WO2016047611A1 - 発泡シート - Google Patents

発泡シート Download PDF

Info

Publication number
WO2016047611A1
WO2016047611A1 PCT/JP2015/076729 JP2015076729W WO2016047611A1 WO 2016047611 A1 WO2016047611 A1 WO 2016047611A1 JP 2015076729 W JP2015076729 W JP 2015076729W WO 2016047611 A1 WO2016047611 A1 WO 2016047611A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
sheet according
weight
impact
absorption rate
Prior art date
Application number
PCT/JP2015/076729
Other languages
English (en)
French (fr)
Inventor
加藤和通
土井浩平
徳山英幸
高橋忠男
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201580002664.4A priority Critical patent/CN105745263B/zh
Priority to CN202010695505.XA priority patent/CN111690165B/zh
Priority to US15/101,437 priority patent/US20160303822A1/en
Priority to JP2016520177A priority patent/JP6785156B2/ja
Priority to KR1020167010995A priority patent/KR102454590B1/ko
Publication of WO2016047611A1 publication Critical patent/WO2016047611A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/08Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers using foamed adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/022Foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/06Flexible foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/414Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of a copolymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/24Presence of a foam
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/04Presence of homo or copolymers of ethene
    • C09J2423/046Presence of homo or copolymers of ethene in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/006Presence of (meth)acrylic polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • C09J2475/006Presence of polyurethane in the substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/503Arrangements improving the resistance to shock

