〕
 実施例1記載の負極合材ペーストを、集電体としての銅箔(日本製箔社製圧延銅箔、厚さ:18μm)にアプリケータを用いて塗布し、大気下で350℃、10分間熱処理を行って硬化させて負極電極シートを作製した。本負極電極シートを用いて、実施例1と同様の操作で電池を作製し、実施例6と同様の操作で電池特性を評価した。結果を表2に示す。
 [評価]
 表1に、窒素雰囲気で熱処理した負極について、充放電サイクル試験の結果を示す(実施例1~5、及び比較例1~8)。一方、表2に、大気下で熱処理した負極について、充放電サイクル試験の結果を示す(実施例6及び比較例9)。
Figure JPOXMLDOC01-appb-T000001
 バインダー樹脂組成物を170℃で硬化させて、膜厚20μmのフィルムとしたときの熱膨張係数が-15ppm~15ppmの範囲であり、かつ二次電池用負極の負極合材層のバインダー中のポリアミド酸及び/またはポリイミドのイミド化率が20~70%であるである場合(実施例1~5)には、放電容量維持率が非常に高く、例えば上記イミド化率が低い比較例1と比較して、2倍近い値を示した。
 また、上記イミド化率が70%を超えると(例えば比較例2~4)、銅箔の変色劣化が生じるのに対し(比較例2~4)、イミド化率が上記範囲であると(実施例1~6)、銅箔の変色劣化が生じなかった。
 また、上記熱膨張係数が15ppmを超えると高温での放電容量維持率が低下するのに対し、熱膨張係数が-15ppm~15ppmの範囲であると、高温での放電容量維持率が低下し難かった。バインダー(ポリアミド酸及び/またはポリイミド)によって、活物質を十分に結着でき、活物質の脱離等が生じ難かったと推察される。
Figure JPOXMLDOC01-appb-T000002
 バインダー樹脂組成物を170℃で硬化させて、膜厚20μmのフィルムとしたときの熱膨張係数が-15ppm~15ppmの範囲であり、かつ二次電池用負極の負極合材層のバインダー中のポリアミド酸及び/またはポリイミドのイミド化率が20~70%であるである場合(実施例6)には、イミド化率の高い比較例9と比較して、100サイクル時の放電容量が高かった。また、比較例9では、銅箔の着色が生じたのに対し、実施例6では、銅箔の着色が生じなかった。
 本出願は、2014年9月30日出願の特願2014-201455号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明の二次電池用負極は、200℃程度の比較的低温でも製造が可能であり、かつリチウムイオン二次電池としたときに、良好なサイクル特性を示す。したがって、当該二次電池用負極を用いたリチウムイオン二次電池は、各種用途に適用可能である。

Claims (5)

  1.  ジアミン化合物とテトラカルボン酸二無水物との反応によって得られるポリアミド酸及び/またはポリイミドを50質量%以上含有するバインダー樹脂組成物の硬化物からなるバインダーを含む負極活物質層を有し、
     前記バインダー中のポリアミド酸及び/またはポリイミドのイミド化率が20%以上70%以下であり、
     前記バインダー樹脂組成物を170℃で1時間熱処理して得られる膜厚20μmのフィルムの、50℃~100℃における熱膨張係数が-15ppm以上15ppm以下である、
     二次電池用負極。
  2.  前記フィルムをエチレンカーボネート及びメチルエチルカーボネートを質量比3:7で混合した溶液に浸漬して、60℃で1日保管したあとの重量上昇率が、10%未満である、
     請求項1記載の二次電池用負極。
  3.  前記ジアミン化合物が、下記化学式で表される化合物(A)~(C)からなる群から選ばれる少なくとも1種の化合物を、前記ジアミン化合物の総量に対して、50モル%以上100モル%以下含む、
     請求項1または2に記載の二次電池用負極。
    Figure JPOXMLDOC01-appb-C000005
    (化学式(A)~(C)中、nは1~3の整数を表し、
     Xは水素、炭素数1~3のアルキル基、炭素数1~3のフルオロアルキル基、炭素数1~3のアルコキシル基、トリメチルシリル基、フェニル基、OH、COOH、NO、CN、F、Cl、BrまたはIを表し、
     Yは単結合、-C(CH-、-C(CF-、-O-、-SO-、-CO-、-CH-、-CF-、または、-Si(CH-を表す。)
  4.  ジアミン化合物とテトラカルボン酸二無水物との反応によって得られるポリアミド酸及び/またはポリイミドを50質量%以上含有するバインダー樹脂組成物を含む負極合材ペーストを集電体に塗布する工程と、
     前記バインダー樹脂組成物を120℃~230℃で加熱硬化させる工程と、
     を含み、
     前記バインダー樹脂組成物は、前記バインダー樹脂組成物を170℃で1時間熱処理して得られる膜厚20μmのフィルムの、50℃~100℃における熱膨張係数が-15ppm以上15ppm以下である、
     二次電池用負極の製造方法。
  5.  リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解液を備えたリチウムイオン二次電池であって、
     前記負極が、請求項1~3のいずれか一項に記載の二次電池用負極である、
     リチウムイオン二次電池。
PCT/JP2015/004960 2014-09-30 2015-09-30 二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池 WO2016051784A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016551547A JP6529506B2 (ja) 2014-09-30 2015-09-30 二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池
CN201580047850.XA CN106605324B (zh) 2014-09-30 2015-09-30 二次电池用负极及其制造方法、以及具有其的锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-201455 2014-09-30
JP2014201455 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051784A1 true WO2016051784A1 (ja) 2016-04-07