Definitions

  • the present invention relates to a foam sheet having excellent shock absorption and heat resistance even when the thickness is very thin, and an electric / electronic device using the foam sheet.
  • an image display member fixed to an image display device such as a liquid crystal display, an electroluminescence display, a plasma display, a display member attached to a so-called “mobile phone”, “smart phone”, “portable information terminal”, camera,
  • a foam material is used when an optical member such as a lens is fixed to a predetermined part (for example, a housing).
  • Examples of such a foam material include a low-foam, fine-cell urethane-based foam having a closed cell structure and a product obtained by compression molding a highly foamed urethane, and a polyethylene-based foam having a closed cell and an expansion ratio of about 30 times. It was used.
  • a gasket made of a polyurethane foam having an apparent density of 0.3 to 0.5 g / cm 3 , or an electrical / electric structure made of a foam structure having an average cell diameter of 1 to 500 ⁇ m.
  • a sealing material for electronic devices is used.
  • an object of the present invention is to provide a foamed sheet that exhibits excellent impact absorbability even when the thickness is very thin and has excellent heat resistance that does not deteriorate performance even at high temperatures.
  • Another object of the present invention is to provide an electric / electronic device that is less likely to be damaged by an impact at the time of dropping, even if it is downsized and thinned, or has a heating element with a large calorific value.
  • the present inventors have constituted a foam having a specific average cell diameter, a compression set at 80 ° C. of 80% or less, and a high temperature (80 ° C.).
  • a foam sheet with a small difference between the shock absorption after compression and the initial shock absorption exhibits excellent shock absorption and excellent heat resistance even when the thickness is very thin. It was found that even if the installed electrical / electronic device was equipped with a heating element with a large calorific value, it was not damaged by the impact when dropped.
  • the present invention has been completed through further studies based on these findings.
  • the present invention is composed of a foam having an average cell diameter of 10 to 200 ⁇ m, a compression set at 80 ° C. of 80% or less, and an impact absorption change rate defined below is ⁇ 20% or less.
  • a foam sheet is provided.
  • Impact absorption change rate (%) ⁇ (shock absorption rate after high temperature compression b ⁇ initial impact absorption rate a) / initial impact absorption rate a ⁇ ⁇ 100
  • Initial impact absorption rate a Impact absorption rate (%) of test piece A
  • Impact absorption rate (%) ⁇ (F 0 -F 1 ) / F 0 ⁇ ⁇ 100 (In the above formula, F 0 is the impact force when the impactor collides only with the support plate, and F 1 impacts the impactor on the support plate of the structure consisting of the support plate and the test piece A). It is the impact force when letting
  • the foamed sheet preferably has a thickness of 30 to 1000 ⁇ m and an apparent density of the foam of 0.2 to 0.7 g / cm 3 .
  • the foam has a peak top in a range where a loss tangent (tan ⁇ ), which is a ratio of a storage elastic modulus and a loss elastic modulus at an angular frequency of 1 rad / s in dynamic viscoelasticity measurement, is ⁇ 30 ° C. or higher and 30 ° C. or lower. It is preferable.
  • the foam can be formed of at least one resin material selected from the group consisting of acrylic polymer, rubber, urethane polymer, and ethylene-vinyl acetate copolymer.
  • the foam may be formed through Step A for mechanically foaming the emulsion resin composition. Further, the foam may be formed through a step B in which a mechanically foamed emulsion resin composition is further coated on a substrate and dried. Further, the step B is a pre-drying step B1 in which the bubble-containing emulsion resin composition applied on the substrate is dried at 50 ° C. or higher and lower than 125 ° C., and then a main drying step B2 for further drying at 125 ° C. or higher and 200 ° C. May be included.
  • the compression set at 80 ° C. is preferably 50% or less, more preferably 25% or less.
  • the thickness is preferably 40 to 500 ⁇ m, more preferably 50 to 300 ⁇ m.
  • the apparent density of the foam is preferably 0.21 to 0.6 g / cm 3 , more preferably 0.22 to 0.5 g / cm 3 .
  • the foam sheet may have an adhesive layer on one side or both sides of the foam.
  • It may be used as a shock absorbing sheet for electric / electronic devices.
  • the present invention also provides an electric / electronic device in which the foam sheet is used.
  • This electric / electronic device includes an electric / electronic device provided with a display member, wherein the foamed sheet is sandwiched between a casing of the electric or electronic device and the display member. It is.
  • the foamed sheet of the present invention is made of a foam having a specific average cell diameter, has a compression set at 80 ° C. of 80% or less, and has a low impact absorption change rate of ⁇ 20% or less. Even if it is very thin, it exhibits excellent shock absorption and also has excellent heat resistance. Therefore, even when used in an electric / electronic device equipped with a heating element having a large calorific value, the performance as an impact absorbing sheet does not deteriorate and high reliability can be obtained.
  • FIG. 1 It is a schematic block diagram of a pendulum type impact tester (impact test device). It is a figure which shows schematic structure of the holding member of a pendulum type impact tester (impact test apparatus).
  • the foam sheet of the present invention is composed of a foam having an average cell diameter of 10 to 200 ⁇ m.
  • the lower limit of the average cell diameter of the foam is preferably 15 ⁇ m, more preferably 20 ⁇ m, and the upper limit is preferably 150 ⁇ m, more preferably 130 ⁇ m, and even more preferably 100 ⁇ m.
  • the maximum cell diameter of the foam is, for example, 40 to 800 ⁇ m, the lower limit is preferably 60 ⁇ m, more preferably 80 ⁇ m, and the upper limit is preferably 400 ⁇ m, more preferably 220 ⁇ m.
  • the minimum cell diameter of the foam is, for example, 5 to 70 ⁇ m, and the lower limit is preferably 8 ⁇ m, more preferably 10 ⁇ m, and the upper limit is preferably 60 ⁇ m, more preferably 50 ⁇ m.
  • the foamed sheet of the present invention has a compression set at 80 ° C. of 80% or less, preferably 50% or less, more preferably 25% or less, and particularly preferably 10% or less.
  • the compression set test at 80 ° C. can be performed in accordance with JIS K6262.
  • the compression set (%) is obtained by the following formula.
  • CS ⁇ (t0 ⁇ t1) / (t0 ⁇ t2) ⁇ ⁇ 100
  • CS Compression set (%)
  • t0 Original thickness of the test piece (mm)
  • t1 The thickness of the test piece 30 mm after removing the test piece from the compression apparatus (mm)
  • t2 Test specimen thickness (mm) with compressive strain applied
  • the compression set is a value when the test piece is compressed by 60%.
  • the foamed sheet of the present invention has an impact absorption change rate defined below as ⁇ 20% or less, preferably ⁇ 15% or less, more preferably ⁇ 5% or less.
  • Impact absorption change rate (%) ⁇ (shock absorption rate after high temperature compression b ⁇ initial impact absorption rate a) / initial impact absorption rate a ⁇ ⁇ 100
  • Initial impact absorption rate a Impact absorption rate (%) of test piece A
  • Impact absorption rate (%) ⁇ (F 0 -F 1 ) / F 0 ⁇ ⁇ 100 (In the above formula, F 0 is the impact force when the impactor collides only with the support plate, and F 1 impacts the impactor on the support plate of the structure consisting of the support plate and the test piece A). It is the impact force when letting
  • the foamed sheet of the present invention has a low compression set at 80 ° C. and a low rate of change in shock absorption. Therefore, even when compressed at a high temperature, the foam is not easily crushed, and excellent thickness recovery is obtained. Even when subjected to an impact at a temperature, the same high shock absorption as at normal temperature is exhibited. Therefore, even when used in an electric / electronic device or the like provided with a heating element having a large calorific value, damage to the device can be prevented even if an impact is applied to the electric / electronic device when it is dropped.
  • the impact test apparatus 1 (pendulum tester 1) includes a holding member 3 as a holding means for holding the test piece 2 (foamed sheet 2) with an arbitrary holding force, and the test piece 2
  • An impact load member 4 for applying an impact stress to the test piece
  • a pressure sensor 5 as an impact force detection means for detecting an impact force of the impact load member 4 against the test piece 2 and the like.
  • the holding member 3 that holds the test piece 2 with an arbitrary holding force includes a fixing jig 11 and a holding jig 12 that is slidable so as to sandwich and hold the test piece 2 facing the fixing jig 11. It is configured.
  • the pressing jig 12 is provided with a pressing pressure adjusting means 16.
  • the impact load member 4 for applying an impact force to the test piece 2 held by the holding member 3 is supported so that one end 22 is pivotally supported with respect to the column 20 and an impactor 24 is provided on the other end side. It is composed of a rod 23 (shaft 23) and an arm 21 that lifts and holds the impactor 24 at a predetermined angle.
  • a steel ball is used as the impactor 24, it is possible to lift the impactor 24 integrally by a predetermined angle by providing an electromagnet 25 at one end of the arm.
  • the pressure sensor 5 that detects the impact force acting on the test piece 2 by the impact load member 4 is provided on the opposite side of the surface of the fixing jig 11 that contacts the test piece.
  • the impactor 24 is a steel ball (iron ball).
  • the angle at which the impactor 24 is lifted by the arm 21 is 40 °.
  • the weight of the steel ball (iron ball) is 28 g.
  • the test piece 2 is a highly elastic plate material such as a resin plate (acrylic plate, polycarbonate plate, etc.) or a metal plate between the fixing jig 11 and the holding jig 12. It is clamped via the support plate 28 configured.
  • the impact absorbability is an impact force F 0 measured by causing the impactor 24 to collide with the support plate 28 after tightly fixing the fixing jig 11 and the support plate 28 using the impact test apparatus described above.
  • the impact force F 1 measured by causing the impactor 24 to collide with the support plate 28 after inserting the test piece 2 between the fixing jig 11 and the support plate 28 and fixing the test piece 2 tightly is calculated.
  • the Note that the impact test apparatus is the same apparatus as that of Example 1 of JP-A-2006-47277.
  • the foamed sheet of the present invention is excellent in shock absorption while being thin.
  • the impact absorption rate (impactor weight 28 g, swing-up angle 40 °) is usually 5 to 70%, and the lower limit is preferably 10%, more preferably 20%, still more preferably 28%.
  • the upper limit is preferably 60%.
  • the thickness of the foamed sheet of the present invention is not particularly limited, but is, for example, 30 to 1000 ⁇ m.
  • the lower limit is more preferably 40 ⁇ m, still more preferably 50 ⁇ m, and the upper limit is more preferably 500 ⁇ m, still more preferably 300 ⁇ m, and particularly preferably 200 ⁇ m.
  • the thickness of the foamed sheet is 30 ⁇ m or more, the bubbles can be contained uniformly, and more excellent impact absorbability can be exhibited. Further, by setting the thickness of the foamed sheet to 1000 ⁇ m or less, it is possible to easily follow a minute clearance.
  • the foamed sheet of the present invention is excellent in impact absorption even if the thickness is as thin as 30 to 1000 ⁇ m.
  • the ratio of the average cell diameter ( ⁇ m) to the thickness of the foamed sheet ( ⁇ m) is preferably in the range of 0.1 to 0.9.
  • the lower limit of the ratio of the average cell diameter ( ⁇ m) to the thickness of the foamed sheet ( ⁇ m) is preferably 0.2, more preferably 0.3, and the upper limit is preferably 0.85, more preferably 0. .8.
  • the apparent density of the foam constituting the foam sheet of the present invention is not particularly limited, but is preferably 0.2 to 0.7 g / cm 3 .
  • the lower limit is more preferably 0.21 g / cm 3 , further preferably 0.22 g / cm 3
  • the upper limit is more preferably 0.6 g / cm 3 , still more preferably 0.5 g / cm 3 , and particularly preferably 0.4 g / cm 3 .
  • the apparent density of the foam is 0.2 g / cm 3 or more, higher strength can be maintained, and when it is 0.7 g / cm 3 or less, higher impact absorbability is exhibited. Further, when the apparent density of the foam is in the range of 0.2 to 0.4 g / cm 3 , even higher impact absorbability is exhibited.
  • the impact absorption can be adjusted by selecting the average cell diameter, the apparent density, etc., but when the thickness of the foam sheet is very small (for example, a thickness of 30 to 500 ⁇ m), it may not be possible to sufficiently absorb the impact only by adjusting these characteristics. This is because when the thickness of the foam sheet is very thin, the bubbles in the foam are immediately crushed by the impact and the shock buffering function by the bubbles is lost.
  • the peak top of the loss tangent (tan ⁇ ) which is the ratio of the storage elastic modulus and the loss elastic modulus at an angular frequency of 1 rad / s in the dynamic viscoelasticity measurement of the foam, is ⁇ 30 ° C. or higher and 30 ° C. or lower. It is preferable that it exists in the range. By doing in this way, even after bubbles are crushed, the constituent material of the foam exerts more functions of buffering the impact.
  • the lower limit of the temperature range where the loss tangent peak top is present is more preferably ⁇ 25 ° C., further preferably ⁇ 20 ° C., particularly preferably ⁇ 10 ° C., and the upper limit is more preferably 20 ° C., further preferably 10 ° C.
  • the peak temperature is ⁇ 30 ° C. or higher, more excellent compression recovery is exhibited.
  • the peak temperature is 30 ° C. or lower, higher flexibility is exhibited, and more excellent shock absorption is exhibited.
  • the peak top strength (maximum value) of loss tangent (tan ⁇ ) in the range of ⁇ 30 ° C. or higher and 30 ° C. or lower is preferably higher from the viewpoint of shock absorption, for example, 0.2 or higher, preferably 0.3 or higher.
  • the upper limit value of the peak top intensity (maximum value) is, for example, 2.0.
  • the peak temperature of the loss tangent (tan ⁇ ) often contributes to the impact absorption of the foam.
  • the peak top of the loss tangent (tan ⁇ ) which is the ratio of the storage elastic modulus and loss elastic modulus at the angular frequency of 1 rad / s in the dynamic viscoelasticity measurement of the foam, is in the range of ⁇ 30 ° C. or higher and 30 ° C. or lower.
  • the loss tangent (tan ⁇ ) peak exists at a location that matches the frequency of impact. That is, the range where the loss tangent (tan ⁇ ) is ⁇ 30 ° C. or higher and 30 ° C.
  • the storage elastic modulus is a repulsive force with respect to the impact energy applied to the foam sheet. If the storage elastic modulus is high, the impact is repelled as it is.
  • the loss elastic modulus is a physical property that changes impact energy applied to the foam sheet to heat, and the higher the loss elastic modulus is, the more the impact energy is changed to heat, so the impact is absorbed and the strain is reduced.
  • the foam constituting the foam sheet of the present invention is not particularly limited in its composition and cell structure as long as it has the above characteristics.
  • the cell structure may be any of an open cell structure, a closed cell structure, and a semi-continuous semi-closed cell structure. From the viewpoint of impact absorption, an open cell structure and a semi-open semi-closed cell structure are preferable.
  • the foam can be constituted by a resin composition containing a resin material (polymer).
  • the loss which is a ratio of the storage elastic modulus and the loss elastic modulus at an angular frequency of 1 rad / s in the dynamic viscoelasticity measurement of the resin composition in an unfoamed state [resin composition when not foamed (solid matter)]
  • the peak top of the tangent (tan ⁇ ) is preferably in the range of ⁇ 30 ° C. to 30 ° C.
  • the lower limit of the temperature range where the loss tangent peak top is present is more preferably ⁇ 25 ° C., further preferably ⁇ 20 ° C., particularly preferably ⁇ 10 ° C., and the upper limit is more preferably 20 ° C., further preferably 10 ° C.
  • the peak top strength of (tan ⁇ ) (corresponding to the value obtained by dividing the apparent density (g / cm 3 ) of the foam) is preferably higher from the viewpoint of impact absorption.
  • the peak top strength of the loss tangent (tan ⁇ ) in the range of ⁇ 30 ° C. to 30 ° C. of the resin composition (solid material) is preferably 0.9 (g / cm 3 ) ⁇ 1 or more,
  • the upper limit is, for example, about 3 (g / cm 3 ) ⁇ 1 .
  • the resin material (polymer) constituting the foam is not particularly limited, and a known or well-known resin material constituting the foam can be used.
  • the resin material include acrylic polymers, rubbers, urethane polymers, and ethylene-vinyl acetate copolymers. Among these, acrylic polymers, rubbers, and urethane polymers are preferable from the viewpoint of impact absorption.
  • One type of resin material (polymer) constituting the foam may be used alone, or two or more types may be used.
  • the Tg of the resin material (polymer) can be used as an index or a guide.
  • the resin material (polymer) has a Tg of ⁇ 50 ° C. or more and less than 50 ° C. (lower limit is preferably ⁇ 40 ° C., more preferably ⁇ 30 ° C., upper limit is preferably 40 ° C., more preferably 30 ° C.) It can be selected from resin materials (polymers) in the range.
  • the acrylic polymer is preferably an acrylic polymer formed with a monomer having a homopolymer Tg of ⁇ 10 ° C. or more and a monomer having a homopolymer Tg of less than ⁇ 10 ° C. as essential monomer components.
  • the ratio of the storage elastic modulus and loss elastic modulus at an angular frequency of 1 rad / s in dynamic viscoelasticity measurement is obtained by adjusting the amount ratio of the former monomer and the latter monomer.
  • a foam having a loss tangent (tan ⁇ ) peak top of ⁇ 30 ° C. or higher and 30 ° C. or lower can be obtained relatively easily.
  • glass transition temperature (Tg) when forming a homopolymer means “glass transition temperature (Tg of homopolymer of the monomer)”.
  • Tg of homopolymer glass transition temperature (Tg of homopolymer of the monomer).
  • the Tg of a homopolymer of a monomer not described in the above document refers to, for example, a value obtained by the following measurement method (see JP 2007-51271 A).
  • this homopolymer solution is cast-coated on a separator and dried to prepare a test sample (sheet-like homopolymer) having a thickness of about 2 mm.
  • This test sample was punched into a disk shape having a diameter of 7.9 mm, sandwiched between parallel plates, and subjected to a shear strain at a frequency of 1 Hz using a viscoelasticity tester (ARES, manufactured by Rheometrics). Viscoelasticity is measured in a shear mode at a heating rate of 150 ° C. and 5 ° C./min, and the peak top temperature of tan ⁇ is defined as Tg of the homopolymer.
  • the Tg of the resin material (polymer) can also be measured by this method.
  • the Tg is, for example, ⁇ 10 ° C. to 250 ° C., preferably 10 to 230 ° C., more preferably 50 to 200 ° C.
  • Examples of the homopolymer having a Tg of ⁇ 10 ° C. or more include, for example, (meth) acrylonitrile; amide group-containing monomers such as (meth) acrylamide and N-hydroxyethyl (meth) acrylamide; (meth) acrylic acid; methacrylic acid (Meth) acrylic acid alkyl esters having homopolymers such as methyl and ethyl methacrylate having a Tg of ⁇ 10 ° C. or higher; (meth) acrylic acid isobornyl; heterocycle-containing vinyl monomers such as N-vinyl-2-pyrrolidone; Examples thereof include hydroxyl group-containing monomers such as ethyl methacrylate.
  • (meth) acrylonitrile (especially acrylonitrile) is particularly preferable.
  • (meth) acrylonitrile (especially acrylonitrile) is used as a monomer having a homopolymer Tg of ⁇ 10 ° C. or higher, the peak top strength of the loss tangent (tan ⁇ ) of the foam is increased because of the strong intermolecular interaction. be able to.
  • the Tg is, for example, ⁇ 70 ° C. or more and less than ⁇ 10 ° C., preferably ⁇ 70 ° C. to ⁇ 12 ° C., more preferably ⁇ 65 ° C. to ⁇ 15 ° C. .
  • Examples of the homopolymer having a Tg of less than ⁇ 10 ° C. include, for example, (meth) acrylic acid alkyl esters having a homopolymer Tg of less than ⁇ 10 ° C., such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc. Is mentioned. These can be used individually by 1 type or in combination of 2 or more types. Among these, acrylic acid C 2-8 alkyl ester is particularly preferable.
  • the content of the monomer having a Tg of -10 ° C. or more of the homopolymer is, for example, 2 to 30% by weight with respect to all the monomer components forming the acrylic polymer (total amount of monomer components), and the lower limit is preferably 3%. %, More preferably 4% by weight, and the upper limit is preferably 25% by weight, more preferably 20% by weight.
  • the content of the monomer having a Tg of the homopolymer of less than ⁇ 10 ° C. with respect to all the monomer components forming the acrylic polymer (total amount of monomer components) is, for example, 70 to 98% by weight, and the lower limit is preferably The upper limit is preferably 97% by weight, more preferably 96% by weight.
  • the viscosity of the composition decreases when the emulsion resin composition is foamed by applying mechanical shearing or the like. Many bubbles are likely to be taken into the emulsion, and when the emulsion resin composition containing the bubbles is applied onto a substrate and dried in a stationary state, the composition tends to aggregate and the viscosity is increased. The foam rises and the bubbles are retained in the composition and hardly diffused to the outside, so that a foam having excellent foaming characteristics can be obtained.
  • nitrogen atom-containing copolymerizable monomer examples include cyano group-containing monomers such as (meth) acrylonitrile; lactam ring-containing monomers such as N-vinyl-2-pyrrolidone; (meth) acrylamide, N And amide group-containing monomers such as hydroxyethyl (meth) acrylamide, N-methylolacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, and diacetoneacrylamide.
  • cyano group-containing monomers such as acrylonitrile and lactam ring-containing monomers such as N-vinyl-2-pyrrolidone are preferable.
  • a nitrogen atom containing monomer can be used individually by 1 type or in combination of 2 or more types.
  • the content of the structural unit derived from the nitrogen atom-containing monomer is preferably 2 to 2 with respect to all the structural units constituting the acrylic polymer.
  • the lower limit is more preferably 3% by weight, still more preferably 4% by weight, and the upper limit is more preferably 25% by weight, still more preferably 20% by weight.
  • an acrylic acid C 2-18 alkyl ester (particularly acrylic acid C 2 -8 alkyl ester) is preferred.
  • Acrylic acid C 2-18 alkyl ester can be used alone or in combination of two or more.
  • the content of structural units derived from acrylic acid C 2-18 alkyl esters (particularly acrylic acid C 2-8 alkyl esters) is based on the total structural units constituting the acrylic polymer.
  • the lower limit is more preferably 75% by weight, still more preferably 80% by weight, and the upper limit is more preferably 97% by weight, still more preferably 96% by weight. .
  • the rubber may be natural rubber or synthetic rubber.
  • examples of the rubber include nitrile rubber (NBR), methyl methacrylate-butadiene rubber (MBR), styrene-butadiene rubber (SBR), acrylic rubber (ACM, ANM), urethane rubber (AU), and silicone rubber.
  • NBR nitrile rubber
  • MRR methyl methacrylate-butadiene rubber
  • SBR styrene-butadiene rubber
  • ACM acrylic rubber
  • AU urethane rubber
  • silicone rubber silicone rubber.
  • urethane polymer examples include polycarbonate polyurethane, polyester polyurethane, and polyether polyurethane.
  • ethylene-vinyl acetate copolymer a known or well-known ethylene-vinyl acetate copolymer can be used.
  • the foam constituting the foam sheet contains a surfactant, a crosslinking agent, a thickener, a rust inhibitor, a silicone compound, and other additives as necessary. Also good.
  • an optional surfactant may be included for the purpose of reducing the bubble diameter and stabilizing the foam.
  • the surfactant is not particularly limited, and any of an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and the like may be used. From the viewpoint of the stability of the foam, an anionic surfactant is preferable, and a fatty acid ammonium surfactant such as ammonium stearate is more preferable.
  • Surfactant may be used individually by 1 type and may be used in combination of 2 or more type. Different surfactants may be used in combination, for example, an anionic surfactant and a nonionic surfactant, or an anionic surfactant and an amphoteric surfactant may be used in combination.
  • the addition amount [solid content (nonvolatile content)] of the surfactant is, for example, 0 to 10 parts by weight with respect to 100 parts by weight of the resin material (polymer) [solid content (nonvolatile content)], and the lower limit is preferably 0.5 part by weight, the upper limit is preferably 8 parts by weight.
  • an arbitrary cross-linking agent may be included.
  • the crosslinking agent is not particularly limited, and any of oil-soluble and water-soluble may be used.
  • examples of the crosslinking agent include epoxy, oxazoline, isocyanate, carbodiimide, melamine, and metal oxide. Among these, an oxazoline-based crosslinking agent is preferable.
  • the addition amount [solid content (nonvolatile content)] of the crosslinking agent is, for example, 0 to 10 parts by weight with respect to 100 parts by weight of the resin material (polymer) [solid content (nonvolatile content)], and the lower limit is preferably 0. 0.01 parts by weight, more preferably 0.1 parts by weight, and the upper limit is preferably 9 parts by weight, more preferably 8 parts by weight.
  • an optional thickener may be included.
  • the thickener is not particularly limited, and examples thereof include acrylic acid type, urethane type, and polyvinyl alcohol type. Of these, polyacrylic acid thickeners and urethane thickeners are preferred.
  • the addition amount of the thickener is, for example, 0 to 10 parts by weight with respect to 100 parts by weight of the resin material (polymer) [solid content (nonvolatile content)], and the lower limit is preferably 0.1 parts by weight, the upper limit is preferably 5 parts by weight.
  • an arbitrary rust inhibitor may be included to prevent corrosion of the metal member adjacent to the foam sheet.
  • an azole ring-containing compound is preferable. When an azole ring-containing compound is used, it is possible to achieve both high levels of corrosion prevention for metals and adhesion to adherends.
  • the azole ring-containing compound may be a compound having a 5-membered ring containing one or more nitrogen atoms in the ring.
  • compounds having a ring, a thiazole ring, or an isothiazole ring may be condensed with an aromatic ring such as a benzene ring to form a condensed ring.
  • Examples of the compound having such a condensed ring include a compound having a benzimidazole ring, a benzopyrazole ring, a benzotriazole ring, a benzoxazole ring, a benzoisoxazole ring, a benzothiazole ring, or a benzoisothiazole ring.
  • the azole ring and the condensed ring each may have a substituent.
  • substituents include alkyl groups having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms) such as methyl group, ethyl group, propyl group, isopropyl group and butyl group; methoxy group, ethoxy group, isopropyloxy
  • a compound in which an azole ring forms a condensed ring with an aromatic ring such as a benzene ring is preferable.
  • a benzotriazole compound (a compound having a benzotriazole ring), a benzothiazole compound ( A compound having a benzothiaazole ring) is particularly preferred.
  • benzotriazole compounds include 1,2,3-benzotriazole, methylbenzotriazole, carboxybenzotriazole, carboxymethylbenzotriazole, and 1- [N, N-bis (2-ethylhexyl) aminomethyl] benzotriazole.
  • 1- [N, N-bis (2-ethylhexyl) aminomethyl] methylbenzotriazole, 2,2 ′-[[(methyl-1H-benzotriazol-1-yl) methyl] imino] bisethanol, or these A sodium salt etc. are mentioned.
  • benzothiazole compound examples include 2-mercaptobenzothiazole, 3- (2- (benzothiazolyl) thio) propionic acid, or a sodium salt thereof.
  • the azole ring-containing compound may be used alone or in combination of two or more.
  • the addition amount [solid content (nonvolatile content)] of the rust inhibitor (for example, the azole ring-containing compound) [solid content (nonvolatile content)] is within a range that does not impair the adhesion to the adherend and the original properties of the foam.
  • 0.2 to 5 parts by weight is preferable with respect to 100 parts by weight of the resin material (polymer) [solid content (nonvolatile content)].
  • the lower limit is more preferably 0.3 parts by weight, still more preferably 0.4 parts by weight, and the upper limit is more preferably 3 parts by weight, still more preferably 2 parts by weight.
  • a silicone compound may be added in order to improve the thickness recoverability and recovery speed of the foamed sheet after being compressed.
  • a silicone-modified polymer for example, a silicone-modified acrylic polymer, a silicone-modified urethane polymer, etc.
  • a silicone-modified urethane polymer may be used as at least a part of the resin material (polymer). These can be used alone or in combination of two or more.
  • the silicone compound is preferably a silicone compound having a siloxane bond of 2000 or less.
  • examples of the silicone compound include silicone oil, modified silicone oil, and silicone resin.
  • silicone oil straight silicone oil
  • examples of silicone oil include dimethyl silicone oil and methylphenyl silicone oil.
  • modified silicone oil examples include polyether-modified silicone oil (polyether-modified dimethyl silicone oil, etc.), alkyl-modified silicone oil (alkyl-modified dimethyl silicone oil, etc.), aralkyl-modified silicone oil (aralkyl-modified dimethyl silicone oil, etc.), higher fatty acids
  • modified silicone oil examples include ester-modified silicone oil (higher fatty acid ester-modified dimethyl silicone oil and the like), fluoroalkyl-modified silicone oil (fluoroalkyl-modified dimethyl silicone oil and the like), and the like.
  • polyether-modified silicone is preferred.
  • examples of commercially available polyether-modified silicone oils include “PEG11 methyl ether dimethicone”, “PEG / PPG-20 / 22 butyl ether dimethicone”, “PEG-9 methyl ether dimethicone”, “PEG-32 methyl ether dimethicone”, “ Linear type such as “PEG-9 dimethicone”, “PEG-3 dimethicone”, “PEG-10 dimethicone”; branched such as “PEG-9 polydimethylsiloxyethyl dimethicone”, “lauryl PEG-9 polydimethylsiloxyethyl dimethicone” Examples include the type (manufactured by Shin-Etsu Silicone).
  • the silicone resin includes straight silicone resin and modified silicone resin.
  • the straight silicone resin include methyl silicone resin and methylphenyl silicone resin.
  • the modified silicone resin include alkyd-modified silicone resin, epoxy-modified silicone resin, acrylic-modified silicone resin, and polyester-modified silicone resin.
  • the total content of the silicone compound and the silicone chain part present in the silicone-modified polymer in the foam is in terms of non-volatile content (in terms of solid content) with respect to 100 parts by weight of the resin material (polymer) in the foam. ), For example, 0.01 to 5 parts by weight.
  • the lower limit of the total content is preferably 0.05 parts by weight, more preferably 0.1 parts by weight, and the upper limit is preferably 4 parts by weight, more preferably 3 parts by weight.
  • the total content of the silicone compound and the silicone chain portion present in the silicone-modified polymer in the foam is, for example, 0.01 to 5% by weight in terms of nonvolatile content (in terms of solid content).
  • the lower limit of the total content is preferably 0.05% by weight, more preferably 0.1% by weight, and the upper limit is preferably 4% by weight, more preferably 3% by weight.
  • the foam constituting the foam sheet may contain any appropriate other component within a range not impairing the impact absorbability.
  • Such other components may contain only 1 type and may contain 2 or more types.
  • the other components include polymer components other than those described above, softeners, antioxidants, anti-aging agents, gelling agents, curing agents, plasticizers, fillers, reinforcing agents, foaming agents (such as baking soda), micro Capsules (thermally expandable microspheres, etc.), flame retardants, light stabilizers, UV absorbers, colorants (pigments, dyes, etc.), pH adjusters, solvents (organic solvents), thermal polymerization initiators, photopolymerization initiators, etc. Is mentioned.
  • the addition amount [solid content (nonvolatile content)] of these components may be in a range that does not impair the adhesion to the adherend and the original properties of the foam.
  • resin material (polymer) solid content (nonvolatile content)
  • a range of 0.2 to 60 parts by weight per 100 parts by weight is preferable.
  • the amount of foaming agent (such as baking soda) added [solid content (nonvolatile content)] is more preferably 0.5 to 20 parts by weight relative to 100 parts by weight of the resin material (polymer) [solid content (nonvolatile content)]. It is.
  • the addition amount [solid content (nonvolatile content)] of microcapsules (thermally expandable microspheres, etc.) is more preferably 0.2 parts per 100 parts by weight of resin material (polymer) [solid content (nonvolatile content)]. ⁇ 10 parts by weight.
  • the addition amount [solid content (nonvolatile content)] of the filler is more preferably 0.3 to 50 parts by weight with respect to 100 parts by weight of the resin material (polymer) [solid content (nonvolatile content)].
  • the filler examples include silica, clay (mica, talc, smectite, etc.), alumina, aluminum hydroxide, alkaline earth metal hydroxide (magnesium hydroxide, etc.), and alkaline earth metal carbonate (carbonic acid). Calcium, etc.), titania, zinc oxide, tin oxide, zeolite, graphite, carbon black, carbon nanotube, inorganic fiber (carbon fiber, glass fiber, potassium titanate fiber, etc.), organic fiber, metal powder (silver, copper, etc.), Examples thereof include wax (polyethylene wax, polypropylene wax, etc.).
  • piezoelectric particles titanium oxide, barium titanate, etc.
  • conductive particles conductive carbon black, conductive titanium oxide, tin oxide, etc.
  • thermally conductive particles boron nitride, etc.
  • organic filler Silicone powder, polyethylene powder, polypropylene powder, etc.
  • silica is used as the filler, the amount added is particularly preferably in the range of 0.5 to 40 parts by weight with respect to 100 parts by weight of the thermoplastic resin [solid content (nonvolatile content)].
  • the addition amount is particularly preferably in the range of 0.3 to 10 parts by weight with respect to 100 parts by weight of the thermoplastic resin [solid content (nonvolatile content)].
  • the addition amount thereof is particularly preferably in the range of 5 to 40 parts by weight with respect to 100 parts by weight of the thermoplastic resin [solid content (nonvolatile content)].
  • the addition amount thereof is particularly preferably in the range of 5 to 40 parts by weight with respect to 100 parts by weight of the thermoplastic resin [solid content (nonvolatile content)].
  • the foam sheet of the present invention can be produced by subjecting a resin composition containing a resin material (polymer) constituting the foam to foam molding.