Family

ID=55629851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004960 WO2016051784A1 (ja) 2014-09-30 2015-09-30 二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池

Country Status (4)

Country Link
JP (1) JP6529506B2 (ja)
CN (1) CN106605324B (ja)
TW (1) TWI667839B (ja)
WO (1) WO2016051784A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062383A1 (ja) * 2016-09-29 2018-04-05 日本電気株式会社 耐熱絶縁層付電極
CN115710352A (zh) * 2022-10-31 2023-02-24 浙江中科玖源新材料有限公司 一种锂离子电池硅负极用粘结剂及锂离子电池硅负极

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417199B (zh) * 2016-07-01 2022-02-11 中央硝子株式会社 非水系电解液、及非水系电解液二次电池
TWI663769B (zh) * 2018-02-13 2019-06-21 National Taiwan University Of Science And Technology 寡聚物添加劑的製備方法、寡聚物添加劑以及鋰電池
CN108598505B (zh) * 2018-05-09 2020-10-16 陕西科技大学 一种碳化钒/碳布复合材料的制备方法及产品
CN111403745A (zh) * 2020-03-26 2020-07-10 北京化工大学常州先进材料研究院 一种锂离子电池用耐高温粘合剂及应用该粘合剂的电池极片
US20220209236A1 (en) * 2020-12-30 2022-06-30 Kokam Co., Ltd. Elastic Anode Binder For Secondary Lithium Ion Battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342575A (ja) * 2003-04-25 2004-12-02 Sanyo Electric Co Ltd 二次電池
WO2011061825A1 (ja) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
WO2012073853A1 (ja) * 2010-11-30 2012-06-07 東レ株式会社 リチウムイオン電池電極用バインダー、リチウムイオン電池負極用ペーストおよびリチウムイオン電池負極の製造方法
JP2012142244A (ja) * 2011-01-06 2012-07-26 Teijin Techno Products Ltd 芳香族ポリアミドからなる電極合剤用バインダーならびに電極シート
JP2012155934A (ja) * 2011-01-25 2012-08-16 Toray Ind Inc リチウムイオン二次電池電極結着剤用ワニスおよびその製造方法
WO2012133143A1 (ja) * 2011-03-31 2012-10-04 三井化学株式会社 ポリイミド系樹脂微粒子の複合体膜およびその用途
JP2012207196A (ja) * 2011-03-17 2012-10-25 Ube Industries Ltd 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
JP2013098058A (ja) * 2011-11-01 2013-05-20 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質及びその製造方法
JP2013175315A (ja) * 2012-02-24 2013-09-05 Toyota Industries Corp リチウムイオン二次電池および車両
JP2013175317A (ja) * 2012-02-24 2013-09-05 Toyota Industries Corp リチウムイオン二次電池および車両

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200728364A (en) * 2005-12-27 2007-08-01 Du Pont Toray Co Ltd Low heat contractility and high adhesive polyimide film
KR20120065349A (ko) * 2009-08-20 2012-06-20 우베 고산 가부시키가이샤 폴리이미드 필름 및 폴리이미드 필름의 제조 방법
US20130171520A1 (en) * 2010-07-14 2013-07-04 Ube Industries, Ltd. Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
JP5099394B1 (ja) * 2012-05-31 2012-12-19 Jsr株式会社 蓄電デバイスの電極用バインダー組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342575A (ja) * 2003-04-25 2004-12-02 Sanyo Electric Co Ltd 二次電池
WO2011061825A1 (ja) * 2009-11-18 2011-05-26 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
WO2012073853A1 (ja) * 2010-11-30 2012-06-07 東レ株式会社 リチウムイオン電池電極用バインダー、リチウムイオン電池負極用ペーストおよびリチウムイオン電池負極の製造方法
JP2012142244A (ja) * 2011-01-06 2012-07-26 Teijin Techno Products Ltd 芳香族ポリアミドからなる電極合剤用バインダーならびに電極シート
JP2012155934A (ja) * 2011-01-25 2012-08-16 Toray Ind Inc リチウムイオン二次電池電極結着剤用ワニスおよびその製造方法
JP2012207196A (ja) * 2011-03-17 2012-10-25 Ube Industries Ltd 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極
WO2012133143A1 (ja) * 2011-03-31 2012-10-04 三井化学株式会社 ポリイミド系樹脂微粒子の複合体膜およびその用途
JP2013098058A (ja) * 2011-11-01 2013-05-20 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質及びその製造方法
JP2013175315A (ja) * 2012-02-24 2013-09-05 Toyota Industries Corp リチウムイオン二次電池および車両
JP2013175317A (ja) * 2012-02-24 2013-09-05 Toyota Industries Corp リチウムイオン二次電池および車両