  • foaming method bubble forming method
  • methods usually used for foam molding such as physical methods and chemical methods, can be employed.
  • the physical method is to disperse a gas component such as air or nitrogen in a polymer solution and form bubbles by mechanical mixing.
  • the chemical method is a method of obtaining a foam by forming cells with a gas generated by thermal decomposition of a foaming agent added to a polymer base. From the viewpoint of environmental problems, a physical method is preferable. Bubbles formed by physical methods are often open cells.
  • a resin composition containing a resin material (polymer) to be subjected to foam molding a resin solution in which a resin material is dissolved in a solvent may be used. From the viewpoint of foaming properties, an emulsion containing a resin material may be used. preferable. As an emulsion, you may blend and use 2 or more types of emulsion.
  • the solid content concentration of the emulsion is preferably higher from the viewpoint of film formability.
  • the solid content concentration of the emulsion is preferably 30% by weight or more, more preferably 40% by weight or more, and further preferably 50% by weight or more.
  • a method of producing a foam through a step of foaming the emulsion resin composition mechanically (Step A) is preferable.
  • the foaming device is not particularly limited, and examples thereof include a high-speed shearing method, a vibration method, and a pressurized gas discharge method. Among these, the high-speed shearing method is preferable from the viewpoint of finer bubble diameter and production of a large capacity.
  • Bubbles when foamed by mechanical stirring are gas (gas) taken into the emulsion.
  • the gas is not particularly limited as long as it is inert to the emulsion, and examples thereof include air, nitrogen, carbon dioxide and the like. Among these, air is preferable from the viewpoint of economy.
  • the foamed sheet of the present invention can be obtained through a step (Step B) in which the emulsion resin composition foamed by the above method is applied onto a substrate and dried.
  • a step (Step B) in which the emulsion resin composition foamed by the above method is applied onto a substrate and dried.
  • the peeled plastic film peeleling-treated polyethylene terephthalate film etc.
  • the plastic film polyethylene terephthalate film etc.
  • a heat conductive layer etc. are mentioned.
  • the adhesion between the foam layer and the heat conductive layer can be improved, and the efficiency of the drying process when the foam layer is produced can also be improved.
  • Step B a general method can be adopted as a coating method and a drying method.
  • Step B includes a preliminary drying step B1 for drying the bubble-containing emulsion resin composition applied on the substrate at 50 ° C. or higher and lower than 125 ° C., and then a main drying step B2 for further drying at 125 ° C. or higher and 200 ° C. or lower. Preferably it is.
  • the temperature in the preliminary drying step B1 is preferably 50 ° C. or higher and 100 ° C. or lower.
  • the time of the preliminary drying step B1 is, for example, 0.5 minutes to 30 minutes, preferably 1 minute to 15 minutes. Moreover, the temperature in this drying process B2 becomes like this.
  • the main drying step B2 is, for example, 0.5 minutes to 30 minutes, preferably 1 minute to 15 minutes.
  • the average cell diameter, maximum cell diameter, and minimum cell diameter of the foam can be controlled by adjusting the type and amount of the surfactant, or by adjusting the stirring speed and stirring time during mechanical stirring. .
  • the apparent density of the foam can be controlled by adjusting the amount of gas (gas) component taken into the emulsion resin composition during mechanical stirring.
  • the value of the compression set at 80 ° C. and the value of the change rate of shock absorption can be controlled by adjusting, for example, the degree of crosslinking and Tg of the resin material (polymer) constituting the foam. More specifically, for example, by adjusting the amount of the crosslinking agent added, or by adjusting the ratio of the monomer having a Tg of -10 ° C. or more in the total monomer component forming the resin material (polymer), The value of the compression set at 80 ° C. and the value of the shock absorption change rate can be controlled within a predetermined range. The compression set at 80 ° C.
  • the value of the shock absorption change rate can be reduced.
  • the foamed sheet of the present invention may have an adhesive layer (adhesive layer) on one or both sides of the foam. It does not specifically limit as an adhesive which comprises an adhesive layer, For example, any of an acrylic adhesive, a rubber adhesive, a silicone adhesive, etc. may be sufficient. Moreover, when providing an adhesive layer, you may laminate
  • the foamed sheet of the present invention may be distributed on the market as a wound body (rolled material) wound in a roll shape.
  • the foamed sheet of the present invention is excellent in impact absorption even if the thickness is small. In addition, it has excellent heat resistance and possesses the ability to recover to its original shape (thickness) even when subjected to compression or impact at high temperatures (for example, about 80 ° C.).
  • the foam sheet of the present invention has an 80 ° C. stress retention defined below as 68% or more.
  • the conventional foamed sheet generally has a low 80 ° C. stress retention rate, and the stress is relaxed at 80 ° C., and the restoring force is attenuated. ⁇ 80 ° C stress retention> After holding the test piece (foamed sheet) in an atmosphere of 80 ° C.
  • 80 ° C stress retention rate (%) [Load after 120 seconds (N) / Maximum load (N)] ⁇ 100
  • the foamed sheet of the present invention is excellent in shock absorption and heat resistance even when it is thin, it has high mounting (adhesion) reliability even at high temperatures.
  • various members or parts for example, optical members are useful as members for electric / electronic devices used for attaching (mounting) to a predetermined part (for example, a housing), particularly as a shock absorbing sheet. is there.
  • an image display member attached to an image display device such as a liquid crystal display, an electroluminescence display, a plasma display (particularly, a small image display).
  • display members such as touch panels attached to mobile communication devices such as so-called “mobile phones”, “smartphones” and “portable information terminals”, cameras and lenses (particularly small cameras and lenses), etc.
  • mobile communication devices such as so-called “mobile phones”, “smartphones” and “portable information terminals”, cameras and lenses (particularly small cameras and lenses), etc.
  • the electrical / electronic device of the present invention uses the foam sheet of the present invention.
  • Such an electric / electronic device is, for example, an electric / electronic device provided with a display member, in which the foamed sheet is sandwiched between a housing of the electric or electronic device and the display member.
  • Electric and electronic equipment having Examples of the electric / electronic devices include mobile communication devices such as so-called “mobile phones”, “smartphones”, and “portable information terminals”.
  • % representing the content means% by weight.
  • all the compounding parts are values in terms of solid content (non-volatile content).
  • Example 1 100 parts by weight of acrylic emulsion solution (solid content 55%, ethyl acrylate-butyl acrylate-acrylonitrile copolymer (weight ratio 45: 48: 7)), silicone compound A (dimethylsilicone oil, number average molecular weight Mn: 7 .16 ⁇ 10 3 , weight average molecular weight Mw: 1.71 ⁇ 10 4 , solid content (nonvolatile content) 100%) 1 part by weight, fatty acid ammonium surfactant (aqueous dispersion of ammonium stearate, solid content 33) %) 3 parts by weight, oxazoline-based crosslinking agent ("Epocross WS-500" manufactured by Nippon Shokubai Co., Ltd., solid content 39%) 2.0 parts by weight, benzotriazole sodium salt (solid content 40%) (rust inhibitor) 1 weight Part, polyacrylic acid thickener (ethyl acrylate-acrylic acid copolymer (acrylic acid 20% by weight), solid content 28.7%
  • This foamed composition was applied onto a release-treated PET (polyethylene terephthalate) film (thickness: 38 ⁇ m, trade name “MRF # 38” manufactured by Mitsubishi Plastics), 70 ° C. for 4.5 minutes, and 140 ° C. It is dried for 4.5 minutes, and has an open cell structure with a thickness of 100 ⁇ m, an apparent density of 0.34 g / cm 3 , a bubble rate of 65.7%, a maximum cell diameter of 72.5 ⁇ m, a minimum cell diameter of 28.5 ⁇ m, and an average cell diameter of 45 ⁇ m. A foam (foamed sheet) was obtained.
  • Example 2 100 parts by weight of acrylic emulsion solution (solid content 55%, ethyl acrylate-butyl acrylate-acrylonitrile copolymer (weight ratio 45: 48: 7)), silicone compound A (dimethylsilicone oil, number average molecular weight Mn: 7 .16 ⁇ 10 3 , weight average molecular weight Mw: 1.71 ⁇ 10 4 , solid content (nonvolatile content) 100%) 1 part by weight, fatty acid ammonium surfactant (aqueous dispersion of ammonium stearate, solid content 33) %) 3 parts by weight, oxazoline-based crosslinking agent (Epocross WS-500, manufactured by Nippon Shokubai Co., Ltd., solid content 39%) 0.35 parts by weight, benzotriazole sodium salt (solid content 40%) (rust inhibitor) 1 weight Parts, polyacrylic acid thickener (ethyl acrylate-acrylic acid copolymer (acrylic acid 20% by weight), solid content 28
  • This foamed composition was applied onto a release-treated PET (polyethylene terephthalate) film (thickness: 38 ⁇ m, trade name “MRF # 38” manufactured by Mitsubishi Plastics), 70 ° C. for 4.5 minutes, and 140 ° C. It is dried for 4.5 minutes, and has an open cell structure with a thickness of 100 ⁇ m, an apparent density of 0.45 g / cm 3 , a bubble rate of 54.5%, a maximum cell diameter of 87.5 ⁇ m, a minimum cell diameter of 48.5 ⁇ m, and an average cell diameter of 65 ⁇ m. A foam (foamed sheet) was obtained.
  • Example 3 100 parts by weight of acrylic emulsion solution (solid content 55%, ethyl acrylate-butyl acrylate-acrylonitrile copolymer (weight ratio 45: 48: 7)), silicone compound A (dimethylsilicone oil, number average molecular weight Mn: 7 .16 ⁇ 10 3 , weight average molecular weight Mw: 1.71 ⁇ 10 4 , solid content (nonvolatile content) 100%) 1 part by weight, fatty acid ammonium surfactant (aqueous dispersion of ammonium stearate, solid content 33) %) 3 parts by weight, oxazoline-based crosslinking agent (Epocross WS-500, manufactured by Nippon Shokubai Co., Ltd., solid content 39%) 0.35 parts by weight, benzotriazole sodium salt (solid content 40%) (rust inhibitor) 1 weight Parts, polyacrylic acid thickener (ethyl acrylate-acrylic acid copolymer (acrylic acid 20% by weight), solid content 28
  • This foamed composition was applied onto a release-treated PET (polyethylene terephthalate) film (thickness: 38 ⁇ m, trade name “MRF # 38” manufactured by Mitsubishi Plastics), 70 ° C. for 4.5 minutes, and 140 ° C. It was dried for 4.5 minutes and had an open cell structure with a thickness of 120 ⁇ m, an apparent density of 0.26 g / cm 3 , a bubble rate of 73.7%, a maximum cell diameter of 57.5 ⁇ m, a minimum cell diameter of 15.3 ⁇ m, and an average cell diameter of 30 ⁇ m. A foam (foamed sheet) was obtained.
  • Example 4 100 parts by weight of acrylic emulsion solution (solid content 55%, ethyl acrylate-butyl acrylate-acrylonitrile copolymer (weight ratio 45: 48: 7)), silicone compound A (dimethylsilicone oil, number average molecular weight Mn: 7 .16 ⁇ 10 3 , weight average molecular weight Mw: 1.71 ⁇ 10 4 , solid content (nonvolatile content) 100%) 1 part by weight, fatty acid ammonium surfactant (aqueous dispersion of ammonium stearate, solid content 33) %) 3 parts by weight, benzotriazole sodium salt (solid content 40%) (rust inhibitor) 1 part by weight, polyacrylic acid thickener (ethyl acrylate-acrylic acid copolymer (acrylic acid 20% by weight), 0.8 parts by weight of a solid content of 28.7% was stirred and mixed with a disper (“Robomix” manufactured by Primics) to form a foam.
  • silicone compound A dimethyl
  • This foamed composition was applied onto a release-treated PET (polyethylene terephthalate) film (thickness: 38 ⁇ m, trade name “MRF # 38” manufactured by Mitsubishi Plastics), 70 ° C. for 4.5 minutes, and 140 ° C. It is dried for 4.5 minutes, and has an open cell structure with a thickness of 130 ⁇ m, an apparent density of 0.37 g / cm 3 , a bubble rate of 62.6%, a maximum cell diameter of 82.5 ⁇ m, a minimum cell diameter of 43.5 ⁇ m, and an average cell diameter of 60 ⁇ m A foam (foamed sheet) was obtained.
  • This long foam original fabric was cut into a predetermined width (slit processing), and using a continuous slicing device (slice line), the low foam layer on the surface was peeled off one by one to obtain a resin foam.
  • a resin foam By passing the resin foam through the continuous processing apparatus in which the temperature of the induction heating roll is set to 160 ° C. and the gap is set to 0.20 mm, one side is melt-processed with heat, slitted, and then wound up. Thus, a wound body was obtained. The take-up speed was 20 m / min. Next, the wound body is rewound, and is passed through the continuous processing apparatus in which the temperature of the induction heating roll is set to 160 ° C. and the gap is set to 0.10 mm.
  • An average cell diameter ( ⁇ m) was obtained by capturing an enlarged image of the foam cross section with a low vacuum scanning electron microscope (“S-3400N scanning electron microscope” manufactured by Hitachi High-Tech Science Systems) and analyzing the image. The number of bubbles analyzed is about 10 to 20. Similarly, the minimum cell diameter ( ⁇ m) and the maximum cell diameter ( ⁇ m) of the foam sheet were determined.
  • a foam (foamed sheet) is punched with a 100 mm ⁇ 100 mm punching blade mold, and the dimensions of the punched sample are measured. Further, the thickness is measured with a 1/100 dial gauge having a measurement terminal diameter ( ⁇ ) of 20 mm. The volume of the foam was calculated from these values. Next, the weight of the foam is measured with an upper pan balance having a minimum scale of 0.01 g or more. From these values, the apparent density (g / cm 3 ) of the foam was calculated.
  • compression set test The foamed sheets (sample size: 30 mm ⁇ 30 mm) obtained in the examples and comparative examples were used as test pieces. Using this test piece, a compression set test was performed at 80 ° C. (according to JIS K6262). More specifically, the test piece is compressed in an atmosphere of 80 ° C. (the compressed test piece is compressed until the thickness of the compressed test piece becomes 40% of the original thickness), and the state is maintained for 24 hours. After being held, the test piece was released from the compressed state, left at 23 ° C. for 30 minutes, and the thickness of the test piece was measured at 23 ° C. The compression set (%) at 80 ° C. was determined by the following formula.
  • CS ⁇ (t0 ⁇ t1) / (t0 ⁇ t2) ⁇ ⁇ 100 CS: Compression set (%) t0: Original thickness of the test piece (mm) t1: The thickness of the test piece 30 mm after removing the test piece from the compression apparatus (mm) t2: Test specimen thickness (mm) with compressive strain applied
  • shock absorption change rate For the foamed sheets (sample size: 20 mm ⁇ 20 mm) (test piece A) obtained in Examples and Comparative Examples, the above pendulum type impact tester (impact test device) (see FIGS. 1 and 2) was used. The impact absorption test was conducted under the conditions of °C, impactor weight 28 g, and swing angle 40 °. The shock absorption rate obtained at this time is defined as an initial shock absorption rate a. Next, after the test piece A was stored at 80 ° C. for 72 hours in a compressed state of 60% with respect to the initial thickness of the test piece A, the compressed state was released, and then after 23 ° C.
  • Impact absorption change rate (%) ⁇ (shock absorption rate after high temperature compression b ⁇ initial impact absorption rate a) / initial impact absorption rate a ⁇ ⁇ 100
  • the impact absorption rate is a value defined by the following formula.
  • Impact absorption rate (%) ⁇ (F 0 ⁇ F 1 ) / F 0 ⁇ ⁇ 100 (In the above equation, F 0 is the impact force when the impactor collides only with the support plate, and F 1 is when the impactor collides with the support plate of the structure consisting of the support plate and the test piece A. Impact force)
  • the foamed sheet of the present invention is excellent in shock absorption even when it is thin, and also has excellent heat resistance, so it has high mounting (adhesion) reliability even at high temperatures.
  • it is useful as a member for an electric / electronic device, particularly an impact absorbing sheet, used when a component (for example, an optical member) is attached (attached) to a predetermined part (for example, a housing).
  • an optical member that can be attached (attached) using the foam sheet of the present invention for example, an image display member attached to an image display device such as a liquid crystal display, an electroluminescence display, a plasma display (particularly, a small image display).
  • the foam sheet of the present invention is used for the electrical / electronic device of the present invention.
  • Such an electric / electronic device is, for example, an electric / electronic device provided with a display member, in which the foamed sheet is sandwiched between a housing of the electric or electronic device and the display member.
  • Electric and electronic equipment having Examples of the electric / electronic devices include mobile communication devices such as so-called “mobile phones”, “smartphones”, and “portable information terminals”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 厚さが非常に薄くても、優れた衝撃吸収性を発揮するとともに、耐熱性に優れた発泡シートを提供する。 本発明の発泡シートは、平均セル径が10~200μmの発泡体で構成され、80℃での圧縮永久歪みが80%以下であり、下記で定義される衝撃吸収変化率が±20%以下である発泡シート。 衝撃吸収変化率(%)={(高温圧縮後の衝撃吸収率b-初期の衝撃吸収率a)/初期の衝撃吸収率a}×100 初期の衝撃吸収率a:試験片Aの衝撃吸収率(%) 高温圧縮後の衝撃吸収率b(%):試験片Aの初期厚みに対して60%圧縮した状態で試験片Aを80℃×72時間保存した後、圧縮状態を解除し、その後23℃×24時間経過後に測定した衝撃吸収率(%)

Description

発泡シート
 本発明は、厚さが非常に薄くても衝撃吸収性に優れ、且つ耐熱性に優れた発泡シート、及び該発泡シートが用いられている電気・電子機器に関する。
 従来、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置に固定された画像表示部材や、いわゆる「携帯電話」、「スマートフォン」や「携帯情報端末」等に装着された表示部材、カメラ、レンズなどの光学部材を、所定の部位(例えば、筐体等)に固定する際に、発泡材が使用されている。このような発泡材としては、低発泡で且つ独立気泡構造を有する微細セルウレタン系発泡体や高発泡ウレタンを圧縮成形したものの他、独立気泡を有する発泡倍率30倍程度のポリエチレン系発泡体などが使用されていた。具体的には、例えば、見掛け密度0.3~0.5g/cm3のポリウレタン系発泡体からなるガスケット(特許文献1参照)や、平均気泡径が1~500μmの発泡構造体からなる電気・電子機器用シール材(特許文献2参照)などが使用されている。
 近年、PC(パーソナルコンピュータ)、タブレットPC、PDA(個人用の携帯情報端末)、携帯電話等の電子機器の薄型化に伴い、液晶パネルや有機ELパネル等の破損防止のため、パネル背面に衝撃吸収シートが使用されるようになっている。そして、この衝撃吸収シートにも薄膜化が要求されている。しかし、従来の発泡材をこのような衝撃吸収シートとして用いた場合には十分な衝撃吸収性を示さなかった。
 また、電子機器の高機能化に伴い、電子部品などの発熱体は発熱量が大きくなっている。このような発熱量の大きな発熱体を備えた電気・電子機器に従来の発泡材を用いると、内部に蓄積された熱によって性能が低下し、電気・電子機器を落下した時などに衝撃により破損するという問題も生じる。
特開2001-100216号公報 特開2002-309198号公報
 従って、本発明の目的は、厚さが非常に薄くても、優れた衝撃吸収性を発揮するとともに、高温下でも性能が低下しない耐熱性に優れた発泡シートを提供することにある。
 本発明の他の目的は、小型化、薄型化されていても、また発熱量の大きい発熱体を備えていても、落下時の衝撃により破損しにくい電気・電子機器を提供することにある。
 本発明者らは、上記目的を達成するため鋭意検討した結果、特定の平均セル径を有する発泡体で構成し、80℃での圧縮永久歪みが80%以下であり、且つ高温(80℃)圧縮後の衝撃吸収性と初期の衝撃吸収性との差が小さい発泡シートは、厚さが非常に薄くても、優れた衝撃吸収性を発揮するとともに、耐熱性にも優れ、この発泡シートを装着した電気・電子機器が発熱量の大きい発熱体を備えていても、落下時の衝撃で破損しないことを見いだした。本発明はこれらの知見に基づき、さらに検討を重ねて完成したものである。
 すなわち、本発明は、平均セル径が10~200μmの発泡体で構成され、80℃での圧縮永久歪みが80%以下であり、下記で定義される衝撃吸収変化率が±20%以下である発泡シートを提供する。
 衝撃吸収変化率(%)={(高温圧縮後の衝撃吸収率b-初期の衝撃吸収率a)/初期の衝撃吸収率a}×100
 初期の衝撃吸収率a:試験片Aの衝撃吸収率(%)
 高温圧縮後の衝撃吸収率b(%):試験片Aの初期厚みに対して60%圧縮した状態で試験片Aを80℃×72時間保存した後、圧縮状態を解除し、その後23℃×24時間経過後に測定した衝撃吸収率(%)
 衝撃吸収率:振り子型衝撃試験機を用いた衝撃吸収性試験(衝撃子の重さ28g、振り上げ角度40°)(23℃)において、下記式で定義される値
  衝撃吸収率(%)={(F0-F1)/F0}×100
(上記式において、F0は支持板のみに衝撃子を衝突させた時の衝撃力のことであり、F1は支持板と試験片Aとからなる構造体の支持板上に衝撃子を衝突させた時の衝撃力のことである)
 前記発泡シートにおいて、厚さが30~1000μmであり、前記発泡体の見掛け密度が0.2~0.7g/cm3であるものが好ましい。
 前記発泡体は、動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接(tanδ)が-30℃以上30℃以下の範囲にピークトップを有することが好ましい。
 発泡体は、アクリル系ポリマー、ゴム、ウレタン系ポリマー、及びエチレン-酢酸ビニル共重合体からなる群より選択された少なくとも1種の樹脂材料で形成できる。
 発泡体が、エマルション樹脂組成物を機械的に発泡させる工程Aを経て形成されてもよい。また、発泡体が、さらに、機械的に発泡させたエマルション樹脂組成物を基材上に塗工して乾燥する工程Bを経て形成されていてもよい。さらに、前記工程Bが、基材上に塗布した気泡含有エマルション樹脂組成物を50℃以上125℃未満で乾燥する予備乾燥工程B1と、その後さらに125℃以上200℃以下で乾燥する本乾燥工程B2を含んでいてもよい。
 前記発泡シートにおいて、80℃での圧縮永久歪みは、50%以下であることが好ましく、より好ましくは25%以下である。
 前記発泡シートにおいて、厚さは40~500μmであることが好ましく、より好ましくは50~300μmである。
 前記発泡体の見掛け密度は、0.21~0.6g/cm3であることが好ましく、より好ましくは0.22~0.5g/cm3である。
 上記発泡シートは、発泡体の片面又は両面に粘着剤層を有していてもよい。
 電気・電子機器用衝撃吸収シートとして用いられるものであってもよい。
 本発明は、また、前記の発泡シートが用いられている電気・電子機器を提供する。この電気・電子機器には、表示部材を備えた電気・電子機器であって、前記発泡シートが該電気又は電子機器の筐体と前記表示部材との間に挟持された構造を有するものが含まれる。
 本発明の発泡シートは、特定の平均セル径を有する発泡体で構成され、80℃での圧縮永久歪みが80%以下であり、衝撃吸収変化率が±20%以下と低いので、厚さが非常に薄くても優れた衝撃吸収性を発揮するとともに、耐熱性にも優れている。そのため、発熱量の大きい発熱体を備えた電気・電子機器等に用いた場合であっても、衝撃吸収シートとしての性能が低下せず、高い信頼性を得ることができる。
振り子型衝撃試験機(衝撃試験装置)の概略構成図である。 振り子型衝撃試験機(衝撃試験装置)の保持部材の概略構成を示す図である。
 本発明の発泡シートは、平均セル径が10~200μmの発泡体で構成されている。発泡体の平均セル径の下限は、好ましくは15μm、より好ましくは20μmであり、上限は、好ましくは150μm、より好ましくは130μm、さらに好ましくは100μmである。平均セル径が10μm以上であることにより、優れた衝撃吸収性が発揮される。また、平均セル径が200μm以下であるため、圧縮回復性にも優れる。なお、前記発泡体の最大セル径は、例えば、40~800μmであり、その下限は、好ましくは60μm、より好ましくは80μm、上限は、好ましくは400μm、より好ましくは220μmである。また、前記発泡体の最小セル径は、例えば、5~70μmであり、その下限は、好ましくは8μm、より好ましくは10μm、上限は、好ましくは60μm、より好ましくは50μmである。
 本発明の発泡シートは、80℃での圧縮永久歪みが80%以下であり、好ましくは50%以下、さらに好ましくは25%以下、特に好ましくは10%以下である。
 80℃での圧縮永久歪み試験は、JIS K6262の規定に準じて行うことができる。圧縮永久歪み(%)は、下記式により求められる。
  CS={(t0-t1)/(t0-t2)}×100
  CS:圧縮永久歪み(%)
  t0:試験片の元の厚さ(mm)
  t1:試験片を圧縮装置から取り外し、30分後の試験片の厚さ(mm)
  t2:圧縮歪みを加えた状態での試験片の厚さ(mm)
 なお、本発明において、圧縮永久歪みは、試験片を60%圧縮したときの値である。
 本発明の発泡シートは、下記で定義される衝撃吸収変化率が±20%以下であり、好ましくは±15%以下、さらに好ましくは±5%以下である。
 衝撃吸収変化率(%)={(高温圧縮後の衝撃吸収率b-初期の衝撃吸収率a)/初期の衝撃吸収率a}×100
 初期の衝撃吸収率a:試験片Aの衝撃吸収率(%)
 高温圧縮後の衝撃吸収率b(%):試験片Aの初期厚みに対して60%圧縮した状態で試験片Aを80℃×72時間保存した後、圧縮状態を解除し、その後23℃×24時間経過後に測定した衝撃吸収率(%)
 衝撃吸収率:振り子型衝撃試験機を用いた衝撃吸収性試験(衝撃子の重さ28g、振り上げ角度40°)(23℃)において、下記式で定義される値
  衝撃吸収率(%)={(F0-F1)/F0}×100
(上記式において、F0は支持板のみに衝撃子を衝突させた時の衝撃力のことであり、F1は支持板と試験片Aとからなる構造体の支持板上に衝撃子を衝突させた時の衝撃力のことである)
 本発明の発泡シートは、80℃での圧縮永久歪みが小さく、また上記衝撃吸収変化率が低いので、高い温度で圧縮されても気泡が潰れにくく、優れた厚み回復性が得られるとともに、高い温度で衝撃を受けた場合でも、常温時と同様の高い衝撃吸収性を示す。そのため、発熱量の大きい発熱体を備えた電気・電子機器等に用いた場合においても、該電気・電子機器に落下時等に衝撃が加わっても機器の破損を防止できる。
 振り子型衝撃試験機(衝撃試験装置)の概略構成について、図1及び図2により説明する。図1及び図2に示すように、衝撃試験装置1(振り子試験機1)は、試験片2(発泡シート2)を任意の保持力で保持する保持手段としての保持部材3と、試験片2に衝撃応力を負荷する衝撃負荷部材4と、衝撃負荷部材4による試験片2に対する衝撃力を検出する衝撃力検出手段としての圧力センサー5等により構成されている。また、試験片2を任意の保持力で保持する保持部材3は、固定治具11と、固定治具11に対向して試験片2を挟み込んで保持できるようスライド可能な押さえ治具12とで構成されている。さらに、押さえ治具12には押さえ圧力調整手段16が設けられている。さらに、保持部材3によって保持された試験片2に衝撃力を負荷する衝撃負荷部材4は、一端22が支柱20に対して回動可能に軸支され、他端側に衝撃子24を有する支持棒23(シャフト23)と、衝撃子24を所定角度に持ち上げて保持するアーム21とで構成されている。ここで衝撃子24として鋼球を使用しているので、アームの一端に電磁石25を設けることによって衝撃子24を一体に所定角度持ち上げることが可能となっている。さらにまた、衝撃負荷部材4による試験片2に作用する衝撃力を検出する圧力センサー5は、固定治具11の試験片が接する面の反対面側に設けられている。
 衝撃子24は、鋼球(鉄球)である。また、衝撃子24がアーム21により持ち上げられる角度(図1中の振り上げ角度a)は40°である。鋼球(鉄球)の重さは28gである。
 図2に示すように、試験片2(発泡シート2)は、固定治具11と押さえ治具12間に樹脂性板材(アクリル板、ポリカーボネート板等)や金属製板材等の高弾性な板材で構成される支持板28を介して挟持される。
 衝撃吸収性は、上記の衝撃試験装置を使用して、固定治具11と支持板28とを密着固定させてから衝撃子24を支持板28に衝突させることにより測定される衝撃力F0、及び固定治具11と支持板28と間に試験片2を挿入し密着固定させてから衝撃子24を支持板28に衝突させることにより測定される衝撃力F1を求め、前記式により算出される。なお、衝撃試験装置は、特開2006-47277号公報の実施例1と同様の装置である。
 本発明の発泡シートは、薄肉でありながら優れた衝撃吸収性を有する。前記衝撃吸収率(衝撃子の重さ28g、振り上げ角度40°)は、通常、5~70%であり、下限は、好ましくは10%、より好ましくは20%、さらに好ましくは28%であり、上限は、好ましくは60%である。
 本発明の発泡シートの厚さは、特に限定されないが、例えば30~1000μmである。その下限は、より好ましくは40μm、さらに好ましくは50μmであり、上限は、より好ましくは500μm、さらに好ましくは300μm、特に好ましくは200μmである。発泡シートの厚さが30μm以上であると、気泡を均一に含有することができ、より優れた衝撃吸収性を発揮できる。また、発泡シートの厚さを1000μm以下とすることにより、微小クリアランスに対しても容易に追従できる。本発明の発泡シートでは、厚みが30~1000μmという薄さであっても、衝撃吸収性に優れる。
 本発明では、衝撃吸収性の観点から、平均セル径(μm)と発泡シートの厚さ(μm)の比(前者/後者)は、0.1~0.9の範囲にあるのが好ましい。上記平均セル径(μm)と発泡シートの厚さ(μm)の比の下限は、好ましくは0.2、より好ましくは0.3であり、上限は、好ましくは0.85、より好ましくは0.8である。
 本発明の発泡シートを構成する発泡体の見掛け密度は、特に限定されないが、0.2~0.7g/cm3であるのが好ましい。その下限は、より好ましくは0.21g/cm3、さらに好ましくは0.22g/cm3、上限は、より好ましくは0.6g/cm3、さらに好ましくは0.5g/cm3、特に好ましくは0.4g/cm3である。発泡体の見掛け密度が0.2g/cm3以上であることにより、より高い強度を維持でき、0.7g/cm3以下であることにより、より高い衝撃吸収性が発揮される。また、発泡体の見掛け密度が0.2~0.4g/cm3の範囲であることにより、さらにより高い衝撃吸収性が発揮される。
 発泡シートの厚さがある程度大きい場合には、衝撃吸収性は、平均セル径、見掛け密度等を選択することにより調整できるが、発泡シートの厚さが非常に小さい場合(例えば、厚さ30~500μm)には、これらの特性を調整するだけでは衝撃を十分に吸収できない場合がある。発泡シートの厚さが非常に薄い場合には、発泡体中の気泡が衝撃によりすぐに潰れて、気泡による衝撃緩衝機能が消失するからである。このような観点から、発泡体の動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接(tanδ)のピークトップが-30℃以上30℃以下の範囲に存在することが好ましい。このようにすることで、気泡が潰れた後でも、発泡体の構成材料が衝撃を緩衝する機能をより発揮する。
 前記損失正接のピークトップが存在する温度範囲の下限は、より好ましくは-25℃、さらに好ましくは-20℃、特に好ましくは-10℃であり、上限は、より好ましくは20℃、さらに好ましくは10℃である。損失正接のピークトップを2個以上持つ材料の場合は、そのうちの少なくとも1つが上記範囲に入ることが望ましい。ピーク温度が-30℃以上であることにより、より優れた圧縮回復性が発揮される。また、ピーク温度が30℃以下であることにより、より高い柔軟性を示し、より優れた衝撃吸収性が発揮される。
 -30℃以上30℃以下の範囲における損失正接(tanδ)のピークトップ強度(最大値)は衝撃吸収性の観点から高い方が好ましく、例えば0.2以上、好ましくは0.3以上である。前記ピークトップ強度(最大値)の上限値は、例えば2.0である。
 このように、前記損失正接(tanδ)のピーク温度が発泡体の衝撃吸収性に寄与する場合が多い。発泡体の動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接(tanδ)のピークトップが-30℃以上30℃以下の範囲に存在すると、発泡シートの衝撃吸収性が高くなる理由は必ずしも明らかではないが、衝撃の周波数に合うところに前記損失正接(tanδ)のピークが存在していることによるものと推測される。すなわち、前記損失正接(tanδ)が-30℃以上30℃以下の範囲は、粘弾性測定における温度時間換算則より、構造物の落下衝撃に相当する周波数の範囲に換算されるため、-30℃以上30℃以下の範囲に前記損失正接(tanδ)のピーク温度を有する発泡シートほど、衝撃吸収性が高くなると推測される。また、貯蔵弾性率は、発泡シートに加わる衝撃エネルギーに対する反発力であり、貯蔵弾性率が高いと衝撃をそのまま反発する。一方で損失弾性率は、発泡シートに加わる衝撃エネルギーを熱に換える物性であり、損失弾性率が高いほど衝撃エネルギーを熱に換えるため、衝撃を吸収し、ひずみを小さくする。このことから、衝撃を多く熱に換え、且つ反発力が小さい、すなわち貯蔵弾性率と損失弾性率との比率である損失正接(tanδ)が大きい発泡シートほど、衝撃吸収率が高いと推測される。
 本発明の発泡シートを構成する発泡体としては、前記特性を有していれば、その組成や気泡構造などは特に制限されない。気泡構造としては、連続気泡構造、独立気泡構造、半連続半独立気泡構造のいずれであってもよい。衝撃吸収性の観点からは、連続気泡構造、半連続半独立気泡構造が好ましい。
 前記発泡体は、樹脂材料(ポリマー)を含む樹脂組成物により構成することができる。なお、未発泡状態の該樹脂組成物[発泡させない場合の樹脂組成物(固形物)]の動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接(tanδ)のピークトップは-30℃以上30℃以下の範囲にあるのが好ましい。前記損失正接のピークトップが存在する温度範囲の下限は、より好ましくは-25℃、さらに好ましくは-20℃、特に好ましくは-10℃であり、上限は、より好ましくは20℃、さらに好ましくは10℃である。損失正接のピークトップを2個以上持つ材料の場合は、そのうちの少なくとも1つが上記範囲に入ることが望ましい。該樹脂組成物(固形物)の-30℃以上30℃以下の範囲での損失正接(tanδ)のピークトップ強度(この値は、前記発泡体における-30℃以上30℃未満の範囲における損失正接(tanδ)のピークトップ強度を発泡体の見掛け密度(g/cm3)で割った値に相当する)は衝撃吸収性の観点から高い方が好ましい。例えば、前記樹脂組成物(固形物)の-30℃以上30℃以下の範囲での損失正接(tanδ)のピークトップ強度は、好ましくは0.9(g/cm3-1以上であり、上限は、例えば、3(g/cm3-1程度である。
 前記発泡体を構成する樹脂材料(ポリマー)としては、特に限定されず、発泡体を構成する公知乃至周知の樹脂材料を使用できる。該樹脂材料として、例えば、アクリル系ポリマー、ゴム、ウレタン系ポリマー、エチレン-酢酸ビニル共重合体などが挙げられる。これらの中でも、衝撃吸収性の観点から、アクリル系ポリマー、ゴム、ウレタン系ポリマーが好ましい。発泡体を構成する樹脂材料(ポリマー)は1種単独であってもよく、2種以上であってもよい。
 なお、前記発泡体の動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接(tanδ)のピークトップを上記の-30℃以上30℃以下の範囲にするためには、前記樹脂材料(ポリマー)のTgを指標あるいは目安とすることができる。例えば、前記樹脂材料(ポリマー)として、Tgが-50℃以上50℃未満(下限は、好ましくは-40℃、より好ましくは-30℃、上限は、好ましくは40℃、より好ましくは30℃)の範囲にある樹脂材料(ポリマー)の中から選択することができる。
 前記アクリル系ポリマーとしては、ホモポリマーのTgが-10℃以上のモノマーと、ホモポリマーのTgが-10℃未満のモノマーを必須のモノマー成分として形成されたアクリル系ポリマーが好ましい。このようなアクリル系ポリマーを用い、前者のモノマーと後者のモノマーの量比を調整することにより、動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接(tanδ)のピークトップが-30℃以上30℃以下の発泡体を比較的容易に得ることができる。
 なお、本発明における「ホモポリマーを形成した際のガラス転移温度(Tg)」(単に「ホモポリマーのTg」と称する場合がある)とは、「当該モノマーの単独重合体のガラス転移温度(Tg)」を意味し、具体的には、「Polymer Handbook」(第3版、John Wiley&Sons,Inc、1987年)に数値が挙げられている。なお、上記文献に記載されていないモノマーのホモポリマーのTgは、例えば、以下の測定方法により得られる値(特開2007-51271号公報参照)をいう。すなわち、温度計、撹拌機、窒素導入管及び還流冷却管を備えた反応器に、モノマー100重量部、2,2'-アゾビスイソブチロニトリル0.2重量部及び重合溶媒として酢酸エチル200重量部を投入し、窒素ガスを導入しながら1時間撹拌する。このようにして重合系内の酸素を除去した後、63℃に昇温し10時間反応させる。次いで、室温まで冷却し、固形分濃度33重量%のホモポリマー溶液を得る。次いで、このホモポリマー溶液をセパレータ上に流延塗布し、乾燥して厚さ約2mmの試験サンプル(シート状のホモポリマー)を作製する。そして、この試験サンプルを直径7.9mmの円盤状に打ち抜き、パラレルプレートで挟み込み、粘弾性試験機(ARES、レオメトリックス社製)を用いて周波数1Hzの剪断歪を与えながら、温度領域-70~150℃、5℃/分の昇温速度で剪断モードにより粘弾性を測定し、tanδのピークトップ温度をホモポリマーのTgとする。なお、上記樹脂材料(ポリマー)のTgもこの方法により測定できる。