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062383A1 (ja) * 2016-09-29 2018-04-05 日本電気株式会社 耐熱絶縁層付電極
CN109804488A (zh) * 2016-09-29 2019-05-24 日本电气株式会社 具有耐热绝缘层的电极
JPWO2018062383A1 (ja) * 2016-09-29 2019-07-11 日本電気株式会社 耐熱絶縁層付電極
US11233231B2 (en) 2016-09-29 2022-01-25 Nec Corporation Electrode with heat-resistant insulating layer
JP7070421B2 (ja) 2016-09-29 2022-05-18 日本電気株式会社 耐熱絶縁層付電極
CN109804488B (zh) * 2016-09-29 2023-03-10 日本电气株式会社 具有耐热绝缘层的电极
CN115710352A (zh) * 2022-10-31 2023-02-24 浙江中科玖源新材料有限公司 一种锂离子电池硅负极用粘结剂及锂离子电池硅负极
CN115710352B (zh) * 2022-10-31 2024-04-16 浙江中科玖源新材料有限公司 一种锂离子电池硅负极用粘结剂及锂离子电池硅负极

Also Published As

Publication number Publication date
TWI667839B (zh) 2019-08-01
TW201620184A (zh) 2016-06-01
CN106605324B (zh) 2019-07-26
JP6529506B2 (ja) 2019-06-12
JPWO2016051784A1 (ja) 2017-07-13
CN106605324A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6105826B1 (ja) リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池
JP6587258B2 (ja) リチウムイオン二次電池用負極及びこれを含むリチウムイオン二次電池、並びにリチウムイオン二次電池用負極の製造方法
JP6529506B2 (ja) 二次電池用負極、及びその製造方法、並びにこれを備えたリチウムイオン二次電池
JP5684620B2 (ja) 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池
US10056614B2 (en) Polyimide binder for power storage device, electrode sheet using same, and power storage device
JP6891818B2 (ja) 二次電池用バインダ
JP6649283B2 (ja) リチウム二次電池の電極用バインダ樹脂、リチウム二次電池用電極及びリチウム二次電池
CN112993383B (zh) 电池
JP5358754B1 (ja) リチウムイオン二次電池用電極合材ペースト及び電極、並びにリチウムイオン二次電池
JP2015005391A (ja) リチウムイオン二次電池の製造に用いられるバインダー樹脂組成物、電極合材ペーストおよびその製造方法、並びにリチウムイオン二次電池用電極およびリチウムイオン二次電池
JP7047835B2 (ja) 二次電池用バインダ組成物
JP5559757B2 (ja) リチウム二次電池用バインダー樹脂組成物、これを用いた電極ペースト、及びリチウムイオン二次電池
JP2018170251A (ja) 非水電解質二次電池用負極の製造方法、非水電解質二次電池の製造方法、および非水電解質二次電池用負極活物質の製造方法
TWI692904B (zh) 鋰離子二次電池用負極活性物質及其製造方法
JP2015173048A (ja) リチウムイオン二次電池電極用電極およびリチウムイオン二次電池
JP2015109254A (ja) リチウムイオン二次電池用バインダー樹脂組成物およびそれを含む負極合材ペースト、リチウムイオン二次電池用負極およびそれを含む二次電池
JP2013175317A (ja) リチウムイオン二次電池および車両
CN118872096A (zh) 聚酰亚胺粘合剂前体组合物以及使用该组合物的蓄电装置
KR20240129090A (ko) 폴리이미드 결합제 전구체 조성물 및 그것을 사용한 축전 디바이스
CN113841271A (zh) 蓄电装置用聚酰亚胺类粘合剂、电极合剂糊剂、负极活性材料层、蓄电装置用负极片和蓄电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847236

Country of ref document: EP

Kind code of ref document: A1