 ホモポリマーのTgが-10℃以上のモノマーにおいて、該Tgは、例えば、-10℃~250℃、好ましくは10~230℃、さらに好ましくは50~200℃である。
 上記のホモポリマーのTgが-10℃以上のモノマーとして、例えば、(メタ)アクリロニトリル;(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド等のアミド基含有モノマー;(メタ)アクリル酸;メタクリル酸メチル、メタクリル酸エチル等のホモポリマーのTgが-10℃以上の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸イソボルニル;N-ビニル-2-ピロリドン等の複素環含有ビニルモノマー;2-ヒドロキシエチルメタクリレート等のヒドロキシル基含有モノマーなどを例示することができる。これらは1種単独で又は2種以上を組み合わせて使用できる。これらの中でも、特に、(メタ)アクリロニトリル(とりわけ、アクリロニトリル)が好ましい。ホモポリマーのTgが-10℃以上のモノマーとして(メタ)アクリロニトリル(とりわけ、アクリロニトリル)を用いると、分子間相互作用が強いためか、発泡体の前記損失正接(tanδ)のピークトップ強度を大きくすることができる。
 ホモポリマーのTgが-10℃未満のモノマーにおいて、該Tgは、例えば、-70℃以上-10℃未満、好ましくは-70℃~-12℃、さらに好ましくは-65℃~-15℃である。
 上記のホモポリマーのTgが-10℃未満のモノマーとして、例えば、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等のホモポリマーのTgが-10℃未満の(メタ)アクリル酸アルキルエステルなどが挙げられる。これらは1種単独で又は2種以上を組み合わせて使用できる。これらの中でも、特に、アクリル酸C2-8アルキルエステルが好ましい。
 上記アクリル系ポリマーを形成する全モノマー成分(モノマー成分全量)に対する、ホモポリマーのTgが-10℃以上のモノマーの含有量は、例えば、2~30重量%であり、下限は、好ましくは3重量%、より好ましくは4重量%であり、上限は、好ましくは25重量%、より好ましくは20重量%である。また、上記アクリル系ポリマーを形成する全モノマー成分(モノマー成分全量)に対する、ホモポリマーのTgが-10℃未満のモノマーの含有量は、例えば、70~98重量%であり、下限は、好ましくは75重量%、より好ましくは80重量%であり、上限は、好ましくは97重量%、より好ましくは96重量%である。
 なお、アクリル系ポリマーを形成するモノマー中に窒素原子含有共重合性モノマーが含まれていると、エマルション樹脂組成物を機械的撹拌等によりせん断を加えて発泡させる際は組成物の粘度が低下して多数の気泡がエマルション内に取り込まれやすくなるとともに、その後気泡を含有するエマルション樹脂組成物を基材上に塗布し静置状態で乾燥する際には該組成物が凝集しやすくなって粘度が上昇し、気泡が組成物内に保持され外部に拡散しにくくなるため、発泡特性に優れた発泡体を得ることができる。
 前記窒素原子含有共重合性モノマー(窒素原子含有モノマー)としては、例えば、(メタ)アクリロニトリル等のシアノ基含有モノマー;N-ビニル-2-ピロリドン等のラクタム環含有モノマー;(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、ジアセトンアクリルアミド等のアミド基含有モノマーなどが挙げられる。これらの中でも、アクリロニトリル等のシアノ基含有モノマー、N-ビニル-2-ピロリドン等のラクタム環含有モノマーが好ましい。窒素原子含有モノマーは1種単独で、又は2種以上を組み合わせて用いることができる。
 このような窒素原子含有モノマーに由来する構造単位を有するアクリル系ポリマーにおいて、窒素原子含有モノマーに由来する構造単位の含有量は、アクリル系ポリマーを構成する全構造単位に対して、好ましくは2~30重量%であり、その下限は、より好ましくは3重量%、さらに好ましくは4重量%であり、その上限は、より好ましくは25重量%、さらに好ましくは20重量%である。
 また、このような窒素原子含有モノマーに由来する構造単位を有するアクリル系ポリマーにおいては、窒素原子含有モノマーに由来する構造単位のほかに、アクリル酸C2-18アルキルエステル(特に、アクリル酸C2-8アルキルエステル)に由来する構造単位を含んでいることが好ましい。アクリル酸C2-18アルキルエステルは1種単独で、又は2種以上を組み合わせて用いることができる。このようなアクリル系ポリマーにおいて、アクリル酸C2-18アルキルエステル(特に、アクリル酸C2-8アルキルエステル)に由来する構造単位の含有量は、アクリル系ポリマーを構成する全構造単位に対して、好ましくは70~98重量%であり、その下限は、より好ましくは75重量%、さらに好ましくは80重量%であり、その上限は、より好ましくは97重量%、さらに好ましくは96重量%である。
 前記ゴムとしては、天然ゴム、合成ゴムのいずれであってもよい。前記ゴムとして、例えば、ニトリルゴム(NBR)、メチルメタクリレート-ブタジエンゴム(MBR)、スチレン-ブタジエンゴム(SBR)、アクリルゴム(ACM、ANM)、ウレタンゴム(AU)、シリコーンゴムなどが挙げられる。これらの中でも、ニトリルゴム(NBR)、メチルメタクリレート-ブタジエンゴム(MBR)、シリコーンゴムが好ましい。
 前記ウレタン系ポリマーとしては、例えば、ポリカーボネート系ポリウレタン、ポリエステル系ポリウレタン、ポリエーテル系ポリウレタンなどが挙げられる。
 エチレン-酢酸ビニル共重合体としては、公知乃至周知のエチレン-酢酸ビニル共重合体を使用できる。
 前記発泡シートを構成する発泡体は、樹脂材料(ポリマー)のほか、必要に応じて、界面活性剤、架橋剤、増粘剤、防錆剤、シリコーン系化合物、その他の添加物を含んでいてもよい。
 例えば、気泡径の微細化、起泡した泡の安定性のために、任意の界面活性剤を含んでいてもよい。界面活性剤としては特に制限されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等のいずれを用いてもよいが、気泡径の微細化、起泡した泡の安定性の観点から、アニオン系界面活性剤が好ましく、特にステアリン酸アンモニウム等の脂肪酸アンモニウム系界面活性剤がより好ましい。界面活性剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、異種の界面活性剤を併用してもよく、例えば、アニオン系界面活性剤とノニオン系界面活性剤、アニオン系界面活性剤と両性界面活性剤を併用してもよい。
 界面活性剤の添加量[固形分(不揮発分)]は、例えば、樹脂材料(ポリマー)[固形分(不揮発分)]100重量部に対して、0~10重量部であり、下限は好ましくは0.5重量部、上限は好ましくは8重量部である。
 また、発泡体の強度、耐熱性、耐湿性を向上させるために、任意の架橋剤を含んでいてもよい。架橋剤は特に制限されず、油溶性、水溶性のいずれを用いてもよい。架橋剤として、例えば、エポキシ系、オキサゾリン系、イソシアネート系、カルボジイミド系、メラミン系、金属酸化物系などが挙げられる。中でも、オキサゾリン系架橋剤が好ましい。
 架橋剤の添加量[固形分(不揮発分)]は、例えば、樹脂材料(ポリマー)[固形分(不揮発分)]100重量部に対して、0~10重量部であり、下限は好ましくは0.01重量部、より好ましくは0.1重量部、上限は好ましくは9重量部、より好ましくは8重量部である。
 さらに、起泡した泡の安定性、成膜性の向上のために、任意の増粘剤を含んでいてもよい。増粘剤としては特に制限されず、アクリル酸系、ウレタン系、ポリビニルアルコール系などが挙げられる。中でも、ポリアクリル酸系増粘剤、ウレタン系増粘剤が好ましい。
 増粘剤の添加量[固形分(不揮発分)]は、例えば、樹脂材料(ポリマー)[固形分(不揮発分)]100重量部に対して、0~10重量部であり、下限は好ましくは0.1重量部、上限は好ましくは5重量部である。
 また、発泡シートに隣接する金属部材の腐食防止のため、任意の防錆剤を含んでいてもよい。該防錆剤として、アゾール環含有化合物が好ましい。アゾール環含有化合物を用いると、金属に対する腐食防止性と被着体に対する密着性とを高いレベルで両立できる。
 前記アゾール環含有化合物としては、環内に窒素原子を1個以上含む5員環を有する化合物であればよく、例えば、ジアゾール(イミダゾール、ピラゾール)環、トリアゾール環、テトラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、又はイソチアゾール環を有する化合物などが挙げられる。これらの環はベンゼン環等の芳香環と縮合して縮合環を形成していてもよい。このような縮合環を有する化合物として、例えば、ベンゾイミダゾール環、ベンゾピラゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環、ベンゾイソオキサゾール環、ベンゾチアゾール環、又はベンゾイソチアゾール環を有する化合物などが挙げられる。
 前記アゾール環、前記縮合環(ベンゾトリアゾール環、ベンゾチアゾール環等)は、それぞれ、置換基を有していてもよい。該置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の炭素数1~6(好ましくは炭素数1~3)のアルキル基;メトキシ基、エトキシ基、イソプロピルオキシ基、ブトキシ基等の炭素数1~12(好ましくは炭素数1~3)のアルコキシ基;フェニル基、トリル基、ナフチル基等の炭素数6~10のアリール基;アミノ基;メチルアミノ基、ジメチルアミノ基等の(モノ又はジ)C1-10アルキルアミノ基;アミノメチル基、2-アミノエチル基等のアミノ-C1-6アルキル基;N,N-ジエチルアミノメチル基、N,N-ビス(2-エチルヘキシル)アミノメチル基等のモノ又はジ(C1-10アルキル)アミノ-C1-6アルキル基;メルカプト基;メトキシカルボニル基、エトキシカルボニル基等の炭素数1~6のアルコキシカルボニル基;カルボキシル基;カルボキシメチル基等のカルボキシ-C1-6アルキル基;2-カルボキシエチルチオ基等のカルボキシ-C1-6アルキルチオ基;N,N-ビス(ヒドロキシメチル)アミノメチル基等のN,N-ビス(ヒドロキシ-C1-4アルキル)アミノ-C1-4アルキル基;スルホ基などが挙げられる。また、前記アゾール環含有化合物は、ナトリウム塩、カリウム塩等の塩を形成していてもよい。
 金属に対する防錆作用の点から、アゾール環がベンゼン環等の芳香環と縮合環を形成している化合物が好ましく、中でも、ベンゾトリアゾール系化合物(ベンゾトリアゾール環を有する化合物)、ベンゾチアゾール系化合物(ベンゾチアアゾール環を有する化合物)が特に好ましい。
 上記ベンゾトリアゾール系化合物としては、例えば、1,2,3-ベンゾトリアゾール、メチルベンゾトリアゾール、カルボキシベンゾトリアゾール、カルボキシメチルベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]メチルベンゾトリアゾール、2,2′-[[(メチル-1H-ベンゾトリアゾール-1-イル)メチル]イミノ]ビスエタノール、又はこれらのナトリウム塩などが挙げられる。
 上記ベンゾチアゾール系化合物としては、例えば、2-メルカプトベンゾチアゾール、3-(2-(ベンゾチアゾリル)チオ)プロピオン酸、又はこれらのナトリウム塩などが挙げられる。
 アゾール環含有化合物は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 防錆剤(例えば、前記アゾール環含有化合物)[固形分(不揮発分)]の添加量[固形分(不揮発分)]は、被着体に対する密着性や発泡体本来の特性を損なわない範囲であればよく、例えば、樹脂材料(ポリマー)[固形分(不揮発分)]100重量部に対して、例えば、0.2~5重量部が好ましい。その下限は、より好ましくは0.3重量部、さらに好ましくは0.4重量部であり、その上限は、より好ましくは3重量部、さらに好ましくは2重量部である。
 また、圧縮された後の発泡シートの厚みの回復性、回復速度を向上させるため、シリコーン系化合物を添加してもよい。また、同様の目的で、前記樹脂材料(ポリマー)の少なくとも一部として、シリコーン変性ポリマー(例えば、シリコーン変性アクリル系ポリマー、シリコーン変性ウレタン系ポリマーなど)を用いてもよい。これらは単独で又は2種以上を組み合わせて使用できる。
 前記シリコーン系化合物としては、シロキサン結合が2000以下のシリコーン系化合物が好ましい。シリコーン系化合物として、例えば、シリコーンオイル、変性シリコーンオイル、シリコーンレジンなどが挙げられる。
 シリコーンオイル(ストレートシリコーンオイル)として、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどが例示される。
 変性シリコーンオイルとして、例えば、ポリエーテル変性シリコーンオイル(ポリエーテル変性ジメチルシリコーンオイル等)、アルキル変性シリコーンオイル(アルキル変性ジメチルシリコーンオイル等)、アラルキル変性シリコーンオイル(アラルキル変性ジメチルシリコーンオイル等)、高級脂肪酸エステル変性シリコーンオイル(高級脂肪酸エステル変性ジメチルシリコーンオイル等)、フルオロアルキル変性シリコーンオイル(フルオロアルキル変性ジメチルシリコーンオイル等)などが挙げられる。
 これらの中でもポリエーテル変性シリコーンが好ましい。ポリエーテル変性シリコーンオイルの市販品として、例えば、「PEG11メチルエーテルジメチコン」、「PEG/PPG-20/22ブチルエーテルジメチコン」、「PEG-9メチルエーテルジメチコン」、「PEG-32メチルエーテルジメチコン」、「PEG-9ジメチコン」、「PEG-3ジメチコン」、「PEG-10ジメチコン」などの直鎖タイプ;「PEG-9ポリジメチルシロキシエチルジメチコン」、「ラウリルPEG-9ポリジメチルシロキシエチルジメチコン」などの分岐タイプなど(以上、信越シリコーン社製)が挙げられる。
 シリコーンレジンには、ストレートシリコーンレジン、変性シリコーンレジンが含まれる。ストレートシリコーンレジンとして、例えば、メチルシリコーンレジン、メチルフェニルシリコーンレジンなどが挙げられる。また、変性シリコーンレジンとして、例えば、アルキッド変性シリコーンレジン、エポキシ変性シリコーンレジン、アクリル変性シリコーンレジン、ポリエステル変性シリコーンレジンなどが挙げられる。
 発泡体における、前記シリコーン系化合物と、前記シリコーン変性ポリマー中に存在するシリコーン鎖部の総含有量は、発泡体中の樹脂材料(ポリマー)100重量部に対して、不揮発分換算(固形分換算)で、例えば、0.01~5重量部である。上記総含有量の下限は、好ましくは0.05重量部、さらに好ましくは0.1重量部であり、上限は、好ましくは4重量部、さらに好ましくは3重量部である。発泡体におけるシリコーン成分及びシリコーン鎖部の総含有量が上記の範囲である場合は、発泡体としての特性を損なうことなく、圧縮後の回復性及び回復速度を向上できる。
 また、発泡体における、前記シリコーン系化合物と、前記シリコーン変性ポリマー中に存在するシリコーン鎖部の総含有量は、不揮発分換算(固形分換算)で、例えば、0.01~5重量%である。上記総含有量の下限は、好ましくは0.05重量%、さらに好ましくは0.1重量%であり、上限は、好ましくは4重量%、さらに好ましくは3重量%である。発泡体におけるシリコーン成分及びシリコーン鎖部の総含有量が上記の範囲である場合は、発泡体としての特性を損なうことなく、圧縮後の回復性及び回復速度を向上できる。
 また、前記発泡シートを構成する発泡体は、衝撃吸収性を損なわない範囲内で、任意の適切な他の成分を含んでいてもよい。このような他の成分は、1種のみを含んでいてもよいし、2種以上を含んでいてもよい。該他の成分としては、例えば、前記以外のポリマー成分、軟化剤、酸化防止剤、老化防止剤、ゲル化剤、硬化剤、可塑剤、充填剤、補強剤、発泡剤(重曹など)、マイクロカプセル(熱膨張性微小球等)、難燃剤、光安定剤、紫外線吸収剤、着色剤(顔料や染料など)、pH調整剤、溶剤(有機溶剤)、熱重合開始剤、光重合開始剤などが挙げられる。これらの成分の添加量[固形分(不揮発分)]は、被着体に対する密着性や発泡体本来の特性を損なわない範囲であればよく、例えば、樹脂材料(ポリマー)[固形分(不揮発分)]100重量部に対して、それぞれ、例えば0.2~60重量部の範囲が好ましい。発泡剤(重曹等)の添加量[固形分(不揮発分)]は、樹脂材料(ポリマー)[固形分(不揮発分)]100重量部に対して、より好ましくは、0.5~20重量部である。マイクロカプセル(熱膨張性微小球等)の添加量[固形分(不揮発分)]は、樹脂材料(ポリマー)[固形分(不揮発分)]100重量部に対して、より好ましくは、0.2~10重量部である。充填剤の添加量[固形分(不揮発分)]は、樹脂材料(ポリマー)[固形分(不揮発分)]100重量部に対して、より好ましくは、0.3~50重量部である。
前記充填剤としては、例えば、シリカ、クレー(マイカ、タルク、スメクタイト等)、アルミナ、水酸化アルミニウム、アルカリ土類金属の水酸化物(水酸化マグネシウム等)、アルカリ土類金属の炭酸塩(炭酸カルシウム等)、チタニア、酸化亜鉛、酸化スズ、ゼオライト、グラファイト、カーボンブラック、カーボンナノチューブ、無機繊維(炭素繊維、ガラス繊維、チタン酸カリウム繊維等)、有機繊維、金属粉(銀、銅等)、ワックス(ポリエチレンワックス、ポリプロピレンワックス等)などが挙げられる。また、充填剤として、圧電粒子(酸化チタン、チタン酸バリウム等)、導電性粒子(導電性カーボンブラック、導電性酸化チタン、酸化スズ等)、熱伝導性粒子(窒化ホウ素等)、有機フィラー(シリコーンパウダー、ポリエチレンパウダー、ポリプロピレンパウダー等)などを添加することもできる。充填剤として、シリカを用いる場合、その添加量は、熱可塑性樹脂[固形分(不揮発分)]100重量部に対して、0.5~40重量部の範囲が特に好ましい。また、充填剤として、マイカ等のクレーを用いる場合、その添加量は、熱可塑性樹脂[固形分(不揮発分)]100重量部に対して、0.3~10重量部の範囲が特に好ましい。また、充填剤として、圧電粒子を用いる場合、その添加量は、熱可塑性樹脂[固形分(不揮発分)]100重量部に対して、5~40重量部の範囲が特に好ましい。さらに、充填剤として、導電性粒子を用いる場合、その添加量は、熱可塑性樹脂[固形分(不揮発分)]100重量部に対して、5~40重量部の範囲が特に好ましい。また、充填剤として圧電粒子と導電性粒子とを組み合わせて用いると、圧力により電荷の発生量を調整することができる。この場合、圧電粒子と導電性粒子の比率は、例えば、前者/後者(重量比)=10/90~90/10、好ましくは、前者/後者(重量比)=20/80~80/20、さらに好ましくは、前者/後者(重量比)=30/70~70/30である。   
 本発明の発泡シートは、発泡体を構成する樹脂材料(ポリマー)を含む樹脂組成物を発泡成形に付すことにより製造できる。発泡方法(気泡の形成方法)としては、物理的方法、化学的方法等、発泡成形に通常用いられる方法が採用できる。一般的に物理的方法は、空気や窒素などのガス成分をポリマー溶液に分散させて、機械的混合により気泡を形成させるものである。また、化学的方法は、ポリマーベースに添加された発泡剤の熱分解により生じたガスによりセルを形成し、発泡体を得る方法である。環境問題などの観点から、物理的方法が好ましい。物理的方法により形成される気泡は、連続気泡であることが多い。
 発泡成形に付す樹脂材料(ポリマー)を含む樹脂組成物としては、樹脂材料を溶剤に溶解させた樹脂溶液を用いてもよいが、起泡性の観点から、樹脂材料を含むエマルションを用いるのが好ましい。エマルションとしては、2種以上のエマルションをブレンドして用いてもよい。
 エマルションの固形分濃度は成膜性の観点から高い方が好ましい。エマルションの固形分濃度は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上である。
 本発明では、エマルション樹脂組成物を機械的に発泡させて起泡化させる工程(工程A)を経て発泡体を作製する方法が好ましい。起泡装置としては、特に限定されず、例えば、高速せん断方式、振動方式、加圧ガスの吐出方式などの装置が挙げられる。これらの中でも、気泡径の微細化、大容量作製の観点から、高速せん断方式が好ましい。
 機械的撹拌により起泡した際の気泡は、気体(ガス)がエマルション中に取り込まれたものである。ガスとしては、エマルションに対して不活性であれば特に制限されず、空気、窒素、二酸化炭素などが挙げられる。中でも、経済性の観点から、空気が好ましい。
 上記方法により起泡化したエマルション樹脂組成物を基材上に塗工して乾燥する工程(工程B)を経ることで、本発明の発泡シートを得ることができる。前記基材としては、特に限定されないが、例えば、剥離処理したプラスチックフィルム(剥離処理したポリエチレンテレフタレートフィルム等)、プラスチックフィルム(ポリエチレンテレフタレートフィルム等)、熱伝導層などが挙げられる。熱伝導層を基材として塗工した場合には、発泡体層と熱伝導層の密着性を向上でき、また、発泡体層作製時の乾燥工程の効率も向上できる。
 前記工程Bにおいて、塗工方法、乾燥方法としては、一般的な方法を採用できる。工程Bは、基材上に塗布した気泡含有エマルション樹脂組成物を50℃以上125℃未満で乾燥する予備乾燥工程B1と、その後さらに125℃以上200℃以下で乾燥する本乾燥工程B2を含んでいることが好ましい。
 予備乾燥工程B1と本乾燥工程B2を設けることにより、急激な温度上昇による気泡の合一化、気泡の破裂を防止できる。特に厚さの小さい発泡シートでは温度の急激な上昇により気泡が合一か、破裂するので、予備乾燥工程B1を設ける意義は大きい。予備乾燥工程B1における温度は、好ましくは50℃以上100℃以下である。予備乾燥工程B1の時間は、例えば、0.5分~30分、好ましくは1分~15分である。また、本乾燥工程B2における温度は、好ましくは130℃以上180℃以下、より好ましくは130℃以上160℃以下である。本乾燥工程B2の時間は、例えば、0.5分~30分、好ましくは1分~15分である。
 本発明において、発泡体の平均セル径、最大セル径、及び最小セル径は、界面活性剤の種類や量を調整したり、機械的撹拌時の撹拌速度や撹拌時間を調整することによりコントロールできる。
 また、発泡体の見掛け密度は、機械的撹拌時のエマルション樹脂組成物中に取り込む気体(ガス)成分量を調整することによりコントロールできる。
 さらに、前記80℃での圧縮永久歪みの値、前記衝撃吸収変化率の値は、例えば、発泡体を構成する樹脂材料(ポリマー)の架橋度やTgを調整することによりコントロールできる。より具体的には、例えば、架橋剤の添加量を調整したり、樹脂材料(ポリマー)を形成する全モノマー成分に占めるホモポリマーのTgが-10℃以上のモノマーの割合を調整することにより、前記80℃での圧縮永久歪みの値、前記衝撃吸収変化率の値を所定の範囲にコントロールできる。架橋剤の添加量を増加したり、上記樹脂材料(ポリマー)を形成する全モノマー成分に占めるホモポリマーのTgが-10℃以上のモノマーの割合を増やすことにより、前記80℃での圧縮永久歪みの値、前記衝撃吸収変化率の値を小さくできる。
 本発明の発泡シートは、発泡体の片面又は両面に粘着剤層(粘着層)を有していてもよい。粘着剤層を構成する粘着剤としては、特に限定されず、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等のいずれであってもよい。また、粘着剤層を設ける場合は、その表面に、使用時まで粘着剤層を保護する剥離ライナーを積層してもよい。なお、本発明の発泡シートを構成する発泡体が微タック性を有する場合は、粘着剤層を設けなくても部材等を固定できる。
 本発明の発泡シートは、ロール状に巻回した巻回体(ロール状物)として市場に流通させてもよい。
 上記のように、本発明の発泡シートは、厚さが薄くても衝撃吸収性に優れる。また、耐熱性に優れ、高温(例えば、80℃程度)下で圧縮や衝撃を受けても、元の形状(厚み)に回復する力を保有している。例えば、本発明の発泡シートは、下記で定義される80℃応力保持率は68%以上となる。なお、従来の発泡シートでは、一般に、80℃応力保持率は低く、80℃で応力が緩和し、回復する力が減衰する。
 <80℃応力保持率>
 試験片(発泡シート)を80℃の雰囲気下に30分間保持した後、引張試験機を用い、80℃で、チャック間距離40mmにてセットし、引張速度500mm/minで50%延伸後、120秒間保持する操作を行い、最大荷重と120秒後の荷重を計測し、下記式により80℃応力保持率を求める
  80℃応力保持率(%)=[120秒後の荷重(N)/最大荷重(N)]×100
 このように、本発明の発泡シートは厚さが薄くても衝撃吸収性に優れ、しかも耐熱性にも優れるため、高温であっても装着(接着)信頼性が高く、例えば、電気・電子機器において、各種部材又は部品(例えば、光学部材など)を、所定の部位(例えば、筐体等)に取り付ける(装着する)際に用いられる電気・電子機器用部材、特に、衝撃吸収シートとして有用である。
 本発明の発泡シートを利用して取付(装着)可能な光学部材としては、例えば、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置に装着される画像表示部材(特に、小型の画像表示部材)や、いわゆる「携帯電話」、「スマートフォン」や「携帯情報端末」等の移動体通信の装置に装着されるタッチパネル等の表示部材、カメラやレンズ(特に、小型のカメラやレンズ)などが挙げられる。
 本発明の電気・電子機器は、前記本発明の発泡シートが用いられている。このような電気・電子機器には、例えば、表示部材を備えた電気・電子機器であって、上記の発泡シートが該電気又は電子機器の筐体と前記表示部材との間に挟持された構造を有している電気・電子機器が含まれる。該電気・電子機器として、例えば、いわゆる「携帯電話」、「スマートフォン」、「携帯情報端末」等の移動体通信の装置などが挙げられる。
 以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら制限されるものではない。なお、特に言及しない限り、含有量を表す「%」は重量%を意味する。なお、配合部数(重量部)は、全て固形分(不揮発分)換算の値である。
 実施例1
 アクリルエマルション溶液(固形分量55%、アクリル酸エチル-アクリル酸ブチル-アクリロニトリル共重合体(重量比45:48:7))100重量部、シリコーン系化合物A(ジメチルシリコーンオイル、数平均分子量Mn:7.16×103、重量平均分子量Mw:1.71×104、固形分(不揮発分)量100%)1重量部、脂肪酸アンモニウム系界面活性剤(ステアリン酸アンモニウムの水分散液、固形分量33%)3重量部、オキサゾリン系架橋剤(「エポクロスWS-500」日本触媒社製、固形分量39%)2.0重量部、ベンゾトリアゾールナトリウム塩(固形分40%)(防錆剤)1重量部、ポリアクリル酸系増粘剤(アクリル酸エチル-アクリル酸共重合体(アクリル酸20重量%)、固形分量28.7%)0.8重量部をディスパー(「ロボミックス」プライミクス社製)で撹拌混合して起泡化した。この発泡組成物を、剥離処理をしたPET(ポリエチレンテレフタレート)フィルム(厚さ:38μm、商品名「MRF♯38」三菱樹脂社製)上に塗布し、70℃で4.5分、140℃で4.5分乾燥させ、厚さ100μm、見掛け密度0.34g/cm3、気泡率65.7%、最大セル径72.5μm、最小セル径28.5μm、平均セル径45μmの連続気泡構造の発泡体(発泡シート)を得た。
 実施例2
 アクリルエマルション溶液(固形分量55%、アクリル酸エチル-アクリル酸ブチル-アクリロニトリル共重合体(重量比45:48:7))100重量部、シリコーン系化合物A(ジメチルシリコーンオイル、数平均分子量Mn:7.16×103、重量平均分子量Mw:1.71×104、固形分(不揮発分)量100%)1重量部、脂肪酸アンモニウム系界面活性剤(ステアリン酸アンモニウムの水分散液、固形分量33%)3重量部、オキサゾリン系架橋剤(「エポクロスWS-500」日本触媒社製、固形分量39%)0.35重量部、ベンゾトリアゾールナトリウム塩(固形分40%)(防錆剤)1重量部、ポリアクリル酸系増粘剤(アクリル酸エチル-アクリル酸共重合体(アクリル酸20重量%)、固形分量28.7%)0.8重量部をディスパー(「ロボミックス」プライミクス社製)で撹拌混合して起泡化した。この発泡組成物を、剥離処理をしたPET(ポリエチレンテレフタレート)フィルム(厚さ:38μm、商品名「MRF♯38」三菱樹脂社製)上に塗布し、70℃で4.5分、140℃で4.5分乾燥させ、厚さ100μm、見掛け密度0.45g/cm3、気泡率54.5%、最大セル径87.5μm、最小セル径48.5μm、平均セル径65μmの連続気泡構造の発泡体(発泡シート)を得た。
 実施例3
 アクリルエマルション溶液(固形分量55%、アクリル酸エチル-アクリル酸ブチル-アクリロニトリル共重合体(重量比45:48:7))100重量部、シリコーン系化合物A(ジメチルシリコーンオイル、数平均分子量Mn:7.16×103、重量平均分子量Mw:1.71×104、固形分(不揮発分)量100%)1重量部、脂肪酸アンモニウム系界面活性剤(ステアリン酸アンモニウムの水分散液、固形分量33%)3重量部、オキサゾリン系架橋剤(「エポクロスWS-500」日本触媒社製、固形分量39%)0.35重量部、ベンゾトリアゾールナトリウム塩(固形分40%)(防錆剤)1重量部、ポリアクリル酸系増粘剤(アクリル酸エチル-アクリル酸共重合体(アクリル酸20重量%)、固形分量28.7%)0.8重量部をディスパー(「ロボミックス」プライミクス社製)で撹拌混合して起泡化した。この発泡組成物を、剥離処理をしたPET(ポリエチレンテレフタレート)フィルム(厚さ:38μm、商品名「MRF♯38」三菱樹脂社製)上に塗布し、70℃で4.5分、140℃で4.5分乾燥させ、厚さ120μm、見掛け密度0.26g/cm3、気泡率73.7%、最大セル径57.5μm、最小セル径15.3μm、平均セル径30μmの連続気泡構造の発泡体(発泡シート)を得た。
 実施例4
 アクリルエマルション溶液(固形分量55%、アクリル酸エチル-アクリル酸ブチル-アクリロニトリル共重合体(重量比45:48:7))100重量部、シリコーン系化合物A(ジメチルシリコーンオイル、数平均分子量Mn:7.16×103、重量平均分子量Mw:1.71×104、固形分(不揮発分)量100%)1重量部、脂肪酸アンモニウム系界面活性剤(ステアリン酸アンモニウムの水分散液、固形分量33%)3重量部、ベンゾトリアゾールナトリウム塩(固形分40%)(防錆剤)1重量部、ポリアクリル酸系増粘剤(アクリル酸エチル-アクリル酸共重合体(アクリル酸20重量%)、固形分量28.7%)0.8重量部をディスパー(「ロボミックス」プライミクス社製)で撹拌混合して起泡化した。この発泡組成物を、剥離処理をしたPET(ポリエチレンテレフタレート)フィルム(厚さ:38μm、商品名「MRF♯38」三菱樹脂社製)上に塗布し、70℃で4.5分、140℃で4.5分乾燥させ、厚さ130μm、見掛け密度0.37g/cm3、気泡率62.6%、最大セル径82.5μm、最小セル径43.5μm、平均セル径60μmの連続気泡構造の発泡体(発泡シート)を得た。
 比較例1
 ポリプロピレン[メルトフローレート(MFR):0.35g/10min]:45重量部、ポリオレフィン系エラストマーと軟化剤(パラフィン系伸展油)の混合物(MFR(230℃):6g/10分、JIS A硬度:79°、軟化剤をポリオレフィン系エラストマー100質量部に対して30質量部配合):55重量部、水酸化マグネシウム:10重量部、カーボン(商品名「旭♯35」旭カーボン株式会社製):10重量部、ステアリン酸モノグリセリド:1重量部、及び脂肪酸アミド(ラウリン酸ビスアミド):1.5重量部を、日本製鋼所(JSW)社製の二軸混練機にて、200℃の温度で混練した後、ストランド状に押出し、水冷後ペレット状に成形した。このペレットを、日本製鋼所社製の単軸押出機に投入し、220℃の雰囲気下、13(注入後12)MPaの圧力で、二酸化炭素ガスを注入した。二酸化炭素ガスは、ペレット全量に対して5.6重量%の割合で注入した。二酸化炭素ガスを十分飽和させた後、発泡に適した温度まで冷却後、ダイから円筒状に押出して、発泡体の内側表面を冷却するマンドレルと、押出機の環状ダイから押し出された円筒状の発泡体の外側表面を冷却する発泡体冷却用エアリングの間を通過させ、直径の一部を切断してシート状に展開して長尺発泡体原反を得た。この長尺発泡体原反において、平均セル径は55μm、見掛け密度は0.041g/cm3であった。
 この長尺発泡体原反を所定の幅に切断し(スリット加工)、連続スライス装置(スライスライン)を用いて、1面ずつ表面の低発泡層を剥がしとり、樹脂発泡体を得た。
 上記樹脂発泡体を、誘導発熱ロールの温度を160℃、ギャップを0.20mmにセットした上記連続処理装置内を通過させることにより、片面を熱で溶融処理して、スリット加工し、その後巻き取って、巻回体を得た。なお、引き取り速度は、20m/minとした。
 次に、上記巻回体を巻き戻して、誘導発熱ロールの温度を160℃、ギャップを0.10mmにセットした上記連続処理装置内を通過させることにより、溶融処理がされていない面(未処理面)を熱で溶融処理して、スリット加工し、その後巻き取って、両面が熱溶融処理された厚さ100μm、見掛け密度0.12g/cm3、気泡率88%、最大セル径90μm、最小セル径30μm、平均セル径60μmの連続気泡構造の発泡体(発泡シート)を得た。
 <評価>
 実施例及び比較例で得られた発泡体(発泡シート)について、以下の評価を行った。結果を表1及び表2に示す。なお、表1に、各実施例、比較例における各成分の配合部数(重量部)[固形分(不揮発分)換算]を示す。「Em」はエマルションを示す。
(平均セル径)
 低真空走査電子顕微鏡(「S-3400N型走査電子顕微鏡」日立ハイテクサイエンスシステムズ社製)により、発泡体断面の拡大画像を取り込み、画像解析することにより平均セル径(μm)を求めた。なお解析した気泡数は10~20個程度である。同様にして、発泡シートの最小セル径(μm)及び最大セル径(μm)を求めた。
(見掛け密度)
 100mm×100mmの打抜き刃型にて発泡体(発泡シート)を打抜き、打抜いた試料の寸法を測定する。また、測定端子の直径(φ)20mmである1/100ダイヤルゲージにて厚さを測定する。これらの値から発泡体の体積を算出した。
 次に、発泡体の重量を最小目盛り0.01g以上の上皿天秤にて測定する。これらの値より発泡体の見掛け密度(g/cm3)を算出した。
(動的粘弾性)
 粘弾性測定装置(「ARES2KFRTN1-FCO」TA Instruments Japan社製)のフィルム引張り測定モードにて、角振動数1rad/sで温度分散性試験を行った。その際の貯蔵弾性率E'と損失弾性率E''の比率である損失正接(tanδ)のピークトップの温度(℃)と強度(最大値)を測定した。
 表2の「tanδ温度」の欄に、発泡体の損失正接(tanδ)のピークトップの温度(℃)を記載し、「tanδ最大値」の欄に、該ピークトップの強度(最大値)を記載した。
 (圧縮永久歪み試験)
 実施例及び比較例で得られた発泡シート(サンプルサイズ:30mm×30mm)を試験片とした。この試験片を用い、80℃で、圧縮永久歪み試験を行った(JIS K6262の規定に準じる)。より具体的には、試験片を80℃の雰囲気下で圧縮し(圧縮された試験片の厚さが、元の厚さの40%の厚さになるまで圧縮する)、その状態を24時間保持した後、試験片を圧縮状態から解放し、23℃で30分放置し、23℃で試験片の厚さを測定した。そして、80℃での圧縮永久歪み(%)を下記式により求めた。
  CS={(t0-t1)/(t0-t2)}×100
  CS:圧縮永久歪み(%)
  t0:試験片の元の厚さ(mm)
  t1:試験片を圧縮装置から取り外し、30分後の試験片の厚さ(mm)
  t2:圧縮歪みを加えた状態での試験片の厚さ(mm)
 (衝撃吸収変化率)
 実施例及び比較例で得られた発泡シート(サンプルサイズ:20mm×20mm)(試験片A)について、前記の振り子型衝撃試験機(衝撃試験装置)(図1及び図2参照)を用い、23℃、衝撃子の重さ28g、振り上げ角度40°の条件で衝撃吸収性試験を行った。このとき得られた衝撃吸収率を初期の衝撃吸収率aとする。
 次に、試験片Aの初期厚みに対して60%圧縮した状態で試験片Aを80℃×72時間保存した後、圧縮状態を解除し、その後23℃×24時間経過後に、上記と同様、23℃、衝撃子の重さ28g、振り上げ角度40°の条件で衝撃吸収性試験を行った。このとき得られた衝撃吸収率を高温圧縮後の衝撃吸収率bとする。
 そして、下記式により、衝撃吸収変化率(%)を求めた。
 衝撃吸収変化率(%)={(高温圧縮後の衝撃吸収率b-初期の衝撃吸収率a)/初期の衝撃吸収率a}×100
 なお、衝撃吸収率は下記式で定義される値である。
  衝撃吸収率(%)={(F0-F1)/F0}×100
(上記式において、F0は支持板のみに衝撃子を衝突させた時の衝撃力、F1は支持板と試験片Aとからなる構造体の支持板上に衝撃子を衝突させた時の衝撃力である)
 (80℃応力保持率)
 実施例及び比較例で得られた発泡シート[サンプルの形状及びサイズ:ダンベル1号(JIS K6251参照)]を80℃の雰囲気下に30分間保持した後、引張試験機を用い、80℃で、チャック間距離40mmにてセットし、引張速度500mm/minで50%延伸後、120秒間保持する操作を行い、最大荷重と120秒後の荷重を計測し、下記式により80℃応力保持率を求めた。
  80℃応力保持率(%)=[120秒後の荷重(N)/最大荷重(N)]×100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の発泡シートは厚さが薄くても衝撃吸収性に優れ、しかも耐熱性にも優れるため、高温であっても装着(接着)信頼性が高く、例えば、電気・電子機器において、各種部材又は部品(例えば、光学部材など)を、所定の部位(例えば、筐体等)に取り付ける(装着する)際に用いられる電気・電子機器用部材、特に、衝撃吸収シートとして有用である。本発明の発泡シートを利用して取付(装着)可能な光学部材としては、例えば、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ等の画像表示装置に装着される画像表示部材(特に、小型の画像表示部材)や、いわゆる「携帯電話」、「スマートフォン」や「携帯情報端末」等の移動体通信の装置に装着されるタッチパネル等の表示部材、カメラやレンズ(特に、小型のカメラやレンズ)などが挙げられる。本発明の電気・電子機器は、前記本発明の発泡シートが用いられている。このような電気・電子機器には、例えば、表示部材を備えた電気・電子機器であって、上記の発泡シートが該電気又は電子機器の筐体と前記表示部材との間に挟持された構造を有している電気・電子機器が含まれる。該電気・電子機器として、例えば、いわゆる「携帯電話」、「スマートフォン」、「携帯情報端末」等の移動体通信の装置などが挙げられる。
 1  振り子型衝撃試験機(衝撃試験装置)
 2  試験片(発泡シート)
 3  保持部材
 4  衝撃負荷部材
 5  圧力センサー
 11 固定治具
 12 押さえ治具
 16 圧力調整手段
 20 支柱
 21 アーム
 22 支持棒(シャフト)の一端
 23 支持棒(シャフト)
 24 衝撃子
 25 電磁石
 28 支持板
 a  振り上げ角度

Claims (17)

  1.  平均セル径が10~200μmの発泡体で構成され、80℃での圧縮永久歪みが80%以下であり、下記で定義される衝撃吸収変化率が±20%以下である発泡シート。
     衝撃吸収変化率(%)={(高温圧縮後の衝撃吸収率b-初期の衝撃吸収率a)/初期の衝撃吸収率a}×100
     初期の衝撃吸収率a:試験片Aの衝撃吸収率(%)
     高温圧縮後の衝撃吸収率b(%):試験片Aの初期厚みに対して60%圧縮した状態で試験片Aを80℃×72時間保存した後、圧縮状態を解除し、その後23℃×24時間経過後に測定した衝撃吸収率(%)
     衝撃吸収率:振り子型衝撃試験機を用いた衝撃吸収性試験(衝撃子の重さ28g、振り上げ角度40°)(23℃)において、下記式で定義される値
      衝撃吸収率(%)={(F0-F1)/F0}×100
    (上記式において、F0は支持板のみに衝撃子を衝突させた時の衝撃力のことであり、F1は支持板と試験片Aとからなる構造体の支持板上に衝撃子を衝突させた時の衝撃力のことである)
  2.  厚さが30~1000μmであり、前記発泡体の見掛け密度が0.2~0.7g/cm3である請求項1記載の発泡シート。
  3.  前記発泡体が、動的粘弾性測定における角振動数1rad/sでの貯蔵弾性率と損失弾性率の比率である損失正接(tanδ)が-30℃以上30℃以下の範囲にピークトップを有する請求項1又は2記載の発泡シート。
  4.  発泡体が、アクリル系ポリマー、ゴム、ウレタン系ポリマー、及びエチレン-酢酸ビニル共重合体からなる群より選択された少なくとも1種の樹脂材料で形成されている請求項1~3の何れか1項に記載の発泡シート。
  5.  発泡体が、エマルション樹脂組成物を機械的に発泡させる工程Aを経て形成される請求項1~4の何れか1項に記載の発泡シート。
  6.  発泡体が、さらに、機械的に発泡させたエマルション樹脂組成物を基材上に塗工して乾燥する工程Bを経て形成される請求項5に記載の発泡シート。
  7.  前記工程Bが、基材上に塗布した気泡含有エマルション樹脂組成物を50℃以上125℃未満で乾燥する予備乾燥工程B1と、その後さらに125℃以上200℃以下で乾燥する本乾燥工程B2を含んでいる請求項6記載の発泡シート。
  8.  前記80℃での圧縮永久歪みが50%以下である請求項1~7の何れか1項に記載の発泡シート。
  9.  前記80℃での圧縮永久歪みが25%以下である請求項8に記載の発泡シート。
  10.  厚さが40~500μmである請求項2~9の何れか1項に記載の発泡シート。
  11.  厚さが50~300μmである請求項10に記載の発泡シート。
  12.  前記発泡体の見掛け密度が0.21~0.6g/cm3である請求項2~11の何れか1項に記載の発泡シート。
  13.  前記発泡体の見掛け密度が0.22~0.5g/cm3である請求項12に記載の発泡シート。
  14.  発泡体の片面又は両面に粘着剤層を有する請求項1~13の何れか1項に記載の発泡シート。
  15.  電気・電子機器用衝撃吸収シートとして用いられる請求項1~14の何れか1項に記載の発泡シート。
  16.  請求項1~15の何れか1項に記載の発泡シートが用いられている電気・電子機器。
  17.  表示部材を備えた電気・電子機器であって、請求項1~14の何れか1項に記載の発泡シートが該電気又は電子機器の筐体と前記表示部材との間に挟持された構造を有する請求項16記載の電気・電子機器。
PCT/JP2015/076729 2014-09-24 2015-09-18 発泡シート WO2016047611A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580002664.4A CN105745263B (zh) 2014-09-24 2015-09-18 发泡片
CN202010695505.XA CN111690165B (zh) 2014-09-24 2015-09-18 发泡片
US15/101,437 US20160303822A1 (en) 2014-09-24 2015-09-18 Foamed sheet
JP2016520177A JP6785156B2 (ja) 2014-09-24 2015-09-18 発泡シート
KR1020167010995A KR102454590B1 (ko) 2014-09-24 2015-09-18 발포 시트

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-193578 2014-09-24
JP2014193576 2014-09-24
JP2014193577 2014-09-24
JP2014-193577 2014-09-24
JP2014193578 2014-09-24
JP2014-193576 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047611A1 true WO2016047611A1 (ja) 2016-03-31

Family

ID=55581137

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2015/076729 WO2016047611A1 (ja) 2014-09-24 2015-09-18 発泡シート
PCT/JP2015/076730 WO2016047612A1 (ja) 2014-09-24 2015-09-18 発泡シート
PCT/JP2015/076728 WO2016047610A1 (ja) 2014-09-24 2015-09-18 積層体

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/076730 WO2016047612A1 (ja) 2014-09-24 2015-09-18 発泡シート
PCT/JP2015/076728 WO2016047610A1 (ja) 2014-09-24 2015-09-18 積層体

Country Status (5)

Country Link
US (2) US20160303822A1 (ja)
JP (4) JP6785156B2 (ja)
KR (3) KR102454590B1 (ja)
CN (4) CN105745262B (ja)
WO (3) WO2016047611A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025568A1 (ja) * 2016-08-01 2018-02-08 日東電工株式会社 発泡シート、電気電子機器、及びタッチパネル搭載機器
WO2023176134A1 (ja) * 2022-03-18 2023-09-21 大日本印刷株式会社 物品、物品の製造方法、発泡性接着シートおよび接着剤組成物

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956544B2 (ja) * 2016-08-01 2021-11-02 日東電工株式会社 発泡シート、電気電子機器、及びタッチパネル搭載機器
RU2741814C2 (ru) * 2016-09-12 2021-01-28 Эвоник Оперейшнс Гмбх Улучшение свойств пенополиметилметакрилатов путем применения метакриламидов
JP6178937B1 (ja) * 2017-02-02 2017-08-09 日東電工株式会社 発泡シート、電気電子機器、及びタッチパネル搭載機器
WO2018151274A1 (ja) * 2017-02-20 2018-08-23 日本ゼオン株式会社 自己吸着性発泡積層シートおよび自己吸着性発泡シート用組成物
CN107357459B (zh) * 2017-07-12 2021-01-29 业成科技(成都)有限公司 可挠曲结构
WO2019021371A1 (ja) * 2017-07-25 2019-01-31 株式会社寺岡製作所 粘着テープ
JP6473846B1 (ja) 2017-08-28 2019-02-20 日東電工株式会社 樹脂シートおよび粘着剤層付樹脂シート
JP7050498B2 (ja) * 2018-01-24 2022-04-08 日東電工株式会社 積層シートおよびロール体
JP6553792B1 (ja) * 2018-03-01 2019-07-31 大日本印刷株式会社 粘着シート
KR102597797B1 (ko) * 2018-03-15 2023-11-03 도레이 카부시키가이샤 적층체 및 그 제조 방법
WO2020022497A1 (ja) * 2018-07-26 2020-01-30 大日本印刷株式会社 壁紙シート
JP7207175B2 (ja) * 2018-07-26 2023-01-18 大日本印刷株式会社 壁紙シート
CN108865045A (zh) * 2018-07-30 2018-11-23 江苏科琪高分子材料研究院有限公司 物理发泡光固化丙烯酸胶粘剂及其用途
WO2020026989A1 (ja) * 2018-07-31 2020-02-06 大日本印刷株式会社 化粧シート
JP6900972B2 (ja) * 2018-07-31 2021-07-14 大日本印刷株式会社 シート状の粘着層、積層体およびそれらの製造方法
JP6628374B1 (ja) * 2018-08-10 2020-01-08 株式会社ジェイエスピー 積層体
KR102132851B1 (ko) * 2018-08-20 2020-07-10 주식회사 영우 디스플레이 기기용 내충격성 양면테이프
KR20210121049A (ko) * 2019-01-31 2021-10-07 세키스이가가쿠 고교가부시키가이샤 다층 발포체 시트
WO2020196406A1 (ja) * 2019-03-27 2020-10-01 日本ゼオン株式会社 自己吸着性発泡シート用組成物および自己吸着性発泡積層シート
JP6859494B1 (ja) * 2019-07-17 2021-04-14 積水化学工業株式会社 衝撃吸収シート、粘着テープ及び表示装置
KR102542011B1 (ko) * 2021-02-26 2023-06-12 주식회사 데시칸 복층유리용 흡습성 발포그래뉼 및 이를 구비한 복층유리
CN115044317B (zh) * 2022-06-29 2024-05-28 湖北祥源高新科技有限公司 一种双面自粘结聚氨酯泡棉的制备方法和产品
CN115181501B (zh) * 2022-09-14 2022-11-22 杭州福斯特应用材料股份有限公司 一种封装胶膜及光伏组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193353A (ja) * 1987-10-05 1989-04-12 Nitto Denko Corp 発泡体の製法
JPH01259043A (ja) * 1987-12-26 1989-10-16 Dainippon Ink & Chem Inc 発泡シート
JP2006104251A (ja) * 2004-10-01 2006-04-20 Tecno Shinto:Kk 合皮シート
JP2010084798A (ja) * 2008-09-29 2010-04-15 Sekisui Chem Co Ltd 衝撃吸収構造
JP2013001891A (ja) * 2011-06-21 2013-01-07 Chuo Rika Kogyo Corp 発泡性樹脂組成物
WO2013018582A1 (ja) * 2011-08-02 2013-02-07 日東電工株式会社 樹脂発泡体及びその製造方法
JP2014005444A (ja) * 2012-05-28 2014-01-16 Nitto Denko Corp 樹脂発泡体及び発泡部材

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1113921A (en) 1964-07-22 1968-05-15 Dunlop Co Ltd Production of flexible materials
JPS447522Y1 (ja) 1966-01-22 1969-03-22
US4499210A (en) * 1982-10-13 1985-02-12 Union Carbide Corporation Process and composition for producing open-cell cross linked polyolefin foam
US5240991A (en) * 1991-06-05 1993-08-31 Dow Mitsubishi Kasei Limited Polyisocyanate composition
JP2947778B2 (ja) * 1997-07-18 1999-09-13 高圧クロス株式会社 通気性シート構造体及び皮革様シート構造体並びにその製造方法
JPH10337824A (ja) * 1997-06-10 1998-12-22 Asahi Chem Ind Co Ltd 加工性に優れたスチレン系樹脂発泡シート及びその容器
JP2001100216A (ja) 1999-09-27 2001-04-13 Rogers Inoac Corp ガスケット
JP4125875B2 (ja) 2001-04-13 2008-07-30 日東電工株式会社 電気・電子機器用シール材
KR20040015327A (ko) * 2001-07-05 2004-02-18 이데미쓰세끼유가가꾸가부시끼가이샤 난연성 발포체 및 그 제조 방법
JP2004211005A (ja) * 2003-01-07 2004-07-29 Toyo Quality One Corp アクリル発泡体の製造方法及びアクリル発泡体
KR101142673B1 (ko) * 2003-11-12 2012-05-10 피터 왓첼 단열층을 위한 조성물
WO2008075604A1 (ja) * 2006-12-20 2008-06-26 As R & D Llc 有機減衰材料
JP4465023B2 (ja) * 2006-12-20 2010-05-19 As R&D合同会社 有機減衰材料
JP5305595B2 (ja) * 2007-01-10 2013-10-02 日東電工株式会社 熱接着シート
ES2449772T3 (es) * 2007-02-20 2014-03-21 Asahi Kasei Chemicals Corporation Composición absorbente de impacto
JP2010215805A (ja) * 2009-03-17 2010-09-30 Nitto Denko Corp 衝撃吸収材
JP2010234536A (ja) * 2009-03-30 2010-10-21 Sekisui Chem Co Ltd シート材料、転倒すべり防止シート及び軽量物固定用シート
JP5666926B2 (ja) * 2011-01-24 2015-02-12 日東電工株式会社 電気又は電子機器用の発泡積層体
US20130018582A1 (en) * 2011-07-13 2013-01-17 Miller Paul A Inertial Navigation Common Azimuth Reference Determination System and Method
CN103703045B (zh) * 2011-07-25 2015-11-25 井上株式会社 聚氨酯泡沫体
KR20140064806A (ko) * 2011-08-02 2014-05-28 닛토덴코 가부시키가이샤 수지 발포체 및 그의 제조 방법
US8618348B2 (en) * 2011-09-28 2013-12-31 Johnson & Johnson Consumer Companies, Inc. Dressings with a foamed adhesive layer
JP2013124279A (ja) * 2011-12-14 2013-06-24 Nitto Denko Corp 保護材
AU2013284470B2 (en) * 2012-06-28 2015-11-19 Shell Internationale Research Maatschappij B.V. Methods for hydrothermal digestion of cellulosic biomass solids in the presence of a distributed slurry catalyst
WO2015163345A1 (ja) * 2014-04-24 2015-10-29 日東電工株式会社 感圧接着シート
JP6421019B2 (ja) * 2014-04-24 2018-11-07 日東電工株式会社 積層シート

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193353A (ja) * 1987-10-05 1989-04-12 Nitto Denko Corp 発泡体の製法
JPH01259043A (ja) * 1987-12-26 1989-10-16 Dainippon Ink & Chem Inc 発泡シート
JP2006104251A (ja) * 2004-10-01 2006-04-20 Tecno Shinto:Kk 合皮シート
JP2010084798A (ja) * 2008-09-29 2010-04-15 Sekisui Chem Co Ltd 衝撃吸収構造
JP2013001891A (ja) * 2011-06-21 2013-01-07 Chuo Rika Kogyo Corp 発泡性樹脂組成物
WO2013018582A1 (ja) * 2011-08-02 2013-02-07 日東電工株式会社 樹脂発泡体及びその製造方法
JP2014005444A (ja) * 2012-05-28 2014-01-16 Nitto Denko Corp 樹脂発泡体及び発泡部材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025568A1 (ja) * 2016-08-01 2018-02-08 日東電工株式会社 発泡シート、電気電子機器、及びタッチパネル搭載機器
WO2023176134A1 (ja) * 2022-03-18 2023-09-21 大日本印刷株式会社 物品、物品の製造方法、発泡性接着シートおよび接着剤組成物

Also Published As

Publication number Publication date
JP6082498B2 (ja) 2017-02-15
KR20170063530A (ko) 2017-06-08
CN111690165B (zh) 2023-02-28
US20160304680A1 (en) 2016-10-20
CN105745263B (zh) 2020-08-28
JP7001790B2 (ja) 2022-02-10
CN105745263A (zh) 2016-07-06
KR102434784B1 (ko) 2022-08-22
CN106660305A (zh) 2017-05-10
JP2021008636A (ja) 2021-01-28
US20160303822A1 (en) 2016-10-20
KR20170059914A (ko) 2017-05-31
WO2016047610A1 (ja) 2016-03-31
CN111690165A (zh) 2020-09-22
WO2016047612A1 (ja) 2016-03-31
US10316156B2 (en) 2019-06-11
JP6693881B2 (ja) 2020-05-13
CN106660305B (zh) 2019-06-18
JPWO2016047611A1 (ja) 2017-07-06
CN105745262A (zh) 2016-07-06
JPWO2016047612A1 (ja) 2017-04-27
KR102441216B1 (ko) 2022-09-06
JPWO2016047610A1 (ja) 2017-07-06
KR20170058882A (ko) 2017-05-29
CN105745262B (zh) 2020-01-07
KR102454590B1 (ko) 2022-10-13
JP6785156B2 (ja) 2020-11-18

Similar Documents

Publication Publication Date Title
JP7001790B2 (ja) 発泡シート
JP6386832B2 (ja) 発泡シート
JP6956544B2 (ja) 発泡シート、電気電子機器、及びタッチパネル搭載機器
WO2018025568A1 (ja) 発泡シート、電気電子機器、及びタッチパネル搭載機器
JP6343478B2 (ja) 積層体及びその製造方法
KR101500467B1 (ko) 적층체
JP6632891B2 (ja) 低粘着性発泡シート
WO2016121788A1 (ja) 低粘着性発泡シート
JP6178937B1 (ja) 発泡シート、電気電子機器、及びタッチパネル搭載機器
JP6343165B2 (ja) 発泡体及び発泡シート
WO2017060990A1 (ja) 発泡体及び発泡シート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016520177

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167010995

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15101437

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845169

Country of ref document: EP

Kind code of ref document: A1